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A B S T R A C T

The graded-index (GRIN) media have been widely used in modern optical systems,
such as imaging lenses, optical beam delivery components, and beam shaping elements.
Accurate and efficient modeling of electromagnetic fields propagating in GRIN media
is essential for developing innovative and high-quality optical products. It is the goal of
this thesis.

We first give an overview of several existing modeling techniques, including the rigor-
ous ones to model symmetric GRIN structures, e.g., Mie theory (spherically symmetric)
and several beam propagation methods (BPMs) with approxiamations to model general
GRIN structures, which are numerically more efficient than rigorous methods. However,
many of BPMs are limited by considering only a small variance of the refractive index.

To overcome the limitations, we develop a unified field solver, known as the Runge-
Kutta (RK) k-domain field propagation method. It can be used to calculate general input
fields propagating through an arbitrary GRIN medium, accurately, without physical ap-
proximations, such as the scalar field approximation or the paraxial approximation. We
convert Maxwell’s equations in spatial (x-) domain into ordinary differential equations
(ODEs) in the spatial-frequency (k-) domain, which can be solved iteratively using the
RK method. In our numerical calculation, taking advantage of the convolution theorem,
the total numerical effort is linear in the number of sampling points.

As many GRIN components are modeled or designed using ray tracing techniques,
the field passing through the GRIN components must show negligible diffraction, which
satisfies the geometric field assumption. By substituting geometric field ansatz into the
ODEs of RK k-domain field propagation method and Maxwell’s equations, we obtain
two ODEs in x-domain. After solving them by using again RK method, the RK x-domain
field propagation method is established. The calculation speed is further improved, even
as fast as ray tracing techniques.

The straightforward criteria for selecting the RK k- or x-domain field propagation
method is whether the diffraction is essential or not. Together with other field solvers,
e.g., free-space propagation operators, we can calculate the electromagnetic field prop-
agating through an optical system composed of GRIN components. As an example,
we present several GRIN media related applications, including designing a generalized
Luneburg lens with multi-focus and a GRIN bend waveguide. Furthermore, we have de-
veloped a workflow to model the thermal-mechanical-optical effects by using software
Ansys and VirtualLab Fusion. In Ansys, we model the inhomogeneous temperature
distribution and the resulted surface deformation. Then, in VirtualLab Fusion, we inter-
polate and transfer the data into the refractive index distribution, reconstruct the surface
morphology, and simulate the field propagation using the developed solvers.
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Z U S A M M E N FA S S U N G

Gradientenindex-Medien (GRIN-Medien) sind in modernen optischen Systemen wie
Abbildungslinsen, Komponenten für die optische Strahlabgabe und Strahlformungse-
lementen weit verbreitet. Eine genaue und effiziente Modellierung der Ausbreitung
elektromagnetischer Felder in GRIN-Medien ist für die Entwicklung innovativer und
qualitativ hochwertiger optischer Produkte von entscheidender Bedeutung. Es ist das
Ziel dieser These.

Wir führen zunächst einige existierende Modellierungstechniken ein, einschließlich
der strengen zur Modellierung symmetrischer GRIN-Strukturen, z. B. der Mie-Theorie
(sphärisch symmetrisch) und mehrerer Beam-Propagation-Verfahren (BPMs) mit An-
näherungen zur Modellierung allgemeiner GRIN-Strukturen, die numerisch effizienter
sind als strenge Methoden. Viele BPMs sind jedoch begrenzt, indem nur eine kleine
Abweichung des Brechungsindex berücksichtigt wird.

Um die Einschränkung, entwickeln wir einen neuen Feldlöser, der als Runge-Kutta
(RK) k-Bereichs-Feld-Propagation-Verfahren bekannt ist. Er kann verwendet werden,
um allgemeine Eingabefelder zu berechnen, die sich durch ein beliebiges GRIN-Medium
ohne physikalische Näherungen wie die Skalarfeldnäherung oder die paraxiale Näherung
ausbreiten. Wir konvertieren Maxwells Gleichungen im räumlichen (x-) Bereich in gewöhn-
liche Differentialgleichungen (ODEs) im räumlichen Frequenzbereich (k-), die iterativ
(durch schrittweise wiederholende Rechengänge) mit der RK-Methode gelöst werden
können. Bei unserer numerischen Berechnung unter Verwendung des Faltungssatzes ist
der gesamte numerische Aufwand in Bezug auf die Anzahl der Abtastpunkte linear.

Da viele GRIN-Komponenten unter Verwendung von Raytracing-Techniken model-
liert oder entworfen werden, muss das durch die GRIN-Komponenten hindurchtretende
Feld eine vernachlässigbare Beugung aufweisen, was die Annahme eines geometrischen
Feldes erfüllt. Durch Einsetzen des geometrischen Feldansatzes in die ODEs der RK-
k-Bereichsmethode und der Maxwellschen Gleichungen erhalten wir zwei ODEs im
x-Bereich. Nach dem Lösen durch Einsatz der RK-Methode wird die RK x-Bereichs-
Feld-Propagation-Methode eingerichtet. Die Berechnungsgeschwindigkeit wird weiter
verbessert, sogar so schnell wie bei Raytracing-Techniken.

Durch Kombination der entwickelten RK k- und x-Bereichs-Methoden mit anderen
Feldlösern, z. B. Freiraum-Ausbreitungsoperatoren, können wir die Ausbreitung des
elektromagnetischen Feldes durch ein optisches System berechnen, das aus GRIN-Kom-
ponenten besteht. Als Beispiel präsentieren wir verschiedene GRIN-Medienanwen-dungen,
einschließlich des Entwurfs eines verallgemeinerten Lüneburger Objektivs mit Mehrfach-
fokus und eines GRIN-Biegewellenleiters. Darüber hinaus haben wir einen Workflow
entwickelt, um die thermo-mechanisch-optischen Effekte durch den Einsatz der Soft-
ware Ansys und VirtualLab Fusion vorzuführen. In Ansys führen wir die inhomogene
Temperaturverteilung und die daraus resultierende Oberflächenverformung vor. An-
schließend sorgen wir für die Einfügung und Übertragung der Daten in die Brechungsin-
dexverteilung in VirtualLab Fusion, rekonstruieren die Oberflächenmorphologie und
simulieren die Feldausbreitung unter Einsatz der entwickelten Löser.
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1
I N T R O D U C T I O N

The graded-index, or gradient-index (GRIN) medium denotes a medium having a re-
fractive index that varies smoothly from point to point. GRIN media have been widely
used in modern optical systems, such as imaging lenses and optical beam delivery and
beam shaping components. 1) Imaging lenses. In the natural world, GRIN lenses fre-
quently occur in animal eyes, e.g., in the lenses of octopus and human eyes [1], which
has inspired us to use GRIN media in constructing imaging systems. The first study of
the GRIN lens dates back to 1854 [2], when Maxwell proposed a mathematical model
for the GRIN ball lens, known as Maxwell’s fisheye, to image a point on the spherical
surface of the lens onto its opposite/conjugate point. In 1944, Luneburg described an-
other type of ball lens, known as the Luneburg lens, to image a point object at infinity to
a point on the spherical surface. He also presented a generalized ball lens model, known
as the generalized Luneburg lens, to image an arbitrary point object to another point
(or two points) at arbitrary positions [3–7]. In addition to the ball lens, a flat lens consist-
ing of two parallel planes and a cylindrically symmetric GRIN medium between them
was constructed by Wood. The focal length of this lens could be adjusted by varying
its thickness [8]. Many other types of GRIN lenses have been explored recently [9–12].
GRIN media offer more degrees of freedom in the design of imaging lenses, which in-
creases image quality and makes an optical system lighter and more compact. 2) Beam
delivery components. GRIN fibers are widely used in telecommunications because of
their low-loss and low-modal dispersion [13]. In the fiber optics community, GRIN com-
ponents are used as fiber couplers or collimators. In the endoscope, GRIN rod lenses not
only extend the length of the system, but also work as relay lenses to invert the image
by producing an intermediate focal plane [14–16]. At present, many works have been
undertaken in the field of conformal transformation optics [17–19] based on the concept
of GRIN media, which was probably first mentioned by Luneburg in 1944 [3]. GRIN me-
dia are also designed to produce cloak devices, collimators, or bending waveguides [20,
21]. 3) Beam shaping components. For optical metrology or fabrication, GRIN compo-
nents are designed to shape the input beam into a uniform line and are commercially
available [15]. In recent research, the use of GRIN components to gradually shape an
arbitrary coherent beam to another beam profile, e.g., the top-hat, has been explored [22,
23].

Over the years, the above GRIN media applications have been limited by the difficulty
in the fabrication process. Recently, however, fabrication techniques for GRIN media
have been developed so as to achieve arbitrary index profiles and enlarge the range
of variation in the refractive index (more details in Appendix A). These fabrication
techniques enable the practical application of GRIN media to meet the demands of
modern optical systems for precisely manipulating light.
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4 introduction

In optical engineering, the most important question is how to design a GRIN com-
ponent, or even an optical system that contains GRIN components to achieve different
functionalities. However, before the optical design step, the GRIN medium should be
modeled, and the light propagating through it should be simulated by reliable methods.
We will come back to this point, as this is the task that will be attempted in this thesis.

In addition to the man-made GRIN components, GRIN media may also occur uninten-
tionally. For a hundred years, astronomers have been exploring the effect of atmospheric
fluctuations in telescopic images. The most familiar example of such atmospheric fluctu-
ation in our daily lives is the mirage, which is caused by a decrease in the air refractive
index near the ground [11]. In high-powered laser experiments, the increased tempera-
ture created by optical heating in the optical components gives rise to a GRIN distribu-
tion in the media, e.g., a thermal lensing effect. We may ask, how do we simulate light
propagation and evaluate the effects of a turbulent atmosphere, a mirage, or thermal
lenses?

1.1 objective

How do we simulate light propagating through an optical system containing GRIN com-
ponents? Light can be represented as an electromagnetic field, and the parameters used
to describe the optical properties of GRIN components are the relative permittivity ε,
which is equal to the square of the refractive index, and the permeability µ *. After solv-
ing Maxwell’s equations, the electromagnetic fields in the optical system are calculated.
This process is referred to as field tracing [24, 25]. However, one might ask, what about
representing the light as optical rays, and simulating the ray propagation through the
optical system? We will return to this point later.

From a practical point of view, the objective of field tracing is to enable fast physical
optics [26], which means calculating the electromagnetic fields accurately and efficiently.
To achieve this goal, several tricks are explored. One of the most important suggestions
is that it is not advisable to use the universal field solvers to model the entire system,
especially when the system scale extends well beyond the working wavelengths. As an
example, the finite element method (FEM) requires a spatial sampling distance smaller
than half a wavelength [27], which induces very heavy sampling in a three-dimensional
optical system, even at a millimeter scale, for a visible light source. Alternatively, fast
physical optics breaks the whole system down into pieces, finds specific field solvers for
each piece, and connects all the field solvers according to the light path.

The specific field solvers should guarantee the accuracy of the field calculation and
work as efficiently as possible. The universal field solvers, e.g., FEM, can be selected as
specific solvers when the optical structure is on the scale of several wavelengths. Taking
advantage of the symmetry/periodicity of the optical structure, many rigorous field
solvers, e.g., the Fourier modal method (FMM) [28] provide accurate results for peri-

* The general description of ε and µ is in tensor form as a function of position and frequency in linear optics.
We will come to a detailed discussion in Chapter 2.



1.2 scope of this thesis 5

odic structures, and the optical structure only needs sampling inside one period instead
of the whole structure. When the structure or the field shows some specific properties,
field solvers with proper mathematical approximations can give results much more ef-
ficiently with acceptable accuracy. As an example, as the grating period becomes larger,
calculation by FMM becomes slower. However, if the field is a geometric field, the phase
variation dominates over the amplitude variation. In this case, the field can be treated
locally as a plane wave, known as the local plane wave approximation (LPWA). Geo-
metric field propagations through gratings of large periods can be considered as local
interactions between plane waves and plane interfaces, known as local plane interface
approximations (LPIAs) [29, 30]. If the local plane interfaces are almost perpendicular to
the normal of the element, thin element approximation (TEA) [31] can be used. Specific
field solvers for different optical elements have been developed, such as field solvers
for free space (homogeneous media) [32–34], plane surfaces with coatings, spherical/a-
spherical/freeform surfaces [29, 30], diffractive optical elements [31], and crystals [35,
36].

Fast physical optics has well-developed techniques for finding light paths to con-
nect field solvers, either sequentially or non-sequentially, and here we do not delve
into the details. Instead, let us come back to the point that we are representing light
as optical rays, and calculating ray propagation through an optical system. Ray trac-
ing is an element of fast physical optics. We have mentioned that geometric fields
can be locally represented as plane waves: local plane waves can be considered rays
with additional field properties, such as amplitude and polarization. Mathematically,
a homeomorphic Fourier transform produces a spatially smooth connection between
electromagnetic fields and optical rays [33].

Which specific field solvers can be selected to simulate GRIN components? A few
field solvers for GRIN media have been discussed in the literature [37–43], however,
there has been no systematic study of field solvers within the framework of fast physical
optics. Thus, the major goal of this thesis is to explore different field solvers for GRIN
components, and to develop new field solvers where necessary. Finally, a systematic
workflow for field solver selection is proposed for the efficient simulation of optical
systems with GRIN components.

1.2 scope of this thesis

In Chapter 2, we begin with a discussion of fundamental theory, i.e., Maxwell’s equa-
tions, and further derivation, e.g., second-order wave equations and boundary condi-
tions. Then, we discuss several relevant field solvers, such as the beam propagation
method (BPM) and the Mie scattering theory. The concepts and capabilities of those rel-
evant field solvers, including their brief mathematical derivations, are reviewed based
on the following three aspects.

• Input fields — what kind of input fields the solver can be used for, e.g., for an
ideal plane wave, geometric field, or general field
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• GRIN media — what kind of GRIN distribution the solver can be used with, i.e.,
spherically/cylindrically symmetric, periodic, or general GRIN distributions

• Modeling scope — to what extent the solver can include, such as the optical
surface effects between the surrounding medium and the GRIN medium, or ap-
plicability to non-paraxial fields, polarization crosstalk, diffraction, reflection, or
evanescent waves generated inside GRIN media.

After reviewing the existing solvers, we develop a new field solver to include mul-
tiple functionalities and to merge the capabilities of several other solvers. In Chapter
3, we derive one field solver directly from Maxwell’s equations that is computationally
efficient for general input fields, and for a general GRIN distribution in which reflec-
tion and evanescent waves can be ignored. We sequentially present the mathematical
derivation, the numerical discussion, and the validity tests. The mathematical deriva-
tion produces an ordinary differential equation (ODE) in the angular spectrum domain
(k-domain), which can be solved using the Runge-Kutta method, so we name this solver
the Runge-Kutta k-domain field propagation method (RKK-FPM). In the k-domain, the
convolution between the angular spectrum of ε and that of the field components needs
to be calculated. To reduce the numerical effort, in the RKK-FPM we calculate this con-
volution using the Fourier transforms and computing the multiplication in the spatial
domain (x-domain), based on the convolution theorem.

What happens if we restrict the field to be geometric in the RKK-FPM? As most
GRIN lenses and GRIN beam shaping elements are still modeled or designed using ray
tracing techniques, a field passing through the GRIN components must have negligible
diffraction, or, thus, be known as a geometric field. In Chapter 4, we study specific
field solvers for geometric fields, beginning with the ODE of the RKK-FPM. We replace
the fast Fourier transform with the specific transform for geometric fields, known as
the homeomorphic Fourier transform [33]. Then, from the fundamental theory of ray
optics, the eikonal equation is derived. Substituting the geometric field ansatz and the
eikonal equation into Maxwell’s equations, we obtain another set of ODEs represented
in the x-domain. We solve them by using our developed RK x-domain field propagation
method (RKX-FPM).

In Chapter 5 we present some numerical examples using the RKK- and RKX-FPMs
for GRIN components. The first example designs and simulates generalized Luneburg
lenses. The mathematical description was given by Luneburg [3] and was analytically
solved by Sochacki [5–7]. We implement the formula and extend it to design a gen-
eralized multi-focus Luneburg lens. We then simulate field tracing through the whole
system, from the spherical input field to the focal planes. The second example models a
bending waveguide, designed using conformal transformation optics. The third exam-
ple simulates the thermal-mechanical-optic effect. We first use an analytical model to
simulate a thermal lens inside a laser system. Then we use the software Ansys [44] to
model the thermal-mechanical effect.



2
R E V I E W O F M O D E L I N G T E C H N I Q U E S F O R G R A D E D - I N D E X
M E D I A

In this chapter, we begin with a discussion of the fundamental theory, i.e., Maxwell’s
equations, and further derivation, e.g., second-order wave equations and boundary con-
ditions. We then discuss several existing field solvers for GRIN media, including brief
mathematical derivations of the solvers, as well as their capabilities.

Many graded-index (GRIN) components show high symmetry. GRIN lenses, such
as the generalized Luneburg lens and Maxwell’s fisheye, are spherically symmetric,
having a relative permittivity ε that only varies radially. The widely used GRIN fiber
is cylindrically symmetric, and its ε changes radially across its cross section, and it is
invariant along its cylindrical axis. Taking advantage of the symmetry of the structure,
specific field solvers can be developed by solving Maxwell’s equations in the proper
coordinate systems. Periodic GRIN components, e.g., the holographic grating, can be
modeled using the Fourier modal method (FMM). To model general GRIN distribution,
a series of beam propagation methods are developed. We select several solvers here, and
show their brief mathematical derivations and their capabilities based on the following
three aspects.

• Input fields — what kind of input fields the solver can be used for, e.g., for an
ideal plane wave, geometric field, or general field

• GRIN media — which kind of GRIN distribution the solver can be used with, i.e.,
spherically/cylindrically symmetric, periodic, or general GRIN distributions.

• Modeling scope - to what extend the solver can include, such as the optical surface
effects between the surrounding medium and the GRIN medium, or applicability
to non-paraxial fields, polarization crosstalk, diffraction, reflection, or evanescent
waves generated inside GRIN media.

2.1 fundamental theory

2.1.1 Maxwell’s Equations

In physical optics, light is represented as electromagnetic fields having behavior that
is governed by Maxwell’s equations. All field tracing algorithm derivations begin with
these equations. Maxwell’s equations can be represented in both integral and differential
form. In this thesis, as the GRIN media is differentiable, we work with the differential
form.

7



8 review of modeling techniques for graded-index media

2.1.1.1 Mathematical representation of electromagnetic fields

Electromagnetic field quantities are real-valued quantities in the spatial and time do-
main. Following the book Fundamentals of Photonics [45], Maxwell’s equation for the
real fields are written as

∇× Ē(r)(r, t) = −∂tB̄
(r)(r, t),

∇× H̄(r)(r, t) = ∂tD̄
(r)(r, t) + j̄(r)

(r, t),

∇ · D̄(r)(r, t) = ρ̄(r)(r, t),

∇ · B̄(r)(r, t) = 0.

(2.1)

In Eq. (2.1) Ē(r)(r, t) and H̄(r)(r, t) are three-dimensional (3D) field vectors that denote
the electric field and magnetic field, respectively, at position r (3D vector) and at time t.
The bar over the field symbols indicates a quantity in the spatial and time domain, and
(r) denotes that the quantity is real-valued in the spatial and time domain. D̄(r)(r, t) and
B̄(r)(r, t) are auxiliary fields, known as dielectric displacement and magnetic induction,

D̄(r)(r, t) = ε0Ē(r)(r, t) + P̄(r)(r, t)

B̄(r)(r, t) = µ0H̄(r)(r, t) + M̄(r)(r, t),
(2.2)

with P̄(r)(r, t) and M̄(r)(r, t) denoting the electric and magnetic polarizations, respec-
tively.

In this thesis, we assume ρ̄(r)(r, t) = 0 and j̄(r)
(r, t) = 0; we are only interested in

non-magnetizable material, which means M̄(r)(r, t) = 0.
Fields can be represented and solved not only in the spatial and time domain, but

also in the conjugates of this domain. The mathematical tool for connecting domains is
the Fourier transform between the time and the frequency domains.
The one-dimensional (1D) Fourier transform from the time to the frequency domains is
defined as

f (r, ω) = Fω f̄ (r, t) =
1√
2π

∫ +∞

−∞
dt f̄ (r, t) exp(iωt) , (2.3)

with f representing one of the 3D field vectors.
The inverse transform is defined as

f̄ `(r, t) = F−1
ω f (r, ω) =

1√
2π

∫ +∞

−∞
dω f (r, ω) exp(−iωt) . (2.4)

In substituting Eq. (2.4) into Eqs. (2.1,2.2), the field vectors Ē(r), H̄(r), D̄(r), B̄(r) and P̄(r)

can be represented by the field in the spatial and frequency domains. As an example,

0 = ∇× 1√
2π

∫ +∞
−∞ dω E(r)(r, ω) exp(−iωt) + ∂t

1√
2π

∫ +∞
−∞ dω B(r)(r, ω) exp(−iωt)

= 1√
2π

∫ +∞
−∞ dω[∇× E(r)(r, ω) + B(r)(r, ω)∂t exp(−iωt)] exp(−iωt)

= 1√
2π

∫ +∞
−∞ dω[∇× E(r)(r, ω)− iωB(r)(r, ω)] exp(−iωt).

(2.5)
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Because of the orthogonality of the exponential basis function exp(−iωt), the integral
equals zero only when

∇× E(r)(r, ω) = iωB(r)(r, ω).

Similary, Eqs. (2.1) and (2.2) can be rewritten as

∇× E(r)(r, ω) = iωB(r)(r, ω),

∇× H(r)(r, ω) = −iωD(r)(r, ω),

∇ · D(r)(r, ω) = 0,

∇ · B(r)(r, ω) = 0,

(2.6)

and
D(r)(r, ω) = ε0E(r)(r, ω) + P(r)(r, ω)

B(r)(r, ω) = µ0H(r)(r, ω).
(2.7)

Note that the bar over each field vector symbol, which signifies that the field is in the
vector’s frequency domain, is removed, while (r) remains to indicate that the field is
the Fourier counterpart of the corresponding real-valued fields in the spatial and time
domain. From the mathematical property of the Fourier transform, F(r)(r, ω), the Fourier
counterpart of a real-valued function, F̄(r)(r, t), is Hermitian symmetric, i.e.,

F(r)?(r, ω) = F(r)(r,−ω), (2.8)

with F(r)? as the complex conjugate of F(r). Therefore, the field vectors at negative fre-
quency contain no more information than the ones at positive frequency. In order to
simplify the mathematical procedures, the complex representation of field vectors is
defined as

F(r, ω) :=





2F(r)(r, ω) if ω ≥ 0 ,

0 else .
(2.9)

Replacing F(r)(r, ω) with the new field definition F(r, ω) in Eqs. (2.6) and (2.7), we
obtain

∇× E(r, ω) = iωB(r, ω),

∇× H(r, ω) = −iωD(r, ω),

∇ · D(r, ω) = 0,

∇ · B(r, ω) = 0,

(2.10)

and
D(r, ω) = ε0E(r, ω) + P(r, ω)

B(r, ω) = µ0H(r, ω).
(2.11)
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Let’s explore the relation between F̄(r)(r, t) and F̄(r.t) by substituting Eqs. (2.8) and (2.9)
into the Fourier transform (2.4),

F̄(r)(r, t) = 1√
2π

∫ +∞
−∞ dω F(r)(r, ω) exp(−iωt)

= 1√
2π

[∫ 0
−∞ dω F(r)(r, ω) exp(−iωt) +

∫ +∞
0 dω F(r)(r, ω) exp(−iωt)

]

= 1√
2π

[∫ +∞
0 dω F(r)(r,−ω) exp(iωt) +

∫ +∞
0 dω F(r)(r, ω) exp(−iωt)

]

= 1√
2π

[∫ +∞
0 dω F(r)?(r, ω) exp(iωt) +

∫ +∞
0 dω F(r)(r, ω) exp(−iωt)

]

= 1√
2π

{[∫ +∞
0 dω F(r)(r, ω) exp(−iωt)

]?
+
∫ +∞

0 dω F(r)(r, ω) exp(−iωt)
}

= 1
2

{[
F−1

ω F(r, ω)
]?

+F−1
ω F(r, ω)

}

= Re {F̄(r, t)} .
(2.12)

Eq. (2.12) shows that the real-value field quantities F̄(r)(r, t) can be obtained from the
real part of the complex-valued ones. On this basis, we can now carry out the mathe-
matical treatment of physical optics by representing light objects with complex-valued
field quantities. Maxwell’s equations and the constitutive equations should be similar
to Eqs. (2.1) and (2.2), but with all the field symbols replaced by F̄(r, t),

∇× Ē(r, t) = −∂tB̄(r, t),

∇× H̄(r, t) = ∂tD̄(r, t),

∇ · D̄(r, t) = 0,

∇ · B̄(r, t) = 0,

(2.13)

and
D̄(r, t) = ε0Ē(r, t) + P̄(r, t)

B̄(r, t) = µ0H̄(r, t).
(2.14)

As a short summary, we start with the real-valued representation of electromagnetic
field quantities in the spatial and time domain (2.1) and end with the complex-valued
representation (2.13). With a Fourier transform between the time and frequency do-
mains, we can determine the relation between both representations of a field, as in
Eqs. (2.9) and (2.12). Maxwell’s equations, as well as the constitutive equations for the
complex-valued field quantities in the spatial and time domain are shown in Eqs. (2.13)
and (2.14), while those in the spatial and frequency domains are Eqs. (2.10) and (2.11).
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2.1.1.2 Constitutive equations

The relation between dielectric displacement D̄ and electric field Ē, as well as that be-
tween magnetic induction B̄ and magnetic field H̄ are used to describe the iteration
between field and medium. In general, the mathematical relation can be complicated,
but here we use the linear response theory for an isotropic medium, i.e.,

P̄(r, t) =
ε0√
2π

∫ t

−∞
dt′R̄(r, t− t′)Ē(r, t′). (2.15)

with R̄(r, t) as the linear response function. Moreover, the effect is not instantaneous.
Using the inverse Fourier transform, Eq. (2.4), to represent R̄(r, t) in Eq. (2.15), i.e.,

R̄(r, t) = F−1
ω χ(r, ω), (2.16)

it is easy to derive the relation in the frequency domain, i.e.,

P(r, ω) = ε0χ(r, ω)E(r, ω). (2.17)

In Eqs. (2.16) and (2.17), χ(r, ω) is the electric susceptibility. Defining the relative per-
mittivity as

ε(r, ω) = 1 + χ(r, ω). (2.18)

ε(r, ω)* is the parameter for describing the optical medium. For GRIN media, ε(r, ω)

is smoothly changed versus r. In applications, another parameter for describing the
optical medium is the refractive index n(r, ω) :=

√
ε(r, ω). In this thesis, we mainly use

ε(r, ω).
The constitutive equation in the spatial and the frequency domains can be rewritten

as
D(r, ω) = ε0ε(r, ω)E(r, ω)

B(r, ω) = µ0H(r, ω).
(2.19)

Substituting Eq. (2.19) into Eq. (2.10), we obtain Maxwell’s equation for the space and
frequency domains, which is the most frequently used equation in this thesis

∇× E(r, ω) = iωµ0H(r, ω), (2.20)

∇× H(r, ω) = −iωε0ε(r, ω)E(r, ω), (2.21)

∇ · [ε(r, ω)E(r, ω)] = 0, (2.22)

∇ · H(r, ω) = 0, (2.23)

Note that by solving Eqs. (2.20-2.23), we obtain the distribution of electromagnetic fields
with a single wavelength/frequency (ω) in an inhomogeneous isotropic medium. How-
ever, this does not mean we cannot deal with chromatic light, because chromatic light
is composed of several ωs with no crosstalk in the field of linear optics. We could solve
each ω separately, and then reconstruct the output fields.

Maxwell’s equations clearly present the relation between the electric field, magnetic
field, and optical medium. Modeling techniques can be physically and mathematically
derived from these equations.

* In the notation of some studies, they use εr to represent the relative permittivity. In this work, we omit r to
simplify the notation.
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2.1.2 Second-Order Field Equations

The further derivation of Maxwell’s equations (2.20) to (2.23) to decouple E and H is
done by replacing H(r, ω) in Eq. (2.21) by Eq. (2.20), or replacing E(r, ω) in Eq. (2.20)
by Eq. (2.21). Then we obtain

∆E(r, ω) +
ω2

c2 ε(r, ω)E(r, ω) = −∇[∇ ln ε(r, ω) · E(r, ω)], (2.24)

∆H(r, ω) +
ω2

c2 ε(r, ω)H(r, ω) = −∇ ln ε(r, ω)× [∇× H(r, ω)], (2.25)

with c := (ε0µ0)−1/2 as the speed of light in a vacuum.
In a homogeneous medium with relative permittivity ε(r, ω), the wave equations can

be written as

∆E(r, ω) + k2
0ε(ω)E(r, ω) = 0, (2.26)

∆H(r, ω) + k2
0ε(ω)H(r, ω) = 0, (2.27)

with vacuum wave number k0 :=
ω

c
.

In further discussion, we concentrate on the calculation of an electromagnetic field
with a single ω, and ω in further equations will be neglected. However, please note that
we still consider the dispersion property of a medium, and that the chromatic input
field can be decomposed to fields with different ω and calculated separately.

2.1.3 Boundary Condition at a Surface of Discontinuity

Although this work models a GRIN medium having a permittivity ε(r, ω) that is con-
tinuous, we still need boundary conditions in two cases:

1. Modeling electromagnetic fields through the interface between the surrounding
medium and the GRIN medium;

2. Discretizing the GRIN into a sufficient number of layers separated by surfaces of
discontinuities and modeling the electromagnetic field through the layered struc-
ture.

For a charge-free medium, the boundary condition at the interface between media with
permittivity ε1 and ε2 is

1. The tangential component of the electric field is continuous

ê(r)× [E1(r)− E2(r)] = 0, (2.28)

with ê(r) denoting the normal vector of the surface at position r, and Ei(r), i = 1, 2
denoting the electric fields in medium i.
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2. The tangential component of the magnetic field is continuous

ê(r)× [H1(r)− H2(r)] = 0, (2.29)

with H i(r), i = 1, 2 denoting the magnetic fields in medium i.

3. The normal component of the displacement is continuous

ê(r) · [ε1(r)E1(r)− ε2(r)E2(r)] = 0. (2.30)

4. The normal component of the magnetic field is continuous

ê(r) · [H1(r)− H2(r)] = 0. (2.31)

2.1.4 Fourier Transform

Equations. (2.3) and (2.4) are Fourier transforms between the time and frequency do-
mains. A Fourier transform between the spatial and spatial-frequency domain is also
frequently used in field solvers. This Fourier transform acts in plane z.

The Fourier transform from the spatial domain to the spatial-frequency domain is
defined as

f̃ (κ) = Fk f (κ) =
1

2π

∫∫ +∞

−∞
dx dy f (ρ) exp(−iκ · ρ) , (2.32)

and the inverse transform is defined as

f (ρ) = F−1
k f̃ (κ) =

1
2π

∫∫ +∞

−∞
dkx dky f̃ (κ) exp(iκ · ρ) . (2.33)

Here ρ = (x, y) and κ = (kx, ky). f is an arbitrary scalar function in the spatial domain,
while f̃ denotes the function in the spatial-frequency domain.

2.2 highly symmetric graded-index component

We are able to find analytical solvers for highly symmetric GRIN components by solving
Maxwell’s Eqs. (2.20-2.23) or field Eqs. (2.24-2.25) in a proper coordinate system. In the
Cartesian coordinate system, the position vector r = (x, y, z), with x, y, z denoting coor-
dinates on three orthogonal axes. In a spherical coordinate system, r = (r, θ, ϕ), with r
denoting radius, θ denoting the azimuth angle, and ϕ denoting the inclination angle. In
a cylindrical coordinate system r = (ρ, ϕ, z), with ρ denoting the radial distance from
the z axis, and ϕ denoting the azimuth angle. The relations between the spherical and
Cartesian coordinate systems, as well as that of the cylindrical and Cartesian coordinate
system are shown in Fig. 1.
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Figure 1: Coordinate systems. (a) Relation between spherical coordinate system and Cartesian
coordinate system; (b) relation between cylinder coordinate system and Cartesian co-
ordinate system.

2.2.1 Spherically Symmetric Graded-Index Component

A spherically symmetric GRIN medium has the highest symmetry, having a permittivity
that varies only along the radial direction ε(r) in a spherical coordinate system, as
shown in Fig. 1 (a). The field solver for Maxwell’s equation in a spherical coordinate
system is known as Mie theory [46], which is rigorous and analytical. In modeling a
GRIN sphere, we discretize ε(r) into a sufficient number of concentric spherical shells
radially, and then solve the field propagation in this multilayered sphere.

Task description

Assume that the multilayered sphere, shown in Fig. 2, is centered at the origin of the co-
ordinate system in Fig. 1 (a). In the multilayered sphere in Fig. 2, we see several concen-
tric spherical shells/boundaries between two different permittivities. rl , l = 1, 2, · · · , N
represents the radius of each spherical shell from the smallest to largest, whereas εl , l =
1, 2, · · · , N denotes the relative permittivity between shells.

We calculate an x-polarized ideal plane wave propagating through the multilayered
sphere. The mathematical representation of an ideal plane wave is

Ein(r = x, y, z) = E0 exp(ik0
√

εN+1z)êx, (2.34)

with E0 as the amplitude, εN+1 as the relative permittivity of the medium outside of the
sphere, and êx as the unit vector along the x-axis. The related magnetic field H in(r) can
be calculated via Eq. (2.20).

The electromagnetic field in the whole three-dimensional (3D) space, i.e., E(r) and
H(r), should be calculated rigorously.
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Figure 2: Specifications of multilayered sphere: (a) the radius of each spherical boundary, and
(b) the permittivity of each layer.

Please note that this technique can be extended to a general input field by decompos-
ing the input field into plane waves and using a coordinate system transform. Here we
show only the derivation process when the input field is an ideal plane wave.

Mie theory derivation

The specific solver, which is derived in a spherical coordinate system, is the well-known
Mie theory. The complete derivation is shown in Appendix B. Here we talk about the
derivation logic. Two main steps are performed: (1) Representing the electromagnetic
field in homogeneous media with relative permittivity εl , l = 1, 2, · · · , N, N + 1 in
a spherical coordinate system. These representations contain unknown coefficients to
scale the electromagnetic fields. (2) Matching the boundary conditions between neigh-
boring layers to calculate the unknown coefficients.
Representing fields: vectorial spherical harmonics. The basis functions in spherical
coordinate systems are the vectorial spherical harmonics M l(r) and N l(r), defined as

M l(r) = ∇× [rψl(r)],

N l(r) =
1

k0
√

εl
×M l(r),

(2.35)

where l = 1, 2, · · · , N + 1 denotes the index of different layers, and ψl(r) fulfils the field
equations (2.26) and (2.27) in a homogeneous medium with relative permittivity εl

∆ψl(r) + k2
0εlψl(r) = 0 (2.36)

Eq. (2.36) is solved by separating the variables

ψl(r) = Rl(r)Θ(θ)Φ(ϕ)
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with Θ(θ) as the function of θ, Φ(ϕ) as the function of ϕ, and Rl(r) as the function of
r. Only Rl(r) is related to the relative permittivity εl . Solving Θ(θ), Φ(ϕ), and Rl(r), as
shown in Appendix B, discrete functions ψl,omn(r) and ψl,emn are consequently obtained
as

ψl,emn(r) = cos(mϕ)Pm
n (cos θ)zn(k0

√
εlr),

ψl,omn(r) = sin(mϕ)Pm
n (cos θ)zn(k0

√
εlr).

(2.37)

where m and n are integer indices, m > 0, n > m, whereas e denotes the even terms
cos(mϕ), and o denotes the odd terms sin(mϕ). Pm

n is the associated Legendre func-
tion of degree n and order m, and zn is the spherical Bessel function [47]. Then, the
discrete vectorial spherical harmonics M l,omn(r), M l,emn(r), N l,omn(r), and N l,emn(r) are
calculated using Eq. (2.35), as shown in Tab. 7 Appendix B.

The vectorial spherical harmonics are complete and mutually orthogonal for all
(m, m′, n, n′). We represent the electromagnetic field as a combination of M l,omn(r),
M l,emn(r), N l,omn(r), and N l,emn(r).

El(r) =
∞

∑
m=0

∞

∑
n=m

[al,mn M l,emn(r) + bl,mn M l,omn(r) + cl,mnN l,emn(r) + dl,mnN l,omn(r)] ,

(2.38)
and

H l(r) = −i
√

ε0εl

µ0

∞

∑
m=0

∞

∑
n=m

[al,mnN l,emn(r) + bl,mnN l,omn(r) + cl,mn M l,emn(r) + dl,mn M l,omn(r)] ,

(2.39)
with free coefficients al,mn, bl,mn, cl,mn, and dl,mn.
Matching the boundary conditions. In our task, the input field is an x−polarized ideal
plane wave, which can be represented as

Ein(r, θ, ϕ) = E0

∞

∑
n=1

in 2n + 1
n(n + 1)

(MN+1,o1n − iNN+1,e1n). (2.40)

From Eq. (2.34), only vectorial spherical harmonics with m = 1 can be exited. This
considerably reduce the numerical effort required. Then, substituting Eqs. (2.38) and
(2.39) into the boundary conditions, Eqs. (2.28-2.31), all coefficients al,1n, bl,1n, and cl,1n

can be calculated. The final implemented formulas are Eqs. (B.44-B.51) [48, 49].

Properties of Mie theory

• In the current derivation, the input field is an x−polarized ideal plane wave having
a wave vector along the z-axis.

• It only works for a spherically symmetric GRIN medium.

• It is a rigorous solver for modeling a multilayered sphere. When the layer number
is large enough to produce a converged result, we say the solver is rigorous for
modeling a GRIN sphere.
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– The optical surface effect, which is introduced by an abrupt change in relative
permittivity ε(r) between the surrounding medium and the GRIN sphere
boundary, is rigorously included.

– All physical effects (linear optics domain) generated inside the GRIN medium,
i.e., non-paraxial fields, polarization crosstalk, diffraction, reflection, evanes-
cent wave, are rigorously considered.

2.2.2 Cylindrically Symmetric Graded-Index Fiber

Cylindrically symmetric GRIN components frequently appear in applications, e.g., Wood
GRIN lens, relay lens in an endoscope, GRIN rod lens, and so on. However, the most
widely used cylindrical GRIN component is the GRIN fiber.

There are different specific field solvers that calculate the propagation modes for
GRIN fibers. If the fiber is long enough, only parts of the input field, which can be
projected to the modes, remain in the fiber, while the remaining part disappears during
the propagation. Therefore, the process of the field solver for a long GRIN fiber is

• Calculating the propagating fiber modes

V lm(ρ, z = 0) = {Ex,lm, Ey,lm, Ez,lm, Hx,lm, Hy,lm, Hz,lm}(ρ, z = 0),

with mode index (l, m), l = 0, 1, · · · , L, m = 0, 1, · · · , M, and ρ = (x, y). L and M
can be fixed during the calculation. The modes are only related to fiber structure
ε(r) and the working wavelength.

• Representing the input field Ein(ρ, z = 0) at fiber end as the summation of modes
Elm(ρ, z = 0) with weight coefficients alm, as

Ein(ρ, z = 0) =
L

∑
l=0

M

∑
m=0

almElm(ρ, z = 0) + Erest(ρ, z = 0). (2.41)

Taking advantage of the orthogonality of fiber modes, coefficients alm can be cal-
culated using the overlap integral.

a2
lm =

∫∫
Ein(ρ, z = 0)× H?

lm(ρ, z = 0)dx dy∫∫
Elm(ρ, z = 0)× H?

lm(ρ, z = 0)dx dy
, (2.42)

and alm =
√

a2
lm, a complex value.

• The output field is the coherent summation of all propagated modes

Eout(ρ, z) =
L

∑
l=0

M

∑
m=0

almElm(ρ, z = 0) exp(iβlmz), (2.43)

with βlm calculated during the calculation of modes.
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To calculate these propagating fiber modes V lm(ρ, z = 0), field Eqs. (2.24) and (2.25)
are solved in the cylindrical coordinate system. In practice, most fibers are weakly guid-
ing fibers, which means ε(ρ) is slightly variant, so ∇ ln ε(r) in Eqs. (2.24) and (2.25) is
approximately zero.

The analytical mode solver for the GRIN fiber can be developed for several types of
ε(ρ), e.g., having an infinite parabolic profile [50]

ε(ρ) = εc

[
1− 2δ

(
ρ

ρ0

)2
]

. (2.44)

with δ as a constant. The modes have a distribution similar to the Gaussian Laguerre
at its waist. In Appendix C, we give a detailed derivation of it, to demonstrate a fiber
mode calculation, as well as the specific field solver based on modes. In [50], several
mode solvers for specific values of ε(ρ) are presented.

Properties of fiber solvers

• The input field is general with no limitations, such as paraxial or geometric.

• The optical surface effects induced by an abrupt change in relative permittivity
ε(r) between the surroundings and the GRIN fiber are not included.

• The limitation of analytical fiber solvers mainly comes from their mode calcula-
tion.

– It works for a cylindrically symmetric structure with a specific ε(ρ), e.g., hav-
ing an infinite parabolic profile.

– Modes calculation induces approximations, e.g., weak guidance with small
ε(ρ) variance, and no polarization crosstalk between Ex, Ey, or Ez is consid-
ered (∇ ln ε(r) ≈ 0).

– Reflections from the GRIN medium are not included.

– Evanescent waves are not considered.

2.3 beam propagation methods for general graded-index components

There are a few numerical field solvers for modeling general GRIN components that
split the medium into slices along z-axis and solve Eqs. (2.24) and (2.25) iteratively
along the z-axis. They are called beam propagation methods.

2.3.1 Fourier Transform Beam Propagation Method

In 1978, Feit and Fleck [39] described a method that solves Eq. (2.24), with the assump-
tion of small variance in ε(r)(∇ ln ε(r) ≈ 0). Here, we rewrite the equation as

∆E(r) + k2
0ε(r)E(r) = 0. (2.45)
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In the Cartesian coordinate system, Eq. (2.45) can be decoupled into three identical
equations to describe Ex(r), Ey(r), and Ez(r), and no crosstalk between Ex(r), Ey(r), or
Ez(r) can be predicted.

Mathematical description. Separating ∆ = ∆⊥ +
∂2

∂z2 , with ∆⊥ =
∂2

∂x2 +
∂2

∂y2 , one can

rewrite Eq. (2.45) as
∂2

∂z2 E(r) = −
[
∆⊥ + k2

0ε(r)
]

E(r), (2.46)

and if we consider only the forward propagation,

E(ρ, z + ∆z) = exp i∆z
√

∆⊥ + k2
0ε(ρ, z)E(ρ, z). (2.47)

As ∆⊥ is a linear differential operator, the rigorous linear mathematical transform√
a + b2 =

a√
a + b2 + b

+ b can be used, considering ∆⊥ as the free parameter a

√
∆⊥ + k2

0ε(ρ, z) =
∆⊥√

∆⊥ + k2
0ε(ρ, z) + k0

√
ε(ρ, z)

+ k0

√
ε(ρ, z). (2.48)

Now, we use an approximation in the denominator of Eq. (2.48) to replace ε(ρ, z) with
a constant εc because of the small variance in ε(ρ, z). We rewrite the operator as

√
∆⊥ + k2

0ε(ρ, z) ≈ ∆⊥√
∆⊥ + k2

0εc + k0
√

εc

+ k0
√

εc − k0
√

εc + k0
√

ε(ρ, z)

=
√

∆⊥ + k2
0εc + k0

[√
ε(ρ, z)−√εc

]
.

(2.49)

Substituting Eq. (2.49) into Eq. (2.47), and splitting the operator into a symmetric form,
we have

E(ρ, z + ∆z) = exp
(

i
∆z
2

√
∆⊥ + k2

0εc

)
exp {i∆zk0 [ε(ρ, z)− εc]} exp

(
i
∆z
2

√
∆⊥ + k2

0εc

)
E(ρ, z).

(2.50)
Eq. (2.50) is the final mathematical formula for this field solver, which describes the field
behavior from z to z + ∆z.
Physical interpretation. Again, we consider only the calculation from z to z+∆z, which
has the mathematical formula Eq. (2.50). The three operators work on field E(ρ, z) one

by one. Comparing operator exp
(

i
∆z
2

√
∆⊥ + k2

0εc

)
with Eq. (2.47), we know that this

operator means a free space propagation of distance ∆z/2 in homogeneous media with
relative permittivity εc. Thus, the physical interpretation of the operations are,

• Propagation of E(ρ, z) in the homogeneous media with εc for ∆z/2

– Fourier transform of E(ρ, z) to the k domain by Eq. (2.32) gives Ẽ(κ, z).

– Multiplying by the free space propagation operator

Ẽ(κ, z +
∆z
2
) = Ẽ(κ, z) exp

[
ikz(κ)

∆z
2

]
,

with kz(κ) =
√

k2
0εc − ||κ||2.
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– Inverse Fourier transform of Ẽ(κ, z +
∆z
2
) using Eq. (2.33) gives E(ρ, z +

∆z
2
)

• Multiplying the phase factor, which has a form similar to the thin element approx-
imation (TEA) [31, 51] for a paraxial beam

ETEA(ρ, z +
∆z
2
) = E(ρ, z +

∆z
2
) exp

{
i∆zk0

[√
ε(ρ, z)−√εc

]}
(2.51)

• Propagation of ETEA(ρ, z +
∆z
2
) in the homogeneous media with εc for ∆z/2 gives

E(ρ, z + ∆z)

During the free space propagation, a Fourier transform is used, so in some studies this
method is called the Fourier transform beam propagation method (FT-BPM).

Properties of FT-BPM

• The input field can be a general field, either geometric or diffractive.

• The GRIN media has a general ε(r), with no restriction in symmetry or periodicity,
but the variance of ε(r) should be sufficiently small.

• The optical surface effect, where there is an abrupt change in ε(r) between the
surrounding medium and the GRIN medium, is not included.

• Effects generated by the GRIN medium:

– Reflection is not modeled, because only forward propagation is considered
in Eq. (2.47).

– Polarization crosstalk between Ex, Ey, and Ez is not considered, as we neglect
the right-hand side of Eq. (2.24).

– Diffraction is considered, so the focus inside GRIN media can be calculated.

– It is not easy to evaluate the capability of this method to calculate non-
paraxial. In the mathematical derivation, no explicit approximation shows
that this method has constraints for non-paraxial calculation. However, in the
physical interpretation, TEA, which offers a paraxial approximation, is used
to compensate the phase variance in the GRIN medium. That gives us an in-
dication that this method is better used for modeling paraxial fields. In [38],
the authors showed an experiment that worked for angle range of −10◦ to
10◦ when ∆

√
ε(r) ≈ 0.5. Here we give another example for propagating a

plane wave through a Luneburg lens, shown in Fig. 3 (a). The light should
focus on a rear point with a large convergent angle, but the FT-BPM does
not predict the focus correctly. Thus, we suggest using the method to model
paraxial beam propagation.
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– Evanescent waves are not predicted with this method. In Fig. 3 (b), a plane
wave is shown propagating through a volume grating. Compared with the
result calculated using the Fourier modal method (FMM, a rigorous method),
the evanescent wave orders (red circle) are not well predicted.

2.3.2 Wave Propagation Method

In 1993, Brenner and Singer [38] proposed the wave propagation method (WPM), which
also solves Eq. (2.45), but overcomes the limitation of the small variance in ε(r), and can
be used to model non-paraxial beam propagation.

The mathematical interpretation is based on pseudo-differential operator, shown in
the appendix of [52], and is not shown again here. However, it is interesting to derive
this method’s physical interpretation. From the discussion of FT-BPM, the guess of
paraxial limitation is based on the TEA. However, Turunen extended it to treat inclined
incident propagation through a microstructure[31], and in Appendix D, we also extend
the TEA to treat inclined beam propagation through a GRIN layer,

E(ρ, z + ∆z) = E(ρ, z) exp(iκ · ρ) exp(ikz(ρ, z; κ)∆z), (2.52)

with E(ρ, z) as a field having a narrow angular spectrum centered on κ, and kz(ρ, z; κ) =√
k2

0ε(ρ, z) + ||κ||2.
Let us replace TEA by Eq. (2.52) and discuss the physical interpretation from z to

z + ∆z

• A Fourier transform of E(ρ, z) to the k domain by Eq. (2.32) gives Ẽ(κ, z). This step
can be understood as the plane wave decomposition.

• For each κ, the related complex amplitude in Eq. (2.52) is a constant along ρ

E(ρ, z; κ) = Ẽ(κ, z), (2.53)

and the field in plane z + ∆z is

E(ρ, z + ∆z; κ) = E(ρ, z; κ) exp(iκ · ρ) exp(ikz(ρ, z, κ)∆z), (2.54)

with kz(ρ, z; κ) =
√

k2
0ε(ρ, z) + ||κ||2. This is the first scanning, which scans all

positions ρ.

• Reconstruct the field in plane z + ∆z

E(ρ, z + ∆z) =
1

2π

∫∫
E(ρ, z + ∆z; κ)dkx dky (2.55)

This is the second scanning, which scans all κ.

The optical surface effects were covered by Fertig and Brenner in 2010 [40]. Before
performing the extended TEA, the authors considered the Fresnel coefficients [53] of
the local change from ε(ρ, z−) to ε(ρ, z+). This process includes not only the optical
surface, but also the polarization crosstalk produced by the abrupt change from ε(ρ, z−)
to ε(ρ, z+).
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Properties of WPM

Please note that here we mainly discuss the WPM introduced in [38, 40]. The WPM has
potential for including more effects [54].

• the input field can be a general field.

• The GRIN media has a general ε(r), with no restriction in symmetry or periodicity,
but the variance in ε(r) should be sufficiently small.

• The optical surface effect, where an abrupt change in the ε(r) between surround-
ing medium and the GRIN medium occurs, is accounted for.

• Effects generated inside a GRIN medium:

– Reflection is not modeled, because only forward propagation is considered.

– Polarization crosstalk between Ex, Ey, and Ez is modeled by including the
Fresnel matrices of local change from ε(ρ, z−) to ε(ρ, z+)

– Diffraction is considered, thus the focus inside GRIN media can be calculated.

– It works for non-paraxial beams. Here, we also propagate a plane wave
through a Luneburg lens, as in Fig. 3 (a). This method predicts the focus
with a large convergent angle accurately.

– The evanescent wave is not included. In Fig. 3 (b), a plane wave is propagat-
ing through a volume grating. Compared with the result calculated by the
Fourier modal method (rigorous method), the evanescent wave is not well-
predicted.

2.3.3 Finite Difference Beam Propagation Methods

The other kinds of beam propagation methods are also straightforward. They replace
the partial differential operator ∂x by ∆x, and ∂y by ∆y, and they solve the ordinary dif-
ferential equation (ODE) along the z-axis. They are called finite difference beam prop-
agation methods (FD-BPM). We first introduce the most fundamental BPM, which is
paraxial and does not include the crosstalk between different field components in the
Cartesian coordinate system, i.e., Ex(r), Ey(r), and Ez(r). Then, depending on the phys-
ical effect to be considered, we add patches to the mathematical derivation to develop,
e.g., non-paraxial BPM or vectorial BPM.

2.3.3.1 Fundamental FD-BPM

The most fundamental FD-BPM solves Eq. (2.46) with the assumption of small variance
in ε(r)(∇ ln ε(r) ≈ 0). We emphasize here that because of the approximation, crosstalk
between the field components in the Cartesian coordinate system, i.e., Ex(r), Ey(r),
and Ez(r), cannot be predicted.
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Figure 3: Two test examples are modeled using a rigorous technique, FT-BPM, and WPM. (a) A
plane wave is focused by a Luneburg lens, and the amplitude (Ey) of the field in the xz-
plane is calculated. (b) A plane wave propagates through a volume grating. The ampli-
tude (Ey) in the xz-plane, and the angular spectrum of the field in the plane z =0.2 µm
are calculated. The color at the left in the figures represents the relative permittivity
ε(r) of the optical systems. The orders in the red circle (bottom) are evanescent wave
ones.

Now let us replace ∆⊥ f (r) with a finite difference representation, as





∂2 f (r)
∂x2 =

f (x + ∆x, y, z)− 2 f (r) + f (x− ∆x, y, z)
∆x2

∂2 f (r)
∂y2 =

f (x, y + ∆y, z)− 2 f (r) + f (x, y− ∆y, z)
∆y2 .

(2.56)

From now on, we continue to use ∆⊥ in the equations, but please note that it is not
a differential operator but an operator related to ∆x and ∆y. Thus, Eq. (2.46) can be
represented as an ODE,

d2

dz2 E(r) =
[
∆⊥ + k2

0ε(r)
]

E(r) (2.57)
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We know that the phase change along the z axis is quite fast, so the field is rewritten as

E(ρ, z) = e(ρ, z) exp(ik0
√

εcz), (2.58)

with k0
√

εcz denoting the quickly changing phase, εc a constant, and e(ρ, z) := E(ρ, z) exp(−ik0
√

εcz).
Then, substituting the field ansatz (2.58) into Eq. (2.57), we get

− i
2k0
√

εc

d2

dz2 e(ρ, z) +
d
dz

e(ρ, z) =
i

2k0
√

εc

[
∆⊥ + k2

0ε(r)− k2
0εc
]

e(ρ, z). (2.59)

Here we emphasis that there is no approximation introduced by the field ansatz or the
rewritten ODE (2.59). Now we introduce another approximation, which assumes that
e(ρ, z) varies slowly along the z-axis, i.e., a slowly varying envelop approximation, so
d2

dz2 e(ρ, z) ≈ 0. Eq.(2.59) becomes a first-order ODE,

d
dz

e(ρ, z) =
i

2k0
√

εc

[
∆⊥ + k2

0ε(r)− k2
0εc
]

e(ρ, z). (2.60)

This approximation introduces the paraxial limitation of the method.
When the initial field e(ρ, z = 0) is known, Eq. (2.60) can be solved iteratively using

the Euler method or the Runge–Kutta methods[55].
To formulate the numerical algorithm, topics related to the boundary conditions are

frequently discussed, i.e., how to define e(x = xmin, y, z), e(x = xmax, y, z), e(x, y =

ymin, z), and e(x, y = ymax, z) in the calculation of Eq. (2.56). The boundary conditions
can be, e.g., (1) electric wall boundary, i.e., all the mentioned values are zero; (2) trans-
parent boundary conditions [56]; (3) perfectly matched layers [57].

2.3.3.2 Non-paraxial BPM

To include the non-paraxial situation, the slowly varying envelop approximation should
be avoided. The most popular non-paraxial BPM was proposed by Hadley in 1992 [41].

Defining an operator P
P = ∆⊥ + k2

0ε(r)− k2
0εc, (2.61)

substituting P into Eq. (2.59), and solving
d
dz

e(ρ, z) using a quadratic equation

AX2 + BX + C = 0, (2.62)

with
A = − i

2k0
√

εc
, B = 1, C = − i

2k0
√

εc
P, (2.63)

we get the forward propagation part as

d
dz

e(ρ, z) = i
[√

P + k2
0εc − k0

√
εc

]
e(ρ, z). (2.64)

The complete proof is not as simple as Eqs. (2.62) and (2.63), and Hadley did a more
complete derivation. The reflection is not included.
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Then, a Padé approximation, which is better converged than the Taylor expansion, is
applied to the operation

f (P) =
[√

P + k2
0εc − k0

√
εc

]
, (2.65)

and f (P) is approximated by R(P)

f (P) ≈ R(P) = ∑M
m=0 amPm

1 + ∑N
n=1 bnPn

, (2.66)

with all free parameters am and bn calculated by the definition of the Padé approxima-
tion [58], i.e.,

d(j)

dP(j)
f (P) =

d(j)

dP(j)
R(P), j = 0, · · · , M + N (2.67)

As the term ∇ ln ε(r) ≈ 0, the non-paraxial BPM does not include crosstalk between
the field components in the Cartesian coordinate system, i.e., Ex(r), Ey(r), and Ez(r).
However, compared with the paraxial BPM, it does not use a slowly varying envelop
approximation, so the non-paraxial case can be treated. If only the lowest order of Padé
approximation is considered, the method is reduced to the fundamental BPM. Evanes-
cent waves are still not treated, as proved in [42].

2.3.3.3 Vectorial BPM [43, 59]

Now, we need to return to Eq. (2.24), and separate ∂z and ∂x, y into the left and right
hands of the equation in the Cartesian coordinate system

∂2

∂z2




Ex

Ey

Ez


 (r)+




0

0
∂

∂z


 [∇ ln ε(r) ·E(r)] = −[∆⊥+ k2

0ε(r)]




Ex

Ey

Ez


 (r)−




∂

∂x
∂

∂y
0




[∇ ln ε(r) ·E(r)],

(2.68)

with ∆⊥ = (
∂2

∂x2 +
∂2

∂y2 ) and

∇ ln ε(r) · E(r) = ∂

∂x
ln ε(r)Ex(r) +

∂

∂y
ln ε(r)Ey(r) +

∂

∂z
ln ε(r)Ez(r)

At this point, it is rigorous. Next, we introduce the first approximation of the small

change in ε along the z-axis, so
∂

∂z
ln ε(r) ≈ 0. After substituting this approximation

into Eq. (2.68), we see that the behavior of transverse components Ex and Ey is not
related to Ez anymore. We then analyze Ex and Ey, and Eq. (2.68) can be simplified as

∂2

∂z2

(
Ex

Ey

)
(r) = −[∆⊥ + k2

0ε(r)]

(
Ex

Ey

)
(r)−




∂

∂x
∂

∂y



[

∂

∂x
ln ε(r)Ex(r) +

∂

∂y
ln ε(r)Ey(r)

]
.

(2.69)
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Again, we replace ∂x and ∂y by ∆x and ∆y using Eq. (2.56), and




∂

∂x
g(r) =

g(x + ∆x, y, z)− g(x, y, z)
∆x

∂

∂y
g(r) =

g(x, y + ∆y, z)− g(x, y, z)
∆y

,

(2.70)

Eq. (2.68) becomes an ODE with respect to z. Now, using the same field ansatz in

Eq. (2.58), and slowly varying the envelop approximation such that
∂2

∂z2 e(r) ≈ 0, we get
a first-order ODE,

d
dz

(
ex

ey

)
(r) =

i
2k0
√

εc
[∆⊥ + k2

0ε(r)− k2
0εc]

(
ex

ey

)
(r)+

i
2k0
√

εc




∂

∂x
∂

∂y



[

∂

∂x
ln ε(r)ex(r) +

∂

∂y
ln ε(r)ey(r)

]
.

(2.71)

The ODE can be solved using the numerical approach, e.g., the Euler or the Runge–
Kutta method [55]. Because of the slowly varying envelop approximation, this method
works for the paraxial situation.

2.3.3.4 Other BPMs

In the literature, there is also an extended FD-BPM that treat reflection and evanescent
waves [60, 61].

The simple way to include reflection is to introduce an optical surface effect between
neighboring z steps and treat the backward propagation using Eq. (2.64), but replace√

P + k2
0εc with −

√
P + k2

0εc.
The way to include evanescent waves is to let εc be a complex value [60].

Properties of FD-BPMs

One advantage of FD-BPMs is that they can be extended to include the desired physical
effects. Until now, none of them have modeled the polarization and the non-paraxial
case at the same time.

The properties are

• The input field can be a general field, and some FD-BPMs can only deal with a
paraxial input beam.

• GRIN media have a general ε(r), with no restriction in symmetry or periodic-
ity, but most FD-BPMs require small variance in ε(r), and the vectorial FD-BPM
requires small variance in ε(r) along the z axis.

• Effects generated by the GRIN medium:
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– Most BPMs only deal with forward propagation, and reflection is not in-
cluded. To include reflection, a special bidirectional BPM is developed [61].

– Polarization crosstalk between Ex, Ey, and Ez is generally not included be-
cause of ∇ ln ε(r) ≈ 0. Vectorial BPM considers the crosstalk between Ex and
Ey.

– Diffraction is considered, and the focus inside GRIN media can be calculated.

– The fundamental BPM and vectorial BPM deal only with the paraxial case,
and the non-paraxial case is covered by using the Padé approximation.

– Evanescent waves are not dealt with by most BPMs, but one can include them
by using a complex εc in Eq. (2.58).

2.4 summary

In this chapter, we described some field solvers for GRIN media, including Mie theory,
the fiber mode solver, and several BPMs. The properties of the solvers described are
shown in Tab. 1.

Many other solvers can be used to model GRIN components.

• Rigorous field solvers, e.g., finite element methods (FEM) [44] or Fourier modal
methods with perfectly matched layers (FMM+PMLs) [62], can calculate general
input field propagation through general GRIN components, with all the men-
tioned effects included.

• The Fourier modal method (FMM) can be used to model periodic GRIN compo-
nents.

However, from Tab. 1, we also find that although there are many field solvers that model
different types of GRIN distributions, or that include different physical effects, it is not
always convenient to switch between solvers.
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3
R U N G E - K U T TA k - D O M A I N F I E L D P R O PA G AT I O N M E T H O D

In Chapter 2, we reviewed several field solvers for modeling an electromagnetic field
propagating through a graded-index (GRIN) medium. We mentioned three rigorous
solvers that could predict all linear physical effects, e.g., polarization crosstalk, non-
paraxial, or reflection, rigorously. However, Mie theory is only valid for spherically
symmetric GRIN media, and Fourier modal method (FMM) only works for periodic
GRIN media. FMM with perfectly matched layers (FMM+PMLs) is capable of modeling
general GRIN media, but the numerical effort it demands, which is linear at N3 (N is the
number of sampling points), is quite high, and the sampling distance should be smaller
than half a wavelength. Then, the concept and capabilities of beam propagation meth-
ods (BPMs), including the Fourier transform (FT-) BPM, the wave propagation method
(WPM), and finite difference (FD-) BPMs, are discussed. BPMs are easy to implement
and highly extensible. However, most BPMs have the constraint ∇ ln ε(r) ≈ 0, which
introduces inaccuracy in predicting polarization crosstalk, or even ignores it. Further-
more, too many BPMs require frequent selection and switching between proper solvers.
To overcome the constraint, and to simplify the technique selection process, we would
like to develop a conceptionally straightforward field solver to include multiple func-
tionalities and to unify the benefits of several other solvers.

In this chapter, we derive a field solver directly from Maxwell’s equations. From a
theoretical perspective, we convert Maxwell’s curl equations in the spatial domain (x-
domain) into ordinary differential equations (ODEs) in the spatial-frequency domain
(k-domain) [63]. The ODEs can be solved iteratively using the Runge-Kutta method. In
our numerical calculation, we take advantage of the fast Fourier transform (FFT) to
convert the convolution-type calculation involving permittivity and field components,
which requires a linear numerical effort of N2, to a simple multiplication that requires
N operations, where N is the number of sampling points [64].

We first introduce the fundamental technique, including the derivation of the ODEs in
the k-domain, using the Runge-Kutta method to solve them, and introduce the validity
proof by comparing the result with that calculated by rigorous field solvers. Then, we
propose ways to further reduce the numerical effort.

3.1 fundamental technique

3.1.1 Ordinary Differential Equations (ODEs) in the k-Domain

To derive a field solver, we start with the two Maxwell curl-equations, Eqs. (2.20) and
(2.21),

∇× E(r) = iωµ0H(r), (3.1)

29



30 runge-kutta k-domain field propagation method

and
∇× H(r) = −iωε0ε(r)E(r). (3.2)

with E(r) and H(r) denoting the electric and magnetic field at position r = (x, y, z). In
Eqs. (3.1) and (3.2), i is the imaginary unit, ε0 and µ0 are the vacuum permittivity and
permeability constants, and ε(r) is the relative permittivity of the GRIN media, which
is position-dependent. Please note that we neglect ω in the notation, and focus on the
formula for single-frequency ω, but it is not an approximation, because all general fields
can be represented as a linear combination of different spectrum modes with different
ω, and in linear optics, there is no energy crosstalk between different spectrum modes.

If we represent all six electromagnetic field components as

V(r) = {Ex, Ey, Ez,
√

µ0

ε0
Hx,

√
µ0

ε0
Hy,

√
µ0

ε0
Hz}T(r), (3.3)

Eqs. (3.1) and (3.2) can be rewritten as



∂yV3(r)− ∂zV2(r)

∂zV1(r)− ∂xV3(r)

∂xV2(r)− ∂yV1(r)


 = ik0




V4(r)

V5(r)

V6(r)


 , (3.4)

and 


∂yV6(r)− ∂zV5(r)

∂zV4(r)− ∂xV6(r)

∂xV5(r)− ∂yV4(r)


 = −ik0ε(r)




V1(r)

V2(r)

V3(r)


 , (3.5)

with ∂i := ∂
∂i , i = x, y, z.

In an arbitrary plane z, we represent V`(r) with ` = 1, 2, 3, 4, 5, 6 using the inverse
Fourier transform between the x-domain and the k-domain, as in Eq. (2.33),

V`(ρ, z) = F−1
k Ṽ`(κ, z) =

1
2π

∫∫ +∞

−∞
dkx dky Ṽ`(κ, z) exp(iκ · ρ), (3.6)

with Ṽ`(κ, z) as the field in the k-domain, ρ = (x, y) and κ = (kx, ky).
Similarly, ε(r) is represented by its inverse Fourier transform

ε(ρ, z) = F−1
k ε̃(κ, z) =

1
2π

∫∫ +∞

−∞
dkx dky ε̃(κ, z) exp(iκ · ρ). (3.7)

Substituting Eqs. (3.6) and (3.7) into Eqs. (3.4) and (3.5), we get



iκyṼ3(κ, z)− ∂zṼ2(κ, z)

∂zṼ1(κ, z)− iκxṼ3(κ, z)

iκxṼ2(κ, z)− iκyṼ1(κ, z)


 = ik0




Ṽ4(κ, z)

Ṽ5(κ, z)

Ṽ6(κ, z)


 , (3.8)

and 


iκyṼ6(κ, z)− ∂zṼ5(κ, z)

∂zṼ4(κ, z)− iκxṼ6(κ, z)

iκxṼ5(κ, z)− iκyṼ4(κ, z)


 = −ik0ε̃(κ, z) ∗




Ṽ1(κ, z)

Ṽ2(κ, z)

Ṽ3(κ, z)


 , (3.9)
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with ∗ indicating convolution, so that ε̃(κ, z) ∗ Ṽ`(κ, z) = 1
2π

∫∫ +∞
−∞ dk′x dk′y ε̃(κ′, z)Ṽ`(κ−

κ′, z).
Compared with Eqs. (3.4) and (3.5), Eqs. (3.8) and (3.9) contain a single differential

variable, z, after ∂x and ∂y are replaced by ikx and iky, respectively. Thus, ∂z can be
replaced by d/ dz, and the equations become ODEs. Furthermore, of the six equations
in Eqs. (3.8) and (3.9), there are four ODEs, while the other two serve to conclude that
field components Ṽ3 and Ṽ6 can be represented in terms of Ṽ1, Ṽ2, Ṽ4 and Ṽ5. Therefore,
there are four independent field components, while the other two can be calculated
from those four.

After some rearranging of the equations, the ODE in matrix form can be written as

d
dz




Ṽ1

Ṽ2

Ṽ4

Ṽ5




(κ, z) = ik0




0 0 kx
k0

ε̃−1 ky
k0

1− kx
k0

ε̃−1 kx
k0

0 0 ky
k0

ε̃−1 ky
k0
− 1 − ky

k0
ε̃−1 kx

k0

− kxky

k2
0

k2
x

k2
0
− ε̃ 0 0

ε̃− k2
y

k2
0

kykx

k2
0

0 0







Ṽ1

Ṽ2

Ṽ4

Ṽ5




(κ, z).

(3.10)
In Eq. (3.10), operators ε̃ and ε̃−1 are convolution operators, i.e.,

ε̃Ṽ`(κ, z) = ε̃(κ, z) ∗ Ṽ`(κ, z), with ` = 1, 2, (3.11)

ε̃−1kiṼ`(κ, z) = ε̃−1(κ, z) ∗ [kiṼ`(κ, z)], with i = x, y, ` = 4, 5, (3.12)

where ε̃−1(κ, z) = Fk
1

ε(ρ, z)
=

1
2π

∫∫ +∞
−∞ dx dy

exp(−iκ · ρ)
ε(ρ, z)

.

Eq. (3.10) rigorously describes field behavior in GRIN media, without any physical
approximation whatsoever as long as the problem is considered using the framework
of linear optics.

In some practical applications, where both the structure and the fields are y-invariant,
a two-dimensional (2D) treatment suffices. Substituting ∂y = 0 into Eqs. (3.4) and (3.5),
and following a derivation similar to that of Eq. (3.6) to (3.10), we get a simplified
version of the ODE,

d
dz




Ṽ1

Ṽ2

Ṽ4

Ṽ5




(kx, z) = ik0




0 0 0 1− kx
k0

ε̃−1 kx
k0

0 0 −1 0

0 k2
x

k2
0
− ε̃ 0 0

ε̃ 0 0 0







Ṽ1

Ṽ2

Ṽ4

Ṽ5




(kx, z). (3.13)

with operators ε̃ and ε̃−1 as the analogues to those of Eqs. (3.11) and (3.12), but replacing
κ by kx.
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One point in the derivation of the 2D case is worthy of mention: after substituting
∂y = 0 into Eqs. (3.4) and (3.5), we note that the six field components are separated into
two independent groups,




∂xV6(r)− ∂zV4(r)

−∂zV2(r)

∂xV2(r)


 = ik0




V2(r)

ε(r)V4(r)

V6(r)


 , (3.14)

and 


∂zV5(r)

−∂xV5(r)

∂zV1(r)− ∂xV3(r)


 = ik0ε(r)




V1(r)

V3(r)/ε(r)

V5(r)


 . (3.15)

Eq. (3.14) contains only one electric field component, V2(r), which is transverse to the
main propagation direction, and that is why this group of fields constitutes the so-called
transverse electric mode (TE). Similarly, Eq. (3.15) represents the behavior of transverse
magnetic mode (TM). The TE and TM modes are decoupled without any energy crosstalk
between the two modes.

3.1.2 Stability Analysis of the ODEs

From this point onward, we illustrate how to solve Eq. (3.10). Eq. (3.13) is merely a
simplified version of Eq. (3.10), and as such, the solution will be the same. We would like
to emphasize that both 2D and 3D cases can be solved using the following technique.

Equation (3.10) is in the typical vectorial form of ODEs.

d
dz

Ṽ⊥(z) = f (z, Ṽ⊥), (3.16)

with Ṽ⊥(z) = (Ṽ1, Ṽ2, Ṽ4, Ṽ5)T(κ, z), and f (z, Ṽ⊥) denoting the right-hand side of Eq. (3.10),

f (z, Ṽ⊥) = M(κ, z)Ṽ⊥(κ, z), (3.17)

with

M(κ, z) = ik0




0 0 kx
k0

ε̃−1 ky
k0

1− kx
k0

ε̃−1 kx
k0

0 0 ky
k0

ε̃−1 ky
k0
− 1 − ky

k0
ε̃−1 kx

k0

− kxky

k2
0

k2
x

k2
0
− ε̃ 0 0

ε̃− k2
y

k2
0

kykx

k2
0

0 0




(3.18)

Ṽ` is a function of κ, so the dimensionality of Ṽ⊥(z) depends on the number of sampling
points of Ṽ` in the k-domain. Assuming the number of sampling points of each Ṽ`, ` =

1, 2, 4, 5 is Nx × Ny; then Ṽ⊥(z) is an M-dimensional vector, where M = Nx × Ny × 4. As
z is a real value, the domain and range of Ṽ⊥(z) and the function f are

Ṽ⊥ : R → CM

f : R×CM → CM
. (3.19)
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Now, let us solve Eq. (3.16). Mathematically, the unique solution of an ODE can be
obtained by adding either "boundary conditions," if Ṽ⊥ on the boundaries of the domain
is assigned, or "initial conditions," if Ṽ⊥ is specified at a single value of z [55]. The former
solution with "boundary conditions" is formulated as an "eigenvalue problem," which
is known to be a mode solver, and the latter with "initial conditions" is formulated as an
"initial value problem." The FMM, which is also called rigorous coupled wave analysis,
solves Eq. (3.16) as an "eigenvalue problem" [63, 65, 66]. Our main interest in this work
is with the latter, more specifically, solving Eq. (3.16) to obtain Ṽ⊥(z) for all z > z0,
under the assumption that the initial condition Ṽ⊥(z0) is known. The fact that there is
no practical mechanism to include the reflected field in this initial condition results in
the first constraint of the technique: the reflection field inside the GRIN media is not
calculated.

To obtain the unique solution of the "initial value problem,” the mathematical stability
of the ODE needs to be checked [55], i.e., whether an arbitrary perturbation in the fields
can be suppressed, or at least not enlarged. This stability check is not required when we
solve an ODE as an "eigenvalue problem."

Now let us discuss whether Eq. (3.10) is stable, or discuss when it is stable, so that
we obtain the validity criteria of the solution.

Mathematically, let us assume the perturbation is P̃(κ, z), which has the same dimen-
sionality as Ṽ(κ, z), i.e., P̃⊥ : R → CM. After replacing Ṽ⊥(κ, z) by Ṽ⊥(κ, z) + P̃(κ, z)
in Eq. (3.10), we obtain the formula for P̃(κ, z) in the form of a linear first-order ODE,

d
dz

P̃(z) = M(κ, z)P̃(κ, z), (3.20)

with M(κ, z) in Eq. (3.18). The right-hand side of Eq. (3.20) can be described using linear
algebra,

M(κ, z)P̃(κ, z) = ηP̃(κ, z), (3.21)

with η as the eigenvalue of M*.
The mathematical solution of Eqs. (3.20-3.21) can be represented as,

P̃(z) = ∑
i

ci p̃i(κ) exp(ηiz). (3.22)

with ηi the eigenvalue and p̃i(κ) the corresponding eigenvector. If a perturbation is
introduced in position z0, we need first to decompose P̃(z0) into eigenvectors p̃i(κ) to
calculate ci,

ci =
∫∫

P̃(z0)p̃?
i (κ)dkx dky, (3.23)

with p̃? the conjugate vector of p̃.
To ensure that the perturbation P̃(z0) is not enlarged by Eq. (3.10), it is necessary that

all eigenvalues ηi satisfy
exp(ηiz) 6 1. (3.24)

* The symbol for an eigenvalue according to mathematical convention is λ. However, in this work, we use λ

to denote the wavelength, so here we use η to denote eigenvalue.
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Or
Re {ηi} 6 0. (3.25)

Then, we need to calculate the maximum eigenvalue of M for GRIN media, and check
if ηmax satisfies Eq. (3.25).

The detailed calculation of the maximum eigenvalue of M is in Appendix E. Here, we
show the conclusions:

• The eigenvalue of the ODE for a homogeneous medium, with relative permittivity
εc, is

η = ±ikz = ±i
√

k2
0εc − ||κ||2, (3.26)

and the real part is

Re {η} =
{

0 ||κ||2 6 k2
0εc propagating wave

±|kz| ||κ||2 > k2
0εc evanescent wave.

(3.27)

Thus, the ODE is stable when ||κ||2 6 k2
0εc.

• For the ODE of general GRIN media, the range of the eigenvalue is

− k2
0εmax 6 η2 6 ||κ||2max − k2

0εmin. (3.28)

when ||κ||2max 6 k2
0εmin, Re {η} = 0.

At this point, we can conclude that in order to obtain a stable solution for the ODE, (3.16),
the width of the angular spectrum should be limited. Thus, to ensure that the algorithm
is stable going forward, we rewrite the ODE as

d
dz

Ṽ⊥(κ, z) =

{
M(κ, z)Ṽ⊥(κ, z) for ||κ||2 6 k2

0εmin

0 for ||κ||2 > k2
0εmin

, (3.29)

with M as the matrix in Eq. (3.18).
From the above discussion about stability, we realize the second constraint of the tech-

nique, i.e., it cannot correctly predict the evanescent wave, which has ||κ|| > k0
√

εmin.
Thus, if the evanescent wave plays an important role in the application, this technique
is not the right choice.

3.1.3 Numerical Solver Development

The main idea in the approach to solving the initial value problem is that if a fine
enough grid along z is defined, i.e., {z0, z1, · · · zi−1, zi, zi+1, · · · zNz−1}, Ṽ⊥(zi+1) can be
calculated from Ṽ⊥(zi) using different methods, and using different approximations
which are reasonable for small stretches of z. In this work, we use the 4

th-order Runge-
Kutta method, which is formulated as follows.

Ṽ⊥(zi+1) = Ṽ⊥(zi) +
1
6
(α1 + 2α2 + 2α3 + α4), (3.30)
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with 



α1 = ∆zi f (zi, Ṽ⊥(zi))

α2 = ∆zi f (zi +
1
2 ∆zi, Ṽ⊥(zi) +

1
2 α1)

α3 = ∆zi f (zi +
1
2 ∆zi, Ṽ⊥(zi) +

1
2 α2)

α4 = ∆zi f (zi+1, Ṽ⊥(zi) +
1
2 α3)

, (3.31)

and
∆zi = zi+1 − zi. (3.32)

To implement the iterative equations (3.30-3.32), we first need to know how to calcu-
late f (z, Ṽ⊥). At a given plane z, κ is discretized as κij,

κij = (iδkx, jδky) + (kx,min, ky,min), i, j ∈ Z, i ∈ [0, Nx − 1], j ∈ [0, Ny − 1], (3.33)

with (δkx, δky) as the sampling distances, and kx,min and ky,min as the minimum value
of kx and ky, respectively. Ṽ⊥ is a function of κij. Most of the operations in f (z, Ṽ⊥) are
pointwise with respect to κij, which has a linear numerical effort (runtime), (Nx × Ny),
other than operators ε̃ and ε̃−1. From Eqs. (3.11) and (3.12), we know that ε̃ and ε̃−1

are convolution operators, which have a numerical effort proportional to (Nx × Ny)2.
However, based on the convolution theorem, the convolution in the k-domain can be
realized in the x-domain with a Fourier transform pair (2.32-2.33) and an algebraic
multiplication [47]. As a result, we rewrite Eqs. (3.11) and (3.12) as

ε̃Ṽ`(κ, z) = Fk

{
ε(ρ, z)×F−1

k

[
Ṽ`(κ, z)

]}
with ` = 1, 2, (3.34)

ε̃−1kiṼ`(κ, z) = Fk

{
ε−1(ρ, z)×F−1

k

[
kiṼ`(κ, z)

]}
, i = x, y, with ` = 4, 5, (3.35)

From Eqs. (3.34) and (3.35), if a Fourier transform (inverse) is performed using an FFT,
the numerical effort of the operators ε̃ and ε̃−1 becomes [2× (Nx × Ny) log(Nx × Ny) +

(Nx × Ny)], which is almost linear in (Nx × Ny). This offers the significant advantage of
reducing numerical effort in the general field calculation.

Consequently, the total numerical effort of the solver becomes almost linear as (Nx ×
Ny × Nz)

Because we use the Runge-Kutta (RK) method to solve Eq. (3.29) in the k-domain,
to calculate the field propagation through GRIN media, we name the algorithm RK
k-domain field propagation method (RKK-FPM). Then we implement the algorithm
using a customized programmable component in the physical-optics design software
VirtualLab Fusion [26].

3.1.4 Validation: y-Invariant Luneburg Lens

In this example, the input plane wave is y-invariant and x-polarized with a wavelength
of 532 nm, and the aperture size is 38 µm, as shown in Fig. 4. This plane wave propagates
through a Luneburg lens [67] having a relative permittivity given by

ε(x, z) = 2.0− x2 + z2

R2 . (3.36)
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Here, (x, z) corresponds to the spatial coordinates and R = 20 µm to the radius of the
Luneburg lens. We use both the RKK-FPM and a rigorous algorithm, i.e., the FMM+PMLs [62],
available in the optical software VirtualLab Fusion [68], to calculate the field distribution
in the xz-plane and at the output plane.

0

0 30−30

x [µm]

1

1.0

2.0

Input Plane Output Plane

z

x

40µm

Amplitude of Ex [V/m]

(a) (b)

Figure 4: Illustration of the optical system. (a) The input field is an x-polarized truncated plane
wave, with aperture size 38 µm. (b) The distribution of ε(x, z) of the Luneburg lens.

In Fig. 5, we show the plots of the amplitude of the field components Ex in the xz-
plane, as computed by the RKK-FPM (top left) and the FMM+PMLs (bottom left). The
plane wave is focused onto a rear point of the Luneburg lens with a convergence angle
larger than 60°. Both methods give identical results, demonstrating the accuracy of the
RKK-FPM to calculate the field in a non-paraxial situation. We compute the deviation
to the referent field by using

σ =
∑x,y |Ex(x, y)− Eref

x |2 + |Ey(x, y)− Eref
y |2

|Eref
x |2 + |Eref

y |2
, (3.37)

and the deviation is 0.1 %. The error comes from the two constraints of the RKK-FPM,
i.e., no reflection, or evanescent waves are included.

The number of sampling points in this case is Nx = 245 (sampling distance 250 nm),
with Nz = 2000 for the RKK-FPM. In this case, the FMM+PMLs also needs a few layers
in the z-direction to resolve the variation in ε(x, z). Both calculations were performed
on a personal computer with an Intel Core i7-7700HQ CPU @2.80 GHz and a total 32 GB
RAM. The computational time for the FMM is about 150 minutes, while the RKK-FPM
takes several seconds.

Fast and accurate calculation of the y-invariant case provides several benefits: (1) for
the analysis of field properties in waveguides [37], y-invariant simulations are, in most
cases, good enough; (2) y-invariant simulations are a means for offering a convergent
prediction or the estimation of numerical parameters, i.e., sampling parameters in the
xy plane or the step number along the propagation (z) axis for most three-dimensional
(3D) cases.

Here we show how we select the sampling parameters:
(1) The Luneburg lens generates a high-numerical-aperture (high-NA) focus in the detec-
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Figure 5: Amplitude distributions of the Ex field component in the xz plane (left column), as
well as at the output plane (right column), calculated by the RKK-FPM (upper row)
and FMM+PMLs (bottom row).

tor plane, so the width of kx is the largest value we can work with, i.e., ∆kx = 2k0
√

εmin.
From the Nyquist theory [69], the sampling distance in the x-domain is

δx =
2π

∆kx
=

λ

2
√

εmin
≈ 250 nm. (3.38)

(2) The windows size ∆x should be large enough to avoid the aliasing effect. The input
beam size is almost equal to the lens diameter, and some light escapes from the lens.
Thus, we select ∆x = 60 µm. Then the sampling point Nx is fixed as

Nx = ∆x/δx ≈ 245. (3.39)

(3) We enlarge Nz and run the code for the RKK-FPM and save the result fields. Next,
we select the Nz when the result field is convergent. Eq. (3.37) is used to evaluate the
convergence. In this example, we select Nz = 2000.

3.1.5 Validation: 3D Luneburg Lens

In this example, we extend the second example to a 3D case, i.e., the input plane wave is
polarized along x-axis, has a wavelength of 532 nm, and is truncated by a round aperture
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of diameter 45 µm (larger than the sphere); the relative permittivity of the rotationally
symmetric spherical Luneburg lens is

ε(r) = 2.0− r2

R2 (3.40)

with r =
√

x2 + y2 + z2 and R = 20 µm as the radius of the Luneburg lens. The optical
system in the xz-plane is still as illustrated by Fig. 4 (b). Instead of the FMM+PMLs,
we use Mie theory, another rigorous solver introduced in Chapter 2, to calculate the
reference result. To simulate the 3D field propagation in the GRIN sphere, the sampling
points Nx = Ny = 245 and Nz = 2000 for the RKK-FPM. For Mie theory, we use 280 or-
ders of spherical harmonics, and we use 500 layers along the radial direction to resolve
ε(r), and in the detector, we calculate 200× 200 sampling points within the window
size 4 µm × 4 µm. In Fig. 6, we show the plots of the amplitude of the field compo-
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Figure 6: Amplitude distribution of the field components Ex, Ey and Ez at the output plane
(Fig. 4 (b)).

nents Ex, Ey, and Ez at the output plane (Fig. 4 (b)), computed by the Mie theory (top)
and RKK-FPM (bottom). Ex is not rotationally symmetric in the xy-plane, but instead
is stretched along the x-axis. This stretching is expected for any imaging system with a
high numerical aperture (NA) and is also related to the incident polarization state. Note
that the relative permittivity at the interface is equal to that of the exterior embedding
medium, ε(R) = 1.0, which means that there is no interface between the surround-
ing medium and the Luneburg lens, so in this case, Ey is generated exclusively by the
polarization crosstalk in the GRIN medium. Meanwhile, at the focal plane, Ez has a mag-
nitude comparable to that of Ex. For a high-NA imaging system, polarization analysis
becomes vitally important. Both methods give similar results (the deviation calculated
by Eq. (3.37) is 0.4 %), demonstrating the accuracy of the RKK-FPM in calculating fields
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in a non-paraxial situation. Meanwhile, it calculates accurately the polarization crosstalk
between Ex, Ey, and Ez.

We also computed the focused field by using the FT-BPM and WPM, introduced in
Chapter 2. FT-BPM ignores ∇ ln ε, so the calculated Ex is rotationally symmetric but
has no stretching along the x-axis. WPM predicts the stretching by including the local
Fresnel matrices between neighboring layers. However, WPM requires the numerical
effort (Nx × Ny)2. Compared with the WPM, our RKK-FPM still has the advantage of
lower numerical effort, which is linear at Nx × Ny.

3.2 odes with analytical fast-changing phase term

We have discussed the fundamental RKK-FPM, and that its numerical effort is linear
at (Nx × Ny × Nz), with Nx, Ny, Nz as the number of sampling points in the x-, y-,
and z-directions, respectively. We can further enhance the calculation efficiency in two
ways: (1) reduce the number of sampling points Nz by extracting/analyzing the quickly
changing phase term along the z-axis, and (2) reduce the number of sampling points
Nx × Ny by extracting/analyzing the linear phase, or introducing the semi-analytical
Fourier transform to replace the FFT where applicable. In this work, we realized the
former.

The fast-changing phase is represented as exp(ik0n̄z), with n̄ =
√

εmin. Thus, the
fields in Eq. (3.3) can be represented as

V(r) = U(r) exp(ik0n̄z), (3.41)

and the field in the k-domain is

Ṽ(κ, z) = Ũ(κ, z) exp(ik0n̄z). (3.42)

Substituting the field representation (3.42) into the ODE (3.10), we obtain

d
dz




Ũ1

Ũ2

Ũ4

Ũ5




(κ, z) = ik0




−n̄ 0 kx
k0

ε̃−1 ky
k0

1− kx
k0

ε̃−1 kx
k0

0 −n̄ ky
k0

ε̃−1 ky
k0
− 1 − ky

k0
ε̃−1 kx

k0

− kxky

k2
0

k2
x

k2
0
− ε̃ −n̄ 0

ε̃− k2
y

k2
0

kykx

k2
0

0 −n̄







Ũ1

Ũ2

Ũ4

Ũ5




(κ, z).

(3.43)
In Eq. (3.46), operators ε̃ and ε̃−1 are convolutional operators, analogs to those of
Eqs. (3.11) and (3.12).

ε̃Ũ`(κ, z) = ε̃(κ, z) ∗ Ũ`(κ, z), with ` = 1, 2, (3.44)

ε̃−1kiŨ`(κ, z) = ε̃−1(κ, z) ∗ [kiŨ`(κ, z)], with i = x, y, ` = 4, 5, (3.45)

where ε̃−1(κ, z) = Fk
1

ε(ρ, z)
=

1
2π

∫∫ +∞
−∞ dx dy

exp(−iκ · ρ)
ε(ρ, z)

.
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Eq. (3.43) rigorously describes field behavior in GRIN media, without any physical
approximation whatsoever, as long as the problem is considered in the framework of
linear optics.

In this section, our purpose is to solve Eq. (3.46) to achieve Ũ⊥(z) = (Ũ1, Ũ2, Ũ4, Ũ5)T(κ, z),
and then Ṽ⊥(z) = (Ṽ1, Ṽ2, Ṽ4, Ṽ5)T(κ, z) can be calculated analytically using Eq. (3.42).
Here, we would like to emphasis that the fast phase term exp(ik0n̄z) is treated analyti-
cally without any approximation.

3.2.1 Stability Analysis of the ODEs

Eq. (3.43) is also in a typical vectorial form of ODE,

d
dz

Ũ⊥(z) = f u(z, Ũ⊥), (3.46)

with Ũ⊥(z) = (Ũ1, Ũ2, Ũ4, Ũ5)T(κ, z) and f u(z, Ũ⊥) denoting the right-hand side of
Eq. (3.43),

f u(z, Ũ⊥) = Mu(κ, z)Ũ⊥(κ, z), (3.47)

with

Mu(κ, z) = ik0




−n̄ 0 kx
k0

ε̃−1 ky
k0

1− kx
k0

ε̃−1 kx
k0

0 −n̄ ky
k0

ε̃−1 ky
k0
− 1 − ky

k0
ε̃−1 kx

k0

− kxky

k2
0

k2
x

k2
0
− ε̃ −n̄ 0

ε̃− k2
y

k2
0

kykx

k2
0

0 −n̄




(3.48)

Ũ` is a function of κ, so the dimensionality of Ũ⊥(z) depends on the number of sam-
pling points of Ũ` in the k-domain. Assuming the number of sampling points of all
Ũ`, ` = 1, 2, 4, 5 is Nx × Ny, Ũ⊥(z) is an M−dimensional vector, and M = Nx × Ny × 4.
As z is a real value, the domain and range of Ũ⊥(z), and the function f u are

Ũ⊥ : R → CM

f u : R×CM → CM
. (3.49)

Again, we solve Eq. (3.46) as an "initial value problem." To achieve a converged, re-
liable result, we need not only a sufficient number of sampling points, but also the
mathematical stability of the ODEs, analogs to the discussion of the fundamental RKK-
FPM. More specifically, the eigenvalue η of Mu should satisfy the criteria in Eq. (3.25).
The detailed mathematical derivation is in Appendix E. The range of η is

− k2
0εmin 6 (η + 2ik0n̄)2 6 ||κ||2max − k2

0εmin. (3.50)

Thus, ||κ||2max 6 k2
0εmin grants that Re {η} 6 0.
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At this point, we can conclude that in order to obtain a stable solution for the
ODE (3.46), the width of angular spectrum should be limited. Thus, to ensure that
the algorithm is stable going forward, we rewrite the ODE as

d
dz

Ũ⊥(κ, z) =

{
Mu(κ, z)Ũ⊥(κ, z) for ||κ||2 6 k2

0εmin

0 for ||κ||2 > k2
0εmin

, (3.51)

with Mu as the matrix in Eq. (3.48).
From the above discussion about stability, the constraint of this technique is identical

to that of the fundamental technique of the previous section, i.e., it cannot correctly
predict the evanescent wave, which has ||κ|| > k0

√
εmin. Thus, if the evanescent wave

plays an important role, this technique is not the correct choice.

3.2.2 Validation: Multimode Fiber

Here we use a fiber example to show the workflow when using the RKK-FPM.

Input Plane Test Plane

d =620µm

(a)

ǫ(x, y)

1.0

1.7

(b)
z x

x y

1
0
0
µ
m

0.0

Figure 7: Illustration of the optical system. (a) The dashed line represents the test output plane
located at a distance of d = 620 µm from the input plane (long solid vertical line). (b)
The relative permittivity inside the fiber, which has a core diameter of 100 µm.

In this example, we model a y-polarized fundamental Gaussian mode (i.e., Ex(x, y) =
0) with a beam waist radius of 5 µm and with a wavelength of 532 nm propagating
in a GRIN optical fiber, as shown in Fig. 7 (a). The spatial distribution of the relative
permittivity ε(r) is presented in Fig. 7 (b). We use the RKK-FPM to calculate the field
distribution in the test plane after the field has propagated a distance of d = 620 µm
from the input plane.

Let us first fix the sampling parameters in this case by assuming a y-invariant situa-
tion, i.e., propagating a y-polarized and y-invariant Gaussian with a beam waist radius
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Figure 8: Fields in the multimode fiber. (a) The amplitude of Ey in the xz-plane (top) and Ẽy
in the kxz plane (bottom) in the y-invariant case. The right part shows the amplitude
distributions of the field components Ex, Ey, and Ez in the test plane, calculated using
the RKK-FPM; the unit is [V m−1]. The field components are interpolated using Sinc
interpolation [26, 70].

of 5 µm through a fiber with an ε(x, z) identical to ε(x, y = 0, z) in Fig. 7. The amplitude
of Ey and angular spectrum Ẽy are shown in Fig. 8 (a).
(1) The spectrum width of Ẽy is ∆kx = 8 × 106 m-1, and from the Nyquist sampling
theory, we calculate the sampling distance δx as

δx =
2π

∆kx
≈ 800 nm.

(2) The window size in the x-domain is about ∆x = 50 µm, so the number of sampling
points is

Nx =
∆x
δx
≈ 63.

(3) Then, we perform the simulation with different Nz until the result is converged, and
we select Nz = 6200.

Using the sampling parameters, i.e., Nx = Ny = 63, δx = δy = 800 nm, and Nz = 6200,
we perform a simulation of the 3D example. In Fig. 8 (b), we show the plots of the
amplitudes of the field components Ex, Ey and Ez in the test plane, computed using the
RKK-FPM (right column).

It is worth mentioning that the RKK-FPM itself does not include the modeling of
the optical surface between the surrounding media and the GRIN component. In this
example, the plane is modeled using a local plane interface approximation [29, 30].

We also use the FMM+PMLs to simulate this example, and the result field is shown
in the left column of Fig. 8 (b). The relative deviation between the two result fields
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calculated by Eq. (3.37) is 0.02 %, demonstrating the accuracy of the RKK-FPM. Com-
pared with the FMM+PMLs, the RKK-FPM has a significant advantage in terms of
numerical effort (computational time). The numerical effort of the RKK-FPM is linear
at (Nx × Ny × Nz), while that of the FMM is generally proportional to (Nx × Ny)3. To
calculate the results presented in Fig. 8 (b) using the FMM on a workstation with an
Intel Xeon CPU E5-2643 v2@3.5 GHz and a total 128 GB RAM, the simulation ran for
over 40 hours, while with the RKK-FPM, only 5 minutes are required on a personal
computer with an Intel Core i7-7700HQ CPU @2.80 GHz and a total 32 GB RAM.

3.2.3 Comparison with the Fundamental Technique

We use the RKK-FPM with a reduction of Nz to simulate the 3D Luneburg lens example
presented in Section 3.1.5. The result fields are identical to those in Fig. 6. The numerical
sampling parameters, and the simulation time when performed on a personal computer
with an Intel Core i7-7700HQ CPU @2.80 GHz and a total 32 GB RAM, are shown in
Tab. 2. From the table, the simulation time is shortened by extracting the fast-changing
phase.

Table 2: 3D Luneburg lens simulation

RKK-FPM Nx × Ny Nz Time

Fundamental 245× 245 2000 ∼ 20 min

Reduce Nz 245× 245 400 ∼ 4 min

It is worth mentioning that the field ansatz and further derivation do not introduce
any other physical approximations but do introduce the advantage of reducing the
numerical effort required. Thus, in further discussion, we do not distinguish the fun-
damental method, or the method with reduced Nz. The RKK-FPM always analyzes the
analytical phase term exp(ik0n̄z) with n̄ =

√
εmin. In this method, we always use the

field ansatz (3.41) and solve the ODE (3.47) using the Runge-Kutta method.

3.3 summary

We have proposed a conceptually straightforward method for the fast calculation of elec-
tromagnetic fields propagating through GRIN media. This method converts Maxwell’s
curl equations into ordinary differential equations in the k-domain, via the FFT. We
solve the equations using the Runge-Kutta method, hence the chosen denomination,
RK k-domain field propagation method (RKK-FPM).

The properties of the RKK-FPM are:

• The input field can be a general field, either geometric or diffractive, and paraxial
or non-paraxial.
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• The GRIN media have general ε(r), with no restriction in symmetry or periodicity.

• Effects generated by a GRIN medium:

– It works for a non-paraxial field, and always takes the polarization into ac-
count so that the vectorial field components are well-calculated.

– Reflection is not included.

– Evanescent waves, where ||κ|| > k0
√

εmin, are not included.

The RKK-FPM has a significant advantage in terms of numerical effort (calculation time),
i.e., it is linear at (Nx×Ny×Nz), with Nx, Ny, and Nz as the numbers of sampling points
in the x-, y-, and z-directions, respectively.

Compared with other modeling techniques presented in Chapter 2, the RKK-FPM has
no restriction with respect to the GRIN distribution ε, e.g., symmetry or small variance.
We rearrange Tab. 1: The RKK-FPM can completely replace the FT-BPM, FD-BPM ba-
sic, wide angle method, and vectorial method. Although the bidirectional FD-BPM can
model reflection and evanescent waves, it neglects ∇ ln ε, and introduces inaccuracy in
the polarization crosstalk calculation, which is not negligible, especially when the beam
is non-paraxial. Thus, in Tab. 3, we remove the bidirectional FD-BPM. Currently, when
reflection and evanescent waves play an important role in the simulation, we suggest
using the rigorous field solvers Mie, FMM, or FMM+PMLs.

Table 3: Field solvers to model GRIN media (Chapter 3)

Solvers/Feat. Input field
ε(r) Effects generated in GRIN media

sym. ∇ ln ε ≈ 0 surface polari. diffr. ref/eva.

Mie theory plane wave† sphe. X X X X

FMM general periodic X X X X

FMM+PMLs general X X X X

Fiber solver general cylind. ! X X

WPM general !‡ X X X

RKK-FPM general X X

† It can be extended to model a general field by using plane wave decomposition and
coordinate system transformation.

‡ It is compensated by including the Fresnel matrices of local change from ε(ρ, z−) to
ε(ρ, z+).

! means that this solver has constraints.
X denotes that this solver correctly predicts the relevant effect.
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In addition to the physical effects, the numerical effort needs to be considered when
a field solver is selected to model general GRIN media. At this time, the FMM+PMLs,
WPM, and RK k-domain field propagation method can be selected: the FMM+PMLs is
mainly proportional to (Nx × Ny)3 × NFMM

z , the WPM is proportional to (Nx × Ny)2 ×
Nz, whereas the RK k-domain field propagation method is linear at (Nx × Ny × Nz).
Here, we distinguish Nz and NFMM

z , because the selection of NFMM
z depends on how

many layers are needed to resolve ε(r), and generally the number of layers is not as large
as Nz, as required the other two solvers, e.g., for z-invariant GRIN media, NFMM

z = 1.
However, the RK k-domain field propagation method does not include the surface

effects efficiently. Thus, when the surface effects are important, we suggest using the
WPM as an alternative.





4
R U N G E - K U T TA x - D O M A I N F I E L D P R O PA G AT I O N M E T H O D

As most graded-index (GRIN) lenses and GRIN beam-shaping elements are still mod-
eled or designed using ray tracing techniques, the field passing through the GRIN com-
ponents must be a field with a negligible diffraction, which is known as a geometric
field. In this chapter, we study specific field solvers for geometric fields. Starting with
the ordinary differential equation (ODE) of the Runge-Kutta k-domain field propagation
method (RKK-FPM), we replace the fast Fourier transform (FFT) with the specific trans-
form for geometric fields, known as the homeomorphic Fourier transform (HFT) [33].
Then, the fundamental theory of ray optics, the eikonal equation, is derived. Substitut-
ing the geometric field ansatz and the eikonal equation into Maxwell’s equations, we
obtain the geometric field equations. After further derivation with GRIN media con-
straints, we obtain another set of ODEs represented in the x-domain. We solve them
using our developed Runge-Kutta x-domain field propagation method (RKX-FPM).

4.1 fundamental technique to model geometric fields

4.1.1 Geometric Fields: Eikonal and Field Equations

The electromagnetic fields can be represented as

V(r) = U(r) exp[iψ(r)], (4.1)

with V(r) = {Ex, Ey, Ez,
√

ε0

µ0
Hx,

√
ε0

µ0
Hy,

√
ε0

µ0
Hz}(r). ψ(r) is a common phase func-

tion, which is extracted from the electromagnetic fields V(r) at position r. Extracting the
common phase function ψ(r) leaves out the residual fields U(r) := V(r) exp[−iψ(r)],
which are still generally complex-valued. The choice of ψ(r) is free in principle, and
Eq. (4.1) is the general representation of electromagnetic fields without any approxima-
tion.

A well-chosen ψ(r) may greatly simplify the simulation, and therefore it is of prac-
tical relevance. In optics, it is often possible to select ψ(r) so that the behavior of the
electromagnetic field is dominated by the phase part. More specifically, U(r) is slowly
varying spatially, and ψ(r) is more rapidly varying. Note that it is not always possible
to find a common phase function that satisfies the phase-dominate constraint, and only
when the constraint holds can we say that the field is in its geometric field zone [32],
or that it is a geometric field. Otherwise, the field is said to be in the diffractive zone.
In this algorithm, we focus on electromagnetic field propagation through GRIN media
when the field is in the geometric zone.

47
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After defining the geometric field, we explore its propagation behavior in inhomoge-
neous and isotropic media. In this derivation, we need to use two tools, i.e., the home-
omorphic Fourier transform, which is the Fourier transform of a geometric field in an
arbitrary plane z [33] and the ODEs in the k-domain (3.10), which rigorously describes
field propagation in isotropic inhomogeneous media.

Homeomorphic Fourier Transform (HFT)

Based on the field ansatz (4.1), and the definition of geometric fields, in [33] the authors
derive the Fourier transform for a geometric field using the stationary phase method [71,
72]. The Fourier transform is called the homeomorphic Fourier transform (HFT),

Ṽ`(κ, z) = F h
k [V`(ρ, z)] = a[ρ(κ), z]U`[ρ(κ), z] exp{iψ[ρ(κ), z]− iκ · ρ}, (4.2)

with F h
k denoting the HFT, ρ = (x, y), and κ = (kx, ky). V` and U`, with ` = 1, 2, 3, 4, 5, 6

represent the field components in Eq. (4.1). ρ(κ) is the mapping relation between ρ and
κ, which can be calculated by

∇⊥ψ(ρ, z) = (
∂

∂x
ψ,

∂

∂y
ψ)(ρ, z) = κ. (4.3)

a is a scaling factor, which is calculated by the second derivative of ψ,

a(ρ, z) =





√
i

ψxx(ρ, z)

√
− iψxx(ρ, z)

ψ2
xy(ρ, z)− ψxx(ρ, z)ψyy(ρ, z)

, ψxx(ρ, z) 6= 0

1
ψxy(ρ, z)

, ψxx(ρ, z) = 0
(4.4)

where ψij :=
∂2ψ

∂i∂j
.

It is interesting that the field value in the x-domain is directly mapped/projected to
the k-domain via the mapping relation (4.3). This phenomenon is quite different from
our conventional understanding of the Fourier transform integral, which is that the field
value at one κ is related to the field values at all ρs. However, for the geometric field,
the field value at one κ is only related to that at one ρ.

From Eq. (4.2), we see that Ṽ(κ, z) can also be written as a multiplication of a slowly
varying complex amplitude and a phase term,

Ṽ(κ, z) = Ã(κ, z) exp{iψ̃(κ, z)}, (4.5)

with
Ã(κ, z) = a[ρ(κ), z]U`[ρ(κ), z], (4.6)

and
ψ̃(κ, z) = ψ[ρ(κ), z]− κ · ρ. (4.7)

The inverse HFT from the k-domain to the x-domain is

V`(ρ, z) = Fh,−1
k [Ṽ`(κ, z)] = ã[κ(ρ)]Ã`[κ(ρ)] exp{iψ̃[κ(ρ)] + iρ · κ}, (4.8)
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with the mapping relation

∇̃⊥ψ̃(κ, z) = (
∂

∂kx
ψ̃,

∂

∂ky
ψ̃)(κ, z) = −ρ, (4.9)

and with

ã(κ, z) =





√
i

ψ̃kxkx(κ, z)

√
− iψ̃kxkx(κ, z)

ψ̃2
kxky

(κ, z)− ψ̃kxkx(κ, z)ψ̃kyky(κ, z)
, ψ̃kxkx(κ, z) 6= 0

1
ψ̃kxky(κ, z)

, ψ̃kxkx(κ, z) = 0.

(4.10)
The properties of a geometric field in plane z are described by the HFT, i.e., (1) the

field at one position ρ contributes to the field at one κ, and vice versa; (2) the mapping
relation ρ(κ) and κ(ρ) are only determined by the local gradient of the phases ψ(ρ) and
ψ̃(κ), respectively.

Second-order ODEs in the k-domain

The properties of a geometric field in plane z are described by the HFT. Next, we explore
its propagation in GRIN media. This property can be derived using the ODE (3.10) in
the k-domain. First, the GRIN medium is described as having a sufficient number of
thin layers along the z axis, and for each layer, the z−variance can be neglected, i.e.,
dε(r)

dz ≈ 0 (for z-invariant media, the number of layers is 1, e.g., fiber). Then, for each
layer, we derive the second-order ODE from Eq. (3.10)

d2

dz2




Ṽ1

Ṽ2

Ṽ4

Ṽ5




(κ, z) = M(κ, z)




Ṽ1

Ṽ2

Ṽ4

Ṽ5




(κ, z), (4.11)

with

M(κ, z) =




−k2
0ε̃ + k2

y + kx ε̃−1kx ε̃ kx ε̃−1ky ε̃− kxky 0 0

ky ε̃−1kx ε̃− kxky −k2
0ε̃ + k2

x + ky ε̃−1ky ε̃ 0 0

0 0 −k2
0ε̃ + k2

x + ε̃ky ε̃−1ky −ε̃ky ε̃−1kx + kxky

0 0 −ε̃kx ε̃−1ky + kxky −k2
0ε̃ + k2

y + ε̃kx ε̃−1kx


.

(4.12)
Substituting Eqs. (4.2-4.10) into the ODE (4.11), Eq. (4.11) can be rewritten as

d2

dz2 Ṽ⊥(κ, z) = −k2
z[ρ(κ), z]Ṽ⊥(κ, z), (4.13)

with kz[ρ(κ), z] = k2
0ε[ρ(κ), z] − k2

y − k2
x and Ṽ⊥ = (Ṽ1, Ṽ2, Ṽ4, Ṽ5)T. The details of the

mathematical derivation can be found in Appendix G.
If we consider the forward propagation, then the angular spectrum in plane z + ∆z,

with ∆z approaching 0 (∆z→ 0), is

Ṽ⊥(κ, z + ∆z) = Ṽ⊥(κ, z) exp{ikz[ρ(κ), z]∆z}. (4.14)
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The related field in the x-domain is

V⊥(ρ, z + ∆z) = Fh,−1
k

{
Ṽ⊥(κ, z + ∆z)

}

= Fh,−1
k

{
Ã⊥(κ, z) exp{iψ̃(κ, z) + ikz[ρ(κ), z]∆z}

} . (4.15)

For further derivation, we need to formulate the mapping relation in plane z + ∆z as

∇̃⊥{ψ̃(κ, z) + kz[ρ(κ), z]∆z} = ∇̃⊥ψ̃(κ, z) + ∆z∇̃⊥kz[ρ(κ), z]

= −ρ + ∆z
{

k2
0

2kz[ρ(κ), z]
∇̃⊥ε[ρ(κ)]− κ(ρ)

kz[ρ(κ), z]

}

∆z→0≈ −ρ {...} has limited magnitude

.

(4.16)
With the unchanged mapping relation ρ(κ), Eq. (4.15) is continued as

V⊥(ρ, z + ∆z) = V⊥(ρ, z) exp{ikz[ρ(κ), z]∆z}
= U⊥(ρ, z) exp{iψ(ρ, z) + ikz[ρ(κ), z]∆z}

. (4.17)

Comparing V⊥(ρ, z + ∆z) and V⊥(ρ, z), the z derivative of the phase is

∂

∂z
ψ(ρ, z) = lim∆z→0

ψ(ρ, z + ∆z)− ψ(ρ, z)
∆z

= kz[ρ(κ), z]
. (4.18)

Now we can conclude
∇ψ(r) = k(r), (4.19)

with k(r) = (kx, ky, kz[ρ(κ), z]). Eq. (4.19) is the vectorial version of the eikonal equation,
which is the most fundamental equation in geometric optics. From this equation, we can
also determine that one important property of the geometric field is that the coordinate
mapping relation r → k is one-to-one.

The eikonal equation, Eq. (4.19), describes the phase change. Furthermore, the behav-
ior of U(ρ, z), or Ã(κ, z) can be derived by substituting the geometric field ansatz, and
the eikonal equation, Eq. (4.19) into Maxwell’s equations (2.23). To simplify the notation,
from now on, we replace V by E and H,

E(r) = E0(r) exp[iψ(r)], (4.20)

and
H(r) = H0(r) exp[iψ(r)]. (4.21)

Maxwell’s equations (2.23) can be rewritten as

∇× E0(r) + ik(r)× E0(r)− iωµ0H0(r) = 0, (4.22)

∇× H0(r) + ik(r)× H0(r) + iωε0εr(r)E0(r) = 0, (4.23)

∇ · E0(r) + ik(r) · E0(r) + E0(r) · ∇ ln ε(r) = 0, (4.24)
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∇ · H0(r) + ik(r) · H0(r) = 0. (4.25)

For spatially slowly varying E0(r), H0(r) and relative permittivity ε(r), the terms
∇ · E0(r), ∇ ·H0(r), ∇× E0(r), ∇×H0(r), and ∇ε(r) can be neglected. Then, we obtain
Maxwell’s equations for geometric fields,

k(r)× E0(r) = ωµ0H0(r), (4.26)

k(r)× H0(r) = −ωε0ε(r)E0(r), (4.27)

k(r) · E0(r) = 0, (4.28)

k(r) · H0(r) = 0. (4.29)

Eqs. (4.26-4.29) are called geometric field equations. These equations can also be found
in Chapter 3 in the book [53], and we show it in Appendix F.

Here we summarize that the geometric fields are a construction of slowly vary-
ing complex amplitude E0(r) and H0(r), and a rapidly varying phase ψ(r) (phase-
dominate), as shown in Eqs. (4.20) and (4.21). The eikonal equation, Eq. (4.19), describes
the behavior of ψ(r), while the geometric field equations, Eqs. (4.26-4.29), describe that
of E0(r) and H0(r). Although ε(r) variance need to be small, but it does not effect the
including of polarization crosstalk, and we will show it later.

4.1.2 ODEs in the x-Domain and Energy Conservation

In order to solve Eqs. (4.19) and (4.26-4.29) for GRIN media, we first compare these
equations with those for plane waves, which are derived using a plane wave ansatz in
Maxwell’s equations (2.20-2.23). The plane wave ansatzes are

E(r) = E0 exp(ik · r), (4.30)

and
H(r) = H0 exp(ik · r), (4.31)

with a constant wave vector k, and complex amplitude in the electric field E0 and in the
magnetic field H0.

Plugging the plane wave ansatz, (4.30) and (4.31) into Maxwell’s equations (2.23), we
can derive the plane wave equations for homogeneous media with ε,

k× E0 = ωµ0H0, (4.32)

k× H0 = −ωε0εE0, (4.33)

k · E0 = 0, (4.34)

k · H0 = 0. (4.35)

Comparing Eqs. (4.26-4.29) to Eqs. (4.32-4.35), we can see that the geometric field
shows plane wave behavior locally in the x-domain, with wave vector k(r). Thus, we
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Figure 9: Definition of the tangential vector ŝ of a ray curve.

name the local field that shows the plane wave behavior as the local plane wave. There-
fore, the geometric field is a composition of local plane waves.

Replacing k by k(r) in Eqs. (4.30) and (4.31), we obtain the mathematical representa-
tion of the geometric fields,

E(r) = E0(r) exp
{

i
[

ψ(r0) +
∫ r

r0

k(r) · dr
]}

, (4.36)

and

H(r) = H0(r) exp
{

i
[

ψ(r0) +
∫ r

r0

k(r) · dr
]}

. (4.37)

Comparing Eqs. (4.36) and (4.37) with those for plane waves, (4.30) and (4.31), we see
that in the phase of the geometric fields, the plane wave phase k · r is replaced by

∫
k(r) ·

dr, a path integral that integrates over the position. In a GRIN medium, k(r) of each
local plane wave changes smoothly during propagation, and we can define the path
of one local plane wave as a ray. Now we give several mathematical terms/properties
related to a parametric curve (ray) [73]: (1) arc length s is the distance between two
points along the curve; (2) the smooth curve can be parametrized with respect to the arc

length, i.e., r(s); (3) the tangential vector of the curve ŝ(r) :=
dr
ds

, as shown in Fig. 9.
Furthermore, we define

k(r) = k0

√
ε(r)ŝ(r), (4.38)

where ŝ(r) denotes the propagation direction (normalized 3D vector) of the local plane
wave at position r.
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Let us now consider the geometric field representation in the context of a modeling
task: which parameters are known, and which are to be calculated (Fig. 10). Typically,
we assume to be known: (1) the electric field distribution in the input plane, i.e.,

E(rin) = E0(rin) exp[iψ(rin)], (4.39)

where rin denotes the position in the input plane. Both E0(rin) and ψ(rin) are known in
the input plane; (2) the wave vector in the input plane through Eq. (4.3),

κ(rin) = ∇⊥ψ(rin), (4.40)

with κ = (kx, ky) and ∇⊥ = ( ∂
∂x , ∂

∂y ), and

kz(rin) =
√

k2
0ε(rin)− ||κ(rin)||2. (4.41)

Then, ŝ(rin) = k(rin)/[k0
√

ε(rin)]. In the following, we no longer mention the magnetic
field with the electric field because it can always be calculated using Eqs. (4.20-4.21) and
Eq. (4.26), i.e.,

H(r) =
1

ωµ0
k(r)× E(r). (4.42)

Here we emphasis that if there is an abrupt change in ε(r) before and after the input
plane, the local plane interface approximation (LPIA) [29, 30], which calculates the ge-
ometric field propagating through an optical surface, can be used to calculate E(rin)

inside the GRIN media on the input plane.
In a modeling task, we often seek to calculate the field distribution in the output

plane, i.e.,
E(rout) = E0(rout) exp[iψ(rout)]. (4.43)

We start with calculating ψ(rout). From Eq. (4.36), we know

ψ(rout) = ψ(rin) +
∫ rout

rin
k(r) · dr. (4.44)

To compute
∫ rout

rin k(r) · dr, we need to determine the integration path from rin to rout,
which is the ray path.

To calculate the ray path, we differentiate Eq. (4.19) with respect to arc length s [53]
to obtain the first ODE in the x-domain (Appendix G),

d
ds

[
√

ε(r)ŝ(r)] = ∇
√

ε(r). (4.45)

It describes how ŝ(r) varies along the ray path. From this equation, we also know that
when the initial position rin and direction ŝ(rin) are known, and the relative permittiv-
ity ε(r) is fixed in space, the path is unique. This is a well-known ray equation for a
GRIN medium [53]. Meanwhile, the unique ray path introduces a one-to-one mapping
between the positions in the input plane and those in the output plane rout(rin). By
solving Eq. (4.45), we obtain the ray path and the mapping relation rout(rin), as shown
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Figure 10: Illustration of a ray path from the input plane to the output plane of a GRIN medium.
The dots in the input plane denote the starting positions of the ray path, while those
in the output plane denote the target positions. The dots in the input and output
plane are mapped one-to-one. The amplitude-related parameters ||E0(r)|| and û(r)
are calculated along the ray path.

in Fig. 10. The detailed algorithm for solving Eq. (4.45) will be described in the next
section.

After the ray path has been calculated, ψ(rout) is computed by plugging Eq. (4.38)
into Eq. (4.44),

ψ(rout) = ψ(rin) +
∫ rout

rin k0
√

ε(r)ŝ(r) · dr

= ψ(rin) + k0
∫ rout

rin

√
ε(r)ds.

(4.46)

With this, we know ψ(rout), and all the information about the ray path. Next, we need
to calculate the amplitude E0(rout) in Eq. (4.43), which can be expressed as a product,

E0(rout) = ||E0(rout)||û(rout), (4.47)

with û(rout) describing the normalized field vector, which is also the polarization vector,
and ||E0(rout)|| describing the magnitude of the electric field. Next, we explore û(rout)

and ||E0(rout)|| step by step.
Differentiate Eq. (4.34) with respect to arc length s to obtain the second ODE in the

x-domain (Appendix G),
√

ε(r)
dû(r)

ds
= −

[
û(r) ·∇

√
ε(r)

]
ŝ(r) . (4.48)

This equation describes the variation in û(r) along the ray path. As shown in Fig. 10,
the initial information for field û(rin) is known; thus, one can solve û(r) along the ray
path until û(rout) in the output plane.

To calculate ||E0(rout)||, the energy conservation law is used in the case where the
medium is free of gain and absorption, which is mathematically represented as,

∇· < S(r) >= 0. (4.49)
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where < S(r) > denotes the time-averaged Poynting vector.
Using Gauss’s theorem, Eq. (4.49) can be rewritten as

∮

F
< S(r) > ·â(r)d f = 0, (4.50)

with â(r) denoting the normal vector to the surface at position r. This equation denotes
a surface integral over a closed interface F.

Because the energy of the geometric field flows only through the input and output
planes, while no energy is lost through the (figurative) lateral boundaries because there
is no diffraction, Eq. (4.50) may be rewritten as

∫

Fin
< S(rin) > ·â(rin)d f =

∫

Fout
< S(rout) > ·â(rout)d f . (4.51)

For the propagation of geometric fields, the mapping between rin and rout is one-to-
one. Therefore, Eq. (4.51) should be true for each path. The integral can then be removed,
and Eq. (4.51) becomes

< S(rin) > ·â(rin)d f (rin) =< S(rout) > ·â(rout)d f (rout), (4.52)

where d f (r) denotes the differential element of the area at position r. In [53], this
equation is called "intensity law of geometric optics."

The time-averaged Poynting vector is defined as

< S(r) >=
1
2
<[E(r)× H∗(r)]. (4.53)

Now we calculate < S(r) > by plugging the field representations (4.20) and (4.21), as
well as the geometric field equation (4.32) into Eq. (4.53),

< S(r) >=
√

ε(r)
√

ε0

µ0
||E0(r)||2ŝ(r). (4.54)

By plugging Eq. (4.54) into Eq. (4.52), ||E(rout)|| can be calculated [24],

||E(rout)|| = ||E(rin)||
√

ŝ(rin) · â(rin)d f (rin)

ŝ(rout) · â(rout)d f (rout)

[
ε(rin)

ε(rout)

] 1
4

. (4.55)

With this, all the information for the geometric field in the output plane has been
calculated,

E(rout) = ||E0(rout)||û(rout) exp[iψ(rout)]. (4.56)

Next, the magnetic field in the output plane is computed using Eqs. (4.32) and (4.56),

H(rout) =

√
ε0ε(rout)

µ0
ŝ(rout)× E(rout). (4.57)
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4.1.3 Numerical Solver Development

From the theory section, we can summarize the calculation procedure for geometric
field propagation from the input plane to the output plane in a GRIN medium: the field
in the output plane is represented as Eq. (4.56); to calculate ψ(rout), we need first to
calculate the ray path by solving Eq. (4.45), and to calculate the phase function ψ(rout)

by solving Eq. (4.46); then the amplitude calculation is separated into the calculation of
û(r) by solving Eq. (4.48), and the calculation of ||E0(r)|| by Eq. (4.55).

To solve Eqs. (4.45) and (4.48), two additional parameters are defined to simplify these
two equations [74],

D(r) = ∇
√

ε(r), (4.58)

T(r) =
√

ε(r)
dr
ds

=
√

ε(r)ŝ(r). (4.59)

Both D(r) and T(r) are three-dimensional (3D) vectors. With the definition given in
(4.58) and (4.59), Eqs. (4.45) and (4.48) can be rewritten as

d
ds

T(r) = D(r), (4.60)

and
dû(r)

ds
= −[û(r) · D(r)]

T(r)
ε(r)

. (4.61)

Both Eqs. (4.60) and (4.61) are first-order differential equations, so it is possible to use
the Runge-Kutta (RK) method to solve them iteratively. As shown in Fig. 11, we first
process a ray path calculation step from ri to r′i with step size ∆s

2 . The same process is
performed from r′i to ri+1. Then, we process a field calculation step from ri to ri+1 with
step size ∆s.

Phase calculation

In this process, we calculate the ray path by solving the auxiliary quantities D(r) and
T(r), which may be useful for the amplitude calculation process. Then, the phase ψ(r)
can be calculated by taking the integral in Eq. (4.46) along the ray path.

Starting from one point (ri, D(ri), T(ri)), one can calculate the next point (r′i, D(r′i), T(r′i))
using

T(r′i) = T(ri) +
∆s
12
[
D(ri) + 4D(r′′i ) + D(r′i)

]
, (4.62)

where r′′i and r′i are calculated by Taylor expansion,

r′′i = ri +
dri

ds
∆s
4

+
1
2

d2ri

ds2

(
∆s
4

)2

,

r′i = ri +
dri

ds
∆s
2

+
1
2

d2ri

ds2

(
∆s
2

)2

,
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Figure 11: Notation of the parameters in the algorithm. r denotes the spatial position along
the ray path. The step size of the phase calculation process is ∆s

2 , while that of the
amplitude is ∆s.

with
dri

ds
=

T(ri)√
ε(ri)

and
d2ri

ds2 = ε2/3(ri) {ε(ri)D(ri)− [T(ri) · D(ri)]T(ri)}.
To calculate the point (ri+1, D(ri+1), T(ri+1)) from the point (r′i, D(r′i), T(r′i)), one can

use Eq. (4.62) by simply replacing r′i (ri) with ri+1 (r′i). Following Eq. (4.46), the phase
ψ(r) from ri to ri+1 can be computed as

ψ(ri+1) = ψ(ri) +
k0∆s

4
(
√

ε(ri) + 2
√

ε(r′i) +
√

ε(ri+1)). (4.63)

Using this iterative calculation procedure starting with rin, one can ultimately calculate
ψ(rout).

Amplitude calculation

In this process, we first solve Eq. (4.61) to obtain the normalized field vector û(r) using
the RK method. Starting with û(ri), one can calculate û(ri+1) using
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α1 = −{û(ri) · D(ri)
ε(ri)
}T(ri),

α2 = −{[û(ri) +
∆s
2 α1] · D(r′i)

ε(r′i)
}T(r′i),

α3 = −{[û(ri) +
∆s
2 α2] · D(r′i)

ε(r′i)
}T(r′i),

α4 = −{[û(ri) + ∆sα3] · D(ri+1)
ε(ri+1)

}T(ri+1),

û(ri+1) = û(ri) +
∆s
6 (α1 + 2α2 + 2α3 + α4).

(4.64)

Note that D(ri), D(r′i), T(ri), and T(r′i) are still unknown parameters if we solve Eq. (4.61)
individually. However, they are all phase-related parameters, which were calculated in
the phase calculation process. Therefore, Eqs. (4.60) and (4.61) are coupled to each other
and must be solved simultaneously.

Then, we calculate ||E0(r)|| from the initial condition ||E0(rin)||. In Eq. (4.55), all pa-
rameters are known or calculated except d f (rin)/d f (rout). However, because we already
know the one-to-one mapping relation rout(rin), d f (rin)/ d f (rout) can be calculated us-
ing a triangulation algorithm, which is already implemented in field tracing in the
physical optics software VirtualLab Fusion [26].

4.1.4 Validation: Multimode Fiber

Here we are modeling a y-polarized fundamental Gaussian mode (i.e., Ex(x, y) = 0),
with a beam waist radius of 5 µm, and at a wavelength of 532 nm propagating in a GRIN
optical fiber, as shown in Fig. 12 (a). The spatial distribution of the relative permittivity
ε(x, y) is presented in Fig. 12 (b). The input plane is located at a distance of 160 µm
after the position of the beam waist to ensure the field is in its geometric zone. We
use both the RKX-FPM and the Fourier modal method with perfectly matched layers
(FMM+PMLs), to calculate the field distribution in the test plane after the field has
propagated a distance of d = 100 µm from the input plane.

In Fig. 13, an illustration of rays propagating in the fiber, as well as the dot diagram
in the test plane is shown. In Fig. 14, we show the plots for the amplitudes of the field
components Ex, Ey, and Ez in the test plane, which are computed using the RKX-FPM
(upper row) and FMM+PMLs (bottom row). Note that the methods give similar results.
The relative deviation between the electric field calculated by the two approaches is
1% (calculated using Eq. (3.37)), demonstrating the practical strength of the RKX-FPM.
Incidentally, the input Gaussian field is y-polarized, but the field in the test plane con-
tains a relatively small Ex component. This is due to the crosstalk between the different
field components, which is introduced by the field propagating through the interface as
well as through the GRIN medium. The computation of field propagation through an
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Figure 12: Illustration of the optical system. (a) The input plane is located at a distance of 160 µm
after the beam waist (short, solid vertical line). The dashed line represents the test
output plane located at a distance of d = 100 µm after the input plane (long solid
vertical line). (b) The relative permittivity ε(x, y) inside the fiber, which has a core
radius of 50 µm.

interface is carried out using the LPIA [29]. As the divergent angle of the input beam
is small, the crosstalk effect after the first interface, the input plane, is extremely weak,
with an amplitude of Ex lower than 42 µV/m. We have found that the modification of
the polarization state of the input beam is mainly caused by the field propagating in the
GRIN medium, with a propagation distance d = 100 µm, which is adequately solved by
using RKX-FPM.

Compared with the FMM+PMLs, our approach offers a significant advantage in terms
of computational time. To calculate the results presented in Fig. 14, which were attained
using FMM+PMLs on a workstation with an Intel Xeon CPU E5-2643 v2 @3.5 GHz and
a total 128 GB RAM, the simulation ran for over 40 hours, whereas by exploiting the
RKX-FPM put forth in this section, several seconds are required on a personal computer
with an Intel Core i7-7700HQ CPU @2.80 GHz and a total 32 GB RAM.

4.1.5 Validation: Ball Lens

Here we are modeling an x-polarized fundamental Gaussian mode (i.e., Ey(x, y) = 0)
with a Rayleigh length of 5 µm and at a wavelength of 532 nm, propagating in a GRIN
ball lens, as shown in Fig. 15 (a). The spatial distribution of the relative permittivity
ε(r) is represented by the color map, which shows no abrupt change between the sur-
rounding medium and the GRIN sphere. We use both the RKK-FPM and RKX-FPM to
calculate the field distribution in the test plane after the field propagates through the
ball lens. The accuracy of the RKK-FPM has been proved in Chapter 3, so we use it here
to offer a reference result.

In Fig. 15 (b), we show the ray tracing result from the input plane to the test plane,
which is computed using the phase calculation process of the RKX-FPM. Inside the ball
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Figure 13: Results calculated by the phase calculation process of our approach. (a) Illustration
of the rays propagating in the fiber. (b) Dot diagram in the test plane.
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Figure 14: Distributions of the field components Ex, Ey, and Ez in the test plane calculated by
the RKX-FPM (top row) and FMM (bottom row).

lens, the Gaussian beam propagates first divergently and then convergently. In Fig. 15

(c), we show the plots for the amplitudes of the field components Ex, Ey, and Ez in the
test plane, which are computed by both the RKK-FPM (left column) and the RKX-FPM
(right column). Both methods give similar results. The relative deviation between the
electric fields, calculated using Eq. (3.37), is less than 1 %, demonstrating the practical
strength of the RKX-FPM.

Compared with the RKK-FPM, the RKX-FPM has a further advantage in terms of com-
putational time. To calculate the result fields in the test plane on a personal computer
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Figure 15: Modeling of a GRIN ball lens. (a)The Gaussian beam waist is located 20 µm before the
input plane. The color represents the ε(r) of the ball lens. (b) The ray tracing between
the input and test plane. (c) Amplitude distribution of field components Ex, Ey, and
Ez in the test plane, calculated by the RKK-FPM (left) and the RKX-FPM (right).

with an Intel Core i7-7700HQ CPU @2.80 GHz and a total 32GB RAM, the RKK-FPM
runs for about 4 min, while the RKX-FPM requires only a few seconds.

4.2 extension to include diffraction

The RKX-FPM is valid for simulation of a geometric field in GRIN media, and it is suf-
ficient for many applications that are relevant to the GRIN imaging lens. The question
is when the diffractive zones/focal regions are inside the GRIN media, and whether we
can extend the RKX-FPM to calculate this diffractive field.

Combining Both RK Methods

The most straightforward way is to combine the RKK-FPM and RKX-FPM. More specif-
ically, the geometric field propagation is simulated using the RKX-FPM, while the other
parts are simulated by the RKK-FPM. We give an example in Fig. 16. In this example, the
input plane wave is x-polarized, and has a wavelength of 532 nm and an aperture size
of 100 µm with a smooth edge of 10 µm down to zero (in total 120 µm). The radius of
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the Luneburg lens is 50 µm. We use both the Mie theory and the combined RK methods
to calculate the focus field in the plane through the rear pole of the ball lens.
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Figure 16: Simulation of a plane wave propagating through a Luneburg lens by combining both
RK methods. (a) Field distribution given by simulating a y-invariant plane wave fo-
cused by a y-invariant Luneburg lens (radius is 50 µm); the color map is a logarithmic
reverse rainbow. The switching plane is denoted by the long vertical solid line, while
the focal plane is denoted by the short one. (b) The amplitude of the field components
V1, V2, V4, and V5, is calculated by the RKX-FPM in the switching plane. (c) The am-
plitude of field components Ex and Ey, calculated by combining the RK methods(left
column), and Mie theory(right column), in the focal plane.

In the calculation, we first use the RKX-FPM to simulate the input plane wave propa-

gating a distance of 90 µm, and calculate Ex, Ey,
√

ε0

µ0
Hx, and

√
ε0

µ0
Hy in the switching

plane (long vertical black bar in Fig. 16 (a)). In Fig. 16 (b), the amplitude of four field
components, which can also be denoted as V⊥ = {V1, V2, V4, V5}, is shown. Then, we
use the RKK-FPM to simulate the V⊥ propagating the remaining 10 µm to calculate the
focus field, shown in the left column of Fig. 16 (c).

The amplitude of the focus field components Ex and Ey are shown in Fig. 16 (c),
calculated by combining the RK methods(left column) and Mie theory (right column).
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The strength of the resulting field calculated by combining the RK methods is somewhat
higher than that of the Mie result. The reason is that a small part of the field escapes
the ball lens because of the lens aperture diffraction, which is not predicted by the
RKX-FPM. To compute the deviation between the two methods, we modify Eq. (3.37) to
include a complex scaling factor s,

σ =
∑x,y |sEx(x, y)− Eref

x |2 + |sEy(x, y)− Eref
y |2

|Eref
x |2 + |Eref

y |2
, (4.65)

with s as a constant to give the minimum σ. The deviation computed by Eq. (4.65) is
0.6 % with s = 0.895, demonstrating that the method is valid. The calculations were
performed on a personal computer with an Intel Core i7-7700HQ CPU @2.80 GHz and
a total 32 GB RAM. The combined RK methods runs for about 4 min in total, and most
of the time is used by the RKK-FPM. We can imagine that the shorter the distance simu-
lated by the RKK-FPM, the shorter the computing time required. To select the switching
plane (long vertical black bar), we need to ensure that the field in the switching plane
is geometric. The method we use to evaluate whether the field is geometric is by deter-
mining whether the bandwidth of Ẽx in Eq. (4.20) is more than 50 times larger than that
of Ẽx0.

Combining RKX-FPM with free space propagation

Another way to extend the RKX-FPM is found in the example in Section 4.1.4. Here
we model the same y-polarized fundamental Gaussian propagating in a GRIN optical
fiber for a longer distance of 1 mm, using both the RKX-FPM and the FMM+PMLs. The
fields on planes z = 0 µm, 2 µm, 4 µm, · · · , 1 mm are recorded for two purposes: (1) to
calculate the relative deviations σ(z) using Eq. (4.65); (2) to plot the amplitude of field
components Ex and Ey.

As Ex = 0 on the x- and y-axes in Fig. 17, Ex = 0, we extract the fields on the
diagonal from (x, y) = (−30 µm, −30 µm) to (30 µm, 30 µm) and plot the amplitudes of
field components Ex (left column) and Ey (right column) in the plane determined by the
diagonal and z-axis. Comparing the amplitudes calculated by the FMM and RKX-FPM
reveals an obvious difference in the focal regions, which is because the RKX-FPM cannot
predict the diffraction there. However, the interesting thing is that after the focal region,
the RKX-FPM gives the correct fields again, which are also realized by the curve σ(z) in
Fig. 17 (c), calculated by Eq. (4.65). Please note that the curve is the relative deviation,
including Ex and Ey in the xy-plane at different z-positions. We plot it under Ey to show
that the peaks of σ(z) coincide with the positions of the focal planes. We don’t have solid
proof for this phenomena yet: In principle, the RKX-FPM is derived under the geometric
field assumption, but this example shows that the resulting geometric field can also be
correctly predicted, even when there is a diffractive zone during propagation.

Taking advantage of this phenomena, we can simulate the same example in Fig. 16.
In Fig. 18 (a), we show an illustration of field propagation through the Luneburg lens
and a free space (εc = 1.0), which is the amplitude of Ex calculated by the RKK-FPM
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Figure 17: Simulation of field propagation in GRIN fiber (Fig. 12) by FMM+PMLs(second row)
and RKX-FPM (third row). (a) Amplitude of field component Ex, and (b) that of Ey in
the plane determined by the z-axis and the diagonal in the xy-plane are plotted. (c)
Relative deviation σ(z) between fields, calculated using two methods, is calculated
using Eq. (4.65).

(y-invariant case). In the domain diagram in Fig. 18 (b), we can see that the calcula-
tion process contains two main steps. We first use the RKX-FPM to simulate the in-
put plane wave propagating a distance of 110 µm into the switching plane, which is
10 µm after the focal plane. Here, the field is geometric. (2) Then we perform a free
space propagation for ∆z = −10 µm, which performs an HFT of the result field in step
(1), and we obtain Ẽ(κ); then, the multiplication of the phase term is performed, i.e.,

P{Ẽ(κ)} = Ẽ(κ) · exp(ikz(κ)∆z), with κz(κ) =
√

k2
0εc − ||κ||2, and inverse FFT for a

diffractive field. In Fig. 18 (c), we show the amplitude of field components Ex and Ey in
the switching plane (left column), and those in the focus plane (right column). The rela-
tive deviation σ between this focus field and the one calculated by Mie theory is about
2 %. The error mainly comes from the interpolation of fields in the switching plane. The
mesh of rays through the focus and that outside the ball lens are degenerated. To avoid
the mesh degeneration-induced interpolation issue, we use an aperture and only allow
the focused rays through. Thus, the field in the switching plane shows a sharp edge,
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which induces the error. However, when lens or GRIN components become larger, the
aperture-induced error is relatively reduced.
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Figure 18: Simulation of a plane wave being focused using the RKX-FPM and inverse propaga-
tion. (a) The amplitude of a y-invariant plane wave propagating for 110 µm, including
a y-invariant Luneburg lens and a free space with ε = 1.0. The switching plane is de-
noted by the long vertical solid line, whereas the focal plane is denoted by the shorter
line. (b) The domain diagram, and the techniques we use to calculate the fields in the
focal plane. (c) The amplitude of field components Ex and Ey in the switching plane
(left column), and those on the focal plane (right column).

The calculation takes no more than 1 min on a personal computer with an Intel Core
i7-7700HQ CPU @2.80 GHz and a total 32 GB RAM.

4.3 summary

Starting from the ODEs of the RKK-FPM, after using the geometric field constraints
(geometric field ansatzes, and replacing FFT by HFT), we derived the eikonal equation
(4.19) and geometric field equations (4.26-4.29). Then, two ODEs in the x-domain were
derived and solved using the Runge-Kutta method. This field solver was named the RK
x-domain field propagation method (RKX-FPM), which is the calculation of geometric
field propagation through GRIN media.

The properties of the RKX-FPM are:

• The input field and output field must be geometric
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• The GRIN media have a general ε(r), with no restriction in symmetry or periodic-
ity.

• The effects of the optical surface between the surrounding medium and GRIN
medium is treated using LPIA. [29]

• The effects generated by a GRIN medium

– It works for a non-paraxial field and always take the polarization into account,
so the vectorial field components are well-predicted.

– Reflection is not included

– Evanescent waves are not included.

The RKX-FPM shows a remarkable advantage in that the calculation efficiency is
remarkably high, especially for large-scale components having a size well beyond their
wavelength. That can be understood as the RKX-FPM avoiding the redundant sampling
induced by the wrapped phase.

Coming back to Tab. 3, it can be now updated to

Table 4: Field solvers to model GRIN media (Chapter 4)

Solvers/Feat. Input field
ε(r) Effects in GRIN media

effort
sym. ∇ ln ε surf. pola. diff. ref/eva.

Mie theory plane wave† sphe. X X X X Nx × Ny ×M

FMM general peri. X X X X (Nx × Ny)3 × Nz

FMM+PMLs general X X X X (Nx × Ny)3 × Nz

Fiber solver general cyli. ! X X (Nx × Ny)3 ×M

WPM general !‡ X X X (Nx × Ny)2 × Nz

RKK-FPM general X X Nx × Ny × Nz

RKX-FPM geometric !§ X X Nx × Ny × Nz

† It can be extended to model the general field using plane wave decomposition and
coordinate system transformation.

‡ It is compensated by including the Fresnel matrices of local change from ε(ρ, z−) to
ε(ρ, z+).

§ The polarization crosstalk is included by solving the ODE of the normalized field
vector (4.48).

! means that this solver has constraints.
X denotes that this solver correctly predicts the relevant effect.
M is the number of modes.
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Compared with the RKK-FPM, the RKX-FPM only calculates the geometric field, and
has three advantages: (1) The optical surface effect between the surrounding medium
and the GRIN component can be treated using LPIA; (2) The calculation does not re-
quire two parallel planes, because local plane waves are traced and reconstructed in
planes of any orientation (3) This method has the remarkable advantage of further nu-
merical reduction, which makes the calculation very efficient, making this method the
only choice when the scale of a GRIN component is exceptionally large, e.g., air turbu-
lence.

As we mentioned at the beginning of the chapter, most GRIN components are de-
signed and modeled using a ray tracing technique, and the field passing through the
GRIN components must be a geometric field. The RKX-FPM is widely chosen in practi-
cal applications.

When there are focal regions inside a GRIN component, the RKX-FPM needs to be
extended. The straightforward way to do this is by using the RKX-FPM to simulate the
propagation of geometric fields, and then switch to the RKK-FPM to simulate the other
parts. However, we also find that the RKX-FPM correctly predicts the output geometric
field, even when there are focal regions between the input and output planes. This
phenomenon can be taken to simulate different cases with much higher efficiency. As an
example, when we simulate the Luneburg lens with R = 50 µm, the RKK-FPM method
takes 25 min, whereas the combined RK methods takes 4 min, and the RKX-FPM with
inverse free space propagation takes several seconds. Unfortunately, however, we still
have not found a solid mathematical proof for this phenomena, and we will continue to
explore it.





5
A P P L I C AT I O N S O F G R A D E D - I N D E X M E D I A

In this chapter, we introduce three different applications for graded-index (GRIN) me-
dia, including (1) analytical design of a perfect imaging GRIN ball lens, (2) design of a
GRIN device using conformal transformation optics, and (3) analysis of the thermal lens
effect. In this chapter, we mainly use the Runge-Kutta k-domain (Chapter 3, RKK-FPM),
and the x-domain field propagation methods (Chapter 4, RKX-FPM) for modeling the
GRIN components and connecting other field solvers, e.g., the free space propagation
operator in homogeneous media, to model the whole system.

5.1 design and simulation of general luneburg lens

A perfect imaging GRIN lens is one of the most popular applications of GRIN media. In
this section, we introduce the design of general Luneburg lens, and extend it to design
a multi-focus system, which is used not only for imaging, but also for other purposes,
e.g., illumination.

5.1.1 Single-Focus Luneburg Lens

In 1944, Luneburg presented a theoretical description of a graded, radially symmetric
lens that creates a perfect image of a point object [3]. The derivation is based on the
eikonal equation in a spherical coordinate system. The illustration of the imaging sys-
tem with the general Luneburg lens is in Fig. 19. The relative permittivity, ε(r), of the
Luneburg lens can be written as

ε(r̄) =

{
exp 2

[
ω(r̄, f̄0) + ω(r̄, f̄1)

]
0 6 r̄ 6 1

1 r̄ > 1
, (5.1)

with

ω(r̄, f̄i) =
1
π

∫ 1

r̄

arcsin x/ f̄i

(x2 − r̄2)
1
2

dx, i = 0, 1 (5.2)

and {
r̄ = r/R

√
ε(r)

f̄i = fi/R, fi > 1, i = 0, 1
. (5.3)

r is the radial coordinate. The ball lens with radius R is centered at the origin, as shown
in Fig. 19. f0 is the distance between the object point and the sphere center, while f1 is
the distance between the image and the sphere center. One may have questions about
the expression of r̄, which is a function of r and ε(r). ε(r) is always continuous, even

69
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when r = R at the boundary of lens, ε(R) = 1, and r̄(R) = 1. Later when we discuss the
solution Eq. (5.2), we will give a description for calculating r, as well as ε(r) from ε(r̄).

f0 f1

R

Figure 19: Illustration of a general Luneburg lens, which gives a perfect image of a point object.
R is the radius of the Luneburg lens, f0 is the distance between the object point and
the sphere center, whereas f1 is the distance between the image and the sphere center.

This is the fundamental design of a general Luneburg lens, which includes the fol-
lowing special cases:

1. Maxwell fisheye, f0 = f1 = R. In this case, ω(r̄, f̄0) = ω(r̄, f̄1) = ln
√

1 + (1− r̄2)1/2.
Similarly, ε(r) for r 6 R can be analytically derived,

ε(r) =
4

(
1 +

r2

R2

)2 . (5.4)

Here, we show an example in Fig. 20. System configuration. We use an x-polarized
spherical field as the source, with a 532 nm wavelength, propagating through a
Maxwell’s fisheye lens (R = 20 µm), and calculate the focal field. The spherical
field’s point source is in the front pole of the lens, while the focal plane is through
the rear pole. The spherical field is sampled 5 µm before the front pole. Algo-
rithm selection. Diffraction is strong over the whole propagation. Thus, we use
the RKK-FPM. Numerical parameters. The sampling distance in the xy-plane is
λ/2 to include enough range of the angular spectrum, which is at least from −k0

to k0. The window size in the xy-plane should be large enough to avoid the alias-
ing effect, i.e., 70 µm. The number of sampling points along the x, y, and z axes
are Nx × Ny × Nz = 309 × 309 × 550, and the calculation takes 10 mins. Result
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discussion. As we mentioned in Chapter 3, y-invariant simulation can be used
to determine numerical parameters and roughly check the field behavior. Thus,
in this example, we calculate it and show the amplitude of Ex in Fig. 20 (b) and
that of Ẽx in (c). In Fig. 20 (b), the field propagates from one focus (front pole)
to another focus(rear pole). In Fig. 20 (c), the angular spectrum is quite wide in
the focal planes, while it is very narrow in the middle. In Fig. 20 (d), ray tracing
through the fisheye lens is shown, which shows a phenomenon consistent with
(b). In Fig. 20 (e), the focal field is calculated, with the diameter of the first dark
ring as 0.53 µm.
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Figure 20: Maxwell fisheye. (a) ε(r) of the lens. A y-invariant case is simulated: (b) amplitude of
Ex, and (c) amplitude of Ẽx in the xz-plane. In the 3D simulation, we plot (d) the ray
tracing result, and (e) the amplitude of Ex in the focal plane.

2. Luneburg lens, f0 = ∞ and f1 = R. In this case, ω(r̄, f̄0) = 0, and ω(r̄, f̄1) =

ln
√

1 + (1− r̄2)1/2. Using Eq. (5.1), ε(r) for r 6 R can be analytically derived,

ε(r) = 2− (r/R)2, r 6 R. (5.5)

This is the example we used to prove the validity of algorithms in Section 3.1.5.
Here, we show it in Fig. 21. System configuration. The source is an x-polarized
plane wave with aperture size of 38 µm and a 532 nm wavelength. The radius of
the Luneburg lens is 20 µm. Algorithm selection. This example can be simulated
by the RKK-FPM or the combined RKX- and RKK-FPMs, as shown in Section
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4.2. Numerical parameters. The number of sampling points along the x, y, and
z axes are Nx × Ny × Nz = 245× 245× 450, and the calculation takes 4 mins. Re-
sult discussion. In Fig. 21 (b), the amplitude of Ex, that plane wave propagating
through the lens and focused at the rear pole, is shown. The diffraction in the
boundary caused by the aperture truncation (38 µm) starts from the source plane.
In Fig. 21 (c), the amplitude in the k domain is plotted: the vertical axis is the kx

axis, from −k0 to k0. The angular spectrum of the initial plane wave is an array
pattern, which is very narrow along the kx axis and becomes broader during prop-
agation. In Fig. 21 (d), ray tracing through the lens is shown, and the phenomenon
is consistent with that shown in (b). In Fig. 21 (e), the focal field is calculated. The
spot diameter is 0.6 µm along the y-axis, while it is 0.8 µm along the x axis.
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Figure 21: Luneburg lens. (a) ε(r) of the lens. Next, a y-invariant case is simulated: (b) amplitude
of Ex, and (c) amplitude of Ẽx in the xz-plane. In the 3D simulation, we plot (d) the
ray tracing result, and (e) the amplitude of Ex in the focal plane.

In 1983, Sochacki [5, 6] proposed an analytical solution, shown as Eq. (5.2), for any
f0 > R and f1 > R, based on the Taylor expansion, which is

ω(r̄, f̄i) =
1
π
(1− r̄)1/2

∞

∑
k=0

sk( f̄i)r̄2k, (5.6)

with

sk( f̄i) =
∞

∑
l=0

(2l)!

4l(l!)2[2(k + l) + 1]2 f̄ 2(k+l)+1
i

. (5.7)
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After substituting Eqs. (5.6) and (5.7) into Eq. (5.1), the permittivity of the Luneburg
lens ε(r̄) can be calculated. We conclude the procedure of the calculation of ε(r):

1. Define an equidistant sampling grid for r̄, i.e., r̄ = 0, ∆r̄, 2∆r̄, · · · , (N− 2)∆r̄, 1 with

∆r̄ =
1

N − 1
and N as the number of sampling points.

2. Implement Eqs. (5.6) and (5.7) to calculate ω(r̄, f̄i), with i = 0, 1. In this process,
a threshold needs to be defined, e.g., 10−8, to truncate l and k. As an example,
when |sk( f̄i)|lmax=L − sk( f̄i)|lmax=L−1| < 10−8, the calculation of Eq. (5.7) stops, and
returns the value sk( f̄i)|lmax=L.

3. Substitute ω(r̄, f̄i) into Eq. (5.1) to calculate ε(r̄).

4. Calculate r(r̄) by using

r(r̄) = r̄/
√

ε(r̄)R. (5.8)

After mapping ε(r̄) to the relevant r, we finally obtain ε(r), with non-equidistant
sampled r.

5. Linear interpolation is implemented to calculate ε(r) at any r. As an example,
when ri 6 r < ri+1,

ε(r) = ε(ri) +
r− ri

ri+1 − ri
[ε(ri+1)− ε(ri)] (5.9)

Here, we show an example in Fig. 22. System configuration. The source field is an
x-polarized spherical wave, which is sampled in the plane 80 µm after the point source,
with a 532 nm wavelength. The generalized Luneburg lens has R = 20 µm, f0 = 100 µm,
and f1 = 30 µm. After substituting the parameters into the design procedure just pre-
sented, ε(r) can be calculated, and it is shown in Fig. 22 (a). Algorithm selection. In
Fig. 22 (b), the necessary solvers to model the whole system are given. To model the
field propagation through the Luneburg lens, the RKX-FPM is selected, because both
input and output fields of the GRIN lens are geometric. After the lens, light further
propagates in free space (homogeneous media with εc = 1.0). The free space propaga-
tion operator [32–34], which is composed of an (inverse) Fourier transform and a linear
operation in the k-domain × exp(ikz(κ)∆z) is used. This combination of different field
solvers to model the whole optical system is the general idea of field tracing, in which
different solvers are connected [26]. The calculation takes several ms. Result analysis.
In Fig. 22 (a), rays propagate from an object point to a focal spot. The RKX-FPM of-
fers ray tracing of the ball lens [74]. The diffraction pattern, i.e., amplitudes of Ex, Ey,
and Ez, are shown in (c). An extremely small Ey, which is the polarization crosstalk,
is created during field propagation within the GRIN lens. The amplitude of Ex is also
compressed along the y axis, but not as obviously as in Fig. 21. This is because the
numerical aperture (NA) decreases in this case.
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Figure 22: Single-focus generalized Luneburg lens. (a)The designed ε(r), and ray tracing from
point object to focal plane. (b) Domain diagram with selected solvers that are used to
model the system. (c) Amplitude of Ex, Ey, and Ez in the focal plane.

5.1.2 Double-Focus Luneburg Lens

In 1984, Sochacki [7] extended the single-focus Luneburg lens to a double-focus lens and
gave a straightforward formula that showed a clear physical understanding. In Fig. 23,
the Luneburg lens contains two concentric spheres, with radii R1 and R. The light field
from a point source propagates through the outer shell-central sphere-the outer shell is
focused at the point at a distance f1, while light that propagates through the outer shell
only is focused at the position f2.

The permittivity ε(r) for r 6 R is written as

ε(r̄) =





exp 2
[
ω(r̄, f̄0) + ω(r̄, f̄2)

]
r̄1 6 r̄ 6 1

exp 2
[

ω(r̄, f̄0) + ω(r̄, f̄2) + ω(
r̄
r̄1

,
f̄1

r̄1
)−ω(

r̄
r̄1

,
f̄2

r̄1
)

]
r̄ < r̄1

(5.10)

with r̄1 =
√

ε(R1)R1/R, and arbitrary value r̄1 ⊂ [0, 1]. ω is the function in Eq. (5.2),
and the solutions to ω are Eqs. (5.6) and (5.7). When we implement Eq. (5.10), we need
to set the value of r̄1 as an input value, and follow the procedure for calculating ε(r),
discussed in Section 5.1.1.

Here, we give an example in Fig. 24. The source field is an x-polarized spherical wave,
which is sampled in the plane 80 µm after the point source, with a 532 nm wavelength.
The Luneburg lens has R = 20 µm, f0 = 100 µm, f1 = 30 µm, f2 = 60 µm, and r̄1 =
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R1

R

f0 f1

f2

Figure 23: Illustration of a general Luneburg lens, which generates two image points for one
object. R1 is the radius of the central Luneburg lens, while R is the radius of the whole
Luneburg lens. f0 is the distance between the object point and the lens center, while
f1 and f2 are the distances between two image points and the lens center, respectively.

0.55. Here r̄1 can be used to adjust the energy distribution of the two focuses. After
substituting the parameters into the design procedure just presented, ε(r) can be calcu-
lated and is shown in Fig. 24 (a). We use the RKX-FPM to model the GRIN lens, and
free space propagation is done in the k-domain with the proper Fourier transforms. The
simulation takes ms. In Fig. 24 (b), the ray tracing result is shown. We get two focal
spots at positions 10 µm and 40 µm after the lens rear pole. The two beams related to
two focal spots, respectively, coexist everywhere. In Fig. 24 (c), we plot the energy den-
sity (|Ex|2 + |Ey|2 + |Ez|2) at positions 10 µm, 25 µm, 40 µm, and 50 µm (gray bars in (b))
by using the logarithmic color map. In Fig. 25 (b), the illuminance of both focal spots
is shown. Both are small, and the diameters of the spots are approximately 1 µm. The
second focus has a stronger side lobe, which can be understood as a smaller NA, and
this focal spot is created by a spherical field truncated by a ring-shaped aperture. The
position of the first focus is identical to that in Fig. 22, but here, the focus spot is larger
because of the smaller NA. Next, we calculate the energy density on 50 planes at dif-
ferent values of z, and extract the values along the x-axis to obtain the distribution in
the xz-plane, as shown in Fig. 24 (d). Compared with the ray tracing figure, the energy
density shows analog behavior, but the interference pattern between the two beams is
clearly presented. In Fig. 25, the illuminance of the xz-plane is plotted, where the two
focal regions are clearly illustrated. The energy density along the z-axis is extracted and
shown in (a). By adjusting r̄1 = 0.55, the largest energy density of both focuses are made
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Figure 24: Double-focus lens. The Luneburg lens has R = 20 µm, f0 = 100 µm, f1 = 30 µm, and
f2 = 60 µm. (a) ε(r). (b) Ray tracing result from the point source to the detector plane,
which is 50 µm after the lens rear pole. Here, there are four detector planes (gray
vertical bars), for which the energy density is plotted in (c) with logarithmic color
maps. (d) The energy density in the xz-plane, within the dashed box of (b).

similar, and the depth of the first focus is about 10 µm, whereas that of the second is
20 µm.

5.1.3 Multi-Focus Luneburg Lens

Based on the derivation of Sochacki in 1984 [7], we can extend the design of the gen-
eralized Luneburg lens to generate a multi-focus lens. In Fig. 26, each spherical shell
is a Luneburg lens that generates an image point. Ri is the radius of the ith Luneburg
lens shell, with i = 1, 2, .., N − 1. R as the radius of the whole Luneburg lens. f0 is the
distance between the object point and the lens center, while fi is the distance between
the ith image point and the lens center.

The relative permittivity ε(r) for r 6 R is written as

ε(r̄) =





exp 2
[
ω(r̄, f̄0) + ω(r̄, f̄N)

]
r̄N−1 6 r̄ 6 1

exp 2
{

ω(r̄, f̄0) + ω(r̄, f̄N) + ∑N−1
j=i

[
ω(

r̄
r̄i

,
f̄i

r̄i
)−ω(

r̄
r̄i

,
f̄i+1

r̄i
)

]}
r̄i−1 6 r̄ < r̄i

(5.11)
with i = 1, 2, ..., N − 1, and r̄0 = 0. 0 6 r̄1 6 r̄2 6 · · · 6 r̄N−1 6 1. ω is the function in
Eq. (5.2), and the solutions for ω are Eqs. (5.6) and (5.7). When we implement Eq. (5.11),
we need to set the value of r̄i as an input value. All the others follow the implementation
procedure for calculating ε(r), discussed in Section 5.1.1.

Here, we show an example of a triple-focus Luneburg lens in Fig. 27. The source field
is an x-polarized spherical wave, which is sampled in the plane 80 µm after the point



5.1 design and simulation of general luneburg lens 77

2
5
µ
m

50µm 10µm

1
0
µ
m

first focus
second focus

x

x

y

z
(a)

(b) (c)

Figure 25: Light propagation after the double-focus lens, plotted from the perception of the hu-
man eye. (a) Illuminance in the xz-plane. (b) Energy density along the z-axis. Two
vertical dot lines denote the positions of the focuses, i.e., 10 µm and 40 µm, (c) Illumi-
nance of two focal spots.

source, with a 532 nm wavelength. The Luneburg lens has R = 20 µm, f0 = 100 µm, f1 =

25 µm, f2 = 40 µm, and f3 = 60 µm. We set r̄1 = 0.4, and r̄2 = 0.7 to obtain a uniform
energy allocation for the three beams respectively related to the three focuses. In the fol-
lowing discussion, we name the three beams as beams 1, 2, and 3. After substituting the
parameters into the design procedure just presented, ε(r) can be calculated, as shown
in Fig. 27 (a). In Fig. 27 (b), the ray tracing result is shown. There are three focal spots at
positions 5 µm, 20 µm, and 40 µm after the rear pole of the lens. The three beams, 1, 2,
and 3, are coherent with each other because they come from the same monochromatic
point source. The three beams coexist everywhere, and the interactions among them
are explored with a logarithmic color map: (c) shows the energy density in three focal
planes, while (d) shows the energy density in the xz-plane. In the ray tracing result
shown in (b), before the first focal plane, three beams are spatially separated. The same
behavior can be observed in (d). To explore the influence of these interference patterns,
which can be considered as stray light, we plot the illuminance (perception of the hu-
man eye) in the xz-plane (Fig. 28 (a)) and three focal planes ( Fig. 28 (c)). The diameter
of all three focal spots are extremely small, on a scale of 1 µm, which is satisfactory. The
energy density on the z-axis is extracted in Fig. 28 (b), and the three focal regions are
separated, with focal depths of 10 µm, 15 µm, and 20 µm, respectively.
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Figure 26: Illustration of a general Luneburg lens, which gives N image points to one object. Ri
is the radius of the ith Luneburg lens shell, with i = 1, 2, .., N − 1. R as the radius
of the whole Luneburg lens. f0 is the distance between the object point and the lens
center, whereas fi is the distance between the ith image point and the lens center.

5.1.4 Discussion of the General Luneburg Lens

In the examples, ε(r) when r > R is 1.0, which can be set to any constant value εc.
Afterwards, the design of ε for the generalized Luneburg lens does not change, but
needs an additional multiplication with εc. Currently, ε(r = R) is identical to that of the
surrounding media. In further research, we will include the discontinuity of ε(r), which
is discussed by Morgan [4].

The most straightforward application of the designed lens is use in an imaging system
to increase image depth, or even create images for near, far, and intermediate distances.

The other application can be imagined from the xz-plane in Figs. (24-28). Here, the
three focal regions are still separated, but we can bring them closer to each other until
they are not resolved, which can be used in optical fabrication.

Mao [75] explores the generalized Luneburg lens(up to the double-focus) in a pho-
tonic nanojet, which creates a narrow, high-energy electromagnetic field after the sphere.
Photonic nanojets can be used in high-resolution optical detection(as an imaging system)
or nanolithography (fabrication).
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Figure 27: Triple-focus lens. The Luneburg lens has R = 20 µm, f0 = 100 µm, f1 = 25 µm, f2 =

40 µm, and f3 = 60 µm. (a) ε(r), and there are three lens shells. (b) Ray tracing result
from the point source to the detector plane, which is 50 µm after the lens rear pole.
Here, there are three detector planes (focal planes), in which the energy density is
plotted (c) with a logarithmic color map. The energy density in the xz-plane, within
the dashed box, is plotted in(d).

5.2 design and simulation of components using conformal transfor-
mation optics

Conformal transformations [47] are important for solving problems in physics and en-
gineering. By using a proper mapping, complex geometry is transformed into a simpler
one, which greatly simplifies further calculation. Inversely, in 1944, Luneburg proposed
the idea to design a GRIN medium analytically by using the concept of conformal trans-
formation (Eq. 28.56) [3]. In 2006, Leonhardt[17] gave the same formula and proposed
the design of a cylindrically symmetric invisibility device based on the formula. As it
is a remarkable design method for GRIN components, we repeat the design task here,
and its workflow, which follows Luneburg and Leonhardt faithfully.

5.2.1 Design Workflow

The conformal transformation optical design is based on the ray representation of light,
and the design formula is derived based on the eikonal equation (4.19). Therefore, we
can imagine that rays in different domains are mapped. Please note that this method
can only be used to design a y-invariant GRIN component and can be further extended
to cylindrically symmetric components.

In a real physical space in the xz-plane, ray distribution is determined by purpose. As
an example, in telecommunications, we need to design bending waveguides to change
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Figure 28: Light propagation after the triple-focus lens, plotted from the perception of the hu-
man eye. (a) Illuminance in the xz-plane. (b) Energy density along the z-axis. Three
vertical dot lines denote the positions of the focuses, i.e., 5 µm, 20 µm and 40 µm, (c)
Illuminance of the three focal spots.

the propagation direction of light to avoid bend loss. So, in the xz-plane, the desired
rays are curved as circles, as shown in Fig. 29 (a). The virtual space, with coordinates
(u, v), gives a simpler geometry of ray distribution. As in (a), all rays move along the
azimuthal direction, we decide that in the uv-plane, straight rays are parallel to the
v-axis, as shown in Fig. 29 (b). The simplest relative permittivity to achieve this ray
distribution is εw(u, v) = εc, a constant. Thus, we need to find the mapping relation of
rays from the uv-plane to those in the xz-plane, and then ε(x, z) is calculated.

Now let us interpret the task mathematically. Two complex planes are defined: one
t-plane, with t = x + iz, and one w-plane, with w = u + iv. We need to search the trans-
formation w(t) and t(w) from the ray mappings, and calculate the relative permittivity
using

ε(x, z) = εw(u, v)
∣∣∣∣

dw(t)
dt

∣∣∣∣
2

, (5.12)

which is derived based on the eikonal equation [3, 17].

Find w(t) and t(w)

This requires knowledge of the transformation properties of several fundamental func-
tions, e.g., power function, or exponential function. In 2015, Xu et al.[21] reviewed sev-
eral different conformal transformations that could be used as a database. In this exam-
ple, the mapping is quite straightforward. In the t-plane, the position coordinates on a
single ray (red ray in Fig. 29 (a)) satisfy |t| =

√
x2 + z2 = tc, while in the w-plane, the
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Figure 29: Conformal transformation between t-plane and w-plane. (a) Rays in t-plane propagate
along circles centered at the origin, and the red ray starts from P1 and ends in P2. (b)
Rays in the w-plane propagate along the v-axis, and the red ray from P1 to P2 is
mapped to the one in (a).

real part of the position coordinates of the related ray (red ray in Fig. 29 (b)) is also a
constant, i.e., u = uc, so the mapping function can be

t(w) = A exp(Bw + C), (5.13)

with A, B, and C as the real-valued free parameters*.
To fix A, B, and C, we map P1 and P2 in the t- and w- plane, with





t|P1 = R

t|P2 = iR

w|P1 = −i
L
2

w|P2 = i
L
2

.

(5.14)

Substituting the mapping into Eq. (5.13), we get

t(w) = R exp(
π

2L
w + i

π

4
), (5.15)

and

w(t) =
2L
π

ln
[

t
R

exp(−i
π

4
)

]
. (5.16)

* One can assume these three parameters to be complex-valued, and more points are needed to find a more
accurate mapping relation.
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Figure 30: Modeling of the y-invariant bending waveguide. (a) Illustration of the optical setup,
with the color map representing ε(x, z). (b) Ray tracing result for a plane wave source,
with an aperture diameter of 100 µm. (c) Amplitude and phase of Ex in the test plane.
(d) Ray tracing result for a Gaussian source, with a waist radius of 5 µm. (e) Ampli-
tude and phase of Ex in the test plane.

ε(x, z)

Now, the relative permittivity can be calculated using Eq. (5.12),

ε(x, z) =
4L2εc

π2(x2 + z2)
(5.17)

5.2.2 Modeling of the Bending Waveguide

Eq. (5.17) gives the relative permittivity ε(x, z) of the y-invariant bending waveguide.
Now we set

L =
πR
2

, (5.18)

with R = 140 µm, and εc = 1.69. The optical setup is illustrated in Fig. 30 (a).
We model a Ex-polarized plane wave propagating through the optical system, using

an aperture diameter of 100 µm and the RKX-FPM. Fig. 30 (b) shows the ray tracing
result, in which all rays are parallel, and the curved parts are concentric quarter circles,
which meets the design purpose. In the test plane, the amplitude and phase of Ex are
shown in Fig. 30 (c). The gradient distribution of the amplitude along the x-axis is
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caused by the optical surface effect between the surrounding medium and the GRIN
bending waveguide, while the phase is a constant within the aperture, which meets the
design purpose.

Next, we model a Ex-polarized Gaussian beam with a waist radius of 5 µm propa-
gating through the optical system. To ensure the field in the input plane is geometric,
the beam waist is located 160 µm before the input plane. In Fig. 30 (d), the rays are
divergent, while (e) shows the amplitude and phase of Ex in the test plane. The phase is
spherical, as it is a divergent beam, and the M2 of the beam in the test plane is 1.019 in
the x-direction, whereas it is 1.0079 in the y-direction, demonstrating that the bending
waveguide keeps the property of the beam after turning the direction of propagation
90°.

Please note that conformal transformation is one branch of transformation optics,
which can be used to design y-invariant, or further extend cylindrically symmetric GRIN
components. In 2006, Pendry et al. [18] showed that Maxwell’s equations are invariant
against coordinate transformations. This generalizes the transformation optics between
any domain. However, this design strategy results in an inhomogeneous anisotropic
component, for which the modeling is beyond the scope of the thesis. We have the
research plan to do further exploration of the transformation optics and extend our
modeling techniques to include anisotropic media.

5.3 modeling of thermal lensing effect

Thermal-optical simulation is one of the applications in which GRIN modulation is
undesired, but it must be taken into consideration. When an optical beam has high
power, the induced temperature distribution changes the ε(r) of the medium. In this
section we present two examples and use two different ways to calculate ε(r). The
first one simulates a Gaussian beam focused by the thermal lens effect induced by
a high-power laser, where ε(r) is given by an analytical modal [76]. The second one
analyses the thermally induced tolerance of a fiber coupling lens, where ε(r), as well
as the mechanical distortion of the optical surfaces are calculated using the engineering
software Ansys [44].

5.3.1 Mathematical Model of Thermal Lens for Laser Rod

This experiment is simulated with an Nd:YAG laser rod, as shown in Fig. 31. The laser
power is from 8 kW to 20 kW. The focal lens and focal spot changing caused by the
thermal lensing effect will be explored. In the thermal-optical simulation, we first do
a thermal analysis to calculate the thermal effects induced in ε(r) versus the incident
power Pin. Then, we do an optical simulation and propagate the electromagnetic field
through the optical system with the laser rod.
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Thermal analysis. In the 1970s, Koechner [76] described a theoretical model for doing
a thermal analysis of an optically pumped Nd:YAG laser rod, and ε(r) was written as a
first-order Taylor expansion,

ε(r) = ε(T0) +
dε

dT
[T(r)− T0], (5.19)

with ε(T0) as the relative permittivity at temperature T0, which is the temperature of
the rod center. T(r) is the temperature at position r = (ρ, θ, z) in the cylindrical coordi-
nate system. The center of the first optical surface of the laser rod is the origin of the
cylindrical coordinate system. Koechner gave another tensor, ∆ε(r), which is the stress-
dependent change required to make the media anisotropic. In this work, this term is
not considered. In Eq. (5.19), the temperature distribution T(r) is only ρ−dependent.

T(ρ) = T0 −
ηPinρ2

4πKρ2
0L

, (5.20)

with Pin as the variable, and the other related parameters are shown in Tab. 5.

Table 5: Parameters of laser rod [76]

Nd:YAG laser rod

Physical properties

Rod length L 7.5 cm

Rod radius ρ0 0.31 cm

Permittivity in rod center ε(T0) 3.32
dε

dT
14.6 ◦C−1

Thermal coefficients

Thermal conductivity K 0.111 W cm−1 ◦C−1

fraction of heat dissipated η 0.05

Optical simulation. Here we simulate a Gaussian beam focused by the thermal lens
effect induced by a high-power laser. A laser crystal rod under a thermal lens effect with
the parameters in Tab. 5 is shown in Fig. 31. A field propagating through the thermal
lens can be modeled by the RKX-FPM, while the field propagating after the thermal
lens to the focal region should be calculated by other appropriate techniques to include
the optical diffraction, i.e., the free space propagation operator. This combination of
different field solvers is a typical example of the idea of field tracing, in which different
solvers are connected [26].

We use a fundamental Gaussian beam, with a waist radius of 750 µm, and at a wave-
length of 632.8 nm as the input beam. The input plane of the thermal lens is located at
300 cm after the beam waist to ensure that the field is in its geometric field zone (Fig. 31).
As the power of the input beam increases from 8 kW to 20 kW, the focal plane, which
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Figure 31: Illustration of the optical system to focus a Gaussian beam onto a focal plane by the
thermal lens effect.

gives the smallest beam diameter, is found, and the beam waist diameter in the focal
plane is computed. In Fig. 32, the dependence of the distance D, which is measured
between the output interface of the thermal lens and the focal plane, and the beam
waist diameter of the focused field in the focal plane are presented. As the input power
increases, the spatial variation in ε(ρ) becomes more pronounced, which introduces a
stronger thermal lens effect. Therefore, D becomes shorter. This coincides with the re-
sult presented in [76]. Meanwhile, the divergence angle of the output beam turns out to
be large, leading to a smaller waist diameter in the focal plane.
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Figure 32: Optical simulation results (a) distance D, which is measured between the output
interface of the thermal lens and the focal plane, as a function of the input power;
(b) beam waist radius, which is detected in the focal plane, as a function of the input
power.
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5.3.2 Analysis of Thermal Effect of a Fiber Coupling Lens by using Ansys

When a light field has a high-power, the thermal-mechanic effects are not negligible.
The incident electromagnetic field causes a heat flux distribution φq(r) in the optical
component, which then leads to its inhomogeneous temperature distribution T(r). Fur-
thermore, T(r) causes the inhomogeneity of ε(r) and optical surface deformation.

In this section, we demonstrate a workflow to do thermal-mechanical-optic simulation
via an application use case.

?

1.5mm
d

Edmund
65254

single mode fiber

x

xy

z

Figure 33: The Edmund 65254 lens is used to couple a fundamental Gaussian mode with the
wavelength of 780 nm(left) into a single-mode fiber. d is the working distance between
the lens and the fiber end. The energy density in the fiber end (position of the question
mark) and the coupling efficiency will be calculated.

5.3.2.1 Task description

We use a commercial lens Edmund 65254 [77] to couple a fundamental Gaussian mode
with a wavelength of 780 nm and a waist radius of 330 µm to a single-mode fiber with
a mode field diameter of 3 µm, as shown in Fig. 33. The energy density (|Ex|2 + |Ey|2 +
|Ez|2) in the fiber end, and the coupling efficiency, which is calculated by using the over-
lap integral, will be calculated as shown in Fig. 33 question mark. When the Gaussian
beam-induced thermal effect is negligible, we set the working distance d = 1.585 mm,
and get the energy density shown in Fig. 35 (a), and the coupling efficiency 88.4 %. The
task now is to calculate the energy density and coupling efficiency when the Gaussian
input field causes a heat flux distribution, φq(x, y), in the spherical surface of the lens

φq = A exp
(

2
x2 + y2

ω2
0

)
ẑ, (5.21)

with ω0 = 330 µm as the input Gaussian beam and A = 2000 mW mm−2(This value
is selected to be sufficiently large, such that the thermal effect is obvious. In practice,
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the value A could be much smaller, and thermal analysis is used to check the thermal
tolerance).

5.3.2.2 Thermal-Mechanical-Optic Analysis in Ansys and VirtualLab Fusion [26]

Thermal analysis provides two optical parameters: the temperature distribution of the
lens T(r), and surface deformation. To do the analysis by Ansys, the following informa-
tion needs to be provided: (1)The lens geometry, which is offered via a STP (STandard
for the exchange of Product) file, offers a 3D graphic field used with CAD software.
The file can be downloaded from the Edmund website [77]. (2) The thermal-mechanical
properties of the lens material, which is a SCHOTT material N-LASF 9[78] and the
parameters are listed in Tab. 6. (3) The boundary condition of the lens, i.e., the sur-
rounding air media with a convection heat coefficient of 0.5 W m−2 ◦C−1 and a copper
holder, which is used to fix the cylindrical surface of the lens, with the convection heat
coefficient of 386 W m−2 ◦C−1. Here we assume that the holder was wrapped around
the whole lens cylindrical surface, and with the holder, the lens expansion only hap-
pens in the front spherical surface and the plane interface. In a more accurate analysis,
the holder model with real materials could be included in the thermal analysis [79, 80].

Table 6: Data sheet of SCHOTT material N-LASF9 [78]

N-LASF9

Physical properties

Density 4.41 g cm−3

Initial temperature T0 20 ◦C

Initial permittivity @T0@ 780 nm ε(T0) 3.362

Thermal-mechanical coefficients

Thermal conductivity k 0.79 W m−1 K−1

Specific heat capacity cp 0.530 J g−1 K−1

Coefficient of expansion α+20/+300◦C 8.4×10−6 K−1

Young’s modulus E 1.09 ×105 N mm−2

Poisson’s ratio µ 0.288

Constants of formula for dε/ dT

D0 1.05×10−6

D1 1.02×10−8

D2 −2.38×10−11

E0 9.19×10−7

E1 1.18×10−9

λTK 0.257 µm
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In Ansys, finite element analysis [44] is used to do the thermal-mechanical analysis.
The related theory is not discussed here, and we take advantage of Ansys to vary the
mesh density until we get a convergent result (after interpolation) for both T(r) and the
deformed surface.

Then, we export the data T(ri) with i, the mesh node index, for further processing.
Temperature analysis in Ansys. Fig. 34 (a) shows the temperature (steady state) distri-
bution T(r). To visualize T(r) inside the lens, the section view is displayed. The highest
temperature appears at the center of the spherical surface, on which the heat flux in
Eq. (5.21) is loaded. The T(r) distribution is rotationally symmetric about the z-axis, so
we simply export the T(ri) data (i is the mesh node index) in one planar section, for
further processing. T(r) dissipates quickly in the z direction, and the temperature at the
rear surface center approaches the surrounding temperature, which is 20 ◦C. Thus, in
further analysis we are only interested in the deformation of the spherical surface.
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Figure 34: Thermal-mechanical-optic model. In the software Ansys, thermal-mechanical analysis
is performed. (a) Temperature T(r); (b) ε(ρ, z); (c) surface deformation (∆x, ∆y, ∆z)
on mesh nodes; (d) reconstructed surface; (e) interpolated surface.

Calculation of ε(r) in VirtualLab Fusion. After exporting T(ri), a linear interpolation
method is used to calculate T(r) in the ρz plane (cylindrical coordinate system) on an
equidistant grid. The relative permittivity ε(r) needs to be calculated using the method
in [81]

ε(r) = ε(λ, T0) +
dε

dT
(λ, T)[T(r)− T0], (5.22)
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with
dε

dT
(λ, T) = [ε(λ, T0)− 1]

(
D0 + 2D1(T − T0) + 3D2(T − T0)

2 +
E0 + 2E1(T − T0)

λ2 − λ2
TK

)
,

(5.23)
with parameters T0, D0, D1, D2, E0, E1, and λTK shown in Tab. 6. ε(r) in the ρz plane,
having a value from 3.45 to 3.47, is shown in Fig. 34 (b). The dashed curve denotes
the optical surface between the lens medium and the air. The value under the dashed
line is purely an interpolation result, which will be replaced by the homogeneous air
permittivity later in the optical simulation. Again, here we simply show ε(r) in the ρz-
plane, and in the optical simulation, we assume ε(r) is rotationally symmetric about the
z-axis.

Expanded optical surface. After we have T(ri), the surface expansion can then be
calculated in Ansys. Mesh node j, with j as the node index on the spherical surface,
has its original position coordinate (xj, yj, zj) in the global coordinate system, the ori-
gin of which is at the center of the spherical surface. After importing T(ri) and the
structure analysis, each node j has a shift, (∆xj, ∆yj, ∆zj). In Fig. 34 (c), ∆xj(xj, yj, zj),
∆yj(xj, yj, zj), and ∆zj(xj, yj, zj) are shown. To reconstruct the deformed surface, the pro-
cessing in Fig. 34 (d) is done in VirtualLab Fusion: The dashed curve represents the
original spherical surface with coordinates (x, y, z), and the solid curve is the recon-
structed surface with coordinates (x + ∆x, y + ∆y, z + ∆z). This is a one-to-one mapping
from the dashed curve to the solid curve. Then, a spline-interpolation is performed to
calculate the height profile h(x, y) of the reconstructed surface, as shown in (e).

Optical simulation of the fiber coupling. By using ε(r) and the surface height profile
h(x, y) in Fig. 34 (e), the deformed lens is reconstructed. Replacing the Edmund 65254

with the reconstructed lens in Fig. 33, and at the same working distance d = 1.585 mm,
the energy density in the fiber end and the coupling efficiency can be calculated, as
shown in Fig. 32 (b), and the coupling efficiency is only 31 %. However, the energy den-
sity/coupling efficiency is not as large as in the original situation, because this is not
the best working distance, and we need to find the best working distance d = 1.549 mm,
which gives the highest energy density (Fig. 32 (c)). The coupling efficiency is 96.6 %,
which is even larger than the original setup. This can be understood as the deformation
giving the surface the proper aspherical shape, which focuses light into a smaller spot.
The light spot is somewhat not rotationally symmetric along the z axis in (b). This is be-
cause the mesh distribution is not rotationally symmetric (Fig. 34 surface deformation),
and the surface interpolation introduces asymmetry. The author also performs an opti-
cal simulation, which is not shown here, for two cases: (1) reconstructed ε(r)+ spherical
surface, and (2) homogeneous N-LASF 9 + reconstructed surface. The inhomogeneity
in this simulation causes a slight effect because of the small change in ∆ε(r) = 0.02. The
main effect is caused by the deformation of the spherical surface.

5.4 summary

In this chapter, we presented three practical examples relevant to GRIN media.
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Figure 35: Optical simulation results. The upper row shows the energy density in the fiber end
(question mark in Fig. 33, while the bottom row shows the energy density along
the x axis. (a) Result for the original setup, without considering thermal effects. The
working distance d = 1.585 mm. (b) Result after considering the thermal effects at the
same working distance d = 1.585 mm. (c) Result after considering the thermal effects
at the proper working distance d = 1.585 mm.

The first example was designing and simulating generalized Luneburg lenses. The
mathematical description was given by Luneburg [3], and it was analytically solved by
Sochacki [5–7]. We implemented the formula and extended it to design a generalized
Luneburg lens with multi-focus. Then, we simulated field tracing through the whole
system, from a spherical input field to the focal plane. One shortcoming of this example
is that the optical surface, which is an abrupt change in the relative permittivity between
the surrounding medium and the ball lens, is not currently included. This is not a
constraint of the formula derived by Luneburg; instead, the analytical solution did not
include the interface term yet. However, Morgen [4] has included the interface term,
and in further research we will explore whether it can be combined with the analytical
solution by Sochacki.

The second example was designing a bending waveguide using conformal transfor-
mation and modeling the light propagation through it. Although conformal transfor-
mation can only design y-invariant or cylindrical symmetric components, it is sufficient
for most imaging systems. In further research, we may try to combine the generalized
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Luneburg lens and the conformal transformation design strategy to design a multi-focal
lens with a simpler GRIN distribution, or more easily fabricated surfaces.

The third example was the simulation of the thermal-mechanic-optic effect. We either
used an analytical model to simulate the thermal lens inside a laser system, or we
used the software Ansys [44] to model the thermal-mechanical effect. It is important for
modern optical engineering to include thermo-mechanical-optic simulation.





6
C O N C L U S I O N A N D O U T L O O K

In summary, in this thesis, we explored field solvers to simulate an electromagnetic field
propagating through isotropic graded-index (GRIN) media in the framework of linear
optics.

We introduced several existing solvers based on three aspects, i.e., type of input fields,
spatial GRIN distribution, and capability of predicting different optical phenomena, e.g.,
polarization crosstalk, non-paraxial effect, and so on. Table 1 lists the properties of the
introduced solvers. We mentioned three rigorous solvers capable of predicting all linear
optical effects. However, Mie theory is only valid for spherically symmetric GRIN media,
and the Fourier modal method (FMM) only works for periodic structures. The FMM
with perfectly matched layers (FMM+PMLs) can model the general GRIN distribution.
However, the FMM+PMLs can only model small optical components that are several
wavelengths in size, because its numerical effort is linear to cubic of the number of
sampling points, N (∼ N3). We also discussed the concept and the capabilities of beam
propagation methods (BPMs), including the Fourier transform (FT-) BPM, the wave
propagation method (WPM), and the finite-difference (FD-) BPMs. The BPMs are easy
to implement and highly extensible. However, many of them have the constraint that
the variance of ε should be negligible, i.e., ∇ ln ε ≈ 0, which introduces inaccuracy in
calculating the polarization crosstalk.

We developed a conceptually straightforward field solver, i.e., the Runge-Kutta (RK)
k-domain field propagation method (RKK-FPM), which can be used to efficiently model
the general input field through arbitrary GRIN media without the constraint of small
variance in ε(r). This method unified multiple benefits of other field solvers. Starting
with Maxwell’s equations, we derived an ordinary differential equation (ODE) in the
spatial-frequency (k-) domain, and solved it for an initial field iteratively by using the
RK method. Taking advantage of the convolution theorem, the total numerical effort was
linear at N (∼ N). Non-paraxial fields, as well as the polarization crosstalk generated
by the GRIN media, can be solved efficiently. However, the RKK-FPM does not take
the optical surface effect (between the surrounding and the GRIN media) into account.
Furthermore, the reflection or evanescent wave is currently not included in this method.
As a result, if the optical surface effect is not negligible, one can use the WPM (∼ N2)
as the field solver, and if the reflection/evanescent wave is important, we suggest using
one of the rigorous field solvers, e.g., Mie, FMM, or FMM+PMLs, to tackle it.

We developed another field solver, known as the RK x-domain field propagation
method (RKX-FPM), to model a geometric field having a diffraction that is negligible
when propagating through GRIN media. As most GRIN lenses and GRIN beam-shaping
elements are still modeled or designed using ray tracing techniques, the geometric field
assumption is valid in these cases. By using the geometric field ansatz, and replacing the
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Fourier transforms with the transforms for the geometric field, i.e., the homeomorphic
Fourier transform (HFT) [33], in the ODE of the RKK-FPM, we arrived at the funda-
mental theory of ray optics, the eikonal equation. After substituting the geometric field
ansatz and eikonal equation into Maxwell’s equations, we obtained the geometric field
equations. The eikonal equation and geometric field equations were further derived,
specifically for GRIN media, to two ODEs in the x-domain. Although the derivation
process was different, Born and Wolf gave the same ODEs in [53]. Thus, the ODEs were
solved by the RK method, together with the energy conservation law, and the RKX-FPM
was developed. Furthermore, the RKX-FPM always included optical surface effects by
using local plane interface approximation (LPIA) [29]. One remarkable advantage of the
RKX-FPM is that it can be as fast as ray tracing techniques, which makes it the perfect
choice when the scale of a GRIN component is well beyond its wavelength, such as air
turbulence.

After we obtained both RK methods, a Luneburg lens was modeled by combining the
RKK- and RKX-FPMs. The RKX-FPM was used to calculate the field propagation in the
geometric zone and the RKK-FPM to simulate the other parts.

By using the field solvers, we calculated the electromagnetic field propagation through
an optical system with GRIN components. We also discussed two analytical design
methods for GRIN components: (1) The generalized Luneburg lens’s analytical design
(the formula was derived by Luneburg [3], and solved analytically by Sochacki [5–7])
was discussed and extended to design a multi-focus ball lens; (2) The analytical design
of a bending waveguide using conformal transformation was introduced. Afterwards,
we calculated electromagnetic field propagation through an optical system with the
designed GRIN components.

Finally, we developed a workflow to model the thermal-mechanical-optic effects using
the software Ansys and VirtualLab Fusion. In Ansys, we modeled the inhomogeneous
temperature distribution and surface deformation, and in VirtualLab Fusion we inter-
polated and transferred the data to relative permittivity, and reconstructed the surface
to simulate electromagnetic field propagation through the thermal lens system.

In future research, we will explore how to include optical surface effects, reflection,
and evanescent waves in the RKK-FPM. Meanwhile, the numerical effort can be fur-
ther reduced by using analytical phase processing of, e.g., linear/quadratic phase. Af-
terward, we will extend both RK-FPMs to model anisotropic inhomogeneous media,
which is explored in some pioneer’s work [63, 82–84]. We will extend the design to in-
clude the optical surface between the surrounding and the generalized Luneburg lens,
and transform it to a cylindrically symmetric lens using the conformal transformation.



A
FA B R I C AT I O N O F G R A D E D - I N D E X M E D I U M

Many literatures and patents from 1970s to nowadays present several methods of fab-
ricating graded-index(GRIN) medium [85, 86]. The most important properties of the
fabrication method is: (1) Which kind of materials are used, glass, polymer or ceramic;
(2) How flexible is the graded-index direction, one-dimensional graded, rotational sym-
metric, or flexible? (3) What is the scale of the component, in µm, mm or even larger?
(4) The possible range of refractive index ∆n, with n the refractive index (n =

√
(ε)).

The typical value of (3) and (4) is found via authors summary or in the manufactured
examples, and they might have slight difference in different literatures. Recently there
are many discussion about GRIN medium in infrared applicaiton, which we don’t dive
into details [87]. Here we list the frequently used methods as follows.

• (Modified) Chemical vapor deposition (MCVD) is widely used to fabricate GRIN
fiber.[88–90]. It is possible to obtain ∆n ≈ 0.1 at a radial distance in the scale of
0.2 mm. It can also be used to fabricate one-dimensional GRIN glass, because CVD
can be used to fabricate thin films.

• (Double) ion exchange is used to fabricate the GRIN rod (radially symmetric
index profile) or spherical GRIN lens [91–94]. It is almost the most widely used
for commercial production of GRIN glass [15]. The typical radial distance is in the
scale of 100 mm, while ∆n ≈ 0.05.

• Sol-gel method [95–97] introduces GRIN distribution into specific sol-gel and then
sintered into a GRIN glass rod (radially symmetric). The typical radial distance is
in the scale of 3 mm, while ∆n ≈ 0.05.

• Three-dimensional(3D) printing process, either using silica powder[98], or from
sol-gel ink[99]. The former one fabricates rotationally symmetric GRIN glass or
ceramic with diameter 4 mm with ∆n ≈ 0.002. The latter one shows flexibility of
GRIN direction, at least two dimensional gradient can be produced (no examples
of axial gradient). The diameter of the fabricated GRIN glass is 10 mm, with ∆n ≈
0.01.

• Lithography direct-write technology(two-photon polymerization) fabricates GRIN
medium with arbitrary index distribution, and meanwhile the micro-topological
structure. [100] The size of the element is approximately 50 µm, and ∆n ≈ 0.01.
However, in this method, we didn’t found the resolution of the fabrication process,
which should be an important parameter.
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96 fabrication of graded-index medium

• Nanolayer polymer extrusion technology generates flexible GRIN profile (poly-
mer) with scale of several mm and large range of refractive index ∆n ≈ 0.17 [101,
102].

• Metamaterials are widely explored to achieve equivalent GRIN [103]. Especially
when the conformal transformation optics [21] driven GRIN medium has special
refractive index near zero [104].

There are also some other techniques to manufacture GRIN glass, e.g., neutron irradia-
tion[105], ion stuffing [106] and drop-on-demand technology [107].



B
F I E L D S O LV E R I N S P H E R I C A L C O O R D I N AT E S Y S T E M

Let us solve field equation in spherical coordinate system.

ϕ

θ

(r, θ, ϕ)

r

y

x

z

Figure 36: Specifying spherical coordinate system in Cartesian coordinate system.

b.1 field representation in spherical coordinate system

In the spherical coordinate system, electric field is represented as

E(r) =




Er

Eθ

Eϕ


 (r), (B.1)

with r = (r, θ, ϕ), and Er, Eθ , Eϕ denoting field components along radial, inclination
angle, and azimuthal angle direction.
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Substituting the representation into Helmholtz equation (2.24), we obtain a very com-
plex equations, because all Er, Eθ and Eϕ mixed up, because the Laplace operation to a
vector B.1 is written as

∆E(r) =




∆Er +
2Er

r2 −
2

r2 sin θ
∂θ (Eθ sin θ)− 2

r2 sin θ
∂ϕEϕ

∆Eθ −
Eθ

r2 sin2 θ
+

2
r2 ∂θEr −

2 cos θ

r2 sin2 θ
∂ϕEϕ

∆Eϕ −
Eϕ

r2 sin θ
+

2
r2 sin θ

∂ϕEr +
2 cos θ

r2 sin2 θ
∂ϕEθ




(B.2)

but if we represent the field in Cartesian coordinate system

E(r) =




Ex

Ey

Ez


 (r), (B.3)

Eq. (2.24) becomes separable for Ex, Ey and Ez and we could concentrate on solving the
following equation

∆ψ(r) + k2
0εψ(r) = 0, (B.4)

with ψ(r) denoting Ex, Ey or Ez.
Representing the Laplace operator in spherical coordinate system to be

∆ =
1
r2 ∂r(r2∂r) +

1
r2 sin2 θ

∂2
ϕ +

1
r2 sin θ

∂θ(sin θ∂θ), (B.5)

and separate variables as
ψ(r) = R(r)Θ(θ)Φ(ϕ), (B.6)

we obtain
1
r2 ∂r[r2∂rR(r)]Θ(θ)Φ(ϕ) +

1
r2 sin2 θ

∂2
ϕΦ(ϕ)R(r)Θ(θ)+

1
r2 sin θ

∂θ [sin θ∂θΘ(θ)]R(r)Φ(ϕ) + k2
0εR(r)Θ(θ)Φ(ϕ) = 0.

(B.7)

Divided Eq. (B.7) by 1
r2 sin2 θ

R(r)Θ(θ)Φ(ϕ), and shifting the term related to ϕ to the right
hand side, we get

1
R(r)

sin2 θ∂r[r2∂rR(r)] +
1

Θ(θ)
sin θ∂θ [sin θ∂θΘ(θ)] + k2

0εr2 sin2 θ = − 1
Φ(ϕ)

∂2
ϕΦ(ϕ).

(B.8)
If Eq. (B.8) is valid, the left hand side and right hand side must equal to a constant, here
we assume m2. The term with ϕ can be isolated and written as

∂2
ϕΦ(ϕ) + m2Φ(ϕ) = 0, (B.9)

and the solution is
Φ(ϕ) = A cos(mϕ) + B sin(mϕ). (B.10)
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To get a single value Φ(ϕ) (Φ(ϕ + 2π) = Φ(ϕ)), m is an integer. Conventionally, the
solution is denoted as

Φe(ϕ) = cos(mϕ), Φo(ϕ) = sin(mϕ), (B.11)

with e and o represent even and odd. Similarly, dividing the left hand side of Eq. (B.8)
by sin2 θ and shift the terms related to θ to the right hand side, we get

1
R(r)

∂r[r2∂rR(r)] + k2
0εr2 = − 1

Θ(θ) sin θ
∂θ [sin θ∂θΘ(θ)] +

m2

sin2 θ
(B.12)

Similar argument, if both side equal, then it should be a constant, here we assume
n(n + 1), so we obtain two separated equations

∂r[r2∂rR(r)] + [k2
0εr2 − n(n + 1)]R(r) = 0, (B.13)

and
1

sin θ
∂θ [sin θ∂θΘ(θ)] +

[
n(n + 1)− m2

sin2 θ

]
Θ(θ) = 0. (B.14)

Eq. (B.14) shows exactly identical form to the associated Legendre equation[47]

(1− x2)
d2y
dx2 − 2x

dy
dx

+

[
n(n + 1)− m2

1− x2

]
y = 0, (B.15)

when x = cos θ. The mathematical solution to Eq. (B.15) is a linear combination of the
first and second kind of Legendre polynomial. However, we are only interested in the
converge solution for x ⊂ [−1, 1], so the solution to Eq. (B.14) is the first kind Legendre
polynomial Pm

n (cos θ) (the second kind Legendre polynomial is only converge when
|x| < 1).

Similarly, Eq. (B.13) shows exactly identical form to the equation of the Bessel function

x2 d2y
dx2 + x

dy
dx

+ [x2 − (n + 0.5)2]y = 0 (B.16)

when x = k0
√

εr and y =
√

rR(r). The mathematical solution to Eq. (B.16) is the linear
combination of Bessel functions of first kind Jn+1/2(x) and second kind Yn+1/2(x). The
function r1/2 Jn+1/2(r) and r1/2Yn+1/2(r), can be normalized and written as spherical
Bessel functions of the first and second kind, respectively, as follows

jn(x) =
√

π

2x
Jn+1/2(x),

yn(x) =
√

π

2x
Yn+1/2(x).

(B.17)

Later we define zn(x) to represent either jn(x) or yn(x) or the combination of jn(x) and
yn(x), which is caud spherical Hankel functions

h(1)n (x) = jn(x) + iyn(x)

h(2)n (x) = jn(x)− iyn(x)
(B.18)

To combine all solutions together we obtain

ψemn(r) = cos(mϕ)Pm
n (cos θ)zn(k0

√
εr),

ψomn(r) = sin(mϕ)Pm
n (cos θ)zn(k0

√
εr).

(B.19)
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b.2 field solver for a single sphere

Till now, we might think about Ex, Ey and Ez is linear combination of ψemn(r) and
ψomn(r). And try to match the boundary condition to calculate the coefficients of each
order. However, conventionally, vector spherical harmonics are defined to simplify the
progress

M(r) = ∇× [cψ(r)],

N(r) =
1

k0
√

ε
∇×M(r).

(B.20)

with c denoting a constant vector, ψ(r) denoting a scalar function. Now we ask the ques-
tion, if M(r) and N(r) can be used to represent electromagnetic field. First, M(r) and
N(r) are divergent-free, which follows Eqs. (2.22) and (2.23) in homogeneous medium
ε = const. Second, M(r) and N(r) fulfil the wave equations (2.24) and (2.25),

∆M(r) + k2
0εM(r) = ∇× {c

[
∆ψ(r) + k2

0εψ(r)
]}

= 0,

∆N(r) + k2
0εN(r) =

1
k0
√

ε
∇× [∆M(r) + k2

0εM(r)
]
= 0.

(B.21)

with c = r and the scalar function ψ(r) follows Eq. (B.4) which can be represented as
Eq. (B.19). Follows the convention, let’s define the quantities as follow

Memn(r) = ∇× [rψemn(r)],

Momn(r) = ∇× [rψomn(r)],

Nemn(r) =
1

k0
√

ε
∇×Memn(r),

Nomn(r) =
1

k0
√

ε
∇×Momn(r)

(B.22)

One should know that Memn(r), Momn(r), Nemn(r) and Nomn(r) are mutually orthogonal,
which means ∫ 2π

0
dϕ

∫ π

0
sin θ dθAm′n′Bmn = 0 (B.23)

when m′ 6= m or n′ 6= n, and here A and B denotes arbitrary two quantities of Me(r),
Mo(r), Ne(r) and No(r).

Till now, we found the basis functions Memn(r), Momn(r), Nemn(r) and Nomn(r) which
are complete and orthogonal. Electric field can be represented as

E(r) =
∞

∑
m=0

∞

∑
n=m

[aemn Memn(r) + aomn Momn(r) + bemnNemn(r) + bomnNomn(r)] (B.24)

The coefficients can be calculated by

aemn =

∫ 2π
0 dϕ

∫ π
0 sin θ dθE(r) ·Memn(r)∫ 2π

0 dϕ
∫ π

0 sin θ dθ |Memn(r)|2
(B.25)

which is similar for aomn, bemn and bomn
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Now let’s consider a task as follows: an arbitrary incident field propagates to a sphere,
assume

ε =

{
ε1, r > r0

ε2, r 6 r0
(B.26)

The incident electric field can be represented as

Einc =
∞

∑
m=0

∞

∑
n=m

[
ainc

emn Mε1
emn(r) + ainc

omn Mε1
omn(r) + binc

emnNε1
emn(r) + binc

omnNε1
omn(r)

]
(B.27)

The reflected field, which is outside of the sphere, can be named as scattered electric
field

Esca =
∞

∑
m=0

∞

∑
n=m

[asca
emn Mε1

emn(r) + asca
omn Mε1

omn(r) + bsca
emnNε1

emn(r) + bsca
omnNε1

omn(r)] (B.28)

and the electric field inside the sphere, which can be named as the internal electric field

Eint =
∞

∑
m=0

∞

∑
n=m

[
aint

emn Mε2
emn(r) + aint

omn Mε2
omn(r) + bint

emnNε2
emn(r) + bint

omnNε2
omn(r)

]
(B.29)

Then we could calculate the related magnetic fields based on Eqs. (2.20, B.21, B.22)

H inc = c1

∞

∑
m=0

∞

∑
n=m

[
ainc

emnNε1
emn(r) + ainc

omnNε1
omn(r) + binc

emn Mε1
emn(r) + binc

omn Mε1
omn(r)

]
, (B.30)

Hsca = c1

∞

∑
m=0

∞

∑
n=m

[asca
emnNε1

emn(r) + asca
omnNε1

omn(r) + bsca
emn Mε1

emn(r) + bsca
omn Mε1

omn(r)] , (B.31)

H int = c2

∞

∑
m=0

∞

∑
n=m

[
aint

emnNε2
emn(r) + aint

omnNε2
omn(r) + bint

emn Mε2
emn(r) + bint

omn Mε2
omn(r)

]
. (B.32)

with ci = −i
√

ε0εi
µ0

, i = 1, 2.

Now we could introduce the boundary condition at the sphere boundary r = r0

[
Einc(r0) + Esca(r0)− Eint(r0)

]
× êr = 0

[
H inc(r0) + Hsca(r0)− H int(r0)

]
× êr = 0

(B.33)

In principle, after solving the boundary equations (B.33), the coefficients of scatter field
and internal field can be calculated, especially, only the spherical Bessel functions will
be used in the boundary equations. However, conventionally, the derivation is simplified
by assuming an x-polarized ideal plane wave as incident field

Einc(r = x, y, z) = E0 exp(ik0
√

ε1z)êx,

Einc(r = r, θ, ϕ) = E0 exp(ik0
√

ε1r cos θ)(sin θ cos ϕêr + cos θ cos ϕêθ − sin ϕêϕ)
(B.34)

ainc
emn, ainc

omn, binc
emn and binc

omn for the plane wave (B.34) is quite simple. Because of the orthog-
onality of cos mϕ and sin mϕ, if we decompose the plane wave into the basis functions,
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the coefficients for terms m 6= 1 are zero. Meanwhile, because of yn in Eq. (B.17) is in-
finite large when x = 0 which is not properly describe the plane wave, we just use the
first kind of Bessel function jn here and add a notation (1) to denote the first kind Bessel
function. Then by using Eq. (B.25), we can get

Einc(r, θ, ϕ) = E0

∞

∑
n=1

in 2n + 1
n(n + 1)

(Mε1,(1)
o1n − iNε1,(1)

e1n ). (B.35)

Similarly, the internal field also just use first kind spherical Bessel function, so the inter-
nal electric field can be simplified as

Eint(r, θ, ϕ) = E0

∞

∑
n=1

in 2n + 1
n(n + 1)

(cn Mε2,(1)
o1n − idnNε2,(1)

e1n ) (B.36)

To avoid the infinity value in the position r = ∞, the spherical Bessel function of scatter
field is chosen as h(1)n , which is called third kind of Bessel function.

Esca(r, θ, ϕ) = E0

∞

∑
n=1

in 2n + 1
n(n + 1)

(an Mε1,(3)
o1n − ibnNε1,(3)

e1n ) (B.37)

The related magnetic fields can be calculated based on Eqs. (B.30-B.32). After using the
boundary condition (B.33) coefficients an, bn, cn and dn can be calculated, which is a
function of sin ϕ, cos ϕ, P1

n(cos θ), jn(k0
√

εir) and h(1)n (k0
√

εir). We don’t give further
mathematical discussion, but directly the conclusion formula for code implementation.
The coefficients an, bn, cn and dn can be represented in form of

an =
mψn(ρ)dρ′ψn(ρ′)− ψn(ρ′)dρψn(ρ)

mζn(ρ)dρ′ψn(ρ′)− ψn(ρ′)dρζn(ρ)

bn =
ψn(ρ)dρ′ψn(ρ′)−mψn(ρ′)dρψn(ρ)

ζn(ρ)dρ′ψn(ρ′)−mψn(ρ′)dρζ(ρ)

cn =
ψn(ρ)dρζn(ρ)− ζn(ρ)dρψn(ρ)

ψn(ρ′)dρζ(ρ)− ζn(ρ)dρ′ψ(ρ′)

dn =
mψn(ρ)dρζn(ρ)−mζn(ρ)dρψn(ρ)

mψn(ρ′)dρζ(ρ)− ζn(ρ)dρ′ψn(ρ′)

(B.38)

with ρ = k0
√

ε1r, ρ′ = k0
√

ε2r and m =

√
ε2

ε1
and the Riccati-Bessel functions are

ψn(ρ) = ρjn(ρ)

ζn(ρ) = ρh(1)(ρ)
(B.39)
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ê ϕ

M
em

n
0

−
m si
n

θ
si

n
m

ϕ
P

m n
(c

os
θ)

z n
(ρ
)

−
co

sm
ϕ

d
P

m n
(c

os
θ)

d
θ

z n
(ρ
)

M
om

n
0

m si
n

θ
co

sm
ϕ

P
m n
(c

os
θ)

z n
(ρ
)

−
si

n
m

ϕ
d

P
m n
(c

os
θ)

d
θ

z n
(ρ
)

N
em

n
z n
(ρ
)

ρ
n(

n
+

1)
co

sm
ϕ

P
m n
(c

os
θ)

co
sm

ϕ
d

P
m n
(c

os
θ)

d
θ

1 ρ

d d
ρ
[ρ

z n
(ρ
)]

−
m

si
n

m
ϕ

P
m n
(c

os
θ)

si
n

θ

1 ρ

d d
ρ
[ρ

z n
(ρ
)]

N
om

n
z n
(ρ
)

ρ
n(

n
+

1)
co

sm
ϕ

P
m n
(c

os
θ)

co
sm

ϕ
d

P
m n
(c

os
θ)

d
θ

1 ρ

d d
ρ
[ρ

z n
(ρ
)]

−
m

si
n

m
ϕ

P
m n
(c

os
θ)

si
n

θ

1 ρ

d d
ρ
[ρ

z n
(ρ
)]

w
it

h
ρ
=

k 0
√

εr
,

an
d

z n
(ρ
)

ca
n

be
th

e
fir

st
ki

nd
Be

ss
el

fu
nc

ti
on

j n
(ρ
),

th
e

se
co

nd
ki

nd
Be

ss
el

fu
nc

ti
on

y n
(ρ
)

or
th

e
th

ir
d

ki
nd

Be
ss

el
fu

nc
ti

on
h(

1) n
(ρ
)

or
h(

2) n
(ρ
).



104 field solver in spherical coordinate system

b.3 field solver for a multilayered sphere

This section is more interesting for us, because a racially graded index media (rotational
symmetric) can be discreted as a multilayered sphere, as shown in Fig. 37. And we could
use similar method as section B.2.

... ...r1 r 2 r i
rN

ǫ1

ǫ2

ǫi

ǫN

Figure 37: Configuration of a multilayered sphere.

We still assume a x-polarized ideal plane wave as incident field, as in Eq. B.35. There-
fore, we still just consider spherical harmonics M and N for m = 1. The general field
representation in each shell is

El(r, θ, ϕ) = E0

∞

∑
n=1

in 2n + 1
n(n + 1)

(cl,n Mεl ,(1)
o1n − idl,nNεl ,(1)

e1n + al,n Mεl ,(3)
o1n − ibl,nNεl ,(3)

e1n ) (B.40)

with l = 1, 2, · · · , N + 1. The special cases are within r <= r1 and r > rN :

• When r 6 r1, al,n = bl,n = 0 to avoid the infinity value caused by yn(r = 0);

• When r > rN , cN+1,n = dN+1,n = 1 which represent the input ideal plane wave in
Eq. B.35. Please note, EN+1(r, θ, ϕ) = Einc(r, θ, ϕ) + Esca(r, θ, ϕ)

The related magnetic field in each layer is

H l(r, θ, ϕ) = E0

∞

∑
n=1

in 2n + 1
n(n + 1)

(cl,nNεl ,(1)
o1n − idl,n Mεl ,(1)

e1n + al,nNεl ,(3)
o1n − ibl,n Mεl ,(3)

e1n ) (B.41)

Then we introduce the boundary conditions for each shell rl

[El(rl)− El+1(rl)]× êr = 0

[H l(rl)− H l+1(rl)]× êr = 0
(B.42)

with l = 1, 2, · · · , N. Compare Eqs.(B.42) and Tab. 7, and using the definition of Riccati-
Bessel functions Eq. (B.39), Eqs. (B.40) and (B.41) can be written as
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al,nρ̄lζ(ρl) + cl,nρ̄lψ(ρl)− al+1,nρlζ(ρ̄l)− cl+1,nρlψ(ρ̄l) = 0

al,nζ ′(ρl) + cl,nψ′(ρl)− al+1,nζ ′(ρ̄l)− cl+1,nψ′(ρ̄l) = 0

bl,nρ̄lζ
′(ρl) + dl,nρ̄lψ

′(ρl)− bl+1,nρlζ
′(ρ̄l)− dl+1,nρlψ

′(ρ̄l) = 0

bl,nζ(ρl) + dl,nψ(ρl)− bl+1,nζ(ρ̄l)− dl+1,nψ(ρ̄l) = 0

(B.43)

with l = 1, 2, · · · , N, ρl = k0
√

εlrl and ρ̄l = k0
√

εl+1rl . As al,n = bl,n = 0 and r > rN ,
cN+1,n = dN+1,n = 1, we have in total 4N unknowns (coefficients) and 4N equations,
so all coefficients can be solved. I am just interested in aN+1 and bN+1 to represent the
scattered field outside of the sphere, so let’s further define variables

Al,n = al,n/cl,n

Bl,n = bl,n/dl,n
(B.44)

After further derivation, we could get the iterative equations

Al+1,n = −Rn(ρ̄l)
Ha

n(Al,n, ρl)ρl − D(1)
n (ρ̄l)ρ̄l

Ha
n(Al,n, ρl)ρl − D(3)

n (ρ̄l)ρ̄l

,

Bl+1,n = −Rn(ρ̄l)
Hb

n(Bl,n, ρl)ρ̄l − D(1)
n (ρ̄l)ρl

Hb
n(Bl,n, ρl)ρ̄l − D(3)

n (ρ̄l)ρl

,

Ha
n(Al,n, ρl) =

Al,nD(3)
n (ρl) + D(1)

n (ρl)Rn(ρl)

Al,n + Rn(ρl)
,

Hb
n(Bl,n, ρl) =

Bl,nD(3)
n (ρl) + D(1)

n (ρl)Rn(ρl)

Bl,n + Rn(ρl)
,

(B.45)

with the mathematical terms which are related to the Riccati-Bessel function

D(1)
n (ρ) = ψ′n(ρ)/ψn(ρ),

D(3)
n (ρ) = ζ ′n(ρ)/ζn(ρ),

Rn(ρ) = ψn(ρ)/ζn(ρ),

(B.46)

and the initial Al,n = Bl,n = 0. Until now, if we calculate field out of the multilayer
sphere, we need to calculate aN+1,n = AN+1,n and bN+1,n = BN+1,n iteratively and sub-
stitute aN+1,n and bN+1,n into Eq. (B.40). However, to implement the code, we may also
suffer from several numerical issues because of the round-off errors. We take advantage
of the computational algorithm in [48] and [49] to compute D(1)

n (ρ), D(3)
n (ρ) and Rn(ρ):
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n in Eq. (B.40) cannot be infinite large, the truncation Nmax is

Nmax =





ρ̄N + 4ρ̄1/3
N + 1 0.02 6 ρ̄N < 8,

ρ̄N + 4.05ρ̄1/3
N + 1, 8 6 ρ̄N < 4200,

ρ̄N + 4ρ̄1/3
N + 2, 4200 6 ρ̄N < 20000.

(B.47)

with ρ̄N = k0
√

εN+1rN .

To compute D(1)
n (ρ), we start from D(1)

Nmax
= 0, and

D(1)
n−1(ρ) =

n
ρ
− 1

D(1)
n (ρ) + n/ρ

(B.48)

with n = Nmax, · · · , 1.
To compute D(3)

n (ρ), we start from D(3)
0 (ρ) = i, and

D(3)
n (ρ) = D(1)

n (ρ) +
i

ψn(ρ)ζn(ρ)
(B.49)

with
ψn(ρ)ζn(ρ) = ψn−1(ρ)ζn−1(ρ)

[
n/ρ− D(1)

n−1(ρ)
] [

n/ρ− D(3)
n−1(ρ)

]

ψ0(ρ)ζ0(ρ) =
1
2
− 1

2
{cos [2<(ρ)] + i sin [2<(ρ)]} exp [−2=(ρ)]

(B.50)

To compute Rn(ρ)

Rn(ρ) = Rn−1(ρ)
D(3)

n (ρ) + n/ρ

D(1)
n (ρ) + n/ρ

R0(ρ) =
1
2
− 1

2
exp[−2i<(ρ)] exp[2=(ρ)]

(B.51)

Till now, the coefficients aN+1,n = AN+1,n and bN+1,n = BN+1,n are calculated, and
after substituting into Eq. (B.40), the electric field outside of the multilayered sphere can
be calculated.



C
F I E L D S O LV E R I N C Y L I N D R I C A L C O O R D I N AT E S Y S T E M

Similar as spherical harmonics, in cylindrical coordinate system, one can solve cylin-
drical harmonics, but it is not as straightforward as that of spherical harmonics. As we
know, these mode solvers are efficient for scale smaller than hundreds of wavelength. In
this scale, the most important application is graded-index (GRIN) fiber. So here we want
to mention an approximated but specific solver for GRIN fiber. Let’s solve field equation
in cylindrical coordinate system. This solver only works for fiber with permittivity

ϕ ρ

(ρ, ϕ, z)

y

x

z

z

Figure 38: Specifying cylindrical coordinate system in Cartesian coordinate system.

ε(ρ) = εc

[
1− 2δ

(
r
r0

)2
]

, (C.1)

with r0 the radius of fiber core, and εc the largest relative permittivity of core δ is a
constant.

The fiber solver contains three steps:

• Representing Ez and Hz with only one free coefficient

• Representing Ex, Ey, Hx and Hy by using Ez and Hz

• Using overlap integral to calculate the free coefficient

107
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c.1 solving Ez and Hz in cylindrical coordinate system

In the cylindrical coordinate system, electric field is represented as

E(r) =




Eρ

Eϕ

Ez


 (r), (C.2)

with r = (ρ, ϕ, z), and Eρ, Eϕ, Ez denoting field components along radial, inclination
angle, and z direction.

Substituting the representation into Helmholtz equation (2.24), and approximately
consider ∇ ln ε(r) ≈ 0, because of small variation of ε. which is in the magnitude of
10−3, we obtain three separated equations

∆E(r) =




∆Eρ −
Eρ

ρ2 −
2
ρ2 ∂ρ ϕEϕ

∆Eϕ −
Eϕ

ρ2 +
2
ρ2 ∂ρ ϕEρ

∆Ez




(C.3)

Similarly, replace E by H, identical form is achieved. From Eq. (C.3), only z component
of field is decouple. Next step, we focus on solver Ez and Hz by solving the following
equation

∆ψ(r) + k2
0ε(r)ψ(r) = 0, (C.4)

with ψ(r) denoting Ez(r) and Hz(r).
Representing the Laplace operator in cylinder coordinate system to be

∆ =
1
ρ

∂ρ(ρ∂ρ) +
1
ρ2 ∂2

ϕ + ∂2
z , (C.5)

and separate variables as
ψ(r) = P(ρ)Φ(ϕ)Z(z), (C.6)

we obtain

1
ρ

∂ρ

[
ρ∂ρP(ρ)

]
Φ(ϕ)Z(z) +

1
ρ2 ∂2

ϕΦ(ϕ)P(ρ)Z(z) + ∂2
zZ(z)P(ρ)Φ(ϕ)+

k2
0ε(r)P(ρ)Φ(ϕ)Z(z) = 0

(C.7)

Divided Eq. (C.7) by P(ρ)Φ(ϕ)Z(z), and shifting the term related to z to the right hand
side, we get

1
ρP(ρ)

∂ρ

[
ρ∂ρP(ρ)

]
+

1
ρ2Φ(ϕ)

∂2
ϕΦ(ϕ) + k2

0ε(r) = − 1
Z(z)

∂2
zZ(z) = β2 (C.8)

If Eq. (C.8) is valid, the left hand side and right hand side must equal to a constant, here
we assume β2. The term with z can be isolated and written as

∂2
zZ(z) + β2Z(z) = 0, (C.9)
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and the solution is
Z(z) = exp(iβz). (C.10)

In Eq. (C.10) we didn’t give any free parameter, i.e., Z0 which is multiplied to Z(z) or
z0 inside the bracket. Both of them can be realized by a single coefficient multiplied to
ψ after all derivation.

Then we divide ρ2 to isolate ϕ, and shift the terms related to ϕ to the right hand side,
we get

ρ

P(ρ)
∂ρ

[
ρ∂ρP(ρ)

]
+ (k2

0ε(r)− β2)ρ2 = − 1
Φ(ϕ)

∂2
ϕΦ(ϕ) = l2 (C.11)

To get a single value Φ(ϕ) (Φ(ϕ + 2π) = Φ(ϕ)), l is an integer. Conventionally, the
solution is denoted as

Φ(ϕ) = cos(lϕ)or sin(lϕ) (C.12)

The left hand side of Eq. (C.11) is finally written as

d2
ρP(ρ) +

1
ρ

dρP(ρ) + (k2
0ε(r)− β2 − l2

ρ2 )P(ρ) = 0. (C.13)

If the fiber epsilon is represented as C.1, we follow a smart mathematical transforms to
denote P(ρ) as another function g(s)

P(ρ) = exp
(
− s

2

)
s

l
2 g(s), (C.14)

with

s = τρ2 =
k0
√

2δεc

r0
ρ2. (C.15)

From Eq. (C.15) we can derive

dρ = 2
√

τs ds,

d2
ρ = 4τs d2

s + 2τ ds.
(C.16)

Now substituting Eqs. (C.14)-(C.16) and the relative permittivity (C.1) into Eq. (C.13),
we get

s
d2g(s)

ds2 + (l + 1− s)
dg(s)

ds
+ mg(s) = 0, (C.17)

with

m =
1
4

[
r0

k0
√

2εcδ

(
k2

0εc − β2)− 2l − 2
]

. (C.18)

When m is a non-negative integer, Eq. (C.17) has exactly identical form with the associ-
ated Laguerre equation [47] and g(s) is the associated Laguerre polynomials Ll

m(s). To
simplify the notation, we introduce

ω0 =
√

2/τ =
2r0

k0
√

2δεc
. (C.19)
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And P(ρ) is

Plm(ρ) = Ll
m

(
2ρ2

ω2
0

)(√
2ρ

ω0

)l

exp
(
− ρ2

ω2
0

)
. (C.20)

From Eq. (C.18), β is discrete and can be calculated from l and m

βlm = k0
√

εc

[
1− 4

2m + l + 1
k2

0εcω2
0

] 1
2

(C.21)

From
Till now we can represent Ez and Hz as follows:

[
Ez

Hz

]

lm

=

[
A

B

]

lm

Plm(ρ) exp(ilϕ) exp(iβlmz) (C.22)

with Plm(ρ) in Eq. (C.20) and βlm in Eq. (C.21).
However, there are still two free coefficients A and B. Here we use another relation

between Ez and Hz of mode (l, m) [108] to reduce the number of free coefficients to 1.

η = −i
k0

βlm

√
µ0

ε0

Hz

Ez
. (C.23)

η can be 0, ∞, 1, −1 and which denotes transverse magnetic (TM) mode(Hz = 0), trans-
verse electric (TE) mode(Ez = 0), EH mode, and HE mode. Here we again induce ap-
proximation by using η. Rigorously, |η| approaching to 1, but generally not exactly 1.
The approximation works for weakly guided fiber, which means δ in Eq. (C.1) should
be very small.

Substituting η into Eq. (C.22), we get the representation of Ez and Hz with only one
free coefficient A

[
Ez

Hz

]

lm

= Alm




1

η
iβlm

k0

√
ε0

µ0


 Plm(ρ) exp(ilϕ) exp(iβlmz). (C.24)

c.2 field representation in cartesian coordinate system

Till now, Ez and Hz of mode (l, m) is represented. Only one free coefficient A is left,
which will be fixed by overlap integral in the next section. However, to do overlap
integral, all field components should be represented. In most of the techniques, a general
input field is sampled in Cartesian coordinate system. So from now on, we come back
the Cartesian coordinate system and just discuss mode (l, m). There are two physical
objects needs to be transfer to Cartesian coordinate system, i.e., field components E and
H, and coordinate r.

Firstly, we calculate Ex, Ey, Hx, Hy by using the two curl equations in (2.10). Although
we didn’t come to detail derivation in last section, but from Eq. (C.3), all Z(z) of all field
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components can be separated and represented as Eq. (C.10), so all ∂z can be replaced by
iβ. 




Ex =
i

k2
0ε(r)− β2

(β∂xEz + κ0

√
µ0

ε0
∂yHz)

Ey =
i

k2
0ε(r)− β2

(β∂yEz − κ0

√
µ0

ε0
∂x Hz)

Hx =
i

k2
0ε(r)− β2

(−κ0

√
ε0

µ0
ε(r)∂yEz + β∂x Hz)

Hy =
i

k2
0ε(r)− β2

(κ0

√
ε0

µ0
ε(r)∂xEz + β∂yHz)

(C.25)

Next step, because Ez and Hz are represented in the cylinder coordinate system, we
replace ∂x and ∂y by ∂ρ and ∂ϕ

{
∂x = cos ϕ∂ρ − ρ−1 sin ϕ∂ϕ

∂y = sin ϕ∂ρ + ρ−1 cos ϕ∂ϕ

. (C.26)

Ex, Ey, Hx, Hy can be calculated by substituting Eq. (C.26) and (C.24) into Eq. (C.25), with

dρLl
m(s) =

{
−Ll+1

m−1(s), m > 1

0 otherwise
. (C.27)

Here we don’t write them done in details.
Next step is to transform coordinates r back to Cartesian coordinate system by

{
ρ =

√
(x2 + y2)

ϕ = arctan(y, x)
. (C.28)

The last step is calculation of Alm to normalize the power of mode (l, m). More specifi-
cally,

1
2

∫∫ ∞

−∞
(Elm(x, y)× H?

lm(x, y)) · êz dx dy = 1. (C.29)

Therefore,

Alm =

[
1
2

∫∫ ∞

−∞
(Elm(x, y)× H?

lm(x, y)) · êz dx dy
]− 1

2

. (C.30)

c.3 overlap integral to fix the free coefficient

Now we have represented all (Ex, Ey, Ez)T
lm and (Hx, Hy, Hz)T

lm in Eq. (C.22) and Eq. (C.25).
Assume the general input field Ein(x, y, z = 0) propagating through a GRIN fiber with
modes (l, m), what is the output field Eout(x, y, z). The modes (l, m) are propagate
modes, and all other field which cannot project to these modes, are attenuated during
the propagation. The projection from Ein(x, y) to modes (l, m) uses the overlap integral.

First let’s represent the input field as

Ein(x, y) =
M

∑
m=0

L

∑
l=−L

almElm(x, y), (C.31)
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with
alm =

1
2

∫∫ ∞

−∞
(Ein(x, y)× H?

lm(x, y)) · êz dx dy. (C.32)

Finally Eout(x, y, z) is

Eout(x, y, z) =
M

∑
m=0

L

∑
l=−L

almElm(x, y) exp(iβz). (C.33)



D
T H I N E L E M E N T A P P R O X I M AT I O N F O R G R A D E D - I N D E X L AY E R

In 1991, Turunen [31] extended the thin element approximation, which is originally just
work for paraxial incident beam, to model oblique/inclined input field. Here we derive
the extended thin element approximation for a thin graded-index(GRIN) layer.

More specifically, the task is that we propagate a source field through a thin GRIN
layer from plane Σin to Σout, as shown in Fig. (39). The source field is located INSIDE
the GRIN layer in Σin,+, which is

Ein(ρ′)|Σin,+ = Ec exp(iκ · ρ′), (D.1)

with ρ′ = (x′, y′) and Ec the constant complex amplitude of the field. This field only has
one κ. The output field INSIDE the GRIN layer in plane Σout,- is to be calculated.

ρ′
ρ

Σin Σout

∆z

x

z

Figure 39: The illustration of the extended thin element approximation in GRIN layer.
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The input field can be treated locally as plane wave, similar as geometric field. Each
local plane wave just see/interact with the GRIN media locally. We can first calculate
kz(ρ′)

kz(ρ
′) =

√
k2

0ε(ρ′)− ||κ||2. (D.2)

In GRIN media, the skeleton of local plane wave should be a curve, but because the layer
is very thin (thin element), we approximate the skeleton to be straight, from coordinate
ρ′ to ρ, and the one-to-one mapping relation is recorded as ρ(ρ′). The thin element
approximation just include the phase change during propagation, and keeps amplitude
invariant. The phase change from ρ′ to ρ is

∆ψ[ρ(ρ′)] = κ · (ρ− ρ′) + kz(ρ
′)∆z. (D.3)

And the final output field is

Eout(ρ)|Σout,- = Ein(ρ′)|Σin,+ exp i∆ψ[ρ(ρ′)]

= Ec exp(iκ · ρ) exp[iκz(ρ′)∆z]

≈ Ec exp(iκ · ρ) exp[iκz(ρ)∆z] assume ρ ≈ ρ′

(D.4)

In summary, if we know Ec and κ of input field, output field can be calculated in the
same grid with an additional phase term κz(ρ)∆z.



E
S TA B I L I T Y A N A LY S I S O F T H E O D E S

e.1 analysis of the odes for homogeneous media

Let’s start from a simple case to calculate the eigenvalue η for homogeneous media with
permittivity ε. In this case, in M, ε̃ and ε̃−1 are constant, which can be replaced by ε

and 1/ε.

det [M− ηI ] = (ik0)4

∣∣∣∣∣∣∣∣∣∣∣∣

− η
ik0

0 kx
k0

1
ε

ky
k0

1− kx
k0

1
ε

kx
k0

0 − η
ik0

ky
k0

1
ε

ky
k0
− 1 − ky

k0

1
ε

kx
k0

− kxky

k2
0

k2
x

k2
0
− ε − η

ik0
0

ε− k2
y

k2
0

kykx

k2
0

0 − η
ik0

∣∣∣∣∣∣∣∣∣∣∣∣

= (ik0)4


(−

η
ik0
)

∣∣∣∣∣∣∣∣∣

− η
ik0

ky
k0

1
ε

ky
k0
− 1 − ky

k0

1
ε

kx
k0

k2
x

k2
0
− ε − η

ik0
0

kykx

k2
0

0 − η
ik0

∣∣∣∣∣∣∣∣∣
+ kx

k0

1
ε

ky
k0

∣∣∣∣∣∣∣∣∣

0 − η
ik0
− ky

k0

1
ε

kx
k0

− kxky

k2
0
− η

ik0
0

ε− k2
y

k2
0

kykx

k2
0

− η
ik0

∣∣∣∣∣∣∣∣∣

−(1− kx
k0

1
ε

kx
k0
)

∣∣∣∣∣∣∣∣∣

0 − η
ik0

ky
k0

1
ε

ky
k0
− 1

− kxky

k2
0

k2
x

k2
0
− ε − η

ik0

ε− k2
y

k2
0

kykx

k2
0

0

∣∣∣∣∣∣∣∣∣




= −k2
0(η

2 + k2
z) = 0,

(E.1)
with

k2
z = k2

0ε− (k2
x + k2

y).

The eigenvalue is
η = ±ikz.

So the ODE (3.10) for homogeneous media is not always stable

Re {η} =





0 k2
x + k2

y 6 k2
0ε propagating wave

±|kz| k2
x + k2

y > k2
0ε evanescent wave

(E.2)

From Eq. (E.2), the eigenvalue for propagation wave always satisfies Eq. (3.25), but
that of evanescent wave does not. In the further test of the algorithm, if we include

115
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evanescent wave k2
x + k2

y > k2
0ε, even when the initial value Ṽ(κ, z0) = 0, we get an

infinity large result field, which is the enlarged numerical noise. So to keep the stable
calculation, we need to add a criteria

d
dz

Ṽ⊥(κ, z) = 0, for ||κ||2 > k2
0ε (E.3)

Therefore, although we don’t use physical approximation during the derivation of
Eq. (3.10), except for the initial condition, it is not stable for evanescent wave calculation,
when we solve it as the "initial value problem", even for homogeneous media.

e.2 analysis of the odes for y−invariant case

Now we consider the inhomogeneity of the GRIN media, and assume both electromag-
netic field and the inhomogeneity is y-invariant. Please note, we don’t need to calculate
the exact eigenvalues, which is already done by Fourier modal method. What we are in-
terested in is the largest eigenvalues. The ODE for y-invariant (3.13) is an anti-diagonal
block matrix, whose entries are zero except those on the diagonal going from the lower
left corner to the upper right corner. If we just analyse the matrix for one thin layer,
where the z-variance of permittivity can be also neglected. Then Eq. (3.20) can be rewrit-
ten to be a second-order ODE as

d2

dz2 P̃1 = M1P̃1,

d2

dz2 P̃2 = M2P̃2,

d2

dz2 P̃4 = M4P̃4,

d2

dz2 P̃5 = M5P̃5,

(E.4)

with
MTE(κ, z) = M2(κ, z) = M4(κ, z) = k2

x − k2
0ε̃, (E.5)

and
MTM

1 (κ, z) = M1(κ, z) = −k2
0ε̃ + kxε̃−1kxε̃, (E.6)

and
MTM

2 (κ, z) = M5(κ, z) = −k2
0ε̃ + ε̃kxε̃−1kx, (E.7)

What is advantages to convert the first-order ODE into second-order one, and analyse
the stability of the second-order one (E.4)?

• Eqs. (E.4) are equivalent to the ODE in Eq. (3.20) for a thin layer(z-variance of
permittivity can be also neglected), and different polarization field components
are decoupled.
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• The matrix MTE and MTM have higher and symmetry, and mathematically proper-
ties can be used to analyse the extreme value of eigenvalues.

Now the mathematical solution for matrices MTE and MTM are

P̃(z) = ∑
i

c+i p̃+
i (κ) exp(ηiz) + c−i p̃−i (κ) exp(−ηiz). (E.8)

with η2
i the eigenvalue of MTE or MTM. To make sure that the perturbation is not en-

larged, criteria (3.24) can be rewritten as

η2
i ⊂ R and η2

i 6 0. (E.9)

Eigenvalue η2
i of MTE

In this work, we limit ε(x) to be real-valued, so the spatial frequency ε̃(kx) has the
property

ε̃(−kx) = ε̃?(kx), (E.10)

with ? denoting the conjugate. If we sample kx from kxmin to kxmax with sampling points
N and sampling distance δkx, i.e., δkx = (kxmax − kxmin)/(N − 1). Then MTE can be
explicitly written in the matrix form

MTE = k2
x − k2

0ε̃ =




k2
xmin 0 · · · 0 0

0 (kxmin + δkx)2 0 · · · 0

0 0 (kxmin + 2δkx)2 · · · 0

· · ·
0 0 · · · 0 k2

xmax



− k2

0




ε̃(0) ε̃?(δkx) ε̃?(2δkx) · · · ε̃?((N − 1)δkx)

ε̃(δkx) ε̃(0) ε̃?(δkx) · · · ε̃?((N − 2)δkx)

ε̃(2δkx) ε̃(δkx) ε̃(0) · · · ε̃?((N − 3)δkx)

· · ·
ε̃((N − 1)δkx) · · · ε̃(δkx) ε̃(0)




(E.11)
To analyse the eigenvalues of matrices, we need to know some definition and properties
of specified matrices, as follows
Definition 1. In linear algebra, a diagonal matrix is a matrix in which the entries outside the
main diagonal are all zero.
Theorem 1. The eigenvalues of a diagonal matrix are the entries in the main diagonal.
Definition 2. In linear algebra, a Hermitian matrix is a complex square matrix that is equal
to its own conjugate transpose, i.e., entry mij = m?

ji.
Theorem 2. The eigenvalues of a Hermitian matrix are real-valued.

From definition 1 and theorem 1, we know the matrix k2
x is a diagonal matrix, whose

eigenvalues are the entries of the diagonal, i.e., η2
i (k

2
x) = k2

xmin, (kxmin + δkx)2, ..., k2
xmax.

This matrix also satisfies definition 2, so k2
x is a Hermitian matrix. So

η2
i (k

2
x) ⊂ R and 0 6 η2

i (k
2
x) 6 |kx|2max. (E.12)

To study the matrix ε̃, the chapter 5.2 of [109] studied this kind of matrix and gives
definition and theorem as follows:
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Definition 3. Let f (x) be a real-valued function, and the entries of the special Toeplitz matrix
TN( f ) are

tn =
1
p

∫ p/2

−p/2
f (x) exp−inδkx dx

with n the diagonal index of the matrix TN( f ) where n = 0,±1,±2, · · · , N− 1. p is the period

of f (x) and δk =
2π

p
.

Tn( f ) =




t0 t−1 t−2 · · · t−(N−1)

t1 t0 t−1 · · · t−(N−2)

t2 t1 t0 · · · t−(N−3)

· · ·
tN−1 tN−2 tN−3 · · · t0




Theorem 3. We denote by L and U the essential lower and upper bound of f (x), respectively.
If l1, l2, · · · , lN are the eigenvalues of the matrix TN( f ), and l1 > l2 > · · · > lN , then

l1 6 U, lN > L.

And the equal sign holds when N → ∞.
ε̃ satisfies the definition 3 of TN( f ), as f (x) = ε(x), and t0 = ε̃(0), t1 = ε̃(δkx), t−1 =

ε̃?(δkx), · · · , aN−1 = ε̃((N− 1)δkx). Meanwhile, ε̃ also satisfies definition 2, so we know
that all eigenvalues of ε̃ are real, i.e., η2

i (ε̃) ⊂ R. From the theorem 3, the mathematical
concept "essential lower" and "essential upper" bound of f (x) is εmin and εmax in the TE
case, so the eigenvalue η2

min(ε̃) > εmin and η2
max(ε̃) 6 εmax. So

η2
i (k

2
0ε̃) ⊂ R and k2

0εmin 6 η2
i (k

2
0ε̃) 6 k2

0εmax (E.13)

To analyse the eigenvalues η2
i of MTE we need Weyl’s Inequalities theorem to study

the eigenvalues of the summation of two Hermitian matrices[110].
Theorem 4. A and B be N × N Hermitian matrices.

• l1(A), l2(A), · · · , lN(A) are the eigenvalues of the matrix A, and l1(A) > l2(A) > · · · >
lN(A).

• l1(B), l2(B), · · · , lN(B) are the eigenvalues of the matrix B, and l1(B) > l2(B) > · · · >
lN(B).

• l1(A+ B), l2(A+ B), · · · , lN(A+ B) are the eigenvalues of the matrix A+ B, and l1(A+

B) > l2(A + B) > · · · > lN(A + B)

Then,
lj(A + B) 6 li(A) + lj−i+1(B) for i 6 j

lj(A + B) > li(A) + lj−i+N(B) for i > j
(E.14)
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If we put i = j in the inequalities of theorem 4 (E.14), we could easily get

lj(A) + lN(B) 6 lj(A + B) 6 lj(A) + l1(B) for j = 1, 2, · · · , N.

The matrix MTE = k2
x − k2

0ε̃. Matrices k2
x and −k2

0ε̃ are both Hermitian matrices, so the
properties of eigenvalues η2

i (M
TE) are

• η2
i (M

TE) ⊂ R because the summation of Hermitian matrices is still Hermitian.

• −k2
0εmax 6 η2

i (M
TE) 6 |kx|2max − k2

0εmin.

Compared to the stable criteria (E.9), the criteria of the stable algorithm for TE case is

|kx|2max 6 k2
0εmin (E.15)

To make sure that the further algorithm is stable, we need to add one requirement,
similar as that of homogeneous media Eq. (E.3)

d
dz

Ṽ⊥(κ, z) = 0, for ||κ||2 > k2
0εmin. (E.16)

Eigenvalue η2
i of MTM

Let’s first analyse MTM
1 (E.6). Eq. (E.13) gives the analysis of η2

i (k
2
0ε̃).

Then how to calculate the extreme eigenvalues of kxε̃−1kxε̃?
First, let’s see if kxε̃−1kxε̃ has real eigenvalues. From paper [111], we get theorem 5 as

follows
Theorem 5. For a diagonalizable matrix H to have all real eigenvalues, a necessary and sufficient
condition is that there exists a Hermitian matrix W = WH such that

WH = HHW, (E.17)

and all the eigenvalues of W are positive real-valued.
In this case, H = kxε̃−1kxε̃ and HH = ε̃kxε̃−1kx. Compared with Eq. (E.17), it is

obvious that W = ε̃ can be one solution, Because from theorem 3, we also know that
the eigenvalue are positive real-valued. Therefore kxε̃−1kxε̃ satisfies theorem 5, and all
eigenvalues are real.
Definition 3. In linear algebra, two n by n matrices A and B are called similar if there exsits
an invertible n by n matrix P such that

B = P−1 AP

The matrix kxε̃−1kxε̃ can be considered as the product of matrices A = kx and B =

ε̃−1kxε̃, and following the definition 3, these two matrices A and B are similar matrices,
when ε̃−1ε̃ = I, with I identical matrix.
Theorem 6. Similar matrices have identical eigenvalues.

From theorem 6, two matrices A = kx and B = ε̃−1kxε̃ have identical eigenvalues,
which are −kmax,−kmax + δkx,−kmax + 2δkx, ...,−kmax + (N − 1)δkx, kmax. But it is still
not clear what is the eigenvalue of the product of two similar matrices. The eigenvalue
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of the production of two similar matrices, especially one of them is diagonal, must
be known. We have our guess, that the eigenvalue η2

i (kxε̃−1kxε̃) ≈ k2
x. We have several

numerical tests about different ε(x). In Fig. (40) one of the test results are shown. The left
figure is ε(x), while the right figure shows eigenvalue η2

i (kxε̃−1kxε̃) and η2
i (k

2
x). We use

the matrix analysis software MATLAB to calculate all eigenvalues. In this calculation,

• kx is equidistant sampled by 1500 points. −1.5k0
√

εmin 6 kx 6 1.5k0
√

εmin

• There should be 1500 eigenvalues. The eigenvalues are sorted from minimum to
maximum, and plot.

We can see that our guess is correct. Honestly, we didn’t find a perfect mathematical
proof of our guess. We tried two methods to find the inequality of η2

i (kxε̃−1kxε̃).
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Figure 40: Matrix analysis. The left figure is the distribution of ε(x), while the right figure shows
the comparison of sorted eigenvalue of two matrices.

Method 1
The useful theorems can be found in [112, 113].

Theorem 7. Let matrices M1 and M2 be n× n Hermitian matrices and non-negative(all eigen-
values are non-negative). Then for every integer k, 1 6 k 6 n the largest eigenvalue of matrix
HP satisfies

umax(M1)umin(M2) 6 umax(M1M2) 6 umax(M1)umax(M2), (E.18)

with u denoting eigenvalue of matrix.

• kxε̃−1kxε̃ can be considered as the production of matrices A = kxε̃−1kx and B = ε̃.
Both A and B are hermitian matrices, following definition 2.

• If we well adjust the sampling and kx 6= 0, it can be invertible. Another matrix
C = k−1

x Akx = ε̃−1k2
x is similar to A, following the definition 3. A and C have

identical eigenvalue, following theorem 6.
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• Matrix C is the production of two non-negative hermitian matrices ε̃−1 and k2
x, so

the maximum eigenvalue of C satisfies umax(C) 6 umax(ε̃
−1)umax(k2

x) = k2
xmax/εmin,

and umax(C) > 0 following definition 1, 3, and theorem 1, 3, 7.

• Following theorem 6, 0 6 umax(A) 6 umax(ε̃).

• Then the inequality of eigenvalue umax(kxε̃−1kxε̃) = umax AB can be derived, by
using theorem 7

k2
xmax 6 umax(kxε̃−1kxε̃) 6 k2

xmax
εmax

εmin
(E.19)

From method 1, we can only limit the eigenvalue in the range as shown in the inequality
(E.19), still not prove our guess that eigenvalue umax(kxε̃−1kxε̃) ≡ k2

xmax
Method 2

As all the matrices comes from integral operator, so we go back to the integration and
re-formulate the matrix

kx ε̃−1kx ε̃Ṽ1(kx)

=
1

(2π)4 kx
∫

dx2
1

ε(x2)
exp(−ikxx2)

∫
dkx2kx2 exp(ikx2x2)

∫
dx1ε(x1) exp(−ikx2x1)

∫
dkx1Ṽ1(kx1) exp(ikx1x1)

=
1

(2π)4 kx
∫

dkx1
∫

dx1
∫

dx2 · · ·
∫

dkx2kx2 exp[ikx2(x2 − x1)] exchange the order of integral

=
1

(2π)3 kx
∫

dkx1
∫

dx1
∫

dx2 · · · − i
d

d(x2 − x1)
δ(x2 − x1)

=
1

(2π)3 kx
∫

dkx1
∫

dx2 · · ·
∫

dx1ε(x1) exp(ikx1x1) · (−i)δ′(x2 − x1)

=
1

(2π)2 kx
∫

dkx1
∫

dx2 · · · (−i)
[

d
dx2

ε(x2) + ε(x2)ikx1

]
exp(ikx1x2)

d
dx

δ(x) ∗ f (x) =
d

dx
f (x)

=
1

(2π)2 kx
∫

dkx1 · · ·
∫

dx2(−i)
1

ε(x2)

[
d

dx2
ε(x2) + ε(x2)ikx1

]
exp[i(kx1 − kx)x2]

=
1

(2π)2 kx
∫

dkx1 · · ·
∫

dx2

[
(−i)

d
dx2

ln ε(x2) + kx1

]
exp[i(kx1 − kx)x2]

=
1

2π
kx
∫

dkx1Ṽ1(kx1)
[
−i2(kx1 − kx)g̃(kx1 − kx) + kx1δ(kx1 − kx)

]

= [k2
x g̃ − kx g̃kx + k2

x]Ṽ1(kx),
(E.20)

with
g̃(kx, z) = F k ln ε(x, z) =

1√
2π

∫ +∞

−∞
dkx ln ε(x, z) exp(−ikxx). (E.21)

Now the matrix MTM
1 can be rewritten as

MTM
1 = −k2

0ε̃ + k2
x + k2

x g̃ − kx g̃kx = MTE + k2
x g̃ − kx g̃kx (E.22)

If we analyse matrix k2
x g̃− kx g̃kx = kx(kx g̃− g̃kx) mathematically, it is very difficult. We

tried several different mathematical definitions and theorems, but none of them gives
us accurate desired proof. So let’s try it again by using physical thinking.

(kx g̃ − g̃kx)Ṽ1(kx) = kx g̃Ṽ1(kx)− g̃kxṼ1(kx)

=
1

2π

∫
dx exp−ikxx

{
d

dx
[ln ε(x)V1(x)]− ln ε(x)

d
dx

V1(x)
}

=
1

2π

∫
dx exp−ikxx

{
d

dx
ln ε(x)V1(x)

}

(E.23)
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As in current available material, ε is generally not larger than 10, the term
d

dx
ln ε(x)

gives very slightly effect to final result. So we neglect this term, which means η2
i (k

2
x g̃ −

kx g̃kx) ≈ 0. Fig. (41) shows η2
i (k

2
x g̃ − kx g̃kx). Here

• kx is equidistant sampled by 1000 points. −k0
√

εmin 6 kx 6 k0
√

εmin

• There should be 1000 eigenvalues. The eigenvalues are sorted from minimum to
maximum, and plot.

The real part is as what we guess, almost all eigenvalues are equal to 0. There are some
non-zero value, but later in the final analysis of matrix MTM

1 , the effects of them are
negligible.
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Figure 41: Eigenvalues of the additional matrix in TM case.

Now we calculate the eigenvalues of both MTE and MTM
1 . Fig. (42) is the calcula-

tion when −k0
√

εmin 6 kx 6 k0
√

εmin by 1000 sampling points, while Fig. (43) is
−1.5k0

√
εmin 6 kx 6 1.5k0

√
εmin with 1500 sampling points. Figs. (42) and (43) show

that the eigenvalues of MTE and MTM
1 are almost same. Although η2

i (M
TM
1 ) contains a

imaginary part, but it is negligible, compared to the magnitude of the real part. Here
we finally see that the effect of the matrix k2

x g̃ − kx g̃kx can be neglected.
After neglecting the matrix k2

x g̃ − kx g̃kx, the eigenvalue analysis is identical with TE
case. And the criteria when all eigenvalues are real and negative-valued, as Eq. (E.9), is
also identical with TE case, as Eq. (E.15). Fig. (42) gives the eigenvalues when |kx| 6
k0
√

εmin, which is given in Eq. (E.15). In this case, the largest eigenvalue approaching
to 0, but still negative. Fig. (43) shows eigenvalues when kx contains value which is
larger than k0

√
εmin, and the largest eigenvalue is larger than 0, which will introduce

instability of further algorithm.
There are two matrices in TM case (E.6) and (E.7). What is the relation between the

two matrices?
Theorem 8. Let matrix A is the transpose conjugate of matrix B, i.e., Aij = B?

ji, with i, j index
of matrix entries. The relation is denoted as AH = B, Then the eigenvalue of A is the complex
conjugate of B.
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Figure 42: Eigenvalues of TE and TM matrices for ε(x) in Fig. (40). |kx| 6 k0
√

εmin. The left
figure is real part, and the right one is imaginary part.
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The matrices ε̃,kx,and ε̃−1 are Hermitian matrices, which satisfy definition 2. And
from basic linear algebra, we know the conjugate transpose of {MTM

1 }H is

{MTM
1 }H = {−k2

0ε̃ + kxε̃−1kxε̃}H

= {−k2
0ε̃}H + {kxε̃−1kxε̃}H

= −k2
0ε̃ + ε̃kxε̃−1kx = MTM

2 .

(E.24)

We have discussed that the imaginary part of η2
i (M

TM
1 ) is negligible. Together with

theorem 8, we know that η2
i (M

TM
1 ) = η2

i (M
TM
2 ).

Conclusion in y− invariant case
The criteria of the stable algorithm for is

|kx|2max 6 k2
0εmin. (E.25)

To make sure that the further algorithm is stable, the ODE becomes

d
dz

Ṽ⊥(κ, z) =

{
M(κ, z)Ṽ⊥(κ, z) for ||κ||2 6 k2

0εmin

0 for ||κ||2 > k2
0εmin

, (E.26)

with M the matrix in Eq. (3.18).

e.3 analysis of the odes for general 3d case

Now we consider the inhomogeneity of the GRIN media in the general case. As the
analysis in the y−invariant case, we derive the second order differential equation

d2

dz2

(
Ṽ1

Ṽ2

)
(κ, z) =

[
−k2

0ε̃ + k2
y + kxε̃−1kxε̃ kxε̃−1kyε̃− kxky

kyε̃−1kxε̃− kxky −k2
0ε̃ + k2

x + kyε̃−1kyε̃

](
Ṽ1

Ṽ2

)
(κ, z).

(E.27)

d2

dz2

(
Ṽ4

Ṽ5

)
(κ, z) =

[
−k2

0ε̃ + k2
x + ε̃kyε̃−1ky −ε̃kyε̃−1kx + kxky

−ε̃kxε̃−1ky + kxky −k2
0ε̃ + k2

y + ε̃kxε̃−1kx

](
Ṽ4

Ṽ5

)
(κ, z).

(E.28)
After exchanging the integral order, Eqs. (E.27) and (E.28) can be rewritten as

d2

dz2

(
Ṽ1

Ṽ2

)
(κ, z) = (−k2

0ε̃ + k2
x + k2

y)

(
Ṽ1

Ṽ2

)
(κ, z) +M12

(
Ṽ1

Ṽ2

)
(κ, z). (E.29)

with

M12 =


 k2

x g̃ − kx g̃kx kxky g̃ − ky g̃kx

kxky g̃ − kx g̃ky k2
y g̃ − ky g̃ky


 (E.30)
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d2

dz2

(
Ṽ4

Ṽ5

)
(κ, z) = (−k2

0ε̃ + k2
x + k2

y)

(
Ṽ4

Ṽ5

)
(κ, z) +M45

(
Ṽ4

Ṽ5

)
(κ, z). (E.31)

with

M45 =


 g̃k2

y − ky g̃ky g̃kxky − ky g̃kx

g̃kxky − kx g̃ky g̃k2
x − kx g̃kx


 (E.32)

The entries of matrices M12 and M45 are all in the form of subtraction between two
similar matrices, which is discussed in the last section. As we discussed in last section,
the effects of M12 and M45 are neglected.

The criteria of the stable algorithm for is

||κ||2max 6 k2
0εmin. (E.33)

To make sure that the further algorithm is stable, the ODE becomes

d
dz

Ṽ⊥(κ, z) =

{
M(κ, z)Ṽ⊥(κ, z) for ||κ||2 6 k2

0εmin

0 for ||κ||2 > k2
0εmin

, (E.34)

with M the matrix in Eq. (3.18).

e.4 analysis of the odes after extracting fast-changing phase

First of all, we still just check the stability in a tiny z step, which means z-variance of
ε(r) is negligible. Second, we rewrite the ODE (3.43) into a second-order ODE as

d2

dz2

(
Ũ1

Ũ2

)
+ 2ik0n̄

d
dz

(
Ũ1

Ũ2

)
= (−k2

0ε̃ + k2
0n̄2 + k2

x + k2
y)

(
Ũ1

Ũ2

)
+M12

(
Ũ1

Ũ2

)
.

(E.35)
with

M12 =


 k2

x g̃ − kx g̃kx kxky g̃ − ky g̃kx

kxky g̃ − kx g̃ky k2
y g̃ − ky g̃ky


 (E.36)

d2

dz2

(
Ũ4

Ũ5

)
+ 2ik0n̄

d
dz

(
Ũ4

Ũ5

)
= (−k2

0ε̃ + k2
0n̄2 + k2

x + k2
y)

(
Ũ4

Ũ5

)
+M45

(
Ũ4

Ũ5

)
.

(E.37)
with

M45 =


 g̃k2

y − ky g̃ky g̃kxky − ky g̃kx

g̃kxky − kx g̃ky g̃k2
x − kx g̃kx


 (E.38)

The entries of matrices M12 and M45 are all in the form of subtraction between two
similar matrices, which is discussed in the last section. As we discussed in last section,
the effects of M12 and M45 are neglected. And Eqs. (E.35) and (E.37) can be rewritten as

d2

dz2 Ũi + 2ik0n̄
d
dz

Ũi + (k2
0ε̃− k2

0n̄2 − k2
x − k2

y)Ũi = 0, (E.39)



126 stability analysis of the odes

with i = 1, 2, 4, 5.
Eigenvalue ηi of Eq. (E.39) is calculated by

η =
−2ik0n̄±

√
(2ik0n̄)2 − 4(k2

0ε̃− k2
0n̄2 − k2

x − k2
y)

2
= −2ik0n̄± i

√
k2

0ε̃− k2
x − k2

y

(E.40)

To analyze Eq. (E.40), we need the matrix definition and theorem from last section.

• The matrix k2
0ε̃ is Toeplitz matrix (definition 3), and its eigenvalue k2

0εmin 6 η(k2
0ε̃) 6

k2
0εmax (theorem 3).

• The matrices k2
x and k2

y are diagonal matrices (definition 1) and the eigenvalue
0 6 η(k2

x) 6 |kx|2max and 0 6 η(k2
y) 6 |ky|2max (theorem 1)

• All matrices mentioned in the above terms are Hermitian matrices (definition 2)
and the eigenvalue of sum of Hermitian matrices is η(k2

0ε̃− k2
x − k2

y) > k2
0εmin −

|kx|2max − |ky|2max (theorem 4)

• When η(k2
0ε̃− k2

x − k2
y) > 0, η(

√
k2

0ε̃− k2
x − k2

y) ⊂ R.

Therefore, η in Eq. (E.40) consists of a pure imaginary values when

||κ||2 6 k2
0εmin. (E.41)
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After plugging the field representations (4.20) and (4.21) into Maxwell equations (2.23),
we get

∇× E0(r) + i∇ψ(r)× E0(r)− iωµ0H0(r) = 0, (F.1)

∇× H0(r) + i∇ψ(r)× H0(r) + iωε0εr(r)E0(r) = 0, (F.2)

∇ · E0(r) + iE0(r) · ∇ψ(r) + E0(r) · ∇ ln εr(r) = 0, (F.3)

∇ · H0(r) + iH0(r) · ∇ψ(r) = 0. (F.4)

By applying the geometric field approximations for slowly varying refractive index,
mathematically represented as ∇εr(r) ≈ 0, the term which contains ∇ · E0(r), ∇ · H0(r)
and ∇εr(r) can be neglected. Then we get the geometric field equations [53]

∇ψ(r)× E0(r) = ωµ0H0(r), (F.5)

∇ψ(r)× H0(r) = −ωε0εr(r)E0(r), (F.6)

∇ψ(r) · E0(r) = 0, (F.7)

∇ψ(r) · H0(r) = 0. (F.8)

Eqs. (F.5-F.8) describe the interaction of a geometric field with a GRIN medium, and
their solution yields the theory for field propagation in GRIN medium.

In order to solve Eqs. (F.5-F.8), we first try to understand the geometric field by com-
paring these equations with those for plane waves, which are derived by using a plane-
wave ansatz in Maxwell’s equations (2.23) for a homogeneous medium. The plane wave
ansatz is

E(r) = E0 exp(ik · r), (F.9)

and
H(r) = H0 exp(ik · r), (F.10)

with a constant wave vector k and the complex amplitude of the electric field E0 and
that of the magnetic field H0.

Plugging the plane wave ansatz (F.9) and (F.10) into Maxwell’s equations (2.23), we
can derive the plane wave equations for homogeneous media

k× E0 = ωµ0H0, (F.11)

k× H0 = −ωε0n2E0, (F.12)

k · E0 = 0, (F.13)
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k · H0 = 0, (F.14)

where n denotes the refractive index.
Comparing Eqs. (F.5-F.8) to Eqs. (F.11-F.14), we see that ∇ψ(r) in the care of the

geometric field exhibits a role analogous to that of k for the plane wave

∇ψ(r) ∼ k. (F.15)

The plane wave ansatz (F.9) and (F.10) contains the wave vector k, while Eqs. (4.20)
and (4.21) are rewritten using the gradient theorem to include the term ∇ψ(r),

E(r) = E0(r) exp
{

i
[

ψ(r0) +
∫ r

r0

∇ψ(r) · dr
]}

, (F.16)

and

H(r) = H0(r) exp
{

i
[

ψ(r0) +
∫ r

r0

∇ψ(r) · dr
]}

. (F.17)

Here ψ(r0) denotes the phase at position r0.
Then we use Eqs. (F.16) and (F.17) to solve Eqs. (F.5-F.8), following the same procedure

that is employed to solve Eqs. (F.11-F.14) via the plane-wave ansatz (F.9) and (F.10): Cal-
culating k× k× E0 using Eqs. (F.11-F.12) yields the well known dispersion relation [53,
114]

k2 = k2
0εr. (F.18)

with k0 = 2π/λ, where λ denotes the vacuum wavelength. Therefore, a plane wave (F.9)
and (F.10) with a wave vector k which fulfills (F.18) solves Eqs. (F.11-F.14). Furthermore,
we define

k = k0
√

εr ŝ, (F.19)

where ŝ denotes the propagation direction of the plane wave. From Eqs. (F.11-F.14), we
also know that ŝ is perpendicular to the vectorial electromagnetic field E(r) and H(r),
whose directions are identical to those of the corresponding amplitudes E0 and H0.

Analogously for a geometric field, we calculate∇ψ(r)×∇ψ(r)× E0(r) using Eqs. (F.5-
F.6), so that the eikonal equation is derived,

(∇ψ(r))2 = k2
0εr(r). (F.20)

Eqs. (F.16) and (F.17) with ∇ψ(r) according to Eq. (F.20) are solutions of Eqs. (F.5-F.8).
Similarly to what we did with plane waves, we define

∇ψ(r) = k(r) = k0
√

εr(r)ŝ(r), (F.21)

where ŝ(r) denotes the propagation direction of geometric field locally at position r.
From Eqs. (F.5-F.8), we also know that ŝ(r) is perpendicular to the vectorial electromag-
netic field E(r) and H(r), whose directions are identical with those of the corresponding
amplitudes E0(r) and H0(r). Eq. (F.21) is the vectorial version of eikonal equation.
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x - D O M A I N M E T H O D

g.1 derivation of ode in k-domain for geometric field

Substituting Eq. (4.2) into the ODE (4.11), and calculate M11Ṽ1 by the following process.
We firstly calculating the convolution ε̃Ṽ1(κ, z)

ε̃Ṽ1(κ, z) = F k[ε(ρ, z)V1(ρ, z)] ε(ρ, z)U1(ρ, z) is slowly varying

= Fh
k [ε(ρ, z)U1(ρ, z) exp[iψ(ρ, z)]] ε doesn’t change ψ

(4.2)
= a[ρ(κ), z]ε[ρ(κ), z]U1[ρ(κ), z] exp{iψ[ρ(κ), z]− iκ · ρ}
= ε[ρ(κ), z]Ṽ1(κ, z).

(G.1)

For geometric field, the convolution between ε̃(κ) and Ṽ1(κ) becomes a multiplication.
Then we calculate F−1

k [kxε̃Ṽ1](ρ, z)

F−1
k [kxε̃Ṽ1](ρ, z) = F−1

k {kxε[ρ(κ), z]Ṽ1(κ, z)}(ρ, z) kxεÃ1 is slowly varying

= Fh,−1
k {kxε[ρ(κ), z]Ã1(κ, z) exp[iψ̃(κ, z)]}(ρ, z) kxε doesn’t change ψ̃

= kx(ρ, z)ε(ρ, z)V1(ρ, z),
(G.2)

and finally calculating ε̃−1kxε̃Ṽ1(κ, z)

ε̃−1kxε̃Ṽ1(κ, z) = F k[ε
−1(ρ, z)kx(ρ, z)ε(ρ, z)V1(ρ, z)]

= F k[kx(ρ, z)V1(ρ, z)] kx doesn’t change ψ

= kxṼ1(κ, z).

(G.3)

Substituting of Eqs. (G.1) and (G.3) into M11Ṽ1(κ, z), we get

M11Ṽ1(κ, z) = {−k2
0ε[ρ(κ), z] + k2

y + k2
x}Ṽ1(κ, z). (G.4)

Using the same calculation process as Eqs. (G.1-G.4), the 2nd-order ODE (4.11) can be
rewritten as

d2

dz2 Ṽ⊥(κ, z) = −k2
z[ρ(κ), z]Ṽ⊥(κ, z), (G.5)

with kz[ρ(κ), z] = k2
0ε[ρ(κ), z]− k2

y − k2
x and Ṽ⊥ = (Ṽ1, Ṽ2, Ṽ4, Ṽ5)T.
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g.2 ode of ray path

To derive the first ODE in x-domain, which is relevant to the ray path, we differentiate
Eq. (4.19) with respect to arc length s [53] to obtain the equation

d
ds

[k(r)] =
d
ds

[∇ψ(r)]

=
dr
ds
· ∇[∇ψ(r)]

=
1

k0
√

ε(r)
∇ψ(r) · [∇ψ(r)]

=
1

2k0
√

ε(r)
∇
{
[∇ψ(r)]2

}

= k0∇
√

ε(r)

(G.6)

After eliminating k0 on both sides, the ray equation is derived

d
ds

[
√

ε(r)ŝ(r)] = ∇
√

ε(r). (G.7)

g.3 ode of the normalized field vector

To achieve an ODE of the normalized field vector û(r), we differentiate Eq. (4.34) with
respect to arc length s to obtain

d
ds

[k(r) · E0(r)]

=
d
ds

[k0
√

ε(r)ŝ(r) · E0(r)]

= k0{
√

ε(r)ŝ(r) · d
ds

E0(r) + E0(r) ·
d
ds

[
√

ε(r)ŝ(r)]
︸ ︷︷ ︸

}

using Eq. (4.45)

= k0{
√

ε(r)ŝ(r) · d
ds

E0(r) + E0(r) ·∇
√

ε(r)}

= k0{
√

ε(r)ŝ(r) · d
ds

[||E0(r)||û(r)] + ||E0(r)||û(r) ·∇
√

ε(r)}

= k0{||E0(r)||
√

ε(r)ŝ(r) · d
ds

û(r) +
√

ε(r) ŝ(r) · û(r)︸ ︷︷ ︸
d
ds
||E0(r)||

k(r) · E0(r) = 0⇒ ŝ(r) · û(r) = 0

+||E0(r)||û(r) · ∇
√

ε(r)}
= k0||E0(r)||{

√
ε(r)ŝ(r) · d

ds
û(r) + û(r) ·∇

√
ε(r)}

= 0,

(G.8)

Therefore, √
ε(r)ŝ(r) · d

ds
û(r) + û(r) · ∇

√
ε(r) = 0 (G.9)
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plane Σ

ŝ1

ŝ1 ŝ2

û1

û1

û2

dŝ

ds

dû

ds

Figure 44: Geometric relation of the adjacent ray segments and the related normalized field
vectors. ŝ1 and ŝ2 are two adjacent ray segments, while û1 and û2 are the related
normalized field vectors.

The information of
d
ds

û(r) is still not enough, we need to add more physical discussion.

More specifically, we need to know the relationship between ŝ(r) and
d
ds

û(r). In Fig. 44,

we use the geometric relation, and boundary condition to prove
dŝ(r)

ds
‖ ŝ(r).

• k(r) · E0(r) = 0⇒ ŝ(r) · û(r) = 0⇒ ŝ(r) ⊥ û(r) is always true.

• Any two adjacent steps ray segments form one plane Σ, as shown in Fig. 44.

• As ŝ(r) is a normalized vector,
d
ds

(ŝ(r) · ŝ(r)) = 2ŝ(r) · dŝ(r)
ds

= 0 ⇒ dŝ(r)
ds

⊥

ŝ(r). Here
dŝ
ds

is also in plane Σ.

• We can decompose the electric field vector related to ŝ1 into two modes: one is in
plane Σ, and the other one is perpendicular to Σ. Then we could discuss the two
modes separately.

1. If û1 is in plane Σ

d
ds

û× ŝ =
d
ds

(û× ŝ)− û× d
ds

ŝ (G.10)

In Fig. (44), the adjacent û1× ŝ1 and û2× ŝ2 are the normal vector of plane Σ,

and not change, so
d
ds

(û× ŝ) = 0. Meanwhile, from the previous items, we
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know û ⊥ ŝ, and
d
ds

ŝ ⊥ ŝ, and all three vectors are in the same plane Σ, so

û× d
ds

ŝ = 0. Then we know that in Eq. (G.10),
d
ds

û× ŝ = 0

2. If û1 ⊥ Σ. û2 has no reason to change. So
d
ds

û = 0.

For general case, any û(r) can be decomposed into Case 1 and Case 2,
dû(r)

ds
‖ ŝ(r)

is always true.

Then Eq. (G.9) can be rewritten as

√
ε(r)

dû(r)
ds

= −
[

û(r) ·∇
√

ε(r)
]

ŝ(r) . (G.11)
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