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Abstract: In this paper, a multi-phase multi-time-scale real-time dynamic active-reactive optimal

power flow (RT-DAR-OPF) framework is developed to optimally deal with spontaneous changes

in wind power in distribution networks (DNs) with battery storage systems (BSSs). The most

challenging issue hereby is that a large-scale ‘dynamic’ (i.e., with differential/difference equations

rather than only algebraic equations) mixed-integer nonlinear programming (MINLP) problem has

to be solved in real time. Moreover, considering the active-reactive power capabilities of BSSs with

flexible operation strategies, as well as minimizing the expended life costs of BSSs further increases

the complexity of the problem. To solve this problem, in the first phase, we implement simultaneous

optimization of a huge number of mixed-integer decision variables to compute optimal operations

of BSSs on a day-to-day basis. In the second phase, based on the forecasted wind power values for

short prediction horizons, wind power scenarios are generated to describe uncertain wind power

with non-Gaussian distribution. Then, MINLP AR-OPF problems corresponding to the scenarios

are solved and reconciled in advance of each prediction horizon. In the third phase, based on the

measured actual values of wind power, one of the solutions is selected, modified, and realized to the

network for very short intervals. The applicability of the proposed RT-DAR-OPF is demonstrated

using a medium-voltage DN.

Keywords: real-time dynamic active-reactive optimal power flow (RT-DAR-OPF); feasibility; MINLP;

battery storage systems (BSSs); intermittent wind power

1. Introduction

There is a strong demand for increasing the penetration level of wind energy into distribution

networks (DNs). However, a considerable amount of this generation may need to be curtailed due to

technical constraints in the network. Battery storage systems (BSSs) can be optimally used to store

the energy, decrease the curtailment, and consequently increase economic benefits. However, BSSs

introduce dynamic terms to the problem of optimal power flow (OPF). In addition, considering both

the active and reactive power capability of the BSSs with flexible operation strategies, as well as

maximizing the lifetime of the batteries further increases the complexity of the problem. Furthermore,

wind power is intermittent, and therefore the network operator has to quickly update the operation

strategies correspondingly. This task should be carried out by a ‘real-time’ optimization aiming at

determining a huge number of mixed-integer decision variables. Therefore, a real-time dynamic
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active-reactive OPF (RT-DAR-OPF) problem should be solved to ensure not only optimality but also

the feasibility of the system operation.

RT-OPF was first introduced in [1] and then attracted the interest of many studies: [2] introduced a

real-time strategy based on a linear model predictive control (MPC) for OPF in the presence of BSSs and

wind turbines; [3] utilized neural networks for RT-OPF in radial DNs considering uncertain demand

and renewable energy generation (REGs); [4] developed two real-time algorithms for constraint

satisfaction for OPF; [5] proposed an RT-OPF control approach based on a feedback mechanism; [6]

proposed a risk-based RT-OPF considering uncertain REGs; [7] developed a data-driven hourly

real-time power dispatch framework; [8] proposed an online gradient algorithm for OPF on radial

networks ensuring low computation time; [9] proposed an RT-OPF algorithm based on quasi-Newton

methods; [10] proposed an RT-OPF approach considering the minute-to-minute variability of REGs and

demand; [11] developed a feedback controller for photovoltaic inverters seeking OPF solutions; [12]

extended the research in [11] by improving the convergence properties of the feedback controllers

for the case of time-varying ambient and network conditions; [13] developed a prediction-realization

RT-OPF framework to deal with intermittent wind power in DNs; [14] extended the framework

in [13] by incorporating the reactive power dispatch of wind farms (WFs) as well as overcoming

convergence issues [15] by introducing a reconciliation algorithm; [16] utilized graphical processing

units to accelerate the OPF computation; [17] presented a real-time optimization method for alleviating

contingencies (e.g., line overloads and voltage limit violations) in transmission networks; [18] proposed

a multi-stage stochastic optimization for real-time economic dispatch of storage (specifically pumped

hydro) resources; [19] proposed a feedback-based RT-OPF algorithm to satisfy technical constraints in

real time; and [20] proposed an MPC-based distributed RT-OPF method for interconnected microgrids.

For a detailed survey of RT-OPF methods, we refer to [21]. It is noted that all the above studies on

‘real-time’ OPF [1–20] did not consider the optimal operations of BSSs when optimizing mixed-integer

decision variables of the network.

BSSs could play a significant role in the efficient operation of energy networks. They can lead

to a decrease in power losses and voltage deviations [22], supplying peak demand [23,24] by storing

the energy instead of energy curtailment [25]. However, the optimal integration of the BSSs into

energy networks still needs further investigations. From an operation point of view, the BSSs can

be scheduled in a fixed or flexible manner. For instance, [26] utilized both the active and reactive

power capability of BSSs [27,28] in the OPF problem based on a fixed length of charge and discharge

periods in a prediction horizon. The reactive power provision of distributed energy resources leads to

significant economic (e.g., exporting reactive power to an upstream network [14]) and technical benefits

(e.g., management of line losses and voltage regulation [29,30]). In [31], it was proposed that BSSs are

operated with a flexible length of charge and discharge periods, but identical operation strategies were

obtained for different BSSs so as to reduce the number of mixed-integer decision variables. However,

realizing the identical solutions for all BSSs (at different locations) cannot be efficient. Therefore,

the work in [31] was extended in [32,33] to find optimal operation strategies for each individual BSS.

Recently, [34] proposed a multi-period [35–38] framework to solve the dynamic OPF problem for

distribution networks with BSSs under uncertain renewable energy generation. It is noted that the

OPF problems in [26,31–33,35–38] were not solved in real time and they did not optimize the depth of

discharge (DoD) of BSSs while determining flexible operation strategies. Evaluating expended life

costs of batteries based on cycle counting only is not conclusive, and therefore, the DoD of BSSs should

also be taken into account [39]. Flexible operation of BSSs and considering both DoD and the number

of charge-discharge cycles in the calculation of expended life costs of batteries lead to more efficient

operation of BSSs but highly complex dynamic MINLP AR-OPF, in particular when all mixed-integer

decision variables are simultaneously optimized. The incorporation of expended life costs of batteries

(in terms of both DoD and number of cycles) into ‘real-time’ OPF has not been considered yet. Therefore,

this study aimed to develop a new approach with the following contributions over the above literature:
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(1) A multi-time-scale dynamic (i.e., with difference equations rather than only algebraic equations)

AR-OPF framework is developed to optimally react to the spontaneous changes in wind power

and ensure the feasibility of operations in real time when BSSs exist in DNs.

(2) The framework offers the possibility of simultaneous optimization of all of the following

mixed-integer variables in a prediction horizon:

• Wind power curtailment of each WF (continuous);

• Active power charge/discharge of each BSS (continuous);

• Reactive power dispatch of each WF and BSS (continuous);

• Length of charge and discharge periods of each BSS (discrete);

• Length of charge-discharge cycles of each BSS (discrete);

• Number of charge-discharge cycles of each BSS in the prediction horizon (discrete);

• Status of charge/discharge of each BSS (binary);

• Slack bus voltage (discrete); and

• Active-reactive reverse power flow to an upstream network (continuous).

(3) Fully flexible optimal operation strategies for BSSs are determined for the dynamic AR-OPF

while minimizing the expended life costs of the BSSs as a function of DoD and the number of

charge-discharge cycles.

The remainder of the paper is organized as follows. The formulation of a general stochastic

dynamic MINLP optimization problem is provided in Section 2. Section 3 describes the proposed

RT-DAR-OPF problem. In Section 4, different modes of operations for BSSs are defined and the

dynamic MINLP AR-OPF problem is formulated in detail. The results of a case study and conclusions

are provided in Sections 5 and 6, respectively.

2. Problem Formulation

The aim of the RT-DAR-OPF is to compute optimal operation strategies to be realized to DNs with

BSSs under uncertain penetration of wind power. A general formulation of the optimization problem

can be expressed as:

min
u(t),l(t),y(t)

f (x(t), u(t), l(t), y(t),ξ(t))

.

s.t.
.
x(t) = g(x(t), u(t), l(t), y(t),ξ(t)), x(t0) = x0

xmin(t) ≤ x(t) ≤ xmax(t)

umin(t) ≤ u(t) ≤ umax(t)

l(t) ∈ {0, 1, 2, . . . , L}

y(t) ∈ {0, 1}

ξ(t) ∈ Ω

t0 ≤ t ≤ t f

(1)

where f (.) is the objective function to be minimized, x is the vector of state variables, u is the vector

of continuous decision variables, l is the vector of discrete decision variables, y is the vector of

binary decision variables, ξ is the vector of random variables, and t is time. The objective function is

subject to equality and inequality constraints. Here, g(.) denotes dynamic nonlinear model equations,

x0 denotes the initial states at t0, xmin/max are the lower/upper limits on state variables, umin/max are

the lower/upper limits on continuous decision variables, and t f is the final time. Equation (1) is a

large-scale complex stochastic dynamic MINLP optimization problem, which is difficult to solve.
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3. Real-Time Dynamic AR-OPF Framework

To solve the optimization problem Equation (1), we propose a multi-phase multi-time-scale

RT-DAR-OPF framework as illustrated in Figure 1. The framework consists of three phases (phases

2 and 3 are adapted from [13,14]) with three different time scales (e.g., TP1 = 24 h, TP2 = 2 min,

and TS = 20 s) and 15 steps as follows:

(1) Provide hourly forecasted wind power, demand, and price profiles in advance of each prediction

horizon TP1.

(2) Solve the corresponding dynamic MINLP AR-OPF problem. In this step, optimal flexible operation

strategies for BSSs are computed for the upcoming TP1 (e.g., 24 h, with hourly discretization).

The detailed problem formulation is described in Section 4.

(3) The variables of BSSs computed in phase 1 will be used as fixed input parameters for the second

phase. Note that other decision variables will be recomputed in phase 2.

(4) Provide forecasted values of wind power, demand, and price ahead of each prediction horizon TP2

(e.g., 2 min). Note that the length of the prediction horizon TP2 should depend on the availability

of the forecasted data as well as the computation time in step (7).

(5) To describe uncertain wind power, generate Ns wind power scenarios for each WF using a

continuous bounded stochastic distribution with an identical probability between two adjacent

scenarios. For this purpose, Ns − 1 intervals are defined for the wind power Pw(nw, ns), ns =

1, . . . , Ns, such that:

Pr{Pw(nw, ns) − Pw(nw, ns − 1)} =
1

Ns − 1
, for ns ≥ 2, (2)

where nw and ns are the indices for WFs and wind power scenarios, respectively. Pr is the

probability operator and the scenarios are margins of the defined intervals. To this end, Ns wind

power scenarios are generated for each WF. Then, Nc wind power scenario combinations are

formed for each prediction horizon TP2. The total number of scenario combinations will be:

Nc = (Ns)
Nw , (3)

where Nw is the total number of WFs.

(6) Send the generated Nc wind power scenario combinations (obtained in step 5) to the MINLP

AR-OPF.

(7) Solve the MINLP AR-OPF problems corresponding to each scenario combination for the upcoming

TP2. Note that the optimization problems at this step are not dynamic as the optimal operation

strategies of BSSs are already given as input parameters. Since reactive power flow has influence

on nodal voltages [40,41], the reactive power dispatch of the WFs can lead to voltage violations,

in particular when the wind power fluctuates. For this reason, we use a back-off strategy [14]

to satisfy voltage constraints in the RT-OPF. Since the optimization problems in this step are

independent, they are solved using parallel computation in order to ensure that the solutions for

all the scenario combinations are available within the prediction horizon TP2.

(8) Send the solutions of the MINLP AR-OPF problems (obtained in step 7) as a lookup table to a

reconciliation algorithm.

(9) Using the reconciliation algorithm, reconcile the lookup table by substituting the un-converged

problems with solutions by which the safety of the operations is ensured while minimizing the

degree of conservatism.

(10) Send the reconciled lookup table for the TP2 to a selection algorithm.

(11) Provide the values of wind power measured at each sampling interval TS (e.g., 20 s) to the

selection and power factor modification algorithms.



Energies 2020, 13, 1697 5 of 17

(12) The selection algorithm selects a solution strategy based on the measured values of wind power

for each sampling interval TS. The selected scenario ensures the safety of the operation with the

minimum of the objective function.

(13) Send the selected scenario to the power factor modification algorithm.

(14) Modify the power factor of WFs before realizing the solution using the power factor modification

algorithm. Due to the possible difference between the measured wind power and the selected

scenario, realizing the reactive power dispatch can lead to violations of power factor limits.

Therefore, the power factor modification algorithm ensures satisfaction of the power factor

constraints.

(15) Send the decision variables to the network at each sampling interval TS.

Figure 1. The proposed framework for RT-DAR-OPF.

The above 15 steps are repeated for the next TP1 so that the proposed real-time framework aims to

autonomously update the operation strategies according to spontaneous changes of the wind power

while optimally managing the operation of BSSs.

4. Dynamic MINLP AR-OPF

4.1. Operation Modes of BSSs

It was shown in [39] that the lifetime of a battery is strongly influenced by the DoD and the

number of charge-discharge cycles in the prediction horizon. Therefore, in many studies [26,31–33],

Ncyc was limited in order to increase the lifetime. Considering this limitation, three types of operation

modes can be defined for BSSs in active-reactive OPF as shown in Figure 2.
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Figure 2. Different operation modes for BSSs: (a) Mode1, (b) Mode 2, (c) Mode 3.

Mode 1 [26]: Fixed charge and discharge periods, and a fixed number of charge-discharge cycles

in the prediction horizon TP1. In this operation mode, the decision variables of the BSSs are Pch(i, t),

Pdis(i, t), and Qb(i, t).

Mode 2 [31–33]: Flexible charge and discharge periods, and a fixed number of charge-discharge

cycles in the prediction horizon TP1. In this operation mode, the decision variables of the BSSs are

Pch(i, t), Pdis(i, t), Qb(i, t), Tch(i, ncyc), and Tdis(i, ncyc).

Mode 3 (proposed): Flexible charge and discharge periods and optimal number of

charge-discharge cycles in the prediction horizon TP1. In this operation mode, the decision variables of

the BSSs are Pch(i, t), Pdis(i, t), Qb(i, t), Tch(i, ncyc), Tdis(i, ncyc), Tcyc(i, ncyc), and Ncyc(i).

It can be seen that mode 3 allows higher flexibility compared to the other modes of operation.

However, it leads to higher complexity as the number of decision variables in the optimization problem

increases. Therefore, in this paper, the dynamic AR-OPF is formulated and a solution approach is

presented for BSSs to operate in mode 3. For comparison purposes, we also tested our new framework

with the other operation modes in the case study.

4.2. Detailed Problem Formulation

The dynamic optimization problem in phase 1 of the RT-DAR-OPF framework is formulated as

follows:
min

u(t),I(t),y(t)
f

f = F1 + F2 + F3

F1 =
t f
∑

t=1
Cpp(t)Ps(t)

F2 =
t f
∑

t=1
Cpq(t)Qs(t)

F3 =
∑

i∈SBSS

ELC(i).

(4)

The objective function in Equation (4) minimizes the total costs of active and reactive energy F1

and F2 imported from an upstream network, and meanwhile minimizes the total expended life costs

of the BSSs F3. The significance of our proposed dynamic AR-OPF is that all continuous, discrete,

and binary decision variables are simultaneously optimized for the prediction horizon TP1. Here, the
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vector of continuous decision variables u(t) includes curtailment factors of WFs βw(i, t), reactive power

dispatch of WFs Qw(i, t), active power charge of BSSs Pch(i, t), active power discharge of BSSs Pdis(i, t),

and reactive power dispatch of BSSs Qb(i, t). The vector of discrete decision variables I(t) includes slack

bus voltage VS(t), charge periods of the BSSs Tch(i, ncyc), discharge periods of the BSSs Tdis(i, ncyc),

length of charge-discharge cycles of batteries Tcyc(i, ncyc), and number of charge-discharge cycles of

the BSSs in the prediction horizon Ncyc(i). The vector of binary decision variables y(t) includes α(i, t),

which represents the status of charge/discharge for each BSS.

Equation (4) is subject to the following equality and inequality constraints:

fP + Pd(i, t) + Pch(i, t) − Pdis(i, t) − Pw(i, t)βw(i, t)

−Ps(t) = 0, i ∈ Sb
(5)

fQ + Qd(i, t) −Qb(i, t) −Qw(i, t) −Qs(t) = 0, i ∈ Sb, (6)

where Equations (5) and (6) are the active and reactive power flow equations at the buses, respectively.

Here, fP and fQ denote the network’s active and reactive power functions [26]. The active-reactive

power constraints at the slack bus are:

(Ps(t))
2 + (Qs(t))

2
≤ (Ss.max)

2, (7)

γPsSs.max ≤ Ps(t) ≤ Ss.max, (8)

γQsSs.max ≤ Qs(t) ≤ Ss.max, (9)

− 1 ≤ γPs,rev ≤ 0, (10)

− 1 ≤ γQs,rev ≤ 0. (11)

The nodal voltages are constrained as follows [13,14]:

Vmin(i) ≤ V(i, t) ≤ Vmax(i), i ∈ Sb; i , 1, (12)

Vs.min ≤ Vs(t) ≤ Vs.max, (13)

Vs(t) = 1 + ∆Vs(t), (14)

∆Vs(t) = {−0.1,−0.09, . . . , 0.09, 0.1}. (15)

The feeder limits are:

S(i, j, t) ≤ Sl.max(i, j), i, j ∈ Sb; i , j. (16)

The constraints of the curtailment factors of WFs are:

0 ≤ βw(i, t) ≤ 1, i ∈ Sw, (17)

and the constraints of the power factors of WFs are:

PFw.min ≤ PFw(i, t) ≤ PFw.max, i ∈ Sw. (18)

4.3. Equations of BSSs

In this work, with the aid of power conditioning systems (PCSs), the BSSs can provide and absorb

both active and reactive power. The active power charge and discharge are constrained to the capacity

of the PCSs:

0 ≤ Pch(i, t) ≤ SPCS.max, i ∈ SBSS, (19)

0 ≤ Pdis(i, t) ≤ SPCS.max, i ∈ SBSS. (20)
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The reactive power dispatch of the BSSs is constrained to:

− SPCS.max ≤ Qb(i, t) ≤ SPCS.max, i ∈ SBSS . (21)

The apparent power of the BSSs is constrained to:

SPCS(i, t) =



















√

(Pch(i, t))2 + (Qb(i, t))2

√

(Pdis(i, t))2 + (Qb(i, t))2
. (22)

SPCS(i, t) ≤ SPCS.max (23)

Here, we define a binary decision variable α to avoid charge and discharge at the same time:

(1− α (i, t))Pch(i, t) = 0, i ∈ SBSS, (24)

α (i, t)Pdis(i, t) = 0, i ∈ SBSS, (25)

where α = 1 indicates the charging of the battery while α = 0 denotes the discharging operation. The

energy level of a BSS is calculated as follows:

Eb(i, t) = Eb(i, t− 1) + ηchPch(i, t)td −
Pdis(i, t)td

ηdis
, i ∈ SBSS, (26)

Eb(i, t0) = Eb.min(i), (27)

Eb.min(i) ≤ Eb(i, t) ≤ Eb.max(i), i ∈ SBSS, (28)

where Equation (26) shows the dynamic behavior of a battery with initial states in Equation (27).

The ELC of each BSS [39] is a function of the number of cycles in the prediction horizon as well as

the average value of the depth of discharge:

ELC(i) = SUCT

Ncyc(i)

Ncyc.T(i)
, i ∈ SBSS, (29)

where:

SUCT = SUCuSPCS.max, (30)

Ncyc.T(i) =
(

a DoDavg(i)
)

+ b, i ∈ SBSS, (31)

DoDavg(i) =
1

24

24
∑

t=1

(1− Eb(i, t)), i ∈ SBSS, (32)

Ncyc ≤ Ncyc.max. (33)

In Equations (29) and (33), Ncyc(i) can be calculated as follows:

Ncyc =













t f
∑

t=1

∣

∣

∣∆α(t)
∣

∣

∣













2
, (34)

where:

∆α (t) = α (t) − α (t− 1), (35)

α (t0) = 0 (36)

.
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5. Case Study

In this paper, a 41-bus medium voltage DN [14,26,31,42] is used as a case study to demonstrate

the effectiveness of the proposed approach. Two WFs (each with rated power of 10 MW) and two BSSs

are located at buses 2 and 16, respectively. The input data for the case study is adapted from [14,39]

and given in Table 1 as well as subplots (a)-(c) in Figures 3 and 4. The dynamic MINLP optimization

problem in phase 1 is solved using the SBB solver and the optimization problems in phase 2 are solved

using the BONMIN solver in GAMS.

Table 1. Data for the case study taken and adapted from [14,39].

TP1 = 24 h PFw.min = 0.85 SPCS.max = 6 MVA
TP2 = 2 min PFw.max = 1 Eb.min = 5.4 MWh

TS = 20 s Ss.max = 20 MVA Eb.max = 18 MWh
Vmin = 0.94 pu SUCu = 150 $/kVA ηch = ηdis = 1
Vmax = 1.06 pu a = −4775 Ncyc.max = 4
γPs = γQs = −1 b = 6542 td = 1 h

Subplots (d)–(l) in Figure 3 show the output of the dynamic MINLP AR-OPF solved in phase 1.

The length of the prediction horizon is 24 h with hourly discretization and the maximum number

of cycles in the prediction horizon is 4 [39]. Based on the forecasted profiles, all the mixed-integer

variables are simultaneously solved for the upcoming day.

In Figure 3, subplot (d) shows the optimal values of the slack bus voltage, taking discrete values

with the steps of 0.01 pu. Subplot (e) of Figure 3 confirms that using BSSs in the network can lead

to a significant reduction of the wind power curtailment. In the same figure, subplots (g)–(i) shows

that using the proposed method, the BSSs could operate with dissimilar strategies in the prediction

horizon. Subplots (f) and (j) of Figure 3 show that utilizing the reactive power capability of the WFs

and BSSs can lead to a huge amount of reactive power generation in the network. Beside the demand

and wind power profiles, energy prices play a significant role in determining the optimal operations of

BSSs. It means the batteries tend to be charged when the active energy price is low and discharged

when it is high. In addition, the BSSs also dispatch reactive power to cover the reactive power demand

in the network as well as exporting the surplus amount to the upstream HV network (see Figure 3,

subplot (l)). It is noted that in phase 1, only BSSs variables (hourly discretized) are transferred to phase

2 as input parameters. It means the other decision variables are recomputed in phase 2 (with 2-min

discretization) and modified in phase 3 (with 20-s discretization) before realization. The results of the

realization phase are shown in subplots (d)–(k) in Figure 4. For comparison purposes, we ran the

proposed RT-DAR-OPF for three different modes of operation defined in Section 4, with the results

shown in Table 2. In modes 1 and 2, the number of cycles per day is fixed to 4, while in the flexible

approach, the number of cycles for each BSS is a free variable to be optimized by the solver.

Due to Equations (4) and (29)–(36), the optimizer tends to decrease the number of cycles and DoD

in order to minimize the expended life costs of the BSSs. However, the effect of the number of cycles

on ELC is more significant in our case study as seen in Table 2. Therefore, the total expended life costs

of the BSSs are decreased significantly in mode 3 compared to the other operation modes. Moreover,

the costs of active and reactive energy at the slack bus are also decreased slightly in mode 3. Altogether,

this leads to a a huge reduction in the total costs obtained by using mode 3.
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Figure 3. (a) Total active and reactive power demand; (b) Energy prices; (c) Wind power; (d) Slack bus

voltage; (e) Curtailment factors of WFs; (f) Capacitive reactive power of WFs; (g) Binary variables for

charge/discharge of BSSs; (h),(i) Active power charge and discharge of BSSs, respectively; (j) Capacitive

reactive power of BSSs; (k) Energy levels in BSSs; (l) Active and reactive power at the slack bus.
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Figure 4. (a) Total active and reactive power demand; (b),(c) Actual wind power of the first and second

WF; (d),(e) Curtailment factors of the first and second WF, respectively; (f) Capacitive reactive power

dispatch of the first WF; (g) Capacitive reactive power dispatch of the second WF; (h) Slack bus voltage;

(i) Active power at the slack bus; (j) Reactive power at the slack bus; (k) Total costs of active and reactive

energy at the slack bus.

Table 2. Comparison of the RT-DAR-OPF with the proposed flexible operation strategy to the results

obtained by mode 1 and mode 2 for one day.

Operation
Mode

Ncyc (1) Ncyc(2)
TD−OPF

(s)
DoDavg(1)

(MWh)
DoDavg(2)

(MWh)
ELC(1)

($)
ELC(2)

($)
F1 ($) F2 ($) F3 ($) F ($)

Mode 1 4 4 135.32 2.41 2.611 667.73 679.86 –1166.41 –3184.85 1347.59 –3003.67
Mode 2 4 4 212.96 2.368 2.516 665.25 674.06 –1210.2 –3244.31 1339.31 –3115.2
Mode 3 1 1 241.15 2.742 3.052 172 177.01 –1230.4 –3279.67 349.01 –4158.06
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6. Conclusions

In this paper, a novel multi-time-scale real-time dynamic active-reactive optimal power flow

(RT-DAR-OPF) framework was introduced to deal with fast-changing wind power in the presence of

battery storage systems (BSSs). The framework consists of three phases: In the first phase, a dynamic

mixed-integer nonlinear programming problem is solved to simultaneously determine the optimal

operation strategies of the BSSs for the upcoming day. In the second phase, wind power scenarios

are generated based on the forecasted wind power values for short prediction horizons (e.g., 2 min)

and then the AR-OPF problems corresponding to the scenarios are solved in parallel. The results

are saved as a lookup table from which one solution is selected based on the actual values of wind

power in a very short sampling time (e.g., 20 s) in the third phase. The solution is then modified to

ensure satisfaction of the constraints. The operation strategies obtained by the proposed fully flexible

optimal operation strategies of BSSs show significant advantages over the results of the methods with

fixed operation strategies of BSSs. This is mostly due to the reduction of the expended life costs of the

batteries in the proposed method. Since the framework safeguards the feasibility and optimality of the

operations in real time, it could be used for real applications in the future.
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Abbreviations

a, b Constant parameters of a BSS

CPP/CPQ Active/reactive energy price

DoDave Average depth of discharge of a BSS

Eb Energy level in a BSS

Eb.min/Eb.max Lower/upper limit of energy level in a BSS

ELC Expended life cost of a BSS

f Objective function

F1/F2
Total cost of active/reactive energy imported from an

upstream network

F3 Total expended life costs of BSSs

fP/ fQ Network active/reactive power function

g Dynamic model equations

i, j Indices for buses

m ndex for sampling interval Ts, i.e., m = 1, . . . , M

n Index for prediction horizon Tp2, i.e., n = 1, . . . , N

nc Index for wind power scenario combinations

ncyc
Index for charge-discharge cycles of a BSS, i.e., ncyc =

1, . . . , Ncyc.max

Ncyc/cyc.max
Number/maximum number of charge-discharge

cycles of a BSS in each prediction horizon Tp1

Ncyc.T Battery total number of cycles

ns Index for wind power scenarios i.e., ns = 1, . . . , Ns

nw Index for wind farms (WFs), i.e., nw = 1, . . . , Nw

Pch/Pdis Active power charge/discharge of a BSS

Pd/Qd Active/reactive power demand

PFw Power factor of a WF

PFw.max Upper limit of a WF power factor

PFw.min Lower limit of a WF power factor

Ps/Qs Active/reactive power at the slack bus

Pw Wind power of a WF

Qb Reactive power dispatch of a BSS

s Apparent power in a feeder

Sb/BSS/w Set of buses/BSS buses/WF buses

sl.max Upper limit of apparent power in a feeder

SPCS
Apparent power of a power conditioning system

(PCS) in a BSS

SPCS.max Maximum capability of a PCS in a BSS

Ss.max Upper limit of apparent power at slack bus

SUCT Total operation cost of storage units

SUCu Per unit cost of storage units

t0/t f Initial/final time

Tcyc Length of charge-discharge cycles of a BSS

Tch/Tdis Charge/discharge periods of a BSS

td Duration of time steps for BSSs

TD−OPF Computation time for dynamic OPF in Phase 1

TP1/TP2 Prediction horizon in phase 1/phase 2

TS Sampling interval

u/l/y
Vector of continuous/discrete/binary decision

variables

umin/umax Lower/upper limits on continuous decision variables

V Voltage at a PQ bus

Vmin/Vmax Lower/upper limit of voltage at a PQ bus

Vs Voltage at slack bus

Vs.min/Vs.max Lower/upper limit of voltage at slack bus

x Vector of state variables

x0 Initial states

xmin/xmax Lower/upper limits on state variables

α Binary variable for charge/discharge of a BSS

βw Wind power curtailment of a WF

∆V Step change of voltage at slack bus
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