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Abstract
For decades, biophotonic technologies have been booming in fields as diverse as biol-

ogy, medicine, pharmaceutical science, environmental science, and agriculture. These
technologies reveal not only structural but also molecular and functional changes in
the sample under investigation. Furthermore, biophotonic technologies have such
prominent advantages as high molecular sensitivity, high usability, high compact-
ness, and high spatial and temporal resolution. Due to these advantages, biophotonic
technologies have great potential in clinical applications. A typical example of bio-
photonic technology in the clinic is optical coherence tomography (OCT), which is a
powerful diagnostic tool in ophthalmology. Likewise, flow cytometry and endoscopy
are routinely used for cancer diagnosis. Nowadays, researchers emphasize the use of
biophotonic technologies for point-of-care testing in clinics and the in vivo imaging of
live cells for automating the disease diagnosis workflow. Furthermore, researchers are
also focusing on integrating multiple biophotonic technologies in a single unit for un-
derstanding diseases at the cellular, molecular, and tissue level. Such ever-increasing
developments in biophotonic technologies result in a massive amount of biophotonic
data, and analysis of large biophotonic data by a human being is challenging. There-
fore, algorithms that can automatically analyze biophotonic data to extract useful
“patterns” like an experienced person are crucial. Extracting patterns from data
using algorithms which can imitate human intelligence by learning from the data it-
self is categorized into a field of “artificial intelligence” (AI). Utilizing AI to analyze
data from biophotonic technologies like Raman spectroscopy, coherent anti-Stokes
Raman scattering (CARS) microscopy, two-photon excitation fluorescence (TPEF)
microscopy, and second-harmonic generation (SHG) microscopy is the main highlight
of this thesis. Concisely, this thesis will use AI and biophotonic data for biomedical
applications like the prediction of disease, segmentation of various regions in tissue,
and transformation of one modality into another modality. The results in this thesis
will show that utilizing AI, along with biophotonic technologies, can benefit the field
of biomedicine and the life sciences.





Kurzfassung
In den letzten Jahrzehnten werden biophotonische Technologien in verschiedene

Bereichen wie Biologie, Medizin, Pharmazie, Umweltwissenschaften und Landwirtschaft
eingesetzt. Dies resultiert aus dem Fakt, dass biophotonische Technologien nicht nur
strukturelle, sondern auch molekulare und funktionelle Veränderungen in der un-
tersuchten Probe aufzeigen. Darüber hinaus besitzen biophotonische Technologien
Vorteile wie eine hohe molekulare Empfindlichkeit, eine hohe Benutzerfreundlichkeit,
die Kompaktheit der Messgeräte und hohe räumliche und zeitliche Auflösung. Auf-
grund dieser Vorteile haben biophotonische Technologien ein großes Potenzial für klin-
ische Anwendungen. Ein typisches Beispiel für biophotonische Technologien, welche
in der Klinik eingesetzt werden, ist die optische Kohärenztomographie (OCT), die ein
leistungsfähiges diagnostisches Werkzeug in der Augenheilkunde darstellt. Ebenso
werden Durchflusszytometrie und Endoskopie routinemäßig zur Krebsdiagnose einge-
setzt. Des Weiteren wird der Einsatz von biophotonischen Technologien für Point-
of-Care-Tests in Kliniken und die In-vivo-Bildgebung lebender Zellen zur Automa-
tisierung des Arbeitsablaufs bei der Krankheitsdiagnose erforscht. Darüber hinaus
konzentrieren sich die Forscher auch auf die Integration mehrerer biophotonischer
Technologien in einem einzigen Messgerät um ein Verständnis von Krankheiten auf
zellulärer, molekularer und Gewebeebene zu erreichen. Solche immer weiter fortschre-
itenden Entwicklungen in der Biophotonik führen zu einer riesigen Menge biopho-
tonischer Daten, und die manuelle Analyse großer biophotonischer Daten ist eine
Herausforderung. Daher sind Algorithmen, die biophotonische Daten automatisch
analysieren können, um nützliche “Muster” zu extrahieren, von entscheidender Be-
deutung. Das Extrahieren von Mustern aus Daten mittels Algorithmen, welche die
menschliche Intelligenz imitieren können indem sie aus den Daten selbst lernen, wird
in einen Bereich der “künstlichen Intelligenz” (KI) eingeordnet. Die Nutzung der
künstlichen Intelligenz zur Analyse von Daten aus biophotonischen Technologien wie
der Raman-Spektroskopie, der kohärenten Anti-Stokes-Raman-Streuung (CARS), der
Zwei-Photonen-Anregungs-Fluoreszenz-Mikroskopie (TPEF) und der Zweiten Har-
monischen Generation (SHG) Mikroskopie ist das Gegenstand dieser Arbeit. In
dieser Arbeit werden KI und biophotonische Daten für biomedizinische Anwendungen
wie die Vorhersage von Krankheiten, die Segmentierung verschiedener Regionen im
Gewebe und die Transformation einer Modalität in eine andere Modalität verwendet.
Die Ergebnisse dieser Arbeit zeigen, dass die Nutzung von KI Verfahren zusammen
mit biophotonischen Technologien in der Biomedizin und den Biowissenschaften ein
großes Potential besitzen.
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1
Introduction

With the introduction of the light microscope back in the 17th century until the
systematic development by Carl Zeiss, Ernst Abbé, and Otto Schott in Jena in the 19th

century, light-based or optical technologies have greatly influenced the life sciences and
medicine. These light-based technologies are an integral part of the multidisciplinary
research subject referred to as “biophotonics” [1]. Biophotonics is a field of science
that deals with optical processes in biological systems. It utilizes light across the
entire spectrum – from ultraviolet to the visible, infrared, and terahertz regions.
Even though the word “biophotonics” has been coined recently, it dates to the 16th

century when the first optical microscope to visualize biological tissue was invented.
Since then, many inventions in biophotonic technologies and especially microscopes
have been made. Today, the super-resolution microscope, the developers of which
received the Nobel Prize in Chemistry in 2014, can visualize cellular structures even
smaller than 20 nm [1]. These inventions greatly benefit the field of biomedicine.

One of the popular inventions in the biophotonic field is optical coherence tomog-
raphy (OCT), which is a gold-standard technique in ophthalmology for detecting
diseases like glaucoma in the eye. Similarly, technologies like light microscopy (e.g.,
fluorescence microscopy) and spectroscopy (e.g., infrared (IR) spectroscopy, Raman
spectroscopy) are gaining popularity in healthcare. Some of the examples in health-
care include intraoperative recognition of tumor borders by fluorescence spectroscopy
and Raman spectroscopy; early detection of tumors by one- and two-photon fluo-
rescence spectroscopy; and identification of biomarkers associated with diseases and
their progression by Raman spectroscopy [1]. This already creates a clear picture that
biophotonic technologies can potentially improve biomedical diagnostics. However, it
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Chapter 1. Introduction

is not practical to present all the biophotonic technologies due to time and resource
limitation. Hence, this thesis will focus only on two biophotonic technologies, namely:
Raman spectroscopy (see section 2.1) and non-linear multimodal imaging (see section
2.2). Before discussing Raman spectroscopy and non-linear multimodal imaging in
detail, it is important to discuss light-matter interactions.

Light interacts with matter by either getting absorbed or emitted, but a part of the
incident light is also scattered (1 out of 106 or 109 photons in incident light) [1]. Light
scattering takes place in two forms: elastic and inelastic scattering of light. Elastic
scattering of light occurs when the wavelength of the incident light is unchanged.
Two examples of elastic scattering of light include both Rayleigh scattering caused
by the interaction of light or photons with atoms, molecules, or phonons, and Mie
scattering caused by spherical objects [2]. When the molecule is much smaller than
the wavelength of light, Rayleigh scattering occurs [3]. It is because of the Rayleigh
scattering of sunlight with the molecules in the Earth’s atmosphere that the sky
appears blue during daytime. Inelastic scattering of light occurs when the wavelength
of scattered light is changed with respect to the wavelength of the incident light. The
photons in inelastically scattered light either gain or lose energy. Example of this
includes Raman scattering caused by discrete quantum states of molecules or phonons
[2]. Raman scattering, or the Raman effect, is the basis of Raman spectroscopy and
from here onwards Raman spectroscopy refers to vibrational Raman spectroscopy, i.e.
Raman scattering on vibrational states of molecules.

As mentioned above, in Raman scattering, an incident photon with frequency ν0
and energy E0 =

hc
λ0

= ℏω0 = hν0 (where h is the Planck’s constant; ℏ = h
2π
) interacts

with a molecule to either gain or lose energy. The change in energy ∆E = E1−E2 of
the scattered photon depends on the frequency of vibration of the molecule νm. The
vibrational frequency of the molecule is dependent on the strength of the chemical
bond and masses of the atoms in the molecule. Therefore, the vibrational frequencies
are unique to the functional group of the molecule. As the vibrational frequencies are
unique to the molecule and significantly influence the energy change in the scattered
photon, Raman scattering retains “fingerprint” information of the molecule [3].

The change in the energy of the scattered photon can result in Stokes and anti-
Stokes Raman scattering. Specifically, if the energy of the scattered photon is less
than the incident photon, then Stokes Raman scattering occurs in a way that corre-
sponds to a frequency ν0−νm. If the energy of the scattered photon is larger than the
incident photon, then anti-Stokes Raman scattering occurs with a frequency ν0 + νm
[4]. If the energy of the scattered and the incident photon is the same, then Rayleigh
scattering occurs with a frequency equal to the incident frequency ν0 (see figure 2.1A).
Raman spectroscopy mostly refers to Stokes Raman scattering unless specified other-
wise, because it’s the dominant process at room temperature. The energy difference
between the incident photon and the inelastically scattered photon is expressed as
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Chapter 1. Introduction

wavenumber (cm−1). A plot of the intensity of the inelastically scattered light as a
function of the wavenumber is called the Raman spectrum (see figure 2.1B). More
details, including the classical theory of Raman effect and biomedical applications of
Raman spectroscopy are discussed in chapter 2.

Raman scattering is a very weak effect [4]. Therefore, attempts to improve the
Raman scattering signal have been witnessed in the past few years. One such at-
tempt is coherent anti-Stokes Raman spectroscopy (CARS) [5], which is a non-linear
optical process used to enhance the Raman signal. This thesis will address CARS
and other two non-linear optical techniques, namely: two-photon excited fluorescence
(TPEF) microscopy and second harmonic generation (SHG) microscopy. Biophotonic
technologies like CARS, TPEF, and SHG are collectively referred to as non-linear
multimodal (NLM) imaging. The term “non-linear” used for these technologies is
due to their non-linear dependence on the incident or excitation (or laser) light in-
tensity. In other words, the inelastic (or Raman) scattering of light discussed so far
is a spontaneous process, i.e. the excitation of molecules is generated by a single
exciting (or incident) frequency ω0 = 2πν0 [1]. However, in CARS, the molecules in a
sample are excited by at least two different incident frequencies (ωp and ωs) using two
laser beams. The frequency difference of the two laser beams is tuned to match the
molecular vibration frequency ωm (see figure 2.2A). The absorption of two photons
results in the excitation of coherent molecular vibrations, which is recorded as the
CARS signal [6]. CARS microscopy can be applied to visualize any molecular vibra-
tion; however, it is mainly used to image the aliphatic C-H-stretching vibration of
methylene groups for visualizing lipids [6]. Like CARS microscopy, SHG microscopy
is also a non-linear scattering process in which two incident photons ωp are coherently
scattered into a photon of twice the frequency (2ωp). SHG microscopy is used to vi-
sualize quasi-crystalline structures in tissues like collagen, tubulin, and cholesterol.
Lastly, TPEF microscopy, which is neither a coherent nor a scattering process [6],
is caused by absorbing two photons by a fluorophore to induce molecular transition.
TPEF microscopy is used to visualize prominent autofluorophores in animal tissue,
including proteins like elastin and keratin, pigments like melanin, and enzymes like
NADH and flavines. Researchers have already shown that the TPEF and SHG sig-
nals can be acquired along with the CARS signal without damaging the sample under
investigation [6]. Likewise, it has also been shown that the combination of these three
optical technologies provides not only various biomolecular information but also high
spatial resolution and considerable penetration depth, making it suitable for biologi-
cal studies. More information about CARS, TPEF, and SHG is provided in section
2.2.

So far, two biophotonic technologies have been discussed in this thesis: Raman spec-
troscopy and NLM imaging. Now the stage is set to introduce the dataset obtained
by these biophotonic technologies and the challenges encountered during analysis of
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their dataset. Raman spectroscopy provides data in the form of a spectrum. Each
Raman spectrum is a plot of the intensity of the inelastically scattered light along the
y-axis against the wavenumber along the x-axis (see figure 2.1B). The NLM imaging
provides RGB images in which the red channel is the CARS signal, the green channel
is the TPEF signal, and the blue channel is the SHG signal (see figure 2.1B). Both
the Raman spectroscopic and the NLM imaging data, in statistical terms, can be
categorized as multivariate data because each observation comprises more than two
inter-related variables. Taking the Raman spectrum as an example, the number of
variables in a single spectrum is equal to the number of wavenumbers. Furthermore,
complex relationships between these variables or wavenumbers can exist. Likewise,
a non-linear multimodal image provides information in the form of color, texture,
and intensity of pixels. The intensity values of a pixel, i.e. three intensity values
in the case of an RGB image, may or may not be related to the intensity values of
neighboring pixels. Thus, interpretation of the pixel intensity values is difficult, and
its analysis by a non-expert poses several challenges. A detailed explanation of the
challenges encountered for analyzing Raman spectroscopic and NLM imaging data is
given in section 2.3.

The multivariate nature of Raman spectroscopic and NLM imaging data requires
systematic recognition of important “patterns” or “features”. Additionally, both
datasets inherently exhibit the “curse of dimensionality” due to the enormously
large dimension of variables, which affects the classification and organization of these
datasets. Thus, analysis of such multivariate high-dimensional data is a crucial task.
For purpose of analysis, a broad field of chemistry called “chemometrics” plays an
important role. The first successful application of chemometrics was for the analysis
of the fluorescence spectra of mixtures in which the number of fluorescent components
in a mixture was quantitatively determined [7]. Subsequently, various applications
for interpreting biological data using chemometric methods were reported in litera-
ture [1, 8, 9] (e.g., chemometric approaches for pre-processing Raman spectra and,
specifically, for removing noise or unwanted spikes, instrument calibration effects, and
unwanted shifts in the baseline [10]). Chemometric approaches are also used for the
classification of Raman spectra into similar groups and studying the heterogeneous
nature of biomolecules such as proteins, lipids, carbohydrates, and nucleic acids in
spectroscopic data. Likewise, various clinical applications of spectroscopic data like
disease recognition [11, 12, 13], tumor detection [14, 15], and tissue characterization
[16, 17] are implemented using chemometrics. A recent trend in chemometrics is to
use advanced algorithms for performing biophotonic data analysis. These algorithms
are categorized under the field of artificial intelligence (AI).

Artificial intelligence is a science which uses machines or algorithms to perform
tasks like a human. For more than a decade, AI has been gaining in popularity in
social media, E-commerce platforms like Amazon, travelling aids like Google Maps,
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and the personal voice assistants on smartphones like Siri and Alexa [18, 19, 20].
Likewise, AI-based technologies are used to understand complex chemical systems
related to proteomics, genomics, and metabolomics [21, 22, 23]. AI-based technologies
to study molecular distributions in biological samples using biophotonic techniques
is also gathering interest [24]. The above applications have gained success due to
numerous (beneficial) characteristics of AI. One of the most important characteristics
of AI is data ingestion, i.e. the way an AI algorithm handles a vast amount of
data in multiple formats, from multiple sources generated at multiple times. The
next important characteristic is the imitation of human cognition, i.e. the ability
of AI algorithms to imitate the human mind and solve complex problems and tasks
(e.g., self-driving cars). Lastly, machine learning and deep learning (see figure 3.1),
which is the most upcoming field of AI, refers to the capability of learning features
from data automatically without any manual intervention. Knowing the beneficial
characteristics of AI, this thesis proposes AI algorithms, especially deep learning
algorithms, as an alternative approach for analyzing biophotonic data.

Finally, the discussions made so far bring us to two essential questions: “Why utilize
biophotonics in clinics?” and “Why use AI for biophotonic data analysis?”. These
questions will be answered in the motivation of this thesis.

1.1 Motivation

This thesis has two primary motivations that will answer the two preceding questions.
Both motivations drive towards building a fast disease diagnosis workflow and an
automatic decision-making system for clinics and hospitals.

The first motivation arises from a clinical perspective and answers the question
“Why utilize biophotonics in clinics?”. Since biophotonic technologies are label-free
and molecularly sensitive, provide high spatial resolution, and have large penetration
depth, these technologies can substantially benefit health professionals for under-
standing diseases at the cellular, molecular, and tissue levels. Usage of biophotonic
technologies can also assure point-of-care diagnosis by facilitating routine examina-
tions of high-risk patients. Furthermore, these technologies are highly practical due
to their small-sized devices, minimal sample preparation, and parallel imaging of
multiple biomarkers. Minimal sample preparation is also beneficial for in vivo disease
diagnosis. Finally, increasing the use of biophotonic technologies in clinics will also re-
duce the ever-rising burden on well-established radiological techniques like computed
tomography (CT) and magnetic resonance imaging (MRI).

The second motivation arises from the chemometric perspective and answers the
question “Why use AI for biophotonic data analysis?”. Using AI for biophotonic
data analysis is one step forward for automatic disease diagnosis workflow. This can
be achieved in the following way. A biophotonic technology that can be used in
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vivo should be provided with a built-in AI model to assure real-time disease diag-
nosis. Furthermore, as AI models can extract useful patterns or features similar to
an experienced professional, these models can reduce the effort of a data analyst for
performing feature extraction. Another advantage is that AI-based models can com-
plement the knowledge of doctors and physicians and help them to gain new insights
into numerous diseases. Lastly, aging patients with chronic diseases can use medical
devices with built-in AI models to perform self-testing and avoid frequent visitation
to clinics.

As AI for biophotonic data analysis is still in the infancy stage, this thesis moti-
vates the use of AI, machine learning, and deep learning to analyze biophotonic data
like Raman spectroscopy and NLM imaging. To the best knowledge of the author,
this thesis presents for the first time the analysis of Raman spectroscopic and NLM
imaging data using AI, specifically deep learning, for clinical applications.

1.2 Organization of the thesis

This thesis is organized into following chapters.

• Chapter 1 briefly introduces the two biophotonic modalities: Raman spec-
troscopy and non-linear multimodal imaging. Furthermore, the motivation
of the thesis is introduced in this chapter. Additionally, the acronyms and
mathematical notations required for a clear understanding of the theoretical
background are explained at the beginning of this thesis.

• Chapter 2 provides a theoretical explanation along with biomedical applica-
tions of Raman spectroscopy and non-linear multimodal imaging. This chapter
also discusses chemometrics, which is crucial for analysing Raman spectroscopic
and non-linear multimodal imaging data. Lastly, chapter 3 revisits fundamen-
tal concepts widely used in chemometrics like artificial intelligence, machine
learning and deep learning.

• Chapter 4 is the essential part of this thesis and summarizes various scientific
contributions developed to improve state-of-the-art approaches for the analysis
of Raman spectroscopic and non-linear multimodal imaging data.

• Lastly, the conclusion of this thesis and is divided into four chapters: chapter
5 to chapter 8. Chapter 5 and chapter 6 are the summary of this thesis with
English and German versions, respectively. Chapter 7 is the outlook of the
dissertation with possible directions leading to future research. Some methods
discussed here can potentially achieve the clinical translation of the state-of-the-
art methods. Finally, chapter 8 comprises various publications in peer-reviewed
journals, international conference proceedings, and manuscripts made during
PhD tenure.
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2
Raman spectroscopy and non-linear

multimodal imaging

The previous chapter introduced various biophotonic technologies that could poten-
tially benefit the biomedical field. It discussed the two biophotonic technologies used
in this thesis: Raman spectroscopy and non-linear multimodal (NLM) imaging. The
previous chapter also mentioned the use of chemometrics for analyzing biophotonic
data. Now, this chapter will explain Raman spectroscopy and NLM imaging in detail,
along with their biological applications. This chapter will further elaborate on the
application of chemometrics in section 2.3, particularly for analyzing Raman spectro-
scopic data and NLM imaging data. In this regard, this chapter begins with Raman
spectroscopy in section 2.1 and NLM imaging in section 2.2. Further, the subsections
2.2.1 to 2.2.3 elaborate on the following three non-linear optical modalities: CARS,
TPEF, and SHG microscopy.

2.1 Raman spectroscopy for biomedical applications

The basic idea of (vibrational) Raman scattering was already introduced in chapter
1. This section will present the classical theory of Raman scattering and biological
applications of Raman spectroscopy.

The classical theory of the Raman effect can be explained by considering the electric
nature of molecules. According to this theory, a molecule is a collection of oppositely
charged particles (nucleus-electron dipole), the relative positions of which can be al-
tered by the application of an external electric field of light. Because of the application
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Chapter 2. Raman spectroscopy and non-linear multimodal imaging

of the external electric field, an electric dipole moment is induced in the molecule.
The induced dipole moment oscillates with the frequency of the applied electric field
and attempts to restore its relative position. The ease with which an electric field can
distort the relative position of the electron cloud around the nucleus in a molecule is
called the electric “polarizability” (α). Another term in this context is “polarization”
(−→P ) and refers to the total dipole moment per unit volume. The polarization −→P in
a molecule caused by an external electric field strength −→E =

−→
E 0 cos(2πν0t) of an

electromagnetic wave (or laser beam) fluctuating with time t is given by
−→
P = α0

−→
E0 cos(2πν0t)︸ ︷︷ ︸

Rayleigh scattering

+
1

2

(
∂α

∂q

)
0

q0
−→
E 0 cos(2π(ν0 − νm)t)︸ ︷︷ ︸

Stokes Raman scattering

+
1

2

(
∂α

∂q

)
0

q0
−→
E 0 cos(2π(ν0 + νm)t)︸ ︷︷ ︸

anti-Stokes Raman scattering

,

(2.1)

where E0 is the vibrational amplitude and ν0 is the frequency of the external electric
field. The vibrational frequency of the molecule is denoted as νm. The polarizability
and the vibrational amplitude of the molecule in equilibrium position are given by
α0 and q0, respectively. The term (∂α/∂q)0 denotes the rate of change of polariz-
ability of the molecule with respect to the change in nuclear displacement q [4]. In
the equation above, the first term corresponds to Rayleigh scattering in which the
oscillating dipole radiates light with a frequency (ν0) equal to the frequency of the ap-
plied electric field. In comparison, the second and third term corresponds to Stokes
Raman scattering and anti-Stokes Raman scattering with frequencies ν0 − νm and
ν0+νm, respectively. The derivation for the equation above can be found in reference
[4]. From the equation above, it can be derived that Raman scattering is possible
only if the polarizability of a molecule (α) changes by the molecular vibration, i.e.
(∂α/∂q)0 ̸= 0. In such cases, the molecule is said to be Raman-active [4]. It is possible
to study all Raman-active molecules from a Raman spectrum. A Raman spectrum
shows Rayleigh, Stokes Raman and anti-Stokes Raman lines, however, at the nor-
mal temperature it is customary to measure only the Stokes side of the spectrum as
both (Stokes and anti-Stokes) provide the same information. A typical example of
Stokes Raman spectra for four disease stages of inflammatory bowel disease (IBD) is
shown in figure 2.1B. Here, the black, green, blue and red spectra correspond with
the lowest to the highest stage of IBD. The Raman spectrum in figure 2.1B shows
the fingerprint spectral region of 500-1800 cm−1 and 2800-3020 cm−1. Figure 2.1B
also indicates prominent peaks with high Raman intensity at wavenumber positions
1002 cm−1 for the phenylalanine band, 1440 cm−1 for the CH2 deformation band,
1680-1620 cm−1 for the amide I band, and 3020-2800 cm−1 for the CH stretching
intensities [25].
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Figure 2.1: In this figure (A) shows an energy diagram for Rayleigh scattering (green),
Stokes Raman scattering (red), and anti-Stokes Raman scattering (blue); the black dotted
line represents the “virtual” energy level of the molecule. (B) shows the plot of a Stokes
Raman spectrum obtained from four different stages of inflammatory bowel disease with the
x-axis and y-axis indicating the wavenumber and normalized Raman intensity, respectively.

Until now, this section summarizes the classical theory of Raman scattering. The
part following in this section will cover the clinical applications of Raman spec-
troscopy. Raman spectroscopy is a non-destructive and highly molecularly selective
technique. Furthermore, Raman spectroscopy requires minimal sample preparation
and is not affected by the presence of water [4]. Due to these properties, Raman
spectroscopy is suitable for in vivo applications. A few biomedical applications of
Raman spectroscopy are listed in references [26, 27, 28, 29]. Applications like the
identification of biological cell and tissue types [30], characterization of human skin,
detection of various types of diseases [31], detection of premalignant lesions [32, 33],
and cancer related studies [14, 34, 35, 36, 37] are just a few of the many clinically
relevant examples. This thesis will present an application of Raman spectroscopy for
the characterization of stages of inflammatory bowel disease in section 4.5.

2.2 Non-linear multimodal imaging for biomedical applications

It was previously mentioned in chapter 1 that the NLM imaging used in this the-
sis is a combination of three non-linear optical imaging techniques, namely: coher-
ent anti-Stokes Raman scattering (CARS) microscopy, two-photon excitation fluores-
cence (TPEF) microscopy, and second-harmonic generation (SHG) microscopy. As
the name suggests, all non-linear imaging techniques are obtained due to the non-
linear interaction of light with molecules, i.e. the interaction of light with a molecule
mediated by two or more photons. In this section, the mathematical expression of
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non-linear optical effects, followed by the properties of non-linear optical processes, is
discussed. Further, a detailed explanation of the three non-linear optical modalities
CARS, TPEF, and SHG will be provided.

To understand the mathematical description of non-linear optical effects, a molecule
can be considered as an aggregation of a positively charged nucleus and negatively
charged electrons. In the presence of an external electric field, the bound electrons
tend to be slightly displaced from their equilibrium positions. When the electric field−→
E arises from the normal light intensities, the induced polarization −→P of the molecule
is linearly proportional to the applied electric field. Such linear dependence is the
basis of the linear optical phenomena of Rayleigh and Raman scattering explained
above [1]. However, when a large electric field arising from high light intensities
(e.g., light from high ultrashort lasers) is applied, the induced polarization −→P of
the molecule is no longer linearly proportional to the applied electric field. This is
because the electron is displaced from its equilibrium position even farther and can
no longer be represented by harmonic representation as expressed by Hooke’s law [1].
In such cases, anharmonic representation of the induced polarization −→P by the Taylor
series expansion in the applied electric field is considered. The non-linearity between
polarization −→P and the electric field −→E is given as

−→
P = ϵ0 · (←→χ (1)−→E +←→χ (2)−→E :

−→
E +←→χ (3)−→E :

−→
E :
−→
E + · · ·)

= ϵ0 · (←→χ (1)−→E +←→χ (2)−→E 2︸ ︷︷ ︸
SHG

+ ←→χ (3)−→E 3︸ ︷︷ ︸
CARS, TPEF

+ · ··). (2.2)

Here ←→χ (n) is nth order susceptibility, which is a tensor of rank n+1, and ϵ0 refers to
the permittivity of vacuum. The complete derivation of the equation above is given in
reference [1]. From the equation above, the first term ←→χ (1)−→E is the linear term and
←→χ (2)−→E 2,←→χ (3)−→E 3 are non-linear terms. It can be seen from the equation that SHG is
a←→χ (2) process, and CARS and TPEF are←→χ (3) processes. The three signals, CARS,
TPEF, and SHG, can be simultaneously excited and detected by spectral filtering [6].
Thus, it is possible to combine these three techniques in a single multimodal imaging
platform. An example of a non-linear multimodal image is given in figure 2.2B. Here
CARS forms the red channel, TPEF forms the green channel, and SHG forms the
blue channel of the RGB image. Each of the CARS, TPEF, and SHG signals provides
morpho-functional information about a specific biomolecule. Hence, the combination
of the three techniques will not only provide structural information about the tissue
but also assure the visualization of various biomolecules. This is the key advantage
of NLM imaging. Additionally, other properties of NLM imaging beneficial for tissue
imaging are discussed further.

First, these techniques can be used in label-free manner; therefore, no staining is re-
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quired. The label-free nature of non-linear optical techniques makes these techniques
non-toxic and capable of in vivo measurements. Second, the non-linear interaction
allows excitation of molecules in a confined volume around the focal point, thus in-
creasing the spatial resolution of NLM images. Third, these techniques can employ
lasers with longer excitation wavelengths, which reduces scattering and provides large
depth penetration (as large as 1 mm for TPEF autofluorescence) in biological tissues
[38, 39]. Due to these advantages, the NLM technique can serve as an alternative
technique to conventional histological, immunohistochemical, and radiological imag-
ing techniques. Few applications of NLM imaging are reported in chapter 4.

So far, the mathematical description and properties of non-linear optical processes
have been discussed. Now each of the modalities CARS, TPEF, and SHG will be
discussed in detail along with their biomedical applications.

2.2.1 Coherent anti-Stokes Raman scattering

Coherent anti-Stokes Raman scattering (CARS) is one of the three modalities of NLM
imaging. CARS is a third-order non-linear process which includes a pump photon
at frequency ωp (first green arrow in figure 2.2A) and a Stokes photon at frequency
ωs (red arrow in figure 2.2A). When the frequency difference ωp − ωs matches the
vibrational frequency of a Raman active molecule ωm (black arrow in figure 2.2A),
the molecules begin to vibrate in phase coherently. As the pump beam is tunable,
the frequency difference ωp−ωs can be specifically adjusted to the desired vibrational
energy of the relevant molecule. The molecular vibration subsequently inelastically
scatters the photons from the pump beam to generate coherent anti-Stokes photons
with frequency ωas = 2ωp − ωs [40]. In simpler terms, the pump beam raises the
electronic system of the molecule into a second virtual state of the energy ℏωp + ℏωm

(second green arrow in figure 2.2A). From here, the molecule is allowed to relax back
to the ground state while the anti-Stokes photons with energy ℏωas are detected and
used for imaging (cyan arrow in figure 2.2A).

The first CARS microscopy was developed in 1982 [41], but its more extensive use
began after 1999 with numerous applications reported in the life sciences [42, 43, 44].
CARS microscopy can be applied to visualize any molecular vibrations; however, it is
usually performed to image the C-H-stretching vibration of methylene groups at 2850
cm−1, which is abundant in lipids. The C-H-stretching resonances are the strongest
within the CARS spectrum and enable the highest imaging speeds, i.e. up to video
frame rate [6]. CARS imaging was first demonstrated in vivo on the skin of a mouse
where CH2 vibrational stretching was tuned to visualize abundant lipid structures in
a mouse’s ear [45]. CARS imaging can be sensitive to metabolic changes in infected
or diseased human tissue [46, 47]. CARS can also provide different views of cellular
structures in humans [48, 49], which makes it capable of medical imaging.
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Figure 2.2: In this figure (A) shows an energy diagram for coherent anti-Stokes Raman
scattering (CARS), two-photon excitation fluorescence (TPEF), and second harmonic gen-
eration (SHG). The explanation of the three modalities is provided in the text. (B) shows
a non-linear multimodal image with the three non-linear optical modalities represented in
the form of an RGB image. Here the CARS, TPEF, and SHG signals form the red, green,
and blue channel of the RGB image, respectively. The scale bar represents 200 µm.

2.2.2 Two-photon excitation fluorescence microscopy

Two-photon excitation fluorescence (TPEF) microscopy is the second non-linear op-
tical modality of the NLM imaging introduced in this thesis. In TPEF microscopy,
an autofluorophore is excited by two photons of half the resonance frequency ωp (two
green arrows in figure 2.2A) to achieve an electronic molecular transition ωTPEF < 2ωp

(dark blue arrow in figure 2.2A). Due to the non-linearity, the fluorophores are excited
only in the proximity of nominal focus; this eventually reduces out-of-focus light [6].
Thus, TPEF imaging assures visualization of tissues at higher depth and better ax-
ial resolution. Furthermore, photoinduced damage outside the focal plane, typically
observed in conventional fluorescence microscopy, is significantly reduced [50]. These
properties of TPEF microscopy makes it suitable for biomedical applications.

TPEF microscopy in a laser scanning microscope was first implemented in 1990
where chromosomes of live cultured pig kidney cells stained with a viable DNA stain
were visualized [51]. Since then, a growing number of studies employing TPEF mi-
croscopy for tissue imaging have been reported [52, 53, 54]. TPEF microscopy is ca-
pable of imaging intrinsic autofluorophores such as nicotinamide adenine dinucleotide
hydrogenase (NADH), flavin adenine dinucleotide (FAD), and structural proteins like
elastin, keratin, and collagen within epithelial and connective tissue. Applications of
TPEF microscopy in various in vivo studies have been reported for skin-related stud-
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ies in humans [55, 56, 57, 58] and brain imaging in animals [59]. TPEF microscopy
can be readily combined with SHG microscopy for in vivo studies, which will be
discussed in the next section.

2.2.3 Second harmonic generation microscopy

The last non-linear optical modality of NLM imaging is second harmonic generation
(SHG) microscopy. Contrary to CARS microscopy, SHG is a coherent second-order
non-linear process. In SHG microscopy, two photons in the near-infrared region of
frequency ωp (green arrows in figure 2.2A) interact simultaneously with a molecule
to generate a photon of double the energy or frequency ωSHG = 2ωp (violet arrow
in figure 2.2A). Thus, this process is also called frequency doubling [50]. Due to
symmetry reasons, SHG can occur only in bulk noncentrosymmetric structures, for
instance some proteins in tissue with a quasi-crystalline structure [6]. SHGmicroscopy
is capable of imaging biomolecules like collagen, muscle, and microtubules. There-
fore, collagen-rich tissues like the cornea, tendons, skin, arteries can be efficiently
investigated using SHG microscopy [8, 60]. Furthermore, an SHG signal can be an
indication of disease progression or alteration of biomolecules in a tissue, which is
commonly observed in cancer [61]. Lastly, a combination of SHG and TPEF mi-
croscopy has widespread biomedical applications [62], for example the investigation
of cells and cellular membranes [63].

With the explanation of Raman spectroscopy and NLM imaging, the stage is set to
explain the datasets involved in these two technologies and the need for chemometrics
to analyze these datasets. Although this was briefly discussed in chapter 1, the next
section provides a detailed explanation.

2.3 The need of Chemometrics for biophotonics

So far, the technical details of Raman spectroscopy and NLM imaging have been
discussed. Analyzing the data from Raman spectroscopy and NLM imaging is also
essential for a better understanding of biological systems. However, the analysis of
both datasets presents several challenges which will be emphasized in this section.

The challenges encountered while analyzing Raman spectroscopic data are a great
start. First, Raman spectroscopic data comprises several Raman spectra, which is
a plot of the intensity of Stokes Raman scattered light against the wavenumber. A
manual interpretation of the intensity and wavenumbers of each Raman spectrum can
be tedious and time-consuming. Consequently, manual interpretation causes discrep-
ancies among experts, especially for biological data, due to subtle spectral signatures
that are difficult to observe. Second, a Raman spectrum inherently comprises noise
due to the measurement setup and external interference. Unwanted noise like fluores-
cence background, Gaussian noise, CCD background noise, and cosmic spikes affects
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the Raman spectrum. Third, Raman spectra of samples prepared at different time
points can be significantly different from each other. Likewise, Raman spectroscopic
data acquired from biological samples manifest variance within or between exper-
imental and biological replicates. Thus, multivariate statistical methods to remove
unwanted noise or other corrupting effects; to perform calibration to remove the spec-
tral contributions dependent on the measurement system; and to extract significant
spectral signatures from the high dimensional Raman spectra, are required. In this
scenario, a field like “chemometrics” comes into the picture.

Like Raman spectroscopy, NLM imaging presents specific challenges. First, NLM
imaging, unlike histopathology, is an untargeted technique. Due to its untargeted na-
ture, specific tissue structures that are highlighted using conventional imaging tech-
niques are not visualized in NLM images. Second, the image contrast associated
with a specific biomolecule is unclear. For example, an SHG signal does not show
any spectral difference coming from different biomolecules like collagen, tubulin, and
cholesterol [6]. This affects the interpretation of non-linear multimodal images to the
untrained eye. Third, the extraction of complicated patterns or tissue structures re-
quires annotation by an expert. Finally, noise artefacts visible due to optical systems
and mosaic artefacts resulting from stitching of tile scans needs to be removed [64].
Therefore, research on advanced image analysis and pattern recognition methods,
which are parts of chemometrics, is crucial.

As a solution to the above-mentioned challenges, the use of chemometric approaches
is highly recommended. Chemometrics is an interdisciplinary field of science ca-
pable of extracting information from chemical systems using data-driven strategies
[65]. This multidisciplinary field encompasses various aspects like multivariate statis-
tics, pattern recognition, image and data analysis, and statistical modelling. Mostly,
chemometric approaches for Raman spectroscopic data are used to reduce spikes aris-
ing from unwanted noise, correct baseline shifts resulting from spurious background
signal or instrument fluctuation, discover different components present in a mixture,
and build predictive or descriptive models to analyze the underlying spectra [66, 10].
Similarly, chemometric approaches for non-linear multimodal images are used to filter
unwanted noise, correct mosaicking artefacts caused by uneven illumination [67], de-
lineate foreground and different regions in the images, and construct predictive mod-
els to identify biomolecular changes [68]. As the complexity of these tasks increases,
chemometric methods require complicated algorithms for extracting meaningful pat-
terns from the data. Such complicated algorithms fall under the category of artificial
intelligence (AI). Taking advantage of intelligent AI methods, this thesis proposes the
use of AI for the reliable analysis of biophotonic data like Raman spectroscopic and
non-linear multimodal imaging data. This will be discussed in the next chapters.
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Artificial intelligence for biophotonics

The previous chapter introduced “chemometrics” as a solution for maximizing the
information content from biophotonic data, thereby assuring a better design of ex-
periments and allowing a deeper understanding of the biological system. Chemometric
methods like signal and image processing, statistical modelling, descriptive and infer-
ence statistics, and pattern recognition are essential for maximizing the information
content of Raman spectroscopic and NLM imaging data. The previous section also
established grounds for AI-based technologies that are a recent trend in chemomet-
rics. Utilizing AI-based technologies in chemometrics has the following advantages.
First, AI-based technologies can provide better knowledge acquisition systems that
complement the expert’s knowledge. Second, it can extract patterns from data which
are useful for predictive modelling without any manual intervention. Third, AI-based
technologies can provide better generalization of unseen data and process incomplete
data [69]. Due to these advantages, this thesis uses AI-based technologies for analyz-
ing biophotonic data like Raman spectroscopic and NLM imaging data.

For the smooth understanding of the AI-based technologies used in this thesis, this
chapter discusses the fundamentals of AI along with the two major sub-fields of AI
– machine learning and deep learning – and its application for data analysis. This
chapter will also provide a brief introduction of different models used in machine
learning and deep learning.
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3.1 Fundamentals of AI and its applications

Artificial Intelligence is (mostly) a field of computer science that aims to create in-
telligent systems which are capable of reasoning, planning, perceiving, processing,
solving problems, and learning from experience. AI can be categorized into strong
and weak AI [70]. Strong AI, also known as artificial general intelligence, describes
programs that can simulate human intelligence and their cognitive abilities. On the
other hand, weak AI (a.k.a. narrow AI) are programs designed to perform a specific
task [70]. Most researchers today utilize weak AI, for instance Apple’s Siri and Ama-
zon’s Alexa. The weak AI programs form the basis of the most widely used machine
learning algorithms which are discussed further.

Machine Learning (ML) (see section 3.2) is a form of AI that generates algorithms
which can iteratively learn from the data and make decisions to perform a given task.
In other words, an ML algorithm converts an experience achieved from the data into
an expertise that is evaluated using a performance metric. The performance of an
ML algorithm is heavily dependent on the data used to gain experience. Therefore,
it is crucial to provide ML algorithms with concise and meaningful data. The mean-
ingful representation of data is called “features” or “patterns”, and the process of
extracting these features is called “feature extraction”. The field of AI is closely re-
lated to another broad field used for extracting features or patterns, called “pattern
recognition”. Pattern recognition represents the whole dataset in the form of useful
patterns or features which can be used as an input to the ML algorithm. It can be
considered one of the pre-processing steps while performing data analysis [71]. How-
ever, recognizing patterns or features to feed a machine learning algorithm requires
much manual effort and is tedious. Therefore, sophisticated learning algorithms that
are capable of “feature engineering” are crucial. The “feature engineering” algorithms
can automatically extract and learn abstract features like an experienced professional.
Such algorithms are also referred to as self-learning algorithms and are a subset of
ML algorithms called “deep learning” (DL) algorithms (see section 3.3).

A DL algorithm represents raw data, for instance an image, as a combination of
simple patterns like color, edges, and contours. These simple patterns are extracted
by a series of layers of a DL model, in contrast to ML models where these patterns
are manually extracted. A series of input, hidden, and output layers provide depth to
the model and are one of the peculiar characteristics of DL algorithms. ML and DL
have numerous applications in image classification, object detection and localization,
semantic segmentation, speech recognition, and natural language processing.

To summarize, AI, machine learning, and deep learning are related to each other
and can be visualized in the form of concentric circles (see figure 3.1). The idea of AI
was the first to become popular, later blossomed machine learning, and “today’s AI”
is deep learning. The following sections elaborate on the fundamentals of machine
learning and deep learning.
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Figure 3.1: This figure shows artificial intelligence (AI), machine learning (ML), and deep
learning (DL) in the form of three concentric circles. Deep learning is a subset of machine
learning, which is altogether a subset of AI. The figure is modified from reference [72].

3.2 Basics of machine learning

In the previous section, it was mentioned that ML is a subset of AI and most re-
searchers today utilize ML programs for performing specific tasks. The definition of
ML quoted by Tom M. Mitchell says that: “An ML program is a computer program
which is said to learn from experience E concerning some class of tasks T and per-
formance measure P, if its performance at tasks T as measured by P, improves with
experience E” [73]. Briefly, a task T is the type of prediction or inference achieved
based on a defined problem, and the process of training on a task T is called learning.
An example of a task T is the classification of different types of bacteria using spectro-
scopic data. In this example, the experience E is the spectroscopic dataset on which
the ML program learns to perform the classification task T. Lastly, a performance
measure P is a metric that evaluates the accuracy of the ML model. The concepts
including dataset, types of learning, performance metric required to construct an ML
program are explained in the following sections.
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Classification Regression

Figure 3.2: This figure shows the difference between two types of supervised learning al-
gorithms, namely: classification and regression. The objective of classification is to assign
each data point (blue triangles and yellow circles) into discrete categories or classes, whereas
the objective of regression is to find a relationship among the data points (yellow circles)
based on their input features.

3.2.1 Dataset

An experience E is a dataset represented by the extracted features or the raw data
itself. For instance, pixel values are raw data which represents an image; likewise,
color, texture, and shape patterns extracted from that image are features. Mathe-
matically, a dataset can be described as a matrix X ∈ RM×N with M observations
or samples in the form of N -dimensional feature vector x = [x1, x2, · · · , xN ]

T ∈ RN .
Each observation m is associated with a target value ym (a.k.a. class or label). For
the whole dataset X, a target vector can be given as y = [y1, y2, · · · , yM ] ∈ RM .
The target information is mostly given by an expert who helps the ML algorithm to
perform a task. The dataset on which the ML algorithm learns to perform a task is
called “training dataset”, and the dataset on which the ML algorithm evaluates its
performance is called “testing dataset” [74]. In the case of DL algorithms, another
set of the dataset is introduced, which is called the “validation dataset”. The vali-
dation dataset optimizes many hyperparameters of the DL model [75]. Based on the
dataset and the task, an ML algorithm is divided into categories, namely supervised
learning, unsupervised learning, semi-supervised learning, reinforcement learning [76]
and representation learning [77]. The former two learning categories are discussed in
the following sections.
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3.2.2 Supervised learning

A supervised learning algorithm learns through a labelled training dataset D =
((x1, y1), (x2, y2), · · · , (xM , yM)) which is a finite pair of M observations with each
feature vector xm associated with its target value ym, where m is the index for M
observations [74]. A supervised learning algorithm learns to predict y from x by es-
timating the distribution p(y|x). An example of supervised learning is the prediction
of a disease based on the target information given by an expert. Based on the target,
a supervised learning algorithm can be divided into two categories: classification and
regression, as discussed below.

Classification

Classification is a form of supervised learning where the target variables are discrete
or categorical (e.g., ym ∈ {0, 1} or ym ∈ {tumor, healthy}) [74]. A classification
learning algorithm F : RN → {1, · · · , C} learns to assign each feature vector xm to
C categories identified by ym. The function F can also provide the probability distri-
bution over C categories. An example of a classification task is the identification of
normal and tumor tissue or characterization of different disease stages. A few exam-
ples of classification are given in chapter 4. These applications utilize commonly used
classification algorithms like support vector machine (SVM) and linear discriminant
analysis (LDA). Therefore, these two algorithms are discussed below.
Linear discriminant analysis also called Fisher’s linear discriminant analysis [78],
is a supervised learning algorithm mainly used for classification purposes. The LDA
algorithm projects a multi-dimensional dataset onto “discriminant axes”. The dis-
criminant axes maximize the ratio of inter-class to intra-class scatter to optimally
classify the dataset into two or more classes. The objective of the LDA algorithm
E(W) is to maximize the ratio of inter-class to intra-class scatter by finding optimal
discriminant axes W, and is given as

E(W) =
|WTSCbW|
|WTSCwW|

, (3.1)

where W = [w1|w2| · · · |wL] with L projections, SCb =
∑C

i (µi − µ)(µi − µ)T is
inter-class scatter matrix, µi as mean of observations in the class i and µ as mean
of all the µi, SCw =

∑C
i SCi represents the intra-class scatter matrix with SCi =∑Mi

j=1(Sj −µi)(Sj −µi)
T . Here, Mi is the total number of observations or samples in

the ith class and Sj is one such observation [79].
Support vector machine is another supervised learning algorithm used for classi-
fication tasks [80]. An SVM algorithm constructs a hyperplane or set of hyperplanes
to separate an N -dimensional dataset into different groups or classes. The construc-
tion of the hyperplane is based on the “maximum-margin hyperplane” theorem [81].
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According to this theorem, a hyperplane is selected to divide M data points such that
the distance between the hyperplane and the nearest data point xm from either of the
groups is maximized. This builds a simple linear classification model. However, based
on the complexity of the dataset, a non-linear classification model with a non-linear
hyperplane in multidimensional space can be constructed [81].

Regression

Regression is another form of a supervised learning algorithm that learns a function
F : RN → R to assign a numeric value to the N -dimensional input data. Unlike
the classification learning algorithm, the target variables in regression are continu-
ous. Figure 3.2 shows the difference between classification and regression learning
algorithms. An example of regression is predicting the content of iron in an ore from
mass spectroscopy measurements [74]. The simplest regression algorithm is the linear
regression algorithm, which is explained further.
Linear regression is a linear model which assumes a linear relationship between
the N -dimensional input variable xm and the output variable ym [82]. Specifically,
this is a multiple or multivariable linear regression model, as the output function is
dependent on N predictor variables [82]. Mathematically, the output variable ym is
a linear combination of the N -dimensional vector xm, and can be represented as

ym = β0 + β1xm1 + · · ·+ βNxMN + ϵ, (3.2)

where {β0, β1, · · · , βN} are the regression coefficients and ϵ is the residual term of the
linear regression model. A simple linear regression model with just one-dimensional
input can be represented by a line, ym = β0 + β1xm1 (see figure 3.2). With increasing
dimensions of the input variable like in equation 3.2, the model can be represented
by a hyperplane. Clearly, the linear regression model is used to predict a continuous
dependent variable based on predictor (or independent) variables. Likewise, when
dependent variables are categorical, the logistic regression model is preferred [82].

The explanations above provide a clear picture of supervised learning algorithms.
The next section will focus on unsupervised learning algorithms including clustering
and dimension reduction, which are extensively used in this thesis.

3.2.3 Unsupervised learning

Unlike supervised learning algorithms, unsupervised learning algorithms learn through
an unlabelled dataset, i.e. the observations are not associated with its targets. These
algorithms attempt to unravel specific properties of the underlying dataset [82]. In
other words, these algorithms can separate M observations into K groups (a.k.a.
clusters) based on its similarities known as “clustering algorithms”. Unsupervised
learning algorithms can be used to project a high dimensional feature vector x to
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low dimensional feature vector z. This is known as “dimension reduction algorithms”.
Lastly, unsupervised learning algorithms can learn the probability distribution p(x)
of the underlying dataset. This is known as “density estimation algorithms” [71]. The
“clustering” and “dimensionality reduction” algorithms are discussed below.

Clustering algorithm

Clustering is an unsupervised learning algorithm used to partition the observations
into clusters such that each observation in a cluster is similar to observations from
its cluster as compared to the observations in other clusters. The similarity between
the observations is calculated using a distance metric (e.g. Euclidean distance) and
the clustering algorithm aims to reduce this metric [82]. For instance, an average
Euclidean distance can be calculated as a distance metric between the centroid of a
cluster and other observations of that cluster. This forms the basis of a prototypical
clustering algorithm called the K-means clustering algorithm.
K-means clustering algorithm is most widely used in biophotonic data analysis,
especially Raman spectroscopic data. In this method, each observation is labelled as
K clusters by calculating (mostly) the Euclidean distance between each observation
and the center of each cluster. An observation nearest to the center of a cluster
is categorized into a new label of that cluster. The optimization of the clusters is
achieved by calculating the cluster centers based on previous and current cluster cen-
ters, and iteratively updating the centers until convergence is achieved. Mathemati-
cally, a K-means clustering algorithm can be given as, argmin

C

∑K
i=1

∑
x∈ci ∥x− µi∥2,

where K is the number of clusters and x is an observation belonging to the clusters
{c1, c2, · · · , cK} with centers {µ1, µ2, · · · , µK}.

Dimension reduction

Dimension reduction is an unsupervised learning algorithm which transforms a high
dimensional input dataset into a low dimensional representation. Mathematically, it
is given as F : RN → RD, where D ≪ N . Dimension reduction can be achieved in
two different ways. The first way is by retaining the most relevant features from the
original set of features; this is known as “feature selection”. The second way is by
removing the redundancy of the original feature set and finding a completely different
set of relevant features; this is known as “feature extraction” [71]. A commonly
used dimension reduction technique based on feature extraction is called principal
component analysis (PCA) which is explained below.
Principal component analysis is an unsupervised data transformation technique
that projects a high dimensional data matrix X ∈ RM×N to low dimensional data
Z ∈ RM×D. Specifically, the high dimensional feature set (e.g., wavenumbers from the
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Raman spectrum or texture features from a non-linear multimodal image) is trans-
formed to a smaller set of orthogonal principal components (or PC’s) in the direction
of maximum variation. The PC’s are obtained by calculating the Eigen values and
Eigen vectors obtained from the covariance matrix of the data matrix X. The high-
est Eigen value corresponds to the first PC (PC1) and demonstrates the maximum
variance in the dataset. Similarly, the second-highest Eigen value corresponds to the
second PC (PC2) which represents the largest residual variance and is orthogonal
to PC1; therefore, it is uncorrelated and independent [82]. Mathematically, a PCA
model to decompose original matrix X ∈ RM×N can be given as,

X = ZUT + E, (3.3)

where Z ∈ RM×D is the scores matrix, U ∈ RN×D is the loadings matrix and E
is a residual matrix. The residual matrix is a measure of lack-of-fit of the PCA
model, and a smaller value of E corresponds to a good PCA model. The scores and
the loadings matrices are a characteristic of the M observations and N variables or
features, respectively. The combination of PCA and LDA is a useful approach for
classification purposes and will be utilized in chapter 4.

3.2.4 Cross-validation and performance measure

In the previous sections, various concepts like dataset and supervised and unsuper-
vised learning algorithms were introduced. This section will introduce the evaluation
of these learning algorithms based on a scheme called “cross-validation” and perfor-
mance metric.

The first concept is cross-validation which is important to evaluate ML algorithms
and construct robust models for classification, regression and feature extraction tasks.
The simplest cross-validation approach is to divide the dataset into a training dataset,
which is used to train the ML model and a testing dataset which is used to evaluate
the performance of the ML model. This is called “hold-out” cross-validation [82].
However, this approach causes poor estimation of actual model performance and
lacks generalization. Thus, a k-fold cross-validation approach is recommended. A
k-fold cross-validation aims to divide the dataset into k parts and train the model for
k rounds using a 1/kth part as the test dataset in each round. The average test score
for the k rounds is used as the performance measure of the model [82].

The next important concept is the performance measure or metric P that interprets
the goodness of the ML model. The most used performance metric for classification
purposes is a confusion matrix which is a table indicating the number of false positives
(FP), true positives (TP), false negatives (FN) and true negatives (TN). Based on
the confusion matrix, various performance measures including, but not limited to,
accuracy = (TP+TN)/(TP+TN+FP+FN), sensitivity = TP/(TP+FN), specificity
= TN/(TN+FP) can be derived. These are the most reported metrics in literature.
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Likewise, the mean squared error (MSE) and root mean squared error (RMSE) are
commonly used for regression purpose. A machine learning model is optimized to
either maximize the accuracy or minimize the RMSE based on the task.

So far, the previous sections have emphasized machine learning algorithms and
related concepts. The next section will introduce challenges encountered by tradi-
tional machine learning algorithms and the motivation behind using deep learning
algorithms.

3.2.5 Challenges motivating deep learning

The conventional ML algorithms discussed above are limited in several ways. Fore-
most, difficulties arise with ML models while performing tasks like the semantic
segmentation (see chapter 4.2) or pseudo-staining (see chapter 4.3) of images, for
instance, NLM images with a specific molecular contrast. The shortcomings of con-
ventional ML algorithms motivate the development of “intelligent” algorithms like
deep learning algorithms. These algorithms can efficiently learn simple to complex
patterns from the images or spectra that could be used to construct reliable models.
In this prospect, this section discusses some challenges encountered by ML models.

Foremost, ML models have limitations while learning complicated functions for
high dimensional feature space. A high dimensional feature space is a problem when
the number of features is much higher than the number of observations (N ≫ M).
This is termed the “curse of dimensionality” [75]. The curse of dimensionality is com-
monly observed in Raman spectroscopic data, in which the number of wavenumbers
is higher than the number of observations in each class. This is one of the reasons
to perform preprocessing and feature extraction for Raman spectroscopic data before
constructing a conventional ML model. Nevertheless, DL models can alleviate this
“curse” due to its inherent nature to ascertain a pattern or extract abstract features
from high dimensional data.

Additionally, conventional ML algorithms rely on implicit “priors” like smoothness
and local constancy [75]. These priors state that a function learned by an ML algo-
rithm does not change largely within a small region (F∗(X) = F∗(X+ϵ)). Due to this
assumption, test points or unseen dataset return results “near to” similar points in
the training dataset. Therefore, conventional ML algorithms like k-nearest neighbors
and decision trees that exclusively rely on this assumption tend to generalize on the
unseen data poorly [75]. However, DL models include task-specific assumptions that
help to generalize the underlying data better. One such assumption is that the un-
derlying data is generated using the composition of features that potentially describe
multiple levels of hierarchy in the data. This can be a reason to name these models
as “deep” learning models [75].

In prospect, DL has efficiently dealt with a high dimensional dataset in the past.
Thus, this thesis emphasizes using DL for biophotonic data analysis. The next section
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will provide the fundamentals of DL, and various traditional and advanced DL models.

3.3 Basics of deep learning

Deep learning is a field of machine learning with advanced capabilities for data anal-
ysis (see figure 3.1). A deep learning model emulates the biological structure of the
human brain neuron [75]. Briefly, a deep learning model is a computational model
that maps input to output by learning patterns in the data through a series of hidden
layers. The input of the deep learning model is a vector of features extracted from the
data or the raw data itself, and the output of a deep learning model is a single output
or vector of values or probabilities. The hidden layer comprises neurons or nodes.
A neuron is a “computational unit” with one or more weighted inputs, a transfer
function to combine the inputs in a linear or non-linear manner, and lastly, one or
more outputs. The neurons of a layer are connected to the other neurons of the same,
previous, and consecutive hidden layers. The interconnection of neurons facilitates
the deep learning model to learn complex abstractions of the data. Learning complex
abstractions of the data is achieved by passing the information of each neuron in the
forward direction (a.k.a. forward pass) and subsequently optimizing the weights of
the inputs of each neuron in the backward direction (a.k.a. backward pass or back-
propagation) [75]. Due to the property of deep learning models to learn complex
features from the data, it has gained overwhelming popularity in image and spectral
data analysis. Thus, this thesis introduces various deep learning models to perform
analysis on the Raman spectroscopic data and NLM imaging data. Before introduc-
ing various deep learning models, it is important to discuss the biological motivation
of the most basic type of DL model, which is called artificial neural network.

3.3.1 Artificial neural networks: A biological motivation

An artificial neural network (ANN) is a basic type of deep learning model. ANN is
loosely inspired by the neural network of the human brain [83]. The primary moti-
vation of ANN is to recreate learning and predictive capabilities, as well as cognitive
abilities of the human brain through its fundamental unit called the “neuron”. In
biological terms, a neuron comprises a cell body with an axon and many dendrites.
From a functional perspective, a neuron processes information received by the den-
drites in the form of an electrical signal and propagates it further to other neurons
through the axon [84]. Thus, ANNs aim to emulate the process of the neural network
of the human brain.

As explained above, an ANN is a computational model that receives an input
x ∈ RN from the preceding neuron and synthesizes it multiplicatively (w0x0) with
the synaptic strength of the dendrites of that neuron (see figure 3.3). The synaptic
strength is the idea behind the weights w ∈ RN in ANNs, which are learnable and
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Figure 3.3: This figure shows a computational model of a neuron. The input x0 arriving
from the axon of a previous neuron is multiplied with the synaptic strength w0 of the current
neuron. The signal w0x0 is carried by the dendrite to the cell body of the neuron. Many
such input signals are carried by the dendrites, which are subsequently added and processed
by a linear or non-linear activation function ϕ of the cell body. The non-linear output of
this neuron is carried by its axon to the following neuron.

are influenced by the data received from other neurons. In addition to the weights,
each neuron has a bias b ∈ R. The weighted inputs and the bias of each neuron are
linearly combined to give output unit activation, a =

∑N
i=0wixi + b . The output

activation is transformed using a differentiable and non-linear activation function ϕ,
such that the final output signal from a neuron is y = ϕ(a) = ϕ(

∑N
i=0wixi + b). The

output signal y is propagated in the forward direction to the following neurons [71].
During training of a DL model, the weights and biases of each neuron, also referred
to as “hyperparameters” of the DL model, are optimized. A detailed explanation on
optimization of weights will be given in section 3.3.3.

The computational model of the neuron explained so far forms the basis of tradi-
tional multilayer perceptrons and other neural network architectures. These archi-
tectures will be explained in the next section.

3.3.2 Neural network architectures

Feed-Forward neural network or multilayer perceptron (MLP) is also some-
times referred to as an artificial neural network [83]. The earlier section introduced
the computational model of a single neuron used in ANNs, and in this section these
neurons will be used in layers of MLPs. An MLP network comprises input, out-
put and hidden layers. The MLP network passes the input in the forward direction
through a series of L hidden layers. The series of hidden layers not only provide
depth to these networks but also generate complex representations of the input. A
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Figure 3.4: This figure shows a multilayer perceptron with one input layer (two neurons),
two hidden layers (three neurons) and one output layer (one neuron). The connections
between neuron i of layer l − 1 and neuron k of layer l is weighted by wl

ik. Each neuron
transforms the output using an activation function ϕ. The final output y is a combination
of transformed outputs from the intermediate layers.

graphical representation of MLPs with two hidden layers (L = 2) is shown in figure
3.4. Mathematically, an output from an arbitrary neuron ylk, indexed by k ∈ N
neurons in each layer l ∈ {0, · · · , L} is given by

ylk = ϕ

N l−1∑
i=0

wl
iky

l−1
i + blk

 , (3.4)

where yl−1
i is an output of neuron i in layer l− 1, wl

ik is the weight of the connection
between neuron i in layer l−1 and neuron k in layer l, blk is the bias value of layer l and
ϕ is the non-linear activation function which is assumed to be the same for all layers.
In this way, the final output of the MLP network, y = F(x; Θ) is a composition of
linear combinations of non-linear outputs from each layer, where Θ = {W ,B} is the
hyperparameter set of weights W and biases B.

The non-linearity in the deep neural networks can be introduced with various non-
linear activation functions ϕ including sigmoid function ϕ(a) = 1

1+e−a , rectified linear
units ϕ(a) = max(a, 0), and the hyperbolic tangent ϕ(a) = (ea−e−a)

(ea+e−a)
. One more type

of non-linear activation function commonly used for performing classification task is
called the softmax activation function. The softmax function maps the output from
the last layer into the probability distribution of classes c ∈ C. Mathematically, a
softmax function can be given as

P (ylk|xi; Θ) =
e(w

l
i)

T xi+bli

ΣC
c=1e

(wl
c)

T xc+blc
, (3.5)
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Figure 3.5: This figure shows a convolutional neural network architecture. The input image
X is convolved with two kernels W1 and W2 to obtain a feature map X1 and X2. The
pooling layer reduces the spatial dimension of the feature map. The receptive field is shown
in blue. This figure is inspired from reference [24].

which satisfies 0 ≤ ylk ≤ 1 and
∑

c y
l
k = 1. The softmax activation function is

frequently used as the last layer of the deep neural networks [71].
Up to this point, the architecture of MLPs has been explained. Before introducing

architectures of other deep neural networks, it is important to mention a challenge
encountered by MLPs while dealing with large input data. As the dimension of
input data increases, the number of weights in the first layer of the MLP model
also increases. This problem is seen while working with large images. Clearly, the
increase in the number of (trainable) weights can cause overfit of the MLP model to
the training dataset. Thus, deep learning models like convolutional neural networks
to reduce the amount of trainable weights are crucial.
Convolutional neural network (CNN) is similar to a multilayer perceptron with
the additional advantage that it works with grid data like a spectrum or an image [85,
86]. The architecture of CNNs was inspired by feed-forward information processing
in the early visual cortex of animals [87]. As the name suggests, CNNs employ
a mathematical operation called a convolution (*) in one of the layers instead of
conventional matrix multiplication used in MLPs. Convolution layers exploit the
spatial or spectral correlation of input by using shift-invariant trainable kernels or
weights. Mathematically, the output of the lth layer, Xl

k with k ∈ N neurons is given
by

Xl
k = ϕ(Wl

k ∗Xl−1
k + blk), (3.6)
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where Wl
k and blk represent the kernel or weight and bias of neuron k in the l layer, re-

spectively. Each layer comprises a set ofK trainable weightsW = {W1,W2, · · · ,WK}
and biases B = {b1, b2, · · · , bK}, which are the hyperparameters of the CNN model.
These hyperparameters are optimized while training a CNN model to produce an
output Xl

k, which is also referred to as a “feature map”. In addition to the con-
volution layer, CNNs differ from conventional MLPs in three more aspects, namely
weight sharing, pooling layers and receptive field [24]. The first aspect is weight
sharing which reduces the number of trainable parameters by sharing weights of all
neurons in a feature map. The second aspect is a pooling layer which reduces the
spatial or spectral dimension of the input image or spectrum, thereby decreasing the
number of weights in the network. The third aspect is a receptive field which is a
hyperparameter that describes the spatial extent of a local region in the input that
is affected by a kernel [75]. The figure 3.5 shows a CNN architecture along with a
feature map, trainable weights, pooling layer and local receptive field. CNNs can be
used in generative models like the autoencoders and generative adversarial networks.
Autoencoder (AE) is a form of artificial neural network that can be employed in an
unsupervised manner [88, 89]. Autoencoders comprise two networks; an encoder and
a decoder. An encoder transforms an input x ∈ RN to a hidden state representation
h ∈ RD and captures the most salient features of the input. The features in the hidden
state are called “bottleneck” features and have (mostly) smaller dimensions than the
input dimension. On the other hand, a decoder reconstructs the bottleneck features
z ∈ RN with the same dimension as the original input. Traditionally, AEs were used
for dimension reduction where the bottleneck features were used as features in the
reduced dimension space [75]. Since then, the use of AEs has been investigated for
image classification, semantic segmentation and image reconstruction [90]. One such
application of AE is to segment non-linear multimodal images which will be discussed
in section 4.2. AEs can also be a part of the generative adversarial networks.
Generative adversarial network (GAN) is a generative model comprising two ar-
tificial neural networks, namely a generator and a discriminator [91]. As the name
suggests, the two networks are adversaries of each other such that the generator is
trained against the discriminator to produce images from the original data distribu-
tion. Specifically, a generator network takes random numbers as the input and maps
them into a visually pleasing image. Instead of using a set of random numbers as the
input, a generator can also use an image. This is called image translation. In the
image translation task, a generator transforms an image into another image which
looks similar to the original image. Because of the ability to translate images, GAN
has applications for image deblurring and image super-resolution [92, 93, 94, 95, 96].
The discriminator network is responsible for testing the plausibility of the generated
images by differentiating them as ‘real’ or ‘fake’. The output of the discriminator
network is a probability that the generated image is acquired from the original data
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distribution. The mathematical explanation of AEs and GANs can be found in ref-
erence [24].

The different DL models that will be used in chapter 4 have already been dis-
cussed. Now, the next important aspect is training and optimizing the large number
of hyperparameters of these DL models.

3.3.3 Statistical learning and non-linear parameter optimization

So far, it is clear that neural networks are non-linear parametric models which map an
input vector x to an output vector y. Determining the hyperparameters Θ = {W ,B}
of all the layers in the networks, requires training these networks and optimizing
their hyperparameters for minimizing the loss function E(Θ). Training a deep neural
network is analogous to polynomial curve fitting, where the estimated output ŷ(x; Θ)
is close to the target output y, such that the loss function E(Θ) is minimal [71] (from
this point Θ will be referred to as w including the bias value in wl

0). The loss function
E(w) is given by

E(w) =
1

2

M∑
m=1

∥ ŷ(xm;w)− ym ∥2, (3.7)

where m = 1, · · · ,M , is a set of M labelled training dataset. This is sum-of-square
error function which is common for a regression task with a sigmoid or linear activation
function as an output layer [71]. However, for a classification task, a probabilistic
interpretation of the neural network output is preferred. For this purpose, a dataset
D = ((x1, y1), (x2, y2), · · · , (xM , yM)) of M independent and identically distributed
pairs of input and target labels is considered; the likelihood function is constructed
as follows:

p(y|x,w, β) =
M∏

m=1

p(ym|xm,w, β). (3.8)

Taking the negative logarithm and solving this equation further, an error function
can be given as

β

2

M∑
m=1

{F(xm;w)− ym}2 −
M

2
ln β +

M

2
ln(2π). (3.9)

Here, β is the inverse variance of Gaussian noise, assuming a Gaussian distribution
of the target labels. Maximizing the likelihood function (equation 3.8) is equivalent
to minimizing the sum-of-squared error function (equation 3.7).

It is clear from the previous sections, that the activation function ϕ used in the
neural network model introduces non-linearity to the model. Due to the non-linearity
of the neural network model F(x;w), the error function is a highly non-convex func-
tion in nature, as shown in figure 3.6. Due to the non-convexity, converging or finding
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Figure 3.6: The schematic visualization of the error E(w) as a function of weights w =
[w0, w1] is shown. For simplicity, the bias parameter is covered in w0. The figure shows
a local (wL) and a global (wG) minimum. The gradient of the error function ∇E at a
hyperparameter configuration wc is highlighted in red. The figure is inspired from the
textbook [71].

the global minimum of the error function E(w) during the training process presents
difficulties. The convergence of the training process depends on the choice of the
initial values of the weights and biases. In simpler words, the training of the neural
network begins with an arbitrary configuration of weights and biases, which under-
goes non-linear parameter optimization during model training. This means that the
parameters are optimized for multiple iterations τ until a global minimum wG (for
ideal cases) of the error function is obtained. For successful training of neural net-
works, it is not necessary to obtain a global minimum but rather to compare several
local minima to find a sufficiently good solution [71].

Non-linear parameter optimization utilizes the gradient information of the error
function ∇E(w) to converge to a potential global minimum of the highly non-convex
error function. One such method of non-linear parameter optimization is the stochas-
tic gradient descent optimization (SGD) method. A stochastic gradient descent op-
timizer is a first-order method of non-linear parameter optimization. It updates the
parameters of the neural network by computing the gradient of the error function
∇E(w) and using it as a correction term in every iteration τ . The parameter update
for a stochastic gradient descent optimizer is given as

w(τ+1) := w(τ) − η∇E(w)(τ), (3.10)

where η > 0 is the learning rate. The learning rate is a hyperparameter which is set
before training the neural network. There are other variants of a stochastic gradient
descent optimizer including Adam [97], RMSprop [98], Adadelta [99], and Adagrad
[100] that have shown success in the training of deep neural networks.
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The parameter update is achieved through a well-known technique called the back-
propagation technique [101]. This technique in the literal sense means layer-wise
propagation of the error in the backwards direction from the last to the first layer of
the neural network. A mathematical description of the backpropagation algorithm is
given in the next section.

3.3.4 The backpropagation algorithm

Given the non-linear parameter optimization methods in the previous section, the
next goal is to use a principled mechanism for evaluating the gradient of the er-
ror function ∇E(w). This goal is achieved through the backpropagation algorithm
[101]. The backpropagation algorithm has two distinct stages. In the first stage, the
derivatives of the error function E(w) with respect to the weights in the network are
calculated. In the second stage, the derivatives are used to compute the adjustments
in the weights to reduce the error through an optimization scheme like gradient de-
scent, as shown in equation 3.10. To understand the first stage, which consists of
calculating the derivatives of the error function, it is important to consider an MLP
network (see figure 3.4) in a supervised regression setup, where the last layer has a
linear activation function, the hidden layers have a sigmoid activation function, and
the error function is defined by equation 3.7. The derivative of the error function
E(w) with respect to the weights in the network begins by applying the chain rule

∂E

∂wl
ik

=
∂E

∂alk

∂alk
∂wl

ik

, (3.11)

where alk =
∑

iw
l
iky

l−1
i is the activation of neuron k in layer l before it passes to the

non-linear activation function ϕ; and yi = ϕ(ai). The first term on RHS of equation
3.11 is referred to as error, δlk = ∂E/∂alk and the second term is ∂alk/∂wl

ik = yl−1
i [71].

Substituting the values above in equation 3.11 results in

∂E

∂wl
ik

= δlky
l−1
i . (3.12)

Intuitively, equation 3.12 makes sense as the weight wl
ik connects the output of neuron

i in layer l − 1 to the input of neuron k in layer l. Similarly, partial derivatives of
the error function with respect to all the weights in the networks can be computed
beginning from the last layer and propagating backwards to the first layer. The partial
derivatives can also be calculated with respect to the input xm, although in practice
the derivatives are calculated only with respect to the weights of the hidden layers.
Nevertheless, the calculation of gradients with respect to the inputs of the network is
also a useful approach for visualizing and interpreting the network predictions. Such
an application is mentioned in chapter 4.4. Similarly, error backpropagation can be
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applied for networks with multiple outputs, networks with many hidden layers and
for layers like the convolution layer.

Up to this point, the basic concepts of ML and DL have been discussed. Attention
is now drawn to a part of AI which facilitates the transfer of knowledge from an ML
or DL algorithm that was already trained to do a particular task [102]. This part is
widely known as “transfer learning”, and its fundamentals will be discussed in the
next section.

3.4 Basics of transfer learning

Transfer learning transfers knowledge learned from one or more source tasks TS and
uses it to improve the performance on a related target task TT . Such knowledge
transfer from the source task can affect the performance of the learning algorithm on
the target task in three ways. First, the initial performance achieved on the target task
using transferred knowledge compared to the initial performance without the transfer
of knowledge can be affected. Second, the amount of time required to fully learn the
target task given the transferred knowledge compared to the amount of time required
to learn a task from scratch can be affected. Lastly, the final performance of an
algorithm trained using transferred knowledge compared to the final performance of
an algorithm without a transfer of knowledge can be affected. Transferring knowledge
can have a negative and positive effect on model performance. Transfer learning that
decreases the performance on the target task is referred to as “negative transfer
learning”. Therefore, avoiding negative effects of transfer learning and obtaining
“positive transfer learning” for the target task is a major challenge. In practical
applications, the transfer of knowledge refers to the transfer of features (i.e. weights
or parameters in the case of DL models) learned on the source task TS using the
source dataset DS to improve the target task TT by optimizing the target function
FT using the target dataset DT . In most cases, DS ̸= DT or TS ̸= TT .

Transfer learning can be used in two contexts: transfer in inductive learning and
transfer in reinforcement learning [102]. This thesis addresses transfer in inductive
learning where the transfer of knowledge is used to perform classification tasks using
convolutional neural networks (see section 4.5). From here onwards, reference is made
to inductive transfer learning as transfer learning. Many examples of transfer learning
for biophotonic data have been published in the last few years [103, 104, 105, 106].
In real-world biophotonic applications, transfer learning is desirable due to the lack
of a training dataset to construct large DL models. One such example is presented in
section 4.5, where two transfer learning strategies (i.e. feature extraction using DL
models and the fine-tuning of DL models) are presented. A detailed explanation of
the two transfer learning strategies is given in reference [24].
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4
Selected work

The previous chapters focused on building the theoretical concepts of Raman spec-
troscopy, NLM imaging, AI, machine learning and deep learning. Now, this chapter
enlightens the readers with various AI-based technologies used for analyzing Raman
spectroscopic and NLM imaging data. These applications are based on the publica-
tions and manuscripts presented in chapter 8. This chapter will only summarize the
AI-based applications; however, a detailed explanation is made in their respective
publications (applications also summarized in figure 4.1). An outline of the applica-
tions of AI-based technologies is as follows:

• The first application uses machine learning for the identification of sepsis in a
peritonitis mouse model using NLM images. The machine learning approach
utilizes manually extracted statistical features to construct a linear classification
model for sepsis identification.

• The second application uses machine learning and deep learning to perform
an image semantic segmentation task. An image semantic segmentation task
classifies pixels of an NLM image into four tissue regions using a PCA-LDA
model and an autoencoder model. The tissue regions, especially the crypt
region, are essential for assessing the activity of inflammatory bowel disease.

• The third application uses deep learning to generate a pseudo-stain H&E model
that can computationally stain an NLM image into an H&E stained image. The
deep learning approach uses generative adversarial networks in a supervised and
an unsupervised manner for pseudo-staining NLM images.
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Figure 4.1: This figure shows applications of AI for Raman spectroscopic and non-linear
multimodal imaging data depicted in the form of a dimethylformamide (DMF) solvent
molecule. The major division of AI applications is shown by the carbon atoms (gray) and
the applications in the form of hydrogen (white) and oxygen (red) atoms.

• The next application is spectral classification using deep learning models. The
deep learning model is a one-dimensional deep convolutional neural network
(1D-CNN) which is used for the classification of the Raman spectrum into four
disease stages of ulcerative colitis. The 1D-CNN model is also used to interpret
the contribution of each Raman band for classification of the four disease stages.

• Finally, the last section shows inductive transfer learning of deep learning mod-
els to work with small datasets. This work combines histologically and im-
munohistochemically stained images to identify breast cancer.
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4.1 Identification of sepsis using non-linear multimodal images

This chapter presents a machine learning application for the identification of early
sepsis liver injury in a mouse model using NLM images. Sepsis is life-threatening
organ failure resulting from dysregulated host responses to infection. Identification
of sepsis using biomolecular information provided by NLM images can assure early
sepsis detection. However, identification of biomolecular information is a challenging
task. The subtle variations in biomolecular information caused by sepsis infection are
difficult to detect by pathologists. For this purpose, a machine learning algorithm is
used. Machine learning algorithms not only provide better accuracy but also have
the potential to automate the whole sepsis identification process in clinics (for details
of this work refer [107]).

As discussed in section 3.2, machine learning approaches require the pre-processing
of data and extraction of features to build a model. Therefore, in this work, as a pre-
processing step, a region which shows the most biomolecular alterations in a mouse
liver infected by sepsis was extracted. This region was 20 µm around the periportal
and pericentral veins visible in the NLM images (see left panel in figure 4.2). The 20
µm region around both veins was extracted using the TPEF signal and performing
Otsu’s thresholding and regional morphological operations [108]. In the 20 µm region,
nine first-order statistical features based on the image histogram were extracted. The
statistical features were extracted for each pixel using a 5×5 window around that
pixel. This led to nine texture feature images for each channel (CARS, TPEF, SHG)
of the NLM image. Statistical feature images like mean, minimum, skewness, and
standard deviation are shown in the right panel of figure 4.2. Subsequently, from the
nine texture feature images a median value was estimated in the 20 µm region. Thus,
27 median values (9 texture feature images × 3 channels) were obtained from the
texture feature images. Based on the median values of the texture feature images, the
PCA-LDA model (see section 3.2.2) was constructed to classify NLM images into two
categories, namely: sepsis and control. To interpret the contribution of each modality
(i.e., the CARS, TPEF, and SHG signal), the median values from the texture feature
images of the individual modalities were used for constructing a PCA-LDA model.
The PCA-LDA model used a two-step cross-validation procedure [109] with a leave-
one-mouse-out cross-validation strategy. The internal cross-validation step optimized
the number of principal components, and the external cross-validation step predicted
an independent test set. The average of the prediction on the independent test set
was used to measure performance metrics like sensitivity, specificity, and the receiver
operating characteristic (ROC) curve (see right panel in figure 4.2).

The results in the form of the ROC curve obtained from the PCA-LDA classification
model using features from all the modalities showed 85% sensitivity. The individual
modalities, namely CARS, TPEF, and SHG, achieved a sensitivity of 93%, 83%, and
49% respectively [107]. A pathologist confirmed these results for their biological inter-

35



Chapter 4. Selected work

Figure 4.2: An application of machine learning for identifying sepsis using non-linear multi-
modal images is shown. The left panel shows two types of veins: periportal and pericentral
veins for control and sepsis individuals, respectively. The left panel also shows image pre-
processing to obtain a region of interest around the veins, followed by feature extraction in
the right panel to build a PCA-LDA model. The ROC results of the PCA-LDA model for
a binary classification task are also shown in the right panel. The scale bar is 100 µm.

pretation. According to the biological interpretation, the CARS signal at 2850 cm−1

maps the CH2 group, and the TPEF signal at 426-490 nm maps NAD(P)H levels in
a tissue region. These two biomolecules showed alterations in the mice infected with
sepsis, due to the inflammation and metabolic activity in the 20 µm region around
both veins. Furthermore, SHG at 415 nm maps collagen in the tissue section. The
collagen metabolism was poor in early septic liver injury. Thus, the PCA-LDA model
built on SHG texture features achieved poor classification performance (49%). Over-
all, the results of this pre-clinical study proved that a machine learning approach with
non-linear multimodal imaging could endeavor to detect sepsis in the early stages.
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4.2 Semantic segmentation of non-linear multimodal images

This chapter presents an application of deep learning for the semantic segmentation
of NLM images. Semantic segmentation of NLM images into regions can be ben-
eficial for the assessment of inflammatory bowel disease (IBD). Assessment of IBD
requires observing certain regions, particularly the crypt and mucosa region, in the
tissue section. These regions are traditionally annotated by pathologists, which is a
tedious process. Therefore, annotating these regions through an automatic semantic
segmentation pipeline is desired. In this prospect, this section proposes the semantic
segmentation of crypts and the mucosa region using a ML and DL approach (for
detailed information of this work, see [110]).

For the ML approach, a PCA-LDA model was trained using statistical features
extracted for pixels. Eleven statistical features including mean, standard deviation,
skewness, kurtosis, median, energy, entropy, RMS, variance, maximum, and minimum
were extracted for each channel using a 5×5 window around a pixel. The definition of
all statistical features can be found in [107]. Thus, 33 texture features were extracted
per pixel, and PCA was used for dimension reduction. The reduced feature dimension
space was used to train an LDA model to classify pixels into three regions: non-
mucosa, mucosa without crypt, and crypt (see upper panel in figure 4.3). The fourth
region, i.e. the background region, was obtained by using K-means clustering for the
NLM image (see section 3.2.3).

For the DL approach, an autoencoder like the SegNet model [111] with an encoder
and a decoder structure was used. The encoder had 13 blocks of a convolutional
layer, a ReLU activation layer, and a max-pooling layer. Similarly, the decoder had
13 blocks of an upsampling layer, a convolutional layer, and a batch normalization
layer. The last layer of the decoder is a softmax activation layer, which maps the
features of the decoder to probability values associated with the four regions. The
input of the SegNet model was a pair of NLM patches and pathologically annotated
patches. The weights of the SegNet model were optimized using an SGD optimizer
with a learning rate of 10−4 and minimizing a categorical cross-entropy loss function.
The output of the SegNet model was a segmented map of an NLM image with four
distinct regions. The regions like background, non-mucosa, mucosa without crypt,
and crypt are indicated by black, blue, green, and red, respectively (see lower panel in
figure 4.3). Subsequently, a qualitative and quantitative evaluation of the segmented
map was done for the PCA-LDA and the SegNet model.

The qualitative evaluation of the segmented map for the test dataset using statis-
tical features and the PCA-LDA model showed an overall poor performance. The
poor performance can be attributed to the difficulties encountered by the PCA-LDA
model to classify the pixels based on the statistical features. The statistical features
used for the PCA-LDA model calculate values based on the intensity at the pixel
level and thus could barely retain structural information of the crypt and the mu-
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Figure 4.3: An application of AI for semantic segmentation of NLM images is shown. The
upper panel shows the ML approach by extracting statistical features for each pixel and
using a PCA-LDA model for classifying these pixels. The lower panel shows an autoencoder
architecture (the SegNet model) to classify the pixels into four tissue regions. The four
regions are background (black), non-mucosa (blue), mucosa without crypt (green), and
crypt (red). The scale bar indicates 200 µm.

cosa region. However, the qualitative evaluation of the segmented map for the test
dataset using the SegNet model showed an acceptable performance for NLM images
with regularly shaped crypts and a distinct mucosa region. The NLM images with
distorted and overlapping crypts were difficult to segment using the SegNet model.
The quantitative evaluation was performed by an F1 score. The F1 score for the
crypt region, which is essential for IBD characterization using the SegNet model and
the PCA-LDA model, is ∼63% and ∼18%, respectively. Likewise, the F1 score for
the mucosa region using the SegNet model and the PCA-LDA model is ∼55% and
∼27%, respectively [110]. In summary, this work achieved semantic segmentation of
NLM images using the machine learning and deep learning approaches.
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4.3 Pseudo H&E staining of non-linear multimodal images

This chapter presents an application of deep learning for the pseudo-staining of an
NLM image into an H&E stained image without following the conventional staining
protocol in laboratories. Pseudo-staining of NLM images can be beneficial for several
reasons. Firstly, pseudo-stained H&E images obtained from NLM images do not
require staining of the same or parallel tissue sections. Secondly, it does not require
image registration of pathologically stained H&E images to the coordinate space of
NLM images (if pseudo-staining performed in unsupervised manner). Thirdly, the
pseudo-staining of NLM images can be used to virtually stain NLM images into any
type of stained images.

The pseudo-staining of NLM images in this section proposes two models using gen-
erative adversarial networks. The first model is a CGAN model to perform supervised
learning (see section 3.2.2). The CGAN model requires a pair of NLM images and
its corresponding pathologically stained H&E image. The second model is the cycle
CGAN model, which uses unsupervised learning (see section 3.2.3). Contrary to the
CGAN model, the cycle CGAN model does not require a corresponding set of an
NLM image and a pathologically stained H&E image. The CGAN and cycle CGAN
models are summarized below; however, the architecture and training details of both
models can be found in chapter 8.

The CGAN model comprises two deep learning models called a generator and a
discriminator. The generator is an autoencoder, while the discriminator is a deep
convolutional neural network (see section 3.3.2). The input to the generator model
is an NLM image, and the output is a pseudo-stained H&E image. The quality of
the pseudo-stained H&E image is evaluated by the discriminator. The discriminator
classifies the pseudo-stained H&E image as “real” or “fake” based on small regions
in that image (see upper panel in figure 4.4). The generator creates more “real”
looking pseudo-stained H&E images by optimizing the mean absolute error between
the pathologically (or target) stained H&E image and the pseudo-stained H&E image.
The generator model is also optimized by an adversarial loss, which is updated via the
discriminator. The discriminator identifies the pseudo-stained H&E image as “fake”
by optimizing its weights through the mean squared error loss function.

The cycle CGAN model is an extension of the CGAN model with two generators
and two discriminators. The first generator model uses an NLM image as an input and
creates a pseudo-stained H&E image at the output. The second generator uses the
pseudo-stained H&E image (output of generator 1) and reconstructs it into an NLM
image. The two discriminators determine the realness of the pseudo-stained H&E
image and the reconstructed NLM image obtained from their respective generator
models (see lower panel in figure 4.4). Each generator-discriminator pair is trained
similarly to a CGAN model. Additionally, the two generator models use a cycle
consistency loss function, which is the mean absolute error between the original NLM
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Figure 4.4: An application of deep learning for image translation of non-linear multimodal
images is shown. The upper panel shows supervised approach by using the conditional
generative adversarial (CGAN) and lower panel shows an unsupervised approach using the
cycle conditional generative adversarial (cycle CGAN) to perform pseudo H&E staining of
multimodal images. The scale bar indicates 200 µm.

image (input of generator 1) and the reconstructed NLM image (output of generator
2).

The H&E images generated from the CGAN and cycle CGAN model were visually
and quantitatively evaluated. On visual inspection, it was seen that the pseudo-
stained H&E images generated by the CGAN and the cycle CGAN model were similar
to the pathologically stained H&E image. The quantitative analysis based on the
structure similarity index and color shading similarity showed values of >0.50 and
>0.90, respectively. Overall, it was observed that the results of the pseudo-stained
H&E image could be improved before accepting in clinics.

40



Chapter 4. Selected work

4.4 Interpretation of deep learning models

Traditionally, deep learning models have been considered “black-box” models, which
means that it is difficult to interpret the predictions made by the deep learning models.
Thus, using deep learning models for clinical applications is limited, as the interpreta-
tion of disease associated biomarkers is a major concern. Similarly, understanding the
predictions made by the deep learning model trained on Raman spectroscopic data is
important for understanding important Raman bands associated with a disease. In
conventional machine learning models like PCA or LDA, the interpretation of Raman
bands is acquired by the loading’s matrix. However, in deep learning models where
the function is highly non-linear, the interpretation of Raman bands is not straightfor-
ward. Therefore, this section presents the interpretation of the deep learning models
by approximating the non-linear function using first-order Taylor expansion.

In this work, a one-dimensional convolutional neural network (1D-CNN) was trained
for classifying the Raman spectroscopic data of UC patients into four Mayo endoscopic
scores. Along with a 1D-CNN classification model, a 1D-CNN regression model was
constructed for detecting border-line patients and quantifying the extent of misclassi-
fication obtained by the 1D-CNN classification model (see upper panel in figure 4.5).
As mentioned in section 3.3.3, the 1D-CNN classification and regression models differ
in the activation functions of the last layer and the loss function. The details of the
architecture of the 1D-CNN classification and 1D-CNN regression models and their
training process are discussed in [25]. After the training of the 1D-CNN classification
model, it was evaluated using performance metrics like mean sensitivity, mean speci-
ficity, and risk factor. Subsequently, the trained 1D-CNN classification model was
used for interpretation purposes. For interpretation purposes, the softmax activation
function of the last layer in the 1D-CNN classification model was replaced by a linear
activation function to achieve the unnormalized score. Further, the non-linear func-
tion of the 1D-CNN classification model was approximated using first-order Taylor
expansion to obtain a variable weighting of the Raman bands. The variable weight-
ing is represented by a heat map (see lower panel in figure 4.5). The heat map is
yellow for more relevant Raman bands and violet for less relevant Raman bands when
predicting a Mayo endoscopic score. For each Mayo endoscopic score, salient Raman
maps are marked with red dotted lines in the lower panel of figure 4.5.

The results of the 1D-CNN classification model achieved a mean sensitivity of
∼78%, a mean specificity of ∼93%, and a risk factor of ∼1.4. The individual mean
sensitivities for a Mayo endoscopic score of 0, 1, 2, and 3 were 100.00%, 81.82%,
75.00%, and 55.56%, respectively. The critical part was the interpretation of the 1D-
CNN classification model, which showed influential Raman bands via the heat map.
The important Raman bands predicted by the 1D-CNN model were assigned to a
biomolecule by a pathologist. According to the pathologist, Raman bands associated
with proteins, lipids, cholesterol, amino acids, saccharides, and DNA were marked
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Figure 4.5: An application of deep learning for spectra classification is shown. The upper
panel shows a 1D-deep convolutional neural network for the classification of Raman spec-
troscopic data into four Mayo endoscopic scores. It also shows a 1D-CNN regression model.
The lower panel visualizes a heat map for the four Mayo endoscopic scores obtained after
approximating the non-linear function of the 1D-CNN classification model.

salient by the 1D-CNN classification model.
Overall, this work utilized first-order Taylor expansion for interpretation of a highly

non-linear function learned by a DCNN model. This work provides information about
Raman bands relevant for the prediction of four Mayo endoscopic scores. However, the
first-order Taylor approximation of non-linear function cannot retain the relationship
between the Raman bands for a Mayo score prediction. The relationship between the

42



Chapter 4. Selected work

Raman bands is essential when a group of biomolecules are altered during disease
progression. Thus, the interpretation of deep learning models using higher-order
systems requires further investigation.

4.5 Transfer learning for breast cancer diagnosis using data fusion

Breast cancer is the world’s most commonly occurring type of cancer among women.
Diagnosing breast cancer utilizes a histology (H&E) staining technique and is per-
formed via visual evaluation of the H&E stain tissue section by a pathologist. Visual
analysis of the H&E stain tissue can lead to subjective interpretation. Thus, this work
motivates the use of deep learning for automatic breast cancer detection. Further-
more, this work motivates the fusion of histology with immunohistochemistry (IHC)
imaging data for reliable and early breast cancer diagnosis. Finally, due to the small
dataset size this work also proposes the use of transfer learning for deep learning
models to diagnose breast cancer based on H&E and IHC imaging data.

In this work, H&E imaging data along with four types of IHC imaging data (i.e.,
progesterone receptor (PR), estrogen receptor (ER), human epidermal growth factor-2
(Her2), and Ki-67 nuclear protein were obtained from the biopsies of 23 women. Each
biopsy was a combination of these five stain type images (see upper panel in figure 4.6).
Based on the five stain type images, the biopsies were classified as normal or tumor
using pre-trained deep convolutional neural networks (DCNN). As the dataset size
was limited, a full training of DCNN was avoided; instead, pre-trained DCNNs based
on two transfer learning strategies were used. The two transfer learning strategies
were performed using three pre-trained DCNNs, namely: VGG16, Inceptionv3, and
ResNet50. The two transfer learning strategies, DCNN as a feature extractor and the
fine-tuning of DCNN, are explained further.

In the first transfer learning strategy, each pre-trained DCNN was used to extract
off-the-shelf features from the five stain type images. To use the pre-trained DCNN
as a feature extractor, patches of 1024 × 1024 in size were extracted from the five
stain type images and down sampled to the input size requirement of the pre-trained
DCNN. Subsequently, features from the pre-trained DCNN were extracted from the
down sampled patches. The extracted features from the patches of all stain types
were combined, and a PCA-LDA model was trained. The PCA model was used to
reduce the dimensions of the features, and LDA was used to classify the patches as a
tumor or normal (see lower panel of figure 4.6). The model training used a two-step
leave-one-patient-out cross-validation strategy [109]. In this two-step cross-validation
strategy, the internal step used 10-fold cross-validation to optimize the number of
PCs, whereas the external cross-validation step evaluated the model performance on
an independent test set. The predictions on the independent test set were used to
calculate the confusion matrix, mean sensitivity, and mean F1 score.
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Figure 4.6: An application of transfer learning using deep learning models for breast cancer
diagnosis is shown. The upper panel shows five stain type images: (A) H&E stain image, (B)
estrogen receptor (ER), (C) human epidermal growth factor-2 (Her2), (D) Ki-67 nuclear,
and (E) progesterone receptor (PR). The scale bar is 200 µm. The lower panel shows two
transfer learning strategies: DCNN as a feature extractor (left) and DCNN for fine-tuning
(right).

In the second transfer learning strategy, a multi-input pre-trained DCNN was con-
structed such that the five stain type images were the input, and two neurons repre-
senting tumor or normal were the output (see lower panel in figure 4.6). The weights
of the last two layers of the three pre-trained multi-input DCNN were fine-tuned
to perform the binary classification task. The fine-tuning of the models generated
in strategy 2 were evaluated using leave-one-patient-out cross-validation, similar to
strategy 1. In the two-step cross-validation procedure, the internal step optimized
the hyperparameters of the DCNN based on the training and validation dataset, and
the external step evaluated the model performance based on an independent test set.
A detailed explanation of the two transfer learning strategies is given in chapter 8.

The results showed that transfer learning, in cases of small datasets, is beneficial. It
was seen that for small datasets, DCNNs as feature extractors (i.e., transfer learning
strategy 1) produced promising results for all three DCNNs explored in this work.
Furthermore, it was seen that the data fusion of histopathology and immunohisto-
chemistry slightly improves breast cancer diagnosis; therefore, it should be encouraged
in clinics.
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5
Summary

This section provides an entire summary of the thesis. Chapter 1 shortly introduced
light-matter interaction and biophotonic technologies that are concerned with the use
of light to study biological objects. Chapter 1 also introduced various biophotonic
technologies including optical coherence tomography, infrared spectroscopy, and Ra-
man spectroscopy. Out of all the biophotonic technologies, this thesis used only two
biophotonic technologies, namely: Raman spectroscopy and non-linear multimodal
imaging. It was mentioned in chapter 2 that both biophotonic technologies provide
multivariate datasets, and analysis of these datasets are crucial for better understand-
ing the biochemical system. For data analysis purposes, this chapter also introduced
the field of chemistry called “chemometrics”. The recent trend in chemometrics is
to use AI, machine learning, and deep learning, all of which were elaborated on in
chapter 3. It was mentioned in chapter 3 that the recent AI models based on deep
learning models can efficiently perform complex data analysis tasks. Chapter 3 also
presented various machine learning and deep learning models; their applications were
discussed in chapter 4. These applications are related to image and spectra classifi-
cation, semantic segmentation, and image translation. Furthermore, chapter 4 also
presented a way to interpret the deep learning models. This chapter also presented
the “transfer learning” of deep learning models when working with small datasets.
Before summarizing each application, each topic presented in this thesis, including
AI, machine learning, and deep learning, will be briefly discussed.

Artificial intelligence (AI) is a science which simulates human intelligence by pro-
gramming machines and manifesting traits of human learning and problem solving.
It was already mentioned in chapter 1 that AI has rapidly growing applications in the
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field of natural language processing, finance, agriculture, banking, autonomous vehi-
cles, chat bot systems, gaming, and healthcare. Similarly, AI has paved its way by
analyzing chemical systems way back. The first analytical chemistry-related AI pro-
gram was capable of generating molecular structures from the molecular formula and
predict its mass spectrum [112]. Since then, a lot of technical advancements like using
sub-fields of AI, machine learning, and deep learning for analyzing chemistry-related
data has been observed.

Machine learning is a sub-field of AI. Machine learning algorithms can automat-
ically learn and improve from experience without being explicitly programmed. As
mentioned in chapter 3, the aim of a machine learning algorithm is to become bet-
ter in performing a task by gaining experience from the dataset. The goodness of
the machine learning algorithm is evaluated by performance measure. In this thesis,
two categories of machine learning were introduced, namely: supervised and unsu-
pervised learning. Further, for supervised learning, classification models like SVM
and LDA, as well as a regression model like multivariate regression, were introduced.
Similarly, for unsupervised learning, K-means clustering and PCA were explained.
Finally, in chapter 3, various limitations of machine learning were addressed. One of
the limitations encountered by machine learning algorithms is the need for a “feature
extraction” step before constructing a classification or regression model. As the fea-
ture extraction step is subjective and depends on an expert, the performance of the
machine learning algorithm is dependent on the extracted features. For this purpose,
algorithms that can extract features automatically from the data are needed. Such
algorithms are categorized into a sub-field of machine learning called “deep learning”.

Deep learning algorithms use artificial neural networks (ANNs) motivated by the
human neural system. Briefly, an ANN comprises input, output, and hidden layers.
These layers are composed of basic computational units called “neurons” or “nodes”.
Each neuron receives input signals from the neurons of the preceding layer and passes
the output signal to the neurons of the following layers. The output signal of a
neuron is non-linearly transformed by an activation function. Chapter 3 provides
mathematical expression of ANNs and other deep learning models like a convolutional
neural network, an autoencoder, and generative adversarial networks. Knowing the
two sub-fields of AI, the applications of machine learning and deep learning presented
in this thesis are further summarized below.

• Image classification of non-linear multimodal images was investigated using
machine learning. This study was performed to identify early sepsis in mouse
liver sections. In the machine learning approach, statistical features based on
the histogram of the non-linear multimodal image were extracted. Based on the
statistical features, a linear classification model like the PCA-LDA model was
trained. The PCA model was used to reduce the dimension size of the statis-
tical features, and the LDA model was used to classify these features into two
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groups: sepsis and control. Furthermore, to understand the contribution of the
individual modalities (CARS, TPEF, and SHG) of the non-linear multimodal
image, the statistical features were extracted from each modality. Based on
the statistical features extracted from the individual modalities, the PCA-LDA
model was used for the classification task. The results of this study showed
that features extracted from CARS and TPEF achieved better classification
performance as compared to features extracted from SHG modality (see section
4.1).

• Semantic Image segmentation using machine learning and deep learning
approaches was investigated in this thesis to identify regions of non-linear mul-
timodal images that are important for the characterization of inflammatory
bowel disease. The basic idea of semantic image segmentation is to classify
pixels instead of images. The classification of pixels was done using machine
learning and deep learning approaches. In the machine learning approach, sta-
tistical features for pixels were extracted, and a linear classification (PCA-LDA)
model based on these features was constructed. The PCA model was used to
reduce the dimension size and the LDA model was used to classify the pixels
into four regions: background, mucosa without crypt, crypt, and non-mucosa.
In the machine learning approach, the background region was extracted using
an unsupervised learning algorithm like the K-means clustering algorithm. The
deep learning approach, on the other hand, used an autoencoder model (the
SegNet model [111]) for segmentation of non-linear multimodal images into
four regions. Here, a feature extraction step was not performed. This is the ad-
vantage of deep learning models: the features were self-learned from the dataset
itself. Finally, on comparison of the results from the machine learning and deep
learning models, it was seen that the the SegNet model performed better than
the PCA-LDA model (see section 4.2).

• Image translation as used in this thesis transforms a non-linear multimodal
image into a histologically stained H&E image. Such a transformation is benefi-
cial for virtual staining of the non-linear multimodal images without performing
conventional H&E staining in laboratories, thus reducing the effort of pathol-
ogists. Here, image transformation is performed using a deep learning model
like a generative adversarial network (GAN) (see section 3.3.2). The GAN was
used in a supervised and unsupervised approach. The supervised GAN model
(the Pix2Pix model) required a corresponding pair of a non-linear multimodal
image and an H&E stained image. However, the unsupervised deep learning
approach (the cycle CGAN model) did not require paired images. The unsu-
pervised approach reduced the effort of image registration, which is a vital step
in the supervised approach. Moreover, the unsupervised method was advan-
tageous due to its ability to reconstruct original non-linear multimodal images
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(see section 4.3).
• Spectra classification of Raman spectroscopic data using the deep learning

model was explored in this thesis. Here, a one-dimensional deep convolutional
neural network (1D-CNN) was presented. The 1D-CNN model was used for
the classification task to characterize four Mayo scores in ulcerative colitis pa-
tients. Similarly, the 1D-CNN model was used in a regression task for detecting
border-line patients and quantifying the extent of misclassification. In both
classification and regression task, the input was a Raman spectrum which was
passed through two hidden layers. The output was either probabilities for the
classification task or a real-valued number for the regression task. The results
were promising to characterize disease stages of ulcerative colitis (see section
4.4).

• Interpreting AI models or understanding the predictions made by deep learn-
ing models was another contribution in this thesis. For this purpose, the 1D-
CNN model used for the spectra classification task was used. The non-linear
function of the trained 1D-CNN model was interpreted using a first-order Taylor
expansion. The first-order Taylor expansion was used as the variable weighting
of the Raman spectral bands to investigate biologically relevant Raman bands
for Mayo score classification. A Raman band with high variable weighting was
interpreted to highly influence the classification of a Mayo score, while a Raman
band with low variable weighting was less likely to influence that Mayo score
(see section 4.4).

• Transfer learning of deep learning models using histology and immuno-
histochemistry imaging data was investigated in this thesis. The combination
of histology and immunohistochemistry was performed to gain different insights
into breast cancer diagnosis. The transfer learning of deep learning models was
explored due to the small dataset size of histology and immunohistochemistry
images. Here, two transfer learning strategies were developed. In the first strat-
egy, the deep learning models were used to extract features for the two imaging
datasets. In the second strategy, the weights of the deep learning models were
optimized to obtain the best classification results. The results showed that the
first transfer learning strategy (i.e., utilizing deep learning models as a feature
extractor) works efficiently for the breast cancer dataset presented here (see
section 4.5).

It was impractical to present all applications of deep learning models; therefore,
these models, along with other potential applications, are presented in chapter 7.
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6
Zusammenfassung

Dieser Abschnitt stellt eine Zusammenfassung der Doktorarbeit dar. Kapitel 1 führte
kurz in die Licht-Materie-Wechselwirkung und biophotonische Technologien, welche
sich mit der Nutzung von Licht zur Untersuchung biologischer Objekte befassen,
ein. In Kapitel 1 werden auch verschiedene biophotonische Technologien vorgestellt,
darunter die optische Kohärenztomographie, die Infrarotspektroskopie und die Raman-
Spektroskopie. Von allen biophotonischen Technologien werden in dieser Arbeit nur
zwei biophotonische Technologien verwendet, nämlich die Raman-Spektroskopie und
die nichtlineare multimodale Bildgebung. In Kapitel 2 wird beschrieben, dass beide
biophotonischen Technologien multivariate Datensätze liefern und dass die Anal-
yse dieser Datensätze für ein besseres Verständnis des biochemischen Systems von
entscheidender Bedeutung ist. In diesem Kapitel wird auch der Begriff “Chemome-
trie” eingeführt, welche die Analyse von chemischen Daten bezeichnet. Der jüng-
ste Trend in der Chemometrie ist die Verwendung von Künstlichen Intelligenz (KI)
basierenden Verfahren, maschinellem Lernen und tiefem Lernen, wobei alle diese Tech-
niken in Kapitel 3 näher erläutert werden. In Kapitel 3 wird auch darauf eingegangen,
dass KI-Modelle, die auf tiefem Lernen basieren, komplexe Datenanalyseaufgaben
effizient durchführen können. In Kapitel 3 werden auch verschiedene Modelle für
maschinelles Lernen und tiefes Lernen vorgestellt. Die Anwendung dieser Verfahren
wird in Kapitel 4 diskutiert. Diese Anwendungen sind Bild- und Spektrenklassifika-
tion, semantische Segmentierung und Bildübersetzung. Darüber hinaus wird in Kapi-
tel 4 auch eine Möglichkeit zur Interpretation von tiefen Lernmethoden vorgestellt.
In diesem Kapitel wurde auch das Transfer-Lernen von tiefen Lernmodellen bei der
Arbeit mit kleinen Datensätzen vorgestellt. Bevor die einzelnen Arbeiten zusam-
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mengefasst werden, wird im Folgenden jedes in dieser Arbeit vorgestellte Thema,
einschließlich KI, maschinelles Lernen und tiefes Lernen, kurz diskutiert.

Künstliche Intelligenz (KI) ist eine Wissenschaft, die menschliche Intelligenz simuliert,
indem sie Maschinen programmiert und Eigenschaften des menschlichen Lernens und
Problemlösens adaptiert. Es wurde bereits in Kapitel 1 erwähnt, dass KI viele
und wachsende Anwendungen in verschieden Bereichen wie der Verarbeitung natür-
licher Sprache, Finanzen, Landwirtschaft, Bankwesen, autonome Fahrzeuge, Chat-
Bot-Systeme, Spiele und Gesundheitswesen hat. In ähnlicher Weise wurde KI auch
zur Analyse chemischer Systeme angewandt. Das erste chemische KI-Programm war
in der Lage, molekulare Strukturen aus der Molekülformel zu generieren und ihr
Massenspektrum vorherzusagen [112]. Seitdem wurden viele technische Fortschritte
wie die Verwendung von Teilgebieten der KI, maschinelles Lernen und tiefes Lernen
für die Analyse chemiebezogener Daten erreicht.

Maschinelles Lernen ist ein Teilgebiet der KI. Algorithmen des maschinellen Ler-
nens können automatisch aus Erfahrungen lernen und sich so verbessern, ohne ex-
plizit programmiert zu werden. Wie in Kapitel 3 erwähnt, besteht das Ziel eines
maschinellen Lernalgorithmus darin, bei der Ausführung einer Aufgabe besser zu
werden, indem Erfahrungen aus einem (Training-)Datensatz gesammelt werden. Die
Güte des Algorithmus für maschinelles Lernen wird durch Leistungsmessung bew-
ertet. In dieser Arbeit wurden zwei Kategorien des maschinellen Lernens einge-
führt, nämlich: überwachtes und unüberwachtes Lernen. Ferner wurden für das
überwachte Lernen Klassifikationsmodelle wie SVM und LDA sowie ein Regression-
smodelle wie die multivariate Regression vorgestellt. In ähnlicher Weise wurden für
das unüberwachte Lernen das K-Means-Clustering und die Hauptkomponententrans-
formation (PCA) erläutert. Schließlich wurden in Kapitel 3 verschiedene Limitierun-
gen des maschinellen Lernens angesprochen. Eine der Limitierungen von klassischen
maschinellen Lernverfahren ist die Notwendigkeit eine Merkmalsextraktion vor der
Konstruktion eines Klassifikations- oder Regressionsmodells durchzuführen. Da der
Schritt der Merkmalsextraktion subjektiv ist und von einem Experten abhängt, ist
die Leistung des maschinellen Lernens von den extrahierten Merkmalen abhängig.
Zu diesem Zweck werden Algorithmen benötigt, die Merkmale automatisch aus den
Daten extrahieren können. Solche Algorithmen werden in einen Unterbereich des
maschinellen Lernens kategorisiert, der als tiefes Lernen bezeichnet wird.

Algorithmen des tiefen Lernens verwenden zum Beispiel künstliche neuronale Netze
(ANNs), die durch das menschliche neuronale System motiviert sind. Kurz gesagt,
ein ANN umfasst Eingabe-, Ausgabe- und verborgene Schichten. Diese Schichten set-
zen sich aus grundlegenden Recheneinheiten zusammen, die Neuronen oder Knoten
genannt werden. Jedes Neuron empfängt Eingangssignale von den Neuronen der
vorhergehenden Schicht und leitet das Ausgangssignal an die Neuronen der folgenden
Schichten weiter. Das Ausgangssignal eines Neurons wird durch eine Aktivierungs-
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funktion nichtlinear transformiert. Kapitel 3 bietet eine mathematische Einführung in
ANNs und weitere tiefe Lernmodelle wie neuronalen Faltungsnetzwerke, Autoencoder
und Generative Adversarial Networks (GANs). Unter Kenntnis der vorgestellten KI
Teilgebiete werden die in dieser Arbeit vorgestellten Anwendungen des maschinellen
Lernens und des tiefen Lernens im Folgenden zusammengefasst.

• Die Bildklassifikation von nichtlinearen multimodalen Bildern wurde mit Hilfe
des maschinellen Lernens untersucht. Diese Studie wurde durchgeführt, um
eine frühe Sepsis in Leberabschnitten von Mäusen zu identifizieren. Im Rahmen
des maschinellen Lernens wurden statistische Merkmale basierend auf dem His-
togramm der nichtlinearen multimodalen Bilder extrahiert. Basierend auf den
statistischen Merkmalen wurde ein lineares Klassifikationsmodell (PCA-LDA-
Modell) trainiert. Das PCA-Modell wurde verwendet, um die Dimensionsgröße
der statistischen Merkmale zu reduzieren, und das LDA-Modell wurde verwen-
det, um diese Merkmale in zwei Gruppen zu klassifizieren: Sepsis und Kontrolle.
Um den Beitrag der einzelnen Modalitäten (CARS, TPEF und SHG) des nicht-
linearen multimodalen Bildes zu verstehen, wurden außerdem die statistischen
Merkmale aus jeder Modalität separat analysiert. Basierend auf den statistis-
chen Merkmalen, die aus den einzelnen Modalitäten extrahiert wurden, konnte
wieder ein PCA-LDA-Modell für die Klassifikationsaufgabe konstruiert werden.
Die Ergebnisse dieser Studie zeigten, dass die aus CARS und TPEF extrahierten
Merkmale im Vergleich zu den aus der SHG-Modalität extrahierten Merkmalen
eine bessere Klassifizierungsleistung erzielten (siehe Abschnitt 4.1).

• In einer weiteren Arbeit wurde eine semantische Bildsegmentierung mit Hilfe
von maschinellen Lernverfahren und tiefen Lernansätzen untersucht, um Re-
gionen in nicht-linearen multimodalen Bildern zu identifizieren, welche für die
Charakterisierung von entzündlichen Darmerkrankungen wichtig sind. Die Grun-
didee der semantischen Bildsegmentierung besteht darin, Pixel anstelle von
Bildern zu klassifizieren. Die Klassifizierung von Pixeln wurde mit Hilfe von
maschinellen Lernverfahren und tiefen Lernansätzen durchgeführt. Beim maschin-
ellen Lernen wurden statistische Merkmale für die Pixel extrahiert, und ein
auf diesen Merkmalen basierendes lineares Klassifikationsmodell (PCA-LDA)
wurde konstruiert. Das PCA-Modell wurde verwendet, um die Größe der Di-
mension zu reduzieren, und das LDA-Modell wurde verwendet, um die Pixel
in vier Regionen zu klassifizieren: Hintergrund, Schleimhaut ohne Krypten,
Krypten und Nicht-Schleimhaut-Gewebe. Beim maschinellen Lernen wurde
die Hintergrundregion mit einem unüberwachten Lernalgorithmus (K-Means-
Clustering) extrahiert. Beim Ansatz des tiefen Lernens wurde dagegen ein
Autoencoder-Modell (SegNet-Modell [111]) zur Segmentierung von nicht-linearen
multimodalen Bildern in die beschrieben vier Regionen verwendet. Ein Merk-
malsextraktionsschritt wurde hier nicht durchgeführt, sondern das tiefe Ler-

51



Chapter 6. Zusammenfassung

nen konstruierte die Merkmale basierend auf dem Datensatz selbst. Schließlich
wurde beim Vergleich der Ergebnisse aus den Modellen des maschinellen Ler-
nens und des tiefen Lernens festgestellt, dass das SegNet-Modell besser ab-
schneidet als das PCA-LDA-Modell (siehe Abschnitt 4.2).

• Die Bildübersetzung, wie sie in dieser Arbeit verwendet wird, wandelt ein
nichtlineares multimodales Bild in ein histologisch gefärbtes H&E-Bild um.
Eine solche Transformation ist vorteilhaft, da für die virtuelle Färbung der
nichtlinearen multimodalen Bilder keine konventionelle H&E-Färbung im La-
bor durchgeführt werden muss, wodurch der Aufwand für den Pathologen re-
duziert wird. Hier wird die Bildtransformation mit Hilfe eines tiefen Lern-
modells (GANs) durchgeführt (siehe Abschnitt 3.3.2). Das GAN wurde in
einem beaufsichtigten und einem unbeaufsichtigten Ansatz verwendet. Das
überwachte GAN-Modell (das Pix2Pix-Modell) erforderte ein entsprechendes
Paar aus einem nicht-linearen multimodalen Bild und einem H&E-gefärbten
Bild. Der Ansatz des unüberwachten Lernens (cycle-GAN-Modell) erforderte je-
doch keine gepaarten Bilder. Der unüberwachte Ansatz reduzierte den Aufwand
für die Bildregistrierung, die ein entscheidender Schritt beim überwachten Ansatz
ist. Darüber hinaus war die unüberwachte Methode aufgrund ihrer Fähigkeit
zur Rekonstruktion der ursprünglichen nicht-linearen multimodalen Bilder vorteil-
haft (siehe Abschnitt 4.3).

• Die Spektrenklassifizierung von Raman-spektroskopischen Daten mit Hilfe eines
tiefen Lernmodels wurde in dieser Arbeit untersucht. Hier wurde ein eindimen-
sionales tiefes Faltungsnetzwerk (1D-CNN) vorgestellt. Das 1D-CNN-Modell
wurde für eine Klassifikationsaufgabe verwendet, bei der vier Mayo-Scores von
Patienten mit Colitis Ulcerosa separiert werden sollten. In ähnlicher Weise
wurde das 1D-CNN-Modell für eine Regressionsaufgabe zur Erkennung von Pa-
tienten zwischen zwei Scores und zur Quantifizierung des Ausmaßes der Fehlk-
lassifikation verwendet. Sowohl bei der Klassifikations- als auch bei der Regres-
sionsaufgabe war die Eingabe ein Raman-Spektrum, das durch zwei verborgene
Schichten geführt wurde. Das Ergebnis waren entweder Wahrscheinlichkeiten
für die Klassifikationsaufgabe oder eine reell-wertige Zahl für die Regression-
saufgabe. Die Ergebnisse waren vielversprechend und die Krankheitsstadien
der Colitis Ulcerosa konnten gut charakterisiert werden (siehe Abschnitt 4.4).

• Die Interpretation von KI-Modellen und das Verständnis der KI-Vorhersage war
ein weiterer Beitrag in dieser Arbeit. Zu diesem Zweck wurde das für die Spek-
trenklassifikationsaufgabe verwendete 1D-CNN-Modell verwendet. Die nicht-
lineare Funktion des trainierten 1D-CNN-Modells wurde mit Hilfe einer Taylor-
expansion erster Ordnung interpretiert. Die Taylorentwicklung erster Ordnung
wurde als Gewichtung der Raman-Spektralbänder verwendet, um biologisch rel-
evante Raman-Banden für die Mayo-Score-Klassifizierung zu untersuchen. Eine
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Raman-Bande mit hoher Gewichtung wurde so interpretiert, dass sie die Klas-
sifikation eines Mayo-Scores stark beeinflusst, während eine Raman-Bande mit
niedriger Gewichtung die Vorhersage des entsprechenden Mayo-Scores weniger
wahrscheinlich beeinflusst (siehe Abschnitt 4.4).

• In dieser Arbeit wurde das Transferlernen tiefer Lernmodelle unter Verwendung
histologischer und immunhistochemischer Bilddaten untersucht. Die Kombi-
nation von Histologie und Immunhistochemie wurde durchgeführt, um eine
besser Brustkrebsdiagnose zu erreichen. Das Transferlernen von Modellen des
tiefen Lernens wurde aufgrund der geringen Datensatzgröße von Histologie-
und Immunhistochemie-Bildern untersucht. Dabei wurden zwei Transferlern-
strategien untersucht. Bei der ersten Strategie wurden die tiefen Lernmodelle
verwendet, um Merkmale für die beiden Bildgebungsdatensätze zu extrahieren.
In der zweiten Strategie wurden die Gewichte der tiefen Lernmodelle optimiert,
um die besten Klassifikationsergebnisse zu erhalten. Die Ergebnisse zeigten,
dass die erste Transferlernstrategie (d.h. die Verwendung von tiefen Lernmod-
ellen als Merkmalsextraktor) für den hier vorgestellten Brustkrebs-Datensatz
effizient funktioniert (siehe Abschnitt 4.5).

Da es unmöglich ist alle Anwendungen des tiefen Lernens zu präsentieren, wer-
den diese Modelle zusammen mit anderen möglichen Anwendungen in Kapitel 7
vorgestellt.
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7
Future research directions

Up to this point, this thesis has presented numerous applications of AI models, par-
ticularly deep learning models like a convolutional neural network (1D and 2D),
autoencoders, and generative adversarial networks for analyzing biophotonic data.
It is ambitious to explore all variations of deep learning models for the data analy-
sis purpose. Thus, this chapter presents other applications of deep learning models
that were not explored in this thesis. This section will answer the question, namely:
“What’s next in biophotonic data analysis?”. The potential applications will be ex-
plained for Raman spectroscopic and NLM imaging data; however, these applications
can be valid for analogous biophotonic data.

The first issue is potential applications of deep learning models for Raman spectro-
scopic data, such as deep convolutional neural networks or autoencoders that have
been used thus far in this thesis for image or spectra classification and image segmen-
tation (see chapter 4). However, the deep convolutional neural networks can also be
used to pre-process Raman spectroscopic data, including despiking, baseline correc-
tion, and calibration. Similarly, one of the advanced deep neural networks like the
“recurrent neural network” (RNN) can also be investigated for the pre-processing of
Raman spectra. This can be possible due to the inherent nature of RNNs (i.e., effi-
ciently analyzing a sequential dataset) [24]. Using AEs, CNNs, or RNNs for spectra
pre-processing requires further investigation. In addition to spectra pre-processing,
DL models like AEs that were traditionally known for feature extraction can also
be used for extracting important spectral features from a Raman spectral dataset
instead of using a conventional PCA model. The effects of feature extraction by
AEs and PCA can be comparatively studied in the future. Furthermore, adversarial
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networks used for image translation in chapter 4 can also be beneficial for a spectral
dataset. For instance, its application for generating more samples of Raman spectra
(i.e., “data augmentation”) is worth investigating. Data augmentation has not been
extensively used for a spectroscopic dataset until now, as its capability to fully rep-
resent the original dataset is debatable. However, a systematic investigation in the
direction of data augmentation is still required. Lastly, transfer learning for analyzing
small spectroscopic datasets based on models trained on a large dataset also requires
investigation. Transfer learning for a spectroscopic dataset can be beneficial when
the two datasets have (almost) similar spectral signatures; thus, the effect of transfer
learning using the spectroscopic datasets should be investigated. The reference [24]
provides more applications of DL models for analyzing spectroscopic data.

In the previous paragraph, applications for Raman spectroscopic data were men-
tioned. This paragraph addresses the use of various DL models for NLM images. It
was already mentioned in chapter 4: the use of DL models like CNNs, AEs, and GANs
for tasks like image classification, image segmentation, and image translation. How-
ever, the DL models were never used for pre-processing the NLM images. Therefore,
the pre-processing of NLM images like removing unwanted noise, correcting stitch-
ing artefacts in a CARS signal, or increasing spatial resolution using the DL models
can be explored in the future [24]. For performing pre-processing tasks, generative
adversarial networks can play an important role. Furthermore, GANs can also be a
part of the data augmentation of NLM images similar to a spectral dataset. Addi-
tionally, RNNs mentioned for spectral data analysis can also be used for the image
classification and segmentation of NLM images. The use of RNNs in classification or
segmentation tasks can be beneficial due to the property of RNNs to work efficiently
with sequential data. Other DL models like conditional random fields (CRFs) [113]
have applications in structure prediction. Therefore, CRFs for the post processing of
NLM images also require systematic investigation [24].

After mentioning the potential applications of DL models for Raman spectroscopic
and NLM imaging data, this section will be concluded by addressing the future di-
rection of AI for biophotonic data analysis from a clinical perspective. One of the
future applications is utilizing these models in clinics and hospitals, which is also one
of the primary motivations of this thesis. This requires incorporating the DL mod-
els directly into medical (e.g., endoscopic) units or devices for obtaining real-time
decision systems. Lastly, developing a plugin for openly available image processing
tools which can preprocess, analyze, translate, and augment biophotonic data using
AI models is also one of the future research directions.
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ABSTRACT: Ulcerative colitis (UC) is one of the main types of
chronic inflammatory diseases that affect the bowel, but its
pathogenesis is yet to be completely defined. Assessing the disease
activity of UC is vital for developing a personalized treatment.
Conventionally, the assessment of UC is performed by
colonoscopy and histopathology. However, conventional methods
fail to retain biomolecular information associated to the severity of
UC and are solely based on morphological characteristics of the
inflamed colon. Furthermore, assessing endoscopic disease severity
is limited by the requirement for experienced human reviewers.
Therefore, this work presents a nondestructive biospectroscopic
technique, for example, Raman spectroscopy, for assessing
endoscopic disease severity according to the four-level Mayo
subscore. This contribution utilizes multidimensional Raman spectroscopic data to generate a predictive model for identifying
colonic inflammation. The predictive modeling of the Raman spectroscopic data is performed using a one-dimensional deep
convolutional neural network (1D-CNN). The classification results of 1D-CNN achieved a mean sensitivity of 78% and a mean
specificity of 93% for the four Mayo endoscopic scores. Furthermore, the results of the 1D-CNN are interpreted by a first-order
Taylor expansion, which extracts the Raman bands important for classification. Additionally, a regression model of the 1D-CNN
model is constructed to study the extent of misclassification and border-line patients. The overall results of Raman spectroscopy with
1D-CNN as a classification and regression model show a good performance, and such a method can serve as a complementary
method for UC analysis.

Ulcerative colitis (UC) is one of the main types of chronic
inflammatory diseases of the gastrointestinal tract.1 Its

occurrence is most common in adults aged 30−40 years old
with rising incidence worldwide.2 Presently, there is no cure for
UC; moreover, it causes patient disability with high relapse
rates.3 The aim of UC management is to induce and maintain
clinical and endoscopic remission, where careful medical
attention is crucial to monitor and control the disease.2 The
characterization of inflammation is crucial to determine the
severity of the disease and design a personalized treatment for
UC patients. Commonly, the evaluation of UC severity during
endoscopy can be made by different scoring systems. The most
commonly used is the activity index which is based on the
Mayo endoscopic score.4 Here, colon tissue can be classified
during endoscopy into four categories: 0-normal, 1-mild, 2-
moderate, and 3-severe.5 Nevertheless, a significant disagree-
ment among endoscopists is seen for scoring the disease
severity in UC patients which eventually affects the patient
management.6,7 The disagreement among endoscopists is
influenced by various factors such as inter- and intrapatient

variability, the degree of expertise in inflammatory bowel
disease (IBD) endoscopy, and other clinical factors. Therefore,
a proper consensus to mitigate the disagreements among
observers is crucial and efforts in this direction are currently
performed. Because of the above-mentioned reasons, an
automatic and interpretable algorithm for classification of the
disease severity in UC patients based on biomolecular
information is desired.
Over the past years, Raman spectroscopy has proven to be a

promising technique for nondestructive, label-free character-
ization of IBD.8−13 The first statistical model for classification
and prediction of patient tissue samples based on Raman
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spectroscopy was published by Bielecki et al. in 2012.8 This
publication contained patients with UC (n = 13), Crohn’s
Disease (CD) (n = 14) and healthy controls (n = 11). These
three groups showed significantly different molecular specific
Raman signatures that allowed classification of both diseases
against healthy controls with an accuracy of more than 98%.
Moreover, the development of Raman-based fiber optic probes
and its application for the diagnosis of IBD was published by Bi
et al. in 2011.9 Here, a fiber probe system was used for fast
investigation of UC and CD in tissue samples with detection of
significant differences in phenylalanine, lipids, and nucleic
acids.9 Furthermore, fiber optic probe-based Raman spectros-
copy coupled to a colonoscope, as a minimally invasive
diagnostics tool, was used for the first time in vivo for
characterization of IBD in the colon by Pence et al. in 2017.10

However, none of the abovementioned work has characterized
the inflammation stages in UC using Raman spectroscopy.
In this work, characterization of inflammation in UC

patients based on four Mayo endoscopic subscores was
achieved. For this purpose, Raman spectroscopic data and
deep convolutional neural networks (DCNNs)14 were utilized.
A predictive modeling was performed using a two-layered one-
dimensional deep convolutional neural network (1D-CNN)
such that the input to the 1D-CNN was a Raman spectrum
and the output was a probability of the spectrum belonging to
one of the four Mayo endoscopic subscores. This classification
model was evaluated by performance metrics, including
sensitivity, specificity, and risk factor. Furthermore, the same
1D-CNN was used as a regression model to investigate the
extent of misclassification obtained using the 1D-CNN
classification model. The 1D-CNN regression model was also
used to investigate the border-line patients, for instance, a
patient transforming from Mayo endoscopic subscore 2 to
Mayo endoscopic subscore 3. Finally, the predictions obtained
using the 1D-CNN classification model were interpreted using
a first-order Taylor expansion. The interpretation of the 1D-
CNN classification model was carried out to obtain important
Raman bands in the Raman spectrum associated with each
Mayo endoscopic subscore. To the author’s knowledge, this is
the first application of DCNN for Mayo score classification in
UC patients and first-order Taylor expansion for interpretation
of the Raman spectroscopic data.
In summary, the aim of our study was the improvement of

UC diagnostics by applying Raman spectroscopy and DCNN
for nondestructive and label-free characterization and classi-
fication of colon biopsy samples. We are able to demonstrate
that Raman spectroscopy along with data analysis can serve as
a promising method for label-free and nondestructive
characterization of colon inflammation in UC.

■ MATERIALS AND METHODS
Tissue Collection and Selection. This research project

was approved by the local medical ethics committee, and
written consent was obtained from all patients. Our ethical
approval number is 2158-11/07. In the Department of Internal
Medicine IV, Division of Interdisciplinary Endoscopy at Jena
University Hospital, colon biopsies were obtained from 140
patients diagnosed with UC during colonoscopy. The biopsy
samples were taken, immediately shock frozen in liquid
nitrogen and stored at −80 °C. For the diagnosis, the biopsies
were investigated during endoscopy and evaluated by
experienced doctors from Department of Endoscopy from
Jena University Hospital. Each tissue biopsy taken during the

endoscopy procedure was classified based on Mayo score
classification: 0-normal or inactive disease, 1-mild disease with
erythema, decreased vascular patterns, and mild friability, 2-
moderate disease with marked erythema, the absence of
vascular patterns, friability, and erosions, and 3-severe disease
with spontaneous bleeding and ulceration.5 Afterward, the
classification was confirmed by the head of the Endoscopy
department. Based on time and resource limitations, around 10
biopsies for each of the four Mayo endoscopic scores were
selected for Raman spectroscopic investigations. Table 1 shows
the patient characteristics of all samples undergoing inves-
tigations together with classification scores.

On the day of planned Raman measurements, a cryostat
(Cryostat Leica 3050 S, Leica Biosystems, Germany) was used
for tissue sectioning. One section was prepared with 20 μm
thickness and placed onto a calcium fluoride slide (CaF2;
Vacuum-UV quality, Crystal GmbH, Berlin) for Raman
measurements. No pretreatment of the tissue sections with
any fixation solutions was performed in order to keep our
measurement as close to the in vivo conditions as possible.
Subsequently, a parallel tissue section for finding regions of
interest (ROIs) and pathological classification was cut (10 μm
thickness) and placed on a glass slide. After cutting the parallel
section, it was stained by Ab-Pas staining and investigated
under a light microscope in order to find ROIs of the intestinal
epithelium. According to the predefined regions, Raman
spectroscopic imaging was performed on the 20 μm-thick
section on a WITec Raman microscope (WITec, Ulm,
Germany, Model CRM 2000). Although the tissue sections
on CaF2 slides remained intact, they were also stained with
Ab-Pas and afterward ROIs were detected under the light
microscope and used for correlation and further pathological
diagnostics.

Tissue Sample Preparations. A confocal Raman micro-
scope (WITec, Ulm, Germany, Model CRM 2000) with 300
lines/mm grating (blaze wavelength 750 nm) and a 785 nm
diode laser as excitation was used for the collection of various
Raman maps from each tissue sample. The laser light was
focused with a 50× NA 0.95 objective (EC Epiplan-
Apochromat, Zeiss, Germany) coupled to the microscope
using a single-mode optical fiber. The scattered Raman signal
was detected using a back-illuminated deep-depletion charged-
couple device (CCD) camera operating at −65 °C. Before
each measurement, the Raman system was calibrated to 520.7
cm−1 spectral line of silicon. Moreover, a reference spectrum of

Table 1. Patient Information Including Mayo Endoscopic
Subscore, Gender, and Age of the Samples Chosen for This
Study

Mayo score 0 1 2 3 total

Gender
female 7 4 8 4 23
male 3 7 4 5 19

Age
<20 1 2 3
20−29 2 3 3 2 10
30−39 2 3 5
40−49 2 5 2 6 15
50−59 2 1 1 4
60−69 1 1 2
>70 3 3
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paracetamol (4-acetamidophenol, A3035, Sigma-Aldrich,
Germany) was taken every day for wavenumber calibration
during data analysis, in order to avoid artifacts from different
measurement days. Raman spectral images of the preselected
ROIs in the intestinal epithelium were acquired with a
measurement area of 50 × 50 μm2. This measurement area
was selected based on the average size of the crypts in the
epithelial layer in the human colon samples and kept constant
during all measurements. The step size of 1 μm as a lateral
resolution for the Raman maps and the spectral region of 200−
3200 cm−1 were set in the mapping mode of WITec Control.
Prebleaching of the autofluorescence of 2 s was performed at
each measured point to avoid the high autofluorescence of the
tissue samples. The integration time for each Raman spectrum
was kept 5 s. In summary, 227 Raman maps with 567,500
spectra were acquired and used for further data preprocessing
and analysis.
Data Acquisition and Preprocessing. Prior to the

construction of a classification model, the Raman spectral
data were preprocessed using a standard procedure explained
elsewhere.15 The preprocessing of Raman spectra was
performed using R on a commercially available PC system
Intel CoreTM i5-7500 CPU, 3.40 GHz, 16 GB RAM.
Briefly, the spectra were despiked by removing unwanted

spikes arising because of high-energy particles hitting the CCD.
Furthermore, wavenumber calibration was performed using a
standard spectrum of 4-acetamidophenol16 and the spectral
baseline was corrected using an asymmetric least squares
method.17 Thereafter, the spectral range was narrowed to
500−3020 cm−1, and the silent region from 1800 to 2800 cm−1

was removed. Finally, the Raman spectra were normalized by
vector normalization and the spectral dimension was reduced
by principal component analysis18 using 50 principal
components (PCs). Based on the reduced spectral dimension,
a k-means clustering algorithm18 was applied to cluster the
spectra using a distance-based similarity metric. Every cluster
was color-coded to visualize the Raman map as a false-color
plot and the mean spectrum for every cluster was calculated
(Figure 1). To remove the cluster representing the spatial
background or unwanted noise, the Euclidean distance, d, was
calculated between the mean spectrum of each cluster and the
mean spectrum of the whole Raman map. If the Euclidean
distance, d, of the cluster mean spectra to the overall mean
spectra was less than a threshold value (in this case, 0.37), the
cluster mean spectra were used for further analysis. The

threshold value was optimized by a manual quality check of the
cluster mean spectra. Mathematically, the Euclidean distance
used for spectra selection can be given as

d s s s s( , ) ( )
i

i i
1

wn
2∑̅ = ̅ −

=

where s ̅ is the mean spectrum of the whole Raman map, s is
the mean spectrum of a cluster, and i is an index indicating the
wn wavenumber positions in the spectra. Subsequently, a mean
spectrum was calculated from the mean spectra of the selected
clusters such that each Raman map was represented by solely
one mean Raman spectrum. In this way, 227 mean spectra
were obtained, as the dataset comprised 227 Raman maps from
42 patients (Mayo score 0: 10 patients, Mayo score 1: 11
patients, Mayo score 2: 12 patients, and Mayo score 3: 9
patients) as mentioned earlier (Table 2). The dimension of
Raman maps was 50 × 50 μm2.

Classification and Regression Using 1D-CNN. The
preprocessed spectra were classified into four Mayo endo-
scopic scores using a 1D-CNN (Figure 2). The 1D-CNN
classification model comprised two convolution layers with a
rectified linear unit activation layer19 and batch normalization
layer.20 The input dimension of the two convolution layers is
1520 (corresponding to 1520 wavenumbers) with 32 and 64
kernels of size 7, respectively. The convolution layers were
followed by a flattened and a dropout layer with a 20% dropout
rate.21 The number of kernels, kernel size, and the dropout rate
for the 1D-CNN classification model were optimized by
monitoring validation sensitivity during training. The last layer
of the 1D-CNN was a dense layer of four neurons
(corresponding to four Mayo endoscopic scores) with a
softmax activation layer22 (Figure 2). The 1D-CNN

Figure 1. Experimental workflow including (A) collection of biopsies during colonoscopy, (B) tissue sectioning using a cryostat for spectroscopic
measurements and Ab-Pas staining, (C) Raman spectroscopic mapping experiments showing four mean spectra associated to four Mayo
endoscopic scores, (D) data analysis including spectral preprocessing, clustering, and classification, and (E) pathological diagnostics with the
following correlation of Ab-Pas-stained tissue, Raman maps, and cluster analysis.

Table 2. Overview of the Dataset for All Four Mayo
Endoscopic Subscores Is Givena

Mayo
score

#
patients

# Raman
maps # raw spectra

# mean map
spectra

0 10 76 190 × 103 76
1 11 56 140 × 103 56
2 12 44 110 × 103 44
3 9 51 127.5 × 103 51

a# denotes number.
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classification model was trained using a leave-one-patient-out
cross-validation strategy such that for every iteration, a patient
was used as an independent test set and the remaining patients
were used as the train set for the 1D-CNN classification model.
For the model training, the hyperparameters including
optimizer (stochastic gradient descent23), learning rate
(10−5), batch size (5), and the number of epochs (300)
were kept constant in all iterations. A categorical cross-entropy
loss function was used to optimize the trainable parameters of
the 1D-CNN classification model. The prediction of the 1D-
CNN classification model on the independent test set was
quantitatively evaluated using a confusion matrix, mean
sensitivity, and mean specificity. The predictions of each of
the 227 Raman maps were utilized for a voting scheme to
obtain one Mayo subscore prediction per patient. The reported
values in the confusion table (Table 3) are generated by
majority voting of the Raman maps evaluated for 42 patients.
Additionally, the 1D-CNN classification model was evaluated
using a new metric called the risk factor.
The risk factor was used to assess the severity of the

misclassification. The risk factor is higher if a patient with
Mayo score 3 is predicted as Mayo score 0, whereas the risk
factor is lower if a patient with Mayo score 3 is predicted as
Mayo score 2. The risk factor is a weighted mean absolute
error which largely penalizes the model for severe mis-
classifications. Mathematically, it can be given as

w i j

w
wMAE i

T
j i
P

ij

i
T

j i
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ij

0

0
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∑ ∑ ·| − |

∑ ∑
= ≠
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where T,P ϵ[0,3] is the total number of Mayo scores and wi,j is
the number of patients with i and j as the true and predicted
Mayo score. The average of the mean sensitivities, mean
specificities, and risk factor computed over all the 42 patients is
reported in Table 3.
The misclassified patients obtained using the 1D-CNN

classification model were further analyzed by constructing a
1D-CNN regression model. The regression analysis was used
to study the extent of misclassification generated using the 1D-
CNN classification model and to characterize the border-line
patients. For this purpose, the last layer of the 1D-CNN
classification model was modified using one output neuron
with a linear activation function24 instead of the softmax
activation function. The training of the 1D-CNN regression
model was achieved using a mean-squared error loss function.
Like the 1D-CNN classification model, the 1D-CNN
regression model was validated using a leave-one-patient-out
cross-validation strategy. The hyperparameters for the 1D-
CNN regression model were Adam optimizer25 with learning
rate 10−5, batch size of 5 spectra, and 300 epochs.
The training of both the 1D-CNN classification and

regression model was performed using Python with packages
including sklearn,17 Numpy,26 Rpy2, Tensorflow,27 and
Keras28 on a commercially available PC system with NVIDIA

Figure 2. Combined 1D-CNN classification and 1D-CNN regression model is shown in this figure. The major difference between these two
models is the last layer. For classification purpose, the 1D-CNN comprises four output neurons with softmax activation function and was trained
using the categorical cross-entropy loss function. On the other hand, for regression purpose, the 1D-CNN has one output neuron with linear
activation function and was trained using mean absolute error loss function. These two models also differed in their respective hyperparameter
setting explained in the text.

Table 3. Evaluation of the 1D-CNN Classification Model Based on the Three Evaluation Metrics, Namely, Sensitivity,
Specificity, and Risk Factora

model prediction1D CNN evaluation metrics

pathological diagnosis Mayo score 0 Mayo score 1 Mayo score 2 Mayo score 3 sensitivity (%) specificity (%) risk-factor

Mayo score 0 10 0 0 0 100.00 87.50 1.44
Mayo score 1 2 9 0 0 81.82 100.00
Mayo score 2 0 0 9 3 75.00 93.33
Mayo score 3 2 0 2 5 55.56 90.90

aThe mean sensitivity, mean specificity, and risk factor of the 1D-CNN classification model are 78.09%, 92.93%, and 1.44, respectively.
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GeForce GTX 1060, 6 GB. The total model training time was
approximately 2 h for each classification and regression model
within the cross-validation loop. The prediction of one single
spectrum required to extract a prediction for a patient is 3−5 s
on the utilized hardware.
Interpretation of the 1D-CNN Classification Model.

Interpretation of DCNNs is a challenging task. In this work,
saliency maps29 were used to interpret the predictions of a
particular Mayo endoscopic score based on the wavenumber of
the finger-print region (500−1800 cm−1). The wavenumbers
were ranked for a mean spectrum s ̅ of each Mayo score m by
approximating the nonlinear function Ym(s)̅ of the 1D-CNN
classification model using the first-order Taylor expansion.30

This expansion can be written as

Y w bs s( )m m
T

m̅ ≈ ̅ +

where wm is the derivative of Ym w.r.t the mean spectrum s ̅ and
can be used as a variable weighting of the wavenumbers.30 The
weights or magnitude of the derivative wm indicates which
wavenumbers influence the classification of Mayo score m.29

The magnitude of the derivative was plotted as a heat map for
the correctly classified mean spectrum s ̅ for all the four Mayo
scores. The yellow color in the heat map shows higher
derivative values, thus indicating higher impact of a Raman
band on classification of a Mayo score. The Raman bands with
high impact (yellow color) were analyzed by an expert for its
biological implications.
The saliency map visualization was performed using a Keras-

visualization toolkit31 for the correctly predicted Mayo
endoscopic score using the last dense layer of the 1D-CNN
classification model. For the visualization purpose, the last
dense layer with the softmax activation function was replaced
by a linear activation function to achieve an unnormalized
prediction score.

■ RESULTS AND DISCUSSION

Characterization of Raman Spectra in UC with its
Mayo Subscore. Raman imaging of 42 biopsy samples from
the UC patients was performed in the colon mucosa area. In
summary, 227 Raman maps with 567500 spectra were used for
characterization of mucosa inflammation in UC. Already
during colonoscopy, each area of the colon was characterized
based on the Mayo endoscopic score (with stages from 0 to 3)
by an experienced endoscopist. Following the biopsy, the
specimens were shock frozen and later cut for the Raman
spectral investigations. In order to analyze molecular variations
taking place during mucosal inflammation in UC, tissue
sections were measured by Raman imaging and annotated into
one of the four Mayo endoscopic scores. During the analysis of
the Raman datasets, spectral differences for each Mayo score
were found. The mean spectra in the fingerprint spectral region
of 500−1800 cm−1 and in the region 2800−3020 cm−1 are
presented in Figure 3. These Raman spectra showed typical
molecular characteristics of biological tissue, like the phenyl-
alanine band (1002 cm−1), the CH2 deformation band (1440
cm−1), the amide I band (1680−1620 cm−1), and the CH
stretching intensities (3020−2800 cm−1). However, the
spectral differences shown in Figure 3 obtained by the mean
spectra of each Mayo score exhibit only subtle changes, barely
visible by the naked eye. Therefore, a sophisticated visual-
ization method is needed. For better visualization of the
spectral variations, the difference spectra were calculated

between each of the Mayo scores and the plot is included in
the Supporting Information (Figure S1). The difference
spectra show very interesting tendency which is as follows:
for normal (Mayo score 0) against mild inflamed colon (Mayo
score 1), protein bands were identified as the main difference;
for mild (Mayo score 1) and moderate inflamed colon (Mayo
score 2), mostly lipids and some protein were found different;
and for moderate (Mayo score 2) against severe inflammation
(Mayo score 3), bands of DNA as well as proteins and lipids
were identified. The analysis of normal colon spectra (Mayo
score 0) against severe inflamed colon spectra (Mayo score 3)
showed variations in proteins and lipids; nevertheless, bands in
the range of 1136−1140 cm−1 could not be identified based on
the reference literature.32 A list of five Raman bands with a
minimum and maximum difference between the Mayo
endoscopic scores is given in the Supporting Information
(Table S1).

Modeling of the Spectroscopic Inflammation Cas-
cade. In order to characterize the inflammation and detect
significant spectral signatures, a 1D-CNN shown in Figure 2
was applied to the Raman spectra of 227 Raman maps. The
results in Table 3 show the classification of the inflammation
cascade based on Mayo endoscopic scores. The modeling of
the stages of the Mayo endoscopic score is difficult because of
subtle spectroscopic changes between the Mayo scores.
Furthermore, the variance between and within the patients
of a specific Mayo score makes the classification even more
difficult. However, the 1D-CNN used as a feature extractor and
as a classifier showed an acceptable performance. The 1D-
CNN classification model achieved a mean sensitivity of ∼78%
and ∼93%, respectively. The risk factor of the model is ∼1.4
which is an acceptable value for a good model (as the
maximum risk factor in this case is 4). The confusion matrix
and individual mean sensitivities for each Mayo score can be
seen in Table 3. The individual mean sensitivities for Mayo
score 0 (100.00%) and Mayo score 1 (81.82%) are much
better than the mean sensitivities for Mayo score 2 (75.00%)
and 3 (55.56%). From the mean sensitivity, it can be
interpreted that lower Mayo scores (0 and 1) can be correctly
predicted; however, higher Mayo scores (2 and 3) are
misclassified among each other possibly because of subtle
spectral variations and biological variations within and between

Figure 3. Mean spectra and its standard deviation of each Mayo
endoscopic score with an offset. The mean spectra for the four Mayo
endoscopic scores 0, 1, 2, and 3 are shown in black, green, blue, and
red, respectively. The mean spectra of the four Mayo scores show
subtle variations.
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the patients. It is also seen that 4 patients with inflammation
(i.e., Mayo score 1 and 3) were predicted as the lowest Mayo
score 0. This was a severe misclassification and was penalized
by the metric risk factor. Furthermore, there were total 7
patients that were misclassified as its adjacent lower or higher
Mayo score. This misclassification between the adjacent Mayo
scores can be attributed to the subtle changes between the
adjacent Mayo scores, yet, this can be clinically accepted.
Furthermore, the misclassification between adjacent Mayo
scores was analyzed using a 1D-CNN regression model (Figure
2). The misclassification of higher Mayo score (1 and 3) to a
lower Mayo score (0 or 1) can be a risk and was also
investigated by an expert. With this regard, the pathological
data of the misclassified patients were investigated to confirm
the cause of the misclassification because of other illness,
medication, age, or gender. Unfortunately, no significant
correlation for misclassifications was found based on above-
described parameters. Additionally, the 1D-CNN classification
model was also evaluated for a binary classification task

considering Mayo score 0 as the noninflamed group and Mayo
score 1, 2, and 3 as the inflamed group. The results of the
binary classification task achieved a mean sensitivity of 71.42%.
The results show that the inflamed group can be efficiently
predicted by the model to eventually receive a treatment.
However, a noninflamed patient is also predicted as inflamed
and we suspect similar reasons for misclassification as
mentioned above. Subsequently, the interpretation of the
1D-CNN classification model was obtained by first-order
Taylor expansion which is discussed further.

Model Interpretation Using Saliency Maps. In order to
analyze molecular information important for the Mayo
endoscopic score prediction of the UC inflammation, saliency
maps were calculated. The results of this calculation for each
Mayo endoscopic score are presented in Figure 4. The weight
or importance of each Raman band in the finger-print region
(500−1800 cm−1) is shown by the heat map for each Mayo
score.

Figure 4. Interpretation of important wavenumber regions is achieved by saliency map visualizations of the finger-print region for all the four Mayo
scores (A−D). A high saliency score (yellow) indicates important contribution of wavenumber regions to each Mayo score classification. The upper
and lower panel in each subfigure shows saliency maps and mean spectra for each Mayo score 0, 1, 2, and 3, respectively. The 10 most important
wavenumber positions for all the Mayo score are given in Table 4.

Table 4. Biological Annotation for the 10 Most Significant Raman Bands for the Classification Model Is Presented in the
Tablea

Mayo score wavenumbers (cm−1)

0 1149 1201 1206 1290 806 1209 1381 1699 805 984
biological annotation P P DNA P P
1 923 685 1362 922 766 982 815 967 1340 781
biological annotation DNA DNA P P, DNA DNA DNA
2 1485 1170 561 602 1487 646 1137 1364 1486 990
biological annotation DNA P DNA DNA P P
3 1362 1044 1045 1042 1359 1375 1046 1358 960 1361
biological annotation DNA P C DNA

aAnnotations were combined into classes: proteins (P), cholesterol (C), and DNA based on reference 32.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c02163
Anal. Chem. XXXX, XXX, XXX−XXX

F



Additionally, we detected 10 most significant wavenumber
positions in the finger-print region (500−1800 cm−1) for every
Mayo score (0, 1, 2, and 3) and assigned them to a
biomolecule based on the reference literature.32 The assign-
ment of these biomolecules is summarized in Table 4 and
Figure S3. For the prediction of normal tissue (Mayo score 0),
3 out of 5 identified significant Raman bands correspond to
proteins at amide III and CH2 wagging vibrations (1201−1207
cm−1) as well as proteins at 1699 cm−1 and DNA band at 1290
cm−1. For prediction of mild, moderate, and severe
inflammation in colon (Mayo score 1, 2, and 3, respectively),
the most important Raman bands were DNA bands (10 of 16
bands) rather than bands of proteins (n = 5) and cholesterol (n
= 1). Additionally, cholesterol was important in classification of
severe inflammation. Many of the Raman bands were not
possible to assign to any type of molecular vibration based on
references, therefore requires further investigation. Here, we
admit that the selective classification of normal colon based on
amide III and CH2 wagging vibrations of proteins, typical for
any biological tissue, can be one of the reasons of
misclassification of inflamed colon against the healthy one
(Table 4).
Analysis of Misclassification Using the 1D-CNN

Regression Model. As mentioned earlier, regression analysis
was performed for two main reasons. First, to quantify the
extent of misclassification achieved using the 1D-CNN
classification model and second, to study the border-line
patients. The regression analysis for Mayo score 1 shows two
misclassified patients, out of which patient P5a has Mayo score
lying between 1.5 and 2 and patient P32a lies between 0 and
0.75 (Figure 5, top left). Likewise, the regression analysis of
Mayo score 2 shows 3 misclassified patients (i.e., P48b, P27d,
and P9a) predicted closer to the true Mayo score (i.e., Mayo
score 2). Thus, here, we can interpret that the extent of

misclassification of Mayo score 2 is not very severe (Figure 5,
top right). Finally, the regression analysis of Mayo score 3
shows 3 patients (i.e., P1a, P73a, and P53d) out of 4 predicted
close to Mayo score 3 (Figure 5, bottom left). The 2 patients,
namely, P1a and P73a, were predicted as Mayo score 0 using
the 1D-CNN classification model; however, by 1D-CNN
regression analysis, they were predicted in the clinically
acceptable range. Similarly, patients P32a and P5a were
predicted as Mayo score 0 using the 1D-CNN classification
model; however, these patients were estimated in an acceptable
range using the 1D-CNN regression model. Thus, a 1D-CNN
regression model is needed to complement the 1D-CNN
classification model for assessing the Mayo score in UC
patients. Furthermore, the box plot acquired from the
regression analysis of all the patients and all the Mayo scores
is given in the Supporting Information (Figure S2). The plot of
regression analysis shows a significantly better prediction for
Mayo score 1 and Mayo score 2 than the prediction for Mayo
score 0 and 3. Finally, the misclassified patients were studied
by a medical expert for other factors such as age, sex, other
diseases, and treatments, which can possibly cause the
misclassification; however, no significant correlations of these
factors with the misclassifications were found. We suspect that
interpatient and intrapatient variations and probably selective
classification of normal colon against inflamed based on
common protein bands (Amide III vibration) in the range of
1200−1300 cm−1 can cause this problem. Moreover, existing
disagreements for Mayo scoring of the UC should be stated
here. Nevertheless, we utilized the Mayo score for our study
because it is the most common classification score for IBD
inflammation in clinics. Further classification scores such as
Riley score, Nancy score, and endoscopic images and videos
will be utilized in further systematic investigations.

Figure 5. Box plots of 9 misclassified patients using the 1D-CNN classification model for all the four Mayo scores. The box plots show the extent of
the misclassification from the true Mayo score. Out of the 9 misclassified patients, P27d, P9a, P1a, P53d, and P73a are close to the true Mayo score.
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■ CONCLUSIONS
The major challenge in diagnostics of diverse diseases such as
UC is that a wide spectrum of pathologies is involved in the
development of UC, which have similar clinical, endoscopic,
and histological manifestations.33 Therefore, novel technolo-
gies are needed for independent identification of UC, its
inflammation stages, and moreover, biopsy-free monitoring of
this untreatable disease. In our study, we focused on the
investigation of molecular changes occurring during inflam-
mation of UC by nondestructive and label-free Raman
spectroscopy. The Raman spectra were utilized to predict the
Mayo endoscopic score in patient biopsy sections using a 1D-
CNN. The prediction of the Mayo endoscopic score achieved
a mean sensitivity of 78% and mean specificity of 93%. The low
sensitivity can be attributed to limited dataset, interpatient
variance, and local changes in different inflammation stages.
Moreover, the Raman bands important for the prediction of
the Mayo endoscopic scores were interpreted using a first-
order Taylor expansion of the 1D-CNN. The results show that
important molecular changes occur during inflammation and
molecules such as proteins, lipids, cholesterol, amino acids,
DNA, and saccharides were involved. This work has broader
implications and can be used for similar Raman datasets or
other spectroscopic datasets, which includes the classification
of fresh biopsy samples or the diagnostics of other kinds of
diseases. Although the general study workflow can be followed
for other studies, all parts of the study such as the type of the
sample and Raman spectroscopic alterations because of the
external factor will influence the spectral data. To tackle this
proper calibration, model transfer methods or fine-tuning of
the DCNN needs to be performed.34 Overall, utilizing Raman
spectroscopy along with DCNNs for characterizing inflamma-
tion stages in UC can provide not only a minimal-risk
diagnostic procedure but also a real-time decision-making
system.
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ABSTRACT: Ulcerative colitis (UC) is one of the main types of chronic inflammatory diseases that affect the bowel, but its pathogenesis has yet to be completely defined. Assessing the disease activity of UC is vital for developing a personalized treatment. Conventionally, the assessment of UC is performed by colonoscopy and histopathology. However, conventional methods fail to retain biomolecular information associated to the severity of UC and are solely based on morphological characteristics of the inflamed colon. Further, assessing endoscopic disease severity is limited by the requirement for experienced human reviewers.  Therefore, this work presents a non-destructive bio-spectroscopic technique, e.g. Raman spectroscopy, for assessing endoscopic disease severity according to the four-level Mayo subscore. This contribution utilizes the multi-dimensional Raman spectroscopic data to generate a predictive model for identifying colonic inflammation. The predictive modelling of the Raman spectroscopic data is performed using a one-dimensional deep convolutional neural network (1D-CNN). The classification results of 1D-CNN achieved a mean sensitivity of 78% and a mean specificity of 93% for the four Mayo endoscopic scores. Furthermore, the results of the 1D-CNN are interpreted by a first-order Taylor expansion, which extracts the Raman bands important for classification. Additionally, a regression model of the 1D-CNN model is constructed to study the extent of misclassification and border-line patients. The overall results of Raman spectroscopy with 1D-CNN as classification and regression model show a good performance, and such method can serve as a complementary method for UC analysis. 
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Figure S1 Difference spectrum of Mayo endoscopic score 0-1, 1-2, 2-3 and 0-3.  
Figure S2 Results of regression analysis for all Mayo endoscopic scores.  
Figure S3 Saliency map showing important Raman bands with threshold set at 0.75. 
Table S1 A list of five Raman bands with minimum and maximum difference between the Mayo endoscopic scores 0-1, 1-2, 2-3, 0-3. 
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    (A)……………………                                       (B)          

    (C)                                                                                       (D) Figure S1. (A-D) shows difference spectrum of Mayo endoscopic score 0-1, 1-2, 2-3 and 0-3. The red and blue dotted vertical lines show five Raman band with maximum and minimum difference between the two Mayo scores. The information about the five Raman bands with maximum and minimum difference is given in the table S1 along with its biological annotation. 
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Figure S2. Results of regression analysis for all the Mayo endoscopic scores shows the extent of misclassification between the Mayo scores. The average RMSE for 42 patients is 0.54. Regression analysis shows that the predictions of Mayo score 1 and 2 lies within an acceptable range, however, predictions of Mayo score 0 and 3 lie between 0 to 1.5 and 2 to 2.5, respectively.  
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(A)                                                                                         (B) 

 
                (C)                                                                                        (D) Figure S3. The interpretation of important wavenumber regions shown by saliency map visualizations with a threshold set at 0.75. Each subplot shows at least 10 important Raman bands. The colour in the saliency map signifies the importance of a particular Raman band. A high saliency score (yellow) indicates important contribution of wavenumber regions to each Mayo score classification. The upper and lower panel in each subfigure shows saliency maps and mean spectra for each Mayo score 0, 1, 2 and 3, respectively. The ten most important wavenumber positions for all the Mayo score are given in Table 4. 
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DIFFERENCE 

SPECTRUM 

MODE WAVENUMBERS (CM-1) 

0 AND 1 min 1207 1206 1208 669 668 

 Amide III & CH2 wagging vibrations (proteins) and DNA 

max 1449 1450 1448 1648 1647 

  C-H vibration (proteins and lipids) and protein bands 

1 AND 2 min 1446 1447 1445 1448 1444 

 CH2 bending mode (proteins & lipids) 

max 1133 1132 1134 1131 861 

   Fatty acids (lipids)  

2 AND 3 min 1361 1360 1362 1359 1363 

 Guanine (DNA) Tryptophan (proteins) Guanine (DNA) 

max 1070 1069 1071 1068 1072 

  Triglycerides (lipids) or DNA 

0 AND 3 min 1448 1447 1449 1446 1450 

 CH2 bending mode (proteins & lipids) 

max 1138 1139 1137 1140 1136 

    - 

Table S1 A list of five Raman bands with minimum and maximum difference between the Mayo endoscopic scores 0-1, 1-2, 2-3, 0-3. The difference spectrum between 0 and 1 shows variation in Amide III, CH2 wagging vibrations, DNA, C-H vibration (proteins and lipids) and protein bands. The difference spectrum between 1 and 2 shows variation in CH2 bending mode and fatty acids. The difference spectrum between 2 and 3 shows variation in Guanine, Tryptophan and Triglycerides. The difference spectrum between 0 and 3 shows variation in CH2 bending mode. 
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Abstract

This review covers original arti-

cles using deep learning in the

biophotonic field published in the

last years. In these years deep

learning, which is a subset of

machine learning mostly based

on artificial neural network

geometries, was applied to a num-

ber of biophotonic tasks and has

achieved state-of-the-art perfor-

mances. Therefore, deep learning

in the biophotonic field is rapidly growing and it will be utilized in the next

years to obtain real-time biophotonic decision-making systems and to analyze

biophotonic data in general. In this contribution, we discuss the possibilities of

deep learning in the biophotonic field including image classification, segmen-

tation, registration, pseudostaining and resolution enhancement. Additionally,

we discuss the potential use of deep learning for spectroscopic data including

spectral data preprocessing and spectral classification. We conclude this review

by addressing the potential applications and challenges of using deep learning

for biophotonic data.

KEYWORD S

artificial neural networks, biophotonics, deep learning, spectroscopy

1 | INTRODUCTION

Biophotonics is a rapidly growing multidisciplinary field
that utilizes the interaction of light with biological sys-
tems and investigates these biological systems at the cel-
lular, molecular and tissue level. Since the past decade,
these biophotonic technologies are globally established in
biotechnology companies, healthcare organizations,

medical instrument suppliers and pharmaceutical manu-
facturers. For instance, laser-based therapy is an impor-
tant part of medical sciences today, and is used for light-
guided therapies in various organs. Other light-based
technologies like multiphoton microscopy (MPM), optical
coherence tomography (OCT), Raman spectroscopy,
infrared spectroscopy (IR), photoacoustic imaging (PAI)
and fluorescence life-time imaging microscopy (FLIM)
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are further useful tools in biomedical and biophotonic
research [1, 2]. For example, nonlinear multimodal imag-
ing which includes two-photon excited fluorescence
microscopy (TPEF), second-harmonic generation (SHG)
and coherent anti-stokes Raman scattering (CARS), is
widely used in dermatology, physiology, neurobiology
and embryology. Similarly, technologies like OCT are
mainly used in ophthalmology and cardiology, while
spectroscopic techniques have various clinical and phar-
maceutical applications.

Nowadays, biophotonic technologies are witnessing a
rapid development in the instrumentation of the optical
devices which is fastening the imaging speed, increasing
the penetration depth and enhancing the resolution of
the optical images. These developments make it possible
to measure label-free molecular information of samples
like cells or tissue. As all of the biophotonic technologies
are label-free, the spectral and image data is untargeted.
That means it is difficult to interpret a specific contrast
associated to a chemical structure or a biomolecule in
biophotonic data. Therefore, the interpretation of bio-
photonic data has to be generated using appropriate anal-
ysis techniques like statistics, chemometrics or machine
learning. Additionally, the technical improvement of
these biophotonic technologies has given rise to large
datasets, which require big data analysis methods to be
applied to biophotonic data [3]. Overall, interpreting and
handling biophotonic data are two obvious challenges for
the biophotonic community (Table 1).

In this context, the well-established statistical
pattern-recognition methods are employed which
extract “features” or “patterns” from the biophotonic
data. These techniques are called “feature extraction”
methods. Feature extraction is a process of dimension
reduction used to transform high dimensional data to
low dimensional data. Subsequently, the low dimen-
sional data commonly called “features” can be used to
construct learning algorithms. This procedure is shared
by most of the machine learning algorithms where fea-
ture extraction is followed by prediction of the outcome
or probabilities [4]. Classification or regression models
are common examples of machine learning algorithms
where features from images (like shape, texture, color
features) or features of spectra (like intensity values at
specific wavenumbers in Raman spectroscopy) are
extracted to construct a predictive model. These
machine-learning algorithms in combination with a
high computational power can be utilized to interpret
the biophotonic data. A subset of machine learning algo-
rithms is called “deep learning,” which requires least
manual intervention for feature extraction and can be
employed as a decision-making algorithm with high
accuracy. Since a decade, deep learning algorithms have
achieved promising results in clinical radiology covering
a wide range of applications from cancer diagnosis to
personalized therapies [5]. Similar to clinical radiology,
introduction of deep learning algorithms in bio-
photonics has also revolutionized the data analysis in
this field. The respective research will be further dis-
cussed in this article.

This review article aims to give an overview of deep
learning techniques for spectroscopic data intended for
the multidisciplinary readership of J. Biophotonics. We
aim to stimulate the interest of researchers and data sci-
entists to foster applications of deep learning in bio-
photonics by discussing the ongoing evolution in the
field of biophotonics and deep learning. Additionally, we
emphasize potential applications and challenges encoun-
tered while applying deep learning for biophotonic data.
We structure our article in the following manner:
section 2 discusses the commonly used deep learning
architectures to analyze biophotonic data. Section 3 pre-
sents the applications of deep learning for preprocessing,
classifying and segmenting microscopic imaging data.
Section 4 presents the preprocessing and analysis for
spectroscopic data using deep learning. Further, section 5
addresses the challenges faced by a researcher while ana-
lyzing biophotonic data using deep learning and we
introduce the approaches for overcoming these chal-
lenges. Lastly, we conclude our review in section 6 by
answering the question “Is deep learning a boon for
biophotonics?”

TABLE 1 List of mathematical symbols

Symbol Explanation

x An input as a scalar (integer or real)

x An input vector or 1D data

X An input matrix or 2D data

Θ A set of trainable parameters

W A set of weights

ℬ A set of biases

L Number of layers in a model

l Index of L layers

η Learning rate

IRD A D dimensional set of real numbers

IRN A N dimensional set of real numbers

τ An index for iteration

P A probability distribution over discrete variable

χ An input space representation

F A latent space representation

E Loss function

x,y f xð Þ½ � Expectation of f(x) with respect to P(y|x)
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2 | DEEP LEARNING—AN
OVERVIEW

With rising complexity of spectroscopic datasets and the
need to achieve good decision-making systems, more
advanced machine learning algorithms are required.
Briefly, a machine-learning algorithm is an algorithm
that is able to learn from data. A special kind of machine
learning algorithms is deep learning algorithm. A deep
learning algorithm is based on four major components
which are an optimization algorithm, a cost function, a
dataset and a deep learning model. Shortly, an optimiza-
tion algorithm is an iterative method to compare various
solutions for a problem until an optimal solution is
obtained. A cost function is a mathematical formula used
to evaluate the performance of a deep learning model. A
dataset is one of the major components for training the
deep learning models and can be split into three parts:
training, validation and testing dataset. The training
dataset is used for training the deep learning model, the
validation dataset is used to tune the hyperparameters of
the deep learning model and the independent test dataset
or holdout set is used to evaluate the performance of the
model in an unbiased manner [4, 6–8]. The last necessary
component is a deep learning model which is made of a
series of layers and hyperparameters depending on vari-
ous architectures, which are discussed in the further
course of the section.

Deep learning algorithms have widespread applica-
tions in speech recognition, natural language processing,
healthcare and so on. Particularly in healthcare, deep
learning is often applied to radiology data. Similar to clin-
ical radiology, traditional artificial neural networks [9]
were applied since the 1990s to biophotonic data [10, 11]
the recently developed deep learning models especially
convolutional neural networks have achieved state-of-the
art performance in the biophotonic field. This
section summarizes a few deep learning models that are
commonly used to analyze spectroscopic data. Each sub-
section gives a brief overview of a specific deep learning
architecture combined with an illustration of how to
apply these deep learning architectures for image and
spectral data.

2.1 | Feed-forward neural network

Feed-forward neural network commonly called artificial
neural network (ANN) or multilayer perceptron (MLP)
[9, 12, 13] are the basis of most of the deep learning
models utilized today. MLPs are loosely inspired by the
human neural system. These models are called feed-
forward neural network as the input flows only in the

forward direction without a feedback from the output
into the model. Specifically, a feed-forward neural net-
work passes the input x = {xi}∈IRD, through a series of
neurons with an activation a and a set of trainable
parameters Θ= W,ℬf g to obtain an output y. An activa-
tion function a = σ(wTx+ b) introduces an elementwise
nonlinearity σ(.) to the output of a neuron, which is a lin-
ear combination of the neuron's input and the parame-
ters Θ (see Figure 1). A composition of many such
transformations forms the basis of a feed-forward neural
network where the input is passed through a series of
“hidden layers” to obtain the output. A neuron output yk
of an MLP with M and D neurons in two hidden layers
l and l− 1 respectively, can be represented as

yk x;Θð Þ= σl ΣM
j=1W

l
kjσ

l−1 ΣD
i=1W

l−1
ji xi + bl−1

j

� �
+ blk

� �
,

ð1Þ

where Θ is the set of trainable parameters, Wji is a weight
matrix of size j × i, with i inputs and j activations of (l
− 1)th layer. During the training of a feed-forward neural
network, the model parameters Θ are iteratively updated
using an optimizer until convergence is achieved. A sto-
chastic gradient descent (SGD) optimizer is commonly
used in the literature [15, 16], which performs typically
the minimization of a loss or a cost function E by the

FIGURE 1 A feed-forward neural network or a multilayer

perceptron with an input x ∈ IRD, D = 6 and output y ∈ IRN, N = 4

is shown. The input to the network (depicted in yellow) can be

features (like histogram features, local binary patterns [14])

obtained from an image or features (like intensity values of

different wavenumbers) obtained from a spectrum which passes

through the neurons of the hidden layer depicted in blue. The

connections between the neurons are weighted by W and the data

is further passed through the layers with activation function a to

obtain an output shown in red. The weights are updated using

back-propagation as explained in Section 2.1
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back-propagation method [17, 18]. Back-propagation
minimizes the loss function in the parameter space Θ by
computing a gradient of the loss function E(Θ) [17].
Based on the gradient of the loss function rE(Θ) com-
puted for all the layers, the model parameters
Θ= W,ℬf g can be updated in each iteration τ using the
formula given below:

Θ τ+1ð Þ=Θ τð Þ−ηrE Θð Þ τð Þ : ð2Þ

Here, τ represents an iteration index and η is the
learning rate. In addition to the SGD optimizer, other
optimizers like Adam [19], Adadelta [20] and Adagrad
[21] have also been reported in the literature.

MLPs have widespread applications in image and
spectral classification as illustrated in Figure 2. The figure
shows an MLP that utilizes image features or spectral fea-
tures as the input. These features are further propagated
through the network to emerge at the output neuron as
class outputs (see Figure 2). The class outputs can be
tumor/normal for a diagnostic task, disease stages for a
disease assessment task or the type of pollen grains for a
classification task of pollen grains. Mostly MLPs require
the extraction of features from image or spectral data,
which is one of the limitations of these basic neural net-
works. Therefore, more advanced deep learning architec-
tures like convolutional neural networks are required.

2.2 | Convolutional neural network

A convolutional neural network (CNN) [22] is a variant
of a MLP, which can work on grid data, for instance spec-
tra or images. Unlike MLPs, CNNs consider the spatial

information of an image or temporal/spectral informa-
tion of a signal directly. This is achieved by convolving
the input, like an image X, with trainable kernels or
weights Wk to generate a feature map Xk. Mathemati-
cally, a feature map Xk for the lth layer of a CNN is
given by

Xl
k = σ Wl−1

k *Xl−1
k + bl−1

k

� �
, ð3Þ

where W = W1,W2,…,WKf g are K trainable kernels and
ℬ = {b1, b2,…, bK} are the biases. The illustration of a
CNN architecture in Figure 3 shows a kernel W1 of size
3× 3, which is convolved with an image X in a raster pat-
tern with a stride value of 1 pixel (first layer). This forms
a feature map or a linearly convolved image X1. The line-
arly convolved image is further subjected to an
elementwise nonlinear transformation σ which is typi-
cally a rectified linear unit (ReLU) [23], tanh [24] and sig-
moid [25] function. The activation function σ is
important in CNNs to introduce a nonlinearity to the
model. Generally, a softmax activation function [6] in the
last layer of a model utilized for classification tasks is
used. The softmax activation layer maps the activations
of the final layer to a probability distribution of classes P
(y|X;Θ) given as

P yjX;Θð Þ= softmax X;Θð Þ= e Wl
ið ÞTX+ bli

ΣC
c=1e

Wl
cð ÞTX+ blc

, ð4Þ

where Wl
i and bli are the kernel and bias of the lth layer

leading to a normalized probability distribution of class i.
In contrast to other traditional activation functions, the
output of a softmax activation function is normalized

FIGURE 2 Applications of MLPs are shown, where each input neuron utilizes the features obtained from a Raman spectrum (top) and

nonlinear multimodal image (bottom). The nonlinear multimodal image is composed of CARS signal as red channel, TPEF signal as green

channel and SHG signal as blue channel. The input vector at the first layer is a vector of image features or spectral features. The output

neuron of the MLP is a label or a class probability of the input spectrum or of the input image. CARS, coherent anti-stokes Raman

scattering; MLP, multilayer perceptron; SHG, second-harmonic generation; TPEF, two-photon excited fluorescence microscopy
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between 0 and 1, and the sum of all outputs is equal to
1. A softmax activation function can be used as a last
layer for both CNN and MLP in classification tasks. Simi-
lar to MLPs, back-propagation in CNNs is performed to
update the weights in each kernel, which are computed
using the gradients of the loss function determined in
forward pass.

Unlike MLPs, CNNs utilize three other important
concepts including weight sharing, pooling layers and
receptive field (see Figure 3). A weight sharing reduces
the number of parameters by sharing weights for all neu-
rons in a feature map. Pooling layers aggregate the neigh-
boring pixel values to reduce the spatial dimension of the
input images or the feature maps. A receptive field is a
region in the input space that is affected by a kernel. The
pixels of an image closer to the center of the receptive
field contribute more to the output feature [6].

CNNs are immensely used in biophotonics for image
and spectrum classification (see Figure 4), disease char-
acterization and microorganism identification. These
applications are further explained in section 3 and
section 4. CNNs are also used in other deep learning
architectures like auto-encoders and generative adver-
sarial networks explained in section 2.4 and section 2.5,
respectively.

2.3 | Recurrent neural network

Standard neural networks like MLPs have certain limita-
tions while working with sequence data like spectro-
scopic data or time series. One of the limitations is that

MLPs fail to consider the entire history of a sequenced
input vector for obtaining an output [28] whereas, recur-
rent neural networks (RNNs) [17] incorporate neurons
that span the input over time. Moreover, RNNs have hid-
den layers that add memory to the network over time.

RNNs can have three types of architectures to solve
the sequence data problem: (a) the one-to-many RNN
architecture has one input neuron and a sequenced or
many output neurons, which are used for image cap-
tioning [29], (b) the many-to-one RNN architecture com-
prises a sequenced or many input neurons and one output
neuron, which is used for text classification [30] and lastly
(c) the many-to-many RNN architecture has a sequenced
or many input neurons and a sequenced or many output
neurons, which is mostly used for machine translation
[31]. In addition to the earlier mentioned applications,
RNNs have obtained promising results in natural language
processing, speech recognition and machine translation
tasks [32]. Moreover, a recent study reported the use of
RNNs for the analysis of genetic data [33]. Despite the
enormous development of RNNs, they are underexplored
in the field of biophotonics as compared to MLPs and
CNNs. Nevertheless, RNNs can build intelligent systems
and its use in spectrum preprocessing, wavenumber cali-
bration or intensity calibration, spectrum classification,
decoding biomolecular markers from bio-spectroscopic
data, learning spatial-spectral-temporal features for spec-
tral data and phase retrieval of nonlinear optical
spectroscopic data can be investigated in the future.

A typical many-to-many RNN structure is shown in
Figure 5. The figure shows three unit types, an input vec-
tor, a hidden state vector and an output vector. For

FIGURE 3 A general structure

of a convolution neural network

(CNN) is shown. The input image

X or a feature map of a layer is

convolved by two kernels W1 and

W2. Each kernel of size 3 × 3 is

convolved with a small section of the

input image and is shifted with a

stride of 1 pixel (first layer) in a

raster pattern to obtain a whole

feature map X1 and X2. The figure

also shows a pooling layer of a CNN,

which condenses the spatial

information of the feature maps

making CNNs computationally

efficient
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sequenced input data (x1, x2, x3,…, xT), an RNN can have
many outputs (y1, y2, y3,…, yT + N) or the same number of
outputs like the input data (y1, y2, y3,…, yT) or just one
output unit y. The intermediate layer represents the hid-
den state of the RNN. The hidden state ht is the memory
of the network and is calculated using the hidden state of
the previous step h(t − 1) and the input vector at the cur-
rent step xt. The hidden state at the first time step is ini-
tialized with zeros

ht =0 for t=0: ð5Þ

The hidden state for the intermediate time steps is
calculated by

ht = σ Wxt +Uht−1 + bð Þ for t 6¼ 0: ð6Þ

Here, U is the weight vector of the hidden layer, W is
the weight vector of the input layer and V is the weight
vector of the output layer shared over time (see Figure 5).
Applications of many-to-many RNNs for spectra
preprocessing, where the input vector for the many-to-
many RNN is a raw spectrum and the output vector is a
preprocessed spectrum, still requires investigation.

However, many-to-one and many-to-many RNNs can
also be used for classification purposes. In such cases, a
softmax activation layer is added to the output sequence
of the RNN model in order to achieve posterior probabili-
ties for the classes.

Nevertheless, standard RNNs report some shortcom-
ings. Firstly, RNNs require higher computational power
and larger training data than usual CNNs. A standard
RNN calculates an output at each time step utilizing just
the past and the present element of the input vector. For
spectroscopic data, the past, present and future states
(or wavenumbers) of the spectra influence the output at
a particular time step, and the application of bidirec-
tional RNNs can be investigated. A bidirectional RNN
utilizes hidden states from opposite directions to update
the output sequence at a particular time step. Another
shortcoming of RNNs is the problem of vanishing gradi-
ents, which occurs due to the deep structure of RNNs.
To circumvent this problem, other variations of RNN
including long short-term memory (LSTM) and gated
recurrent unit (GRU) networks are used and have
achieved better performances [34]. A comprehensive
discussion of the variations of RNNs is out of scope of
this review.

FIGURE 4 This figure shows application of CNNs like image classification (upper panel), localization and segmentation (lower panel).

For image classification, a multiphoton image is used for classifying three grades of hepatocellular carcinoma (upper panel). For cell

localization task, a leukocyte mask was generated using a CNN to localize and segment leukocytes in blood smear images (lower panel).

These images are reproduced and modified from references [26, 27]. CNN, convolution neural network
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2.4 | Auto-encoder

Auto-encoders (AE) [35, 36] are ANNs consisting of two
parts: an encoder and a decoder. The encoder transforms
a D dimensional input x ∈IRD = χ to a N dimensional
hidden states h ∈ IRN = F , N < D, where χ is the input
space and F is the latent space representation. The latent
space F is represented by the bottleneck of the model
(see Figure 6). The bottleneck layer compresses the input
space representation χ to capture the most salient fea-
tures of the input data. The representation of the hidden
states h in the bottleneck layer can be written as

h= σ Wx+ bð Þ: ð7Þ

The dimension of the bottleneck layer is smaller as
compared to the dimensions of the input layer to avoid
the encoder from learning an identity function.

A decoder transforms the bottleneck features of the
hidden states h back to a reconstructed input x0 of the
same dimension as x. The reconstructed input x0 can be
given as

x0 = σ W0h+b0ð Þ: ð8Þ

Here, W0 and b0 are the weight matrix and bias of the
decoder respectively. The training of an auto-encoder is
performed through back-propagation of reconstruction
error calculated between the original and the
reconstructed input.

Traditionally, auto-encoders were used for dimen-
sionality reduction [6]. Simple auto-encoders find its
application for denoising, image deblurring and semantic
segmentation (see Figure 7), which will be discussed in
section 3 [39]. Additionally, variations of auto-encoders
like stacking auto-encoder, sparse auto-encoder, den-
oising auto-encoder, convolutional auto-encoder, varia-
tional auto-encoder and contractive auto-encoder are
used to prevent the learning of an identity function by
the encoder, as stated earlier [40]. Moreover, auto-
encoders can be a part of adversarial networks discussed
in section 2.5.

2.5 | Generative adversarial network

A generative adversarial network (GAN) [41] is a spe-
cial type of ANN that consists of two networks: a gener-
ator and a discriminator, which are trained
simultaneously. The input to the generator is either a
random noise vector z or a real data, like an image X,
sampled from a prior distribution pdata. The generator is

FIGURE 6 An auto-encoder

(AE) structure with two parts, an

encoder and a decoder, is shown.

An encoder transforms the input

information (shown in yellow) into

a latent space representation (shown

in cyan) F , which is transferred by

the decoder to reconstruct an output

(shown in red) in the same space

representation as the input. Both

the parts can be constructed using a

CNN or an MLP. CNN, convolution

neural network; MLP, multilayer

perceptron

xt-1 xt+1xt

ht-1 ht ht+1

yt-1 yt yt+1
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FIGURE 5 A structure of recurrent neural network is shown.

A set of sequenced data x with T time steps is given as an input

(yellow) to reconstruct a sequenced output vector y (red) with equal

number of time steps. The hidden states (blue) store the features or

act as memory unit of the RNN network. The weight matrices W,U,

V are updated during the training of RNNs
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a differentiable function represented by an MLP (or an
AE) that maps this input to an output yG , such that
G x;ΘGð Þ : X,zf g! yG . The generator G x;ΘGð Þ aims to
learn the distribution pG to approximate the prior distri-
bution of the real data pdata from where the input X was
drawn. The output yG of the generator has visual similar-
ity with the real data, e.g. images. In addition to the out-
put from the generator, a real input image is also fed to
the discriminator D . The output of the discriminator
D yG;ΘD
� �

: yD ! 0,1½ � represents a probability that yG is
retrieved from pdata rather than pG (see Figure 8). Both
the networks G and D follow a min-max game where D
minimizes the probability of yG belonging to pdata, and
simultaneously G maximizes this probability by generat-
ing more realistic images that cannot be distinguished by
D. This adversarial training is achieved by optimizing the
loss function

E G,Dð Þ=x,yG logD x,yG
� �� �

+

x,z log 1−D x,G x,zð Þð Þð Þ½ � ð9Þ

with back-propagation technique. During back-propa-
gation, the gradient calculated over the loss function
is back-propagated from the discriminator to the gen-
erator, in order to update the parameters of the gen-
erator. While training a GAN network certain
challenges are encountered. Foremost, it is difficult
to obtain convergence of both the networks due to

simultaneous training of the networks. Additionally,
an early convergence of the discriminator network
can cause the generated images to be easily distin-
guished from the true images. This is a consequence
of the gradient of the discriminator reaching zero
and thus providing no guidance to the generator for
further training. After a few iterations, when conver-
gence between the two networks is achieved,
(pG = pdata and D xð Þ= 1

2) the generator can produce real-
istic images, which are difficult to identify as “fake”
images [41] by the discriminator.

Such an adversarial training of GANs have gained
popularity in industrial and academic research due to
their capability of domain adaptation and generating new
images. Generative adversarial networks (GANs) are
potentially used for biophotonic applications including
denoising of images, correcting stitching artifacts in
microscopic images, increasing spatial resolution [42, 43],
virtual H&E staining of fluorescence images [44] and bio-
logical image synthesis of fluorescence images [45, 46]
(see Figure 9). The applications of GANs are elaborated
in chapter 3.

All the above mentioned deep learning architectures
are huge and have many layers. With increasing architec-
ture and dataset size, the memory requirements increases
as well. Therefore, high computational power and effi-
cient software are needed. A detailed explanation of the
hardware requirements and commonly used software is
given in the section 2.6.

FIGURE 7 Applications of auto-encoders are shown in this figure. The upper panel shows a segmentation of a Drosophila heart, where

optical coherence tomography images are used as an input to the AE model and the output is a segmented drosophila heart. Similarly, the

lower panel shows a segmented crypt in a nonlinear multimodal image. The nonlinear multimodal image is used as an input to the AE

model to obtain a false-color image with four distinct regions (crypt region in red) at the output. Similar to Figure 2, the nonlinear

multimodal image is composed of CARS, TPEF and SHG signal. The images are reprinted from references [37, 38] with permissions. AE,

auto-encoder; CARS, coherent anti-stokes Raman scattering; SHG, second-harmonic generation; TPEF, two-photon excited fluorescence

microscopy
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FIGURE 9 The two common applications of GANs including pseudostaining (upper panel) and resolution enhancing (lower panel) are

shown. The image in the upper panel utilizes an autofluorescence image as an input and the GAN network produces H&E stained image at

the output. Similarly, the image in the lower panel shows that a GAN model was used to enhance the resolution of a Masson's trichrome

stained lung tissue section. The images are reprinted from earlier researches [42, 44] with permission. GAN, generative adversarial network

FIGURE 8 Generative adversarial network shows two adversaries, a generator and a discriminator. A generator's input is either

random noise z or an image X. The output from a generator yG, is fed to the discriminator D which distinguishes the generated output as

real or fake. Both the networks are adversaries of each other as both the networks optimize different objective functions
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2.6 | Hardware throughput and software
libraries

Deep learning algorithms perform complex matrix multi-
plications of millions of parameters in the hidden layers.
This limits the performance of deep learning models due
to the need for higher computational power and memory
size. The recently introduced GPUs provide higher com-
putational power as compared to conventional CPUs,
thereby, accelerating the training of deep learning models
to a greater extent.

In addition to the hardware, the availability of vari-
ous software packages can facilitate the use of deep
learning models in biophotonics. A range of open-source
deep learning libraries like Caffe [47], Torch [48],
Theano [49], Tensorflow [50], Keras [51] and Lasagne
[52] are developed along with their interfaces in C++,
Python and Lua programming languages. These pack-
ages can be efficiently implemented with GPUs, thus
accelerating the training of deep learning models. Vari-
ous researches using these libraries have been con-
ducted for spectroscopic data which is discussed in
section 3 and section 4.

2.7 | Educational resources

The above sections provide brief information about deep
learning and various architectures. However, to make
deep learning algorithms profitable for the biophotonic
community, various educational resources are mentioned
in this section.

In this context, books by Nielsen [53], Ripley [7],
Russel and Norvig [8], Bishop [54], Goodfellow [6] and
many more [55–58] are recommended sources for deep
learning. Additionally, there are several online courses for
deep learning which can give an overall hands-on experi-
ence of using various deep learning models with Python
and R programming languages. Some of them are listed
here: Coursera (https://www.coursera.org), deeplearning.
ai (https://www.deeplearning.ai) and others (https://www.
datacamp.com, https://machinelearningmastery.com,
https://www.pyimagesearch.com).

Furthermore, applications of deep learning are show-
cased at a number of international conferences dedicated
to biophotonics. A few of them include, but are not lim-
ited to, SPIE conferences, OSA conferences, IEEE confer-
ences and FACCS conferences. Likewise, many peer-
reviewed journals fully dedicated to the field of bio-
photonics have embraced the applications of deep learn-
ing and attracted interdisciplinary readership.

In the next two sections, applications of deep learning
are elaborated.

3 | DEEP LEARNING FOR
BIOPHOTONIC IMAGING

In the past decade, biomedical optical imaging has
witnessed a vast development ranging from fast scanning
systems to automated image analysis algorithms. In addi-
tion, developments like increased penetration depth,
molecular specificity, faster image acquisition and high
spatial resolution are advantageous for bed-side patient
monitoring and diagnostics for personalized treatments.
However, due to practical limitations of optical systems,
certain challenges are encountered with the fast acquisi-
tion of highly resolved and noise-free data. Recently,
deep learning algorithms have been used to address these
unmet needs in biophotonic imaging and has shown
overwhelming results for a broad range of applications.
These applications will be further discussed in this
section.

3.1 | Image denoising/deblurring

Deep neural networks can be designed for virtually any
kind of input–output combination. One way to employ
deep neural networks is to feed noisy or low-resolution
images to the input of a generative network and use the
images with desired resolution or noise level as an out-
put. The generative network, which learns features from
the high-resolution images, can be subsequently used for
image enhancement. Generative networks using mean
square error or similar type of loss function often lead to
overly smoothed images at the output. A common way to
preserve high-frequency features is to build a generative
adversarial network (GAN), which was described in more
details in section 2.5. Shortly, the GAN network contains
a generative network to produce an image and a discrimi-
nator network to estimate the quality of the image pro-
duced by the generator. A variation of this architecture,
called Wasserstein generative adversarial network
(WGAN), which uses Wasserstein distance as a loss func-
tion, was recently utilized for resolution enhancement of
OCT images [59]. An alternative, edge-sensitive condi-
tional generative adversarial network (cGAN) was
reported efficient against speckle noise. This speckle
noise reduction was demonstrated for OCT images which
utilized an edge-sensitive cGAN [60]. Another implemen-
tation of the GAN approach with additional content loss
metrics was proposed for simultaneous denoising and
super-resolution generation of optical coherence tomog-
raphy [61]. This content loss was calculated from the dif-
ference between features extracted from the true image
and the generated image. Besides OCT images, the GAN
approach was successfully applied for fluorescence
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microscopic images, making a cross-modality super-
resolution possible without employing overly sophisti-
cated setups [43]. The approach of achieving super-
resolution by deep learning is additionally discussed in
section 3.7.

In all above examples, deep neural networks learned
patterns from the data, which makes it possible to
increase the resolution and the signal-to-noise ratio
simultaneously. This makes these methods advantageous
in comparison with classical image enhancement
methods, which usually improve one of the two quality
parameters at the expense of the other parameter.

3.2 | Semantic segmentation

Semantic segmentation is a pixel classification task,
where every pixel of an image represents a class. Seman-
tic segmentation is widely used in digital pathology for
applications, like tissue segmentation, nuclei segmenta-
tion and lesion detection [62]. Similarly, semantic seg-
mentation of microscopic images, like nonlinear
multimodal images [37, 63], OCT images [64] and fluo-
rescence images, using auto-encoders (see section 2.4) is
gathering researcher's interest. The above-mentioned
works utilize U-net [65] type networks, which is an auto-
encoder architecture with special connections between
the encoder and the decoder network. Another striking
feature of U-net is the weighted loss function, which
heavily penalizes the misclassification of boundary pixels
of an object, thus allowing to segment closely located
objects efficiently. Previous research showed the seman-
tic segmentation of nonlinear multimodal images (CARS,
TPEF, SHG) of lung tissue using the U-net [63] architec-
ture and of gastrointestinal tissue regions using the
SegNet architecture (see Figure 7 bottom) [37, 66],
respectively. Similarly, the authors of a recent research
article [38] segmented a Drosophila heart in optical com-
puted tomography images based on an U-net architecture
(see Figure 7 top). Furthermore, it is shown in a recent
work [37] that CNN based semantic segmentation
achieved better performances as compared to traditional
machine learning methods.

In addition to CNNs, recurrent neural networks have
also shown promising results for semantic segmentation
of the CamVid dataset [67, 68]. A recent work [69] used
RNNs for perimysium segmentation in H&E stained skel-
etal microscopic images and achieved better performance
as compared to the U-net architecture. RNNs can retrieve
global spatial information of an image, which improves
the semantic segmentation performance [69]. However,
training a RNN can be computationally expensive and
therefore it is underexplored in biophotonics.

3.3 | Disease recognition

Disease recognition using MLPs and CNNs is a very com-
mon application in the field of biophotonics. Out of all
deep learning architectures discussed in section 2, MLPs
are widely used for disease recognition and assessment.
For example, MLPs were used to classify FLIM data of
cervical neoplasmic tissue sections, which achieved a sig-
nificant discrimination between the normal and the pre-
cancerous group as well as between the low-risk group
and the high-risk group [70]. Another application of
MLPs was reported using Raman spectroscopic data for
classification of patients with Alzheimer's disease, other
types of dementia and healthy individuals. Comparison
of MLP results with conventional classifiers, like the
radial basis function (RBF) classifier, showed that MLPs
outperformed the conventional classifiers for the tested
classification tasks [71]. In addition to MLPs, CNNs are
the second most widely used deep learning architectures
for disease classification. A recently proposed CNN appli-
cation [72], classified malaria infected blood smear from
healthy controls using Leishman stained images. The
malaria-infected images were further used to segment the
infected RBCs. Similarly, a very recent research reported
the use of CNNs to assign cervical cancer into three
stages using CARS, SHG, TPEF microscopic data [73].

Mostly, the data acquired by spectroscopic techniques
is small, due to larger acquisition times. Therefore, the
training of MLPs or CNNs is always challenging due to the
small datasets available. In such cases, deep learning net-
works using transfer learning strategies can be applied [26,
74–76]. Transfer learning utilizes CNN models pretrained
on a (large) source dataset and transfer the learned features
to classify a (small) target dataset. For example, pretrained
CNN models including GoogleNet [77], Inceptionv3 [78]
and VGG16 [79] were used to classify breast cancer in OCT
images [75], head and neck cancer in 3-D OCT images [80],
lung cancer in CARS images [74] and hepatocellular carci-
noma in multiphoton microscopic images [26] (see
Figure 4 top), respectively. Here, the CNN models are first
trained on large nonbiological datasets like ImageNet [81]
and the parameters of these pretrained models are fine-
tuned on the new biophotonic dataset.

To summarize, MLPs and CNNs are majorly used for
disease classification. Recently reported transfer learning
strategies [26, 74, 75] using CNNs have worked best for
small datasets, which are accounted in biophotonic studies.

3.4 | Cell or organ localization

In addition to the segmentation tasks described in
section 3.2, there is a specific segmentation application
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known as the “localization” task. In biomedical imaging,
localization can be used for counting cells of a specific
type within the sample or its image. Subsequently, the
localized cells can be segmented and analyzed through
descriptive statistics over cell sizes, shapes and the cell
morphology. Alternatively, segmented cells can be auto-
matically classified or investigated manually by patholo-
gists. It was shown that leukocytes can be localized
within blood smear images and segmented using deep
neural networks efficiently [27]. For the leukocyte locali-
zation, a multistep workflow that included a feature
extraction by a feature pyramid network inspired by the
ResNet architecture [82] was utilized. This was followed
by the determination of a region of interest. Thereafter, a
localization box was predicted and the leukocytes were
segmented (see Figure 4 bottom). On every step of this
workflow, convolutional or fully connected layers were
used instead of user-defined features.

Another biomedical application of deep learning is
organ localization within 3D computed tomography
(CT) scans, which is an essential preprocessing step for
the analysis of the scans. Recently, the organ localization
and segmentation within 3D scans was demonstrated
using a 3D U-net approach [83] and a 2D multichannel
SegNet model [84].

3.5 | Pseudostaining

In imaging of biological tissue and cell samples often his-
tological staining needs to be applied in order to enhance
the contrast and highlight tissue features. This staining is
usually performed during the sample preparation prior to
the microscopic investigation of the sample. Both manual
and automated microscopic image analysis often require
such stained images. Some stains, like the hematoxylin
and eosin (H&E) stain are used over many decades as
“gold-standard” techniques in pathology. The main draw-
back of the conventional staining techniques is that they
require additional time and effort. Recent studies showed
that in certain cases deep learning can be employed
instead of the actual sample staining. It was shown that
cGAN architecture can be used to generate H&E stained
images from hyperspectral microscopic images of
unstained samples [85]. Another study employed a CNN-
GAN approach in order to obtain H&E stained images
from unlabeled tissue autofluorescence images (see
Figure 9 top) [44]. Both studies performed virtual H&E
staining by using different imaging techniques in a com-
bination with deep learning instead of actual staining the
sample. On the other side, it was shown that deep learn-
ing makes it possible to restain H&E stained microscopic

images into immunohistochemical (IHC) stained
images [86]. The advantage of such approach is that H&E
is a conventional and simple staining but the IHC
staining is more costly and labor intensive. For such
restaining, a conditional CycleGAN (cCGAN) architec-
ture was used. Oversimplified, this CycleGAN approach
is a combination of two generators (encoder and decoder)
and discriminators. The first generator produces an IHC
stained image from a H&E stained image, subsequently,
the second generator transforms the generated IHC
image into a virtually stained H&E image. This cycle
makes it possible to introduce cycle identity loss and clas-
sification cycle loss in the network architecture.

In prospect, deep learning in combination with vari-
ous imaging techniques may provide a fast and flexible
alternative to the histological staining, making it possible
to switch between virtual stains without additional sam-
ple preparation and measurements.

3.6 | Image registration

Nowadays, it is a common practice to measure one sam-
ple with multiple modalities in order to achieve a com-
prehensive characterization of the biological tissue
specimen. For the joint analysis of the images obtained
from two or more modalities, a perfect overlay of the
two images is required. This is termed as image registra-
tion. The basic idea of the image registration methodol-
ogy is to minimize or maximize an objective or a cost
function computed on the overlapping region of the two
(moving and fixed) images. The optimization of the
objective function is achieved by iteratively searching a
geometric transformation for the moving image. Various
semiautomatic approaches have been proposed by
researchers to register secondary ion mass spectrometry
images with optical image [87], Raman microscopic
images with mass spectrometric MALDI-TOF
images [88] and FTIR images of tissue microarray
(TMA) cores against H&E images [89]. However, these
methods are not fully automated and require manual
intervention. A recently developed automatic approach
based on a sparse search strategy deals with sub region
registration of FTIR microscopic images in whole-slide
histopathological staining images. Additionally, the
FTIR imaged cores of tissue microarrays were registered
with their histopathologically stained counterparts. This
work also presented the registration of CARS images
within histopathological staining images [90]. Although
this approach is robust and reliable for diverse micro-
scopic technologies, it requires preprocessing of the
samples acquired from various modalities. In such cases,
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CNN based registration can potentially register images
obtained from different modalities without the need of
image preprocessing.

Recently, CNN based registration methods have
been reported in radiology, which learn geometric trans-
formation parameters for registering MRI and CT
images [91, 92]. The results from the CNN based regis-
tration have shown surprisingly good results and are
efficiently applied in a multiresolution scenario. How-
ever, a CNN based image registration of spectroscopic
images is still under-explored and requires further
investigation.

3.7 | Image super-resolution

An earlier section (see section 3.1) discussed that GAN
architectures can be employed for both image denoising
and resolution enhancement. Although the improvement
of the signal-to-noise ratio is very important for the inter-
pretation of the images, it can also be improved by
increasing the number of collected images. On the other
side, the resolution of the obtained image is often limited
due to the technical properties, like the diffraction limit.
There are various sophisticated technical solutions,
which allow an imaging below the diffraction limit. A
class of such techniques is called super-resolution
imaging.

Besides technical solutions, overcoming the diffrac-
tion limit is also possible by employing image processing
techniques, and in particular, deep learning. Studies
showed that CNN can be applied to effectively improve
the resolution of the stained tissue section (see Figure 9
bottom) [42]. A fully convolutional encoder-decoder net-
work was successfully constructed for imaging of quan-
tum dots and microtubes using single-molecule
localization microscopy [93]. Another imaging limitation
was pushed by deep learning in the area of lens-free holo-
graphic microscopy (LFHM). Due to the absence of the
lens, the resolution is limited by the pixel size of the
detector. To overcome this issue a CNN network, inspired
by an U-net architecture was employed for LFHM, which
made it possible to perform pixel super-resolution imag-
ing [94]. Another example of generating super-resolution
images was implemented for OCT images using a GAN-
based approach [61]. Besides achieving super-resolution,
this GAN-based approach decreased the image noise
simultaneously.

In addition to the above-mentioned applications, deep
learning is vastly applied for vibrational spectroscopic
data including applications like preprocessing and classi-
fication of spectra. These applications are discussed in
the following section.

4 | DEEP LEARNING FOR
VIBRATIONAL SPECTROSCOPY

Until recently, data analysis in vibrational spectroscopy
employed well-established classical machine learning
techniques adapted to the structures of specific spectro-
scopic data. The general workflow in these scenarios is
composed of preprocessing, feature extraction or feature
selection and statistical modeling [95]. In contrast to the
widespread use of artificial neural networks in spectral
analysis [96–98], the application of deep learning in this
field is growing but still in the early stage. This is
because, on the one hand, classical machine learning
does a great job in most cases, and on the other hand,
deep learning in spectral analysis encounters many diffi-
culties. Most of the existent deep neural networks were
developed for image analysis or speech recognition and
cannot be directly transferred to spectral analysis. Build-
ing a deep neural network for spectral analysis from
scratch requires a lot of hyperparameter tuning and is
tedious. Unlike in image analysis, there is rarely a pre-
trained deep learning model for spectral data. The lack of
large spectral datasets forms another difficulty to apply
deep learning in spectral analysis. Nevertheless, the spec-
tral analysis does see benefits from deep learning, which
will be discussed in the following section from the per-
spectives of spectral preprocessing and statistical
analysis.

4.1 | Preprocessing

Spectral preprocessing aims to remove corrupting contri-
butions from the measured spectra, which is often done
by smoothing, baseline correction, standardization, and
so on. Preprocessing is a burden, not only because of the
computation time, but also because it is not straightfor-
ward to select the preprocessing techniques that perform
best on each specific dataset [99]. Deep learning can be a
time saver assuming that the deep neural network is
powerful enough to tolerate the corrupting effects and
can be trained on raw data without any preprocessing to
reach a satisfying performance. This has been shown in
references utilizing convolutional neural networks or sta-
cked contractive auto-encoders [100–104]. The kernels of
the trained network were shown to work as smoothing,
derivative/slope recognizers, thresholding and spectral
region selection, which are basically preprocessing steps
[101]. Unlike conventional preprocessing approaches,
however, the outputs of the kernels are not necessarily
physically meaningful, but rather a mathematical repre-
sentation of preprocessing for the given data. This repre-
sentation is best suited for the following regression or
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classification models. Nevertheless, a close inspection of
the outputs of the kernels does give a hint about the fea-
tures that are the most significant for the regression or
classification [101, 103].

While most investigations are engaged to construct
deep learning methods utilizing the raw data and skip
preprocessing, there are indeed efforts to apply deep
learning as a preprocessing approach, especially for
issues that cannot be solved easily with conventional
preprocessing methods. As it is widely known, a suffi-
ciently long integration time is normally needed for a
usable spectrum, especially for Raman spectroscopy con-
sidering the small Raman cross-section. The slow mea-
surement, especially in the case of Raman imaging, has
hindered Raman spectroscopy to be applied for the inves-
tigations of dynamic processes. In such cases, fast mea-
surements are needed but they suffer from bad data
quality, such as extremely high noise or low spectral/spa-
tial resolution. Deep learning has shown its capability of
handling this issue in recent publications [105, 106]. For
example, an U-net was applied to stimulated Raman
spectra to reduce noise in the data and hence improve
the sensitivity, which helps shorten the spectral acquisi-
tion time down to 20 μs without losing sensitivity [105].
In another investigation [106] the authors applied a deep
convolutional neural network to improve the spatial reso-
lution of the Raman hyperspectral data. In this way, the
line-scan Raman measurement was largely accelerated.

Following the spectral preprocessing, investigating
the spectral data by using multivariate statistics and clas-
sification models is commonly performed. The next
section discusses the statistical modeling of spectral data
using deep neural networks.

4.2 | Statistical modeling

It is commonly hypothesized that deep neural networks
are capable of feature learning [107], that is, they do not
require hand-engineered features, which are needed to
apply conventional classifiers. With multiple layers of lin-
ear and/or nonlinear units, deep neural networks show
huge potential to learn hierarchical representations of
features from complex data. It is thus advantageous to
apply deep neural networks for the analysis of vibrational
spectra, which are a complex superposition of all vibra-
tional information within the sample. Applications of
deep learning were reported for both infrared and Raman
spectroscopy in order to achieve tasks like brain function
investigations [108, 109], biological diagnostics [102, 110,
111], cytopathology [112], microbial identification [113],
pathogenic bacteria identification [113], food science
investigations [114, 115], tobacco leaves characterization

[116] and mineral analysis [117]. Furthermore, it was
reported in references that deep learning can perform
better than classical machine learning methods [100,
103]. A deep convolutional neural network was also used
for an un-mixing tasks, i.e., to resolve pure components
and their abundances from mixture spectra. Thereby,
N one-component identification models were trained
with data composed of spectra of a pure component, neg-
ative and positive samples in terms of this pure compo-
nent. The N models could successfully solve the un-
mixing task at the end [118].

In addition to the different applications discussed
above, strategies were reported to improve the perfor-
mance of deep learning. In particular, a hierarchical deep
convolutional neural network was employed on Raman
microscopic data, in which neighboring spectral pixels
were merged hierarchically in order to combine the spa-
tial information with spectral information. This combina-
tion finally led to a better classification between healthy
and cancer cells [112]. In addition, different searching
algorithms such as grid search [103], particle swarm opti-
mization (PSO) [114] and artificial bee colony algorithm
(ABC) [117] have been utilized to automatically find the
optimal hyperparameters of a deep neural network. A
combination of a CNN and an extreme learning machine
(ELM) was reported to speed up the training and improve
the generalization performance of the trained network.
The optimal values of ELM were sought by an artificial
bee colony algorithm (ABC) [117].

Despite the investigations included in previous para-
graphs, deep learning is far less developed in vibrational
spectral analysis in comparison with image analysis and
speech recognition. One of the reasons is that the deep
neural networks are extremely data starving, but measur-
ing spectral data from a large number of samples is lim-
ited by practical reasons, especially for biological
samples. Data augmentation can be utilized to solve this
issue, which is normally done by randomly shifting the
wavenumber axis, adding random noise and/or (linearly)
combining multiple spectra [100, 101]. However, these
data augmentation techniques can introduce unknown
(spectral) features into the data, especially if the varia-
tions of interest are very subtle. This is perhaps the rea-
son, why the best model achieved in reference [101] was
trained by utilizing an additional EMSC after data aug-
mentation. A generative adversarial network may play a
role for better data augmentation, but there is yet no
application reported to the authors' best knowledge.

Besides the intrinsic complexity of the spectra and
limited sample size, vibrational spectroscopy is remark-
ably sensitive to measurement conditions and there exist
significant variations among multiple measurements.
Hence, it is important during spectral analysis to learn
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features of interest but not those related to the measure-
ment in order to achieve an optimal prediction on new
measurements. Deep learning can play a role in this con-
text as it was reported in previous research [101]. Therein
a CNN was used to predict a test dataset comprising of
drug concentrations higher than the concentrations of
the training dataset. In this case, the test performance of
the CNN can be improved, only if the hyperparameters of
the network was tuned based on the validation set. Tun-
ing with a randomly selected validation set did not pro-
vide significantly better predictions. In fact, it is more
than difficult to build a deep neural network, which tol-
erates unwanted variations and generalizing well
between measurements. Data augmentation can help in
this situation, as it was discussed in reference [101], but
the improvement was limited. Another strategy is trans-
fer learning, which has been discussed in the previous
section. Its capability for dealing with unwanted spectral
variations was shown in reference [102] where the deep
network was pretrained on embedded tissues and fine-
tuned to classify fresh frozen tissues.

Another important issue of applying deep learning for
vibrational spectral analysis is a proper validation. As it
was mentioned in the last paragraph, vibrational spectra
often vary from measurement to measurement and
device to device. It is thus important and necessary to val-
idate a deep neural network using measurements inde-
pendent to the training data. A random separation
between training and testing data should be avoided. In
addition, the testing data cannot be included in any pro-
cedure that affects the final modeling, including model-
based preprocessing such as EMSC [119]. Otherwise, an
overestimation of the network is highly possible. Similar
challenges and issues related to deep learning methods
are discussed in the next section.

5 | DISCUSSIONS AND CRITICAL
ISSUES

Deep learning was already applied several times in bio-
photonic data analysis, but its potential is much larger.
To use this potential an immense amount of data for
training is needed. If such large datasets are not available,
then increasing the dataset size by data augmentation or
using transfer learning methods to achieve good model
performances are commonly used approaches. Further-
more, class imbalances are predominantly seen in clinical
studies, which affect the training of deep neural net-
works. Another issue about using deep learning methods
is the lack of interpretability of model predictions, which
restricts the use of deep learning methods for newly
developed measurement modalities in the biophotonic

field. Additionally, proper model validation techniques
are needed, which will be elaborated in this section.

5.1 | Current challenges

This subsection elaborates the challenges which are
related to the dataset, training and understanding of the
deep neural network encountered by data scientists in
biophotonics.

5.1.1 | Lack of data

Biophotonic technologies are emerging techniques with
restricted use in clinical practice as compared to other
radiological and conventional histopathological tech-
niques. Therefore, the dataset size is often limited. More-
over, the systematic accessibility of data and open
repositories is limited in the biophotonics field. This leads
to one of the major challenges to use deep learning for
biophotonic data, which is the shortage of data. Deep
learning models are data-driven and require a large
amount of data depending on the task and the number of
parameters in the model [120, 121] (Table 2).

Small datasets can easily lead to over-fitting causing
poor generalizability on a new dataset. The problem of
small datasets can be overcome by increasing datasets
using data augmentation techniques. The basic idea of
data augmentation is to artificially expand the training
dataset by creating modified versions of the original
dataset. For example, commonly used data augmentation
techniques for image data are translation, rotation,
shifting, increasing or decreasing brightness and magnifi-
cation of the images. Other commonly used data aug-
mentation techniques for images are adding Gaussian
noise and transforming the color space of the
images [122]. Likewise, data augmentation of spectral
data can also be performed by adding noise to the spec-
tral data or shifting the wavenumber axis for spectro-
scopic data [100, 101]. However, it is worth noting that
slight perturbations in the images or the spectra can also
degrade the model performance [123]. To prevent the
degradation of the model performance and also to avoid
too large dataset sizes, we discuss some practical consid-
erations with the perspective of data augmentation in
section 5.2.1.

In addition to data augmentation, transfer learning is
another alternative technique to train deep learning
models on small datasets. This technique focuses on
transferring features of a deep neural network learned on
a larger dataset to a small dataset. Research has shown
that transfer-learning strategies lead to promising results
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when applied for small spectroscopic dataset [26, 74, 75].
However, transferring features of a deep neural network
which is pretrained on a dataset like ImageNet, to

perform classification or regression tasks on spectro-
scopic data, is debatable. Prior research has shown that
with increase in the distance of the tasks (like classifica-
tion, regression) and domains (like biological, non-
biological), the transfer of the specific features learned in
the last layers of a deep neural network can negatively
affect the model performance. Thus, leading to “negative
transfer learning” [124]. A practical advice on applying
transfer learning approaches on small dataset is given in
section 5.2.2.

5.1.2 | Imbalanced dataset

A second challenge in training deep learning models is
an imbalanced data distribution, which is a key issue in
all biological datasets. Training a deep neural network
with unbalanced datasets affects the sensitivity of the loss
function towards the majority class. To circumvent such
biases, data-level and method-level approaches are used.
Data-level methods address the class imbalance problem
by random over-sampling the minority class or under-
sampling the majority class. Although data-level methods
are simple, over-sampling can introduce over-fitting of
the model and under-sampling can cause loss of impor-
tant information. Another complex sampling method is
synthetic minority over-sampling technique (SMOTE),
which creates synthetic data for the minority class. How-
ever, this method is limited due to the issue of generaliz-
ability and variance [125]. Also, creating synthetic
spectral data is not straight forward due to the complexity
of the spectral features.

An alternative to this imbalance issue are model-level
methods, which have significantly improved the training
results of deep learning models. In these cases, the loss
function is penalized by the weight of the classes, which
is defined by the number of samples in each class. How-
ever, sometimes it is difficult to define a customized loss
function for a multiclass classification task. Many
researchers have reported the use of a hybrid approach,
where data-level and model-level methods are combined.
Furthermore, other methods dealing with the loss func-
tion to overcome class imbalances have also been
reported in the literature [126, 127].

5.1.3 | Bias-variance trade off

The third challenge encountered while constructing any
machine learning method is the bias-variance trade off.
There is always a competition to find a perfect balance
between high bias (under-fitting) and high variance
(over-fitting) for complex models. Model complexity can

TABLE 2 Abbreviation in alphabetical order

Acronym Explanation

ABC Artificial bee colony algorithm

AE Auto-encoders

ANN Artificial neural network

BRNN Bidirectional recurrent neural network

CARS Coherent anti-stokes Raman scattering

cGAN Conditional generative adversarial network

cCGAN Conditional cycle GAN

CGAN Cycle GAN

CNN Convolutional neural network

CPU Central processing unit

DBN Deep belief network

ELM Extreme learning machine

EMSC Extended multiplicative signal correction

GAN Generative adversarial network

GPU Graphical processing unit

GRU Gated recurrent unit

H&E Hematoxylin and eosin

IHC Immunohistochemical

FLIM Fluorescence life-time imaging

FTIR Fourier-transform infrared spectroscopy

LFHM Lens-free holographic microscopy

LSTM Long short-term memory

MALDI-
TOF

Matrix assisted laser desorption-ionization (time
of flight)

MLP Multilayer perceptron

MPM Multiphoton microscopy

OCT Optical coherence tomography

PAI Photoacoustic imaging

PSO Particle swarm optimization

RBF Radial basis function

RBM Restricted Boltzmann machine

ReLU Rectified linear unit

RNN Recurrent neural network

SAE Stacked auto-encoder

SERS Surface enhanced Raman spectroscopy

SGD Stochastic gradient descent

SHG Second harmonic generation

SMOTE Synthetic minority over-sampling technique

TPEF Two-photon excitation fluorescence

WGAN Wasserstein generative adversarial network
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be defined as the number of trainable parameters in a
model and an increase in number of trainable parameters
also increases the model complexity. With increasing
model complexity, like encountered in deep neural net-
works, the increase of variance is more likely. A high var-
iance in deep learning models can be due to three major
reasons: the first reason is the sampling variance, the sec-
ond reason is the model complexity variance and lastly is
the model initialization variance. Sampling variance is a
consequence of a high biological variance between the
samples and within a sample (eg, the variance between
biological replicates and within the replicates). Therefore,
acquiring more balanced data and maintaining a consis-
tent data acquisition protocol is essential. Additionally,
comparison of the data acquired in different laboratories
and devices should be encouraged in order to avoid such
biases.

Model complexity and model initialization variance is
controlled by the depth and width of the deep neural net-
works. Research has shown that an increasing the depth
of a deep neural network by adding layers to a neural
network can be a source of over-fitting, whereas increas-
ing the width of the deep neural network decreases the
model-related variance [128]. Therefore, designing a deep
neural network should be done with focus on the gener-
alization capabilities of the model. Even though, bias-
variance trade-off is also observed in classical machine
learning models, research shows that deep learning
methods can efficiently find a balance between the bias
and variance [129, 130].

5.1.4 | Interpretability of the “black-box”

Deep learning models have achieved breakthrough per-
formance in various domains of medical imaging includ-
ing biophotonics (see section 3 and section 4). As these
models are intended to be utilized in modern healthcare
systems, the interpretation of their decision-making is a
key issue. It is important to know if deep neural networks
make their predictions based on the biomolecular infor-
mation instead of some background effect or noise in the
spectroscopic data. An example of missing interpretabil-
ity of the “black-box” models can be seen in a recent
research [37] where an auto-encoder like model was used
to segment nonlinear multimodal images of CARS, TPEF
and SHG into four tissue regions. The segmentation
results from the auto-encoder were satisfactory compared
to the classical machine learning approach using hand-
engineered texture features. However, the contribution of
the three modalities CARS, TPEF and SHG for the seg-
mentation of crypts was unknown. Similarly, by using
deep learning models the contributions of spectral

features to a prediction, like the presence or absence of a
disease, is difficult to interpret. This drawback hinders
the usage of deep learning models especially in newly
developed biophotonic technologies. Nevertheless,
researchers are now developing various decomposition
techniques for understanding complex deep learning
models [131–135].

A recent research [136] utilizes Taylor series expan-
sion for interpreting the output function of nonlinear
models like ANNs on Raman spectroscopic data. Within
this approach, the degree of nonlinearity of ANN model
was realized using a second-order Taylor expansion. This
allowed an interpretation of the patterns learned by ANN
models based on wavenumber combinations to predict a
particular class. Another approach [131] uses the layer-
wise decomposition of features from hidden layers to
understand the contribution of all pixels in an image to
detect a particular class. While all these techniques are
mostly developed for computer vision tasks, its utility can
be expanded for spectroscopic data and this needs further
investigations.

5.1.5 | Standardization for biophotonics

Biophotonics has an outstanding potential for clinical
healthcare. However, in contrast to the well-established
radiological or histopathological techniques, biophotonic
technologies lack the adoption of standard procedures.
There are no international consensus of assessing the
performance of biophotonic devices which largely affects
the reproducibility of data. Subsequently, the machine
learning models trained on such data are less reliable. In
this regard, several publications [137–139] have pres-
ented standardization procedures for various biophotonic
technologies.

Improving the quality of clinical studies, comparing
data from different laboratories and systems, facilitating
the use of open databases, allowing quantitative compari-
sons between different models are critical factors for
developing the best computational models. Validating the
strength of these machine-learning models is also impor-
tant and is further discussed in section 5.2.4.

5.2 | Practical considerations: do's and
dont's

Researchers often encounter challenges as it was dis-
cussed in section 5.1 while training a deep learning
model. To overcome these challenges, various approaches
including data augmentation, transfer learning and
model validation are established. However, these
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approaches have pitfalls that can generate poor deep
learning models, increase the training time and cause
memory issues. Thus, it is important that developers cir-
cumvent common pitfalls while constructing deep learn-
ing models. In the following section a practical advice for
constructing these models and avoiding common mis-
takes are given.

5.2.1 | Data augmentation

The choice of data augmentation should be made
depending on the dataset. Data augmentation strategies
like horizontal flips, random rotations, scaling and shear-
ing are simple to implement, however these strategies fail
to add new information or patterns into the training
dataset [140, 141]. Moreover, random rotations and trans-
lation can introduce zero values in the corners of the
image, which causes a bias in training the deep neural
network. Therefore, the image regions with zero values
are removed or filled with a reflection of the original
image. In addition to geometric transformations, adding
noise like jitter or Gaussian noise has improved regulari-
zation properties of the deep neural network for medical
image classification [140, 142]. For fluorescence images,
Gaussian and Poisson noise are commonly observed.
These can be simulated to generate synthetic fluores-
cence images. Another data augmentation technique is
the style transformation using GANs, commonly known
as style transfer. In style transfer methods, the color and
texture information from one image is transferred to
another image to generate a completely new image [141,
143]. However, style transfer in biophotonics requires
systematic investigation, as it may cause subtle alter-
ations in the color and texture of the newly generated
image which are associated to the biomolecular informa-
tion under investigation. Thus, data augmentation tech-
niques like style transfer should be performed cautiously
for medical imaging, because it may also require chang-
ing the labels respectively. Another method to create
large datasets from small dataset is the extraction of pat-
ches of the images. This method was implemented in a
recent research [37] for semantic segmentation of
nonlinear multimodal images. Utilizing patches for data
augmentation not only increases the dataset size but also
retains the biomolecular information of the images with-
out the need to change labels. However, extracting pat-
ches of large spectroscopic images fails to generate new
independent data and contrarily increases the dataset
size. This can cause memory requirement issues. In such
cases, large images should be down sampled and non-
informative patches should be removed.

As mentioned above, data augmentation can increase
the dataset size and memory requirement depending on
the data augmentation scheme applied. To tackle this
issue, online and offline data augmentation strategies can
be chosen. If the dataset is relatively small, offline data
augmentation can be performed. Offline data augmenta-
tion increases the dataset size by a factor equal to the
number of transformations performed. If the whole aug-
mented dataset is used for model construction, it can
increase the memory requirements. The second option is
online data augmentation which performs transforma-
tions of the mini-batches used while training the deep
neural network model. This approach reduces the mem-
ory requirements but increases the training time.

In addition to the above-mentioned points, there are
further important considerations for data augmentation.
First, data augmentation should be performed for the
training dataset only. Moreover, all the images should be
rescaled to the same size before adding any kind of noise
and various levels of noise can be tested to achieve the
best validation accuracy. Overall, the benefit of data aug-
mentation in biophotonics is an open issue that should
be investigated systematically.

5.2.2 | Transfer learning

The previous section explains that data augmentation is
an effective method to work with small datasets and this
section introduces transfer learning as a strategy for small
datasets. There are two transfer learning strategies which
are commonly followed: first, a pretrained deep neural
network are used as feature extractor and those features
are utilized to build an easy model for classification or
regression. The second strategy is to fine-tune the weights
of a pretrained deep neural network using the new
dataset. Fine-tuning of the weights can be conducted for
all the layers of the network or restricted only to the last
layers where most specific features are learned. Based on
the two transfer learning strategies, the size of the
dataset, the similarity between the datasets and the simi-
larity between the tasks (classification or regression)
involved, four major approaches can be utilized [144]:

• If the new dataset is small and similar to the original
dataset, then the generic features from the top layers of
a pretrained deep neural network will be relevant for
the new dataset and thus these generic features can be
used to train an easy classifier.

• If the new dataset is large and similar to the original
dataset, then fine-tuning of the whole pretrained deep
neural network can be performed.

18 of 24 PRADHAN ET AL.



• If the new dataset is small and different from the origi-
nal dataset, then it is best to train a linear classifier
(linear discriminant analysis or support vector
machine) by using activations from the top and inter-
mediate layers of a pretrained deep neural network.
Previous research reported that this method works best
for small spectroscopic datasets [26, 74, 75]. However,
for biophotonics this needs proper investigation
depending on the dataset.

• If the new dataset is large and different from the origi-
nal dataset, then it is beneficial to train a deep neural
network from scratch and initialize the weights using
a similar pretrained deep neural network model.

5.2.3 | Splitting the dataset

Splitting of the dataset depends on the dataset size. In
many machine-learning applications, large datasets are
divided into two parts: 80% training dataset and 20% test
dataset. A classifier or a regressor will be fitted using the
80% training dataset and the performance of the model
will be evaluated on the remaining test dataset. For
small datasets, k-fold cross validation techniques are
generally used, where the whole dataset is resampled
k times to train the model k times and evaluate its per-
formance on the unused fold. Although the cross valida-
tion techniques allow a proper estimation of the
generalization performance of the constructed model, its
use in deep learning is limited due to the large training
time and memory requirement. Thus, in deep learning
applications the dataset is mostly divided into three
parts: training, test and validation dataset. The training
dataset is used to fit the deep learning model. The vali-
dation dataset provides an unbiased evaluation of the
fitted deep learning model and simultaneously opti-
mizes the hyperparameters of the model. And finally,
the test dataset is used for evaluating the performance of
the final model fitted on the training dataset. The divi-
sion of the dataset into parts should be made at the
highest hierarchical level. For instance, in a clinical set-
ting, the highest hierarchical level is at the patient-level
or device-level. Images or spectra obtained from the
same patient should be a part of either the training, vali-
dation or the test dataset, to avoid any training bias
[145]. A training bias is introduced when both the train-
ing and validation dataset originate from the same
source (patient or device), thus reaching a high training
and validation accuracy but a poor test accuracy. In
prospect, splitting the dataset plays a major role in train-
ing deep learning models. Thus, it is beneficial for the
biophotonic community to encourage proper model
validation.

5.2.4 | Model validation and assessment
of model performance

Establishing common procedures for model validation is
important for biophotonics as explained in section 5.1.5.
This facilitates a fair comparison between different
models and systems. It is a common practice to test a
final model on a third “independent test set” (also
referred to as “holdout set”) beside the “training set” and
the “validation set.” The latter mainly serves the purpose
of model selection and hyperparameter optimization [4,
7, 8]. However, this requires a lot of data which repre-
sents the whole underlying population. To deal with
small datasets cross-validation using the k-fold strategy is
a commonly used approach. [145]

While training a deep neural network, the accuracy
on training and validation dataset rises gradually with
the number of iterations. If not, then several possibilities
are responsible to lower the performance including over-
fitting of the model on the training dataset, a small
dataset size, a noisy dataset, the choice of hyper-
parameters and the depth of the model. In such cases,
increasing the dataset by data-augmentation techniques,
removing redundant data by filtering noisy images or
spectra, optimizing the hyperparameters and performing
cross validation can be considered. Nevertheless, reduc-
ing over-fitting requires systematic studies depending on
the dataset.

In addition to the above-mentioned techniques, early-
stopping of the model training can also be utilized to
improve the generalization performance [146, 147]. Early
stopping is a regularization technique that stops the
training of the deep learning models before the perfor-
mance on the validation dataset begins to decline. In
cross validation of deep learning the model with the best
validation accuracy can be used to predict the test data.
In the case of comparison of two or more models, the per-
formances on test dataset should be reported.

5.2.5 | Reduce over-fitting

As explained earlier (see section 5.1.3), a deep learning
model trained with high variance can predict well on the
training data but shows a poor generalizability to the test
data. Adjusting the generalizability and constructing
robust models is done by reducing over-fitting. This is
often termed as “regularization” [6, 142] and can be
achieved by several methods. Augmentation of training
data explained in section 5.2.1 is often considered as one
of the regularization methods [148]. Another method is
to add dropout layers to the model. Adding dropout layer
is based on the principle: “learn less to learn better.” In
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this regularization technique, the outputs of some neu-
rons in the hidden layers are ignored, thereby, forcing
the remaining neurons to learn a sparse representation of
the data [149, 150]. Several variations of the dropout
method reported in the literature have shown to improve
model performances [151–154]. In addition to the drop-
out methods, early stopping (explained in section 5.2.4)
and weight regularization techniques are other regulari-
zation methods for reducing over-fitting.

Weight regularization like L1 and L2 regularization
penalizes the model during training based on the magni-
tude of the learned weights [155, 156], because large
weights of a deep neural network can be a sign of an
unstable network [157]. Regularization techniques
encourage the sum of absolute values of the weights
(L1) or sum of squared values of the weights (L2) to be
minimum and thereby generating sparse weights that
reduce over-fitting. Another method to check over-fitting
is to reduce the capacity of deep learning models by
decreasing the number of layers in the model or number
of parameters in each layer [4].

Besides these regularization techniques, batch nor-
malization technique is a well-known method to over-
come over-fitting of deep neural networks [158]. This
technique standardizes the inputs to a layer of deep neu-
ral network for each mini-batch. In this way, training of
the deep neural network is stabilized and the training
process is accelerated [159].

In summary, all the earlier explained topics are com-
plementary to each other with a common goal of reduc-
ing over-fitting and constructing robust deep learning
models. However, the effects of each of these regulariza-
tion methods on biophotonic data need systematic
investigation.

6 | CONCLUSION AND FUTURE
OUTLOOK

Biophotonics is a rapidly growing field with a great
potential to be a part of clinical practice. Current tech-
nological advancements in biophotonics are pushing
the limits by increasing the resolution of optical sys-
tems, achieving larger penetration depths and faster
scanning speeds. Additionally, current optical systems
are capable of probing from micro to macroscopic
scales, detectors are becoming more specific and efforts
for miniaturizing devices using fibers are observed [3,
160]. All these technological advancements are
enriching the information content of the biophotonic
data and advanced data analysis methods, like deep
learning techniques, are needed. In this regard,
researchers are developing deep learning methods for

various biophotonic applications, which were elabo-
rated in this review article.

Out of all the contributions discussed in this review
article, a majority of work includes deep learning
methods for biophotonic image data, whereas deep learn-
ing for spectral data is still underexplored. Almost 60% of
the research used image data for early detection of dis-
eases and assessment of disease stages. The remaining
work majorly focused on virtual staining, increasing the
resolution of fluorescence images and segmentation of
cells, tissues and organs in spectroscopic images. In addi-
tion, a small part of the reviewed papers focused on
preprocessing and classification of vibrational spectro-
scopic data. Although deep learning methods are under-
explored for spectral data, we foresee that its
development for vibrational spectroscopic data can trans-
form the biophotonics field. Therefore, we discuss some
potential applications of deep learning to analyze image
and spectral data in this review.

Deep learning architectures can be used for spectral
classification without the need of complex preprocessing
steps [100]. On the other side, architectures like RNNs
can be used for spectral preprocessing including den-
oising or despiking. Due to the basic similarities in the
shape of the spectra, classification models can be trained
with spectral data obtained from different domains using
transfer-learning methods [100]. We speculate that trans-
fer learning can complement the model-transfer methods
[161] built for spectroscopic data by transferring high-
level features of training data obtained in one domain to
new data acquired in another domain. Until now, trans-
fer learning methods have proven beneficial for fluores-
cence imaging data especially for cases where large
datasets were not available [26, 74, 75].

Deep learning for vibrational spectroscopy has some
challenges like the lack of data, the complexity of spectra,
inter and intra-class-variances within the spectra and
interpretability of the deep learning models. The issue of
lack of data can be addressed by creating and facilitating
access to large databases of spectroscopic data and efforts
have already been initialized in this direction. Recent
studies have reported large databases comprising images
of three modalities including confocal, two-photon and
wide-field fluorescence microscopy depicting biological
samples [162–164]. Along with creating large databases,
it is equally important to adopt standardized data acquisi-
tion protocols, acquire balanced datasets and reliable
annotations to increase the current state-of-the-art per-
formances of the models. In order to achieve robust and
reliable deep learning models and to use them in clinical
setting, it is required to apply online training, updating
the model parameters with the arrival of new data and
check the data and model reproducibility. At the same
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time, the biophotonic community should adopt validat-
ing standards in order to avoid publishing over-fitted
deep learning models. Despite of the outstanding pro-
gress of deep learning methods in biophotonics field,
their reliability as decision-making systems is always
questionable due to their “black-box” behavior. Thus,
researchers are developing methods to understand the
deep learning predictions [136, 165]. Nevertheless, this
topic needs more investigations.

Finally, we have to answer our initial question “Is
deep learning a boon for biophotonics?” We think that
deep learning is eventually going to be a boon to bio-
photonics, which will revolutionize the decision-making
approaches for pathologist, clinicians and doctors. A moti-
vating example of deep learning used in optical systems is
the IDx-DR device, a clinically accepted deep learning
model to detect diabetes retinopathy in optical coherence
tomography images [166]. Another potential example is
GAN-based modeling for virtual staining of
autofluorescence images which can bypass the long
staining protocols and help the pathologist to compare
new biophotonic technologies with the “gold-standard”
staining methods. However, deep learning for bio-
photonics is still in an infant stage and requires overcom-
ing various hurdles before coming into clinical usage. A
large amount of data, quality check for the data, providing
reliable annotations, appropriate model validation, inter-
preting model predictions and improving hardware capac-
ities are vital for overcoming these hurdles. Overcoming
these challenges and achieving optimal decision-making
algorithms based on deep learning for modern healthcare
systems is potentially the future of biophotonics.
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ABSTRACT: Sepsis constitutes a life-threatening organ failure
caused by a deregulated host response to infection. Identifying
early biomolecular indicators of organ dysfunction may improve
clinical decision-making and outcome of patients. Herein we
utilized label-free nonlinear multimodal imaging, combining
coherent anti-Stokes Raman scattering (CARS), two-photon
excited autofluorescence (TPEF), and second-harmonic gen-
eration (SHG) to investigate the consequences of early septic
liver injury in a murine model of polymicrobial abdominal
infection. Liver tissue sections from mice with and without
abdominal sepsis were analyzed using multimodal nonlinear
microscopy, immunofluorescence, immunohistochemistry, and
quantitative reverse transcription polymerase chain reaction
(qRT-PCR). Twenty-four hours after the induction of sepsis, hepatic mRNA of inflammatory cytokines and acute phase
proteins was upregulated, and liver-infiltrating myeloid cells could be visualized alongside hepatocellular cytoplasmic
translocation of high mobility group box 1. According to the statistical analysis based on texture feature extraction followed by
the combination of dimension reduction and linear discriminant analysis, CARS (AUC = 0.93) and TPEF (AUC = 0.83)
showed an excellent discrimination between liver sections from septic mice and sham-treated mice in contrast to SHG (AUC =
0.49). Spatial analysis revealed no major differences in the distribution of sepsis-associated changes between periportal and
pericentral zones. These data suggest early alterations in hepatic lipid distribution and metabolism during liver injury and
confirm nonlinear multimodal imaging as a promising complementary method for the real-time, label-free study of septic liver
damage.

Sepsis is the primary cause of death from infection and the
leading cause of death in intensive care units worldwide.

On the basis of the third international definition of sepsis, it is
currently defined as a life-threatening organ dysfunction which
results from dysregulated host responses to infection.1 In
addition to being a critical regulator of the inflammatory host
response during systemic infections,2 the liver constitutes an
important target organ during sepsis, manifesting as
hepatocellular injury and cholestasis.3,4 In addition, patients
with pre-existing liver disease are predisposed to developing
systemic inflammation and organ failure in response to
bacterial infections.5 As early recognition and timely treatment
determine the outcome of sepsis,6 patients at risk should be
identified before organ dysfunction has been established.7

Therefore, novel markers of imminent organ damage need to

be identified in order to improve the outcome of septic liver
injury.
The nondestructive characterization of intact biological

samples in their native condition using multiphoton optical
microscopy methods introduces optical imaging techniques as
a promising diagnostic method for future medical applica-
tions.8 Classical imaging techniques, such as positron emission
tomography (PET), computed tomography (CT), and
magnetic resonance imaging (MRI), provide large penetration
depth but only limited spatial resolution.9 Linear optical
microscopy methods including linear Raman, fluorescence
microscopy, or optical coherence tomography often lack
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sufficient imaging speed, tissue penetration, or contrast.10

These limitations can be overcome by employing nonlinear
optical imaging techniques, which allow high-speed imaging
with dwell times of microseconds. For example, three-photon
fluorescence using 1700 nm excitation penetrates up to 1.2 mm
into tissue.11 Multimodal imaging provides information about
different constituents of biological samples, such as the
distribution of lipids with coherent anti-Stokes Raman
scattering (CARS) at the symmetric aliphatic CH-stretching
vibration of methylene groups CH2 at 2850 cm−1, the analysis
of autofluorophores, such as fiber elastin, nicotinamide adenine
dinucleotide (phosphate), and flavin adenine dinucleotide,
with two photon excited fluorescence (TPEF), and collagen
distribution with second harmonic generation (SHG). The
diagnostic potential of CARS/TPEF/SHG imaging has been
studied using various chemometric techniques in different
diseases, such as brain tumors,12 inflammatory bowel
disease,13,14 nonmelanoma skin cancer,15 and head and neck
carcinoma.9

This research undertook to evaluate the efficiency and utility
of multimodal imaging as a label-free complementary method
in combination with image analysis in early septic liver injury
in a mouse model of polymicrobial abdominal sepsis.16,17 To
that aim, unstained liver tissue sections were analyzed using
nonlinear multimodal imaging alongside classical techniques in
order to prove the concept that this method can visualize early
biochemical changes in septic liver injury.

■ MATERIALS AND METHODS
Animals and Experimental Procedure. All animal

experiments were approved by the local government authority
of Thuringia, Thüringer Landesverwaltungsamt, and per-
formed based on the approved guidelines (reg. no. 02-010/
15). Inbred male C57BL/6J mice at 8−12 weeks of age were
provided by the Institute of Laboratory Animal Science and
Welfare of Jena University Hospital and were housed under
controlled light/dark cycles plus ad libitum access to food and
water. We used the polymicrobial contamination and infection
(PCI) model of sepsis based on an intraperitoneal (ip)
injection of a defined volume of human stool.16,17 Fecal
suspension (3.5 μL/g body weight) or 0.9% NaCl as a control
was injected intraperitoneally in five animals per group. After 8
h, animals received 25 μg/g meropenem as antibiotic rescue.
Twenty-four hours after the septic injury, animals were
sacrificed by an isoflurane overdose. Spleen and livers were
harvested, fixed in 10% natural buffered formalin (Sigma-
Aldrich, Taufkirchen, Germany) or shock-frozen in liquid
nitrogen for further studies. To obtain plasma, cardiac EDTA
blood samples were taken and centrifuged at 2000g for 15 min
at 4 °C. Organs and plasma were stored at −80 °C until further
analysis (Figure 1A).
Hepatic Gene Expression Analysis. Two-step qRT-

PCR18 was used to evaluate the expression level of Il6, Il1b,
and Saa3 in liver tissue. Total RNA was isolated from liver
samples with the use of TriFast solution (VWR/PEQLAB,
Darmstadt, Germany) according to the manufacturer’s
instructions and purified with the use of NucleoSpin RNA
kit columns (Macherey-Nagel, Düren, Germany). Conversion
of purified RNA to cDNA was performed with the use of High-
Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Darmstadt, Germany) based on the manufacturer’s
standard protocol. qRT-PCR was performed with the gene
specific primers Il6 (forward: 5′-GACAAAGCCAGA-

GTCCTTCAGAGAG- 3′ reverse: 5′-CTAGGTTTGCCG-
AGTAGATCTC-3′), Il1b (forward: 5′-AAGGAGAACCAA-
GCAACGACAAAA-3′, reverse: 5′-TGGGGAACTCT-
GCAGACTCAAACT- 3′), and Saa3 (forward: 5′-
TGCCATCATTCTTTGCATCTTGA- 3′, reverse: 5′-
CCGTGAACTTCTGAACAGCCT- 3′) using Thermo Scien-
tific Maxima SYBR Green qPCR Master Mix (Thermo Fisher
Scientific, Dreieich, Germany) on a Rotor-Gene Q thermal
cycler (QIAGEN, Hamburg, Germany). Normalization of
threshold Cycles for the selected genes was performed against
Actb (forward: 5′-ATGGAGGGGAATACAGCCC- 3′, re-
verse: 5′-TTCTTTGCAGCTCCTTCGTT- 3′) with the use
of Rotor Gene Q-series software. The 2−ΔΔCt method was used
to calculate the relative fold change.19

Plasma Markers of Hepatic Damage. Hepatic cell death
was investigated using plasma concentrations of alanine
aminotransferase (ALT) on an Architect plus 16200 (Abbott,
Wiesbaden, Germany).

Figure 1. Schematic representation of the analysis workflow. (A)
Mice underwent peritoneal contamination and infection (PCI) or
sham experiments, and livers were explanted 24 h after the onset of
sepsis for nonlinear multimodal imaging. (B) 20 μm regions around
the pericentral and periportal veins were identified, and (C) local
texture features were extracted. (D) Five statistical tests were
conducted to identify spatial differences in liver texture transformation
between animals with and without early septic liver damage.
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Immunofluorescence and Immunohistochemistry.
Representative tissue liver was fixed in 10% natural buffered
formalin (Sigma-Aldrich, Taufkirchen, Germany) for 24 h at
room temperature, embedded in paraffin, cut into 4 μm thick
sections, and mounted on Superfrost/Plus-coated glass slides
(Fisher Scientific, Pittsburgh, PA) for hematoxylin and eosin
(H&E).
For immunohistochemistry analysis of high mobility group

box 1 protein (HMGB1), 4 μm sections were incubated at 59
°C for 45 min. Following the antigen retrieval step (Dako,
Fisher Scientific), blocking was performed in peroxidase block
buffer in the humid chamber for 5 min. Slides were stained
using rabbit polyclonal antibody (Abcam ab18256) at 1:1000
dilutions and HRP-conjugated anti-rabbit IgG (Dako Envision
+System-HRP kit).
For immunofluorescence analysis, liver cryosections were

fixed in ice-cold acetone for 10 min. After washing with Tris
buffer 0.1% Tween-20 (TBS-T), incubation with primary
antibodies against F4/80 (clone Cl:A3-1, BioRad, Munich,
Germany) or Gr-1 (clone RB6-8C5, Biolegend, San Diego,
CA) was performed overnight at 1:1000 dilutions and followed
by incubation with Cy3-labeled donkey anti-rat IgG (1:400
Jackson Immuno Research Europe) for 1 h. DAPI
Fluoromount-G (SouthernBiotech) served as a fluorescent
stain for cell nuclei.
Multimodal Imaging. A continuous wave frequency-

doubled Neodymium-Vanadate laser at 532 nm (Verdi V18,
Coherent, Santa Clara, CA) with an average power of 16.7 W
was used to pump a titanium−sapphire (Ti:Sa) laser (Mira
HP, Coherent) to generate pulses at 832 nm with 2−3 ps pulse
duration, 76 MHz repetition rate, and an average output power
of 3.5 W. The Ti:Sa output was split into two parts: the first
used as Stokes beam and the second coupled into an Optical
Parametric Oscillator (OPO, APE, Germany) for frequency
conversion. The OPO was tuned to 672.5 nm for generating
the pump beam to excite the symmetric aliphatic C−H-
stretching vibration of methylene groups CH2 at 2850 cm−1.
Both pump and Stokes laser beams were guided into an LSM
(LSM 510 Meta, Zeiss, Germany), optimizing their temporal
and spatial overlap by a mechanical delay line and a dichroic
beam combiner and focused on the sample with an average
power of 43 mW and 31 mW for the pump and Stokes,
respectively, by a 20× objective of 0.8 NA (Plan-Apochromat
20×/0.8, Zeiss, Germany). The nonlinear modalities CARS,
TPEF, and SHG were simultaneously acquired by non-
descanned photomultiplier tubes (PMT, Hamamatsu Pho-
tonics, Japan) in forward (CARS, SHG) and backward
direction (TPEF) with a pixel dwell time of 1.6 μs and a
resolution of 2048 × 2048 pixel using specific band-pass filters
at 564 nm (CARS 2850 cm−1), 426−490 nm (TPEF), and 415
nm (SHG), respectively.
Image Preprocessing and Feature Extraction of

Multimodal Images. The image preprocessing and statistical
analysis were performed using Python with packages such as
sklearn,20 scipy,21 and numpy22 on a commercially available
PC system Intel CoreTM i5-7500 CPU, 3.40 GHz, 16 GB
RAM.
The data set composed of six multimodal images obtained

from each of the five PCI (sepsis) and five sham (control)
mice. Here six multimodal images represent analytical
replicates of each mouse, resulting in 60 multimodal images
in total. Each multimodal image was a combination of three
modalities including CARS as the red channel, TPEF as the

green channel, and SHG as the blue channel (Supporting
Information Figures 1 and 2). The spatial resolution of each
multimodal image was 2048 × 2048 pixels for a 450 × 450 μm2

tile scan. Multimodal images containing the identified
periportal or pericentral vein were downsampled to 1024 ×
1024 pixels. To assess a biomolecular difference in periportal
and pericentral zones, a region of 20 μm around these veins
was used for statistical analysis. The number of pixels in this 20
μm region for every multimodal image is different due to the
varying sizes of vein cross-sections (Figure 1B). The
perivenous regions were obtained using a binary mask based
on the green channel (TPEF) of the multimodal image as
TPEF channel showed the best contrast between the vein
lumen (background) and hepatic tissue (foreground). SHG
and CARS signals were less contrasting due to sparse
perivenous signals and nonresonant background caused by
underlying CaF2 slides, respectively (Supporting Information
Figure S1). Thus, the green channel was binarized using global
image thresholding23 based on Otsu’s method,24 followed by
morphological operations including region opening, region
closing, erosion, and dilation (Figure 1B).
Finally, for this 20 μm region a set of nine first-order

histogram features including mean, median, standard deviation,
variance, skewness, energy, entropy, kurtosis, and RMS were
calculated locally for all three modalities: CARS/TPEF/SHG
(Supporting Information Table S1). First-order histogram
features are the statistical moments of the histogram which
give an intuitive understanding of the texture of the underlying
tissue region (Figure 1C). Detailed information on the local
extraction of the first-order histogram features and the nine
feature images can be found in Supporting Information (Table
S1). We refer to the first-order histogram features as “texture
features”. To summarize the texture feature information on the
selected region, a median of the texture features images in the
selected region was calculated. The median values of the
texture feature images are stable to the varying number of
pixels of the analyzed region caused due to different vein sizes.
Thus, 27 median values of the texture features for the region in
each multimodal image were obtained (9 median values
acquired from 9 texture feature images of each channel).
Further, these median values of the texture feature images were
normalized to the range [0, 1] and were used for the statistical
analysis.

Statistical Analysis and Modeling. Our primary aim was
to investigate differences in multimodal imaging between liver
sections from mice with abdominal sepsis (PCI) and controls
without sepsis (sham). For this purpose, the median of the
median values of each texture feature image obtained from the
analytical replicates (six multimodal images) of each mouse
was calculated. These continuous variables were compared
with the nonparametric Mann−Whitney U test (test I in
Figure 1D). In additional analyses, we investigated differences
between the median values of texture feature images of mouse
livers from the PCI and sham group for pericentral (test II)
and periportal areas (test III), separately, as well as differences
in periportal versus pericentral areas in animal with (test IV)
and without (test V) sepsis. P values <0.05 in two-sided testing
were considered significant. Owing to the exploratory nature of
this study, we did not adjust for multiple testing.
To prove the efficiency of nonlinear multimodal imaging for

early sepsis diagnosis, we trained a linear classifier to
distinguish the PCI and sham group based on the median
values of the texture feature images. The dimension of the
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texture feature was reduced by principal component analysis,
and the reduced features were used to train the linear classifier
based on linear discriminant analysis (PCA-LDA). To further
investigate the contribution of individual modalities for the
classification of the two groups, we trained a linear classifier
using median values of texture feature images obtained from
CARS, TPEF, and SHG modalities separately. The linear
classifiers were evaluated using leave-one-mouse-out cross-
validation strategy, and the number of principal components is
optimized.25 A grid search was performed to acquire the best
number of principal components. The binary classification
results were visualized by plotting sensitivity against 1-
specificity in a receiver-operating characteristic (ROC) curve.
The area under the ROC curve (AUC) shows the ability of the
binary classifier to discriminate between the PCI and sham
group based on the features from all modalities combined and
individual modalities.

■ RESULTS AND DISCUSSION
Confirmation of Septic Liver Injury. Plasma markers of

liver damage showed mild hepatocellular cell death 24 h after
the induction of sepsis (Figure 2A). The hepatic inflammatory

response could be confirmed by elevated hepatic mRNA levels
of Il6, Il1b, and Saa3 (Figure 2B−D). As suggested by plasma
transaminase levels, H&E staining revealed only mild
hepatocellular damage in conventional histology (Figure 3A).
However, immunohistochemistry staining for HMGB1 re-
vealed its cytoplasmic translocation in liver sections of septic
mice but not in sham animals (Figure 3B) as observed in
models of acute liver injury and in patients with acute liver
failure.26

To assess the hepatic immune cell infiltration, liver sections
were stained for F4/80-expressing macrophages and Gr-1 (Ly-
6G/Ly-6C)-expressing myeloid cells using immunofluores-
cence. There was no difference in F4/80-expressing cells in
animals with sepsis (median 19.7 positive cells per 100 nuclei;
range: 17.9−20.4) and sham animals without sepsis (20.4
positive cells per 100 nuclei, range: 14.2−25.2) (Figure 3C).
In contrast, septic liver damage was associated with an influx

of Gr-1-expressing immune cells (median 11.5 positive cells
per 100 nuclei, range: 7.9−22.5) as compared to sham animals
(4.0 per 100 nuclei, range: 2.9 to 5.7) (Figure 3D) consistent
with a hepatic accumulation of neutrophils during the early
phase of abdominal sepsis.27

Multimodal Imaging. Although the differences between
multimodal images of liver sections from animals in the
absence (Supporting Information Figure S1) or presence of
septic liver injury (Supporting Information Figure S2) were
not strikingly obvious at visual inspection, 7 out of 27 liver

texture features tested were significantly different between both
groups of animals at the predefined significance level (test I).
These texture features included data derived from CARS
(mean, skewness, energy, entropy, and root-mean-square) and
from SHG (standard deviation and variance) (Figure 4). When
the analysis was restricted to the pericentral or periportal

Figure 2. (A) Plasma activity of alanine aminotransferase (ALT) 24 h
after the induction of sepsis in the peritoneal contamination and
infection (PCI) model or after sham treatment. (B−D) Quantification
of hepatic mRNA expression of Il1b, Il6, and Saa3. Expression data
were normalized to Actb expression and the mean of sham. **P ≤
0.01 in Mann−Whitney U test. n.s., not significant.

Figure 3. (A) Representative images of hematoxylin and eosin
(H&E)-stained liver sections 24 h after peritoneal contamination and
infection (PCI) or sham. Original magnification: 20×. Scale bar: 100
μm. (B) Representative images of immunohistochemical staining of
HMGB1 in livers from animals after PCI or sham. Immunohis-
tochemistry was performed using an anti-HMGB1 antibody visualized
with diaminobenzidine (brown). Original magnification: 10×. Scale
bar: 10 μm. Immunofluorescence staining of (C) F4/80-positive
hepatic macrophages and (D) Gr-1-positive myeloid cells. Cells
stained with primary antimouse monoclonal antibodies, a secondary
Cy3-labeled antibody (yellow), and DAPI nuclear stain (blue).
Original magnification: 20× (full) and 40× (insert). Scale bar: 20 μm
(full) and 10 μm (insert).

Figure 4. Results of test I: Boxplot of seven texture features indicating
significant differences between livers from mice after peritoneal
contamination and infection (PCI) and control animals (sham).
RMS: root-mean-square. SD: standard deviation.
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regions (tests II and III), the entropy of the CARS signal
remained a robust discriminator between livers from septic
mice and controls in both zones of the liver acinus (Supporting
Information Figures S3 and S4). In contrast, we only observed
a difference in the skewness of the TPEF signal when
comparing the pericentral and the periportal regions of livers
from animals with sepsis (test IV, Supporting Information
Figure S5) and no significant differences between the two
regions in nonseptic animals (test V, data not shown).
The result of multivariate analysis to distinguish between the

two groups based on the texture features obtained from
individual modalities was compared using receiver operating
characteristics (Figure 5). The ROC of the classifier trained on

CARS and TPEF features show the highest AUC of 0.93 and
0.83, respectively. The CARS signal at 2850 cm−1 maps the
CH2 functional group which is abundant in lipids and studies
have shown variations in the lipid profile during sepsis
development.28,29 The TPEF signal excited at 672.5 nm and
detected at 426−490 nm maps different autofluorophores,
particularly the NAD(P)H level, which is possibly altered at
the inflammation site due to higher cell activity or myeloid cell
infiltration.13,30−32 Our results show that TPEF (AUC = 0.83)
and CARS (AUC = 0.93) features can effectively characterize
the texture of the tissue, thus achieving a perfect diagnostic
ability for discriminating between the PCI and sham groups.
While the classifier trained on SHG features shows an AUC of
0.49. The SHG signal at 415 nm maps fiber structures such as
collagen, which can be used as a potential biomarker to
monitor sepsis severity.33−35 However, SHG features illus-
trated a poor diagnostic ability (AUC = 0.49) to discriminate
between the two groups, possibly due to poor collagen
metabolism in the early sepsis stage which the SHG features
fail to retain. Lastly, the classifier trained using features

obtained from all the three modalities achieved an AUC of
0.85. The low AUC of this classifier can be due to sample size
(nPCI = nsham = 5) smaller than the number of features (m =
27). In conclusion, the classifier trained on the CARS- and
TPEF-based features showed better performance than the
classifier trained on the features obtained from SHG to classify
the two groups.

■ CONCLUSION
We herein show that the application of multimodal imaging is
able to identify biochemical characteristics of septic liver injury
with high accuracy at an early time point, even in the absence
of significant histological changes. The morphological and
chemical composition changes extracted from multimodal
imaging provide information on metabolic changes in the early
phase of sepsis. As CARS proved most accurate to discriminate
septic from control livers, our results suggest early changes in
the hepatic intra- and extracellular lipid composition as
possible underlying reasons for the observed liver texture
transformation.
Although our analysis does not allow discrimination of a

specific class of lipids to be differentially regulated, these
findings are in agreement with reports of early changes of
sphingomyelin and cholesterol composition and metabolism in
animal models of septic liver damage occurring as early as 24 h
after the induction of sepsis.17,36 According to analysis, these
characteristics were found without anatomical preference in
both the periportal and the pericentral regions of liver lobules.
In summary, our data confirm nonlinear multimodal imaging
as a promising complementary method for the real-time, label-
free study of early septic liver damage.
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Figure S1. Representative liver sections from sham-treated animals as derived from H&E staining and multimodal 
imaging for sham treated animals showing pericentral (top panels) and periportal veins (bottom panels). (A, F) 
indicate H&E stained sections. (B, G) show multimodal images with (C, H) as the red channel indicating CARS 
signal. Similarly, (D, I) and (E, J) are the green and blue channel of the multimodal images indicating TPEF and 
SHG signal, respectively. The TPEF channel (D, I) was used for obtaining the binary mask due to its contrast 
between the tissue and vein region. Scale bar is 100µm for multimodal images and 500µm for H&E staining with 
original magnification 60×. Original magnification for multimodal images is 20×.
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Figure S2. Representative liver sections from animals with septic liver injury as derived from H&E staining and 
multimodal imaging for sham treated animals showing pericentral (top panels) and periportal veins (bottom panels). 
(A, F) indicate H&E stained sections. (B, G) show multimodal images with (C, H) as red channel indicating CARS 
signal. Similarly, (D, I) and (E, J) are the green and blue channel of the multimodal images indicating TPEF and 
SHG signal, respectively. The TPEF channel (D, I) was used for obtaining the binary mask due to its contrast 
between the tissue and vein region. Scale bar is 100µm for multimodal images and 500µm for H&E staining with 
original magnification 60×. Original magnification for multimodal images is 20×.
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Figure S3. Results of test II- Boxplot of significant features comparing the pericentral regions of livers from 
animals with sepsis versus sham-treated animals. Eight statistically significant features (p < 0.05 in Mann-Whitney 
U test) that discriminate between sepsis and sham are shown. RMS: Root-Mean-Square. SD: Standard deviation. 
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Figure S4. Results of test III- Boxplot of significant features comparing the periportal regions of livers from 
animals with sepsis versus sham-treated animals. Eight statistically significant features (p < 0.05 in Mann-Whitney 
U test) that discriminate between sepsis and sham are shown. RMS: Root-Mean-Square. 
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Figure S5. Results of test IV- (A) Boxplot of significant features comparing the pericentral versus periportal 
regions of livers from animals with sepsis. One statistically significant feature (p < 0.05 in Mann-Whitney U test) 
that discriminates between the periportal and the pericentral region is shown. (B) shows the multimodal image and 
its corresponding heatmap of skewness TPEF (normalized values) for the two veins. Red color indicates higher 
skewness values (normalized feature value = 1.00) whereas blue represents lower skewness values (normalized 
feature value = 0.0). Scale bar for multimodal image is 100µm.
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Local first order histogram feature extraction.

Let  be a gray scale image of size  and  be the 20µm region selected around the veins in the image. 𝐼(𝑥,𝑦,𝑧)  𝑟 × 𝑐 𝐽
Variables  and  denote the spatial coordinates of a seed pixel s.t.  and  denotes the intensity of the seed 𝑥 𝑦 (𝑥,𝑦) ∈ 𝐽 𝑧
pixel. To calculate the first order histogram feature locally, a window  of size  (such that ) is 𝑤 𝑚 × 𝑛  𝑚 < 𝑟,𝑛 < 𝑐
used around each seed pixel  to obtain an intensity histogram . Based on the intensity histogram , (𝑥,𝑦)  𝑝(𝑧𝑖 )  𝑝(𝑧𝑖)
nine statistical moments were calculated for a seed pixel. Here,  where  is the number of  𝑖 = 0,1,2,…..𝑇 ― 1, 𝑇
distinct intensity levels in window . For our analysis the window size was 5 and nine statistical  𝑤 (𝑚 = 𝑛 = 5) 
moments  for all pixels in  were calculated for CARS/TPEF/SHG channel. Nine feature , 𝒇𝒔𝒊𝒏𝒈𝒍𝒆 ∈ ℝ𝑠 (𝑠 = 9) 𝐽
images shown below indicate a liver tissue section of a septic mouse with the pericentral vein. Each feature image 
is a RGB image acquired by a combination of features obtained for all the three channels. For instance, an image 
of mean texture feature (first row, fourth column) is composed of mean texture feature of the CARS/TPEF/SHG 
signal as the red/green/blue channel respectively. The formula of the statistical moments, its description and feature 
images are given below. The feature images are shown on whole 1024×1024 pixel image for better visualization 
however, the features were extracted only for the selected region , since it was computational efficient. The  𝐽
original multimodal image of these feature images can be seen in Supporting Figure S5 (B).

Table S1. Nine statistical features calculated locally for every channel (CARS/TPEF/SHG) of the multimodal 
image. Scale bar is 100µm.

Statistical feature Description Formula Feature image

Mean
Describes the average 
tendency of the intensity in a 
region.

𝑚 =  
𝑇 ― 1

∑
𝑖 = 0

𝑧𝑖𝑝(𝑧𝑖)

Median
Gives a rough idea about the 
shape of the histogram.

The median is the value that separates 
the lower and upper half of the sorted 
array of pixel values

Standard deviation
Deviation of the intensity 
values of the histogram. 𝜎(𝑧) =  

𝑇 ― 1

∑
𝑖 = 0

(𝑧𝑖 ― 𝑚)2 𝑝(𝑧𝑖)

Variance
Describes how far a value 
lies from the mean. 𝜎2(𝑧) =  

𝑇 ― 1

∑
𝑖 = 0

(𝑧𝑖 ― 𝑚)2 𝑝(𝑧𝑖)

Skewness
Degree of asymmetry of the 
histogram. 𝜇3(𝑧) =  

𝑇 ― 1

∑
𝑖 = 0

[𝑧𝑖 ― 𝑚
𝜎 ]

3

Energy
The value is lowest of coarse 
texture 𝑈(𝑧) =  

𝑇 ― 1

∑
𝑖 = 0

𝑝2(𝑧𝑖)
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Entropy
Variability in intensity 
values. 𝑒(𝑧) = ―

𝑇 ― 1

∑
𝑖 = 0

𝑝(𝑧𝑖)log2 𝑝(𝑧𝑖)

Kurtosis
Characterizes the relative 
peakedness and flatness of 
the histogram.

𝛾2 =  
𝑇 ― 1

∑
𝑖 = 0

{[𝑧𝑖 ― 𝑚
𝜎 ]

4} ― 3

RMS
It is a measure of differences 
of intensity values. 𝑟𝑚𝑠 =  

𝑇 ― 1

∑
𝑖 = 0

𝑧𝑖
2
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Semantic Segmentation of Non-linear Multimodal Images for Disease
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Abstract: Non-linear multimodal imaging, the combination of coherent anti-stokes Raman scattering (CARS), two-
photon excited fluorescence (TPEF) and second harmonic generation (SHG), has shown its potential to assist
the diagnosis of different inflammatory bowel diseases (IBDs). This label-free imaging technique can support
the ‘gold-standard’ techniques such as colonoscopy and histopathology to ensure an IBD diagnosis in clinical
environment. Moreover, non-linear multimodal imaging can measure biomolecular changes in different tissue
regions such as crypt and mucosa region, which serve as a predictive marker for IBD severity. To achieve a
real-time assessment of IBD severity, an automatic segmentation of the crypt and mucosa regions is needed. In
this paper, we semantically segment the crypt and mucosa region using a deep neural network. We utilized the
SegNet architecture (Badrinarayanan et al., 2015) and compared its results with a classical machine learning
approach. Our trained SegNet model achieved an overall F1 score of 0.75. This model outperformed the
classical machine learning approach for the segmentation of the crypt and mucosa region in our study.

1 INTRODUCTION

Histopathological examination represents the ‘gold-
standard’ for diagnosing inflammatory bowel disease
(IBD), where the quantification of colonic inflamma-
tion is based on the visual appearance of the tissue.
However, histopathology delays the diagnosis due to
a long sample preparation protocol that includes tak-
ing biopsies, tissue embedding, tissue sectioning and
staining. In this regard, label-free imaging techniques
like multiphoton microscopy (MPM) has been rec-
ognized as an in vivo imaging technique for IBD
diagnostics (Schürmann et al., 2013) (Chernavskaia
et al., 2016) (Waldner et al., 2017). These label-
free techniques allow a non-destructive investigation
of biomolecules in tissue with high tissue penetra-
tion depth and spatial resolution (Cicchi and Pavone,
2014) (Vogler et al., 2015).

In the past, MPM techniques like two-photon ex-

cited fluorescence (TPEF) and second harmonic gen-
eration (SHG) along with coherent anti-stokes Raman
scattering (CARS) were used to visualize biomolecu-
lar changes associated with IBDs. Biomolecular in-
formation like changed CARS, TPEF and SHG signal
intensity along with the crypt morphometries served
as predictive marker for an inflamed colon tissue.
Likewise, Chernavskaia et al. presented a predictive
modelling of histological indexes associated with IBD
based on the biomolecular changes of the crypt and
mucosa region. Such an automatic predictive mod-
elling of histological indexes is beneficial to accel-
erate IBD diagnosis. In the work of Chernavskaia
et al., the crypt and mucosa region were manually
segmented, so a full automatization of the predictive
modelling of histological indexes requires a seman-
tic segmentation of crypt and mucosa region without
manual effort.

Semantic segmentation of the crypt and mucosa
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region is challenging due to several reasons. First,
shape irregularities of the crypts add a large biolog-
ical variance to the data. For example, an inflamed
colon tissue reveals crypt deformations and a loss of
crypt density, whereas regularly shaped crypts can be
found in healthy colon tissue. Second, the crypts are
located within the mucosa and therefore the two re-
gions overlap, making the classification even more
difficult. Third, the identification of the crypt bound-
aries is complicated as they are closely located to each
other. Lastly, there is a limited amount of annotated
medical data, which captures various tissue structures
of an inflamed colon. The above mentioned reasons
lead to a high morphological variance of the tissue
structures thereby making the semantic segmentation
of the crypt and mucosa challenging. For this segmen-
tation task machine learning algorithms can be uti-
lized, either classical machine learning or deep learn-
ing. Due to this challenging segmentation task men-
tioned above a high domain-specific representation is
needed, which is difficult to obtain using hand-crafted
features in classical machine learning.

On the other hand, deep convolutional neu-
ral networks (DCNNs) are capable of learning
domain-specific representations of an image and have
achieved successful results in image classification
(Babaie et al., 2017) (Krizhevsky et al., 2012a), object
recognition (Pathak et al., 2018) and semantic seg-
mentation (Roth et al., 2015) (Long et al., 2014). Ex-
isting DCNNs like U-Net (Ronneberger et al., 2015)
and SegNet (Badrinarayanan et al., 2015) have gained
state-of-the-art results in biomedical image segmenta-
tion and in the field of digital pathology (Janowczyk
and Madabhushi, 2016). In this study, we utilize DC-
NNs to semantically segment multimodal images into
biologically significant regions for assisting the pre-
dictive modelling of histological indexes. Further-
more, we compare the segmentation results obtained
by a DCNN with a classical machine learning ap-
proach.

The paper is organized as follows: In section 2
we introduce the previous work related to gland seg-
mentation of histology images, in section 3 we outline
our multimodal image dataset and our segmentation
workflow. This is followed by a description of the
evaluation metrics and a presentation of the results in
section 4. We discuss and conclude our work in sec-
tion 5 and 6, respectively.

2 RELATED WORK

Medical Image Segmentation (MIS) can be utilized
for numerous applications like identifying tissue

structures, cell counting, lesion and tumour detection
(Norouzi et al., 2014). The approaches for MIS can
be categorized into three types. First, the segmen-
tation using classical image processing techniques
like thresholding, morphological operations and wa-
tershed transform (Wu et al., 2005). Second, train-
ing a classification model based on handcrafted im-
age features (classical machine learning) like statis-
tical features, grey level co-occurrence matrix fea-
tures and local binary patterns (Farjam et al., 2007)
(Doyle et al., 2007) (Naik et al., 2008) (Guo et al.,
2018). And the third approach is the segmentation
using high-level features obtained by a DCNN (Kainz
et al., 2017) (Awan et al., 2017) (Chen et al., 2016).

Wu et al. utilized classical image processing al-
gorithms including thresholding and seeded region
growing for segmentation of the human intestinal
glands. However, this method considered a prior
knowledge of the morphological structures of the
gland and was qualitatively evaluated (Wu et al.,
2005). In another approach by Peng et al., k-means
clustering and morphological operations were used
to segment the prostate glandular structures. Based
on these structures a linear classifier to distinguish
normal and malignant glands was constructed (Peng
et al., 2011). Peng et al. utilized a k-means clustering
algorithm directly on the colour information. There-
fore, the approach is not incorporating shape and tex-
ture features, which are important for crypt segmen-
tation.

In the contribution by Farzam et al. and Doyle et
al., texture, shape and graph-based features were ex-
tracted within a classical machine learning approach.
Based on these features, a linear classifier to dis-
tinguish different pathological tissue sections of the
prostate cancer patients was built (Farjam et al., 2007)
(Doyle et al., 2007). In the work presented by Naik
et al., a Bayesian classifier was used to identify true
lumen areas and the false positive lumen areas were
removed by applying size and structure constraints.
Using the true lumen area, a level set curve (Li et al.,
2005) was initialized and evolved until the interior
boundary of the nuclei. Morphological features (like
distance ratio, compactness, area overlap ratio) were
calculated based on the boundaries of the detected lu-
men area and nuclei. This was followed by a mani-
fold learning scheme called Graph Embedding algo-
rithm (Shi and Malik, 2000) to reduce the dimension
of the feature space. Based on the reduced feature
space, a support vector machine (SVM) algorithm
was used to classify the images into different Glea-
son grades of prostate cancer (Naik et al., 2008). The
above-mentioned methods efficiently segmented reg-
ularly shaped gland structures but faced challenges in

Semantic Segmentation of Non-linear Multimodal Images for Disease Grading of Inflammatory Bowel Disease: A SegNet-based
Application
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segmenting irregularly shaped gland structure.
To tackle this problem, Gunduz-Demir et al. pro-

posed an object-graph based approach that relies on
decomposing an image into objects. Their approach
used a three-step region growing algorithm, followed
by boundary detection and false region elimination
(Gunduz-Demir et al., 2010). In another work by Sir-
inukunwattana et al. (Sirinukunwattana et al., 2015),
a Random Polygons Model (RPM) to segment glan-
dular structure in human colon tissue was formulated.
The glandular structures were modelled as polygons
with random vertices that were located on the cell
nuclei within the epithelium. Based on the spatial
arrangement of the epithelial nuclei and neighbour-
ing nuclei, an inference of the RPM was made via
Reversible-Jump Markov Chain Monte Carlo simu-
lation. False positive polygons were removed by
post-processing procedures (Sirinukunwattana et al.,
2015). While this technique is stochastic in nature, it
can produce different results for the same image and
thus a robust approach is needed.

Approaches using DCNNs like AlexNet
(Krizhevsky et al., 2012b), VGGNet (Simonyan
and Zisserman, 2014), GoogLeNet (Szegedy et al.,
2014), U-Net (Ronneberger et al., 2015) and SegNet
(Badrinarayanan et al., 2015) have achieved promis-
ing results in MIS. The recent MICCAI 2015 Gland
Segmentation Challenge presented several innovative
algorithms for segmentation of colon glands in
histology images (Sirinukunwattana et al., 2015).
Chen et al. achieved state-of-the-art performance on
the Warwick-QU colon adenocarcinoma dataset by
integrating multi-level feature representation with
Fully Convolutional Network (FCN) (Chen et al.,
2016). Likewise, Kainz et al. used two DCNN that
were inspired by the LeNet-5 architecture (LeCun
et al., 1998) (Kainz et al., 2017). The first DCNN was
used to separate the closely located gland structures
and the second DCNN was used to distinguish gland
and non-gland regions (Kainz et al., 2017). In Awan
et al., a DCNN was used to mark gland boundaries
and based on the glandular shape, a two-class and
three-class classification model for colorectal ade-
nocarcinoma using histology image was designed
(Awan et al., 2017).

In this contribution, we intend to use a SegNet
model (Badrinarayanan et al., 2015) for the semantic
segmentation of non-linear multimodal images into
four distinct regions. Our method is different to the
described previous works in the following ways:

• This work is the first to implement semantic seg-
mentation of crypts and mucosa region in non-
linear multimodal images. All the above methods
have been implemented on H&E (Hematoxylin

and Eosin) stained image which needs a long sam-
ple preparation time and leads to sample destruc-
tion. In contrast, label-free non-linear multimodal
imaging can be used as an in vivo technique and its
automatic tissue classification can provide a real-
time histological index prediction.

• Our method is adapted to multimodal images that
show low SNR and are hard to analyze (Vogler
et al., 2015).

• Unlike other machine learning methods, we per-
form a four-class semantic segmentation of multi-
modal images. In addition to the crypt region we
also segment the mucosa region that can be used
to assign a histological index.

3 MATERIAL AND METHODS

3.1 Dataset

For this study, we utilized an already published
dataset composed of twenty multimodal images sam-
pled from twenty IBD patients. Each multimodal im-
age was converted to an RGB image, which was con-
structed based on the three modalities, CARS at 2850
cm−1 (red channel), TPEF at 458 nm (green chan-
nel) and SHG at 415 nm (blue channel). We followed
the same image pre-processing steps as explained by
Chernavskaia et al. which included downsampling
of the multimodal image followed by median filter-
ing, uneven illumination correction (Legesse et al.,
2015), background estimation and contrast adjust-
ment (Chernavskaia et al., 2016). The dataset was
randomly divided into 11 training, 5 validation and 4
test images. The training dataset was augmented us-
ing a rotation angle 60°and 90°.

A histological index between 0 (healthy) and 2
(severe disease) based on crypt architecture, mucosal
chronicity and activity was assigned to every image
by a trained pathologist. In addition, manually an-
notated crypt and mucosa regions were obtained as a
false-colour image (as shown in figure 1). The man-
ually annotated image is partitioned into four subre-
gions Rl , l = {0, 1, 2, 3}: mucosa without crypt (R0)
labelled as 0, crypt (R1) labelled as 1, non-mucosa
(R2) labelled as 2 and background (R3) labelled as 3.

Table 1: Overview of the dataset.

Dataset # images
Rotation

angle
Total

# patches
# selected
patches

Train 11 0°, 60°, 90° 9.228 3.990
Validation 5 0° 1.168 1.168

Test 4 0° 880 880
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An activation map of the (m+ 1)th encoder layer
is given as:

xm+1 = [MAX{ReLU[CONVm{xm}+bm]}] (1)

CONV{.} is the convolution operator, ReLU[.] is
the rectified linear unit function: f (x) = max(0,x),
MAX{.} is the max pooling layer with a receptive
field of (2×2) and a stride of 2, mε{1,2. . . . . . ..,13}
represent index of the convolution layer and bm is the
learned bias of mth layer. The decoder consists of
an upsampling, convolution and batch normalization
layer. An activation map ym+1 of the (m+1)th de-
coder layer is given as:

ym+1 = NORM[CONVm{US(ym)+bm}] . (2)

Here, ym is the activation map of mth layer, US(.) is
the upsampling layer and NORM[.] is the batch nor-
malization layer. The features from the last layer
of the decoder are fed to a softmax activation layer.
The output of the softmax layer is a c channel im-
age, where c represents the number of classes. A seg-
mented image is generated by assigning each pixel to
the class, which had the maximum probability.

3.3.2 Segmentation Workflow

The semantic segmentation of the multimodal image
into four regions was performed using a patch based
convolutional neural network approach (Jaremenko
et al., 2015). This workflow was implemented using
Python with the Deep Learning Library Keras (Chol-
let et al., 2015) with Theano backend (Theano Devel-
opment Team, 2016).

The model construction started with a patch ex-
traction and a patch selection. Each multimodal im-
age (denoted by I) of size M×N was divided into
patches (denoted by P) of size 256×256 pixels with-
out any overlap. The number of patches per image
was different as our images were different in size.
Each patch Pi can be partitioned into at most four
sub-regions (denoted as R0, R1, R2, R3) such that⋃3

l=0 Rl = P where
⋃

represents union set. To remove
the background patches from the training set, a homo-
geneity factor (H =∑

K
s=1 ∑

K
t=1

pst
1+|s−t| , where pst is the

probability of relative position of a pixel pair, K is the
distinct intensity level) was calculated for each patch
and a threshold of 60% was optimized such that all
the patches belonged to the tissue section. This led to
9.228 training patches. The patches from validation
and test set were used for model evaluation. Table 1
shows an overview of the dataset and the patches.

For patch training, the SegNet model (Badri-
narayanan et al., 2015) was trained end-to-end to
classify the pixels of the multimodal patch into the

four regions. The input of the SegNet model (Badri-
narayanan et al., 2015) was a multimodal patch and
the output of the model was a segmented patch. The
weights of the encoder layers were initialized using
VGG16 model pre-trained on ImageNet dataset (Si-
monyan and Zisserman, 2014) (Russakovsky et al.,
2014). We trained the model using a mini-batch of
five patches and the stochastic gradient descent op-
timizer to minimize the cross-entropy loss function.
The learning rate was set to 10−4 and the training was
terminated when the validation loss converged. The
total training time was approximately 3 hours on a
single NVIDIA GeForce GTX 1060 (6GB memory).

The model performance was evaluated on the test
patches. The predicted patches were combined into
a whole image, which was called ‘segmented map’.
This segmented map was post-processed using mor-
phological operations like removing blobs and filling
holes. The segmented map was visualized as a false-
colour image, wherein the regions R0 (mucosa with-
out crypt), R1 (crypt), R2 (non-mucosa), R3 (back-
ground) were indicated in green, red, blue and black,
respectively. The segmented map was visually evalu-
ated, and the quantitative evaluation of the segmented
regions was performed by calculating the F1 score
and recall as explained in section 4.

4 RESULTS

4.1 Qualitative Evaluation

We visually inspected the segmented map of the vali-
dation and the test images. The segmentation of reg-
ularly shaped crypts for images with architecture = 0,
chronicity = 0, activity = 0, was good. On the other
hand, the model performed poorly for segmenting ir-
regularly shaped crypts observed in architecture>0
and chronicity>0. The segmentation of the mucosa
region was good for all images. We believe that
training the SegNet model (Badrinarayanan et al.,
2015) with more images of histological index greater
than 0 can improve the segmentation performance for
images with higher histological indexes, e.g. with
stronger altered crypt structures. Also a good qual-
ity image with high SNR is required for training the
model.

4.2 Quantitative Evaluation

One of the evaluation metrics for classification prob-
lems is accuracy, which is misleading for unbalanced
class sizes. In our case the number of background
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5 DISCUSSION

In this paper, we presented a semantic segmentation
of non-linear multimodal images to automatize the
predictive modelling of histological indexes for char-
acterizing inflammatory bowel disease stages. We
used a SegNet (Badrinarayanan et al., 2015) model
for the segmentation of multimodal images into mu-
cosa and crypt regions. Moreover, we compared the
SegNet (Badrinarayanan et al., 2015) based semantic
segmentation of multimodal images with a classical
machine learning approach.

For the classical machine learning approach, tex-
ture features and linear classifier (PCA-LDA) was
chosen due to simplicity. In order to make a fair
comparison between the two approaches, same set of
training images were used and the window size in
the machine learning approach was set comparable to
the receptive field of the SegNet model. Optimizing
the window size for the machine learning approach
did not affect the performance significantly, rather
smaller window size increased the computation time.
It was observed that the classical machine learning ap-
proach along with the hand-crafted features lack the
ability to segment the tissue regions, due to a disturb-
ing biological variance resulting from different grades
of IBD. As these hand-crafted features are calculated
using the intensity at pixel-level, it failed to retain the
intrinsic shape information of the crypts. While man-
ually calculated texture features were incapable of
segmenting the crypt and mucosa regions, deep neu-
ral network like SegNet (Badrinarayanan et al., 2015)
achieved reasonable to good result.

Our SegNet model was trained using categori-
cal cross entropy loss function which considers ev-
ery pixel as an independent sample and asserts equal
learning for all pixels. This is a drawback for images
with unbalanced classes. Therefore, we believe that
weighted pixel wise cross entropy and dice loss func-
tion can segment the multimodal images effectively.
The weighted pixel wise cross entropy loss in the U-
net (Ronneberger et al., 2015) assisted the segmen-
tation of closely located cells in biomedical images.
Similarly for closely located crypts more advanced
loss functions (Hashemi et al., 2018) can be imple-
mented.

Deep learning approach can generalize the diver-
sity in the underlying data and learn domain-specific
representations, although it manifests certain draw-
backs. Firstly, it is difficult to understand the con-
tribution of the CARS, TPEF and SHG signal in-
tensity for the segmentation of the mucosa and the
crypts. Secondly, a deep learning approach requires
large amount of good quality data which is difficult to

obtain particularly in a new technique like non-linear
multimodal imaging. Thus, a data augmentation was
needed.

For data augmentation, the multimodal images
were randomly rotated to consider arbitrary orienta-
tions of the multimodal images. This helped to con-
struct a rotation-invariant model. The patches out-
side the image grid were zero-padded and were fil-
tered by the patch selection process before training
the model. However, another possibility could be to
mask these zero-padded regions in the loss calcula-
tion during model training. Other augmentation tech-
niques like zooming, shearing and resizing of the im-
ages affected the spatial resolution and the crypt ar-
chitecture in the multimodal image. Therefore these
techniques were not applied.

In addition to data augmentation, a patch-based
DCNN was used to increase the training data and also
retain the crypt architecture. The patch size 256×256
was optimized such that maximum tissue structure is
retained. Smaller patch size failed to retain informa-
tion between the crypts and generated more data mak-
ing the training computationally expensive. The patch
based DCNN worked efficiently, but due the com-
bining of the patches to an image a “blocky effect”
was generated. “Blocky effect” can also be generated
due some other factors like the use of ’same’ convolu-
tions instead of ’valid’ convolutions and odd number
of feature maps before the pooling layer during train-
ing process.

To tackle this “blocky effect” simple post-
processing methods were applied, which include mor-
phological operations like remove blobs and region
filling to eliminate false positive regions. These post-
processing methods improved the segmentation re-
sults qualitatively. However, quantitative evaluation
of these methods did not show significant changes in
the F1 score and recall. Therefore, more complicated
post-processing procedures like conditional random
field (CRF) (Sutton and McCallum, 2012) are needed
which can remove the false positives and improve re-
sults quantitatively. Nevertheless, these procedures
increase the model complexity. Our post-processing
methods led to an under segmentation of the crypts
in some patches. This can be misleading in assess-
ing the histological index as fusion of two regularly
shaped crypts can be identified as one deformed crypt,
leading to false prediction of IBD stage. Therefore,
care must be taken while choosing appropriate post-
processing procedures.

On the whole, a robust model can be constructed
for segmenting the multimodal images with a large
number of good quality images. Further, advanced
loss function and post-processing procedures as men-
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tioned above will need to be explored in future stud-
ies.

6 CONCLUSIONS

In summary, we achieved a quantitative evaluation
of a semantic segmentation task of non-linear mul-
timodal images to complement IBD diagnosis. An
automatic segmentation of the crypt and mucosa re-
gion can reduce the manual diagnostic effort and can
be used to predict histological indexes in real-time
based on non-linear multimodal images. One limi-
tation of our work was a small database with only a
few exemplars of high histological index levels. Nev-
ertheless, in future, a large dataset of annotated multi-
modal images to evaluate the model will be generated
and this will improve the model presented here. In
conclusion, non-linear multimodal imaging can assist
the ‘gold-standard’ techniques and can be utilized un-
der clinical conditions. Furthermore, incorporating a
model for automatic segmentation of multimodal im-
ages into the multimodal microscope can provide a
real-time histological index prediction and accelerate
the start of a clinical therapy.
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Abstract: Hematoxylin and Eosin (H&E) staining is the ‘gold-standard’ method in histopathol-
ogy. However, H&E staining requires long sample preparation time, which restricts its application
for ‘real-time’ disease diagnosis. Due to this reason, a label-free alternative technique like
non-linear multimodal (NLM) imaging, which is the combination of three non-linear optical
modalities including coherent anti-Stokes Raman scattering, two-photon excitation fluorescence
and second-harmonic generation, is proposed in this work. To correlate the information of the
NLM images with H&E images, this work proposes computational staining of NLM images
using deep learning models in a supervised and an unsupervised approach. In the supervised
and the unsupervised approach, conditional generative adversarial networks (CGANs) and cycle
conditional generative adversarial networks (cycle CGANs) are used, respectively. Both CGAN
and cycle CGAN models generate computationally stained H&E images, which are quantitatively
analyzed based on mean squared error, structure similarity index and color shading similarity
index. The mean of the three metrics are >5×103, ≥0.55 and ≥0.9, respectively. Overall, the
computationally stained H&E images obtained from CGAN and cycle CGAN model shows
promising results and can be utilized for diagnostic applications without performing a laboratory
based staining procedure. To the author’s best knowledge, it is the first time that NLM images are
computationally stained to H&E stained images using GANs in an unsupervised manner.

© 2020 Optical Society of America

1. Introduction

Conventional staining techniques, like histopathological (H&E) staining, require long staining
protocols and do not exhibit functional and bio-molecular information, but is the ‘gold-standard’
for tissue diagnostics. If bio-molecular information is needed for diagnostics, it must be
acquired using molecular imaging techniques. One of the molecular imaging techniques,
which can complement the ‘gold-standard’ histopathological staining technique, is non-linear
multimodal (NLM) imaging. NLM imaging provides not only structural but also bio-molecular
information [1, 2]. Here, we define NLM imaging as the combination of three non-linear optical
modalities, namely coherent anti-Stokes Raman scattering (CARS) microscopy, two-photon
excitation fluorescence (TPEF) microscopy and second-harmonic generation (SHG) microscopy.



These three modalities highlight the distribution of biomolecules like collagen, NADH, proteins
and lipids [2, 3]. Furthermore, these molecular imaging modalities are label-free and provide
highly resolved images of biological tissues. The non-destructive nature of these modalities is
suitable for in vivo studies. Due to these properties and the fact that NLM imaging provides
morphological and functional information of a tissue sample, this imaging technique is beneficial
for tissue imaging and other biomedical applications [3] like investigations of skin diseases [4–6],
diagnostics of head-neck cancer [7, 8], classification of brain tumors [9], and characterization of
inflammatory bowel disease samples [10].
Despite the ever-increasing use of NLM imaging, its establishment in clinics is not achieved

until now. One of the reasons is the complexity to understand the multimodal images, due to its
high spatial resolution and its contrast associated with various biomolecules. To understand these
molecular sensitive images and link it to standard histopathological stained images, a parallel
tissue section is stained with conventional staining procedures. Subsequently, the stained parallel
section is compared with the NLM image. This comparison is laborious, which reduces the
advantage of NLM imaging. Therefore, comparison of histopathology and NLM images require
an automatic translation of both images.
An automatic translation of different modalities to histopathology can aid intraoperative

histopathologic diagnosis and efficient decision-making during surgery [11]. In this context,
researchers in 2016 performed the modality transfer of NLM images to histopathological stained
H&E images by image analysis and machine learning methods [12]. Although their work showed
comparable results, the approach had two limitations. Foremost, the colors in the generated
H&E images were different compared to the histopathologically stained H&E images. Secondly,
their work trained a machine learning model that required a corresponding pair of NLM images
and histopathologically stained H&E images. This training procedure is time-consuming as the
histopathologically stained H&E image of the same tissue section must be prepared and registered
to the coordinate space of the NLM image before constructing the machine learning model. For
the modality transfer using a machine learning model, the multimodal image registration is a
difficult task due to tissue alterations that occur during the staining procedure.

In contrast, our work presents an improvement of the work of Bocklitz et al., 2016 in terms of
the staining results and the required manual effort for modality transfer. This was achieved by
utilizing deep learning models instead of conventional machine learning methods. Briefly, deep
learning models, specifically generative adversarial networks [13], were utilized to translate NLM
images into computationally stained H&E images. This work was performed in a supervised and
an unsupervised approach, where a paired [14] and an unpaired image translation [15] of the
NLM image was performed, respectively. The supervised approach or paired image translation
required a corresponding pair of images measured with the two modalities (NLM imaging
and H&E staining), while the unsupervised approach did not require paired images of the two
modalities. Like the previous work of Bocklitz et al. 2016, the supervised approach has the
limitation of registering the histopathologically stained H&E images to the corresponding NLM
images. On the other hand, the unsupervised approach does not require the image registration of
the two modalities.
The supervised and unsupervised approach utilized a conditional generative adversarial

network (CGAN) [16] and a cycle conditional generative adversarial network (cycle CGAN) [14],
respectively. CGANs are commonly used in computer vision tasks for translating images [14], but
they were never used to translate an NLM image to a H&E stained image. Common applications
of CGAN in computer vision are the transformation of photographs acquired in daylight into
photographs of night scenes, or the transfer of horse images into images of zebras. Likewise,
its application in the biomedical and optical field is gaining popularity [17–23]. Recent works
transformed auto-fluorescence images [24] or hyperspectral images [25] into histopathologically
stained H&E images using CGANs. A similar approach was performed for translating quantitative



Fig. 1. (A) shows a pre-processed non-linear multimodal image with CARS, TPEF and
SHG as the red, green and blue channel, respectively, (B) visualizes pathologically
stained (or unregistered) H&E image used for unsupervised pseudo-stain H&E model,
(C) depicts a registered H&E stained image used for supervised pseudo-stain H&E
model. The image in (C) shows the registration effect, which is filled with zeros. The
images in (D) and (E) are computationally stained H&E images with the supervised
and unsupervised approach, respectively. All images are downscaled to 20% of the
original size for clarity. The scale bar in all images represents 100 `m.

phase imaging into three different stains, namely H&E stain, Jone’s stain, and Masson’s trichrome
stain [26]. CGANs were also employed to increase the spatial resolution [27, 28] and remove
speckle noise from optical microscopic images. Similarly, the cycle CGAN were utilized to
stain a H&E stained image into an immunohistochemically (IHC) stained image. The generated
IHC image was used to reconstruct the original H&E stained image [29]. As mentioned earlier,
unpaired image translation is advantageous as co-registration of images from different modalities
is not needed, but the model for the unpaired image translation needs to be more complex as
compared to the model for paired image translation.
Our work is different from the state-of-the-art methods because it is the first time that NLM

images were used for an unsupervised transfer to H&E stained images. While performing the
unsupervised modality transfer, the corresponding difficulties were tackled. First of all, the
different contrast between the two modalities makes the image translation task complicated.
Furthermore, the NLM images used in this work are measured from tissue of patients with different
disease severity (namely Inflammatory bowel disease), which is reflected in the alterations of the
tissue structure and changes in the pixel contrast [30]. The availability of NLM images is limited,
which is problematic because the training of adversarial networks requires large datasets. Lastly,
we evaluated the modelling quantitatively by considering perceptual or texture information and
color information. Overall, this work is an improvement of the state-of-the-art method presented



by Bocklitz et al. in 2016 [12], based on paired and unpaired image translation of NLM images
into H&E stained images.

2. Material and methods

2.1. Dataset

The dataset used in this work is published elsewhere [30]. It contains 19 pairs of non-linear
multimodal images (referred to as MM) and histopathologically stained images (referred to as
H&E) (see Fig. 1). The non-linear multimodal image is an RGB image where each channel
represents one of the three non-linear optical modalities. Precisely, the CARS signal, the TPEF
signal, and the SHG signal form the red, green and blue channel of the RGB image, respectively.
The spatial (pixel) resolution of the non-linear multimodal image is 0.227 `m/pixel (see Fig. 1A).
For the histopathologically stained H&E images, the corresponding tissue sections were stained
by an experienced pathologist. The (digital) histopathologically stained H&E images in the form
of slide scanner files were extracted using Aperio Image scope software with a spatial resolution
approximately equal to the MM image. The spatial resolution of the extracted H&E stained image
is 0.219 `m/pixel (see Fig. 1B). The corresponding pairs of MM and H&E stained images were
used to construct a “pseudo-stain H&E model” based on the conditional generative adversarial
networks in a supervised and an unsupervised approach. The pseudo-stain H&E model was
trained using 13 image pairs and tested on six image pairs. For building the pseudo-stain H&E
model, both images were pre-processed, and the H&E image was registered to the MM image
only for the supervised approach.

2.2. Image pre-processing of histopathologically stained H&E image

The histopathologically stained H&E image was registered to the coordinate space of the
corresponding MM image using the Image processing toolbox in Matlab 2018a. For the image
registration purpose, the MM and H&E images were converted to grayscale, followed by contrast
inversion of the H&E image. The contrast inversion was achieved by subtracting the pixel values
in each channel of the H&E image by 255. The inverted H&E image (grayscale) was used
as a moving image, and the corresponding MM image (grayscale) was used as a fixed image.
Subsequently, a multimodal image registration [31] based on the mutual information metric
was performed using the MM and the H&E images. The registered H&E image (see Fig. 1C)
was used for the supervised approach or paired image translation, while the unregistered H&E
image (see Fig. 1B) was utilized for the unsupervised approach or unpaired image translation.
Further, patches of size 256×256 were extracted from the registered and the unregistered H&E
image. All the H&E patches were scaled in the range [-1,1] before model training. The patches
from the registered H&E image were used to train the CGAN model, while the patches from the
unregistered H&E image were used to train the cycle CGAN model (see Fig. 2A and Fig. 2B).

2.3. Image pre-processing of non-linear multimodal image

The data acquisition and pre-processing of non-linear multimodal images were similar to
Chernavskaia et al., 2016 [30]. Briefly, the pre-processing steps included median filtering,
downsampling by a factor of 4, correcting the uneven illumination and adjusting the contrast of
the MM images. A pre-processed MM image is shown in Fig. 1A. Subsequently, the contrast
of MM images was inverted by subtracting the pixel values by 255. Further, patches of size
256×256 were extracted from the “contrast-inverted” MM image (see Fig. 2C and Fig. 2D).
These patches were filtered separately for the supervised and unsupervised approach. For the
supervised approach or the CGAN model, the pair of MM and H&E patch showing registration
artefact were removed. The registration artefacts were seen at the borders of the registered H&E
image, which were filled with zero values during registration (see Fig. 1C). For the unsupervised



Fig. 2. (A) is a histopathologically stained H&E image, (B) shows the image pre-
processing of a histopathological stained H&E image including image registration and
patch extraction of size 256×256, (C) is a corresponding non-linear multimodal image,
(D) visualizes the contrast inversion of the non-linear multimodal image followed by
patch extraction of size 256×256, (E) shows a CGANmodel for paired image translation
which utilizes the registered H&E images and contrast inverted multimodal images, (F)
depicts a cycle CGAN model for unpaired image translation using unregistered H&E
images and contrast inverted multimodal images.

method or the cycle CGAN model, the MM and H&E patches belonging to the background
region were removed using the homogeneity factor [32], i.e. the patches with homogeneity factor
greater than 60% were removed [32]. Similar to the H&E patches, all the selected MM patches
were normalized in the range [-1,1] before model training.

2.4. Conditional generative adversarial network

The conditional generative adversarial network (CGAN) used in this work was inspired by
the Pix2Pix model developed by Isola et al., 2017 [14]. The Pix2Pix model comprised of
a generator (G) and a discriminator (D) (see Fig. 2E). The generator with an autoencoder
architecture [33] transforms a contrast-inverted MM patch (G<) to a computationally stained H&E
patch (I64=4A0C43 = G(G<)) which looked visually similar to the histopathologically stained
H&E patch (IC0A64C ). The input to the generator was a pre-processed MM patch (see column B



in Fig. 3) and a target (or histopathologically stained) H&E patch (see column C in Fig. 3). The
computationally stained H&E patch, i.e. output of the generator, (see column D in Fig. 3) was
evaluated by calculating mean absolute error with the target H&E patch and was optimized to be
minimal. The discriminator model was trained to predict the plausibility of the computationally
stained H&E patch (I64=4A0C43). In simpler words, the discriminator model was trained to predict
if the computationally stained H&E patch was ‘fake’ (i.e. not belonging to histopathologically
stained H&E patches) or ‘real’ (i.e. belonging to the original dataset of histopathologically
stained H&E patches). The details of the generator and discriminator networks are elaborated
below.
The generator network was inspired by the U-Net model [34] which is an autoencoder. The

autoencoder model had eight blocks in the encoder and the decoder part. Each block of the
encoder utilized convolution layer, batch normalization layer and Leaky ReLU activation layer.
The last layer of the encoder was a bottleneck layer without batch normalization layer. The eight
encoder blocks comprised of 64, 128, 256, 512, 512, 512, 512 and 512 filters, respectively. On
the other hand, each decoder block comprised of a convolution layer, batch normalization layer,
dropout layer with a 50% dropout rate and ReLU activation layer. Like the encoder network, the
first layer of the decoder did not use a batch normalization layer. The layers in eight decoder
blocks comprised of 512, 1024, 1024, 1024, 1024, 512, 256 and 128 filters, respectively (after
concatenation from the encoder). All the convolutional layers in the encoder and the decoder
blocks used a kernel size of 4 and stride size of 2. The encoder and the decoder models were
linked through ‘skip-connections’ similar to the U-Net architecture. The output layer of the
generator was a single convolutional layer with three channels and tanh activation function. The
output of the generator was a computationally stained H&E image (I64=4A0C43 = G(G<)) which
was one part of the discriminator network’s input.

The discriminator network was a standard convolutional neural network with input as computa-
tionally stained (I64=4A0C43) and histopathologically stained H&E patch (IC0A64C ) of size 256×256.
The architecture of the discriminator network was inspired by the ‘PatchGAN’ discriminator
given in reference [14]. The basic idea of the PatchGAN discriminator model is to classify an
# × # region in the " × " input image (# < ") as ‘real’ or ‘fake’, instead of classifying the
whole " × " input image as ‘real’ or ‘fake’. In our case, " = 256 and # = 70 i.e. a 70 × 70
region in the 256× 256 computationally stained H&E patch was classified as ‘real’ or ‘fake’. The
70 × 70 region is termed as the ‘receptive field’. The output of the discriminator model was a
map with 16 × 16 values scaled using a sigmoid activation function. In other words, each value
in the 16 × 16 sigmoid activation map corresponded to the probability of the 70 × 70 region
in the input patch being ‘real’ (1.0) or ‘fake’ (0.0). These values were combined to achieve a
single probability value, which corresponded to the probability of the entire input patch being
‘real’ or ‘fake’. The layers of the PatchGAN discriminator model were adjusted to maintain the
receptive field size to 70 × 70. Specifically, the layers of the PatchGAN discriminator model
used 64, 128, 256 and 512 filters respectively, and Leaky ReLU activation function with slope
0.2. The configuration of the Leaky ReLU activation function, kernel size and stride size were
the same for both the generator and discriminator networks.
Before training of generator and discriminator networks, the weights of both networks were

initialized using random Gaussian numbers with a standard deviation of 0.02. During the training
phase, the weights of the discriminator model were updated by a set of histopathologically stained
H&E patches (IC0A64C ) and computationally stained H&E patches (I64=4A0C43), and calculating
the discriminator loss

LD = D(I64=4A0C43)2 + (1 − D(IC0A64C ))2. (1)

When the discriminator network is better than the generator network, i.e. D(IC0A64C ) = 1 and
D(I64=4A0C43) = 0, it is able to identify all the computationally stained H&E patches as ‘fake’.



To avoid the discriminator network to become better than the generator network, the training
process of the discriminator network was slowed down by weighting the discriminator loss !D
by 50% for each model update [35]. The ideal case is to converge the discriminator loss to 0.5
and the generator to create H&E patches exactly similar to the target H&E patches. On the other
hand, the weights of the generator network were updated by calculating the mean absolute error
between I64=4A0C43 and IC0A64C . Additionally, the weights of the generator network were updated
through the adversarial loss obtained from the discriminator network. Thus, the total loss of the
generator network LG is given by

LG = _MAE(I64=4A0C43 , IC0A64C ) + (1 − D(I64=4A0C43))2, (2)

where the mean absolute error (MAE) was weighted by a hyperparameter _. In our case, _ was set
to 10. The weights of the generator and discriminator networks were updated separately to avoid
misleading updates. Furthermore, both networks were trained using the Adam optimizer [36]
with learning rate and V set to 0.0002 and 0.5, respectively.

2.5. Cycle conditional generative adversarial networks

The cycle CGAN model is an extension of the conditional generative adversarial network which
does not require paired images for the image translation task [15]. The cycle CGAN model
involved simultaneous training of two generators (G1,G2) and two discriminators (D1,D2) (see
Fig. 2F). The first generator G1 utilized a contrast-inverted MM patch (G<) (see Fig. 3, column
B) as input and generated an H&E stained patch as output (I64=4A0C43 = G1 (G<)) (see Fig. 3,
column E). The second generator utilized the computationally stained H&E patch (i.e. the output
of the generator 1, I64=4A0C43) as input and reconstructed it to the original MM patch (similar
to the input of the generator 1, G̃< = G2 (I64=4A0C43)). The output of the second generator (G̃<)
was optimized to be visually similar to the input of the first generator (G<) and was regularized
by calculating the (forward) cycle consistency loss L (2H2 5 ) . In similar fashion, backward cycle
consistency loss L (2H21) regulated the second generator. Additionally, the first generator G1 was
regularized by the identity loss ! (831) which means that the first generator network utilized the
histopathologically stained H&E patch (IC0A64C ) and reconstructed it at its output. We included
only identity mapping loss L (831) for generator G1 as we were interested in creating flawless
H&E images. However, identity mapping loss L (832) for generator G2 can be included in future
studies when better reconstruction on MM images is desired. Furthermore, each generator had its
own discriminator model, which predicted the plausibility of the generated outputs. This is like
the CGAN model explained earlier where each generator-discriminator pair was trained in an
adversarial process. The architecture of the two discriminator models in the cycle CGAN model
was similar to the Pix2Pix model; however, the architecture of generator networks was different.

The generator networks were inspired by the architecture proposed by Isola et al., 2017 [14].
Both generator networks (G1,G2) used input image size 256×256, and the outputs were a
computationally stainedH&Epatch (I64=4A0C43) and a reconstructedMMpatch (G̃<), respectively.
The generator networks comprised of downsampling convolution blocks to encode the input, a
sequence of six ResNet blocks, and upsampling convolution blocks that decodes the bottleneck
features to an output. The shorthand notation of the generator network can be given as C7s1-64,
D128, D256, R256, R256, R256, R256, R256, R256, U128, U64, C7s1-3 where C7s1-k denotes
a 7×7 Convolution-InstanceNorm-ReLU layer with k filters and stride 1. Dk denotes a 3×3
Convolution-InstanceNorm-ReLU layer with k filters and stride 2. Uk denotes a 3×3 fractional-
strided-Convolution-InstanceNorm-ReLU layer with k filters and stride 1/2. Rk denotes a ResNet
block that contains two 3×3 convolutional layers with the same number of filters on both the
layers. Like the CGAN model, the last layer of the generator network comprised of the tanh
activation function. The weights of the generator networks were updated through adversarial
loss, identity loss [29] and cycle consistency losses [29] (including forward and backward cycle).



Mathematically, the full objective function of the cycle CGAN model can be given as

L(G1,G2,D1,D2) = L (D1) (G1,D1, -,. ) + L (831) (G1,D1, -)
+_L (2H2 5 ) (G1,G2) + _L (2H21) (G1,G2),

(3)

where L (D1) is the adversarial loss through which the generator 1 was updated. This is mean
squared error instead of binary cross-entropy in the Pix2Pix model, as it provided better results
in the literature [14]. In future, the adversarial loss for second generator L (D2) can also be added.
The identity loss ! (831) and the forward and backward cycle loss ! (2H2 5 ) , ! (2H21) are the mean
absolute error. The four losses were weighted by a factor of 1, 5, 10 and 10, respectively. The
training of each generator-discriminator pair was similar to the CGAN model.

2.6. Model training and removal of patch-effect

The Pix2Pix model and the cycle CGAN model were trained on patches obtained from the
non-linear multimodal images and histopathologically stained H&E images. Both models were
trained for 100 epochs, and a batch size of one patch was used. The model training was performed
using Python 3.5 on a commercially available PC system with NVIDIA GeForce GTX 1060,
6GB. The generator models were saved after every fifth epoch, and the model that generated
plausible H&E images from the training dataset (on visual inspection) was used for predicting
the images from the test dataset. During the testing phase, the test images were pre-processed in
a similar fashion as the training dataset. Further, the prediction of the images in the test dataset
was performed on patches, which were subsequently combined to a whole image. Combining the
patches resulted into a “patch-effect” which was visible at the edge of each patch in the combined
image, precisely the pixel at every 256th row or column in the whole image. For this purpose, the
pixels which showed the patch-effect were linearly interpolated with its neighbouring three pixels.
The generated H&E images (before and after correction of patch-effect) from both Pix2Pix and
cycle CGAN models were visually inspected (Fig. S1 in Supplement 1). In addition to the visual
inspection, quantitative evaluation of the computationally stained H&E images obtained from
both pseudo-stain H&E models was performed. The quantitative evaluation was based on three
metrics explained further.

2.7. Evaluation method

For performance quantification, the mean squared error (MSE) was utilized to calculate the
error between the histopathologically stained H&E image (IC0A64C ) and the computationally
stained H&E image (I64=4A0C43) [37]. However, MSE has a limitation caused due to arbitrarily
high numbers which are difficult to standardize. Also, the MSE metric is inconsistent with the
human perception ability [37]. Therefore, two other metrics namely structure similarity index
(SSIM) [37, 38] and color shading similarity (CSS) [39], which are well-suited for evaluating
GAN performances, were utilized.
The structure similarity index [37, 38] quantifies the perceptual similarity between the two

images (IC0A64C , I64=4A0C43) by considering the contrast, luminance and texture of these images.
Mathematically, SSIM between two images - and . can be given as

SSIM(-,. ) = (2`- `. + 21) (2f-. + 22)
(`2

-
+ `2

.
+ 21) (f2

-
+ f2

.
+ 22)

, (4)

where ` is mean of an image, f is the standard deviation of an image, f-. is the cross-covariance
of the two images and � = (21, 22) are constants to avoid division by zero. For a multichannel
image or an RGB image, the SSIM metric is calculated for each channel separately and the
average SSIM value is considered. Higher values of SSIM indicate higher structural similarity
between the two images.



Another metric called color shading similarity (CSS) [39] was used to quantify the similarity
in the colors of the pixels in the histopathologically stained H&E image (IC0A64C ) and the
computationally stained H&E image (I64=4A0C43). The CSS is calculated by converting both
images in the CIELAB space and utilizing only the color channels A* and B*. For each color
channel, the mathematical formulation of the CSS metric between two images - and . is given
by

CSS(-,. ) = 1
#

#∑
8=1

�=38 · (8<(-8 , .8), (5)

where, (8<(-8 , .8) is the similarity between pixel -8 of the pathologically stained H&E image
and pixel .8 of the computationally stained H&E image, 8 is the index used for the # pixels in the
image. Mathematically, (8< and �=3 are given as,

(8<(-8 , .8) = 1 − 38BC (-8 , .8)
max(38BC) ,

�=38 =

{
1; if (8<(-8 , .8) > threshold,
0; if (8<(-8 , .8) ≤ threshold.

(6)

In our case, the threshold was set to 0.5, and 38BC was the Euclidean distance. Higher values of
the CSS indicate a higher color similarity. Likewise, the three metrics were evaluated for all the
computationally stained H&E images (excluding the background region) from the Pix2Pix and
the cycle CGAN models. The average of the three metrics calculated for all the 19 images from
the training and test dataset is reported in table 1 and Fig. 7.

3. Results

The training of the Pix2Pix model for 100 epochs required ∼7 hours, while the cycle CGAN
model required more than ∼100 hours on our commercial PC. The training of the cycle CGAN
model was terminated after 60 epochs as no significant improvement in the computationally
stained H&E patches was observed visually. Furthermore, it was observed that the generator and
discriminator losses for the Pix2Pix model and the cycle CGAN model fluctuated throughout the
training process. The discriminator loss for both models had difficulties to remain converged at
an ideal value ≥0.5, which can be due to high variance [40, 41] and noise in our dataset. The
computationally stained H&E patches obtained using the saved generator models were visually
assessed for their quality. A detailed explanation of the assessment procedure is provided in the
next section.

3.1. Visual similarity of the GAN generated images

Computational staining of MM images using CGANs achieved visually pleasing results compared
to the state-of-the-art machine learning model used by Bocklitz et al. in 2016 [12]. As the
visual appearance directly impacts the histopathological examination of any disease [25, 42], its
qualitative evaluation is vital. For this purpose, computationally stained H&E patches using the
Pix2Pix and the cycle CGAN model from the training and testing dataset were inspected.
Fig. 3 and Fig. 4 show computationally stained H&E patches in good and bad quality from

the training dataset, respectively. Similarly, Fig. 5 and Fig. 6 show good and bad quality
computationally stained H&E patches from the testing dataset. For the good quality patches,
it can be observed that computationally stained H&E patches in columns D and E of Fig. 3
and Fig. 5 look visually similar to the histopathologically stained H&E patches in column C.
Precisely, the good computationally stained H&E patches show a color contrast similar to the
histopathologically stained H&E patches, i.e. the region within the crypts is light or pale pink,
whereas the epithelial layer or mucosa region appears dark purple or dark pink. Furthermore,



the tissue structures in the good computationally stained H&E patches are clinically acceptable.
Nevertheless, the bad quality patches as shown in columns D and E of Fig. 4 and Fig. 6 looks
visually different than the histopathologically stained H&E patches shown in column C. In the
bad computationally stained H&E patches, the structures within the crypts are lost and the colors
in some regions are wrongly modelled. The bad quality of computationally stained H&E patches
in Fig. 4 and Fig. 6 can be explained by the measurement of the images. This is because
the computationally stained H&E patches are generated from MM patches, which show slight
variations from its corresponding histopathologically stained H&E patches. For example, the
MM patch in the top row, column A of Fig. 6 is totally different from the histopathologically
stained H&E patch in column C.

The variations between the MM and its corresponding histopathologically stained H&E patch
is due to the optical properties of the NLM imaging technique. The NLM imaging technique
shows structures in a focal plane within the tissue section, which is approximately ∼5`m. In
contrast, the histopathological staining technique reveals the structures from the entire thickness
of the tissue section (∼20`m). Thus, both modalities show slightly different structures, which
can be seen through a fine observation of patches in columns A and C of Figs. 3-6. This
is the reason that an exact correspondence between computationally stained H&E patch and
histopathologically stained H&E patch cannot be achieved for all images in the dataset.
In addition to the structural differences between histopathologically and computationally

stained H&E patches, there are other critical issues which need attention. Foremost, it can be

Fig. 3. Good quality predictions of patches from the training dataset. Columns
(A) and (B) visualize MM patches and contrast inverted MM patches, column (C)
shows histopathologically stained H&E patch, and columns (D) and (E) visualize
computationally stained H&E patch generated by the Pix2Pix model and the cycle
CGAN model, respectively. The scale bar represents 50 `m. For all patches in column
C, the region within the crypts is light or pale pink, whereas the epithelial layer or
mucosa region appears dark purple. Similar colors with few variations are observed in
the computationally stained H&E patches generated by the Pix2Pix (column D) and the
cycle CGAN (column E) model. Also, the crypt structures are efficiently generated in
the computationally stained H&E patches by both models.



Fig. 4. Bad quality predictions of patches from the training dataset. Columns
(A) and (B) visualize MM patches and contrast inverted MM patches, column (C)
shows histopathologically stained H&E patch, and columns (D) and (E) visualize
computationally stained H&E patch generated by the Pix2Pix model and the cycle
CGANmodel, respectively. The scale bar represents 50 `m. Here the patches generated
by the cycle CGAN model show a promising translation of corresponding MM patches;
however, the colors in some regions are not well represented. The computationally
stained H&E patches generated by the Pix2Pix model have a low spatial resolution.
Thus, the structures within the crypts are not visible.

seen from Figs. 3-6 that the Pix2Pix model generates low spatial resolution images as compared
to images generated using the cycle CGAN model. The Pix2Pix model tends to lose detailed
boundaries and edges within the crypt region and show a blurry effect, at least for images from
the test dataset (see Fig. 5 and Fig. 6). One of the reasons for the loss of detailed information can
be the mean absolute error which was used as the objective function while training the generator
network in the Pix2Pix model. The next critical issue was that the computationally stained H&E
patches generated by the cycle CGAN model showed higher color contrast, thus making the
colors more vivid. The high color contrast in the computationally stained H&E patch by the
cycle CGAN model can be due to unsupervised training. It is suspected that the unsupervised
training of the cycle CGAN model can be sensitive to alterations in the pixel intensity of the
multimodal images, staining inconsistencies in the histopathologically stained H&E image or a
pre-processing effect [40, 41]. Nevertheless, the problem of high color contrast observed in the
computationally stained H&E patches from the cycle CGAN model can be reduced by simple
image processing methods (like contrast adjustment [43]).

Overall, from the visual appearance of the computationally stained H&E patches, it can be seen
that an exact correspondence with histopathologically stained H&E patches cannot be achieved.
However, the computationally stained H&E patches in column D and E of Figs. 3-6 generated
using the Pix2Pix and the cycle CGAN model provide an acceptable translation of MM patches.
In Fig. S2 and Fig. S3 in Supplement 1, computationally stained H&E patches combined into an
image are shown. Furthermore, the computationally stained H&E image from the cycle CGAN
model followed by contrast reduction with a factor of 0.7 is also visualized. The computationally



Fig. 5. Good quality predictions of patches from the test dataset. Column (A) shows
MM patches, column (B) visualizes contrast inverted MM patches, column (C) shows
pathologically stained H&E patch, and columns (D) and (E) depict computationally
stained H&E patch by the Pix2Pix model and the cycle CGAN model, respectively.
The scale bar represents 50 `m. Here, the computationally stained H&E patches by
the cycle CGAN model shows a good quality translation of MM patches, whereas the
translation by the Pix2Pix model produces blurry results.

stained H&E images were also examined by a pathologist for its clinical significance. According
to the pathological analysis, both models show promising results for translating MM images. In
addition to visual analysis, a quantitative evaluation was done and is discussed below.

3.2. Quality of computationally staining based on metrics

An evaluation of the Pix2Pix and the cycle CGAN model was performed based on three metrics:
MSE, SSIM and CSS. The average values of MSE, SSIM and CSS for training and testing dataset
are reported in Table 1. Here, the three metrics were calculated with the same histopathologically
stained H&E image and were considered as baseline values. The aim of the pseudo-stain H&E
models was to acquire values “close” to these baseline values.

From Table 1, it can be seen that the computationally stained H&E images generated from both
models show very high MSE and low SSIM values as compared to the baseline values. High
MSE and low SSIM values were expected as an exact correspondence of computationally stained
H&E image with its histopathologically stained H&E image cannot be achieved. Thus, the
interpretation of the image quality based on the MSE and SSIM metric is unfair. Despite the high
MSE or low SSIM values, the computationally stained H&E images from both models shown in
Fig. S2 and Fig. S3 in Supplement 1 have promising visual appearance when compared to its
MM image. Furthermore, the MSE values are higher for the cycle CGAN model as compared to
the Pix2Pix model. This is can be due to largely different pixel values of computationally stained
H&E patches using the cycle CGAN model. On the other hand, the SSIM and CSS metrics
report similar performance for the Pix2Pix and the cycle CGAN model, which implies that the
overall structural and color content of the computationally stained H&E image is acceptable.
Furthermore, the metric values are similar for training and testing dataset (see Table 1) which



Fig. 6. Bad quality predictions of patches from the test dataset. Column (A) shows
MM patches, column (B) visualizes contrast inverted MM patches, column (C) shows
pathologically stained H&E patch, and columns (D) and (E) depict computationally
stained H&E patch by the Pix2Pix model and the cycle CGAN model, respectively.
The scale bar represents 50 `m. Here, computationally stained H&E patches (columns
D and E) are not similar to histopathologically stained H&E patches (column C),
as histopathologically stained H&E patches show different structures than the corre-
sponding MM patch. Furthermore, in dark MM patches (second and third row), the
computationally stained H&E patches fail to generate appropriate color contrast.

shows that the models are minimally overfitted. The mean SSIM and mean CSS metric for the
training and the testing dataset using both models are > 0.50 and > 0.90, respectively. The three
metrics for all images are given in Table S1 in Supplement 1.
In addition to Table S1 in Supplement 1, the range of the three metrics is given in Fig. 7,

which shows a large variance in the three metrics. The large variance in the three metrics was
expected and can possibly be due to the large variance in the dataset. Nevertheless, the color
information produced by both pseudo-stain H&E models is close to the baseline value (1.0). The
three metrics for a randomly chosen H&E image generated using both models are given in Fig.
S2 for the testing dataset and Fig. S3 for the training dataset in Supplement 1. Lastly, there was
no significant difference in the performance metrics before and after correction of patch-effect of
computationally stained H&E images.

4. Discussion

The computationally stained H&E images generated by the supervised (Pix2Pix) and the
unsupervised (cycle CGAN) pseudo-stain H&E model showed a substantial improvement to the
state-of-the-art machine learning model [12]. Furthermore, we believe that the cycle CGAN
model can be applied for multi-modality conversion, augment the non-linear multimodal images
and remove noise from multimodal images. However, in all these tasks, a systematic investigation
is needed. Realization of these tasks using the cycle CGAN model can cause staining protocols
cost-effective and less labor intensive [11]. However, there are some important aspects considered
for training both models, particularly, the training dataset, the pre-processing of the H&E and



Table 1. The average of the three evaluation metrics obtained for the 19 images using
the Pix2Pix model and the cycle CGAN model are given for training and testing
dataset. For reference purpose, the three metrics were also calculated with the same
histopathological stained H&E image. It is seen that MSE values are very large for
both models, whereas SSIM and CSS are almost similar for both models. This means
that the pixel values of computationally stained H&E images are different, but the
overall structural and color information is acceptable. Furthermore, the metric values
for training and testing dataset do not have a large difference, which indicates that the
models are minimally overfitted.

MSE SSIM CSS

Training dataset

Pathological stained H&E image 0.00 1.00 1.00

Pix2Pix stained H&E image 4.69×103 0.52 0.93

Cycle CGAN stained H&E image 10.26×103 0.49 0.91

Testing dataset

Pathological stained H&E image 0.00 1.00 1.00

Pix2Pix stained H&E image 4.27×103 0.60 0.94

Cycle CGAN stained H&E image 7.79×103 0.59 0.93

MM image and the objective function. These aspects are discussed in more detail below.

Fig. 7. The boxplot shows a quantitative comparison of the Pix2Pix and the cycle
CGAN model based on the three evaluation metrics. The MSE metric is higher for the
cycle CGAN model and shows larger variation. This is expected as the pixel values
of computationally stained H&E images generated by the cycle CGAN model differ
more than the computationally stained H&E images generated by the Pix2Pix model.
Nevertheless, the CSS and SSIM metric is in a similar range for both models, which
implies that the content of computationally stained H&E images generated by both
models is similar.



4.1. Effect of training dataset

The first aspect is the training dataset utilized for constructing the pseudo-stain H&E models.
Similar to any other deep learning networks, pseudo-stain H&E model based on GANs are
also sensitive to the training dataset. It was observed that the training dataset with a large
number of noisy patches or background patches affected the convergence of the generator and
the discriminator network. Therefore, patch filtering was vital. Furthermore, a large number of
trainable parameters in the generator and the discriminator network can easily cause overfitting
on the training dataset. This was a major problem in the supervised approach, e.g. the Pix2Pix
model, where the target patches were available. The overfitting on training dataset is seen in
Fig. 5 and Fig. 6, column D. Here, we see the patches from the test dataset lose their spatial
resolution compared to the patches from the training dataset in the Fig. 3.
Contrarily, in the unsupervised approach, the cycle CGAN model trained on unpaired image

data required a quality check of the training dataset. It was observed that for the cycle CGAN
model, the color of the computationally stained H&E patches was influenced by the color of the
majority of patches in the training dataset. For instance, the cycle CGAN model trained with
a large number of patches from the mucosa region, i.e. patches with pink color, was likely to
produce pinkish H&E images. Therefore, to create a balance in the color of the generated H&E
images, a manual quality check of the patches in the training dataset was crucial for the training
of the cycle CGAN model. We believe with an increasing dataset and computation power, the
performance of both pseudo-stain H&E models can be improved.

4.2. Effect of the objective function and performance metric

The next aspect for training the pseudo-stain H&E models is the objective function and the
performance metric. We begin with the selection of the objective function. Foremost, an
appropriate selection of the objective function for the generator and the discriminator network is
important to generate plausible H&E images. In this regard, researchers have shown the benefits
of using various objective functions like the style transfer loss [44], the perceptual loss [44], the
total variation loss [24] and the image gradient loss [45]. Nevertheless, in our case, the L1-loss
for the generator network of the cycle CGAN model showed acceptable results. We believe that
the addition of other losses to the objective function can improve the perceptual quality of the
generated H&E images yet increasing the model complexity. These losses can be applied for the
Pix2Pix and the cycle CGAN model and researched in future studies.

The second aspect is the performance metric. The performance metrics used in this work were
calculated on the pixel basis and are sensitive to slight variations in the computational H&E
images. For instance, a histopathologically stained H&E image and a computationally stained
H&E image offset by one pixel can create a major difference in these performance metrics [44].
This problem is often encountered during registration H&E image and MM image. Therefore,
the high values of the MSE and low values of the SSIM metric shown in table 1 is justified. In
future studies, an objective function that can evaluate the global quality of the computationally
stained H&E images can be utilized.

4.3. Effect of image normalization and contrast inversion

In the end, this section discusses the aspect of image normalization and “contrast-inversion”
performed while training the pseudo-stain H&E models. Foremost, the normalization methods
of both MM and H&E images was essential to avoid multiplications of large numbers during the
training process. During the training phase, several methods of normalizing the MM images
and pathologically stained H&E images were evaluated. It was observed that the MM and H&E
patches scaled in the range [-1,1] generated the best results. It was also observed that scaling
of MM and H&E images instead of scaling its patches did not affect the training or model
performance. Furthermore, scaling the MM and/or H&E patches in the range [0,1] led to the



failure of the discriminator network by immediately converging the discriminator losses to zero.
The scaling of H&E patches was essential due to the tanh activation function used in the last
layer of the generator network [13]. These findings coincide with the results of reference [46].

In addition to the normalization, “contrast-inversion” of the multimodal images was performed
to remove the “inverse-color” effect [47]. This effect was seen when the original multimodal
image (without contrast inversion) was used (see Fig. S4 in Supplement 1). This effect was
especially seen in the unsupervised approach, i.e. using the cycle CGAN model. Because of this
effect, the crypt region was transformed into dark purple instead of light pink and vice versa.
Therefore, “contrast-inversion” was an important step for modality conversion, especially where
the two modalities showed significantly different color contrasts.

5. Conclusion

Computational staining of non-linear multimodal images is beneficial from a clinical perspective
as it prevents the long staining protocols and is cost-effective. This work was an improvement
of the state-of-the-art method, which utilized the conventional machine learning approach for
computational staining of non-linear multimodal images. On the contrary, this work presented a
supervised and unsupervised approach to computationally stain non-linear multimodal images into
H&E stained images. The supervised approach utilized the Pix2Pix model, and the unsupervised
approach used the cycle CGANmodel. For the Pix2Pix model, a corresponding pair of non-linear
multimodal image and histopathologically stained H&E image was required. Therefore, image
registration of the histopathologically stained H&E image was crucial. On the other hand,
the cycle CGAN model did not require the corresponding pair of the non-linear multimodal
image and histopathologically stained H&E image. Thus, the effort of image registration and
pathological staining was reduced. The qualitative and quantitative evaluation of both models
showed comparable results using evaluation metrics based on color, texture and perceptual quality.
The evaluation metric like mean squared error reported values >5×103 and >8×103 for the
Pix2Pix and the cycle CGAN model, respectively. In contrast, the evaluation metric, including
SSIM and CSS reported values >0.50 and >0.90 for both models, respectively. In addition to
quantitative evaluation, various pre- and post-processing procedures were explored in this work,
however more advanced post-processing procedures could be investigated in future. Furthermore,
a cycle CGAN model that can perform multiple staining using a non-linear multimodal image can
be one of the future research directions. The cycle CGAN model can also be used for additional
benefits like the artificial generation of non-linear multimodal images, increasing the spatial
resolution of the computationally stained H&E images and removing fluorescence effect from
the reconstructed non-linear multimodal images. However, a systematic investigation for such
tasks is needed. Overall, the results showed several benefits of using computational staining of
non-linear multimodal images than performing histopathological staining in laboratories. Thus,
the computational staining approach should be encouraged in clinics to benefit the pathological
and clinical field of science.
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Computational tissue staining of
non-linear multimodal imaging using
supervised and unsupervised deep
learning

Fig. S1. This figure shows the effect of post-processing for removing ‘patch-effect’. The ‘patch-
effect’ was removed by interpolating pixel values of three neighbouring pixels at the end of
every patch (256th pixel). This effect (shown in white arrows) was visible for few images and
its removal did not significantly affect the performance metrics. The scale bar represents 100
µm



Fig. S2. (A) shows a non-linear multimodal image from test dataset, (B) visualizes correspond-
ing histopathologically stained H&E image (unregistered), (C) shows the computational H&E
image by the Pix2Pix (MSE = 4.4×103, SSIM = 0.65, CSS = 0.94) and (D) depicts computational
H&E image by the cycle CGAN model (MSE = 8.4×103, SSIM = 0.63, CSS = 0.94). The con-
trast of the computational H&E image in (D) is reduced by a factor of 0.7. The images here are
downsampled to 20% of original size for clarity. The scale bar represents 100 µm.
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Fig. S3. (A) shows a non-linear multimodal image from training dataset, (B) visualizes corre-
sponding histopathologically stained H&E image (unregistered), (C) shows the computational
H&E image by the Pix2Pix (MSE = 2.8×103, SSIM = 0.74, CSS = 0.96) and (D) depicts compu-
tational H&E image by the cycle CGAN model (MSE = 5.9×103, SSIM = 0.72, CSS = 0.94). The
contrast of the computational H&E image in (D) is reduced by a factor of 0.7. The images here
are downsampled to 20% of original size for clarity. The scale bar represents 100 µm.
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Fig. S4. This figure shows effect of ‘contrast inversion’ on the computational H&E images of
the cycle CGAN model. (A) shows an original MM patch given to the cycle CGAN model and
(B) visualizes the generated H&E patch. Here, we see that the colors in the generated H&E
image are inverted when compared to the pathologically stained H&E patch shown in (E).
Contrarily, (C) shows a contrast inverted MM patch and (D) depicts the generated H&E patch
by the cycle CGAN model. Here, the color contrast in similar to the pathologically stained
H&E patch shown in (E). The scale bar represents 100 µm.
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Table S1. The quantitative metrics namely mean squared error (MSE), structure similarity
index (SSIM) and color similarity index (CSS) evaluated for 19 images from the training and
testing dataset is given for the Pix2Pix and the cycle CGAN models, respectively.

Image Pix2Pix Cycle CGAN

MSE SSIM CSS MSE SSIM CSS

Train 1 3601.43 0.61 0.94 9373.09 0.57 0.92

Train 2 2800.83 0.74 0.96 5890.62 0.72 0.94

Train 3 4984.19 0.38 0.89 13955.34 0.33 0.89

Train 4 3337.39 0.56 0.93 8157.08 0.53 0.93

Train 5 4451.48 0.51 0.92 11509.74 0.47 0.90

Train 6 5100.78 0.49 0.92 9629.29 0.46 0.89

Train 7 4956.57 0.41 0.91 10389.17 0.38 0.90

Train 8 4167.94 0.52 0.92 8376.58 0.49 0.90

Train 9 7938.24 0.46 0.91 15823.56 0.41 0.91

Train 10 7657.41 0.39 0.88 9725.03 0.36 0.88

Train 11 3066.22 0.67 0.94 6749.37 0.65 0.93

Train 12 3057.30 0.65 0.94 8129.79 0.62 0.93

Train 13 5918.03 0.36 0.90 15783.79 0.30 0.90

Test 1 5617.82 0.60 0.92 6600.03 0.59 0.91

Test 2 3582.64 0.61 0.94 6633.59 0.60 0.94

Test 3 3827.09 0.65 0.94 4767.95 0.63 0.94

Test 4 3292.67 0.60 0.94 10118.23 0.58 0.93

Test 5 4416.22 0.64 0.94 8408.46 0.63 0.94

Test 6 4937.68 0.49 0.91 10265.39 0.48 0.93
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Abstract: A combination of histological and immunohistochemical tissue features can offer better breast cancer diag-
nosis as compared to histological tissue features alone. However, manual identification of histological and
immunohistochemical tissue features for cancerous and healthy tissue requires an enormous human effort
which delays the breast cancer diagnosis. In this paper, breast cancer detection using the fusion of histolog-
ical (H&E) and immunohistochemical (PR, ER, Her2 and Ki-67) imaging data based on deep convolutional
neural networks (DCNN) was performed. DCNNs, including the VGG network, the residual network and the
inception network were comparatively studied. The three DCNNs were trained using two transfer learning
strategies. In transfer learning strategy 1, a pre-trained DCNN was used to extract features from the images
of five stain types. In transfer learning strategy 2, the images of the five stain types were used as inputs to a
pre-trained multi-input DCNN, and the last layer of the multi-input DCNN was optimized. The results showed
that data fusion of H&E and IHC imaging data could increase the mean sensitivity at least by 2% depending
on the DCNN model and the transfer learning strategy. Specifically, the pre-trained inception and residual
networks with transfer learning strategy 1 achieved the best breast cancer detection.

1 INTRODUCTION

Breast cancer is one of the most prevalent cancers
among women. It is diagnosed by a routine procedure
which is based on morphological tissue features in
hematoxylin and eosin (H&E) stained tissue sections
(figure 1a). The morphological tissue features in-
clude tumour size and type, which are regularly docu-
mented to assess the histological grade of breast can-
cer tissue (Webster et al., 2005). These morphologi-
cal tissue features are also used to prevent recurrence
risk of breast cancer and prescribe personalized ther-
apies. Breast cancer is additionally verified by other
staining technique called the immunohistochemical
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(IHC) staining technique. The IHC staining technique
uses antibodies to highlight specific antigens in the
tissue region (Veta et al., 2014), and includes estro-
gen receptor (ER), progesterone receptor (PR) and
human epidermal growth factor-2 (Her2) (figure 1b-
d). Studies have shown that the IHC examination
with ER, PR, Her2 and Ki-67 can detect five molec-
ular breast cancer sub-types to provide adequate per-
sonalized therapies (Perou et al., 2000; Sørlie et al.,
2001; Cheang et al., 2009). However, none of the
studies report a combination of histology (H&E) and
IHC staining techniques (ER, PR, Her2 and Ki-67)
for breast cancer diagnosis. Therefore, in this work,
an integration of IHC imaging technique i.e. hormone
receptors including ER, PR, Her2 and Ki-67 nuclear
protein stained images with H&E stained images is
proposed to gain new insights into breast cancer bi-
ology (Elledge et al., 2000; Damodaran and Olson,
2012). The combination of histology and IHC stain-
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Figure 1: Five stain type images. (a) Hematoxylin and eosin (H&E), (b) Estrogen receptor (ER), (c) Progesterone receptor
(PR), (d) Human epidermal growth factor-2 (Her2) and (e) Ki-67 protein are shown. Scale bar is 200 µm.

ing technique is referred to as ‘Data fusion’ approach.

Data fusion approach by combining the histologi-
cal and IHC stained images can provide various tissue
features associated with the disease stage and relapse
of breast cancer. However, visual inspection of all five
stained images is a tedious process which can pro-
long the diagnosis. Therefore, automation of breast
cancer detection based on the combination of histo-
logical and IHC imaging data is needed. In this re-
gard, researchers (Pham et al., 2007; Dobson et al.,
2010) used computer-assisted image analysis tech-
niques to automatically monitor changes in the tis-
sue features of histological and IHC stained images
separately. However, computer-assisted image analy-
sis can be limited due to the need for specific soft-
ware systems or the need for user-specific input to
analyze the images. This slows down the process of
analyzing images and providing personalized thera-
pies to the patients. To increase the analysis speed
and reduce human intervention, this work proposes
machine learning (ML) instead of computer-assisted
image analysis techniques.

Conventional ML methods can automatize breast
cancer detection based on the fusion of histological
and IHC imaging data in the following way. First,
the features (e.g. color, shape and texture features)
from the five stain type of imaging data (H&E, ER,
PR, Her2 and Ki-67) can be extracted using image
analysis methods. The feature extraction step in the
conventional ML method is subjective and requires
the effort of an image analyst. Based on the extracted
features, a classification, or a regression model can
be constructed. Subsequently, the classification or the
regression model can be used to make ‘predictions’
(i.e. to predict a class like tumour or normal) on a
new or unseen dataset. Thus, the extracted features
affect the predictions made by the ML model. How-
ever, recently developed ML methods are capable
of performing automatic feature extraction for clas-
sification or regression purpose. These self-learning
methods are categorized into a broad family of ML
called ‘Deep learning’ (DL). The DL models can have

many types of network architectures. Widely used
DL model for images is the deep convolutional neu-
ral network (DCNN) and its numerous applications
are reported in the field of digital pathology (Liu
et al., 2017); for example, cell segmentation or de-
tection (Chen and Chefd’Hotel, 2014), tumour classi-
fication (Cireşan et al., 2013; Wang et al., 2016) and
carcinoma localization (Janowczyk and Madabhushi,
2016; Coudray et al., 2018; Khosravi et al., 2018;
Sheikhzadeh et al., 2018). Nevertheless, a bottleneck
for DL models is the requirement of huge dataset dur-
ing training, which is difficult to acquire, particularly
in the medical imaging field. In such cases, ‘trans-
fer learning’ methods for DCNNs can be applied for
improving the model performance (Tajbakhsh et al.,
2016).

Transfer learning is the transfer of knowledge
learned on a source task using a source dataset to im-
prove the performance on a target task using the target
dataset (Torrey and Shavlik, 2010). Transfer learning
using any DL model like DCNN can be performed
by three strategies. First, a pre-trained DCNN can be
used as a feature extractor. In this strategy, features
for the target dataset are extracted using a DCNN
trained on different or similar source dataset. The sec-
ond strategy is fine-tuning the weights of the last lay-
ers of a pre-trained DCNN, and the third strategy is
fine-tuning the weights of all layers of a pre-trained
DCNN. In the second and third fine-tuning strategies,
the weights of specific layers of a DCNN trained on a
source dataset are further optimized based on the tar-
get dataset. The three transfer learning strategies like
using a DCNN as a feature extractor or fine-tuning
of a DCNN, requires adequate knowledge of the size
and type of the source and the target dataset (Pan and
Yang, 2010). Transfer learning, if used appropriately,
can improve the initial and final performance of the
DL model on the target dataset. It can also reduce
the total training time of the DL model on the target
dataset. Different transfer learning strategies acquire
different results based on the source and target dataset
which is evident in the next section.
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Figure 2: (a) visualizes transfer learning strategy 1 for data fusion approach where a pre-trained DCNN is used as a feature
extractor. The features extracted from a pre-trained DCNN for all five stain type images are merged and classified into tumour
and normal using the PCA-LDA model. (b) shows transfer learning strategy 2 for data fusion approach where fine-tuning of
the last layer of a pre-trained multi-input DCNN is performed. The five DCNNs are pre-trained models like the VGG16, the
Inceptionv3 or the ResNet50, each having a stain type as its input.

2 RELATED WORK

Transfer learning in medical imaging can be achieved
by training a DCNN on a large medical or non-
medical dataset, and transferring its knowledge to
the target medical dataset (Bayramoglu and Heikkilä,
2016; Tajbakhsh et al., 2016). A recent study used a
large non-medical dataset like the ImageNet dataset
(Russakovsky et al., 2015) to pre-train a DCNN and
transfer its off-the-shelf features to investigate two
computer-aided detection (CADs) problems namely
thoracoabdominal lymph node detection and intersti-
tial lung disease detection (Shin et al., 2016). In
their work, three different DCNNs including the Ci-
farNet (Krizhevsky and Hinton, 2009), the AlexNet
(Krizhevsky et al., 2012) and the GoogleNet (Szegedy
et al., 2015) were evaluated with three transfer learn-
ing strategies. Similarly, a recent publication (Mor-
mont et al., 2018) compared various transfer learning
strategies based on pre-trained DCNNs using eight
classification datasets in digital pathology. Their re-
sults showed that fine-tuning the ResNet (He et al.,
2016) and the DenseNet (Huang et al., 2017) mod-
els outperformed the other tested models in the mor-
phological classification task. Similar findings were
observed in other references (Antony et al., 2016; Ki-
effer et al., 2017; Ravishankar et al., 2016).

In contrast to the previously mentioned appli-
cations where fine-tuning of a DCNN achieved the
best performance, several other applications using
a DCNN as feature extractor achieved significant
performance on binary and multi-class classification
tasks. These applications included prediction of mor-
phological changes in cells in microscopic images

(Kensert et al., 2018), classification of colon polyps in
endoscopic images (Ribeiro et al., 2016), identifica-
tion of mammographic tumours (Huynh et al., 2016)
and detection of pulmonary nodules in computed to-
mography scans (Van Ginneken et al., 2015). It is
clear from the previous researches that transfer learn-
ing techniques are data-dependent, and a generaliza-
tion of the above-mentioned results is not feasible, es-
pecially in the medical imaging field (Litjens et al.,
2017). Therefore, no consensus of the proper applica-
tion of transfer learning in the medical imaging field
is established. Likewise, the application of transfer
learning, especially for medical imaging data requires
utmost care and further investigations.

In this contribution, data fusion of histological and
immunohistochemical imaging data for classifying
breast cancer is presented for the first time. Due to our
small dataset size, the classification task is performed
using two transfer learning strategies. From previous
experience, the third transfer learning strategy i.e. the
training of a DCNN from scratch is avoided, as it is
computationally expensive and may lead to overfitting
in the absence of large datasets. The performance of
the two transfer learning strategies for the data fusion
approach is compared with histological imaging data.
Moreover, the two transfer learning strategies are per-
formed using three pre-trained DCNN models like the
VGG16 (He et al., 2016), the Inceptionv3 (Szegedy
et al., 2016) and the ResNet50 network (Simonyan
and Zisserman, 2014). The goal of this study was to
verify whether the data fusion approach along with
transfer learning improves the breast cancer diagnosis
based on the sensitivity and F1 score metric.



3 MATERIAL AND METHODS

3.1 Sample Preparation

A Tissue Microarray (TMA) with 97 cores represent-
ing 23 breast cancer cases (78 tumour cores, 18 non-
cancerous tissue cores or the normal breast tissue and
one control core of liver tissue) was produced using
the Manual Tissue Arrayer MTA-1 by Estigen. The
cases were randomly selected out of the daily rou-
tine of MVZ Prof. Dr. med. A. Niendorf Pathologie
Hamburg-West GmbH and anonymized according to
a statement of the ethics committee of the Hamburg
Medical Chamber. Core tissue biopsies (1.0 mm in di-
ameter) were taken from individual FFPE (formalin-
fixed paraffin-embedded) blocks and arranged within
a new recipient block. From the block, 2 µm sections
were cut, placed on glass microscope slides and H&E
staining (figure 1a) following a standard protocol was
performed. Digital images of histology (H&E) slides
were obtained at 40×magnification using the 3DHis-
tech Pannoramic 1000 Flash IV slide scanner with a
spatial resolution of 0.24 µm/pixel (.mrxs image file).
Subsequently, immunohistochemistry staining (ER,
PR, Her2 and Ki-67) (figure 1b-e) was performed on
super frost charged glass slides.

3.2 Image preprocessing

For the analysis, 96 TMAs or scans (78 tumour
scans and 18 normal scans) from 23 patients were
used, and each TMA had five stain types (H&E,
PR, ER, Her2 and Ki-67). The pixel intensity I of
each TMA was standardized using a min-max scal-
ing (I − Imin)/(Imax − Imin), where Imin and Imax is
the minimum and maximum intensity of a pixel in
a TMA. The background pixels were cropped manu-
ally and non-overlapping patches of size 1024×1024
were extracted from a standardized TMA. This led
to 9 patches per TMA (702 tumour and 162 normal
patches). The four corner patches including a large
number of background pixels were removed, leading
to 390 tumour and 90 normal patches. Based on the
480 selected patches, three pre-trained models were
used with two transfer learning strategies.

3.3 DCNN architectures

To check the robustness of the data fusion approach,
three DCNNs: the VGG network, the Inception net-
work and the residual network, with unique architec-
tures were chosen. The VGG network is a DCNN that
has acquired state-of-the-art performances for image
classification tasks. However, the VGG network can

exhibit the problem of vanishing gradients with an in-
creasing number of layers (Hanin, 2018). Thus, the
residual network which can solve the problem of van-
ishing gradients by adding the ‘shortcut connections’
was explored in this work. Furthermore, the inception
network that provides width in addition to the depth to
a conventional DCNN was utilized. A detailed expla-
nation of the architecture of the three models is given
further.

3.3.1 VGG network

A VGG network is a DCNN with different configura-
tions from 11 to 16 convolutional layers followed by
three fully connected layers. The number of convo-
lutional layers increases the depth of the VGG net-
work. It is shown that an increase in the depth of
the VGG network decreases the top-5 validation er-
ror (He et al., 2016). However, the decrease in the er-
ror for the VGG network from 16 to 19 convolutional
layers is not significant. Thus, the VGG network
with 16 convolutional layers referred to as VGG16
from Keras was used (Chollet et al., 2015). The in-
put to the VGG16 network was an RGB image of
size 224×224, and each image was preprocessed by
subtracting the mean RGB values computed over the
training dataset.

3.3.2 Inception network

Deep networks like VGG network require an appro-
priate selection of the number of convolution filters
and filter sizes. For this reason, the inception network
concatenates convolutional layers of different filter
size, including the spatial dimension of 1×1, 3×3
and 5×5. This captures information at various scales
while increasing the computational complexity. In or-
der to reduce the computational cost, a convolutional
layer of 1×1 filter size is applied before each convo-
lutional layer of filter size 3×3 and 5×5. These two
salient features of the Inception network reduce the
dimensionality in the feature space and thereby allows
the network to be deeper and wider. Moreover, the
inception network replaces the fully connected layer
with global averaging layers which reduces the num-
ber of trainable weights, thus reducing over-fitting on
the training dataset (Szegedy et al., 2016). The In-
ceptionv3 implementation from Keras, which has 95
layers and requires an RGB image as input with size
299×299 was used.

3.3.3 Residual network

The configurations of the VGG network show that
deep neural networks achieve good top-5 accuracy



Table 1: This table shows confusion matrices, mean sensitivities and mean F1 scores for the VGG, the Inception and the
residual networks using transfer learning strategy 1. Here, two feature sets extracted from pre-trained models are used; one
feature set is extracted from H&E images only, while the other feature set is extracted from all the five stain types. All metrics
are computed for 96 TMAs by taking majority voting of the predictions acquired for the patches using the PCA-LDA model.
N: normal scans, T: tumour scans.

Data fusion (H&E+IHC imaging data) Only histological imaging data
DCNN N T Sens (%) F1 (%) DCNN N T Sens (%) F1 (%)

VGG16 N 13 5 79.06 76.24 VGG16 N 14 4 80.56 76.61T 11 67 T 13 65

Inceptionv3 N 16 2 89.32 85.47 Inceptionv3 N 15 3 88.46 86.97T 8 70 T 5 75

ResNet50 N 14 4 86.97 87.80 ResNet50 N 14 4 85.68 84.96T 3 75 T 5 73

Table 2: This table shows confusion matrices, mean sensitivities and mean F1 scores for the VGG, the Inception and the
residual networks using transfer learning strategy 2. Data fusion approach used multi-input DCNN with the five stain type
images as input, whereas a single-input DCNN was used only the H&E image as input. The last layers of both single-input
and multi-input DCNNs were fine-tuned. The mean sensitivities are computed for 96 TMAs by taking majority voting of the
predictions obtained for the patches. N: normal scans, T: tumour scans.

Data fusion (H&E+IHC imaging data) Only histological imaging data
DCNN N T Sens (%) F1 (%) DCNN N T Sens (%) F1 (%)

VGG16 N 7 11 66.88 70.86 VGG16 N 3 15 55.13 57.57T 4 74 T 5 73

Inceptionv3 N 0 18 50.00 44.83 Inceptionv3 N 9 9 72.44 75.66T 0 78 T 4 74

ResNet50 N 0 18 50.00 44.83 ResNet50 N 12 6 81.41 83.78T 0 78 T 3 75

Table 3: This table shows confusion matrices, mean sensitivities and mean F1 scores for the VGG, the Inception and the
residual network using the two transfer learning strategies. All metrics are computed for 96 TMAs by taking majority voting
of the predictions acquired by the models for patches.

Transfer learning strategy 1 Transfer learning strategy 2
DCNN N T Sens (%) F1 (%) DCNN N T Sens (%) F1 (%)

VGG16 N 13 5 79.06 76.24 VGG16 N 7 11 66.88 70.86T 11 67 T 4 74

Inceptionv3 N 16 2 89.32 85.47 Inceptionv3 N 0 18 50.00 44.83T 8 70 T 0 78

ResNet50 N 14 4 86.97 87.80 ResNet50 N 0 18 50.00 44.83T 3 75 T 0 78

until a certain depth limit (He et al., 2016). An in-
crease in the network depth causes a problem of van-
ishing or exploding gradients (Hanin, 2018) which af-
fects the network convergence and degrades the per-
formance (Simonyan and Zisserman, 2014). There-
fore, the residual networks are built to solve this
degradation problem by adding activations of the top
layers into the deeper layers of the network. For in-
stance, in a deep neural network the activation a of
the (l+2)th layer with weight w and bias b is given as

a(l+2) = f [(w(l+2)×a(l+1))+b(l+2)], (1)

where f is an activation function like linear recti-
fied unit ( f = max(a(l+2),0)). However, in a resid-
ual block the activation a of the lth layer (or an iden-
tity mapping) is added via the ‘skip or shortcut con-
nections’ (Bishop et al., 1995; Venables and Ripley,
2013) to the (l+2)th layer of the network. Therefore,
the activation of the (l +2)th layer in a residual block
can be given a

a(l+2) = f [(w(l+2)×a(l+1))+b(l+2)+a(l)]. (2)

This implies that in worse cases when the network
fails to learn representative features, i.e. w(l+2) = 0



and b(l+2) = 0, the output still remains an identity
mapping of the input al . In residual networks, a se-
ries of residual blocks along with intermediate nor-
malization layers was used; thus improving the learn-
ing of the deep neural networks. In this work, the
ResNet50 implementation from Keras, which has 152
layers and requires an RGB image as an input with
size 224×224, was used.

The above explained three DCNN models were
trained using two transfer learning strategies which
are discussed in the next section.

3.4 Transfer learning strategies

The above-mentioned DCNNs were utilized for two
transfer learning strategies. For the first strategy, a
pre-trained DCNN model to extract off-the-shelf fea-
tures followed by a linear classifier was used. In
the second strategy, a multi-input pre-trained DCNN
model followed by a softmax classifier was used.
Both strategies were performed on a commercially
available PC system intel R© CoreTM with NVIDIA
GeForce GTX 1060, 6GB with python packages:
Keras(Chollet et al., 2015), Tensorflow(Abadi et al.,
2015), Scikit-learn (Pedregosa et al., 2011), Scipy
(Jones et al., 2001) and Numpy (Oliphant, 2006).

3.4.1 DCNN as feature extractor

In the first strategy (figure 2a), features zi ∈ Rm, i =
(1,2,3,4,5) were extracted for patches of each stain
type i using the pre-trained VGG16, Inceptionv3 and
ResNet50 networks. The patches were resized ac-
cording to the model’s input size requirement. For
a patch of a single stain type, 25,088 features were
extracted by the VGG16 (feature shape: 1, 7, 7,
512), 51,200 features were calculated by the Incep-
tionv3 (feature shape: 1, 5, 5, 2048) and 2048 fea-
tures were obtained by the ResNet50 (feature shape:
1, 1, 1, 2048). For data fusion approach, the fea-
tures from all five stain types were concatenated, z =
(z1,z2,z3,z4,z5) ∈ Rd (d � m) resulting in ∼0.12
million features by the VGG16 model, ∼0.25 mil-
lion features by the Inceptionv3 model and 10,240
features by the ResNet50 model per patch. For his-
tological imaging data, i.e. without the data fusion
approach, the features extracted only from the H&E
images were used. In both cases, the large feature
dimension of each patch was reduced by principal
component analysis (PCA) model, and classified as
normal or tumour using linear discriminant analy-
sis (LDA) model (Hastie et al., 2009). The PCA-
LDA model was evaluated using internal and external
cross-validation scheme explained elsewhere (Guo
et al., 2017). Shortly, the internal cross-validation

was used to optimize the number of PC’s of the PCA-
LDA model. The external cross-validation was used
to predict an independent test dataset based on the
PCA-LDA model. The external cross-validation used
leave-one-patient-out cross-validation, such that the
patches acquired from TMAs of 23 patients were used
at least once as an independent test dataset. The in-
ternal cross-validation used 10 fold cross-validation.
The predictions by the PCA-LDA model acquired for
the patches from the external cross-validation step
were voted to assign each TMA into a tumour or nor-
mal class. Based on the predicted TMA labels (ob-
tained after majority voting of the patches) and true
TMA labels, metrics like confusion matrix, mean sen-
sitivity and mean F1 score were reported. The mean
sensitivity and the mean F1 score were calculated us-
ing an average of the mean sensitivities and the mean
F1 scores for the tumour and normal class, respec-
tively. Lastly, the transfer learning strategy 1 was per-
formed for all the three DCNNs and their classifica-
tion performance based on TMAs was compared.

3.4.2 Fine-tuning of DCNN

In the second strategy (figure 2b), for histologi-
cal imaging data, a single-input DCNN was used;
whereas for the data fusion approach, a multi-input
DCNN was used. The multi-input DCNN model N
was constructed using five pre-trained models of the
same architecture; for instance, five pre-trained VGG
networks each using a stain type image as an in-
put. The input to the multi-input DCNN model was
the five stained images (H&E, ER, Her2, Ki-67 and
PR). The last layer of the multi-input DCNN models
was concatenated and followed by a dense layer with
two outputs (corresponding to the normal and tumour
class) with a softmax activation layer. The softmax
activation layer mapped the non-normalized output of
the model N to the distribution of K probabilities and
is defined as

P(r)i =
exp(ri)

∑
K
j=1 exp(r j)

, (3)

where r = (r1, · · ·,rK) and K = 2 for a binary clas-
sification task. During the training process, the last
two layers were fine-tuned using Adam optimizer
(Kingma and Ba, 2014) with a learning rate 0.001 and
mini-batch size of 5 patches. To allocate higher class
weight for the minority class (here, the normal class),
the weighted binary cross-entropy loss function

L =−
K

∑
i

αiyilog(P(r)i) (4)

was used, where αi =
1

#Ki
, yi, P(r)i are the weight,

ground truth and the probability from the softmax ac-



tivation layer of the ith class in K, respectively. The
model was evaluated using the mean sensitivity and
the mean F1 score similar to transfer learning strat-
egy 1.

For the evaluation of the single and multi-input
DCNN, the dataset was divided into three parts: train-
ing, validation and testing. In every iteration, patches
of one patient were used as an independent test dataset
and the patches of remaining patients were used as
training and validation dataset. To avoid any train-
ing bias, the training and validation datasets were
randomly split patient-wise such that patches from
30% patients were used as validation dataset and the
rest as the training dataset. In other words, during
each iteration, patches of one patient were used as the
test dataset, patches of 16 patients formed the train-
ing dataset and patches of remaining 6 patients be-
longed to the validation dataset. The combination of
16 and 6 patients in training and validation datasets
were chosen randomly. The iterations were repeated
until all 23 patients were used as an independent test
dataset. Further, every iteration was executed for ten
epochs, and validation sensitivity was monitored for
early stopping of the model training. The model with
best validation sensitivity was used for predicting the
independent test dataset in that iteration. In this way,
the patches of all 23 patients were used individually
as an independent test dataset, and majority voting
of the patches similar to transfer learning strategy 1
was performed. The confusion matrices and aver-
age of the mean sensitivities for the normal and tu-
mour classes were evaluated using the independent
test dataset. Subsequently, transfer learning strategy
2 was performed for all the three pre-trained DCNN
models with the same hyper-parameter setting.

3.4.3 ROC curve analysis for TMAs

The results of the two transfer learning strategies were
obtained as ROC curves showing the true and the
false positive rate for the tumour class. The ROC
curves were evaluated for TMAs based on the major-
ity voting of the selected patches. To achieve ROC
curves for TMAs, the model output in the form of
probabilities of each patch for the tumour class was
thresholded using 100 different values in the range
[0, 1]. This led to predictions for patches with dif-
ferent threshold values. Subsequently, the predic-
tions for patches obtained for each threshold value
were majority voted to obtain a prediction for a TMA.
The predictions for TMAs were used to calculate the
true positive rate, the false positive rate and the ROC
curve, as shown in figure 3 and 4. The predictions
for the TMAs obtained with 0.5 threshold were used
to obtain the confusion matrix, mean sensitivities and

mean F1 scores as reported in table 1, 2 and 3.

4 RESULTS

The main aim of this work was to confirm that the
data fusion approach can achieve better breast can-
cer diagnosis than histological imaging data based on
performance metrics. This was confirmed by one of
the two transfer learning strategies. The results are
divided in three parts as shown in table 1, 2 and 3.
Table 1 and 2 report performance metrics obtained
for transfer learning strategy 1 and transfer learning
strategy 2, with and without data fusion approach, re-
spectively. Table 3 shows a comparison of the two
transfer learning strategies using only the data fusion
approach. In table 1, 2 and 3 report values for the
VGG16, the Inceptionv3 and the ResNet50 models.
These values were evaluated for 96 TMAs acquired
by majority voting of the five patches extracted from
each TMA.

The results in table 1 show that the pre-trained
features acquired from the data fusion approach yield
slightly higher mean sensitivities and mean F1 scores
in comparison to the pre-trained features extracted
from the histological imaging data. Higher mean sen-
sitivities using the data fusion approach were seen for
at least two of the three DCNNs. Higher mean F1
score using the data fusion approach was seen only
for the ResNet50 model. Specifically, the pre-trained
features obtained from the data fusion approach us-
ing the Inceptionv3 and the ResNet50 models showed
mean sensitivities 89.32% and 86.97%, respectively.
Similarly, the mean F1 scores for the two models
were 85.47% and 87.80%, respectively. In compari-
son, the pre-trained features from the histological data
using the same DCNN model showed mean sensitiv-
ities 88.46% and 85.68%, respectively. Thus, there
was approximately 2% increase in the model perfor-
mance by data fusion approach based on the mean
sensitivity, which is significant from a clinical per-
spective. However, the VGG16 model showed higher
mean sensitivity (80.56%) using histological imaging
data compared to the mean sensitivity calculated for
the data fusion approach (79.06%). Overall, it can be
seen that transfer learning using pre-trained DCNN
features and a linear classification model (PCA-LDA)
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Figure 3: (a-c) show ROC curves for the VGG16, the Inceptionv3 and the ResNet50 networks using the transfer learning
strategy 1 based on TMAs. The blue line shows ROC curve for the PCA-LDA model trained using the pre-trained DCNN
features obtained from the histological and IHC imaging data, whereas the pink line shows ROC curve for the PCA-LDA
model trained using pre-trained DCNN features extracted from the histological imaging data only. The cross-mark shows the
true and the false positive rate on the ROC curve with 0.5 threshold.

(a) (b) (c)
Figure 4: (a-c) show ROC curves for the VGG16, the Inceptionv3 and the ResNet50 networks using the transfer learning
strategy 2 based on TMAs. The blue line shows ROC curve for the multi-input DCNN model fine-tuned using the histological
and IHC imaging data, whereas the pink line shows the ROC curve for the single-input DCNN model fine-tuned using only
the histological imaging data. The cross-mark shows the true and the false positive rate at 0.5 threshold.

based on data fusion approach show a slight improve-
ment in breast cancer detection in some cases for a
small dataset as in our study.

Contrarily, table 2 obtained by the transfer learn-
ing strategy 2 shows lower mean sensitivities for
the data fusion approach in comparison to the per-
formance achieved by using histological imaging
data alone. Except for the multi-input VGG16 net-
work, the multi-input Inceptionv3 and the multi-input
ResNet50 network trained with a combination of his-
tological and IHC imaging data predicted all normal
patches as tumour patches. Thus, the multi-input
Inceptionv3 and the multi-input ResNet50 model
achieved mean sensitivity of 50% and mean F1 score
of 44.83%; whereas, the multi-input VGG16 network
showed mean sensitivity of 66.88% and mean F1
score of 70.86% for the data fusion approach. The
mean sensitivity of the single-input VGG16 network

declined to 55.13% when only histological imaging
data was used. On the other hand, the single-input
Inceptionv3 and the single-input ResNet50 models
using histological imaging data showed an opposite
trend with comparatively higher mean sensitivities of
72.44% and 81.41%, and higher mean F1 scores of
75.66% and 83.78%, respectively. Overall, it was ob-
served that transfer learning performed by fine-tuning
the last layer of the pre-trained multi-input DCNNs
result in lower mean sensitivities for the data fusion
approach. This behaviour can be a consequence of
the small sample size. It is clear from the results that
fine-tuning the last layer of DCNNs is not the best ap-
proach for our small breast cancer dataset. Thus, it
is suspected that the fine-tuning of all the layers of a
DCNN will decrease the model performance further.
However, fine-tuning of all layers for large breast can-
cer dataset should be investigated in the future.



Lastly, the performance of the two transfer learn-
ing strategies for the data fusion approach is summa-
rized in table 3, where higher mean sensitivities are
reported for strategy 1, i.e. using pre-trained features
from the VGG16, the Inceptionv3 and the ResNet50
model. The training of the PCA-LDA model based
on pre-trained features of the Inceptionv3 and the
ResNet50 network yield promising results. The re-
sults from the VGG16 network are lower in compari-
son to the other two models for transfer learning strat-
egy 1, but higher for transfer learning strategy 2.

The performance of the two transfer learning
strategies based on TMAs is summarized in the form
of ROC curves in figure 3 and 4. The ROC curve
calculated for the data fusion approach and histolog-
ical imaging data at various thresholds is depicted in
blue and pink, respectively. The AUC values given in
the figure legend show lower values for the data fu-
sion approach in comparison to the AUC values cal-
culated using histological imaging data. This trend
is observed for both the transfer learning strategies.
From figure 3 and 4, it can be inferred that the over-
all performance of DCNN models trained using an
H&E image is better for both transfer learning strate-
gies. However, the final performance of the models in
terms of mean sensitivities evaluated at 0.50 threshold
is better for the data fusion approach in some cases.
The mean sensitivities cross-marked in each subplot
of figure 3 and 4 are calculated at 0.50 threshold coin-
cide with the values reported in table 1, 2 and 3. These
values are evaluated for TMA’s by performing major-
ity voting of the five patches in each TMA. The ROC
curves at threshold 0.50 which is mostly used to eval-
uate the model performance, show higher mean sensi-
tivities for data fusion approach than using histologi-
cal data, at least for the Inceptionv3 and the ResNet50
model in transfer learning strategy 1 (figure 3). Nev-
ertheless, the AUC derived from the ROC curves for
transfer learning strategy 2 (figure 4) show low mean
sensitivities for all the DCNN networks. The incon-
sistency in the results of two transfer learning strate-
gies can be due to various reasons discussed below.

5 DISCUSSION

Based on the results, three critical findings can be dis-
cussed.

5.1 Data fusion vs. histological imaging

The results showed that the data fusion approach, i.e.
combining histological and IHC imaging data, in-
creases the model performance by ∼2%. However,

the increase in model performance was achieved only
for transfer learning strategy 1, where features were
extracted from a pre-trained DCNN followed by bi-
nary classification using the PCA-LDA model. It is
important to mention that the analysis was performed
on a limited number of TMAs and it is suspected that
the results can improve with an increasing number of
TMAs, at least for the transfer learning strategy 1.
Furthermore, the data fusion approach can largely in-
crease the feature dimension of the data, thus increas-
ing computational complexity. Nevertheless, these
limitations are the cost of performing reliable and
early breast cancer diagnosis. In future studies, fea-
ture dimension can be reduced by extracting features
from the last layers and a comparative study can be
performed.

5.2 Strategy 1 vs. Strategy 2

From the results shown in table 3 it is clear that
transfer learning strategy 1 outperforms the transfer
learning strategy 2 for our breast cancer dataset. For
transfer learning strategy 2, the misclassification of
the under-represented normal class as tumour class is
higher. This means that transfer learning strategy 2
performed by merging and fine-tuning the last layer
of the pre-trained multi-input model causes ‘negative
transfer learning’ showing lower binary classifica-
tion performance. Although the past studies (Kensert
et al., 2018; Mormont et al., 2018) have shown that
transfer learning strategy 2 for medical imaging data
can provide good classification performances, these
studies used a single-input DCNN for fine-tuning;
whereas, in this study a multi-input DCNN was used.
Thus, training a large multi-input network on a small
dataset can cause the model to overfit and degrade
its performance. Degradation in model performance
can also be a consequence of transferring features
of top layers from two different domains (Yosinski
et al., 2014). Specifically, the transferability of fea-
tures can be negatively affected when the source task
(e.g. classification of the ImageNet dataset) is differ-
ent from the target task (e.g. breast cancer detection).
Thus, transfer learning of features for different do-
mains should be performed cautiously (Yosinski et al.,
2014). Further, merging and fine-tuning only the last
layer and initializing the weights of the whole net-
work based on the ImageNet dataset transferred the
specific features (learned in top layers) of the non-
medical domain to the medical domain, thus decreas-
ing the classification performance in the strategy 2.
To improve the performance of a DCNN model by
the transfer learning strategy 2, initializing and fine-
tuning weights of the top and intermediate layers of



the multi-input DCNN model should be investigated
in future studies.

So far, limitations of the transfer learning strategy
2 were discussed, now it is important to discuss few
limitations of the transfer learning strategy 1. One
of the limitations is the need for an aggressive down-
sampling of the pathological images according to the
input size of the pre-trained DCNN, ignoring the es-
sential information. Although it is also possible to use
a desired input image size by removing the fully con-
nected layers of a pre-trained DCNN, downsampling
our patches of size 1024×1024 to the model’s in-
put size facilitated the best classification performance.
Extracting smaller size patches to increase the num-
ber of patches were also evaluated during the analysis.
However, it was observed that small size patches in-
creased the dataset size but decreased the biologically
significant tissue features in each patch. Irrespective
of our acceptable results using the pre-trained DCNNs
as feature extractors, the interpretability of the trans-
ferred features is questionable. It is difficult to ob-
tain an intuitive understanding of the transferability
of non-medical features obtained from the ImageNet
dataset to the medical domain. Thus, it is important to
investigate transferring features from the medical do-
main to improve the breast cancer classification rate
in future.

5.3 Effect of DCNN architecture

It was clear from the results that acquiring a good
classification rate using data fusion approach is de-
pendent on the DCNN model. For transfer learn-
ing strategy 1, the Inceptionv3 and the ResNet50
network achieved better classification performances.
While for transfer learning strategy 2, the multi-input
VGG16 network achieved good classification perfor-
mance. Furthermore, for transfer learning strategy
1, the Inceptionv3 and the VGG16 provided a large
number of features (as they were combined from mul-
tiple modalities) in comparison to the ResNet50 net-
work. Large feature dimension not only increased the
dataset size but also increased the memory require-
ment. However, large feature dimension obtained by
large DCNNs like the Inceptionv3 and the ResNet50
proved to be beneficial for training the PCA-LDA
model in transfer learning strategy 1. While for trans-
fer learning strategy 2, it was seen that large DCNN
like the multi-input Inceptionv3 and the multi-input
ResNet50 networks easily overfit and degrade model
performance. It is suspected that large networks
in multi-input fashion like the Inceptionv3 and the
ResNet50 network generates a large number of train-
able parameters which degrades model performance

during fine-tuning. Furthermore, the time required
to fine-tune the last layers of networks increases with
network size.

6 CONCLUSION

The results show that combining histological imaging
data along with IHC imaging data (estrogen recep-
tor, progesterone receptor, human epidermal growth
factor-2 and Ki-67) can improve breast cancer classi-
fication rate as compared to histological imaging data
alone. The improvement in the classification perfor-
mance was approximately 2% when deep convolu-
tional neural networks (DCNN) were used as feature
extractors (i.e. transfer learning strategy 1). However,
the classification performance degraded when fine-
tuning of the last layer of the multi-input DCNN (i.e.
transfer learning strategy 2) was performed. Out of
all three pre-trained networks, the pre-trained resid-
ual network and inception network as feature extrac-
tor outperformed the binary classification task (tu-
mour vs normal), while the pre-trained VGG network
as feature extractor obtained reasonable results. On
the other hand, the VGG network showed better per-
formances than the residual network and the incep-
tion network when fine-tuning of last layers was per-
formed. The increase in performance by 2% for di-
agnosing breast cancer is explainable, because this
task is normally performed using H&E, so the ad-
vancement is limited. Nevertheless, the data fusion
approach can substantially improve differential diag-
nosis, which is important from a clinical perspec-
tive. Therefore, combining histology and IHC stain-
ing technique should be encouraged in future for more
complicated tasks like a differential diagnosis or the
prognosis of breast cancer patients. Overall, this com-
parative study showed that transfer learning could be
utilized to diagnose breast cancer based on the com-
bined histological and IHC imaging data with accept-
able results. However, it is important to perform this
study on a larger dataset in future. On large dataset,
transfer learning strategy 3 i.e. training a DCNN from
scratch can also be investigated. Furthermore, the
data fusion approach can be performed to characterize
stages of breast cancer in future.
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Abstract: Hematoxylin and Eosin (H&E) staining is the ’gold-standard’ method in histopathol-
ogy. However, standard H&E staining of high-quality tissue sections requires long sample
preparation times including sample embedding, which restricts its application for ’real-time’
disease diagnosis. Due to this reason, a label-free alternative technique like non-linear multi-
modal (NLM) imaging, which is the combination of three non-linear optical modalities including
coherent anti-Stokes Raman scattering, two-photon excitation fluorescence and second-harmonic
generation, is proposed in this work. To correlate the information of the NLM images with
H&E images, this work proposes computational staining of NLM images using deep learning
models in a supervised and an unsupervised approach. In the supervised and the unsupervised
approach, conditional generative adversarial networks (CGANs) and cycle conditional generative
adversarial networks (cycle CGANs) are used, respectively. Both CGAN and cycle CGAN
models generate pseudo H&E images, which are quantitatively analyzed based on mean squared
error, structure similarity index and color shading similarity index. The mean of the three metrics
calculated for the computationally generated H&E images indicate significant performance. Thus,
utilizing CGAN and cycle CGAN models for computational staining is beneficial for diagnostic
applications without performing a laboratory-based staining procedure. To the author’s best
knowledge, it is the first time that NLM images are computationally stained to H&E images using
GANs in an unsupervised manner.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Conventional staining technique like histopathological (H&E) staining is the ’gold-standard’
technique for tissue diagnostics. High quality H&E staining requires an embedding of the sample
in paraffin to generate FFPE sections, which is time-consuming. Due to the time requirement,
conventional H&E staining (using FFPE material) cannot be used for real-time disease diagnosis
like in a cryosection setting, where low quality cryosections are stained. Additionally, this
technique can only show limited biomolecular information. If bio-molecular information is
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needed for diagnostics, it must be acquired using molecular imaging techniques. Thus, in our
work, one of the molecular imaging techniques like non-linear multimodal (NLM) imaging is
used, which can complement the ’gold-standard’ histopathological staining technique. The NLM
imaging used here is based on cryosection material which means that the sample is not embedded
in FFPE and thus have a time advantage. In that way, biomolecular information can be extracted,
and this technique can be applied for real-time disease diagnosis [1,2]. As NLM images used
in our study are based on cryo material that were followed by H&E staining, we do not show
images of H&E stained FFPE sections (instead histopathologically stained H&E images).

The NLM imaging presented here is a combination of three non-linear optical modalities,
namely coherent anti-Stokes Raman scattering (CARS) microscopy, two-photon excitation
fluorescence (TPEF) microscopy and second-harmonic generation (SHG) microscopy. These
three modalities highlight the distribution of biomolecules like collagen, NADH, proteins and
lipids [2,3]. Furthermore, NLM imaging is label-free and provide highly resolved images of
biological tissues. The non-destructive nature of NLM imaging is suitable for in vivo studies.
Due to these properties and the fact that NLM imaging provides morphological and functional
information of a tissue sample, this imaging technique is beneficial for tissue imaging and other
biomedical applications [3] like investigations of skin diseases [4–6], diagnostics of head-neck
cancer [7,8], classification of brain tumors [9], and characterization of inflammatory bowel
disease samples [10].

Despite the ever-increasing use of NLM imaging, its establishment in clinics is not achieved
until now. In situations where cryo sections are analyzed, NLM would be a great technique,
because the computational staining is of higher quality as H&E stains in a cryosection analysis.
The NLM images have a higher resolution compared to the histopathologically stained H&E
images and exhibit color contrast which is unfamiliar to physicians. For diagnostics, physicians
tend to screen histopathologically stained H&E images and then zoom into suspicious regions for
diagnostics. This is problematic as the contrast of NLM images is different from corresponding
histopathologically stained H&E images, and NLM images can be zoomed to higher tissue levels.
Thus, interpretation of NLM images with its corresponding histopathologically stained H&E
images is challenging. To interpret the NLM images and link it to standard histopathologically
stained H&E images, a parallel tissue section and afterwards the cryosection are stained with
conventional staining procedures. Subsequently, the stained images are compared with the
corresponding NLM images. This comparison is laborious, which reduces the advantage of
NLM imaging. Therefore, comparison of histopathologically stained H&E image and NLM
image requires an automatic translation of both images. Furthermore, an automatic translation
of different modalities to H&E stained image can aid intraoperative histopathologic diagnosis
and efficient decision-making during surgery [11]. Such an automatic model can also generate
awareness and trust in the new NLM imaging technique.

In this context, researchers in 2016 performed the modality transfer of NLM images to
histopathologically stained H&E images by image analysis and machine learning methods [12].
Although their work showed comparable results (see Fig. 1), the approach had two limitations.
Foremost, the colors in the computationally stained H&E images were different compared to the
original histopathologically stained H&E images. Secondly, their work trained a machine learning
model that required a corresponding pair of NLM images and histopathologically stained H&E
images. This training procedure is time-consuming as the histopathologically stained H&E image
of the same tissue section must be prepared and registered to the coordinate space of the NLM
image before constructing the machine learning model. In most cases, the multimodal image
registration is a difficult task due to tissue alterations that occur during the staining procedure.

In contrast, our work presents an improvement of the work of Bocklitz et al., 2016 in terms of
the staining results and the required manual effort for modality transfer. This was achieved by
utilizing deep learning models instead of conventional machine learning methods. Briefly, deep
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Fig. 1. (A) shows a pre-processed NLM image with CARS, TPEF and SHG as the red,
green and blue channel, respectively, (B) visualizes histopathologically stained H&E image
(or unregistered H&E image) used for unsupervised pseudo-stain H&E model, (C) depicts
a registered H&E image used for supervised pseudo-stain H&E model. The image in (C)
shows the registration effect, which is filled with zeros. The images in (D), (E) and (F)
are computationally stained H&E images with the supervised, unsupervised approach and
method used in reference [12], respectively. All images are downscaled to 20% of the
original size for clarity. The scale bar in all images represents 100 µm.

learning models, specifically generative adversarial networks [13], were utilized to translate NLM
images into computationally stained H&E images. This work was performed in a supervised and
an unsupervised approach, where a paired [14] and an unpaired image translation [15] of the
NLM image was performed, respectively. The supervised approach or paired image translation
required a corresponding pair of images measured with the two modalities (NLM imaging
and H&E staining), while the unsupervised approach did not require paired images of the two
modalities. Like the previous work of Bocklitz et al. 2016, the supervised approach has the
limitation of registering the histopathologically stained H&E images to the corresponding NLM
images. On the other hand, the unsupervised approach does not require the image registration of
the two modalities. Moreover, the unsupervised approach offer additional advantages like the
artificial generation of images from both modalities, the translation of images from multiple
modalities and minimal requirement of stained images.

The supervised and unsupervised approach utilized a conditional generative adversarial
network (CGAN) [16] and a cycle conditional generative adversarial network (cycle CGAN) [14],
respectively. CGANs are commonly used in computer vision tasks for translating images [14], but
they were never used to translate an NLM image to a H&E stained image. Common applications
of CGAN in computer vision are the transformation of photographs acquired in daylight into
photographs of night scenes, or the transfer of horse images into images of zebras. Likewise,
its application in the biomedical and optical field is gaining popularity [17–23]. Recent works
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transformed auto-fluorescence images [24] or hyperspectral images [25] into histopathologically
stained H&E images using CGANs. A similar approach was performed for translating quantitative
phase imaging into three different stains, namely H&E stain, Jone’s stain, and Masson’s trichrome
stain [26]. CGANs were also employed to increase the spatial resolution [27,28] and remove
speckle noise from optical microscopic images. Similarly, the cycle CGAN were utilized to
stain a H&E stained image into an immunohistochemically (IHC) stained image. The generated
IHC image was used to reconstruct the original H&E stained image [29]. As mentioned earlier,
unpaired image translation is advantageous as co-registration of images from different modalities
is not needed, but the model for the unpaired image translation needs to be more complex as
compared to the model for paired image translation.

Our work is different from the state-of-the-art methods because it is the first time that NLM
images were used for an unsupervised transfer to histopathologically stained H&E images.
While performing the unsupervised modality transfer, the corresponding difficulties were tackled.
First of all, the different contrast between the two modalities makes the image translation task
complicated. Furthermore, the NLM images used in this work are measured from tissue of
patients with different disease severity (namely Inflammatory bowel disease), which is reflected
in the alterations of the tissue structure and changes in the pixel contrast [30]. The availability of
NLM images is limited, which is problematic because the training of adversarial networks requires
large datasets. Lastly, we evaluated the modelling quantitatively by considering perceptual
or texture information and color information. Overall, this work is an improvement of the
state-of-the-art method presented by Bocklitz et al. in 2016 [12], based on paired and unpaired
image translation of NLM images into histopathologically stained H&E images.

2. Material and methods

2.1. Dataset

The dataset used in this work is published elsewhere [30]. Briefly, it consists of tissue samples
from biopsies of patients with Crohn’s disease, ulcerative colitis or infectious colitis obtained
during colonoscopy or surgical resections. The dataset has 19 pairs of NLM images and
histopathologically stained H&E images (see Fig. 1). The NLM image is an RGB image where
each channel represents one of the three non-linear optical modalities. Precisely, the CARS
signal, the TPEF signal, and the SHG signal form the red, green and blue channel of the
RGB image, respectively. The spatial (pixel) resolution of the NLM image is 0.227 µm/pixel
(see Fig. 1(A)). For the histopathologically stained H&E images, the corresponding tissue
sections were stained in the pathology department. The (digital) histopathologically stained
H&E images in the form of slide scanner files were extracted using Aperio Image scope software
with a spatial resolution approximately equal to the NLM image. The spatial resolution of the
extracted histopathologically stained H&E image is 0.219 µm/pixel (see Fig. 1(B)). This spatial
resolution setting was favourable for image registration step. The corresponding pairs of NLM
and histopathologically stained H&E images were used to construct a “pseudo-stain H&E model”
based on the conditional generative adversarial networks in a supervised and an unsupervised
approach. The pseudo-stain H&E model was trained using 13 image pairs and tested on six
image pairs. For building the pseudo-stain H&E model, both images were pre-processed, and the
histopathologically stained H&E image was registered to the NLM image only for the supervised
approach.

2.2. Image pre-processing of the histopathologically stained H&E image

The histopathologically stained H&E image was registered to the coordinate space of the
corresponding NLM image using the Image processing toolbox in Matlab 2018a. For the image
registration purpose, the NLM and histopathologically stained H&E images were converted to
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grayscale, followed by contrast inversion of the histopathologically stained H&E image. The
contrast inversion was achieved by subtracting the pixel values in each channel of the H&E image
by 255. The contrast inversion of histopathologically stained H&E image was performed only for
image registration purpose (not for model training). The inverted histopathologically stained H&E
image (grayscale) was used as a moving image, and the corresponding NLM image (grayscale)
was used as a fixed image. Subsequently, a multimodal image registration [31] based on the
mutual information metric was performed using the NLM and the histopathologically stained
H&E images. The registered histopathologically stained H&E image (see Fig. 1(C)) was used for
the supervised approach or paired image translation, while the unregistered histopathologically
stained H&E image (see Fig. 1(B)) was utilized for the unsupervised approach or unpaired
image translation. Further, patches of size 256×256 were extracted from the registered and the
unregistered histopathologically stained H&E image. All the histopathologically stained H&E
patches were scaled in the range [−1,1] before model training. The patches from the registered
histopathologically stained H&E image were used to train the CGAN model, while the patches
from the unregistered histopathologically stained H&E image were used to train the cycle CGAN
model (see Fig. 2(A) and Fig. 2(B)).

2.3. Image pre-processing of the non-linear multimodal image

The data acquisition and pre-processing of NLM images were similar to Chernavskaia et al.,
2016 [30]. Briefly, the pre-processing steps included median filtering, downsampling by a factor
of 4, correcting the uneven illumination and adjusting the contrast of the NLM images. A
pre-processed NLM image is shown in Fig. 1(A). Subsequently, the contrast of NLM images
was inverted by subtracting the pixel values by 255. Contrast-inversion of NLM images was
performed only for GAN model training. Further, patches of size 256×256 were extracted
from the “contrast-inverted” NLM image (see Fig. 2(C) and Fig. 2(D)). These patches were
filtered separately for the supervised and unsupervised approach. For the supervised approach
or the CGAN model, the pair of NLM and histopathologically stained H&E patch showing
registration artefact were removed. The registration artefacts were seen at the borders of the
registered histopathologically stained H&E image, which were filled with zero values during
registration (see Fig. 1(C)). For the unsupervised method or the cycle CGAN model, the NLM
and histopathologically stained H&E patches belonging to the background region were removed
using the homogeneity factor [32], i.e. the patches with homogeneity factor greater than 60%
were removed [32]. Similar to the H&E patches, all the selected NLM patches were normalized
in the range [−1,1] before model training.

2.4. Conditional generative adversarial network

The conditional generative adversarial network (CGAN) used in this work was inspired by the
Pix2Pix model developed by Isola et al., 2017 [14]. The Pix2Pix model comprised of a generator
(G) and a discriminator (D) (see Fig. 2(E)). The generator with an autoencoder architecture
[33] transforms a contrast-inverted NLM patch (xm) to a computationally stained H&E patch
(zgenerated = G(xm)) which looked visually similar to the histopathologically stained H&E patch
(ztarget). The input to the generator was a pre-processed NLM patch (see column B in Fig. 3) and
a target or histopathologically stained H&E patch (see column C in Fig. 3). The computationally
stained H&E patch, i.e. output of the generator, (see column D in Fig. 3) was evaluated by
calculating mean absolute error with the target histopathologically stained H&E patch and was
optimized to be minimal. The discriminator model was trained to predict the plausibility of
the computationally stained H&E patch (zgenerated). In simpler words, the discriminator model
was trained to predict if the computationally stained H&E patch was ’fake’ (i.e. not belonging
to histopathologically stained H&E patches) or ’real’ (i.e. belonging to the original dataset
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Fig. 2. (A) is a histopathologically stained H&E image, (B) shows the image pre-processing
of a histopathologically stained H&E image including image registration and patch extraction
of size 256×256, (C) is a corresponding NLM image, (D) visualizes the contrast inversion
of the NLM image followed by patch extraction of size 256×256, (E) shows a CGAN model
for paired image translation which utilizes the registered histopathologically stained H&E
images and contrast inverted NLM images, (F) depicts a cycle CGAN model for unpaired
image translation using unregistered histopathologically stained H&E images and contrast
inverted NLM images.
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of histopathologically stained H&E patches). The details of the generator and discriminator
networks are elaborated below.

Fig. 3. Good quality predictions of patches from the training dataset. Columns (A)
and (B) visualize NLM patches and contrast inverted NLM patches, column (C) shows
histopathologically stained H&E patch, and columns (D) and (E) visualize computationally
stained H&E patch generated by the Pix2Pix model and the cycle CGAN model, respectively.
The scale bar represents 50 µm. For all patches in column C, the region within the crypts
(pointed by white arrows) is light or pale pink, whereas the epithelial layer or mucosa region
outlining the crypts appears dark purple. Similar colors with few variations are observed
in the computationally stained H&E patches generated by the Pix2Pix (column D) and the
cycle CGAN (column E) model. Also, the crypt structures are efficiently generated in the
computationally stained H&E patches by both models. It is also observed that nucleus
(pointed by cyan arrow) are not generated by the cycle CGAN model (column E).

The generator network was inspired by the U-Net model [34] which is an autoencoder. The
autoencoder model had eight blocks in the encoder and the decoder part. Each block of the
encoder utilized convolution layer, batch normalization layer and Leaky ReLU activation layer.
The last layer of the encoder was a bottleneck layer without batch normalization layer. The eight
encoder blocks comprised of 64, 128, 256, 512, 512, 512, 512 and 512 filters, respectively. On
the other hand, each decoder block comprised of a convolution layer, batch normalization layer,
dropout layer with a 50% dropout rate and ReLU activation layer. Like the encoder network, the
first layer of the decoder did not use a batch normalization layer. The layers in eight decoder
blocks comprised of 512, 1024, 1024, 1024, 1024, 512, 256 and 128 filters, respectively (after
concatenation from the encoder). All the convolutional layers in the encoder and the decoder
blocks used a kernel size of 4 and stride size of 2. The encoder and the decoder models were
linked through ’skip-connections’ similar to the U-Net architecture. The output layer of the
generator was a single convolutional layer with three channels and tanh activation function. The
output of the generator was a computationally stained H&E patch (zgenerated = G(xm)) which was
one part of the discriminator network’s input.

The discriminator network was a standard convolutional neural network with input as compu-
tationally stained H&E patch (zgenerated) and histopathologically stained H&E patch (ztarget) of
size 256×256. The architecture of the discriminator network was inspired by the ’PatchGAN’
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discriminator given in Ref. [14]. The basic idea of the PatchGAN discriminator model is to
classify an N×N region in the M×M input image (N<M) as ’real’ or ’fake’, instead of classifying
the whole M × M input image as ’real’ or ’fake’. In our case, M = 256 and N = 70 i.e. a 70 × 70
region in the 256 × 256 computationally stained H&E patch was classified as ’real’ or ’fake’.
The 70 × 70 region is termed as the ’receptive field’. The output of the discriminator model was
a map with 16 × 16 values scaled using a sigmoid activation function. In other words, each value
in the 16 × 16 sigmoid activation map corresponded to the probability of the 70 × 70 region
in the input patch being ’real’ (1.0) or ’fake’ (0.0). These values were combined to achieve a
single probability value, which corresponded to the probability of the entire input patch being
’real’ or ’fake’. The layers of the PatchGAN discriminator model were adjusted to maintain the
receptive field size to 70 × 70. Specifically, the layers of the PatchGAN discriminator model
used 64, 128, 256 and 512 filters respectively, and Leaky ReLU activation function with slope
0.2. The configuration of the Leaky ReLU activation function, kernel size and stride size were
the same for both the generator and discriminator networks.

Before training of generator and discriminator networks, the weights of both networks were
initialized using random Gaussian numbers with a standard deviation of 0.02. During the training
phase, the weights of the discriminator model were updated by a set of histopathologically stained
H&E patches (ztarget) and computationally stained H&E patches (zgenerated), and calculating the
discriminator loss

LD = D(zgenerated)
2 + (1 − D(ztarget))

2. (1)

When the discriminator network is better than the generator network, i.e. D(ztarget) = 1 and
D(zgenerated) = 0, it is able to identify all the computationally stained H&E patches as ’fake’. To
avoid the discriminator network to become better than the generator network, the training process
of the discriminator network was slowed down by weighting the discriminator loss LD by 50%
for each model update [35]. The ideal case is to converge the discriminator loss to 0.5 and the
generator to create H&E patches exactly similar to the target histopathologically stained H&E
patches. On the other hand, the weights of the generator network were updated by calculating
the mean absolute error between zgenerated and ztarget. Additionally, the weights of the generator
network were updated through the adversarial loss obtained from the discriminator network.
Thus, the total loss of the generator network LG is given by

LG = λMAE(zgenerated, ztarget) + (1 − D(zgenerated))
2, (2)

where the mean absolute error (MAE) was weighted by a hyperparameter λ. In our case, λ was
set to 10. The weights of the generator and discriminator networks were updated separately to
avoid misleading updates. Furthermore, both networks were trained using the Adam optimizer
[36] with learning rate and β set to 0.0002 and 0.5, respectively.

2.5. Cycle conditional generative adversarial networks

The cycle CGAN model is an extension of the conditional generative adversarial network which
does not require paired images for the image translation task [15]. The cycle CGAN model
involved simultaneous training of two generators (G1,G2) and two discriminators (D1,D2) (see
Fig. 2(F)). The first generator G1 utilized a contrast-inverted NLM patch (xm) (see Fig. 3, column
B) as input and generated an H&E stained patch as output (zgenerated = G1(xm)) (see Fig. 3,
column E). The second generator utilized the computationally stained H&E patch (i.e. the output
of the generator 1, zgenerated) as input and reconstructed it to the original NLM patch (similar
to the input of the generator 1, x̃m = G2(zgenerated)). The output of the second generator (x̃m)

was optimized to be visually similar to the input of the first generator (xm) and was regularized
by calculating the (forward) cycle consistency loss L(cycf ). In similar fashion, backward cycle
consistency loss L(cycb) regulated the second generator. Additionally, the first generator G1 was
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regularized by the identity loss L(id1) which means that the first generator network utilized the
histopathologically stained H&E patch (ztarget) and reconstructed it at its output. We included
only identity mapping loss L(id1) for generator G1 as we were interested in creating flawless
H&E images. However, identity mapping loss L(id2) for generator G2 can be included in future
studies when better reconstruction on NLM images is desired. Furthermore, each generator had
its own discriminator model, which predicted the plausibility of the generated outputs. This is
like the CGAN model explained earlier where each generator-discriminator pair was trained in an
adversarial process. The architecture of the two discriminator models in the cycle CGAN model
was similar to the Pix2Pix model; however, the architecture of generator networks was different.

The generator networks were inspired by the architecture proposed by Isola 2017 [14].
Both generator networks (G1,G2) used input image size 256×256, and the outputs were a
computationally stained H&E patch (zgenerated) and a reconstructed NLM patch (x̃m), respectively.
The generator networks comprised of downsampling convolution blocks to encode the input, a
sequence of six ResNet blocks, and upsampling convolution blocks that decodes the bottleneck
features to an output. The shorthand notation of the generator network can be given as C7s1-64,
D128, D256, R256, R256, R256, R256, R256, R256, U128, U64, C7s1-3 where C7s1-k denotes
a 7×7 Convolution-InstanceNorm-ReLU layer with k filters and stride 1. Dk denotes a 3×3
Convolution-InstanceNorm-ReLU layer with k filters and stride 2. Uk denotes a 3×3 fractional-
strided-Convolution-InstanceNorm-ReLU layer with k filters and stride 1/2. Rk denotes a ResNet
block that contains two 3×3 convolutional layers with the same number of filters on both the
layers. Like the CGAN model, the last layer of the generator network comprised of the tanh
activation function. The weights of the generator networks were updated through adversarial
loss, identity loss [29] and cycle consistency losses [29] (including forward and backward cycle).
Mathematically, the full objective function of the cycle CGAN model can be given as

L(G1,G2,D1,D2) = L(D1)(G1,D1, X, Y) + L(id1)(G1,D1, X)
+ λL(cycf )(G1,G2) + λL(cycb)(G1,G2),

(3)

where L(D1) is the adversarial loss through which the generator 1 was updated. This is mean
squared error instead of binary cross-entropy in the Pix2Pix model, as it provided better results
in the literature [14]. In future, the adversarial loss for second generator L(D2) can also be added.
The identity loss L(id1) and the forward and backward cycle loss L(cycf ) , L(cycb) are the mean
absolute error. The four losses were weighted by a factor of 1, 5, 10 and 10, respectively. The
training of each generator-discriminator pair was similar to the CGAN model.

2.6. Model training and removal of patch-effect

The Pix2Pix model and the cycle CGAN model were trained on patches obtained from the NLM
images and histopathologically stained H&E images. Both models were trained for 100 epochs,
and a batch size of one patch was used. The model training was performed using Python 3.5 on
a commercially available PC system with NVIDIA GeForce GTX 1060, 6GB. The generator
models were saved after every fifth epoch, and the model that generated clinically acceptable
H&E images from the training dataset (on visual inspection) was used for predicting the images
from the test dataset. During the testing phase, the test images were pre-processed in a similar
fashion as the training dataset. Further, the prediction of the images in the test dataset was
performed on patches, which were subsequently combined to a whole image. Combining the
patches resulted into a “patch-effect” which was visible at the edge of each patch in the combined
image, precisely the pixel at every 256th row or column in the whole image. For this purpose, the
pixels which showed the patch-effect were linearly interpolated with its neighbouring three pixels.
The generated H&E images (before and after correction of patch-effect) from both Pix2Pix and
cycle CGAN models were visually inspected (Fig. S1 in Supplement 1). In addition to the visual
inspection, quantitative evaluation of the computationally stained H&E images obtained from
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both pseudo-stain H&E models was performed. The quantitative evaluation was based on three
metrics explained further.

2.7. Evaluation method

For performance quantification, the mean squared error (MSE) was utilized to calculate the error
between the histopathologically stained H&E image (ztarget) and the computationally stained H&E
image (zgenerated) [37]. However, MSE has a limitation caused due to arbitrarily high numbers
which are difficult to standardize. Also, the MSE metric is inconsistent with the human perception
ability [37]. Therefore, two other metrics namely structure similarity index (SSIM) [37,38] and
color shading similarity (CSS) [39], which are well-suited for evaluating GAN performances,
were utilized.

The structure similarity index [37,38] quantifies the perceptual similarity between the two
images (ztarget, zgenerated) by considering the contrast, luminance and texture of these images.
Mathematically, SSIM between two images X and Y can be given as

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ

2
Y + c1)(σ

2
X + σ

2
Y + c2)

, (4)

where µ is mean of an image, σ is the standard deviation of an image, σXY is the cross-covariance
of the two images and C = (c1, c2) are constants to avoid division by zero. For a multichannel
image or an RGB image, the SSIM metric is calculated for each channel separately and the
average SSIM value is considered. Higher values of SSIM indicate higher structural similarity
between the two images.

Another metric called color shading similarity (CSS) [39] was used to quantify the similarity
in the colors of the pixels in the histopathologically stained H&E image (ztarget) and the
computationally stained H&E image (zgenerated). The CSS is calculated by converting both images
in the CIELAB space and utilizing only the color channels A* and B*. For each color channel,
the mathematical formulation of the CSS metric between two images X and Y is given by

CSS(X, Y) =
1
N

N∑︂
i=1

Indi · Sim(Xi, Yi), (5)

where, Sim(Xi, Yi) is the similarity between pixel Xi of the histopathologically stained H&E image
and pixel Yi of the computationally stained H&E image, i is the index used for the N pixels in the
image. Mathematically, Sim and Ind are given as,

Sim(Xi, Yi) = 1 −
dist(Xi, Yi)

max(dist)
,

Indi =

{︄
1; if Sim(Xi, Yi)>threshold,
0; if Sim(Xi, Yi) ≤ threshold.

(6)

In our case, the threshold was set to 0.5, and dist was the absolute distance. Higher values of the
CSS indicate a higher color similarity. Likewise, the three metrics were evaluated for all the
computationally stained H&E images (excluding the background region) from the Pix2Pix and
the cycle CGAN models. The average of the three metrics calculated for all the 19 images from
the training and test dataset is reported in Table 1 and Fig. 7.
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Table 1. The average of the three evaluation metrics
obtained for the 19 images using the Pix2Pix model and the

cycle CGAN model are given for training and testing
dataset. For reference purpose, the three metrics were also
calculated with the same histopathologically stained H&E
image. It is seen that MSE values are very large for both

models, whereas SSIM and CSS are almost similar for both
models. This means that the pixel values of

computationally stained H&E images are different, but the
overall structural and color information is acceptable.
Furthermore, the metric values for training and testing

dataset do not have a large difference, which indicates that
the models are minimally overfitted.

MSE SSIM CSS

Training dataset

Pathological stained H&E image 0.00 1.00 1.00

Pix2Pix stained H&E image 4.69×103 0.52 0.93

Cycle CGAN stained H&E image 10.26×103 0.49 0.91

Testing dataset

Pathological stained H&E image 0.00 1.00 1.00

Pix2Pix stained H&E image 4.27×103 0.60 0.94

Cycle CGAN stained H&E image 7.79×103 0.59 0.93

3. Results

The training of the Pix2Pix model for 100 epochs required ∼7 hours, while the cycle CGAN
model required more than ∼100 hours on our commercial PC. The training of the cycle CGAN
model was terminated after 60 epochs as no significant improvement in the computationally
stained H&E patches was observed visually. Furthermore, it was observed that the generator and
discriminator losses for the Pix2Pix model and the cycle CGAN model fluctuated throughout the
training process. The discriminator loss for both models had difficulties to remain converged at
an ideal value ≥0.5, which can be due to high variance [40,41] and noise in our dataset. The
computationally stained H&E patches obtained using the saved generator models were visually
assessed for their quality. A detailed explanation of the assessment procedure is provided in the
next section.

3.1. Visual similarity of the GAN generated images

Computational staining of NLM images using CGANs achieved visually pleasing results compared
to the state-of-the-art machine learning model used by Bocklitz et al. in 2016 [12] (see Fig. 1). As
the visual appearance directly impacts the histopathological examination of any disease [25,42],
its qualitative evaluation is vital. For this purpose, computationally stained H&E patches using
the Pix2Pix and the cycle CGAN model from the training and testing dataset were inspected for
different tissue regions.

Figure 3 and Fig. 4 show computationally stained H&E patches in good and bad quality
from the training dataset, respectively. Similarly, Fig. 5 and Fig. 6 show good and bad quality
computationally stained H&E patches from the testing dataset. For the good quality patches,
it can be observed that computationally stained H&E patches in columns D and E of Fig. 3
and Fig. 5 look visually similar to the histopathologically stained H&E patches in column C.
Precisely, the good computationally stained H&E patches show a color contrast similar to the
histopathologically stained H&E patches, i.e. the region within the crypts (marked by white
arrows) is light or pale pink, whereas the epithelial layer or mucosa region outlining the crypts
appears dark purple or dark pink. Furthermore, the regions showing nuclei (marked by cyan
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arrow) are generated better by the Pix2Pix model compared to the cycle CGAN model. Overall,
the tissue structures in the good computationally stained H&E patches are clinically acceptable.
Nevertheless, the bad quality patches as shown in columns D and E of Fig. 4 and Fig. 6 looks
visually different than the histopathologically stained H&E patches shown in column C. In
the bad computationally stained H&E patches, the structures within the crypts (marked by
white arrows) are lost and the colors in stroma regions (marked with green arrow) are wrongly
modelled. Furthermore, the nuclei signals present in Fig. 4, column C (marked with cyan arrow)
are not efficiently generated in column D and E. Inconsistent modelling of nuclei signals in
computationally stained H&E images is expected as NLM images show negative contrast for
the cell nucleus. Sometimes the nuclei are out of focus in NLM images and due to this fact,
there is no nuclei contrast. It is observed that nuclei signals and stroma region are occasionally
generated in column C which can be a systematic error of GAN based model. Nevertheless,
in our application (in contrast to oncology) crypt structures are more important rather than the
shape of the cell nuclei in the stroma.

Fig. 4. Bad quality predictions of patches from the training dataset. Columns (A)
and (B) visualize NLM patches and contrast inverted NLM patches, column (C) shows
histopathologically stained H&E patch, and columns (D) and (E) visualize computationally
stained H&E patch generated by the Pix2Pix model and the cycle CGAN model, respectively.
The scale bar represents 50 µm. Here the patches generated by the cycle CGAN model
show a promising translation of corresponding NLM patches; however, the colors in stroma
regions (marked by green arrows) and nuclei signals (marked by cyan arrows) are not well
represented. The computationally stained H&E patches generated by the Pix2Pix model
have a low spatial resolution, as the structures within the crypts (pointed by white arrows)
are not visible.

The variations between the NLM and its corresponding histopathologically stained H&E patch
is due to the optical properties of the NLM imaging technique. The NLM imaging technique
shows structures in a focal plane within the tissue section, which is approximately ∼5µm. In
contrast, the histopathological staining technique reveals the structures from the entire thickness
of the tissue section (∼20µm). Thus, both modalities show slightly different structures, which
can be seen through a fine observation of patches in columns A and C of Figs. 3–6. This
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Fig. 5. Good quality predictions of patches from the test dataset. Column (A) shows
NLM patches, column (B) visualizes contrast inverted NLM patches, column (C) shows
histopathologically stained H&E patch, and columns (D) and (E) depict computationally
stained H&E patch by the Pix2Pix model and the cycle CGAN model, respectively. The
scale bar represents 50 µm. Here, the computationally stained H&E patches by the cycle
CGAN model shows a good quality translation of NLM patches, whereas the translation
by the Pix2Pix model produces blurry results within the crypt regions (marked by white
arrows).

is the reason that an exact correspondence between computationally stained H&E patch and
histopathologically stained H&E patch cannot be achieved for all images in the dataset.

In addition to the structural differences between histopathologically stained H&E patches
and computationally stained H&E patches, there are other critical issues which need attention.
Foremost, it can be seen from Figs. 3–6 that the Pix2Pix model generates low spatial resolution
images as compared to images generated using the cycle CGAN model. The Pix2Pix model
tends to lose detailed boundaries and edges within the crypt region (marked by white arrows)
and show a blurry effect, at least for images from the test dataset (see Fig. 5 and Fig. 6). One
of the reasons for the loss of detailed information can be the mean absolute error which was
used as the objective function while training the generator network in the Pix2Pix model. The
next critical issue was that the computationally stained H&E patches generated by the cycle
CGAN model showed higher color contrast, thus making the colors more vivid. The high color
contrast in the computationally stained H&E patch by the cycle CGAN model can be due to
unsupervised training. It is suspected that the unsupervised training of the cycle CGAN model
can be sensitive to alterations in the pixel intensity of the NLM images, staining inconsistencies
in the histopathologically stained H&E image or a pre-processing effect [40,41]. Nevertheless,
the problem of high color contrast observed in the computationally stained H&E patches from the
cycle CGAN model can be reduced by simple image processing methods like contrast adjustment
[43]. Overall, from the visual appearance of the computationally stained H&E patches, it can
be seen that an exact correspondence with histopathologically stained H&E patches cannot be
achieved. However, the computationally stained H&E patches in column D and E of Figs. 3–6
generated using the Pix2Pix and the cycle CGAN model provide an acceptable translation of
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Fig. 6. Bad quality predictions of patches from the test dataset. Column (A) shows
NLM patches, column (B) visualizes contrast inverted NLM patches, column (C) shows
histopathologically stained H&E patch, and columns (D) and (E) depict computationally
stained H&E patch by the Pix2Pix model and the cycle CGAN model, respectively. The scale
bar represents 50 µm. Here, computationally stained H&E patches (columns D and E) are not
similar to histopathologically stained H&E patches (column C), as histopathologically stained
H&E patches show different structures than the corresponding NLM patch. Furthermore, in
dark NLM patches (second and third row), the computationally stained H&E patches fail to
generate appropriate color contrast in crypt regions (marked by white arrows).

NLM patches. In Fig. S2 and Fig. S3 in Supplement 1, computationally stained H&E patches
combined into an image, and computationally stained H&E images from the method presented in
[12] are shown. Furthermore, the computationally stained H&E image from the cycle CGAN
model followed by contrast reduction with a factor of 0.7 is also visualized. The computationally
stained H&E images were also examined by a histologist for its clinical significance. According
to the expert analysis, both models show promising results for translating NLM images. In
addition to visual analysis, a quantitative evaluation was done and is discussed below.

3.2. Quality of computationally staining based on metrics

An evaluation of the Pix2Pix and the cycle CGAN model was performed based on three metrics:
MSE, SSIM and CSS. The average values of MSE, SSIM and CSS for training and testing dataset
are reported in Table 1. Here, the three metrics were calculated with the same histopathologically
stained H&E image and were considered as baseline values. The aim of the pseudo-stain H&E
models was to acquire values “close” to these baseline values.

From Table 1, it can be seen that the computationally stained H&E images generated from
both models show very high MSE and low SSIM values as compared to the baseline values.
High MSE and low SSIM values were expected as an exact correspondence of computationally
stained H&E image with its histopathologically stained H&E image cannot be achieved. Thus,
the interpretation of the image quality based on the MSE and SSIM metric is unfair. Despite
the high MSE or low SSIM values, the computationally stained H&E images from both models
shown in Fig. S2 and Fig. S3 in Supplement 1 have promising visual appearance when compared
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to its NLM image. Furthermore, the MSE values are higher for the cycle CGAN model as
compared to the Pix2Pix model. Higher MSE values using the cycle CGAN model are suspected
due to largely different pixel values of computationally stained H&E patches. On the other hand,
the SSIM and CSS metrics report similar performance for the Pix2Pix and the cycle CGAN
model, which implies that the overall structural and color content of the computationally stained
H&E image is acceptable. Furthermore, the metric values are similar for training and testing
dataset (see Table 1) which shows that the models are minimally overfitted. The mean SSIM and
mean CSS metric for the training and the testing dataset using both models are >0.50 and >0.90,
respectively. The three metrics for all images are given in Table S1 in Supplement 1.

In addition to Table S1 in Supplement 1, the range of the three metrics is given in Fig. 7,
which shows a large variance in the three metrics. The large variance in the three metrics was
expected and can possibly be due to the large variance in the dataset. Nevertheless, the color
information produced by both pseudo-stain H&E models is close to the baseline value (1.0). The
three metrics for a randomly chosen H&E image generated using both models are given in Fig.
S2 for the testing dataset and Fig. S3 for the training dataset in Supplement 1. Lastly, there was
no significant difference in the performance metrics before and after correction of patch-effect of
computationally stained H&E images.

Fig. 7. The boxplot shows a quantitative comparison of the Pix2Pix and the cycle CGAN
model based on the three evaluation metrics. The MSE metric is higher for the cycle CGAN
model and shows larger variation. This is expected as the pixel values of computationally
stained H&E images generated by the cycle CGAN model differ more than the computationally
stained H&E images generated by the Pix2Pix model. Nevertheless, the CSS and SSIM
metric is in a similar range for both models, which implies that the content of computationally
stained H&E images generated by both models is similar.

4. Discussion

The computationally stained H&E images generated by the supervised (Pix2Pix) and the
unsupervised (cycle CGAN) pseudo-stain H&E model showed a substantial improvement to the
state-of-the-art machine learning model [12] based on color contrast. However, it was observed
that the training time of the machine learning model was less (∼4 hours) than the training time
of CGAN models presented here. Nevertheless, we believe that the cycle CGAN model can
provide better computationally stained H&E images. Furthermore, pseudo-stain H&E model
can be applied for multi-modality conversion, augment the NLM images and remove noise from
multimodal images. In all these tasks, a systematic investigation is needed. Realization of
these tasks using the cycle CGAN model can cause staining protocols less labor intensive [11].
However, there are some important aspects considered for training both models, particularly,
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the training dataset, the pre-processing of the histopathologically stained H&E image and NLM
image and the objective function. These aspects are discussed in more detail below.

4.1. Effect of training dataset

The first aspect is the training dataset utilized for constructing the pseudo-stain H&E models.
Similar to any other deep learning networks, pseudo-stain H&E model based on CGANs are
also sensitive to the training dataset. It was observed that the training dataset with a large
number of noisy patches or background patches affected the convergence of the generator and
the discriminator network. Therefore, patch filtering was vital. Furthermore, a large number of
trainable parameters in the generator and the discriminator network can easily cause overfitting
on the training dataset. This was a major problem in the supervised approach, e.g. the Pix2Pix
model, where the target patches were available. The overfitting on training dataset is seen in
Fig. 5 and Fig. 6, column D. Here, we see the patches from the test dataset lose their spatial
resolution compared to the patches from the training dataset in the Fig. 3.

Contrarily, in the unsupervised approach, the cycle CGAN model trained on unpaired image
data required a quality check of the training dataset. It was observed that for the cycle CGAN
model, the color of the computationally stained H&E patches was influenced by the color of the
majority of patches in the training dataset. For instance, the cycle CGAN model trained with
a large number of patches from the stroma region, i.e. patches with pink color, was likely to
produce pinkish H&E images. Therefore, to create a balance in the color of the generated H&E
images, a manual quality check of the patches in the training dataset was crucial for the training
of the cycle CGAN model. We believe with an increasing dataset and computation power, the
performance of both pseudo-stain H&E models can be improved.

4.2. Effect of the objective function and performance metric

The next aspect for training the pseudo-stain H&E models is the objective function and the
performance metric. We begin with the selection of the objective function. Foremost, an
appropriate selection of the objective function for the generator and the discriminator network is
important to generate clinically acceptable H&E images. In this regard, researchers have shown
the benefits of using various objective functions like the style transfer loss [44], the perceptual
loss [44], the total variation loss [24] and the image gradient loss [45]. Nevertheless, in our case,
the L1-loss for the generator network of the cycle CGAN model showed acceptable results. We
believe that the addition of other losses to the objective function can improve the perceptual
quality of the generated H&E images yet increasing the model complexity. These losses can be
applied for the Pix2Pix and the cycle CGAN model and researched in future studies.

The second aspect is the performance metric. The performance metrics used in this work were
calculated on the pixel basis and are sensitive to slight variations in the computational H&E
images. For instance, a histopathologically stained H&E image and a computationally stained
H&E image offset by one pixel can create a major difference in these performance metrics [44].
This problem is often encountered during registration of H&E image and NLM image. Therefore,
the high values of the MSE and low values of the SSIM metric shown in Table 1 is justified. In
future studies, an objective function that can evaluate the global quality of the computationally
stained H&E images can be utilized.

4.3. Effect of image normalization and contrast inversion

In the end, this section discusses the aspect of image normalization and “contrast-inversion”
performed while training the pseudo-stain H&E models. Foremost, the normalization methods
of both NLM and histopathologically stained H&E images was essential to avoid multiplications
of large numbers during the training process. During the training phase, several methods of
normalizing the NLM images and histopathologically stained H&E images were evaluated. It was
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observed that the NLM and histopathologically stained H&E patches scaled in the range [−1,1]
generated the best results. It was also observed that scaling of NLM and histopathologically
stained H&E images instead of scaling its patches did not affect the training or model performance.
Furthermore, scaling the NLM and/or histopathologically stained H&E patches in the range [0,1]
led to the failure of the discriminator network by immediately converging the discriminator losses
to zero. The scaling of histopathologically stained H&E patches was essential due to the tanh
activation function used in the last layer of the generator network [13]. These findings coincide
with the results of Ref. [46].

In addition to the normalization, “contrast-inversion” of the NLM images was performed
to remove the “inverse-color” effect [47]. This effect was seen when the original NLM image
(without contrast inversion) was used (see Fig. S4 in Supplement 1). This effect was especially
seen in the unsupervised approach, i.e. using the cycle CGAN model. Because of this effect, the
crypt region was transformed into dark purple instead of light pink and vice versa. Therefore,
“contrast-inversion” was an important step for modality conversion, especially where the two
modalities showed significantly different color contrasts.

5. Conclusion

Computational staining of NLM images is beneficial from a clinical perspective as it prevents the
staining procedures and reduces manual effort. This work was an improvement of the state-of-the-
art method, which utilized the conventional machine learning approach for computational staining
of NLM images. On the contrary, this work presented a supervised and unsupervised approach to
computationally stain NLM images into H&E stained images. The supervised approach utilized
the Pix2Pix model, and the unsupervised approach used the cycle CGAN model. For the Pix2Pix
model, a corresponding pair of NLM image and histopathologically stained H&E image was
required. Therefore, image registration of the histopathologically stained H&E image was crucial.
On the other hand, the cycle CGAN model did not require the corresponding pair of the NLM
image and histopathologically stained H&E image. Thus, the effort of image registration and
pathological staining was reduced. The qualitative and quantitative evaluation of both models
showed comparable results using evaluation metrics based on color, texture and perceptual quality.
The evaluation metric like mean squared error reported values >5×103 and >8×103 for the
Pix2Pix and the cycle CGAN model, respectively. In contrast, the evaluation metric, including
SSIM and CSS reported values >0.50 and >0.90 for both models, respectively. In addition to
quantitative evaluation, various pre- and post-processing procedures were explored in this work,
however more advanced post-processing procedures could be investigated in future. Furthermore,
a cycle CGAN model that can perform multiple staining using a NLM image can be one of
the future research directions. The cycle CGAN model can also be investigated for additional
benefits like the artificial generation of NLM images, increasing the spatial resolution of the
computationally stained H&E images and removing fluorescence effect from the reconstructed
NLM images. Overall, the results showed several benefits of using computational staining of
NLM images than performing histopathological staining in laboratories. Thus, the computational
staining approach should be encouraged in clinics to benefit the pathological and clinical field of
science.

Code availabilty

https://github.com/Bocklitz-Lab/Pseudo_HE_modelling.git
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Fig. S1. This figure shows the effect of post-processing for removing ‘patch-effect’. The ‘patch- 
effect’ was removed by interpolating pixel values of three neighbouring pixels at the end of 
every patch (256th pixel).  This effect (shown in white arrows) was visible for few images and 
its removal did not significantly affect the performance metrics. The scale bar represents 100 
µm 
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Fig. S2. (A) shows a non-linear multimodal image from test dataset, (B) visualizes correspond- 
ing histopathologically stained H&E image (unregistered), (C) shows the computational H&E 
image by the Pix2Pix (MSE = 4.4 103, SSIM = 0.65, CSS = 0.94) and (D) depicts computational 
H&E image by the cycle CGAN model (MSE = 8.4   103, SSIM = 0.63, CSS = 0.94).  The con- 
trast of the computational H&E image in (D) is reduced by a factor of 0.7. The images here are 
downsampled to 20% of original size for clarity. The scale bar represents 100 µm. 
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Fig. S3. (A) shows a non-linear multimodal image from training dataset, (B) visualizes corre- 
sponding histopathologically stained H&E image (unregistered), (C) shows the computational 
H&E image by the Pix2Pix (MSE = 2.8 103, SSIM = 0.74, CSS = 0.96) and (D) depicts compu- 
tational H&E image by the cycle CGAN model (MSE = 5.9 103, SSIM = 0.72, CSS = 0.94). The 
contrast of the computational H&E image in (D) is reduced by a factor of 0.7. The images here 
are downsampled to 20% of original size for clarity. The scale bar represents 100 µm. 
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Table S1. The quantitative metrics namely mean squared error (MSE), structure similarity 
index (SSIM) and color similarity index (CSS) evaluated for 19 images from the training and 
testing dataset is given for the Pix2Pix and the cycle CGAN models, respectively. 

Image Pix2Pix Cycle CGAN 
 MSE SSIM CSS MSE SSIM CSS 

Train 1 3601.43 0.61 0.94 9373.09 0.57 0.92 

Train 2 2800.83 0.74 0.96 5890.62 0.72 0.94 

Train 3 4984.19 0.38 0.89 13955.34 0.33 0.89 

Train 4 3337.39 0.56 0.93 8157.08 0.53 0.93 

Train 5 4451.48 0.51 0.92 11509.74 0.47 0.90 

Train 6 5100.78 0.49 0.92 9629.29 0.46 0.89 

Train 7 4956.57 0.41 0.91 10389.17 0.38 0.90 

Train 8 4167.94 0.52 0.92 8376.58 0.49 0.90 

Train 9 7938.24 0.46 0.91 15823.56 0.41 0.91 

Train 10 7657.41 0.39 0.88 9725.03 0.36 0.88 

Train 11 3066.22 0.67 0.94 6749.37 0.65 0.93 

Train 12 3057.30 0.65 0.94 8129.79 0.62 0.93 

Train 13 5918.03 0.36 0.90 15783.79 0.30 0.90 

Test 1 5617.82 0.60 0.92 6600.03 0.59 0.91 

Test 2 3582.64 0.61 0.94 6633.59 0.60 0.94 

Test 3 3827.09 0.65 0.94 4767.95 0.63 0.94 

Test 4 3292.67 0.60 0.94 10118.23 0.58 0.93 

Test 5 4416.22 0.64 0.94 8408.46 0.63 0.94 

Test 6 4937.68 0.49 0.91 10265.39 0.48 0.93 

 



A2 Data Fusion of Histological and Immunohistochemical Image Data
for Breast Cancer Diagnostics using Transfer Learning

Submitted on: 14 September 2020

Accepted on: 13 November 2020

Published on: 10 February 2021





Data Fusion of Histological and Immunohistochemical Image Data for
Breast Cancer Diagnostics using Transfer Learning
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Abstract: A combination of histological and immunohistochemical tissue features can offer better breast cancer diag-
nosis as compared to histological tissue features alone. However, manual identification of histological and
immunohistochemical tissue features for cancerous and healthy tissue requires an enormous human effort
which delays the breast cancer diagnosis. In this paper, breast cancer detection using the fusion of histolog-
ical (H&E) and immunohistochemical (PR, ER, Her2 and Ki-67) imaging data based on deep convolutional
neural networks (DCNN) was performed. DCNNs, including the VGG network, the residual network and the
inception network were comparatively studied. The three DCNNs were trained using two transfer learning
strategies. In transfer learning strategy 1, a pre-trained DCNN was used to extract features from the images
of five stain types. In transfer learning strategy 2, the images of the five stain types were used as inputs to a
pre-trained multi-input DCNN, and the last layer of the multi-input DCNN was optimized. The results showed
that data fusion of H&E and IHC imaging data could increase the mean sensitivity at least by 2% depending
on the DCNN model and the transfer learning strategy. Specifically, the pre-trained inception and residual
networks with transfer learning strategy 1 achieved the best breast cancer detection.

1 INTRODUCTION

Breast cancer is one of the most prevalent cancers
among women. It is diagnosed by a routine procedure
which is based on morphological tissue features in
hematoxylin and eosin (H&E) stained tissue sections
(figure 1a). The morphological tissue features in-
clude tumour size and type, which are regularly docu-
mented to assess the histological grade of breast can-
cer tissue (Webster et al., 2005). These morphologi-
cal tissue features are also used to prevent recurrence
risk of breast cancer and prescribe personalized ther-
apies. Breast cancer is additionally verified by other
staining technique called the immunohistochemical

a https://orcid.org/0000-0002-0558-2914
b https://orcid.org/0000-0001-8237-8936
c https://orcid.org/0000-0003-4257-593X
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(IHC) staining technique. The IHC staining technique
uses antibodies to highlight specific antigens in the
tissue region (Veta et al., 2014), and includes estro-
gen receptor (ER), progesterone receptor (PR) and
human epidermal growth factor-2 (Her2) (figure 1b-
d). Studies have shown that the IHC examination
with ER, PR, Her2 and Ki-67 can detect five molec-
ular breast cancer sub-types to provide adequate per-
sonalized therapies (Perou et al., 2000; Sørlie et al.,
2001; Cheang et al., 2009). However, none of the
studies report a combination of histology (H&E) and
IHC staining techniques (ER, PR, Her2 and Ki-67)
for breast cancer diagnosis. Therefore, in this work,
an integration of IHC imaging technique i.e. hormone
receptors including ER, PR, Her2 and Ki-67 nuclear
protein stained images with H&E stained images is
proposed to gain new insights into breast cancer bi-
ology (Elledge et al., 2000; Damodaran and Olson,
2012). The combination of histology and IHC stain-

Pradhan, P., Köhler, K., Guo, S., Rosin, O., Popp, J., Niendorf, A. and Bocklitz, T.
Data Fusion of Histological and Immunohistochemical Image Data for Breast Cancer Diagnostics using Transfer Learning.
DOI: 10.5220/0010225504950506
In Proceedings of the 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2021), pages 495-506
ISBN: 978-989-758-486-2
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

495



(a) (b) (c) (d) (e)
Figure 1: Five stain type images. (a) Hematoxylin and eosin (H&E), (b) Estrogen receptor (ER), (c) Progesterone receptor
(PR), (d) Human epidermal growth factor-2 (Her2) and (e) Ki-67 protein are shown. Scale bar is 200 µm.

ing technique is referred to as ‘Data fusion’ approach.
Data fusion approach by combining the histologi-

cal and IHC stained images can provide various tissue
features associated with the disease stage and relapse
of breast cancer. However, visual inspection of all five
stained images is a tedious process which can pro-
long the diagnosis. Therefore, automation of breast
cancer detection based on the combination of histo-
logical and IHC imaging data is needed. In this re-
gard, researchers (Pham et al., 2007; Dobson et al.,
2010) used computer-assisted image analysis tech-
niques to automatically monitor changes in the tis-
sue features of histological and IHC stained images
separately. However, computer-assisted image analy-
sis can be limited due to the need for specific soft-
ware systems or the need for user-specific input to
analyze the images. This slows down the process of
analyzing images and providing personalized thera-
pies to the patients. To increase the analysis speed
and reduce human intervention, this work proposes
machine learning (ML) instead of computer-assisted
image analysis techniques.

Conventional ML methods can automatize breast
cancer detection based on the fusion of histological
and IHC imaging data in the following way. First,
the features (e.g. color, shape and texture features)
from the five stain type of imaging data (H&E, ER,
PR, Her2 and Ki-67) can be extracted using image
analysis methods. The feature extraction step in the
conventional ML method is subjective and requires
the effort of an image analyst. Based on the extracted
features, a classification, or a regression model can
be constructed. Subsequently, the classification or the
regression model can be used to make ‘predictions’
(i.e. to predict a class like tumour or normal) on a
new or unseen dataset. Thus, the extracted features
affect the predictions made by the ML model. How-
ever, recently developed ML methods are capable
of performing automatic feature extraction for clas-
sification or regression purpose. These self-learning
methods are categorized into a broad family of ML
called ‘Deep learning’ (DL). The DL models can have
many types of network architectures. Widely used

DL model for images is the deep convolutional neu-
ral network (DCNN) and its numerous applications
are reported in the field of digital pathology (Liu
et al., 2017); for example, cell segmentation or de-
tection (Chen and Chefd’Hotel, 2014), tumour classi-
fication (Cireşan et al., 2013; Wang et al., 2016) and
carcinoma localization (Janowczyk and Madabhushi,
2016; Coudray et al., 2018; Khosravi et al., 2018;
Sheikhzadeh et al., 2018). Nevertheless, a bottleneck
for DL models is the requirement of huge dataset dur-
ing training, which is difficult to acquire, particularly
in the medical imaging field. In such cases, ‘trans-
fer learning’ methods for DCNNs can be applied for
improving the model performance (Tajbakhsh et al.,
2016).

Transfer learning is the transfer of knowledge
learned on a source task using a source dataset to im-
prove the performance on a target task using the target
dataset (Torrey and Shavlik, 2010). Transfer learning
using any DL model like DCNN can be performed
by three strategies. First, a pre-trained DCNN can be
used as a feature extractor. In this strategy, features
for the target dataset are extracted using a DCNN
trained on different or similar source dataset. The sec-
ond strategy is fine-tuning the weights of the last lay-
ers of a pre-trained DCNN, and the third strategy is
fine-tuning the weights of all layers of a pre-trained
DCNN. In the second and third fine-tuning strategies,
the weights of specific layers of a DCNN trained on a
source dataset are further optimized based on the tar-
get dataset. The three transfer learning strategies like
using a DCNN as a feature extractor or fine-tuning
of a DCNN, requires adequate knowledge of the size
and type of the source and the target dataset (Pan and
Yang, 2010). Transfer learning, if used appropriately,
can improve the initial and final performance of the
DL model on the target dataset. It can also reduce
the total training time of the DL model on the target
dataset. Different transfer learning strategies acquire
different results based on the source and target dataset
which is evident in the next section.
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transfer learning improves the breast cancer diagnosis
based on the sensitivity and F1 score metric.

3 MATERIAL AND METHODS

3.1 Sample Preparation

A Tissue Microarray (TMA) with 97 cores represent-
ing 23 breast cancer cases (78 tumour cores, 18 non-
cancerous tissue cores or the normal breast tissue and
one control core of liver tissue) was produced using
the Manual Tissue Arrayer MTA-1 by Estigen. The
cases were randomly selected out of the daily rou-
tine of MVZ Prof. Dr. med. A. Niendorf Pathologie
Hamburg-West GmbH and anonymized according to
a statement of the ethics committee of the Hamburg
Medical Chamber. Core tissue biopsies (1.0 mm in di-
ameter) were taken from individual FFPE (formalin-
fixed paraffin-embedded) blocks and arranged within
a new recipient block. From the block, 2 µm sections
were cut, placed on glass microscope slides and H&E
staining (figure 1a) following a standard protocol was
performed. Digital images of histology (H&E) slides
were obtained at 40×magnification using the 3DHis-
tech Pannoramic 1000 Flash IV slide scanner with a
spatial resolution of 0.24 µm/pixel (.mrxs image file).
Subsequently, immunohistochemistry staining (ER,
PR, Her2 and Ki-67) (figure 1b-e) was performed on
super frost charged glass slides.

3.2 Image Preprocessing

For the analysis, 96 TMAs or scans (78 tumour
scans and 18 normal scans) from 23 patients were
used, and each TMA had five stain types (H&E,
PR, ER, Her2 and Ki-67). The pixel intensity I of
each TMA was standardized using a min-max scal-
ing (I − Imin)/(Imax − Imin), where Imin and Imax is
the minimum and maximum intensity of a pixel in
a TMA. The background pixels were cropped manu-
ally and non-overlapping patches of size 1024×1024
were extracted from a standardized TMA. This led
to 9 patches per TMA (702 tumour and 162 normal
patches). The four corner patches including a large
number of background pixels were removed, leading
to 390 tumour and 90 normal patches. Based on the
480 selected patches, three pre-trained models were
used with two transfer learning strategies.

3.3 DCNN Architectures

To check the robustness of the data fusion approach,
three DCNNs: the VGG network, the Inception net-

work and the residual network, with unique architec-
tures were chosen. The VGG network is a DCNN that
has acquired state-of-the-art performances for image
classification tasks. However, the VGG network can
exhibit the problem of vanishing gradients with an in-
creasing number of layers (Hanin, 2018). Thus, the
residual network which can solve the problem of van-
ishing gradients by adding the ‘shortcut connections’
was explored in this work. Furthermore, the inception
network that provides width in addition to the depth to
a conventional DCNN was utilized. A detailed expla-
nation of the architecture of the three models is given
further.

3.3.1 VGG Network

A VGG network is a DCNN with different configura-
tions from 11 to 16 convolutional layers followed by
three fully connected layers. The number of convo-
lutional layers increases the depth of the VGG net-
work. It is shown that an increase in the depth of
the VGG network decreases the top-5 validation er-
ror (He et al., 2016). However, the decrease in the er-
ror for the VGG network from 16 to 19 convolutional
layers is not significant. Thus, the VGG network
with 16 convolutional layers referred to as VGG16
from Keras was used (Chollet et al., 2015). The in-
put to the VGG16 network was an RGB image of
size 224×224, and each image was preprocessed by
subtracting the mean RGB values computed over the
training dataset.

3.3.2 Inception Network

Deep networks like VGG network require an appro-
priate selection of the number of convolution filters
and filter sizes. For this reason, the inception network
concatenates convolutional layers of different filter
size, including the spatial dimension of 1×1, 3×3
and 5×5. This captures information at various scales
while increasing the computational complexity. In or-
der to reduce the computational cost, a convolutional
layer of 1×1 filter size is applied before each convo-
lutional layer of filter size 3×3 and 5×5. These two
salient features of the Inception network reduce the
dimensionality in the feature space and thereby allows
the network to be deeper and wider. Moreover, the
inception network replaces the fully connected layer
with global averaging layers which reduces the num-
ber of trainable weights, thus reducing over-fitting on
the training dataset (Szegedy et al., 2016). The In-
ceptionv3 implementation from Keras, which has 95
layers and requires an RGB image as input with size
299×299 was used.
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Table 1: This table shows confusion matrices, mean sensitivities and mean F1 scores for the VGG, the Inception and the
residual networks using transfer learning strategy 1. Here, two feature sets extracted from pre-trained models are used; one
feature set is extracted from H&E images only, while the other feature set is extracted from all the five stain types. All metrics
are computed for 96 TMAs by taking majority voting of the predictions acquired for the patches using the PCA-LDA model.
N: normal scans, T: tumour scans.

Data fusion (H&E+IHC imaging data) Only histological imaging data
DCNN N T Sens (%) F1 (%) DCNN N T Sens (%) F1 (%)

VGG16 N 13 5 79.06 76.24 VGG16 N 14 4 80.56 76.61T 11 67 T 13 65

Inceptionv3 N 16 2 89.32 85.47 Inceptionv3 N 15 3 88.46 86.97T 8 70 T 5 75

ResNet50 N 14 4 86.97 87.80 ResNet50 N 14 4 85.68 84.96T 3 75 T 5 73

Table 2: This table shows confusion matrices, mean sensitivities and mean F1 scores for the VGG, the Inception and the
residual networks using transfer learning strategy 2. Data fusion approach used multi-input DCNN with the five stain type
images as input, whereas a single-input DCNN was used only the H&E image as input. The last layers of both single-input
and multi-input DCNNs were fine-tuned. The mean sensitivities are computed for 96 TMAs by taking majority voting of the
predictions obtained for the patches. N: normal scans, T: tumour scans.

Data fusion (H&E+IHC imaging data) Only histological imaging data
DCNN N T Sens (%) F1 (%) DCNN N T Sens (%) F1 (%)

VGG16 N 7 11 66.88 70.86 VGG16 N 3 15 55.13 57.57T 4 74 T 5 73

Inceptionv3 N 0 18 50.00 44.83 Inceptionv3 N 9 9 72.44 75.66T 0 78 T 4 74

ResNet50 N 0 18 50.00 44.83 ResNet50 N 12 6 81.41 83.78T 0 78 T 3 75

Table 3: This table shows confusion matrices, mean sensitivities and mean F1 scores for the VGG, the Inception and the
residual network using the two transfer learning strategies. All metrics are computed for 96 TMAs by taking majority voting
of the predictions acquired by the models for patches.

Transfer learning strategy 1 Transfer learning strategy 2
DCNN N T Sens (%) F1 (%) DCNN N T Sens (%) F1 (%)

VGG16 N 13 5 79.06 76.24 VGG16 N 7 11 66.88 70.86T 11 67 T 4 74

Inceptionv3 N 16 2 89.32 85.47 Inceptionv3 N 0 18 50.00 44.83T 8 70 T 0 78

ResNet50 N 14 4 86.97 87.80 ResNet50 N 0 18 50.00 44.83T 3 75 T 0 78

3.3.3 Residual Network

The configurations of the VGG network show that
deep neural networks achieve good top-5 accuracy
until a certain depth limit (He et al., 2016). An in-
crease in the network depth causes a problem of van-
ishing or exploding gradients (Hanin, 2018) which af-
fects the network convergence and degrades the per-
formance (Simonyan and Zisserman, 2014). There-
fore, the residual networks are built to solve this
degradation problem by adding activations of the top
layers into the deeper layers of the network. For in-
stance, in a deep neural network the activation a of
the (l+2)th layer with weight w and bias b is given as

a(l+2) = f [(w(l+2)×a(l+1))+b(l+2)], (1)
where f is an activation function like linear recti-
fied unit ( f = max(a(l+2),0)). However, in a resid-
ual block the activation a of the lth layer (or an iden-
tity mapping) is added via the ‘skip or shortcut con-
nections’ (Bishop et al., 1995; Venables and Ripley,
2013) to the (l+2)th layer of the network. Therefore,
the activation of the (l +2)th layer in a residual block
can be given a

a(l+2) = f [(w(l+2)×a(l+1))+b(l+2)+a(l)]. (2)

This implies that in worse cases when the network
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fails to learn representative features, i.e. w(l+2) = 0
and b(l+2) = 0, the output still remains an identity
mapping of the input al . In residual networks, a se-
ries of residual blocks along with intermediate nor-
malization layers was used; thus improving the learn-
ing of the deep neural networks. In this work, the
ResNet50 implementation from Keras, which has 152
layers and requires an RGB image as an input with
size 224×224, was used.

The above explained three DCNN models were
trained using two transfer learning strategies which
are discussed in the next section.

3.4 Transfer Learning Strategies

The above-mentioned DCNNs were utilized for two
transfer learning strategies. For the first strategy, a
pre-trained DCNN model to extract off-the-shelf fea-
tures followed by a linear classifier was used. In
the second strategy, a multi-input pre-trained DCNN
model followed by a softmax classifier was used.
Both strategies were performed on a commercially
available PC system intel R© CoreTM with NVIDIA
GeForce GTX 1060, 6GB with python packages:
Keras(Chollet et al., 2015), Tensorflow(Abadi et al.,
2015), Scikit-learn (Pedregosa et al., 2011), Scipy
(Jones et al., 2001) and Numpy (Oliphant, 2006).

3.4.1 DCNN as Feature Extractor

In the first strategy (figure 2a), features zi ∈ Rm, i =
(1,2,3,4,5) were extracted for patches of each stain
type i using the pre-trained VGG16, Inceptionv3 and
ResNet50 networks. The patches were resized ac-
cording to the model’s input size requirement. For
a patch of a single stain type, 25,088 features were
extracted by the VGG16 (feature shape: 1, 7, 7,
512), 51,200 features were calculated by the Incep-
tionv3 (feature shape: 1, 5, 5, 2048) and 2048 fea-
tures were obtained by the ResNet50 (feature shape:
1, 1, 1, 2048). For data fusion approach, the fea-
tures from all five stain types were concatenated, z =
(z1,z2,z3,z4,z5) ∈ Rd (d � m) resulting in ∼0.12
million features by the VGG16 model, ∼0.25 mil-
lion features by the Inceptionv3 model and 10,240
features by the ResNet50 model per patch. For his-
tological imaging data, i.e. without the data fusion
approach, the features extracted only from the H&E
images were used. In both cases, the large feature
dimension of each patch was reduced by principal
component analysis (PCA) model, and classified as
normal or tumour using linear discriminant analy-
sis (LDA) model (Hastie et al., 2009). The PCA-
LDA model was evaluated using internal and external
cross-validation scheme explained elsewhere (Guo

et al., 2017). Shortly, the internal cross-validation
was used to optimize the number of PC’s of the PCA-
LDA model. The external cross-validation was used
to predict an independent test dataset based on the
PCA-LDA model. The external cross-validation used
leave-one-patient-out cross-validation, such that the
patches acquired from TMAs of 23 patients were used
at least once as an independent test dataset. The in-
ternal cross-validation used 10 fold cross-validation.
The predictions by the PCA-LDA model acquired for
the patches from the external cross-validation step
were voted to assign each TMA into a tumour or nor-
mal class. Based on the predicted TMA labels (ob-
tained after majority voting of the patches) and true
TMA labels, metrics like confusion matrix, mean sen-
sitivity and mean F1 score were reported. The mean
sensitivity and the mean F1 score were calculated us-
ing an average of the mean sensitivities and the mean
F1 scores for the tumour and normal class, respec-
tively. Lastly, the transfer learning strategy 1 was per-
formed for all the three DCNNs and their classifica-
tion performance based on TMAs was compared.

3.4.2 Fine-tuning of DCNN

In the second strategy (figure 2b), for histologi-
cal imaging data, a single-input DCNN was used;
whereas for the data fusion approach, a multi-input
DCNN was used. The multi-input DCNN model N
was constructed using five pre-trained models of the
same architecture; for instance, five pre-trained VGG
networks each using a stain type image as an in-
put. The input to the multi-input DCNN model was
the five stained images (H&E, ER, Her2, Ki-67 and
PR). The last layer of the multi-input DCNN models
was concatenated and followed by a dense layer with
two outputs (corresponding to the normal and tumour
class) with a softmax activation layer. The softmax
activation layer mapped the non-normalized output of
the model N to the distribution of K probabilities and
is defined as

P(r)i =
exp(ri)

∑
K
j=1 exp(r j)

, (3)

where r = (r1, · · ·,rK) and K = 2 for a binary clas-
sification task. During the training process, the last
two layers were fine-tuned using Adam optimizer
(Kingma and Ba, 2014) with a learning rate 0.001 and
mini-batch size of 5 patches. To allocate higher class
weight for the minority class (here, the normal class),
the weighted binary cross-entropy loss function

L =−
K

∑
i

αiyilog(P(r)i) (4)
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was used, where αi =
1

#Ki
, yi, P(r)i are the weight,

ground truth and the probability from the softmax ac-
tivation layer of the ith class in K, respectively. The
model was evaluated using the mean sensitivity and
the mean F1 score similar to transfer learning strat-
egy 1.

For the evaluation of the single and multi-input
DCNN, the dataset was divided into three parts: train-
ing, validation and testing. In every iteration, patches
of one patient were used as an independent test dataset
and the patches of remaining patients were used as
training and validation dataset. To avoid any train-
ing bias, the training and validation datasets were
randomly split patient-wise such that patches from
30% patients were used as validation dataset and the
rest as the training dataset. In other words, during
each iteration, patches of one patient were used as the
test dataset, patches of 16 patients formed the train-
ing dataset and patches of remaining 6 patients be-
longed to the validation dataset. The combination of
16 and 6 patients in training and validation datasets
were chosen randomly. The iterations were repeated
until all 23 patients were used as an independent test
dataset. Further, every iteration was executed for ten
epochs, and validation sensitivity was monitored for
early stopping of the model training. The model with
best validation sensitivity was used for predicting the
independent test dataset in that iteration. In this way,
the patches of all 23 patients were used individually
as an independent test dataset, and majority voting
of the patches similar to transfer learning strategy 1
was performed. The confusion matrices and aver-
age of the mean sensitivities for the normal and tu-
mour classes were evaluated using the independent
test dataset. Subsequently, transfer learning strategy
2 was performed for all the three pre-trained DCNN
models with the same hyper-parameter setting.

3.4.3 ROC Curve Analysis for TMAs

The results of the two transfer learning strategies were
obtained as ROC curves showing the true and the
false positive rate for the tumour class. The ROC
curves were evaluated for TMAs based on the major-
ity voting of the selected patches. To achieve ROC
curves for TMAs, the model output in the form of
probabilities of each patch for the tumour class was
thresholded using 100 different values in the range
[0, 1]. This led to predictions for patches with dif-
ferent threshold values. Subsequently, the predic-
tions for patches obtained for each threshold value
were majority voted to obtain a prediction for a TMA.
The predictions for TMAs were used to calculate the
true positive rate, the false positive rate and the ROC
curve, as shown in figure 3 and 4. The predictions

for the TMAs obtained with 0.5 threshold were used
to obtain the confusion matrix, mean sensitivities and
mean F1 scores as reported in table 1, 2 and 3.

4 RESULTS

The main aim of this work was to confirm that the
data fusion approach can achieve better breast can-
cer diagnosis than histological imaging data based on
performance metrics. This was confirmed by one of
the two transfer learning strategies. The results are
divided in three parts as shown in table 1, 2 and 3.
Table 1 and 2 report performance metrics obtained
for transfer learning strategy 1 and transfer learning
strategy 2, with and without data fusion approach, re-
spectively. Table 3 shows a comparison of the two
transfer learning strategies using only the data fusion
approach. In table 1, 2 and 3 report values for the
VGG16, the Inceptionv3 and the ResNet50 models.
These values were evaluated for 96 TMAs acquired
by majority voting of the five patches extracted from
each TMA.

The results in table 1 show that the pre-trained
features acquired from the data fusion approach yield
slightly higher mean sensitivities and mean F1 scores
in comparison to the pre-trained features extracted
from the histological imaging data. Higher mean sen-
sitivities using the data fusion approach were seen for
at least two of the three DCNNs. Higher mean F1
score using the data fusion approach was seen only
for the ResNet50 model. Specifically, the pre-trained
features obtained from the data fusion approach us-
ing the Inceptionv3 and the ResNet50 models showed
mean sensitivities 89.32% and 86.97%, respectively.
Similarly, the mean F1 scores for the two models
were 85.47% and 87.80%, respectively. In compari-
son, the pre-trained features from the histological data
using the same DCNN model showed mean sensitiv-
ities 88.46% and 85.68%, respectively. Thus, there
was approximately 2% increase in the model perfor-
mance by data fusion approach based on the mean
sensitivity, which is significant from a clinical per-
spective. However, the VGG16 model showed higher
mean sensitivity (80.56%) using histological imaging
data compared to the mean sensitivity calculated for
the data fusion approach (79.06%). Overall, it can be
seen that transfer learning using pre-trained DCNN
features and a linear classification model (PCA-LDA)
based on data fusion approach show a slight improve-
ment in breast cancer detection in some cases for a
small dataset as in our study.

Contrarily, table 2 obtained by the transfer learn-
ing strategy 2 shows lower mean sensitivities for
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model. The training of the PCA-LDA model based
on pre-trained features of the Inceptionv3 and the
ResNet50 network yield promising results. The re-
sults from the VGG16 network are lower in compari-
son to the other two models for transfer learning strat-
egy 1, but higher for transfer learning strategy 2.

The performance of the two transfer learning
strategies based on TMAs is summarized in the form
of ROC curves in figure 3 and 4. The ROC curve
calculated for the data fusion approach and histolog-
ical imaging data at various thresholds is depicted in
blue and pink, respectively. The AUC values given in
the figure legend show lower values for the data fu-
sion approach in comparison to the AUC values cal-
culated using histological imaging data. This trend
is observed for both the transfer learning strategies.
From figure 3 and 4, it can be inferred that the over-
all performance of DCNN models trained using an
H&E image is better for both transfer learning strate-
gies. However, the final performance of the models in
terms of mean sensitivities evaluated at 0.50 threshold
is better for the data fusion approach in some cases.
The mean sensitivities cross-marked in each subplot
of figure 3 and 4 are calculated at 0.50 threshold coin-
cide with the values reported in table 1, 2 and 3. These
values are evaluated for TMA’s by performing major-
ity voting of the five patches in each TMA. The ROC
curves at threshold 0.50 which is mostly used to eval-
uate the model performance, show higher mean sensi-
tivities for data fusion approach than using histologi-
cal data, at least for the Inceptionv3 and the ResNet50
model in transfer learning strategy 1 (figure 3). Nev-
ertheless, the AUC derived from the ROC curves for
transfer learning strategy 2 (figure 4) show low mean
sensitivities for all the DCNN networks. The incon-
sistency in the results of two transfer learning strate-
gies can be due to various reasons discussed below.

5 DISCUSSION

Based on the results, three critical findings can be dis-
cussed.

5.1 Data Fusion vs. Histological
Imaging

The results showed that the data fusion approach, i.e.
combining histological and IHC imaging data, in-
creases the model performance by ∼2%. However,
the increase in model performance was achieved only
for transfer learning strategy 1, where features were
extracted from a pre-trained DCNN followed by bi-
nary classification using the PCA-LDA model. It is

important to mention that the analysis was performed
on a limited number of TMAs and it is suspected that
the results can improve with an increasing number of
TMAs, at least for the transfer learning strategy 1.
Furthermore, the data fusion approach can largely in-
crease the feature dimension of the data, thus increas-
ing computational complexity. Nevertheless, these
limitations are the cost of performing reliable and
early breast cancer diagnosis. In future studies, fea-
ture dimension can be reduced by extracting features
from the last layers and a comparative study can be
performed.

5.2 Strategy 1 vs. Strategy 2

From the results shown in table 3 it is clear that
transfer learning strategy 1 outperforms the transfer
learning strategy 2 for our breast cancer dataset. For
transfer learning strategy 2, the misclassification of
the under-represented normal class as tumour class is
higher. This means that transfer learning strategy 2
performed by merging and fine-tuning the last layer
of the pre-trained multi-input model causes ‘negative
transfer learning’ showing lower binary classifica-
tion performance. Although the past studies (Kensert
et al., 2018; Mormont et al., 2018) have shown that
transfer learning strategy 2 for medical imaging data
can provide good classification performances, these
studies used a single-input DCNN for fine-tuning;
whereas, in this study a multi-input DCNN was used.
Thus, training a large multi-input network on a small
dataset can cause the model to overfit and degrade
its performance. Degradation in model performance
can also be a consequence of transferring features
of top layers from two different domains (Yosinski
et al., 2014). Specifically, the transferability of fea-
tures can be negatively affected when the source task
(e.g. classification of the ImageNet dataset) is differ-
ent from the target task (e.g. breast cancer detection).
Thus, transfer learning of features for different do-
mains should be performed cautiously (Yosinski et al.,
2014). Further, merging and fine-tuning only the last
layer and initializing the weights of the whole net-
work based on the ImageNet dataset transferred the
specific features (learned in top layers) of the non-
medical domain to the medical domain, thus decreas-
ing the classification performance in the strategy 2.
To improve the performance of a DCNN model by
the transfer learning strategy 2, initializing and fine-
tuning weights of the top and intermediate layers of
the multi-input DCNN model should be investigated
in future studies.

So far, limitations of the transfer learning strategy
2 were discussed, now it is important to discuss few
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limitations of the transfer learning strategy 1. One
of the limitations is the need for an aggressive down-
sampling of the pathological images according to the
input size of the pre-trained DCNN, ignoring the es-
sential information. Although it is also possible to use
a desired input image size by removing the fully con-
nected layers of a pre-trained DCNN, downsampling
our patches of size 1024×1024 to the model’s in-
put size facilitated the best classification performance.
Extracting smaller size patches to increase the num-
ber of patches were also evaluated during the analysis.
However, it was observed that small size patches in-
creased the dataset size but decreased the biologically
significant tissue features in each patch. Irrespective
of our acceptable results using the pre-trained DCNNs
as feature extractors, the interpretability of the trans-
ferred features is questionable. It is difficult to ob-
tain an intuitive understanding of the transferability
of non-medical features obtained from the ImageNet
dataset to the medical domain. Thus, it is important to
investigate transferring features from the medical do-
main to improve the breast cancer classification rate
in future.

5.3 Effect of DCNN Architecture

It was clear from the results that acquiring a good
classification rate using data fusion approach is de-
pendent on the DCNN model. For transfer learn-
ing strategy 1, the Inceptionv3 and the ResNet50
network achieved better classification performances.
While for transfer learning strategy 2, the multi-input
VGG16 network achieved good classification perfor-
mance. Furthermore, for transfer learning strategy
1, the Inceptionv3 and the VGG16 provided a large
number of features (as they were combined from mul-
tiple modalities) in comparison to the ResNet50 net-
work. Large feature dimension not only increased the
dataset size but also increased the memory require-
ment. However, large feature dimension obtained by
large DCNNs like the Inceptionv3 and the ResNet50
proved to be beneficial for training the PCA-LDA
model in transfer learning strategy 1. While for trans-
fer learning strategy 2, it was seen that large DCNN
like the multi-input Inceptionv3 and the multi-input
ResNet50 networks easily overfit and degrade model
performance. It is suspected that large networks
in multi-input fashion like the Inceptionv3 and the
ResNet50 network generates a large number of train-
able parameters which degrades model performance
during fine-tuning. Furthermore, the time required
to fine-tune the last layers of networks increases with
network size.

6 CONCLUSION

The results show that combining histological imaging
data along with IHC imaging data (estrogen recep-
tor, progesterone receptor, human epidermal growth
factor-2 and Ki-67) can improve breast cancer classi-
fication rate as compared to histological imaging data
alone. The improvement in the classification perfor-
mance was approximately 2% when deep convolu-
tional neural networks (DCNN) were used as feature
extractors (i.e. transfer learning strategy 1). However,
the classification performance degraded when fine-
tuning of the last layer of the multi-input DCNN (i.e.
transfer learning strategy 2) was performed. Out of
all three pre-trained networks, the pre-trained resid-
ual network and inception network as feature extrac-
tor outperformed the binary classification task (tu-
mour vs normal), while the pre-trained VGG network
as feature extractor obtained reasonable results. On
the other hand, the VGG network showed better per-
formances than the residual network and the incep-
tion network when fine-tuning of last layers was per-
formed. The increase in performance by 2% for di-
agnosing breast cancer is explainable, because this
task is normally performed using H&E, so the ad-
vancement is limited. Nevertheless, the data fusion
approach can substantially improve differential diag-
nosis, which is important from a clinical perspec-
tive. Therefore, combining histology and IHC stain-
ing technique should be encouraged in future for more
complicated tasks like a differential diagnosis or the
prognosis of breast cancer patients. Overall, this com-
parative study showed that transfer learning could be
utilized to diagnose breast cancer based on the com-
bined histological and IHC imaging data with accept-
able results. However, it is important to perform this
study on a larger dataset in future. On large dataset,
transfer learning strategy 3 i.e. training a DCNN from
scratch can also be investigated. Furthermore, the
data fusion approach can be performed to characterize
stages of breast cancer in future.
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