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Abstract: Full Matrix Capture is a multi-channel data acquisition method which enables flexible, high
resolution imaging using ultrasound arrays. However, the measurement time and data volume
are increased considerably. Both of these costs can be circumvented via compressed sensing,
which exploits prior knowledge of the underlying model and its sparsity to reduce the amount
of data needed to produce a high resolution image. In order to design compression matrices that are
physically realizable without sophisticated hardware constraints, structured subsampling patterns
are designed and evaluated in this work. The design is based on the analysis of the Cramér–Rao
Bound of a single scatterer in a homogeneous, isotropic medium. A numerical comparison of
the point spread functions obtained with different compression matrices and the Fast Iterative
Shrinkage/Thresholding Algorithm shows that the best performance is achieved when each transmit
event can use a different subset of receiving elements and each receiving element uses a different
section of the echo signal spectrum. Such a design has the advantage of outperforming other
structured patterns to the extent that suboptimal selection matrices provide a good performance and
can be efficiently computed with greedy approaches.

Keywords: Full Matrix Capture; compressed sensing; sparse array

1. Introduction

Multi-channel ultrasound inspection techniques enable high resolution imaging by exploiting
spatial information collected with an array. Commonly employed multi-channel measurement
modalities include Full Matrix Capture (FMC) in non-destructive evaluation [1] and Plane Wave
Imaging (PWI) in medical applications [2]. The resolution of such techniques is linked to the number of
transmission cycles and is therefore inversely proportional the overall measurement speed. The focus of
this work is the design of subsampling patterns for FMC that result in a reduction of both measurement
times and data volumes. The study is presented from a compressed sensing standpoint [3]; as such,
imaging is treated as a regularized inverse problem and the design of the subsampling patterns yields
the corresponding compression matrix.

Sparse recovery and compressed sensing have been successfully applied to ultrasound imaging,
where improved image quality and large compression rates have made them attractive approaches.
In [4], reconstructions from a single plane wave are shown to be comparable to those from synthetic
aperture focusing when the measurement scenario is simple and sparse recovery is used. The standard
Total Focusing Method (TFM) described in [1] is treated as a sparse recovery problem in [5], where it
results in an enhanced resolution. The same authors go on to reformulate the sparse recovery
problem directly in the domain of the reconstructed image in [6], speeding up the computation
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time. Compressed beamforming is presented in [7], where images are reconstructed from signals
sampled below the Nyquist rate based on their finite rate of innovation. In [8], a wave atom dictionary
is employed in order to recover the original measurement data prior to beamforming. Sparse recovery
is carried out on Ultrasound Computed Tomography (UCT) data using dictionaries learned from
previously processed data sets in [9].

Different approaches to measurement speed enhancement via compressed sensing can be found in
the ultrasound imaging literature. UCT is sped up in [10] by allowing multiple transducers to transmit
with random amplitudes. Such an approach yields high imaging quality by virtue of a Signal to Noise
Ratio (SNR) that stems from the simultaneous transmission events [1]. A contrasting approach that
does not necessitate simultaneous transmissions and arbitrary amplitude manipulations is to simply
leave out measurement samples. Reconstructions from such subsampled 3D array data are studied
in [11,12], where it is shown that complete data scans can be omitted with only a small increase in the
error. Indeed, it was shown in [13] that high quality reconstructions can be obtained even when the
FMC data has been heavily subsampled both spatially (i.e., by omitting the data from several sensors)
and in the frequency domain.

Spatial subsampling is closely related to sparse array design and optimal placement of sensors,
which are topics of widespread interest and applicability. Sparse arrays have been studied extensively
via the design of cost functions that incorporate the main and side lobes produced by the array,
followed by optimization with methods like simulated annealing [14] or genetic algorithms [15].
The optimal position of a predefined number of sensors can be sought after in a similar fashion. To this
end, in the field of acoustics recent works have focused on the greedy optimization of cost functions
such as the mutual information between sensor locations that have already been assigned and those
that are still open [16], or the average size of the main lobe in a Region of Interest (ROI) over which the
probability of finding a source is non-uniform [17]. When paired with convolutional beamforming,
the elements in a pair of co-prime arrays may also be placed such that the resulting co-array has a
larger aperture and effectively contains all of its elements [18].

The problems of optimal sensor placement and spatial and frequency domain subsampling can be
addressed together with compressed sensing by incorporating them into the design of the compression
matrix. In this vein, co-prime arrays have been designed from closed-form expressions for Direction of
Arrival (DOA) estimation paired with sparse recovery using a steering vector dictionary [19]. In [20],
the compression matrix for MRI imaging is designed by estimating the best probability density function
from which coefficients should be drawn. In this work, sparse array design is dealt with by studying
the impact the resulting compression matrix has on the CRB of a point-like scatterer whose coordinates
are to be estimated.

The CRB is a lower bound on the variance of an estimated parameter that an unbiased estimator
can achieve [21]. It is estimator agnostic and depends only on the data model and its parameters.
In [22], the CRB and Monte Carlo simulations were employed to study the resolution limit of
ultrasound localization microscopy, showing a direct relationship to the aperture size and therefore the
spacing between the active sensors. This behavior was quantified in [23], where approximations and
simplifications allowed the CRB of FMC data containing echoes from a single scatterer to be written
in a closed form that clearly portrayed the impact of the sensor positioning on the variance of the
estimated scatterer location. This insight was then used to design a channel selection technique with
the CRB as a cost function. Interestingly, a similar approach is followed in [24], in which the CRB of a
set of points is used in order to derive a closed form expression for the optimal position and orientation
of cameras for 3D vision. In addition, combining matrices for DOA estimation have also been designed
by considering the CRB and probability of false detection in [25].

Motivated by the success of compressed sensing in ultrasound imaging and the ubiquity of sparse
array design and optimal sensor positioning problems, the present study expands upon the results
in [13,23]. By enforcing specific conditions on the transmitting and receiving elements in a Uniform
Linear Array (ULA), structured compression matrices are designed based on the CRB of a single
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scatterer whose location is estimated from a subsampled FMC measurement. These compression
matrices represent sparse arrays with subsampled spectra that allow the fast collection of subsampled
FMC data from which high resolution reconstructions may be obtained. In [13], strict conditions were
enforced on the compression matrix: each transmitter must use the same subset of receivers and every
channel uses the same section of the signal bandwidth. In this paper, a more flexible approach is
studied for spatial and frequency subsampling. In particular, each active transmitter is only required
to have the same number of associated receivers, while each transmitter-receiver pair must have the
same number of frequency samples; however, the actual elements and frequency samples can be
chosen freely. Since the presented novel approaches generalize the previous work [13], they entail a
higher computational complexity. Therefore, this work also adapts the compression matrix design
approach from [23] into a two stage greedy algorithm. The resulting imaging quality is then compared
to that in [13] by applying the new compression matrices to the same measurement data. Additionally,
the previous and present approaches are contrasted in new synthetic scenarios.

2. Full Matrix Capture

FMC is a multi-channel measurement technique in which the signals from all possible
combinations of transmitting (Tx) and receiving (Rx) elements are collected [1]. A sketch of this
procedure is presented in Figure 1, in which a scenario with a simple measurement geometry is shown.
The main idea behind FMC is to sequentially excite the specimen with each element in an array.
After each transmission, the Rx elements record the echoes produced at impedance discontinuities
within the medium. Each Tx event is dubbed a measurement cycle due to the possibility of parallel Rx
recording. In the case of a ULA placed on a flat surface, the depth coordinate of the sensors can be
taken as z = 0 mm without loss of generality.

(x1, 0) (x2, 0) (x3, 0) (x4, 0)

(xd, zd)

(x1, 0) (x2, 0) (x3, 0) (x4, 0)

(xd, zd)

(x1, 0) (x2, 0) (x3, 0) (x4, 0)

(xd, zd)

(x1, 0) (x2, 0) (x3, 0) (x4, 0)

(xd, zd)

M
easurem

ent cycles

x

z

Rx

Tx/Rx

Figure 1. Illustration of FMC measurement. A ULA whose centroid lies at (x, z) = (0, 0) emits
pulses into the medium sequentially. Reflections from a flaw located at xd, zd are observed in each
measurement cycle.
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The measurement cycles axis in Figure 1 is analogous to time, making it evident that the duration
of the measurement procedure scales as M for a ULA with M elements. A straightforward way of
speeding up the procedure is to reduce the number of Tx events (i.e., measurement cycles). The classical
approach for data acquisition and imaging would impose a trade-off between the number of cycles
(speed) and the aperture size (resolution). By using subsampling, this trade-off can be circumvented.
As the goal is to perform a parametric reconstruction of the underlying image using compressed
sensing, it is desirable to model the FMC data in such a way that the reduction of Tx and Rx events can
be represented through compression matrices. Before this, however, a compatible model is necessary.

2.1. Data Model

The same data model as in [13,23] is used throughout this work. This model is based on the first
order Born approximation, which considers the scattered field resulting only from the incident field.
In a homogeneous and isotropic 2D setting with point-like scatterers and no dispersion, a bistatic
noiseless measurement can be modeled as

b(a)
i,j (t) =

(
D

∑
d=1

ad · exp(φd) · gi,j(θ
i
d, θ

j
d) · δ(t− τi,j(xd, zd))

)
∗ h(a)(t), (1)

where the subindices i, j denote the Rx and Tx elements, respectively. The pulse shape is denoted as
h(a)(t), with the superscript (a) indicating the analytic representation. It is assumed that the pulse
shape is generated by the Tx element and remains unchanged at the Rx side. Additionally, ∗ represents
the convolution of two functions. The number of scatterers in the medium is denoted as D, which in
the interest of compressed sensing is assumed to be small. Each scatterer d has an associated complex
weight ad · exp(φd) that determines its scattering amplitude and phase. The term gi,j(θ

i
d, θ

j
d) accounts

for the directivities of the Tx and Rx elements which respectively depend on the Direction of Departure
(DOD) θ

j
d and Direction of Arrival (DOA) θi

d. The term δ(·) represents the delta function, and τi,j(xd, zd)

is the time delay for scatterer s located at (xd, zd) for the channel corresponding to Tx element j and Rx
element i. These geometric relationships are shown in Figure 2. For simplicity, a Gaussian directivity is
assumed both in Tx and Rx following

gi,j(θ
i
d, θ

j
d) = exp

(
− tan2(θ

j
d)− tan2(θi

d)

tan2(θ0)

)
, (2)

with θ0 as the transducer’s opening angle. However, the model and the presented subsampling
strategies admit any directivity function that can be differentiated with respect to the scatterer location
xd, zd, amplitude ad, and phase φd.

If a ULA with M elements is used, a total of M2 bistatic measurements obeying (1) are comprised
in the FMC data. Each single-channel scan is sampled at a rate fs yielding NT samples, so that
measurement vectors b(a)

i,j ∈ CNT are obtained. Finally, the measurements can be concatenated as

b =
[
(b(a)

1,1 )
T, (b(a)

2,1 )
T, . . . , (b(a)

M,M)T
]T
∈ CNT ·M2

. (3)
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Figure 2. Illustration of the geometric relationships among a pair of sensors and a scatterer.
These relationships completely determine the time of flight and angles of departure and arrival
in a homogeneous, isotropic medium. The figure has been adapted from [13,23] to reflect changes
in notation.

2.2. Discrete Forward Model

A forward model for b is formulated next. To begin, consider the discretization of (1) defined
in (3). The first operation to be discretized is the convolution with the pulse shape h(a)(t). This is done
by defining a Toeplitz matrix H ∈ CNT×NT that contains shifted copies of the time sampled pulse shape
along its columns. Since the model is a superposition of hyperboloids, a dictionary containing the
possible time delays is constructed. A ROI is discretized with some horizontal and vertical resolution
∆x and ∆z, noting that this discretization inevitably introduces an estimation error directly related to
the chosen resolution [26]. The region can then be modeled as a vector x ∈ CNz ·Nx , where Nx and Nz

denote the number of samples along the horizontal and vertical directions. The elements of xn of x
represent the complex weights of potential flaws in a specimen (i.e., the reflectivity of the measured
specimen) while their index n indicates the location within the ROI. A forward model is built in such a
way that the non-zero elements in x are mapped into hyperboloids in b. For simplicity, the forward
model is first defined for a single channel as

b(a)
i,j = HMi,jx. (4)

The matrix Mi,j ∈ RNT×Nz ·Nx represents the time delays and directivities corresponding to the
potential scatterer locations in x, which are then convolved with the pulse shape through a product
with H. Replacing the original dependence on xd, zd by a dependence on the elements xn of x,
the components of the time delay matrix can be computed following

(
Mi,j

)
m,n = gi,j(θ

i
xn , θ

j
xn) · δ

[
m−

⌊
fs · τi,j(xn)

⌋]
, (5)

where δ[·] is the Kronecker delta and b·c is the floor function, and the parentheses around Mi,j are
used to distinguish the channel subindices i, j from the indices m, n of the matrix elements. Using (5),
the complete time delay dictionary for b is given by

M =
[

MT
1,1, MT

2,1, . . . , MT
M,M

]T
∈ RNT ·M2×Nz ·Nx (6)

following the same stacking procedure as in (3). Using IN ∈ RN×N as the identity matrix whose size is
specified by its subscript, the pulse shape matrix is multiplied individually to each channel via

b = (IM2 ⊗ H)Mx = Ax, (7)

thus modeling a complete FMC data set.
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3. Subsampled Data

The effort in sparse array design and optimal sensor position is largely dedicated to choosing
a performance metric that promotes the desired imaging behavior. These metrics include, but are
not limited to, beam patterns [14,15,17], number of virtual sensors [18,19], mutual coherence [8],
information-theoretic quantities [16], and data-driven quantities [20]. Similarly to [22], the approach in
this paper focuses on minimizing the variance of the estimate of the location of point-like scatterers.
In contrast to [22], the variance is calculated analitically, as opposed to computing it from Monte
Carlo simulations. More specifically, a lower bound on the variance, i.e., the CRB [21], of a single
point-like scatterer is considered. This requires the model to incorporate subsampling directly, and so
an appropriate extension is presented next.

In the spirit of compressed sensing, the action of only collecting data from a small set of channels
is represented as a product with a compression matrix. Such a matrix can consider not only spatial,
but also frequency domain subsampling of the data. It should be noted that only Tx subsampling
yields a gain in measurement time; however, Rx and frequency subsampling can further compress the
data and make it feasible to inspect larger specimens and store the data therefrom. Reconstructions can
be carried out with only a small number of Fourier coefficients per channel, as shown in [7,27]. This can
be done in several ways; however, focus is restricted to two structures which result in a smaller number
of measurement cycles without requiring a specialized hardware beyond programmable switches and
a means to compute fast Fourier transforms per channel.

The first of these approaches employs a single set of transmitters, receivers, and Fourier coefficients
as defined in [13,23]. The transmitters are chosen with a selection matrix ST ∈ RMT×M that chooses
MT < M elements in the ULA. Likewise, the matrices SR ∈ RMR×M and F ∈ CNF×NT select MR < M
Rx elements and NF < NT Fourier coefficients respectively. Note that the total number of Fourier
coefficients is NT if a usual Discrete Fourier Transform (DFT) matrix used, but since the signals are
analytic, half of the coefficients are zero and only NT

2 coefficients remain. Of these, NF < NT
2 coefficients

are chosen by keeping the corresponding subset of rows from the DFT matrix in F. In this model, every
channel collects the same set of Fourier coefficients. Additionally, the same set of Rx elements is active
during each measurement cycle. An FMC data set subsampled in this fashion is given by [13,23]

yK = (ST ⊗ SR ⊗ F)b + nK ∈ CNF ·MR ·MT , (8)

with ⊗ denoting the Kronecker product and SK = (ST ⊗ SR ⊗ F) ∈ CNF ·MR ·MT×NT ·M2
as the

compression matrix. In (8), the term nK has been added to account for noise added to b upon
measurement, meaning it has also been compressed. Throughout this work, it is assumed that the
measurement noise is zero-mean, circularly symmetric, white (both in space and time) Gaussian
noise. The subsampling operation (ST ⊗ SR ⊗ F) has orthogonal rows and therefore preserves the
noise statistics, although the variance is modified depending on the normalization choice for F.
For simplicity, the frequency subsampling matrices are left unnormalized, which results in an energy
scaling factor of NT

2 after considering that the signals are analytic.
The second approach allows more flexibility. Now, each Tx element has its own set of MR receivers.

Further, each channel has its own, possibly unique, set of NF Fourier coefficients. The corresponding
subsampled data set can be modeled as

yKR =

(((
ST ⊗ 1

T
M

)
� [SR1, SR2, . . . , SRM]

)
⊗ 1

T
NT

)
� [F1, F2, . . . , FM2 ]b + nKR ∈ CNF ·MR ·MT , (9)

where � is the Khatri–Rao or column-wise Kronecker product and 1N ∈ RN is a vector of ones
whose dimension is indicated in the subscript. The matrix [SR1, SR2, . . . , SRM] ∈ RMR×M2

is a
concatenation of M Rx selection matrices. In a similar fashion, [F1, F2, . . . , FM2 ] ∈ CNF×NT ·M2

is
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a concatenation of M2 Fourier selection matrices. Although this notation requires the definition of
several SRi and Fi matrices with only zeros, it highlights the underlying structure of the compression

matrix SKR =

(( (
ST ⊗ 1

T
M
)
� [SR1, SR2, . . . , SRM]

)
⊗1T

NT

)
� [F1, F2, . . . , FM2 ] ∈ CNF ·MR ·MT×NT ·M2

.

Once again, the term nKR is zero-mean, circularly symmetric, white Gaussian noise.
The subsampling approach in (9) is more flexible than that of (8). It is important to highlight that

the operations involving the Fourier subsampling matrices Fi can be carried out in the same way in both
settings, and they are equivalent if Fi = F. In fact, the subsampling model (8) from [13,23] is a special
case of (9) in which Fi = F and SRi = SR. The new model (9) adopted in this work generalizes (8) by
decoupling the subsampling choice for the transmission and reception elements, as well as the selection
of frequency coefficients. This opens up the possibility of combining different spatial and frequency
subsampling approaches, and so a different naming scheme is adopted. The spatial subsampling
approach in (8) is referred to as constant Rx, since the same set of Rx elements is used in every
measurement cycle. In contrast, the approach in (9) is called varying Rx from here on, as it allows
the possibility of using different receivers (albeit the same amount thereof) in each cycle. Fourier
subsampling requires further discussion and is therefore addressed in Section 6.3.

4. Compressed Sensing

4.1. Problem Description

The theory of compressed sensing brings to light the possibility of reconstructing vectors from a
small number of measurement samples if an appropriate sparsifying dictionary is known [3]. Recall (1),
in which FMC data is modeled as a sum of scaled, phase shifted, and time delayed pulses. The time
delays τi,j(xd, zd) trace a slowly-varying hyperbolic shape across space (i.e., across the sensors) and the
energy of the signal is concentrated near the center frequency of the pulse shape h(a)(t). This hints at a
sparse representation based on these two properties that can be readily used to formulate the imaging
task as a compressed sensing problem. Similarly to the approach taken in [5,6], imaging is treated as
an inverse problem with sparse regularization. The addition of compression matrices turns it into a
standard compressed sensing problem, as shown next. The subsampling scheme (9) is used in the
following formulation, as it encompasses (8) as a special case.

Frequency subsampling is considered first, which is addressed by the term

S f = [F1, F2, . . . , FM2 ] ∈ CNF×NT ·M2
. (10)

Spatial subsampling is represented via the matrix

Ss =

(((
ST ⊗ 1

T
M

)
� [SR1, SR2, . . . , SRM]

)
⊗ 1

T
NT

)
∈ RMR ·MT×NT ·M2

. (11)

The overall compression matrix is then given by

Φ = Ss � S f ∈ CNF ·MR ·MT×NT ·M2
. (12)

The compressed sensing model can now be expressed in terms of the forward model A for the
FMC data in (7) and the compression matrix Φ in (12). This model is written as

y = Φ · (b + ñ) = ΦAx + n ∈ CNF ·MR ·MT . (13)
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Finally, given the prior knowledge that the ROI contains only a small number of flaws and
therefore the reflectivity x is sparse, this imaging task can be carried out by solving the basis pursuit
denoising problem [28]

min
x
‖y−ΦAx‖2

2 + λ‖x‖1. (14)

Several methods exist for solving problems of the form (14). In this work, the Fast Iterative
Shrinkage/Thresholding Algorithm (FISTA) [29] is employed.

4.2. FISTA

FISTA is a simple algorithm that allows problems like (14) to be solved iteratively. It addresses
the data fidelity term ‖ · ‖2

2 through gradient steps and the sparsity term ‖ · ‖1 via soft thresholding.
Further details are not provided here, as they can be found in the literature [29]. Some complications
arise, however, as the forward model A quickly becomes too large to store in memory even for small
ROIs and small values of M. In addition, the choice of the sparsity-promoting parameter λ is left to
the user. These two challenges are addressed next.

Since the data fidelity term requires gradient steps, an estimate of the the model’s largest singular
value is required in order to guarantee convergence. The largest gradient step size for which the
algorithm remains stable is inversely proportional to the square of the largest singular value σ1 of ΦA,
meaning it is preferable to overestimate this quantity in exchange for slower convergence rather than
underestimating it and having instability. A heuristic for the singular value σ1 can be constructed
based on the structure of the model matrix [13]. Assume that the horizontal resolution ∆x is fine
enough that every set of Nz columns of ΦA is highly correlated to the next, and so the forward model’s
rank is approximately Nz. For simplicity, assume also that the Nz non-zero singular values are equal.
Next, note that the Frobenius norm of a matrix is equal to the square root of the sum of the squared
singular values of the matrix. Considering the previous assumptions, this yields ‖ΦA‖F =

√
Nzσ1.

Due to the structure of the forward model, each column contains MR ·MT echoes, and there are Nz ·Nx

columns in total. The Frobenius norm can then be substituted by a sum over the energies of the echoes.
Note that the compressed model includes a product with an unnormalized DFT matrix that introduces
a factor of NT

2 to the pulse shape’s energy if no frequency subsampling takes place and the signal is
analytic. If the transducer directivity is also ignored, these considerations yield an estimate given by

σ1 ≈ w1

√
NT ·MR ·MT · Nx

2
‖h‖2. (15)

In this expression, the vector h ∈ CNT is a sampled version of the pulse shape h(a)(t) and the
coefficient w1 is a weight that can be manually tuned by trial and error if the heuristic for σ1 is too
small and FISTA fails to converge or is unstable.

The sparsity parameter λ can be chosen based on how the soft thresholding operation is applied
in FISTA. Soft thresholding is performed on back-projections involving the compressed model (ΦA)H

and a residual vector. Because of this, if λ is set to ‖(ΦA)Hy‖∞, the solution will achieve maximum
sparsity and be set to a zero vector. The parameter can then be chosen as a percentage of this quantity
by introducing a coefficient, resulting in [5]

λ = w2‖(ΦA)Hy‖∞. (16)

The coefficient in (16) is chosen in the range 0 ≤ w2 ≤ 1, where w2 = 0 results in a standard least
squares problem and w2 = 1 yields a zero vector as a solution.
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5. Cramér-Rao Bound

Having incorporated the subsampling process into the model, the CRB can be employed to
evaluate its impact. The CRB is a lower bound on the variance of any unbiased estimate of a
parameter [21]. It also describes the behavior of estimators that are asymptotically unbiased, such as
in the high SNR regime [30] and when parameter dictionaries are sampled finely [26]. As shown
in [23] and observed in [22], the CRB of FMC data containing a single point-like scatterer inherently
incorporates geometrical and signal-dependent information of the measurement scenario, favoring
larger aperture areas and configurations in which more energy is collected. This makes it a suitable
and widely applicable design metric for subsampling.

The CRB can be computed as the inverse of the Fisher Information Matrix (FIM) [21], which can
be constructed from the model and its parameters. The models shown in (8) and (9) depend on the
parameter vector ξ = [xd zd ad φd]

T and the noise variance σ2
n . By construction, both models have the

same noise statistics, and so either choice of model obeys y ∼ CN(µ, σ2
n INF ·MR ·MT ), with mean µ = Φb.

The FIM can be computed from these quantities as

J =
2
σ2

n
Re

{(
∂µ

∂ξT

)H ∂µ

∂ξT

}
∈ R4×4, (17)

where Re{·} is the real part of a complex number. The expression shown in (17) is known as the
Slepian–Bangs formulation of the FIM [21] and is applicable due to the model statistics. Alternatively,
a slight variation of (17) is given by

J =
2
σ2

n
Re

{(
∂b
∂ξT

)H
(ΦHΦ)

∂b
∂ξT

}
∈ R4×4, (18)

following directly from linearity and the independence of the compression matrix Φ from the parameter
vector ξ.

Once the FIM is known, the CRB can be computed as C = J−1. Not all of the quantities in C are
relevant, as it contains the nuisance parameters ad and φd. Based on the chosen order of the parameters
in the definition of the parameter vector ξ, focus is restricted to the upper left quadrant of C given by

C̃ =

[
C11 C12

C21 C22

]
, (19)

in which Cm,n is the scalar element at the mth row and nth column of C. The main quantities of interest
are then the CRB of the x-coordinate of the scatterer which is given by CRB{x} = C11, the CRB of the
z-coordinate CRB{z} = C22, and their sum Tr{C̃}, where Tr{·} is the trace of a matrix. The evaluation
of these quantities can be done numerically and is not addressed further in this work.

6. Sparse Array Design

Now that the model and reconstruction procedures have been established, the choice of
Φ = Ss � S f remains. The approach explored in this work is the same as in [23], where the
design procedure is defined as a minmax problem of the form

min
Ss ,S f

max
{xd}

Tr{C̃} (20)
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with maximization carried out over a discrete set of x-coordinates {xd} within the ROI. The motivation
behind this formulation of the subsampling pattern design task is the interpretation of minmax
problems. They yield the best performance in the worst case scenario, which makes them attractive
approaches in spite of their complexity [31]. A few considerations can be taken in order to simplify the
problem. Note that maximization occurs only with respect to the x-coordinates within the discretized
ROI: it was previously shown in [23] that the CRB achieves its largest values immediately under the
array (in the near field) and far away from it (in the far field where z is larger than the maximum
spacing between active transducers). In settings for which the ROI is known to lie at a distance larger
than the aperture of the array, it suffices to take z = zmax in the ROI to maximize the CRB with respect
to z. Additionally, this framework allows practically inspired constraints to be enforced. The solution
set can be, for example, restricted to include solutions where the active Tx element in a measurement
cycle cannot be used for Rx, avoiding self-interference artifacts. Beyond this, the complexity may still
be too large, making greedy algorithms a reasonable (although suboptimal) solution approach [17,20].

6.1. Constant Rx

Depending on the spatial subsampling approach, a different solution approach can be taken.
In what follows, solution approaches are described and compared in terms of the number of operations
required to find the compression matrix. Because the implementation of the CRB is flexible, the number
of operations is given in terms of the number of maximizations. This shifts focus onto the search over
the Tx and Rx selection matrices in order to build Ss from (11), recalling that this expression is valid
both for the constant Rx and the varying Rx approaches. In the following scenarios, it is assumed
that the frequency subsampling matrix S f has already been generated, and so the spatial subsampling
matrix is optimized taking each channel’s spectral samples into account.

Some auxiliary terms and operations are defined which are needed in order to fully specify
the measurement setting. The first of these is the set of x-coordinates xd, denoted as {xd} with
cardinality |{xd}| = Nx, where the defects can potentially be located. Similarly, the x-coordinates of
the ULA sensors are collected in the set |{xk}| = M. Additionally, the sets ST and SR are defined
as the sets of selection matrices with the correct number of active elements in Tx (MT) or Rx (MR),
respectively. The operator A\B yields the set A excluding the elements in the set B, while A ∪ B is
the union of the sets. For clarity, the upper left quadrant of the CRB C̃ is written as a function of the
parameters it depends on as the optimization procedure is carried out. Finally, conditions such as
the aforementioned requirement of avoiding using the same array element for Tx and Rx in the same
measurement cycle are denoted as a boolean function q(Ss) whose value is one if the conditions are
satisfied and zero otherwise.

When there is only one Rx selection matrix SR, it is still reasonable to use brute force and do a an
exhaustive search for moderately small arrays (e.g., M ≤ 16). From the number of selection matrices
to be tested, the number of maximizations necessary for an exhaustive search is ( M

MR
)( M

MT
), where (a

b)

denotes a choose b. The exhaustive search consists simply of iterating over the sets ST and SR and
keeping the best solution, i.e., the one that achieves the minmax. This design approach is illustrated in
Algorithm 1 and corresponds to the method from prior work [23].
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Algorithm 1: Design via Exhaustive Search

INPUT: zmax, {xd}, {xk}, MR, MT , S f , h(a)(t), σ2
n

OUTPUT: Φ̃ ∈ RNF ·MR ·MT×NT ·M2

generate ST , SR
minmax← ∞

Φ̃← 0 ∈ RNF ·MR ·MT×NT ·M2

forall ST ∈ ST do
forall SR ∈ SR do

build Ss from ST , SR

if q(Ss) then
Φ← Ss � S f

cost← maxxd Tr{C̃(zmax, {xd}, h(a)(t), σ2
n , {xk}, Φ)}

else
cost← ∞

end

if cost < minmax then
minmax← cost
Φ̃← Φ

end
end

end

return Φ̃

6.2. Varying Rx

An exhaustive search quickly becomes intractable in the varying Rx scenario, as the number of

maximizations is now ( M
MT

)( M
MR

)
MT . In light of this, a greedy approach is adopted, and additional

auxiliary terms are introduced. One Tx element gT ∈ {1, 2, . . . , M} is tested at a time. For the
Tx element under test, the best set GRc of MR receivers is constructed by selecting, one at a time,
the elements that reduce the minmax the most. Then, the Tx element and its Rx set GRc for which the
minmax is the smallest, which are denoted by a superscript ∗, are added to the final Tx set GT and Rx
set GR. Tx elements are then tested in the same way until all MT transmitters and MR ·MT receivers
have been chosen. The procedure is split into two parts: the Tx selection is depicted in Algorithm 2,
and it makes use of Algorithm 3 in the form of function β(·) to choose GRc at every step.
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Approximately M2 ·MR ·MT maximizations are needed; however, enough Tx and Rx elements
must be pre-specified before the algorithm begins so that the FIM is invertible in the first iteration.
This is because a minimum of two channels are needed in order to spatially resolve a defect in a 2D
scenario. In this work, this greedy approach is initialized with a given Tx element gT0 and an Rx
element gR0. This means the number of maximizations increases to approximately M4 ·MR ·MT if all
initial conditions are to be tested.

Algorithm 2: Greedy Tx Design

INPUT: gT0, gR0, zmax, {xd}, {xk}, MR, MT , S f , h(a)(t), σ2
n

OUTPUT: Φ̃ ∈ RNF ·MR ·MT×NT ·M2

minmax← ∞

Φ̃← 0 ∈ RNF ·MR ·MT×NT ·M2

GT ← {gT0}
GR ← {}
GRc ← {gR0}

minmax, GRc ← β(GT , GR, GRc, zmax, {xd}, {xk}, MR, MT , S f , h(a)(t), σ2
n)

GR ← GR ∪ GRc
GRc ← {}

while |GT | < MT do
forall gT ∈ {1, 2, . . . , M}\GT do

cost, GRc ← β(GT , GR, GRc, zmax, {xd}, {xk}, MR, MT , S f , h(a)(t), σ2
n)

if cost < minmax then
minmax← cost
g∗T ← gT
G∗Rc ← GRc

end
end
GT ← GT ∪ g∗T
GR ← GR ∪ G∗Rc

end

build Φ̃ from GT , GR
return Φ̃
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Algorithm 3: Greedy Rx Design (β(·))
INPUT: GT , GR, GRc, zmax, {xd}, {xk}, MR, MT , S f , h(a)(t), σ2

n

OUTPUT: minmax, GRc

minmax← ∞

while |GRc| < MR do
forall gR ∈ {1, 2, . . . , M}\GRc do

build Ss from GT , GR, GRc

if q(Ss) then
Φ← Ss � S f

cost← maxxd Tr{C̃(zmax, {xd}, h(a)(t), σ2
n , {xk}, Φ)}

else
cost← ∞

end

if cost < minmax then
minmax← cost
g∗R ← gR

end
end
GRc ← GRc ∪ g∗R

end

return minmax, GRc

6.3. Fourier Subsampling

Reconstructions from frequency subsampled synthetic aperture data are discussed in [27],
where strategies for the selection of the Fourier coefficients are also discussed. In this work, the so-called
max and energy based frequency subsampling approaches are tested in tandem with the constant
and varying Rx spatial subsampling approaches. Both the max and energy based frequency selection
strategies depend on prior knowledge of the pulse shape in the medium. In practice, the pulse shape is
not exactly known and may be different for each echo. However, a sample waveform can be obtained
and used as a reference, e.g., by observing a back wall echo in a defect-free region of the specimen under
test, or using a test specimen made of the same material as the specimen of interest. This reference
waveform takes the place of the vector h ∈ CNT , i.e., the sampled version of h(a)(t). Recalling that
the signal is analytic, a ”full” DFT matrix F0 ∈ CNT

2 × NT allows the calculation of the pulse shape

spectrum F0h ∈ C
NT
2 , providing the necessary prior information.

The max strategy consists of selecting the NF < NT
2 elements of F0h with the largest absolute

value, yielding the maximum possible energy. If the pulse spectrum has a single mode, this strategy
results in a small bandwidth located near the center frequency of the pulse shape. This selection
strategy is deterministic, and since a single pulse shape is assumed in the present model, every channel
uses the same set of Fourier coefficients given by the matrix F ∈ CNF×NT containing the NF rows of F0

that yield the most energy when applied to the pulse shape.
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The energy based strategy addresses the potentially small bandwidth of the max strategy,
in exchange for reduced energy. In this approach, the frequency samples are chosen at random,
but a higher probability of selection is assigned to samples with more energy. The normalization given
by F0h/‖F0h‖1 ensures the sum of the magnitudes of the pulse spectrum samples is one, after which it
can be treated as a Probability Mass Function (PMF). Based on this PMF, a set of NF samples can be
chosen by sampling without replacement. The selection process is random, and each channel has its
own, possibly unique, set of frequency samples denoted by Fi ∈ CNF×NT .

7. Experiment

In order to compare the different spatial and frequency subsampling approaches,
their compression matrices are paired with FISTA to yield reconstructions of a simulated FMC data
set. The comparison is based on the performance of FISTA when reconstructing the underlying
reflectivity x in a ROI at a fixed compression rate. This means that NF, MR, and MT are specified,
and compression matrices using all four combinations of spatial and frequency subsampling
approaches are constructed following (20). Additionally, sample reconstructions of measurement
data are provided for qualitative evaluation.

7.1. Simulation Scenarios

Two simulation scenarios are illustrated in Figure 3. A homogeneous, isotropic specimen with a
constant speed of sound c = 6300 m s−1 is simulated. The sampling frequency is fs = 40 MHz, and the
measurements contain NT = 1525 time samples. A ULA with M = 16 elements is represented by
the rectangles above the x-axis. The spacing between the centers of consecutive sensors, or pitch,
is px = 1.8 mm, and the opening angle is set to θ0 = 32°. Two point-like scatterers are present in the
medium, which is assumed to extend infinitely along ±x and +z. Their depth is z = 100 mm. One of
the scatterers is located under the ULA’s axis of symmetry at x = 0 mm, while the other is placed at
the leftmost edge of the array at x = −14 mm. The red boxes in the figure represent the ROIs in which
reconstructions are carried out with FISTA. These regions are 14 mm wide and 10 mm tall with no
overlap between them (although they are immediately adjacent to one another).

x

z

100 mm

14 mm

1.8 mm

Figure 3. Illustration of the simulation setting. The x-axis is scaled up for clarity. The red rectangles
are regions of interest of size 14 mm× 10 mm where reconstructions are carried out.

The resolution is ∆x = 360 µm along the horizontal axis and ∆z = 78.75 µm along the vertical
axis. In each subsampling configuration, complex noise with a variance of σ2

n = 0.0009 is added in the
time domain. Then, 20 reconstructions with different noise realizations but a fixed compression matrix
are averaged. Reconstructions are obtained using 50 iterations of FISTA with w1 = 3 and w2 = 0.45.
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MT = 3 Tx elements and MR = 4 Rx elements are used, while the number of frequency coefficients
is NF = 31 in one test scenario and NF = 61 in another. The computation of the compression matrix
considers {xd} to contain all the points under the array instead of being limited to those within the
ROIs, as the locations of defects cannot always be known a priori.

Some comments regarding the aforementioned parameters are offered: The number of iterations
was chosen such that small increases yielded no noticeable improvement in the reconstruction quality
when visually inspected. Values for MT , MR, and NF were chosen so that a large compression rate is
obtained, but reconstructions are still reasonable (i.e., not dominated by artifacts). Regarding the hyper
parameters w1 and w2, they are chosen through trial and error by making them as small as possible to
reduce the number of iterations, yet not so small that FISTA fails to converge. These hyper parameters
can also be computed optimally through data-driven approaches by, for example, unfolding the
iterative reconstruction procedure into a neural network [32], assuming that the inability to store the
model matrix can be circumvented. Reconstructions are, in general, not very susceptible to small
changes in the parameters addressed in this note. Furthermore, they are often left up to the choice of
the operator. In this work, they instead define the overall scenario that constrains the compression
matrix design and image reconstruction procedure, and are therefore only tangent to the study at hand.

The pulse shape h(a)(t) used in the simulations is shown in Figure 4. It has been taken from
real measurement data, and corresponds to the back wall echo of an aluminium specimen with the
aforementioned speed of sound. Since an analytical expression is not available, the time delays
τi,j(xd, zd) are applied to F0h and the pulse shape is then transformed back into time domain. In order
for the CRB to be computed, though, a differentiable expression is needed. To this end, the pulse shape
is approximated with a Gabor function of the form

h(t) = exp(−αt2) · cos(2π fct + φ0) (21)

whose analytic representation is taken afterwards. The parameters for this pulse shape are the
bandwidth factor α = (3.8143 µs−1)2, its center frequency fc = 4.5471 MHz, and a phase shift of
φ0 = −2.6143 rad which is independent of the previously defined φd of each point-like scatterer.

0.0 0.2 0.4 0.6 0.8 1.0
Time [μs]

 1.00

 0.7μ

 0.μ0

 0.2μ

0.00

0.2μ

0.μ0

0.7μ

Am
pl
itu
de

Measured echo
Estimated echo

Figure 4. Illustration of a pulse shape taken from the back wall echo of a real aluminium specimen.
Its envelope has been normalized.
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A qualitative performance test is performed on a data set collected from the aluminium specimen
in Figure 5, from which the pulse shape in Figure 4 was taken. The parameters match those from the
simulation setting in Figure 3. It should be noted that although seven of the side drilled holes fall
roughly within the region that is visible by the ULA, their visibility depends on the number of channels
in which their time traces appear, as well as the DOA and DOD. Flaws beyond the horizontal aperture
of the array are inherently more difficult to detect; indeed, the two leftmost and the rightmost holes
are not visible when using standard TFM on the complete data set. Because of this, the maximization
over x in (20) includes only values of xd directly under the array.

Sensors

Visible Region

ROI

(a)

12
0

m
m

10 mm
30 mm15 mm

35 mm
30 mm

50 mm
45 mm

65 mm
60 mm

80 mm
75 mm

95 mm
90 mm

110 mm105 mm
125 mm

115 mm
135 mm

(b)

Figure 5. Aluminium specimen with 2 mm diameter side drilled holes. (a) Picture of the specimen
and array with markers showing the approximate location of the active aperture, visible region,
and reconstruction region. Adapted from [13]. (b) Locations of the holes relative to the upper right
corner of the specimen.

7.2. Comparison Metrics

The reconstructions are compared in terms of their Array Performance Indicator (API) and the
aspect of the vertical and horizontal cross sections of the main lobe of their Point Spread Function (PSF).
Although FISTA should yield a single non-zero pixel, the presence of noise and failure to converge in a
specified number of iterations results in a characteristic PSF. The API conveys the normalized cross
section area of a PSF at a given threshold value, and can be computed as [1]

API =
Nthresh · ∆x · ∆z

λ2
c

, (22)

where the threshold value value can range from zero to one for an amplitude-normalized PSF, Nthresh
is the number of reconstruction pixels at or above the threshold, and λc is the wavelength. For the
pulse shape in Figure 4, the center frequency is fc = 4.5471 MHz and the corresponding wavelength is
λc = 1.385 mm.

8. Results

8.1. Simulated Scenarios

In the following plots, a shortened nomenclature is adopted for brevity. In the legends,
Full denotes no spatial nor frequency subsampling. The letters V. and C. stand for varying Rx
and constant Rx, respectively. The ending max refers to the deterministic frequency subsampling
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strategy in which samples with the largest amplitude are chosen, while PMF refers to the energy based
approach that uses the spectrum of the pulse shape as a PMF from which coefficients are drawn.

The vertical slices of the PSFs are depicted in Figure 6. A comparison between the first and second
row of figures reveals that the number of frequency coefficients affects the axial resolution of the
reconstructions. Closer inspection reveals that this is only the case for the frequency selection strategy
that chooses the largest Fourier coefficients, which results in a smaller bandwidth. Image (c) highlights
the usefulness of the energy based strategy, as it the small bandwidth of the max strategy can make it
difficult to determine the size and location of the defect as in the C. max plot. On this axis of the PSF,
the choice of channel selection strategy has little impact. This is beneficial, since the greedy varying Rx
approach can be used at a reduced computational cost.

Figure 7 contains the horizontal slices of the same PSFs. The images therein show that the specific
choice of Tx and Rx channels impacts the PSF shape along this axis. In spite of the shape difference
among the main lobes, the images appear to show that the horizontal resolution is improved when
using compression matrices as opposed to taking all of the channels. In order to accurately convey
how the size of the PSFs changes in each setting, the API is used next.

The API of each PSF is shown in Figure 8. In the scenarios with NF = 61, all of the approaches
yield similar results. Under less severe subsampling conditions, the PSFs are expected to gradually
come closer to that of the Full scenario, and the compression matrix design approach becomes less
important. Even so, the PMF approaches exhibit a lower API than their counterparts below a threshold
of 0.5, hinting at a smaller cross section areas and sharper decay beyond this point. This trend becomes
more apparent in the row corresponding to NF = 31, where the additional bandwidth results in a
drastic improvement of axial resolution, as depicted in Figure 6. Moreover, the varying Rx spatial
subsampling strategy paired with PMF frequency selection has a more consistent behavior in all four
scenarios than the constant Rx strategy with PMF, whose API worsens quickly at low threshold values.
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Figure 6. Vertical cross section through the maximum of the PSF. Each tile corresponds to one of
the simulation scenarios: (a) defect on axis of symmetry with NF = 61, (b) left defect with NF = 61,
(c) defect on axis of symmetry with NF = 31, (d) left defect with NF = 31.
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Figure 7. Horizontal cross section through the maximum of the PSF. The subfigures portray the
scenarios under test: (a) defect on axis of symmetry with NF = 61, (b) left defect with NF = 61,
(c) defect on axis of symmetry with NF = 31, (d) left defect with NF = 31.

8.2. Measurement Data

Reconstructions of the aluminium specimen are shown in Figure 9. For reference, a reconstruction
computed at a lower compression rate (i.e., taking more channels and Fourier coefficients) is also
provided. This reference is shown in Figure 9d, which was computed using MT = 4 Tx elements,
MR = 6 Rx elements, and NF = 81 Fourier coefficients. The compression matrix for this reconstruction
was designed using varying Rx spatial subsampling and the energy based approach for frequency
subsampling. Additionally, the dynamic range of FISTA was increased by lowering w2 to 0.1 and
performing 100 iterations instead, resulting in an image where more of the side drilled holes are
visible and artifacts are mitigated. This reference allows the visualization of the effect that each of the
compression matrix design approaches has in extreme scenarios.

Comparing images (a) and (b) to (d), it can be observed that the shape of the side drilled holes has
been stretched axially, matching the results obtained on simulated data. In the case of (c), the vertical
resolution has improved. On the other hand, low amplitude artifacts are present in the vicinity of the
side drilled holes, similarly to (b). The resulting PSFs are overall consistent between simulations and
measured data, allowing the compression matrix design to be tested synthetically before deployment
in a real world setting.
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Figure 8. API of the PSFs at different threshold levels. As before, each plot corresponds to one scenario:
(a) defect on axis of symmetry with NF = 61, (b) left defect with NF = 61, (c) defect on axis of symmetry
with NF = 31, (d) left defect with NF = 31.
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Figure 9. Cont.
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Figure 9. Reconstructions from measurement data of aluminium specimen with side drilled holes.
The reconstructions illustrate the performance of different compression matrix design approaches under
heavy subsampling: (a) constant Rx spatial subsampling paired with max strategy, NF = 31, (b) varying
Rx spatial subsampling with max strategy using NF = 31, (c) varying Rx spatial subsampling with
energy based approach and NF = 31, (d) reference reconstruction using more channels and frequency
samples for comparison.

9. Discussion

Spatial and frequency subsampling can be used in order to reduce FMC measurement times and
data volumes. By approaching imaging in post-processing from a compressed sensing standpoint,
subsampling can be treated as a compression matrix acting on the complete FMC data and the
underlying reflectivity information can be recovered. For spatial subsampling to reduce the
measurement time, it must be performed in such a way that the number of measurement cycles
is reduced [10–12]. Taking into consideration that this is to be done in such a way that it can be
easily implemented, a special structure must be imposed on the compression matrix. In this work,
compression matrices with a Kronecker and a Khatri–Rao structure have been studied. After noting
the Kronecker structure to be a special case of the Khatri–Rao structure, the studied matrix structures
can be categorized in four groups:

• A single set of receiving elements is shared by all transmitters and all channels use the same
Fourier coefficients;

• Each transmitter has its own set of receivers and all channels use the same Fourier coefficients;
• A single set of receiving elements is shared by all transmitters but each channel uses a different

set of Fourier coefficients;
• Each transmitter has its own set of receivers and each channel uses different Fourier coefficients.

The matrices were designed by solving a minmax problem using the Cramér-Rao bound of a
single point-like scatterer as a cost function. In contrast with the exhaustive search approach from
prior work [23], which is summarized in Algorithm 1, a much faster greedy approach is introduced
in Algorithms 2 and 3. The matrices were tested on synthetic and measurement data in order to
compare the approaches proposed in this paper versus the more rigid approach from [13]. The usage
of different receivers by each transmitter does not yield improvements when compared to the case
in which the transmitters share a common set of receivers. However, the former setting is based
on a suboptimal solution found through a greedy algorithm which is faster to solve than the latter,
which required an expensive exhaustive search. The varying receiver approach has the attractive
advantage, then, of scaling better to larger scenarios with more sensors. Frequency subsampling
approaches boil down to a trade-off between vertical and horizontal resolution. Following a strategy
in which the samples with the largest magnitude are kept will often result in a small bandwidth that
affects vertical resolution. In contrast, using the pulse shape spectrum as a probability mass function
allows the coefficients to be chosen differently for each channel. Furthermore, the non-adjacent samples
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cover a larger bandwidth and yield an evident gain in vertical resolution under heavy compression
settings. In exchange, artifacts are present in the horizontal axis and reconstruction is made difficult
due to the reduction of energy. When these effects are quantified using the array performance indicator,
a combination of varying receivers and randomly chosen Fourier coefficients performs the best, and the
design of such compression matrices is manageable using greedy algorithms.

10. Conclusions

In this work, compressed sensing via spatial and temporal subsampling has been studied in the
context of Full Matrix Capture data for Ultrasound Non-Destructive Testing. Since subsampling in
transmission, reception, and frequency has been decoupled, designing the corresponding compression
matrices is a daunting combinatorial task. To this end, a two stage greedy optimization algorithm
has been presented. Comparisons on both measurement and synthetic data show that the proposed
approach outperforms more rigid compression matrices in which subsampling is coupled, in spite of
using a greedy suboptimal solution in the former and an optimal solution for the latter. The design
approach is then tractable and easily applicable to real measurement settings, as the hardware
requirements for subsampling are limited to programmable switches and frequency domain sampling.
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Abbreviations

The following abbreviations are used in this manuscript:

API Array Performance Indicator
CRB Cramér-Rao Bound
DFT Discrete Fourier Transform
DOA Direction of Arrival
DOD Direction of Departure
FIM Fisher Information Matrix
FISTA Fast Iterative Shrinkage/Thresholding Algorithm
FMC Full Matrix Capture
PMF Probability Mass Function
PSF Point Spread Function
PWI Plane Wave Imaging
Rx Receiver or Reception
ROI Region of Interest
SNR Signal to Noise Ration
TFM Total Focusing Method
Tx Transmitter or Transmission
UCT Ultrasound Computed Tomography
ULA Uniform Linear Array
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