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Zusammenfassung 

Digitale Methode und Modellen ermöglichen den Produktdesignern eine frühzei-
tige Evaluierung des Produkts, damit sie das Verhalten des Produkts und seine 
Interaktionen mit benachbarten Systemen in seinen späteren Lebensphasen besser 
verstehen können. Virtual Reality (VR) ist eine Technologie, die zum frühen Eva-
luierungsprozess beitragen kann, indem spätere Lebenssituationen eines Produkts 
schon in der Entwurfsphase angezeigt werden können. Die Anwendung von VR in 
der Industrie ist jedoch derzeit aufgrund des hohen Modellaufbereitungsaufwands 
und der limitierten Wiederverwendbarkeit vorhandener Modelle begrenzt. Daher 
befasst sich diese Arbeit mit der Entwicklung einer Methode, die die frühzeitige 
Evaluierung des Produkts innerhalb von VR und die Verwendung von VR im Pro-
duktentwicklungsprozess erleichtern kann. Diese Methode befasst sich mit dem 
Prozess der Entwicklung allgemeiner Verhaltensbeschreibungen zur Verwendung 
in VR, die auch wiederverwendet werden können, um dynamische Anwendungs-
fälle eines Produkts in den verschiedenen VR-Systemen abzubilden. Der Fokus 
liegt auf der Reduzierung des gesamten Aufbereitungsaufwands von VR-Modellen 
und auf das Verwirklichen einer hohen Wiederverwendbarkeit bereits vorhandener 
Modelle. 

Die Kernkomponenten der Arbeit bestehen in der Verwendung von Model Based 
Systems Engineering (MBSE) zur Entwicklung allgemeingültiger Verhaltensmo-
dellbeschreibungen, ihrer Verwendung beim Erstellen verschiedener Anwen-
dungsfälle eines Produkts in einem VR-System und ihrer Wiederverwendung in 
den verschiedenen VR-Systemen. Die Systems Modeling Language (SysML) wird 
zur Beschreibung der Verhaltensmodelle verwendet, der Modellierungsprozess 
wird systematisch beschrieben und auch in Form allgemeiner Anwendungsrichtli-
nien für die spätere Verwendung zusammengefasst. Darüber hinaus wird eine de-
dizierte Physik-Engine verwendet, um die physikalischen Berechnungen für virtu-
elle Objekte in VR durchzuführen, welche auch mit SysML integriert ist. Diese 
SysML-Verhaltensmodelle zusammen mit der Physik-Engine bilden eine echtzeit-
fähige Produktanwendungssimulation in VR. Dieselben SysML-Verhaltensmo-
delle werden für verschiedene VR-Systeme verwendet, um Echtzeitsimulationen 
abzubilden und ihre Wiederverwendung zu validieren. Zwei VR-Prototypen wur-
den entwickelt, um die Wirksamkeit und Verwendung der vorgestellten Methoden 
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zu demonstrieren. Schließlich wurde einer der Prototypen einer empirischen Un-
tersuchung unterzogen, die mithilfe von Experten aus Wissenschaft und Industrie 
durchgeführt wurde.



 

Abstract 

Digital methods and models help the product designers in performing early evalu-
ations on a product that eventually help to gain understanding about a product’s 
behaviour and its interactions with neighbouring systems in its later life-phases. 
Virtual Reality (VR) is a technology that can facilitate the early evaluation process 
by showing later life situations of a product as early as at the design stage. How-
ever, the application of VR in the industry is currently limited due to high model 
preparation effort and poor reusability of already prepared models. Therefore, this 
thesis pursues towards the development of a method that can facilitate the early 
evaluations of the product in VR and thus, facilitate the use of VR in the product 
development process. This method aims at achieving generic behavioural descrip-
tions for use in VR that can be reused as well to form dynamic use cases of a 
product in different VR-systems. The focus lies on reducing the overall preparation 
effort of VR-models and on achieving high reusability of already created models. 

The core components of the thesis consist of the use of Model Based Systems En-
gineering (MBSE) to develop generic behavioural model descriptions, their use in 
building different use cases of a product in one VR-system and their reuse in dif-
ferent VR-systems as well. The Systems Modeling Language (SysML) is used to 
describe the behavioural models, the modelling process is described systematically 
and is also summarized in the form of general-purpose guidelines for later use. 
Furthermore, a dedicated physics engine is used to perform the physical calcula-
tions on virtual objects in VR and is integrated with the SysML. These SysML 
behaviour models together with the physics engine are used to achieve a real-time 
product use case simulation inside VR. The same SysML behaviour models are 
used across different VR-systems to achieve real-time simulations and to validate 
their reuse. Two VR prototypes are developed to demonstrate the effectivity and 
use of the presented method. Finally, one of the prototypes is put to the empirical 
evaluation performed with the help of experts from academia as well as industry. 

 





 

1 Introduction 

It is the task of a product designer to consider all life-phases of a product at the 
design stage and to ensure that the finished product will fulfil the requirements 
arising from its different life-phases. General product life-phases according to 
VDI2221 [Vdi87] are product planning, product development, production plan-
ning, production, distribution, use, service and disposal. The products of today are 
becoming increasingly complex and at the same time, they are multi-disciplinary. 
The demands and expectations of customers are increasing and the overall devel-
opment time is decreasing. One goal during the product development process is to 
gain an understanding of the product and its behaviour in its later life-phases so 
that the final solution complies with the needs of all the stakeholders. This com-
pliance requires consideration of the needs of different stakeholders of the product 
at the product development stage. The use of different use cases of a product and 
their evaluation help to understand different situations that can arise in a product’s 
later life-phases. However, many aspects of such an evaluation are highly depend-
ent on the availability of a physical prototype of the product. The critical factors 
associated with the use of prototypes is the cost and availability in the initial design 
stages. Considering these challenges, there is an ever-increasing drift towards the 
use of digital models and methods in the product development process. These mod-
els and methods help the product designers to evaluate and to gain understanding 
about different aspects of a product and its behaviour. The Virtual Reality (VR) 
technology can serve as a major support tool, as it can help the designer by showing 
the product (visually and/or acoustically and/or tactile) and its behaviour in later 
life-phases. Thus, VR possesses great potential to facilitate the product develop-
ment process by making an evaluation of the product possible as early as at the 
design stage. 

The current methods that are deployed in the product development process mainly 
focus on the product alone and its functionality. A product cannot operate isolated 
on its own over its life span, instead, it comes in contact with different environ-
ments and actor(s). Actors are the persons with specific roles over the product’s 
life cycle e.g. fabricator, assembler or the end-user. A product can require electric-
ity, certain space, human interventions etc. for use or repair etc., therefore, it is of 
great importance to consider product’s interactions with its neighbouring systems 
as well. Figure 1-1 shows different life-phases of a product with the respective 
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actor(s). Every product in its different life-phases finds itself in different environ-
ments and also different human actor/actors come(s) in contact/interact with it. For 
example, during product production, a manufacturing machine operator is the actor 
and manufacturing environment is the environment of the product. Similarly, in 
any particular life-phase, the environment of the product and the human actor(s) 
can be referred to as the “context” of the product. 

 
Figure 1-1: Context of product in different life-phases [Lie17] 

Based on the different actor(s) and environments in different life-phases, the con-
text of the product changes and so do the expectations from it. An evaluation of 
the context of the product can be achieved by building a contextual use case of a 
product in VR i.e. a product along with its environment and actor(s). Such a use 
case can facilitate the designer in foreseeing future interactions of a product by 
offering a later life-phase-specific situation in VR. The cost associated with the 
error corrections increases exponentially over the life span of the product [Ste04]. 
The earlier a design flaw is detected, the cheaper it is to resolve. Therefore, the 
early evaluation of the product’s later life situations is vital for successful product 
development. The early evaluation of a product along with its context not only 
offer a better understanding about the product and its behaviour in later life, but it 
also possesses the potential of exploring new requirements of the product that may 
yet not have been considered during the design. 
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1.1 Motivation 

Today the designer in the industry stays at the centre of the development process, 
where he/she has to either think of all the possible use cases of the product, or 
he/she uses different models and simulations to ensure fulfilment of product re-
quirements. The product designer can be supported in the fulfilment of his/her 
tasks by means of a virtual model that can help the designer to efficiently configure 
different use cases of a product inside VR. One important aspect of this virtual 
model is the inclusion of an actor as the human interacting with the product in any 
particular situation. The designer will be the observer of this interaction instead of 
taking up the role of the actor. The main reason for the inclusion of an actor is the 
fact that the designer is usually the person with the highest knowledge about the 
product and thus, it can be very easy and intuitive for the designer to use/service 
the product. However, the same tasks may not be that intuitive for the actual prod-
uct user or technician later. Therefore, it is advantageous to have an actor model 
in the form of a virtual human model in VR and let the product designer be the 
observer of the overall system. In the role of an observer, the product designer may 
not be directly manipulating the interaction, however, he/she can examine the in-
teraction between the product and actor. The second important aspect of this virtual 
model is the inclusion of a product life-phase-specific environment. This means 
that the product is not being considered alone as the object of evaluation, instead, 
the environment of the product is also considered. The inclusion of an environ-
mental model brings multiple evaluation aspects starting from spatial requirements 
to functional atmosphere into consideration. Furthermore, the interaction between 
the product and environmental model can also be evaluated. 

Although VR offers great potential to facilitate the product development process 
in many ways, the use of VR technology is limited in the industry due to several 
reasons e.g.  

• The time and the effort needed to prepare VR-models is high,  
• the interoperability between different VR-systems is low and  
• the available software solutions are highly application-specific.  

The major developments in the field of VR are pushed by the gaming and enter-
tainment industry. Therefore, the available VR solutions focus mainly on aspects 
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such as the quality of visualisation, user-friendliness etc. The simulations/anima-
tions are prepared by programming the whole VR game/application in advance. 
The VR applications in the gaming and entertainment industry allow the in-ad-
vance planning of all the possible scenarios and thus, the advance programming of 
all application scenarios is possible. On the contrary, the VR applications in prod-
uct development are based on design reviews and product evaluation scenarios. In 
such applications, the focus lies on aspects such as real-time simulation, behaviour 
building, model preparation effort, interoperability between different software 
tools and reusability etc. These aspects cannot be guaranteed by in advance pro-
gramming methods. Furthermore, the in advance programming can bring bias in 
the evaluation process and the evaluation can lose its meaning. 

Although the VR technology can offer a real-time simulation of product behaviour 
and thus makes it possible to perform a contextual evaluation of a product, its ap-
plication is primarily limited to visualisation of product models. The behavioural 
simulations of the products are not largely performed inside the VR mainly due to 
the following limitation [Mah17b]: 

• the great amount of time and the effort needed for the preparation of virtual 
models, 

• poor/limited possibilities to reuse these models and/or parts of them and 
• limited modification possibilities i.e. a small change can force a complete 

new preparation. 

A reason for the high number of current visualisation applications can be identified 
as the relative ease associated with building a visual model of a product in VR. 
The geometrical product model that is normally available as a CAD model during 
product development can be imported into VR with the help of different geomet-
rical exchange formats that are currently available. The currently available VR-
software facilitate a wide range of import possibilities for these geometrical ex-
change formats [Lor16][Mah16]. However, there is no direct import or exchange 
method available for the import of behavioural simulation information (physical 
calculation incorporation, functional simulations etc.) in VR (see also 3.3). Fur-
thermore, the different VR-systems (CAVE, Powerwall, HMD, sVR1) make use 
of different VR-software that are not compatible with each other. This means that 

                                              
1 sVR – Smartphone VR 
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an application developed for CAVE VR-systems does not work in HMDs. Con-
sidering the potential of VR and the challenges associated with its use in product 
development, there is a need for a new method that can integrate VR into the cur-
rent product development process by addressing the challenges discussed here. 
Such a method can greatly facilitate the product designer in fulfilling his/her tasks. 

1.2 Goal and scope of this thesis 

The goal of this thesis is to develop a method that can facilitate an early evaluation 
of a product using VR technology. Figure 1-2 shows the overall model for product 
development in VR. 

The VR-model consists of a product inside a life-phase specific environment in the 
presence of one or more human actor(s). The complete VR-model possesses an 
interface that allows the product designer (VR-user) to choose actor, product and 
environment models from a model database to build a contextual use case in VR 
and to observe the interplay of these in VR. VR technology refers to different VR-
systems that are currently available. 

 
Figure 1-2: Product development in VR 

The focus primarily lies on the development of a (generic) method for describing 
the behaviour of all included models i.e. product, actor and environment. The mod-
els of the product and the environment stay at the focus in this work and their 
behavioural models are also developed. The actor model is though also included 
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as an important part in the methodological foundation, however, the implementa-
tion of a virtual actor model falls out of the scope of this thesis. Therefore, the 
actor model is only included in the methodological explanation and the implemen-
tation idea is not covered. Similarly, the user interface builds an integral part of the 
overall system but lies outside the scope of this thesis. The developed models of 
the product and the environment should achieve interoperability between different 
VR-systems and therefore, should also be tested in different VR-systems. Further-
more, these models should allow reusability so that different use cases can be built. 

The developed method should help the product designer in foreseeing the interac-
tions of a product with its environment and life-phase-specific actor(s) in its later 
life stages. Figure 1-3 shows a “user and task-oriented virtual model” containing 
the information about the actor (s) and environments from all life stages that should 
be made available at the development stage. Based on this information, different 
use cases can be built that may help the designer to observe the interactions of the 
product with its neighbouring systems (e.g. the actor(s) and the environment). The 
actor(s) and the environment in any particular life-phase are in the problem space 
and it may not be possible to directly influence them during the development pro-
cess. However, the product itself being in the solution space can be evaluated and 
optimized to address the needs/requirements associated with the problem space at 
hand. 

 
Figure 1-3: Information about the actor and the environment from product 

life-phases [Web16] 
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To attain the aforementioned goals following core areas are identified: 

1. Integration of VR in the current product development process to enable 
early evaluation of a product 

2. Development of a method to build the behaviour of a product along with 
the visual representations in VR while at the same time, reducing the effort 
needed to prepare VR-models 

3. Generic description of VR-models with reusable contents to make different 
use cases of a product inside one particular VR-system and also in different 
VR-systems (CAVE, Powerwall, HMD, sVR) possible 

After laying down the goals of the thesis in this section, the next section will pro-
vide the reader with a brief overview of the approach used in this thesis. Further-
more, the scope of the thesis and important methodological aspects will be briefly 
discussed. 

1.3 Course of action 

To reach the goals set in the last section, this work focuses on the development of 
a new method for the preparation of VR-models. After performing an analysis of 
currently available methods and challenges associated with the preparation of VR-
models, a new method is presented that reduces the preparation effort by achieving 
reusability of the contents of VR-models. It is investigated on the methodological 
level to find the best approach for dividing the complete VR-model into reusable 
modules. This division allows the reusability of the contents of one VR-model in 
other models as well. The reusability of the contents of the VR-model is not limited 
to reuse within one VR-system, instead, the reusability perspective across different 
VR-systems is also discussed. To implement the reusable modules resulting from 
the methodological division of VR-model, the Model Based System Engineering 
(MBSE) approach will be put to test. As the goal of this work is to integrate VR in 
the current development process in the industry, the methods and models already 
accepted (to a certain extent) in the industry are analysed. An MBSE based ap-
proach is promising to pertain to the inclination of the industry towards the adop-
tion of MBSE methods (detailed rationale in section 3.1). A concept for the inte-
gration of MBSE models to achieve an interactive simulation in VR and for the 
reuse of these models within one VR-system as well as the reuse across different 
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VR-systems are presented. Furthermore, a generic approach to incorporate physi-
cal calculations into VR is developed that can be used in different VR-systems 
irrespective of the VR-software in use.  

To validate the method presented in this thesis, two prototypes are developed. The 
first contains a vacuum cleaner as a product and the second one contains 6 degrees 
of freedom (DoF) industrial robot as the product. Furthermore, the VR-model de-
scriptions of these prototypes are used across different VR-systems to achieve ex-
ample simulations. The vacuum cleaner application is subjected to empirical eval-
uations conducted with the help of academic and industrial experts. Having laid 
out the goal and course of action, the next section will provide the thesis outline 
and familiarise the reader with the structure of this thesis.  

1.4 Thesis outline 

A graphical demonstration of the contents of this thesis can be seen in figure 1-4. 
The first chapter introduces the research idea and its goals along with a brief intro-
duction of the approach used in this work. The next chapter 2 talks about the fun-
damental models and methods relevant to the scope of this research. A general 
introduction of VR, its different systems and applications are presented. Also, it 
talks about important aspects of MBSE, development of models in MBSE and 
standardised languages available for the implementation of MBSE. Furthermore, 
a detailed explanation of the well-known modelling language in MBSE i.e. Sys-
tems Modeling Language (SysML) is provided and its meta-model is discussed.  

Chapter 3 dives into the state of the art relevant to the use of VR and MBSE in the 
current product development process. The latest developments in the field of 
MBSE e.g. integration with the CAD system, integration with PLM system as well 
as the industrial pilot projects for MBSE incorporation and its use with VR are 
highlighted. This chapter also attempts to highlight the benefits of using VR in 
product development and its current application areas as well. An overview of the 
conventional ways of developing VR-models, their benefits as well as shortcom-
ings and the justification for the need for a new generic method are presented. After 
analysing the currently available methods, this chapter identifies the research gaps 
and concludes on the formulation of concrete research questions.  

After presenting the state of the art in chapter 3, chapter 4 talks about the method-
ology developed in the scope of this thesis. The requirements associated with the 
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new method for descriptions of VR-models, division of complete VR-models in 
sub-models and modelling process in SysML are explained in detail. The model-
ling of structure, interaction and behaviour of sub-models is described systemati-
cally and the gained knowledge is summed up in the form of general-purpose 
guidelines. Furthermore, the use of sub-models to generate different use cases of a 
product is elaborated and reusability perspective of SysML models is discussed in 
details.  

 
Figure 1-4: Structure of the thesis 
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Chapter 5 deals mainly with the VR side of the story and talks about the integration 
of SysML behaviour model with VR and also with the physics engine. The overall 
simulation process is elaborated here. It outlines the development of the visualisa-
tion model in VR, its integration with behavioural models from SysML and the 
integration of the physics engine in the VR simulation. As a result, a generic in-
formation exchange concept in-between different tools that are involved in the VR 
simulation is presented.  

Chapter 6 examines the applicability of the developed method for use in different 
VR-systems and addresses the hardware-related aspects. In this regard, two VR 
prototypes are developed and their VR contents are reused to achieve VR simula-
tions in different VR-systems. The first prototype is developed in all three VR-
systems i.e. CAVE, HMD and sVR while the second one is developed inside HMD 
and sVR. 

To collect industrial feedback about the developed applications, one of the VR 
prototypes was put to empirical evaluation. The method used to conduct the tests 
under this evaluation and the resulting outcomes are listed in chapter 7. Finally, 
chapter 8 summarizes the work and highlights the spots for future research. 

 



 

2 Fundamentals and terms 

This chapter provides an overview of the fundamental models and terms that will 
be later used to achieve the goals of this research. The focus here mainly lies on 
the renowned product development models/guidelines in place. Furthermore, it 
outlines the different VR technologies that include an overview of hardware set-
ting, their capabilities and differences etc. This chapter does not attempt to cover 
all the models and methods in place in the above-mentioned fields, instead, it in-
cludes an overview of the ones that are most relevant to this research. 

2.1 Product development process models 

There are several models for product development that help in the product devel-
opment process by providing basic development structures and approaches. Some 
of the important ones here are VDI2221 [Vdi87] for the design of mechanical prod-
ucts, VDI2206 [Vdi04] for mechatronics design, the System Lifecycle Manage-
ment (SysLM) concept of [Eig16] and CPM/PDD approach of [Web05] for vali-
dation of product properties.  

2.1.1 VDI2221 – Design of mechanical products 
For the development of technical products that mainly focus on the field of me-
chanical engineering, the VDI2221 [Vdi87] is the general-purpose guideline. The 
different life-phases during the product life cycle according to VDI2221 are men-
tioned in figure 2-1. The needs of the market or the end-user or eventually own 
goals of a company drive the design process and lead to the definition of the task 
at hand. The design of the product takes place inside Product development design 
that is further concretised in the form of seven stages mentioned in figure 2-2. The 
first stage is the clarification of the task at hand by building the product specifica-
tion or by extracting the expectations/requirements from the product/system. 
These specifications are analysed in detail to determine different underlying func-
tions and the structural features in stage two. Once the functions are extracted, the 
exploration for possible solutions to achieve these functions starts and is handled 
in stage three. The result of this stage is the principle solution that may contain one 
or multiple solutions variants to achieve the desired functionality. Stage four anal-
yses the principle solution and divides it into realisable modules. The result can be 
sub-systems or system elements that can be demonstrated in the form of sketches, 
graphs etc. The realisation of the shape of the system/ product takes place in stage 
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five where decisive modules are developed. Focus is put on the completeness of 
geometry, materials and technical details so that further optimisation can be carried 
out. The result is preliminary design layouts of the system/product that are further 
detailed in stage six to move the design towards its final shape. Here segregation 
of elements may take place and different elements are grouped. The result of this 
stage is the overall design draft containing detailed information about the shape of 
the product described as sketches, components noted down as inventory lists and 
flow diagrams specifying the flow of information/materials. 

 
Figure 2-1: Product design as part of the life-phases of a product/system af-

ter VDI2221 ([Vdi86],[Vdi93] & [Vdi87]) 
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The seventh is the last stage and is a preparation stage for the manufacturing phase. 
The product documentation involving its parts, sketches, inventory list etc. as well 
as the instruction manuals related to the product’s later life stages are developed 
here. These lay down the procedures for manufacturing, assembling, testing, trans-
portation and the final usage. An important aspect in figure 2-2 are arrows con-
necting towards the previous stages and the ones interconnecting all design stages. 
These indicate the possibility of iterating different stages to bring improvement to 
the design. 

 
Figure 2-2: Steps during design according to VDI2221 ([Vdi86],[Vdi93] & 

[Vdi87]) 
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Once the design stage is completed and the product documentation is prepared, the 
product enters the manufacturing phase. After manufacturing, the product enters 
the sales, marketing and distribution phase reaching eventually to the end-user. 
Finally, it enters its operation where it may need standard maintenance, repairing, 
servicing etc. At the end of its life cycle, its components may be recycled or dis-
posed of eventually. An important aspect in figure 2-1 are arrows connecting later 
life-phases to the product development design phase representing the flow of in-
formation. This represents the availability of information about the product in its 
later life-phases that can eventually help to improve the next version of the product. 

This thesis focuses on the design phase of the product and the developed method 
targets primarily the stages three to six in figure 2-2. This is done by ensuring the 
product properties with its context by means of a virtual model before moving 
towards completion of the development cycle and eventually to manufacturing. 

2.1.2 VDI2206 – Design of mechatronics products 
The design of mechatronic products is different from the design of mechanical 
products, as in the former case the products are interdisciplinary. VDI2206 [Vdi04] 
specifies the design guideline for mechatronic product and is intended to supple-
ment VDI2221[Vdi87] and VDI2422 [Vdi94]. [Vdi04] presents the so-called V 
model for the development of mechatronic systems as shown in figure 2-3.  

 
Figure 2-3: V model as a macro cycle [Vdi04] 
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According to the V model, the starting point of the development is the precise 
definition (as precise as possible) of the product’s requirements. These require-
ments on one side define the needed product and on the other side build the meas-
ure for later assessment of the product design. As mechatronics systems are mul-
tidisciplinary systems, the system design aims to develop the solution concept for 
the final product. Here the breakdown of the overall system functionality takes 
place and sub-functions are defined. Furthermore, different solution elements for 
these sub-functions are explored and their performance is tested. The solution ele-
ments are separated into the respective domain in domain-specific design. The cor-
responding elements are detailed and their performance is ensured by performing 
different calculations. In system integration, an overall system is formed by joining 
the solutions from domain-specific development. It is important to check that the 
design is aligned with the solution concept and the requirements, and this is 
achieved by performing assurance of properties. At the end of system integration, 
a product is developed. There are several extensions of the V model already per-
formed in different researches in different disciplines. One of these extensions for 
use in the development of cyber physical systems is elaborated in the next section 
2.1.3. 

2.1.3 System Lifecycle Management 
The development of multi-disciplinary products involves the use of different au-
thoring tools/software. To have consistent development, the information present 
in different tools should be linked with each other in some manner to achieve trace-
ability. System Lifecycle Management (SysLM) [Eig16] is an information man-
agement model for use in product development. It builds on the Product Lifecycle 
Management (PLM) solutions in place today and extends them to achieve an inte-
gration between different authoring tools. This integration is expected to be imple-
mented along the system life cycle, where the system models in all development 
phases are connected with one and another to achieve traceability. The emphasis 
is put on the use of a model-based approach instead of document-based ap-
proaches. [Vdi04] lays down a systematic approach for the development of mech-
atronics systems. However, it does not address all aspects related to model-based 
design & the development of cyber physical systems. Therefore, the original V 
model is further extended under the SysLM concept to address the aspects related 
to model-based development for complex systems. The extended V model is 
shown in figure 2-4. 
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Figure 2-4: Extended V model for Multi-Disciplinary Product Development 

[Eig16] 

The extended V model talks about the early design (left-wing) as well as the de-
tailed design aspects. The left side of ‘V’ deals with the model-based description 
of the system under development in its early phases and mainly describes the spec-
ifications, first simulation and the discipline-specific modelling of the system. 
Modelling and Specification, Modelling and First Simulation & Discipline-Spe-
cific Modelling are three aspects of the system and their overlapping is further rep-
resented as requirements (R), functions (F), logical solution elements (L) and phys-
ical parts (P) using the RFLP-approach [Kle13]. The modelling of RFLP is per-
formed by using different languages and authoring tools. The goal of this extension 
of the V model is to achieve vertical as well as horizontal traceability and it can be 
achieved by semantically linking the different model elements. The implementa-
tion of this linking can be achieved by using system models created using SysML, 
as it allows the description of system elements, the links between them as well as 
the integration and management of information in the context of SysLM concept. 
After mentioning the domain-specific design on the bottom, the right-wing of the 
extended V model talks about the system integration. The validation of properties 
can be performed by conducting physical tests on the actual product (physical test) 
or hybrid tests or by means of fully virtual tests. The SysLM concept of [Eig16] 
and the developed extension of the V model rightly points out that using MBSE 
and performing early virtual tests can enable early validation of product properties. 
VR technologies can be very helpful for conducting these virtual tests. As a matter 
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of fact, the virtual tests can be performed much earlier than the physical tests and 
thus, the extended V model is smaller when using virtual tests. 

2.1.4 CPM/PDD 
One approach that is very relevant to the work presented in this thesis is the Char-
acteristics-Properties Modelling (CPM) and Properties Driven Development 
(PDD) approach for the assurance of product properties [Web05]. This approach 
establishes a clear distinction between the characteristics and the properties of a 
product. The characteristics (figure 2-5 left) here are the structure and the constit-
uents of a product and the properties (figure 2-5 right) are the product’s behaviour. 

 
Figure 2-5: Characteristics (left) and properties (right) with their relations 

[Web05] 

The determination of product properties can be performed by using the appropriate 
method/tools while considering the external conditions. These external conditions 
may consist of the assumptions or simplifications to perform the calculation of 
properties or external influences. Thus, the calculated properties are only valid 
against the considered external conditions. In this approach, the product develop-
ment process is seen as cycles of synthesis and analysis steps. Synthesis is the 
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process of determining product characteristics for the given properties or the prop-
erties that have to be achieved at the end. The analysis is the opposite of synthesis 
process i.e. determining product properties for the given characteristics. Before 
looking at the synthesis and analysis steps in details, it is important to highlight the 
important parameters mentioned in the original approach, as they are needed to 
understand the basic model of synthesis and analysis (see figure 2-6). 

• Cm / Ci: Characteristics (“Merkmale” in German) 
• Pn / Pj: Properties (“Eigenschaften” in German) 
• PRn / PRj: Required Properties 
• Rn / Rj: Relation between characteristics and properties 
• ECn / ECj: External conditions 

 
Figure 2-6: Basic models of analysis and synthesis [Web05] 

The analysis step takes the characteristics (Ci) and calculates the properties/ as-is 
properties (Pj) of a product using the (Rj) that define the relationship between the 
former two. (Rj) are in the form of matrices that may contain equations and these 
equations define the relationship between a certain property and the characteristics. 
However, during the product development process, when the finished product is 
not available yet, the properties can only be predicted against the given character-
istics. This can be achieved by using available digital models and methods. The 
synthesis step is formally the opposite of analysis. (PRj) are the required properties 
or the final goal of the development process that the designers want to achieve. 
The synthesis step starts with the required properties (PRj) and tries to determine 
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the product characteristics by considering the relation between the two. However, 
the relation between the two here will be inverse of the relationship in the case of 
analysis. Therefore, the relationship in the case of synthesis is (Rj-1) that can be 
obtained by taking the inverse of (Rj) that is the relationship matrix. Although the 
inversion of the relationship looks like an easy solution, it is not possible in all the 
cases. The explanation for this phenomena is the simple fact that not in all the 
cases, it is possible to have an inverse solution for a matrix. In this way, the use of 
the basic models presented in figure 2-6 support the product development process. 
An extended scheme of the product development consisting of cycles of synthesis 
and analysis process is present in [Web11] and shown in figure 2-7. 

 
Figure 2-7: Scheme of the product development/design process consisting of 

cycles of synthesis-analysis-evaluation [Web11] 

The incorporation of evaluation step completes the development circle. The results 
of the analysis step provide the as-is properties (Pj) that are valid against the given 
characteristics under consideration of the external conditions. Now, these as-is 
properties (Pj) can be compared with the required properties (PRj). The differ-
ence/deviation (ΔPj) is the difference between as-is and required properties. This 
difference is the driver of the development process, as it may represent the discrep-
ancies in the current design and based on this the designers can perform an overall 
evaluation to decide about how to proceed further. In this way, the CPM/PDD can 
be used in a cyclic way using different methods/tools to ensure product properties. 

(ECj) are the external conditions and may contain the context of the product (de-
fined in chapter 1) that has to be considered and a change in the context can change 
the calculation results. For instance, the external disturbances, influences, material 
flows etc. may exist in external conditions, as during the product’s operation, they 
may originate from interacting actor(s) or the environment or other neighbouring 
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systems. Therefore, the context of the product i.e. life-phase specific actor(s) and 
environment can be seen as a part of external conditions considered in CPM/PDD 
approach. Hence, the consideration of external conditions during the calculation 
of product properties makes this CPM/PDD approach very relevant to this thesis. 
These external conditions are extended in the scope of this thesis to explicitly in-
clude actor(s) and environment (details to follow in sub-section 4.1.2). 

2.1.5 Summary 
Section 2.1 provides an overview of the product development process models most 
relevant to this thesis. VDI2221 provides general guidelines for the development 
of mechanical systems and the tasks involved in this process. The VR-model pre-
sented in this thesis should be available at “Product development design” (in fig-
ure 2-1) stage to support the designer. This VR-model shall not be limited to the 
evaluation of mechanical products and thus, it is important to have a look at the 
development process model for an interdisciplinary product e.g. VDI2206 from 
section 2.1.2. The V model is very important as it lays down the guidelines for the 
development of mechatronics systems with multi-disciplinary design aspects. To 
form a more generic application also beyond mechatronics systems, the SysLM 
concept extends the V model to present a general-purpose guideline while using a 
model-based approach. Furthermore, the concept of integration of multiple disci-
pline-specific tools inside one model-based development approach helps to 
achieve traceability and also plays a vital role in the development of the method-
ology presented in this thesis. The evaluation of a product alone can be misleading 
as the external conditions e.g. environmental condition, assumption during design 
etc. can largely influence the product performance. The CPM/PDD model is rele-
vant to this thesis as it incorporates the external conditions and states that the va-
lidity of calculated properties is subjected to the given external condition. Such a 
consideration of external factors can be considered an analogy to the context of a 
product as mentioned in chapter 1. Considering its relevance, the CPM/PDD model 
will be used and extended in the scope of this thesis and this extension is presented 
in chapter 4. 

The next section will introduce the reader with VR and provide a detailed overview 
of its hardware as well as a few of its general applications in product development. 
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2.2 Virtual Reality 

Considering the benefits of Virtual Reality (VR) in product development, it is iden-
tified as a core part of this work. Therefore, before diving into the state of the art, 
this section provides the reader with a detailed introduction about VR, its applica-
tions and hardware technologies. 

2.2.1 What is VR? 
There is no standard definition of VR available, however, it can be understood as 
a presentation and perception of an intended reality that is implemented by real-
time computer-generated virtual environments. In most scientific papers and in 
practice, VR is limited to graphic representations and visualisation although other 
human senses (e.g. haptics, acoustics) may be integrated as well – and are some-
times quite important, especially in the case of product development. Another def-
inition of VR by [Bis92] is  

“real-time interactive graphics with three-dimensional models, combined with a 
display technology that gives the user the immersion in the model world and direct 
manipulation” 

As the term is self-explanatory, VR talks about a reality that is virtual or does not 
exist. A virtual surrounding built with the help of computer-generated graphics, 
presented as 3D representations along with object-level interaction provides the 
user with the feeling of being inside the virtual surroundings. 

The key elements [She02] of a VR are 

• a virtual world, 
• immersion, 
• sensory feedback 
• and interactivity 

The virtual world is an imaginary space or a description of a collection of objects 
in space and immersion refers to the immersion into an alternate reality or point of 
view. The sensory feedback is the feedback from VR e.g. based on user’s physical 
position and one form of interactivity may be the ability to affect computer-based 
world [She02]. A VR-scene consists of different objects/surroundings that are 
three dimensional and the experience is different from normal computer screens as 
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the depth information can also be perceived. The objects in a VR-scene are basi-
cally computer-generated graphics that are designed in advance. Immersion is de-
fined as the feeling of being inside a 3D environment that can make the user una-
ware of his/her actual surroundings. In a physical world, humans interact with ob-
jects by touching, grabbing or manipulating them. In VR, the interaction can be 
achieved in multiple ways e.g. using interaction devices, voice commands, ges-
tures etc. Some of the very basic interaction techniques for VR are presented in 
[Min95]. Although there are already several VR interaction devices and methods 
available, this topic remains the focus of continuous development (also see 
[Lav17], [Bow06] and [Bow08]). One very crucial requirement from VR technol-
ogy is that it should possess real-time conditions, only then can an experience com-
parable with reality be obtained. Although VR has stayed in the focus of research 
for the last 40 years, it has only been recently made possible that the applications 
of VR are reaching domestic consumers. The developments in computer hardware 
have contributed mainly to make VR inexpensive and real-time at the same time. 

Figure 2-8 shows the main components of a VR-system. VR comprises of two 
main parts i.e. hardware and the software [Bam13]. The hardware consists of the 
main computer for computations, displays for presentation of the graphics to the 
user, interaction devices and the tracking system to track user movements. The 
software side consists of the software tools and the databases that may contain 
already developed VR contents. The software allows the creation of VR contents 
in the form of a scene and performs the rendering of these contents during the 
simulation. 

 
Figure 2-8: Components of VR [Bam13] 
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VR has found its application in diverse fields of interest. Some of the very im-
portant application areas of VR are in 

• the entertainment industry e.g. 3D cinema and gaming,  
• education,  
• medicine,  
• the aviation and automobile industry  
• and in training. 

A further detailed overview of VR applications will be provided in sub-section 
2.2.4, sections 3.2 & 3.3. 

2.2.2 Overview of different VR-systems 
The last sub-section provides the general introduction of VR and this sub-section 
provides an in-depth look at different VR-systems (hardware systems). The main 
VR platforms that are used currently in industry and academia are: 

• CAVE – Audio-Visual Automatic Virtual Environment [Cru92] and 
Powerwall 

• HMD – Head Mounted Display [Mel01] 
• Smartphone VR (sVR) 

2.2.2.1 Cave Automatic Virtual Reality and Powerwall 

CAVE is a multi-sided immersive virtual environment setup that can contain be-
tween 3 to 6 walls. A 6 sided CAVE builds a complete virtual room with four 
virtual walls, a virtual roof and a virtual floor. 3D contents are projected onto the 
walls and using the polarized glasses the user can experience immersive virtual 
reality. The glasses help to show each eye of the user different imagery and thus 
helps to create the illusionary 3D world. CAVE can also incorporate loudspeakers 
to provide directional sound. Figure 2-9 shows the flexible audio-visual stereo-
scopic projection system available at Technische Universität Ilmenau. It consists 
of three walls that are powered by two projectors each. Each visualisation projector 
has its own dedicated computer to process the projection information. 
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Figure 2-9: Flexible audio-visual stereoscopic projection system (FASP) 

[Hus14] 

There are 208 speakers mounted on and around this system that are controlled by 
the WFS [Bra04] system (wave field synthesis system). Each projection wall has 
two tracking cameras to track the position of the user’s head and the interaction 
device. The complete tracking system is controlled by a separate computer. An 
additional computer is used as a master computer to create VR content and to per-
form the rendering of this content onto the walls. This system is flexible in its 
design and can be used in three different configurations i.e. CAVE, Theatre, 
Powerwall. The flexible visual projection system (audio excluded) is used in this 
thesis to develop the example VR application for CAVE type VR-system (see sec-
tion 6.1.1). 

Powerwall itself is a cheaper version of the CAVE type system, however, it is 
normally based on a single wall with projectors attached to present 3D content. 
Similar to the CAVE system, Powerwall also possesses its own tracking system 
and interaction devices. 

2.2.2.2 Head Mounted Display  

The Head Mounted Display (HMD) on the contrary to the CAVE type system, 
projects the imagery directly on the retina of the human eye. The position tracking 
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is obtained by additional sensory external to the HMD. There are several HMDs 
available in the market from different manufacturers. HTC Vive2 can be taken as 
an example of the overall system to gain understanding about the HMDs. Figure 
2-10 shows an example hardware setup for HTC Vive. It contains the HMD that 
projects a different image on each eye and includes the sensory system that can be 
detected by tracking cameras. 

 
Figure 2-10: Head Mounted Display (HMD) [Mah18b] 

HTC Vive comes by default with two tracking cameras and two controllers that 
serve as the interaction devices. The tracking cameras are responsible for the track-
ing of the head movements of the user by detecting the position and orientation of 
the HMD and also for the tracking of the interaction controller. One computer with 
high computation power and high-end graphics card is needed to render the VR 
contents in HMD. Furthermore, there are additional peripheries available to track 
the complete body movement, eye movement etc. of the user that are not discussed 
here. Similarly, the complete VR hardware for HMD (even for other HMDs that 
are available in the market) contains a high-performance computer for rendering, 
a tracking system, controllers and the HMD itself. 

                                              
2 HTC Vive: https://www.vive.com/de/ [last accessed on 09.03.2020] 

https://www.vive.com/de/
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2.2.2.3 Smartphone VR 

Another relatively new technological development in the field of smartphones is 
their capability to render small (not extremely computation demanding) VR appli-
cations. The basic requirement for having VR experience with a smartphone is to 
have a headset/holder to place the smartphone and the smartphone itself should 
possess a gyroscope sensor. The gyroscope is used to keep track of the head move-
ment of the VR-user. The basic principle of rendering the VR content onto the 
smartphone is to divide the phone screen in two and show two different images on 
each side. The headset/holder facilitates this by allowing each eye to see different 
imagery and blocks the unnecessary light from entering the eye. There are several 
headsets/holders available for smartphone VR (sVR), for simplicity Google Card-
board[Mac15] can be taken as an example which can be seen in figure 2-11. 

 
Figure 2-11: Google Cardboard3 

The main limitation of the smartphone VR is the absence of a positional tracking 
system. Although the gyroscope can detect the head movements (orientation only) 
of the user, the position tracking is not directly possible using the smartphone. 
There are methods available for indirect positional tracking implementation in a 
smartphone, however, they rely on additional sensory modules (e.g. see [Bos13] 
and [Fan17]). The accuracy and effectiveness of these modules is a separate debate 
that is not included here to keep the research effort focused on the goals of this 
thesis. Therefore, smartphone VR applications do not offer (by default) the posi-
tion change in the VR-scene against the changes in the user’s position. Due to the 
absence of a direct positional tracking solution, the current application of sVR is 

                                              
3 Google Cardboard: https://vr.google.com/cardboard/ [last accessed on 09.03.2020] 

https://vr.google.com/cardboard/
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primarily in the visualisation of 360° videos as can be seen in [Bor17]. To facilitate 
the use of sVR in the product development process, a concept for achieving posi-
tional tracking in sVR is developed under the scope of this thesis. The implemen-
tation of this positional tracking along with the discussion about its preciseness is 
presented in 6.1.3.2. 

The level of immersion or sense of presence in sVR compared with dedicated 
HMDs is also found to be of comparable quality ([Ami16] and [Pap17]). An idea 
of direct implementation of positional tracking in sVR can facilitate its use in in-
dustrial VR applications. Furthermore, there are critical factors associated with the 
use of sVR since the quality of the VR experience is highly dependent on the depth 
of pixels per inch (dpi) and the processing power of the smartphone. Both of these 
factors are directly dependent on the technological implementations in 
smartphones and are expected to improve with technological advancements in fu-
ture. 

2.2.2.4 Summary 

Sub-section 2.2.2 has provided an overview of the four major VR-systems, their 
hardware setup and important components. All these VR-systems differ consider-
ably from each other based on their application area, cost, installation requirement 
etc. Without going into the detail of the actual current cost of VR-systems, it can 
be concluded with fair ease that CAVE and Powerwall are the more expensive VR-
systems mainly used by industrial OEMs. They can facilitate a multi-user visual 
experience, however, the point of view and interaction possibilities are mainly op-
timised for only one user. Furthermore, they require fixed installation space and 
hence, offer no mobility. HMDs are cost-effective VR solutions that lie in afford-
able cost range for small and medium-sized enterprises as well as for domestic 
users. They are optimised for one user’s experience and hence, do not support 
multi-user visualisation. Although they also need a fixed installation space, they 
can be easily transported due to the limited needed hardware and hence offer a 
mobile VR-system. sVR is lowest in terms of cost and needed hardware. However, 
the low display quality, absent positional tracking and the limited processing 
power are the main limitations of this VR-system. Pertaining to very limited hard-
ware setup (i.e. smartphone, headset/holder and interaction device), they are most 
suitable concerning the mobility and also do not require a fixed installation space. 
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Such a mobile VR-system may offer great help to industrial companies for making 
product presentation at remote locations. 

2.2.3 Physics engine integration in VR 
A VR simulation without physical calculation has limited meaning for an applica-
tion in product development. Therefore, this section will have a look at the possi-
bilities of performing physical calculations on virtual objects in VR. Performing 
the physical calculations on the objects in a VR-scene is purely the software related 
capability. Looking at the VR-software that are available today in the market, it is 
possible to do a clear division based on VR-system they are compatible with (see 
table 2). For instance, the CAVE type VR-system mainly works with commercial 
rendering software like RTT Deltagen4 from 3DEXITE, IC.IDO5, Visionary Ren-
der6 etc. On the other hand, the well-established VR-software tools for HMD and 
sVR are mainly the game development engines like Unity3d7, Unreal Engine8etc. 
The VR-software for CAVE type VR-systems focus on visualisation primarily and 
they either offer no direct physics calculation module or if available, its use is 
based on programming/visual scripting of the individual objects inside the VR-
software. Unity3d and Unreal Engine implement the physics calculation modules 
in the software package in the form of libraries that can be used to add physics 
computations for individual objects. The problem with these solutions is the ex-
tensive programming needed to implement the physics calculation on the objects. 
Furthermore, the VR-software solutions available are not very well standardised. 
For example, VR content transfer from one to the other VR-software hardly ena-
bles the geometrical surface transfer and the simulation/animation exchange is an 
even more difficult process. The reason for this limitation is the fact that the lan-
guage, syntax and implementation logic for simulation is different in each VR-
software. There are several open-source physics engines available that can be used 
in VR. An evaluation of these physics engines for use in assembly simulation is 
presented by [Hum12]. As this thesis aims to develop a generic description method 

                                              
4 RTT Deltagen: https://www.3dexcite.com/de/software/deltagen/ [last accessed on 
09.03.2020] 
5 IC.IDO : https://www.esi-group.com/de/software-loesungen/virtual-reality/icido [last 
accessed on 09.03.2020] 
6 Visionary Render : https://www.virtalis.com/visionary-render/ [last accessed on 
09.03.2020] 
7 Unity3d: https://unity3d.com/de [last accessed on 09.03.2020] 
8 Unreal Engine : https://www.unrealengine.com/ [last accessed on 09.03.2020] 

https://www.3dexcite.com/de/software/deltagen/
https://www.esi-group.com/de/software-loesungen/virtual-reality/icido
https://www.virtalis.com/visionary-render/
https://unity3d.com/de
https://www.unrealengine.com/
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of a VR-model applicable in different VR-systems, there is a need for a more flex-
ible solution for the incorporation of physics calculations in VR. The incorporation 
of physical calculation in the newly developed method is based on external physics 
engine integration in VR to make it VR-software independent. The detailed dis-
cussion about this topic is included in section 5.2. 

2.2.4 VR beyond visualisation/extended VR application 
In addition to the visual representation of the product and its behaviour in VR, the 
haptic interaction and the simulation of acoustical properties of the product are 
also the topics of great interest. However, a detailed discussion about haptic inter-
action devices and acoustical simulations is not included in this thesis. For reader’s 
discretion, a few of the researches addressing these topics are mentioned in this 
sub-section. 

A virtual acoustic model for simulation of the noise generated by a passing vehicle 
is developed by [Sie16]. This model creates individual noise sources for different 
components in the car e.g. tires, the engine and exhaust system etc. Each sound 
source has its own directional characteristics and the environmental conditions are 
simulated by sound reflections. This application is very helpful to examine the 
acoustical requirements related to a vehicle. There are more similar audio-visual 
applications in VR for the simulation of vehicle noise e.g. [Alb14][Hus14][Hus15] 
[Sie17a][Sie17b]. As changed acoustical characteristics may be a warning for a 
malfunctioning product, acoustical simulation analyses of a product can help ana-
lyse critical product functions. [Hus14] develops an acoustical application in VR 
while using the wave field synthesis [Bra04]. Individually recorded sound sources 
are used inside VR to simulate the acoustical behaviour of a product. A similar 
application of a pick and place machine acoustical simulation is developed in 
[Hus11]. To do such an analysis, the physical behaviour of the product has to be 
modelled first.  

Similar to acoustical simulation, the incorporation of haptics is an important feed-
back channel in VR applications and therefore, stays an important research area in 
VR applications. Several haptic interaction devices are already available in the 
market for different VR-systems. A more realistic haptic feedback leads to a more 
realistic perception and more immersion for the VR-user. 
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2.2.5 Summary 
This chapter has so far dealt with the general models for product development rel-
evant to this research and their relevance is brought into focus. A general overview 
of different VR-systems and their hardware settings is provided as well. As the 
developed method uses MBSE, it is important to have a general introduction of 
MBSE, its origin and its implementation languages. These aspects are covered in 
the next section. 

2.3 Systems Engineering 

Model based Systems Engineering (MBSE) is a sub-branch of Systems Engineer-
ing (SE) and therefore, it is important to first introduce SE briefly before discussing 
MBSE. Systems Engineering (SE) focuses on the development of interdisciplinary 
and complex systems. It uses design thinking to capture the needs of all the stake-
holders of a system and its functionality at the early stages of development. Start-
ing from the documentation of the requirements throughout the development pro-
cess, it focuses on the management of information, all necessary artefacts of a sys-
tem and also the consistency of the system interfaces. As the products of today are 
increasingly gaining complexity, the SE approaches have gained significant inter-
est in the last years. As a result, several approaches and models have been devel-
oped to facilitate and implement systems thinking inside the product development 
process. There are several definitions of SE currently available, a precise one is 
given by The International Council on Systems Engineering (INCOSE) [Inc20] as: 

“Systems Engineering is an interdisciplinary approach and means to enable the 
realization of successful systems. It focusses on defining customer needs and re-
quired functionality early in the development cycle, documenting requirements, 
and then proceeding with design synthesis and system validation while considering 
the complete problem: operations, cost and schedule, performance, training and 
support, test, manufacturing, and disposal. 

Systems Engineering integrates all the disciplines and specialty groups into a team 
effort forming a structured development process that proceeds from concept to 
production to operation. Systems engineering considers both the business and the 
technical need of all customers with the goal of providing a quality product that 
meets the user needs.” [Inc20] 
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SE comprises of three building blocks i.e. system architecture, system require-
ments and system behaviour [Alt12]. System architecture defines the structure and 
components of the systems. The definition of internal interfaces between the sys-
tem components as well as between sub-systems and external systems are also de-
fined here. Systems requirements consist of functional as well as the non-func-
tional requirements of the systems. System behaviour contains the behavioural def-
initions of the system and its components that can be used to perform various tests 
on the system under development, generate different configurations or generate 
executable code etc. 

 
Figure 2-12: Three building blocks of Systems Engineering [Alt12] 

2.3.1 Model Based Systems Engineering (MBSE) 
The standard SE approaches use documents to manage the information and 
knowledge about the system. These documents usually contain spreadsheets, 
drawings and written specifications. However, the management of these docu-
ments can be prone to error and be time-consuming which make them a difficult 
task to handle when the systems under development are complex and relatively 
large. To tackle this problem, MBSE is a sub-branch of SE that emphasizes on the 
use of models instead of documents during the development process. MBSE as per 
[Inc07] is defined as : 

“Model based systems engineering (MBSE) is the formalized application of mod-
eling to support system requirements, design, analysis, verification and validation 
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activities beginning in the conceptual design phase and continuing throughout de-
velopment and later life cycle phases.” 

The knowledge about the system is organised inside models usually defined using 
graphical modelling languages. These models allow the capturing of the require-
ments, structure and behaviour of the complete system and can be used to perform 
early validations on the design. The use of models helps to attain consistency 
throughout the development process by strengthening the communication between 
development teams and also helps to perform early verification and validation ac-
tivities. 

2.3.2 MBSE implementation 
The implementation of MBSE inside an organisation or a development team in-
volves three main components i.e. method, tool and language [Har15]. A method 
is needed to perform the needed modelling inside a modelling tool using a model-
ling language (possibly with standardised specification). 

Among the already established methods in MBSE [Est07], INCOSE Object-Ori-
ented Systems Engineering Method (OOSEM) and The Systems Modeling Toolbox 
(SYSMOD) modelling approach are two significant ones. OOSEM [Pea12] is a 
tool- and vendor-neutral approach that integrates a top-down approach with a 
model-based approach. It uses SysML and object-oriented concepts to support sys-
tem requirements and context definition, system design, analysis and verification. 
SYSMOD [Wei15] focus on a user-oriented approach for carrying out requirement 
engineering and for developing system architectures. It is independent of the tool 
vendors and provides guidelines for performing different process activities. 

The modelling tool in MBSE plays an important part in the development and val-
idation of the system under development. Ease of modelling, compliance with 
specifications and standards, offered functionality, cost etc. are few of the factors 
that affect the choice of such a tool. The tools that use SysML specification for 
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MBSE implementation are available both commercially and in open source ver-
sions. Cameo Systems Modeler9, Rational Rhapsody Designer10, Windchill Mod-
eler11, Enterprise Architect12 and Visual Paradigm13 are among few of the com-
mercial available MBSE tools. Eclipse Papyrus14 and Modelio15 are among open-
source modelling environments. 

Unified Modeling Language (UML) [Omg17b] and Systems Modeling Language 
(SysML) [Omg17a] are two graphical languages in MBSE. UML is widely ac-
cepted around the world for the development of software systems. The perception 
of UML being a description language for software engineering pushed the devel-
opment of its more abstract version i.e. SysML. SysML uses a big sub-set of al-
ready developed UML specification 2.0 along with some extensions to form a 
more general-purpose graphical modelling language. Both SysML and UML are 
non-executable languages, however, they support model execution through trans-
lations/ transformations into executable languages or Petri nets [Des01]. The mod-
elled behaviour in UML/SysML can be executed using languages such as Model-
ica [Mod17] [Fri98], Simulink [Ang11], VHDL-AMS [Iee17] etc. Almost all the 
existing commercial tools have implemented the execution of models by the inte-
gration of execution logic inside the modelling tool. As a result, the models can 
now be directly executed inside the modelling tools. A more extensive overview 
of the meta-model of SysML is provided in the next section. 

2.4 Systems Modeling Language (SysML) 

SysML is a graphical modelling language that is an extension of the existing UML 
specification. SysML evolved as a result of the combined effort of Object Man-
agement Group (OMG) and International Council on Systems Engineering (IN-
COSE). It uses a large subset of UML, includes modified as well as new elements 

                                              
9 Camero Systems Modeller: https://www.nomagic.com/products/cameo-systems-mod-
eler [last accessed on 09.03.2020] 
10 IBM Rational Rhapsody: https://www.willert.de/software-tools/modellgetriebene-
softwareentwicklung/ibm-rational-rhapsody/ [last accessed on 09.03.2020] 
11 PTC Windchill Modeler (Integrity Modeler): https://www.ptc.com/de/prod-
ucts/plm/plm-products/windchill/modeler [last accessed on 09.03.2020] 
12 Sparx Systems – Enterprise Architect: https://www.sparxsystems.de/ [last accessed on 
09.03.2020] 
13 Visual Paradigm: https://www.visual-paradigm.com/ [last accessed on 09.03.2020] 
14 Eclipse Papyrus: https://www.eclipse.org/papyrus/ [last accessed on 09.03.2020] 
15 Modelio: https://www.modelio.org/ [last accessed on 09.03.2020] 

https://www.nomagic.com/products/cameo-systems-modeler
https://www.nomagic.com/products/cameo-systems-modeler
https://www.willert.de/software-tools/modellgetriebene-softwareentwicklung/ibm-rational-rhapsody/
https://www.willert.de/software-tools/modellgetriebene-softwareentwicklung/ibm-rational-rhapsody/
https://www.ptc.com/de/products/plm/plm-products/windchill/modeler
https://www.ptc.com/de/products/plm/plm-products/windchill/modeler
https://www.sparxsystems.de/
https://www.visual-paradigm.com/
https://www.eclipse.org/papyrus/
https://www.modelio.org/
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and diagrams. It uses graphical diagrams to model a system under development 
and can facilitate analysis, verification and validation activities on the design. 
These diagrams are categorized into structure, behaviour and requirement dia-
grams. Figure 2-13 shows an overview of the SysML diagram from the current 
specification i.e. version 1.6 [Omg18b]. 

 
Figure 2-13: SysML Diagram Taxonomy [Omg18b] 

Requirement Diagrams (REQ) are used to define the system requirements and their 
relationships with other model elements. Block Definition Diagrams (BDD) define 
the structure of the system by defining its components, their properties, operations, 
parts etc. Internal Block Definition Diagrams (IBD) represent the internal structure 
of the blocks and specify the connection between the blocks by using special in-
teraction points in SysML called ports. Parametric Diagrams (PAR) contain the 
parametric constraints present in between different model elements. These con-
straints can typically consist of mathematical equations. Package Diagrams (PKG) 
help organise the model into packages. Activity Diagrams (ACT) are used to define 
different aspects of system behaviour in the form of control and data flows. These 
diagrams are useful to define the functional behaviour of a system or its elements. 
Sequence Diagrams (SEQ) define the interaction between different system com-
ponents and belong to the behavioural description of a system. State Machine Di-
agrams (STM) consist of possible states a system can have along with possible 
transition events to trigger these states. This helps to build event-based behaviour 
of a system. Use Case Diagrams (UC) are used to define possible use situations of 
a system. In particular, they are used to define the context of the system and its 
functional requirement. They show the expectations of the different stakeholders 
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of a system. Several pieces of research discussing the modelling process using 
SysML diagrams are mentioned towards the end of section 3.1 and the behaviour 
modelling approach for VR-models is presented in section 4.3. 

2.5 Summary 

The research conducted in this thesis touches multiple hardware, software and 
methodological aspects from different research fields. The purpose of this chapter 
was to familiarise the reader with fundamental models and terms that are referred 
to in the later part of this thesis. In this regard, this chapter has discussed the prod-
uct development process models that are most relevant to this research. After the 
discussion of these models, a general introduction of VR technology is provided, 
its different hardware systems are discussed in detail, their benefits and shortcom-
ing are briefly discussed as well. The method for the descriptions of VR-models 
developed in this thesis utilises MBSE and its implementation language i.e. 
SysML. Therefore, this chapter has also provided a brief introduction of SE and 
MBSE along with a brief discussion about its implementation. An overview of 
SysML and its diagrams is also provided. The reason for using SysML as imple-
mentation language in this thesis will be discussed in section 4.2. 

This chapter has built the base for chapter 3 by defining the fundamental terms and 
models. The next chapter will take a deeper look at the current situation in the 
industry and the state of the art. 

 





 

3 State of the art in product development 

This chapter will provide an overview of the state of the art in the field of product 
development, the use of VR in product development and MBSE. The focus will be 
put on the topics that fit the scope of this thesis. The most relevant approaches and 
methods consisting of the use of VR and MBSE in the product development pro-
cess are discussed. 

3.1 MBSE in today’s product development process 

Systems Engineering (SE) focuses on an interdisciplinary documents based ap-
proach for the development of complex technical systems. Although MBSE builds 
on the developments in the field of SE, it focusses on modelling the system and 
use of models for performing different analysis, verification & validation activities 
etc. The modelling process may start with the definition of system requirements 
followed by the modelling of structural and behavioural aspects of the systems, 
different analyses up to verification and validation activities. The modelling starts 
at the conceptual design and continues throughout the development process. The 
developed models allow the design teams to achieve early validation, consistent 
systems interfaces, better communication between the developments teams from 
different disciplines and traceability throughout the development process. The 
goals of MBSE are improved communication among the development stakehold-
ers, increased ability to manage system complexity, improved product quality, en-
hanced knowledge capture and reuse, increased productivity and reduction of risk 
[Inc15]. 

In light of the promises, benefits and potentials associated with SE & MBSE meth-
ods, there is an ever-increasing inclination of the industry towards their incorpora-
tion in the product development process. A study is conducted by [Gau15] to ex-
amine the recognition and establishment of SE in different industrial sectors as 
well as to identify the challenges associated with products of tomorrow. The study 
conducts interviews of key officials from various sectors i.e. mechanical and plant 
engineering, automotive industry, automation engineering, aerospace, equipment 
manufacturers and other vehicle manufacturing companies. During this study, the 
growing multidisciplinarity is identified as the most significant challenge in the 
development of the products of tomorrow. Analog to this challenge, the orchestra-
tion of multidisciplinary cooperation is identified as the most significant benefits 
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of SE. This study, after evaluating the industrial feedback, deems SE as a necessary 
prerequisite for the development of complex and multidisciplinary technical sys-
tems of tomorrow. 

 
Figure 3-1: Challenges in product engineering and the benefits of SE 

[Gau15] 

The integration of MBSE in current product development processes is a challeng-
ing task. In this regard, several efforts are made and pilot projects are conducted 
in academia as well as in industry. For instance, GKN Driveline International16, a 
leading supplier of automotive driveline technologies, has started exploring the use 
of MBSE in the early development of its new intelligent systems [Ric17]. [Ric17] 
present the experience report about the adaptation of MBSE and simulation in the 
early stages of design. Starting with the modelling of system context, the functional 
structure and behaviour of the system are modelled. Logical solutions for sub-
                                              
16 GKN: https://www.gknautomotive.com/ [last accessed on 09.03.2020] 

https://www.gknautomotive.com/
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functions are identified and combined to form a logical architecture of the product. 
This logical architecture serves as the base for further model development. Inte-
gration of the developed models with simulation tools like Matlab/Simulink helps 
to achieve the desired early simulations.  

Daimler AG has been working on the SEED17 project to realise a functional car 
prototype using MBSE [Epp18]. SEED uses SysML to model different views of 
the systems. The functional requirements of the customer are mapped to heteroge-
neous development functions of the system i.e. an automobile vehicle. 

Miele18 and Karl Mayer19 are also working on the introduction of MBSE in their 
product development processes [Kle16]. As smart household appliances are ex-
pected to communicate with each other, this has led to increased complexity and 
moved Miele to incorporate interdisciplinary MBSE methods. Requirement man-
agement, incorporation of stakeholder requirements, system context analysis, 
modelling of logical structure and early simulations are achievable by using 
MBSE. Furthermore, the product quality can be improved and the complexity can 
be handled. For Karl Mayer, the early virtual validation of machine properties is a 
topic of interest that can be achieved through simulations. This is done by integrat-
ing different authoring, modelling and simulation tools with ModelCenter20 to 
make parameter/information exchange between these tools possible. As a result, 
an early analysis of the design can be performed [Kle16].  

To facilitate the incorporation of MBSE in the product development process, two 
recent collaboration projects (mecPro2 & FAS4M) between industry and academia 
have been carried out. MecPro2 (Model-based Engineering of Products and Pro-
duction Systems) deals primarily with the development of cybertronics systems 
[Eig17a]. The goal of this project was to integrate the information and facilitate 
the data exchange throughout all the disciplines involved in the development pro-
cess. This project uses a model-based approach for the description of the system 

                                              
17 SEED: Systems Engineering Enchantment @Daimler 
18 Miele & Cie. KG: A manufacturer of consumer appliances and commercial equip-
ment 
19 Karl Mayer Textilmaschinenfabrik GmbH 
20 ModelCenter: https://www.phoenix-int.com/product/modelcenter-integrate/ [last ac-
cessed on 09.03.2020] 

https://www.phoenix-int.com/product/modelcenter-integrate/
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under development and proposes an architectural framework along with the gen-
eral structure of its model framework (see figure 3-2). 

Architecture framework of mecPro2 is a concept that contains the general instruc-
tions about defining the complete system starting from requirements to systems 
structure until the definition of detailed behaviour. This framework uses SysML 
as the description language for implementation purposes. Profile & Ontology con-
tain domain-specific extensions, terminologies, concepts etc. to achieve con-
sistency in the model and View & Viewpoints represent a certain aspect about an 
element in the system along with its relationships with other model elements.  

 
Figure 3-2: Architectural framework and it’s model framework [Eig15] 

Model Framework contains the backbone of the system under development and 
comprises of multiple layers of information (see figure 3-2 (right)). It contains four 
different levels of concretisations i.e. Context Level, Functional Level, Principle 
Solution Level and Technical Solution Level. In Context Level, systems require-
ments are extracted and converted to model-based requirements by considering 
different contexts of the system along its life cycle. Functional Level contains the 
solution functionality against a given context in the systems’ life cycle and is kept 
solution independent. The technical aspects of the system that are necessary to 
realise the desired functions are considered and analysed in Principle Solution 
Level. Typically, there may exist multiple solution variants for a single function 
that can be analysed and evaluated to select the optimal solution. Technical Solu-
tion Level contains the technical components that realise a certain system function 
and delivers a system structure, where different system components are linked with 
each other over interfaces [Eig17b]. In this way, the architectural frame and model 



3 State of the art in product development  41 

 
 

framework can be used to model a complete system. The use of SysML for mod-
elling of these frameworks eventually established the feasibility of SysML for de-
scribing a complete system and the support for the development process. 

In model-based development methods, one important aspect is the management of 
models that define the system. To manage these system definitions that are mod-
elled in SysML, mecPro2 suggest a multilayer architecture for achieving a cou-
pling between SysML authoring tool and the PLM system as shown in figure 3-3. 

 
Figure 3-3: Multilayer architecture for the management of SysML models 

[Eig17b][Kir16]21 

The lowest layer contains the authoring tools used to construct the SysML models. 
Team Data management (TDM) builds the next layer that contains discipline-spe-
cific functions for the organisation of models and processes. PLM layer offers the 
possibility to integrate different disciplines through generic model management 
functions. As depicted in figure 3-3, the coupling can be achieved in multiple dif-
ferent ways depending upon the application and needed functionality. In Direct 
coupling scenario, the PLM layer handles all needed management functions to 

                                              
21 TDM is a locally available management system normally implemented by the tool 
vendor. 
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achieve the needed functionality. In the 3-Layer with simplified TDM scenario, 
some of the data and model management functions are taken up by the TDM layer 
from the PLM layer. To have real-time updated data in different layers, a synchro-
nisation between PLM and TDM is needed. Depending upon the coupling sce-
nario, different management functionalities can be achieved. For instance, in sce-
nario 3 (3-layer with distinctive TDM) a stronger TDM layer means that more of 
the management functions will be taken up by the TDM layer from the PLM layer. 
[Eig17b] 

As the PLM systems today use a hierarchical structure for model management, a 
similar hierarchical structure in the SysML authoring tool can facilitate the infor-
mation exchange between PLM and SysML authoring tool [Kir16]. Figure 3-4 
shows an identical structure of PLM and SysML authoring tool that was evaluated 
inside a software demonstrator for PLM-SysML integration within the scope of 
mecPro2 project. The PLM structure in this example is from CIM DATABASE 
PLM22 from the company CONTACT Software GmbH and the authoring tool is 
the Cameo Systems Modeller23 from the company NoMagic. Such an identical 
structure can facilitate efficient integration of PLM system and SysML authoring 
tools by achieving bidirectional synchronisation of model elements and artefacts. 
Such integration can greatly facilitate the management of SysML models in well-
established PLM systems as well as can enable a bidirectional exchange of infor-
mation in real-time. 

                                              
22 CIM DATABASE PLM: https://www.contact-software.com/de/produkte/plm-soft-
ware-product-lifecycle-management/ [last accessed on 30.03.2020] 
23 Cameo Systems Modeler: https://www.nomagic.com/products/cameo-systems-mod-
eler [last accessed on 30.03.2020] 

https://www.contact-software.com/de/produkte/plm-software-product-lifecycle-management/
https://www.contact-software.com/de/produkte/plm-software-product-lifecycle-management/
https://www.nomagic.com/products/cameo-systems-modeler
https://www.nomagic.com/products/cameo-systems-modeler
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Figure 3-4: Identical structure in PLM software and SysML authoring tool 

[Kir16] 

Furthermore, concerning the integration of PLM and SysML, there is a very im-
portant approach of System Lifecycle Management (SysLM) [Eig16]. This ap-
proach is based on an integrated, information-driven concept for achieving tracea-
bility over the complete system life cycle and to achieve higher performance of a 
product system (see sub-section 2.1.3 for details). This can be achieved by imple-
menting a shared information core system by integrating different tools and data 
management systems used inside the product development process. The advantage 
of such a shared core system is the availability of real-time information in all dif-
ferent development teams about the status of development that eventually helps to 
avoid communication errors. The SysLM concept also helps to manage the com-
plexity of the system, right from the start of development until the end of the prod-
uct life cycle and ensures the availability of the right information at the right time 
of the development. The two-layer-model of SysLM can be seen in figure 3-5. The 
extended V Model for the development of multi-disciplinary products included in 
SysLM concept has already been discussed in sub-section 2.1.3. 
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Figure 3-5: Two-Layer-Model of System Lifecycle Management [Eig16] 

The fact that MBSE and the process of product modelling in MBSE are new to 
many of the mechanical engineers and product designers in the industry, even the 
wildly adopted modelling language in MBSE i.e. SysML is very abstract and ge-
neric for use by mechanical engineers. To bridge this gap, Functional Architectures 
of Systems for Mechanical Engineers (FAS4M) was a research project carried out 
recently by a collaboration consortium comprising of partners from academia and 
the industry [FAS20]. FAS4M identifies the need for bridging the gaps between 
MBSE models and the 3D-CAD-models, to facilitate the incorporation of MBSE 
in the development process. The direct transition from the product’s abstract struc-
ture in the Block Definition Diagram (BDD) of SysML to concrete 3D-CAD mod-
els can lead to errors. Therefore, FAS4M works on the development of an inter-
mediate solution in form of a modelling language i.e. MechML (Mechanics Mod-
eling Language). MechML is built on the foundation of SysML, uses its core func-
tions and contains model elements specific for the use of mechanical engineers. 
MechML also facilitates bidirectional information exchange between SysML 
modelling tool (Cameo Systems Modeler) and CAD software (CATIA V524). This 
information exchange is carried out with the help of two plugins (one in SysML 
tool and second in CAD tool) as shown in figure 3-6. 

                                              
24 CATIA V5 : https://www.3ds.com/de/produkte-und-services/catia/produkte/v5/port-
folio/ [last accessed 09.03.2020] 

https://www.3ds.com/de/produkte-und-services/catia/produkte/v5/portfolio/
https://www.3ds.com/de/produkte-und-services/catia/produkte/v5/portfolio/


3 State of the art in product development  45 

 
 

 
Figure 3-6: Bidirectional communication between SysML and CAD 

[Moe15b] 

The FAS-method developed inside this project lays out a clear roadmap for the 
modelling of the functional architecture of a product [Dän14]. FAS-method also 
facilitates the use of free sketches in MBSE, so that incorporation of MBSE meth-
ods among mechanical engineers can be encouraged [Moe15a]. The software pro-
totype implemented under FAS4M achieves the bidirectional communication be-
tween product shape in CAD and the functional architecture in MechML (exten-
sion of SysML). The results of the research conducted in this project are summa-
rised in the form of methodological guidelines for the implementation of FAS-
method and are documented under [Moe16]. 

MecPro2 and FAS4M have contributed to the integration of SysML models with 
PLM and CAD systems. Both of these projects build the base for the incorporation 
of SysML and MBSE methods in the current product development process. Be-
sides these two projects, there are several contributions available that talk about 
the use of modelling and MBSE methods in product development. [Fol10] discuss 
the use of SysML for the development of mechatronic systems by modelling an 
example product i.e. washing machine using SysML diagrams. The different dia-
grams of SysML are used in modelling and their model elements are briefly dis-
cussed. This approach presents a discipline neutral modelling approach and iden-
tifies SysML as a suitable language to model complex mechatronics systems. A 
more detailed overview of the SysML behavioural diagrams and the behavioural 
modelling process is presented in [Sil11]. In this work, the use of behavioural di-
agrams and the modelling process are elaborated using an example model of a sub-
part of an audio player. Although both of the last-mentioned works describe the 
modelling process in SysML, they do not provide any way for the simulation of 
these models, instead, they identify the simulation as a topic for further research. 
SysML was developed as a graphical description language and its models were not 
supposed to be simulated. However, seeing the potentials of SysML and the inter-
est of industry towards it, there have been multiple efforts to make SysML models 
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executable. [Ban16] achieve coupling of SysML modelling tool and Matlab/Sim-
ulink to simulate the SysML models. In this work, the instructions based commu-
nication (carried out by UDP25 driver) between SysML modelling tool and Matlab 
is achieved. Discrete-event simulation of SysML models can be achieved by trans-
forming these models into the Arena26 models [Bat12]. Such a transformation can 
be performed using the Atlas Transformation Language [Alt20]. Once the SysML 
models are transformed into Arena, they can be simulated inside Arena and a dis-
crete-event simulation can be obtained. [Bül14] simulate SysML models by trans-
forming them into MODELICA27 (an executable language). There are more con-
tributions [Gro15][Sin11][Fou12][Sch09] that try to simulate the SysML models 
either through model transformation or through an integration with an executable 
language/tool. 

To use MBSE models for achieving a simulation in VR, MASCARET28 frame-
work is developed. The virtual environment is modelled using graphical diagrams 
of UML and these diagrams are converted into a simulator model. The conversion 
of the models into the simulator model is done by using standard XMI (XML 
Metadata Interchange) format [Che12]. [Abi15] extend MASCARET framework 
and develop a method to achieve a simulation in VR (see figure 3-7). This simula-
tion model is first developed in SysML and later transformed into the Arena sim-
ulation model. 

                                              
25 UDP: User Datagram Protocol 
26 Arena Simulation Software: https://www.arenasimulation.com/ [last accessed 
09.03.2020] 
27 Modelica: https://www.modelica.org/ [last accessed 09.03.2020] 
28 MASCARET: A pedagogical multi-agents system for virtual environment for training 
[Buc04] 

https://www.arenasimulation.com/
https://www.modelica.org/
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Figure 3-7: Main steps of the methodology [Abi15] 

In the continuation of [Abi15], [Abi16] use the same method to achieve a simula-
tion of production lines in a virtual environment.  The SysML model describing 
the VR simulation is transformed into the Arena model. The coupling of the Arena 
model with the virtual environment makes it possible to achieve discrete-event 
based simulation of production lines in VR. 

Concerning the increasing adoptions of MBSE models and methods in industry, 
an MBSE based method for simulation of VR-models can greatly facilitate the 
incorporation of VR in industry. The available methods and modelling tools for 
implementing MBSE have attained enough maturity to facilitate direct simulations 
in VR. After discussing the state of the art about MBSE, the rest of this chapter 
will discuss current applications and general practices regarding the use of VR in 
product development. 

3.2 Virtual Reality in product development 

The early identification of the faults and discrepancies in the design is vital to the 
product development process because the later identification of a fault can be very 
expensive [Ste04] or sometimes difficult/impossible to correct. This has led to ex-
tensive use of digital models and methods for supporting the product development 
process. Along with these models, new technologies are incorporated to facilitate 
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early evaluations. Among these technologies, Virtual Reality (VR) and Aug-
mented Reality (AR) technologies are increasingly finding their place in the prod-
uct development process. Both these technologies work with the digitals models 
available during product development and offer various possibilities to examine 
and analyse the design. The discussion by [Rad14] about VR identifies it as an 
important support tool in virtual product development. However, the preparation 
of VR-models for use in product development is a difficult task. The current solu-
tions available for integration of VR into the current product development process 
are not satisfactory and also not suitable for use by product designers [Sta09a] and 
[Sta09b]. [Sta09b] suggest the use of grid technology to exploit the potentials of 
virtual product creation and develop the ProGRID. One interesting aspect of 
ProGRID that is very relevant to this thesis is the realization of simulation data 
management (SDM) system. 

 
Figure 3-8: Simulation data management system with access to grid re-

sources [Sta09b] 

The overall data about the system is stored inside common databases and at the 
time of simulation, the necessary data is collected. In this way, common databases 
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can be obtained that facilitate the availability of always up-to-date simulation re-
lated data at the right time to the right stakeholder. This can also help to avoid 
miscommunication between development teams. 

Usually, 2D computer screens are used to visualise simulation data or product 
models. The visualisation of a 3D geometrical model of a product on a 2D com-
puter screen can at times provide a misleading understanding of the product. VR 
enables interactive visualisation of 3D models by allowing an interactive 3D visu-
alisation [Elc11]. Such visualisation can provide the designers with useful infor-
mation about the design e.g. the actual dimensions of the product, facilitate collab-
orate design reviews etc. Furthermore, the incorporation of product behaviour in-
side VR can provide a real-time alternative to a physical prototype. In the last dec-
ade, VR has been used extensively during the product development process in dif-
ferent application areas such as: 

• design evaluation [Ye07] [Par08] ,  
• virtual prototyping [Zor03],  
• production planning [Sch05] [Ter15],  
• assembly planning [Bul00],  
• virtual assembly [Jay99] [Set11],  
• manufacturing [Cho15],  
• ergonomic evaluations [Whi04] 
• learning & education [Gor17] [Abu11] [Ver17],  
• acoustical product simulations [Hus14] [Sie16], 
• . . . and many more. 

Furthermore, in light of the life-phases of a product defined in VD2221 (see figure 
2-1), potential application domains of VR can be extracted as shown in figure 3-9. 
In product development, VR can be used to achieve different simulations and also 
for performing visual inspections. Manufacturing and assembling processes can be 
visualised in VR as well as the flow of materials and logistics information can also 
be simulated. In marketing and sales, VR can offer a cost-effective solution for 
remote presentation of the product to users or stakeholders. The operation of the 
product can also be evaluated in VR by performing ergonomic evaluations, safety 
tests, training and simulations of the maintenance & repair procedures. Finally, the 
disassembly and recycling possibilities of a product can as well be investigated in 
VR which are important topics considering the sustainability of the design. 
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Figure 3-9: Potential applications of VR (extended from figure 2-1) 

Based on the discussed applications in this section, it is clear that VR has pene-
trated in most of the disciplines and finds its application throughout the product 
life cycle. The next section will address the conventional process for creating VR-
models and an overview of the current VR-model preparation practices will be 
provided. 

3.3 Methods for the preparation of a VR-model 

Typically, the construction of a VR-model contains two important parts. The first 
part deals with the visual representation of the geometrical objects and the second 
part deals with the construction of behaviour of the objects or the addition of sim-
ulation/animations. Other than these two parts, there may exist further parts e.g. 
haptic feedback devices etc. but are not discussed here. To import a product model 
that is (usually) available in the form of CAD models, the VR-software offers the 
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possibility to import these models. However, usually, the models cannot be im-
ported in native CAD formats, instead, the geometric exchange formats like STEP, 
VRML, JT etc. are used. Different geometric exchange formats can carry different 
details and levels of information about the original CAD model. An overview of 
the 3D data exchange formats relevant to CAD to VR transfer can be seen in table 
1. 

Table 1: 3D exchange formats relevant to CAD-VR conversion [Lor16] 

 JT STEP IGES VRML 
Geometry Yes Yes Yes Yes 
Materials Yes Yes Yes Yes 
Textures Yes Not implemented in CAD exporters No Yes 
Animations No Not implemented in CAD exporters No Yes 
Constraints No Not implemented in CAD exporters No Limited 
Kinematic  
relationships 

No Not implemented in CAD exporters No Limited 

 

The choice of the data exchange format for a given application not only depends 
on the information carried by that format but also on the VR-software and CAD 
tool at hand. Different CAD tools offer different export formats and similarly, dif-
ferent VR-software can import different formats (see figure 3-10). An overview of 
the renowned CAD and VR tools along with their export and import possibilities 
is provided by [Mah16] and can be seen in figure 3-10. 
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Figure 3-10: Overview of renowned CAD and VR tools along with the im-

port and export possibilities [Mah16] 

An overview of a few VR-software that are currently available in the market and 
their support for different VR-systems can be seen in table 2. 

Table 2: Support of VR-software (rendering tools) for different VR-systems 

VR-software Type CAVE Powerwall HMD sVR 
RTT Deltagen Commercial Yes Yes Yes No 
IC.IDO Commercial Yes Yes Yes No 
Visionary Render & 
Visionary Render 2 

Commercial Yes Yes Yes ?  

VR Studio Commercial Yes Yes ? ? 
Vizard Commercial  Yes Yes Yes No 

Unity3d 
Commercial / 
Free* 

No No Yes Yes 

Unreal Engine 
Commercial / 
Free* 

No No Yes Yes 

Free*: for educational, personnel and companies with a limited annual turnover  
 



3 State of the art in product development  53 

 
 

The information presented in this table is referenced from the tool vendor websites 
(last accessed on 09.03.2020). RTT Deltagen29, IC.IDO30, Visionary Render31, VR 
Studio32, Vizard33 are available commercially and mainly focus on the CAVE and 
Powerwall based VR-systems. Unity3d and Unreal Engine are game engines that 
are available both commercially and as free versions (for academic use). Both of 
these game engines do not offer direct support for CAVE or Powerwall type VR-
systems and instead, focus on smartphone and HMD based applications develop-
ment or computer games. It is evident from table 2 that there is no VR-software 
currently available that can cover all the available VR-systems. 

Furthermore, not all of the VR-software can import all 3D data exchange formats 
used in CAD tools. At times, an intermediate conversion tool is needed. For in-
stance, 3D content creation software like Blender34 (open source) or Autodesk 
Maya35 can import several 3D data exchange formats and act as an intermediate 
tool between CAD and VR. After importing the CAD geometries using exchange 
formats, both of these tools facilitate manipulation, simplification and export of 
the geometrics in such an exchange format that can be directly imported into VR-
software. A more detailed overview of the geometric exchange formats is provided 
by [Mch08] that enlists the standards, types, contained information and owning 
tool of these formats. 

Based on the information presented in table 1, table 2 and figure 3-10, it can be 
concluded that the choice of VR-software depends on multiple factors i.e. the CAD 
tool used inside the company, supported exchange formats, supported VR-system 
type etc. Furthermore, the geometrical representation of a VR-model designed for 
one particular VR-system may not be reusable in other VR-systems due to the poor 
interoperability between different VR-software. 

                                              
29 3DEXCITE DELTAGEN: https://support.3dexcite.com [last accessed on 09.03.2020] 
30 IC.IDO: https://virtualreality.esi-group.com/head-mounted-displays-virtual-engineer-
ing [last accessed on 09.03.2020] 
31 Visionary Render 2: https://www.virtalis.com/virtalis-visionary-render-2-visualisa-
tion-industry-4-0/ [last accessed on 09.03.2020] 
32 VR Studio: https://epiito.com/vr-studio [last accessed on 09.03.2020] 
33 Vizard: https://www.worldviz.com/virtual-reality-software-features [last accessed on 
09.03.2020] 
34 Blender: https://www.blender.org/ [last accessed 09.03.2020] 
35 Autodesk Maya: https://www.autodesk.de/products/maya/overview [last accessed 
09.03.2020] 

https://support.3dexcite.com/
https://virtualreality.esi-group.com/head-mounted-displays-virtual-engineering
https://virtualreality.esi-group.com/head-mounted-displays-virtual-engineering
https://www.virtalis.com/virtalis-visionary-render-2-visualisation-industry-4-0/
https://www.virtalis.com/virtalis-visionary-render-2-visualisation-industry-4-0/
https://epiito.com/vr-studio
https://www.worldviz.com/virtual-reality-software-features
https://www.blender.org/
https://www.autodesk.de/products/maya/overview
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The visual model in VR mainly consist of geometrical models and the simula-
tions/animations are added separately. After the construction of the geometrical 
model in VR, the next step is to add behavioural representations for the given 
model. This can be achieved by adding the animations/ simulations manually or 
by programming or by adding executable scripts. Table 3 is based on a literature 
review and provides an overview of past methods developed for achieving behav-
ioural simulation inside VR. The researches published in the past twenty years that 
talk not only about the visual representations of products in VR but also build the 
behavioural representations are considered. Table 3 does not list down all the 
methods developed to date for the behavioural descriptions of VR, instead presents 
a general idea about the current practices. The focus is put upon extracting the goal 
of the research, VR-software used, the type of VR-system used, the method used 
for achieving simulation as well as the simulation tool used. Furthermore, the con-
tents of each research relative to the product, actor and environment are listed. It 
is also checked if the conducted researches perform any division of the complete 
VR-model into smaller isolated reusable modules / sub-models. To show the in-
formation originating from nineteen research articles on a single page, some ab-
breviations and symbols are used. These abbreviations and symbols are: 

• VADE – A Virtual Assembly Design Environment [Jay99] 
• CASUS – Computer Animation of Simulation Traces [Lus97] 
• em-Plant – new name Plant Simulation36 by SimPlan AG 
• VDTC – Virtual Development and Training Centre (ELBEDOME37) 
• Vizard – Vizard VR by wordviz38 
• Virtools – Virtools by Dassault Systems  
• TCLV  – Teamcenter lifecycle visualization 9.1 by Siemens 
• Revit39 – Building Information Modeling Software by Autodesk 
• CACE  – Computer-Aided Control Engineering  
• E, T & C – Environment, Technical & Cultural 
• P, A & E – Product, actor and environment 

                                              
36 Plant Simulation: https://www.plant-simulation.de/ [last accessed 09.03.2020] 
37 ELBEDOME: https://www.elbedome.de/ [last accessed 09.03.2020] 
38 Vizard: https://www.worldviz.com/vizard-virtual-reality-software [last accessed 
09.03.2020] 
39 Revit: https://www.autodesk.de/products/revit/overview [last accessed 09.03.2020] 

https://www.plant-simulation.de/
https://www.elbedome.de/
https://www.worldviz.com/vizard-virtual-reality-software
https://www.autodesk.de/products/revit/overview
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• In   – Simulation model developed and executed inside the VR-
software 

• Out   – Simulation model developed and executed outside the VR-
software  

• *   – Asterisk sign is added if the research does not state the used 
technology, but it can be extracted by the reader 

The researches mentioned in table 3 by large cover different aspects related to 
product development e.g. assembly planning, product evaluation, ergonomic eval-
uation, decision making support, acoustical evaluation, design reviews etc. The use 
of VR for training and educational proposes is also included in this review. 
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Table 3: Conventional ways of describing VR applications 
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A broad spectrum of VR-software is used that are either commercially available 
or were developed as a result of conducted research. As far as the method of 
achieving simulation in VR is concerned, there can be an easy differentiation made 
between them i.e. the simulations/animations are either directly added inside the 
VR-software or performed external to the VR-software. The simulation inside VR-
software is achieved by using programming, visual scripting or flow charts de-
pending upon the possibility offered by VR-software at hand. The out of the VR-
software simulation is achieved by coupling a simulator with VR-software. If the 
simulation is done outside VR-software in any given study, then the simulation 
tool is also mentioned inside the table. Most of the mentioned works treat the com-
plete VR-model as one entity except for [Wal06],[Bor09] and [Ber17]. [Wal06] 
divide the virtual objects into the environment, technical and cultural groups be-
fore saving them inside a self-made database. [Bor09] perform an ergonomic eval-
uation of a product in the presence of a human actor. [Ber17] perform product 
design review of a pump as a product inside the assembly line as its environment. 
In general, the discussion about the reusability of the developed applications is 
limited. [Mue02] and [Wal06] claim to achieve reusability of VR-model contents 
by developing model database and libraries. However, the reuse of the created 
content across different VR-systems is not discussed explicitly. [Bru13] add sim-
ulations in VR by integrating product functional behaviour models from 
Matlab/Simulink inside a mixed reality setup using AR glasses. This method 
claims to be reusable in different VR-systems but no validation is provided. A 
limitation of this method is that the simulator model has to be developed separately 
if the product developer is not using Matlab/Simulink. The Contents column in the 
table indicates that the product is the subject of the research primarily and the ex-
amination of actor & environment is limited. Based on the brief comparison in 
table 3, it can be concluded that 

• the choice of VR-software is highly application and VR-system dependent,  
• the simulation is achieved by using different methods and there is no gen-

eral method available,  
• product is mainly the focus of the examination and limited examination of 

actor & environment is included,  
• there is no uniform method for division of the complete VR-model and 
• reusability of the VR content is not demonstrated explicitly. 
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Although some of the commercially available VR-software offers built-in physics 
calculation modules, they are mainly limited to physical phenomena like collision 
detection and rigid body dynamics [Bru10]. Furthermore, the use of these physics 
modules are subjected to the inside VR-software development based on program-
ming, visual scripting etc. that is again not suitable for reuse in different VR-sys-
tems. Therefore, the idea of an external simulator integration with VR is appealing 
concerning the physical calculations as well. Integration of external simulator can 
facilitate the product designer to use the simulation models already available dur-
ing product development as well as can facilitate the reusability of developed sim-
ulation models in different VR-systems.  

It is evident from the discussion in this section that there is no generic method 
available for the preparation of VR-models. Previous researches use different VR-
software, simulators and exchange formats to prepare VR-models. As indicated in 
table 2, one VR-software cannot support all available VR-systems and thus, in-
teroperability in different VR-systems cannot be achieved. Therefore, a new ge-
neric method for the preparation of a VR-model is needed that is independent of 
VR-software and VR technology and which can reduce the preparation effort by 
achieving reusability in one VR-system and across different VR-systems. Possi-
bilities to reduce the preparation effort for VR-model are the use of the simulation 
models that are already available during product development and the reuse of the 
contents of already created VR-model. The contents of a VR-models can be reused 
on two different hierarchical levels as indicated as Level 1 and Level 2 in figure 
3-11.  

 
Figure 3-11: Hierarchical level of reusability of VR-Model 
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The first level includes a detailed view of the VR-model, where the complete 
model is divided into small isolated reusable modules/sub-models. These isolated 
sub-models can be reused to form different use cases while being in the same VR-
system. The second level addresses the reuse of VR-model descriptions in different 
VR-Systems irrespective of the VR-software used.  

So far an overview of the state of the art in the field of VR in product development 
is provided in this chapter with the conclusion that there is a need for a new generic 
method for the preparation of VR-models. 

3.4 Summary 

This chapter has provided an overview of the current developments in the field of 
MBSE and its integration into the product development process. The potentials of 
handling the complexity of technical products and of achieving traceability 
throughout the development process have made MBSE an important topic of re-
search in academia as well as in industry. The industrial companies have already 
started carrying out pilot projects to examine the effectivity of MBSE in the devel-
opment process and efforts for the incorporation of MBSE methods are on full 
swing. Furthermore, preliminary studies have elaborated the behaviour modelling 
process in SysML and the use of SysML & MBSE methods to drive a simulation 
model in VR is also put to test. However, the currently available methods use dif-
ferent transformations between SysML models and VR. Some of the information 
about the product model can be lost during such a transformation process. Further-
more, the physical calculations cannot be directly incorporated in SysML which 
also remains an open topic for further research. 

Although the use of VR in product development is very promising, the preparation 
of the VR-model remains a challenge. This is due to the poor standardization of 
VR-software and the resulting interoperability issues between them. The construc-
tion alone of the geometrical model in VR makes the choice of VR-software a 
challenging task because of factors like CAD tool, supported exchange formats, 
VR-system type, application area etc. The behavioural model in VR relies most of 
the time on programming or scripting based solutions that can offer very limited 
reusability. Thus, every new use case /scenario of a product in VR requires 

• remodelling,  
• reprogramming and  
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• sometimes even reconstruction of the complete VR-model. 

This situation at hand establishes the need for a new generic method that can  

• reduce the overall VR-model preparation effort,  
• support all available VR-systems,  
• make VR content reusable in different VR-systems regardless of the used 

VR-software and  
• can facilitate the incorporation of physical calculations on the geometric 

objects.  

Based on these requirements, the relevant research questions are formulated and 
presented in the next section. 
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3.5 Research questions 

This research focuses on the development of a method for the description of VR-
models to facilitate the use of VR in product development by reducing the needed 
effort for preparing the VR-models. The preparation effort can be reduced consid-
erably by reusing the simulation models available during development and by re-
using the already created VR contents. This reusability has two levels of hierarchy 
i.e. on VR-system level and within one VR-system on the sub-modules/sub-mod-
els level (see figure 3-11). Furthermore, the new method should also include the 
possibility of performing physical calculations on the geometrical objects in VR 
with ease. To fulfil the requirements of the new method, the following research 
questions should be addressed during this research. 

1. What can be a useful division of a VR-model40 to make elements (sub-mod-
els) of the complete model reusable? [addressed by chapter 4] 

2. How to create the separate isolated descriptions of sub-models including 
behavioural descriptions? [addressed by chapter 4] 

3. How to achieve a generic (formal) description of a VR-model including 
(physical) behaviour description for use in product development that can be 
reused as well? [addressed by chapter 5 and 6] 

To address the above-mentioned research question, there are further sub-questions 
that should be addressed i.e. 

I. How can the generic interactions between the sub-models be modelled in 
case the complete model consists of sub-models? [addressed by chapter 4, 
5 and 6] 

II. How can the physical behaviour of sub-models be incorporated inside VR 
– which needs real-time conditions? [addressed by chapter 5] 

III. How can these behaviour descriptions be used as the core of the simulation 
process and cooperate with VR-software in different VR-systems (CAVE, 

                                              

40 Also see definition in section Abbreviations and terms 
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HMD, Powerwall and sVR) to achieve an interactive simulation in VR? 
[addressed by chapter 5 and 6] 

In the following part of this thesis, these research questions will be addressed and 
discussed one by one. 



 

4 Method 

This chapter presents the method developed for the descriptions of VR-models and 
attempts to address the research questions 1, 2 and the sub-question I defined in 
section 3.5. In light of the state of the art in section 3.3 followed by the discussion, 
a new method for the description of VR-models is necessary. The new method 
should address the current challenges regarding the preparation of VR-models as 
well as the research questions mentioned in section 3.5. Therefore, the new method 
shall 

1. enable reuse of VR content within one VR-system, 
2. enable reuse of VR content across different VR-systems, 
3. reduce overall VR-model preparation effort and 
4. offer easy integration in the product development process. 

The requirements numbered 1 and 3 are addressed in this chapter whereas 2 and 4 
will be discussed in chapter 5 & 6. The first section of this chapter talks about the 
division of the complete VR-model into reusable modules, the basic model for the 
construction of product use cases, the possible outcome of such use cases and the 
aspect of reusability of VR contents within one VR-system. The second section 
provides a general idea for the preparation of a VR-model while using SysML 
models. Section three develops the modelling methodology to describe the struc-
ture and behaviour of sub-models that resulted from the VR-model division and 
also includes the definition of interfaces between these sub-models. Furthermore, 
it contains a comparison of two different behaviour model execution architectures, 
as well as the automatic parallel execution and generation of use cases of product 
in VR. The fourth section summarises the findings and will note down the general 
guidelines for the implementation of the presented modelling approach. 

4.1 Division of complete VR-model 

It has already been discussed in chapter 1 that the multidisciplinary and complex 
products of today can no longer be treated in isolation. To develop a successful 
product, it is important to consider the context of a product consisting of the life-
phase specific actor(s) and the environment. A basic evaluation model in the next 
sub-section discusses the expectations and possible outcome of a product evalua-
tion use case that contains these three aforementioned sub-models. This idea can 
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be extended far beyond physical products and their immediate environments, e.g. 
by covering Product-Service Systems (PSS) in a VR simulation [Exn19]. 

4.1.1 Basic model 
In any given life-phase of a product, life-phase specific actor(s) and environment 
make the context of a product. The effectivity of contextual use cases for the eval-
uation process can be understood employing the basic model in figure 4-1 that 
shows two different use cases of a product, i.e. using the product and service it, 
along with respective context. 

• E represents all inputs to the system – intended as well as unintended – 
while A represents all outputs produced by the system [Mah17a] 

• The context can be understood as a use case specific environment along 
with the respective actor(s), e.g. a fabrication machine operator, an end-user 
or a service technician. The context also contains the environment that is 
not necessary for functional behaviour but has to be considered concerning 
the disturbances [Mah17a] 

 
Figure 4-1: Product context in different product life-phases [Mah17a] 

In each of these two use cases, the product can have one or more actors that interact 
with it. Similarly, it can find itself in a certain environment. The most critical thing 
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to extract from these two use cases is the changing product requirements. For in-
stance, in the usage phase of the product, the designer focuses on the functionality 
of the product and tries to address the needs of the user. Mainly the functional 
requirements i.e. efficiency, ergonomics, aesthetics etc. of the product are in focus 
here. This can change in the service phase of the product, as the product comes in 
contact with a technician in this phase. The designer will here have to address the 
needs of the technician e.g. easy diagnosis capabilities, easy access to out of order 
components and their easy replacement, etc. This may bring the geometrical re-
quirements of the product in focus. Similarly, a product in its every life-phase can 
have different use cases and in all these use case situations, a different context of 
the product has to be considered. Figure 4-1 depicts the formal representation of 
the relational properties introduced by [And96] that were further developed by 
[Web07]. Building similar use cases like the ones discussed here can help the de-
signer verify product requirements or maybe discover new requirements that are 
not yet considered in the design. 

4.1.2 Division of VR-models 
As discussed in the last sub-section, the three most important components of a 
product evaluation use case are the product itself, its environment and actor(s). In 
different use cases over the life span of the product, the actors can change as well 
as the environment. Furthermore, the product may itself consist of multiple design 
versions that have to be evaluated. Hence, the substitution and reuse of these three 
components are vital for building dynamic use cases for the sake of product eval-
uation in VR. To achieve such a dynamic configuration of different product eval-
uation use cases, one possible solution is to divide the complete VR-model into 
smaller reusable modules or sub-models. Therefore, the core of the new method-
ology lies in the fact that the complete VR-model is divided into sub-models of 
product, actor and environment (the idea was first presented in [Web16]). These 
three models are referred to as sub-models in the rest of this thesis. The main mo-
tivations for performing such a division are the following: 

• The fact that the product will be continuously developed and at any given 
stage in development, if there is a use case of product needed in VR, it 
should be possible to substitute the existing product model inside the com-
plete VR-model with the new one without having to make major adjust-
ments to the overall model 
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• One way to reduce the preparation effort of VR-model is by achieving the 
reusability of the complete VR-model or parts of it. This division can allow 
us to deal with the sub-models individually and can thus enable the substi-
tution/reusability of these sub-models 

In light of this division, the external conditions mentioned in the CPM/PDD ap-
proach in sub-section 2.1.4 are revisited and further extended as presented in 
[Lie17]. The original approach considers the systems lying outside the boundary 
of a product as neighbouring systems and identifies their influence on product 
properties as external conditions. The originally defined external conditions are 
further extended to incorporate the actor(s) and the environment to include them 
as the neighbouring systems of the product. Figure 4-2 shows the extended external 
conditions that identify the actor and the environment as two important neighbour-
ing systems of a product. 

 
Figure 4-2: Extended external conditions [Lie17] 
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The extended external conditions include the actor and environment model that 
allow the validation of product properties with the interplay of neighbouring sys-
tems. Similar to the product, actor and environment may contain their own external 
conditions as well as characteristics and properties. The separate representation of 
actor and environment in external conditions builds the base for a dynamic VR-
model that can allow the contextual evaluation of product properties. However, 
caution must be exercised in the understanding of new external conditions i.e. the 
explicit definition of the impact of actor and environment in no way can cover all 
the external influences on a product. There may well be more influences originat-
ing from other sources which are mentioned as ECPj in figure 4-2. Figure 4-3 is 
the extension of the product development process schematic from [Web05] and 
contains the new extended external conditions. 

 
Figure 4-3: Overall extension of CP-model of [Web05] as presented in 

[Lie17] 
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The new external conditions (ECj) here are the ones presented in figure 4-2. PRj 
are the required properties that can be understood as an analogy to the requirements 
from the product. Pj in the above figure are the calculated properties or as-is-prop-
erties against the given characteristics under the consideration of extended external 
conditions. [Web11] suggest the use of VR as a tool for the virtual development 
process and its representation contain VR specific aspects that can be seen in figure 
4-4. 

 
Figure 4-4: Virtual Reality (VR) as a tool of Virtual Product Development 

[Web11] 

The difference (ΔPj) between is-properties and the required properties is the driver 
for the development process. This difference can be a visual result of a product 
evaluation performed by using a VR-model. The original CPM/PDD approach is 
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not limited to any particular method for calculating the properties from character-
istics, however, in VR this is conducted on the base of visual presentation. There-
fore, any shortcoming in design or product interactions can be seen visually (De-
viations (ΔPj) & Overall Eval. in figure 4-4 or VR presentation and evaluation 
(ΔPj) in figure 4-3) in VR and it drives the development process. The VR-model 
division together with the CPP/PDD approach with extended external conditions 
build the base for product evaluation in VR and is the methodological backbone of 
this thesis. Another way to look at the benefits of performing such a division and 
using sub-models to form different use cases in VR can be understood graphically 
as shown in figure 4-5. Considering the left side of this figure, a scenario of a 
product’s contextual evaluation in VR consists of actor, environment and system 
(i.e. product). Construction of this scenario in VR can help to validate product re-
quirements associated with this particular scenario. 

 
Figure 4-5: Efficient configuration of VR-model [Mah17a] 

Similarly, if a database of different sub-models from different life-phases of a 
product is considered, the sub-models can be reused to form different VR config-
urations consisting of different combinations of these sub-models. This reusability 
can indeed contribute to the reduction of the overall effort for the preparation of 
different VR-model configurations. These configurations can be used to evaluate 
the product and to validate its requirements in its later life-phases. As a result, the 
future interactions and behaviour of a product in later life stages can be evaluated 
at the design stage. 
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4.1.3 Summary 
This section has presented the theoretical base of this thesis and the idea of division 
of a complete VR-model into sub-models comprising of product, actor and envi-
ronment. The sole purpose of performing such a division is to achieve smaller, 
reusable modules as sub-parts of a complete VR-model. The concept of contextual 
evaluation of a product and its effectiveness is also discussed. The CPM/PDD ap-
proach is extended to incorporate the actor and environment model explicitly in-
side external conditions and an outlook on the construction of different VR-model 
configurations is provided. Although the idea of the division of the complete VR-
model is very appealing in terms of the reusability perspective of VR-model and 
its contents, its implementation is rather a challenging task. This is because the 
aforementioned reusability, substitution and recombination of sub-model in differ-
ent use cases require an independent and isolated description of individual sub-
models. An isolated description is only possible by avoiding any direct dependen-
cies between the sub-models. Furthermore, these individual models have to work 
together / interact with each other to form one use case. The interaction between 
these sub-models should be described generically. Based on these challenges, the 
next section develops the approach for the description of these sub-models and 
their interactions. 

4.2 Approach for the description of VR-models 

Regarding the challenges associated with the description of the aforementioned 
sub-models and the requirements mentioned at the start of this chapter, the pro-
gramming based solutions are not suitable for the implementation. The program-
ming based preparation of a VR-model depends directly on the capability of the 
VR-software at hand and offers very limited reusability (detail in 3.3). Besides, 
any preparation method that focuses on VR-software preparation e.g. visual script-
ing, flow diagrams etc. encounters the same limitation. Therefore, this thesis fo-
cuses on the idea of performing the functional/behavioural description of VR-
model outside of the VR-software. It is also important that this implementation 
idea should not be something completely alien to the industry so that it makes 
relatively easy integration of VR into the current development process possible. 
Considering these aspects, MBSE with SysML as the modelling language is cho-
sen for the description of sub-models. This choice can be justified through the fol-
lowing arguments: 
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• MBSE and SysML are not fully new to the industry and have already found 
their place in industry (see section 3.1) 

• SysML is a general-purpose and standardised modelling language [Iso17]  
• SysML can describe the behaviour of our sub-models independent from 

each other using its behaviour diagrams and the model elements (detail to 
follow in sub-section 4.3.3) 

• SysML also possesses the capability of modelling the interaction between 
sub-models using its standard interaction elements i.e. ports in a generic 
way (detail to follow in sub-section 4.3.2) 

• SysML models have already found their way towards integration with ex-
isting PLM and CAD systems employing mecPro2 and Fas4M projects (see 
section 3.1) 

As any VR-model may contain geometrical and behavioural descriptions of virtual 
objects, a concept based on the use of SysML can be seen in figure 4-6. Besides 
the geometry of a sub-model, the structural model in SysML describes the model 
components/parts, their interaction with each other and with the outside world. The 
interaction points in SysML are modelled using the SysML Ports. 

 
Figure 4-6: Concept of VR-model preparation [Mah17a] 
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The behaviour is modelled with the help of SysML behaviour diagrams and two 
of them are shown in figure 4-6 i.e. State Machine Diagram (SM) and Activity 
Diagram (ACT). SM can model the states of a system with their individual behav-
iour. The transition between these states can occur as a result of the fulfilment of 
the mathematical condition(s) described in the model or due to a signal event from 
within the model. A signal can furthermore also come from outside the model. The 
behaviour of a state (e.g. State 1 and State 2 in figure 4-6) can be detailed by using 
activity diagrams that use control and object flows to implement behavioural as-
pects. The individual behaviour models can interact with each other by using struc-
tural description and the interactions defined over the sub-models’ ports. 

Based on the conceptual idea in this section, the next section presents the model-
ling approach for sub-models that contains the structural and behavioural descrip-
tions of the individual models. 

4.3 Modelling approach 

To explain the modelling approach, a case example of a product is needed, so that 
the modelling process can be easily followed by the reader. A vacuum cleaner 
(manual) is not a very complex and at the same time, not a very simple product. 
Its use is intuitive, finds application almost in every household and requires a hu-
man user for its operation. Furthermore, the environmental model for its use phase 
e.g. a living room environment possesses moderate complexity. The cooperation 
of a vacuum cleaner manufacturer as an industrial partner of this research helps in 
acquiring the information related to the industrial development process. Therefore, 
a vacuum cleaner model is used as a case example to explain the modelling process 
and later used to build the first prototype in VR. The context of a vacuum cleaner 
in different life-phases can be seen in figure 4-7. This figure shows some of the 
possible actors and environments specific to the example of a vacuum cleaner. 
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Figure 4-7: Context of a vacuum cleaner (Graphic41) [Mah17a] 

It has already been mentioned in section 1.2 that the actor model development does 
not lie in the scope of this thesis; thus, the model of a VR interaction device is 
considered as a proxy to actor model. 

The interaction device can be used by the VR-user to manipulate/use vacuum 
cleaner model in VR and its model description is developed in SysML. The vac-
uum cleaner model and a living room model considered as its usage environment 
are also modelled in SysML. The rest of this section will systematically present 
the modelling approach for these sub-models (i.e. interaction device, vacuum 
cleaner and living room). The first sub-section 4.3.1 describes the structural mod-
elling of these three sub-models, followed by the definition of their interfaces in 
second sub-section 4.3.2. The third sub-section 4.3.3 describes the behavioural 
modelling process in details. 

  

                                              
41 Vacuum Cleaner Graphic : Wikimedia Commons: https://commons.wiki-
media.org/wiki/Vacuum_cleaner#/media/File:Blue_vacuum_cleaner.svg [last accessed 
on 09.03.2020] 

https://commons.wikimedia.org/wiki/Vacuum_cleaner#/media/File:Blue_vacuum_cleaner.svg
https://commons.wikimedia.org/wiki/Vacuum_cleaner#/media/File:Blue_vacuum_cleaner.svg
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4.3.1 Structural modelling 
The hierarchal structure and the owing parts of a product can be modelled inside 
Block Definition Diagram (BDD) in SysML as shown in figure 4-8. The vacuum 
cleaner being the system of interest is represented by a Block. A block is a struc-
tural model element in SysML that may represent a system, its components, the 
flow of information as well as materials etc. The components/parts of a Vacuum 
Cleaner are also modelled using blocks, as they may contain sub-parts or interac-
tion definitions and are named as Sensor_Module, Motor, Product_Interface, Han-
dle, CableUnit, Power_Supply, and Wheels. These components are linked with the 
Vacuum Cleaner block using Directed Composition relations. A directed compo-
sition relationship is indicated by a filled diamond connected to an arrowhead and 
conveys the structural compositions of different blocks. For example, in figure 4-8 
Motor block is a component of Vacuum Cleaner block, therefore, the connection 
between them is of directed composition.  

 
Figure 4-8: Vacuum cleaner structure as BDD 
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In this way, a BDD can represent a logical or physical decomposition of a system. 
Similar to Vacuum Cleaner, its component may also contain sub-components or 
parts that can be represented in separate BDDs. The Wheels block is connected 
with Left_Wheel and Right_Wheel block using a generalisation relationship (line 
connected with a hollow triangle). This indicates that the Wheels block is a more 
generalised form, whereas Left_Wheel & Right_Wheel are more specialised forms 
of Wheels. Small boxes on the edges of different blocks are the interface elements 
in SysML so-called “Ports” and will be discussed in next sub-section. The struc-
ture of a system can be described as detailed as needed and it may consist of mul-
tiple diagrams. However, the focus of this thesis is on the behaviour descriptions 
of sub-models and therefore, the structure model is developed just to as much detail 
as later needed for the description of behaviour models. Similar to the BDD of 
vacuum cleaner, a BDD for the environment model can also be constructed as 
shown in figure 4-9. The Living Room model may contain different objects like a 
sofa, table, lamp etc. that can be modelled accordingly. 

 
Figure 4-9: Living room structure as BDD 

Similarly, the model of an interaction device can be built as a proxy for the actor 
model and can be seen in figure 4-10. A typical VR interaction device may have a 
few buttons and a joystick. The joystick itself is a multifunctional button that is a 
more generalised form of Up, Down, Right & Left movement buttons and hence, 
is linked with a generalisation relationship. 
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Figure 4-10: Interaction device as BDD 

The sub-models that are described in this thesis mainly contain a primitive struc-
tural model that consists of only one BDD each. To have independent models, the 
structural definitions of all three sub-models are saved as separate project files. An 
important structural aspect of sub-models is the definition and connections of their 
interfaces. This is discussed in the next sub-section. 

4.3.2 Modelling of the interaction 
The last sub-section has provided an overview of the basic structural definition 
process and the resulting definitions are saved in separate project files. As a result, 
three project files are representing each sub-model individually. These sub-models 
have to work together and interact with each other to form one contextual use case 
of a product in VR, therefore, a new SysML project is needed that represents the 
overall system consisting of the three sub-models. This new project shall import 
and use the three projects containing so far only the BDDs of sub-models. Depend-
ing upon the desired functionality, these projects can be loaded as read-only or 
read-write accessibility options. In the case of read-only accessibility, the elements 
of the loaded project cannot be edited or modified directly in the current project, 
which is possible in the case of read-write accessibility. For instance, this can help 
to manage who can make changes in the shared project’s content. The contents of 
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the current model after loading the three projects (containing individual sub-mod-
els’) can be seen as a package diagram (PKG) in SysML and also in the resulting 
model containment tree from the modelling tool (see figure 4-11). A Package in 
SysML is a model element that can contain any number of model elements or dia-
grams and is mainly used to achieve model organisation. It can also be understood 
as an analogy to a folder in windows based operating system. All three packages 
originating from the project files of the sub-models containing the individual 
BDDs and model elements. The sign of a “hand” in the containment tree indicates 
that the package is a shared resource. 

 
Figure 4-11: Containment Tree (Left) & Package Diagram (Right) 

After loading the sub-models inside the new project, it is time to define information 
inside this new project (i.e. Overall_System) so that the interaction between the 
sub-models can be defined. As the overall VR-model consists of the three sub-
models, it can be represented by modelling a representing block for the overall 
system (i.e. Overall_System) and connecting it with the blocks representing the 
individual sub-models using directed composition relationship. The resulting BDD 
can be seen in figure 4-12. 

 
Figure 4-12: Structure of the overall system as BDD 

After the definition of the overall structure, the next step is to define the interaction 
between these block as shown in figure 4-13. To better understand this figure, it is 
important to have a closer look at the ports already modelled in figure 4-8, figure 
4-9 and figure 4-10. As the description of the three sub-models is loaded into the 
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current project, the already modelled ports within individual sub-model descrip-
tions are available for use. Two kinds of ports available in SysML i.e. full port and 
proxy port are defined as: 

“SysML identifies two kinds of ports, one that exposes features of the owning block 
or its internal parts (proxy ports), and another that supports its own features (full 
ports)” [Omg18b] 

 
Figure 4-13: Internal structure as IBD (modified from [Mah18a]) 

Figure 4-13 is the internal block definition diagram (IBD) and shows the intercon-
nection of the sub-models. The small rectangular boxes with and without the ar-
rows inside them are the ports in figure 4-13 and are named as UserActions, Us-
erMovements, call_behav, collision, garbage and fp_garbage. 

SysML also offers a specialised block i.e. Interface Block that can be used to de-
scribe the functionality of a port. Interface block does not possess any behaviour 
related aspects or sub-parts, instead, it defines the information or material that 
flows through a port and specifies their direction e.g. signals, variables etc. For 
example, the UserActions port on Interaction Device is typed by the interface 
block Actions (figure 4-14). 

 
Figure 4-14: Interface blocks 

The interface block Actions defines the actions that can be performed by the user 
on the Vacuum Cleaner i.e. plugging in the power and switching it on/off. 
SwitchOn, PowerPlugged, SwitchOff are signal elements of SysML and the word 
“out” inside the flow properties indicates that these signals flow out of Interaction 
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Device block. Similarly, the UserMovements port is typed by Movements interface 
block. The interface block Movements defines the possible movements performed 
by the user on the Vacuum Cleaner during its operation e.g. turning it, moving it 
forward or backwards etc. The same ports typed by the same interaction blocks are 
also present on the Vacuum Cleaner model, however, they indicate an inward in-
formation flow and the conjugation sign i.e. “~”. For instance, the UserActions 
port on Vacuum Cleaner has the same properties as the one on Interaction Device 
block. The conjugation indicates that although the transferring information and the 
properties of both ports are the same, but the direction of information flow is the 
opposite. In other words, the information flows out of Interaction Device but flows 
inward to Vacuum Cleaner. The garbage port indicates that the garbage flows from 
the Living Room to the Vacuum Cleaner. During the usage of Vacuum Cleaner, 
there may be a collision taking place between the Vacuum Cleaner and an object 
inside the Living Room that is communicated to the Vacuum Cleaner model using 
the collision port. The collision port is typed by the data type “String” and it rep-
resents the name of the object taking part in the collision e.g. sofa or table etc. The 
call_behav port’s functionality will be explained in the next sub-section. 

In this way, the interaction between the sub-models can be modelled. The struc-
tural model can be further detailed to model the components within the sub-mod-
els. Furthermore, the interaction of these modelled components with each other 
can as well be modelled. However, for the sake of simplicity and to keep the focus 
on the development of the behaviour models in SysML, the structural model is 
only detailed to the level of utmost necessity. So far the last two sub-sections (4.3.1 
& 4.3.2) have explained the structural modelling and the modelling of interaction, 
the next sub-section explains the modelling of the behaviour of each sub-model. 

4.3.3 Behaviour modelling approach 
The SysML behaviour diagrams can be used to describe the behaviour of the sub-
models. These diagrams include different model elements to describe different as-
pects of system behaviour. The notations of most relevant model elements that are 
used in the explained modelling approach are described in table 15 in Annexure C  
along with a brief explanation of their use and functionality. As SysML is a very 
abstract language, there are multiple ways of describing one particular functional-
ity. A model may use all the available behaviour diagrams or may only use one or 
two diagrams multiple times to achieve the designed functionality. In the descrip-
tion of the sub-models, state machine (SM) and activity diagrams (ACT) are used, 
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as they allow the modelling of needed functionality and the remaining behaviour 
diagrams are not considered. 

4.3.3.1 Product (vacuum cleaner) 

The behaviour modelling process can be explained by having a look at the different 
states of a Vacuum Cleaner (product) as shown in figure 4-15. The black filled 
circle is the initial node and indicates the starting point of execution of an SM or 
ACT. Right after the start, the Vacuum Cleaner goes to a PowerCheck state where 
two activities i.e. rec_sig_power & rec_sig_switchon check if the power is plugged 
and Vacuum Cleaner has been switched on. Once both of these conditions are ful-
filled the product goes into inUse state, where the Usage activity will be continu-
ously performed unless or until a Stopped or CoverOpen signal comes in. Stopped 
signal refers to power being removed or Vacuum Cleaner’s operation being 
stopped and Vacuum Cleaner goes to the final node i.e. a solid circle contained 
inside a hollow circle. CoverOpen signal refers to the opening of the Vacuum 
Cleaner’s cover. The opening of the cover puts the Vacuum Cleaner into Ser-
viceNeeded state and this state checks on the service procedures e.g. cleaning of 
filter or replacement of waste bin. As soon as the cover is closed, the Vacuum 
Cleaner goes back into the normal usage state. 

 
Figure 4-15: State machine diagram of product model (modified from 

[Mah17b]) 

Each state in figure 4-15 has its own detailed behaviour modelled in the form of 
activities. For instance, the PowerCheck state contains two activity diagrams i.e. 
rec_sig_power & rec_sig_switchon and are shown in figure 4-16. 
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Figure 4-16: rec_sig_power (left) and rec_sig_switchon (right) 

The rectangular boxes with round corners are the actions of an activity diagram. A 
wide variety of actions are supported in SysML that range from an internal behav-
ioural action to calling another system to execute its behaviour or a sub-part of its 
behaviour. For example, connectPow and strIt are call behaviour actions that are 
calling for a certain aspect of the behaviour of Interaction Device to be executed. 
Both of these actions are followed by accept event actions i.e. PowerPlugged and 
SwitchOn respectively that are signals coming into the Vacuum Cleaner model 
over the port UserActions from Interaction Device model (see figure 4-13). This 
means that after initiating both actions the Vacuum Cleaner model waits for a feed-
back signal originating from Interaction Device model. The dotted lines indicate 
the flow of control and the solid lines indicate the object flow. Control flow can be 
typically understood as the flow of execution control and object flow as values 
being communicated from one action to another. Both of these activities complete 
their execution once PowerPlugged and SwitchOn signals are received. As a result, 
the Vacuum Cleaner enters into inUse state. The activity Usage being performed 
inside inUse (from figure 4-15) can be seen in figure 4-17. 
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Figure 4-17: Activity diagram "Usage" of Vacuum Cleaner [Mah18a] 
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After the start of this activity, a fork node (indicated as a black horizontal bar) 
divides the control flow in multiple flows. This triggers all five of the accept event 
actions that are waiting for a signal on port UserMovements. Furthermore, it also 
activates the call behaviour action from Interaction Device i.e. pickMov. 

As a result of the execution of pickMov (pickMov activity is explained in figure 
4-21), one of the signals is received on the UserMovements port from the Interac-
tion Device model. After the interpretation of the received signal (turnLeft, 
moveForward, moveBackward, turnRight or nothing), the relevant movement 
command is sent to a dedicated physics calculation software using respective 
vrep_send action. Once the movement command is transferred to the physics en-
gine, the control flow arrives on the join node (vertical black bar) after passing 
through the merge node (black diamond inside hollow diamond) and waits for the 
second control flow coming from checkCollision.  The sign “┌┼┐” on vrep_send 
action indicates that this action contains further diagrams for describing its com-
plete behaviour. The integration of the physics engine will be discussed in sub-
section 5.2.1 and of VR-model in detail in section 5.3. As a result of any move-
ments, there can be a collision taking place between Vacuum Cleaner and an object 
in the environment model. This is checked by calling the behaviour action 
checkCollision from the Living Room model. Once both the flows reach the merge 
node, the feedback from the physical engine about the new position, orientation, 
collision etc. values of Vacuum Cleaner’s objects are picked back by rec_pos_vrep 
action. The received feedback is evaluated and an update is sent to the VR-software 
using VR_Send action so that the contents of the VR-model and their properties 
can be updated. In this way, one execution of the Usage activity is completed. 

It may occur during the execution of usage activity that the cover of the Vacuum 
Cleaner is open. In that case, the Vacuum Cleaner model moves to ServiceNeeded 
(figure 4-15) state and the checkServiceNeeded (figure 4-15) activity is performed. 
On the completion of this activity, the cover is closed and the Vacuum Cleaner 
model returns to inUse state. 

4.3.3.2 Environment (living room) 

Similar to the behaviour model of Vacuum Cleaner (product), the behaviour model 
of the Living Room can be developed and the state machine diagram for this model 
can be seen in figure 4-18. 
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Figure 4-18: State machine diagram of Living Room 

The Living Room model keeps a check on the objects that can be present inside a 
living room and mainly checks if any of these objects are taking part in a collision. 
This model may also involve the positions and orientations of these objects and 
their individual behaviours. Each object has a collision value that can be 0 or 1. At 
the start of execution, this model sets the collision value for all the objects to de-
fault i.e. 0 indicating no collision and moves to standby from setDefault state using 
setNone activity. 

 
Figure 4-19: checkCollision activity from Living Room model [Mah18a] 

Once the Vacuum Cleaner model calls the behaviour action checkCollision (figure 
4-17) the activity of checkCollision (figure 4-19) behaviour of the Living Room is 
executed. After the start of the action, rec_Simu action picks the feedback from the 
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physics engine regarding the objects’ statuses. Bigsofa, Buecherregal, Boden-
leiste_01 etc. are the names of the objects in the living room environment.  The 
received feedback is compared to readOld action that contains the status of the 
objects from the last execution run using send_collision_status action. As a result 
of this comparison, the information about the objects that have changed their col-
lision state is extracted and communicated to the VR-software. Furthermore, the 
collision statuses of the objects are updated inside the model as well using update-
New action, so that they can be used for the next execution run. The actions 
send_collision_status, readOld and updateNew contain multiple activity diagrams 
to complete the functionality described above and therefore, contains the sign 
“┌┼┐”. 

4.3.3.3 Actor (interaction device) 

Similar to the Living Room model, main & sub-behaviours of the interaction device 
are called by the Vacuum Cleaner model during its execution (connectPow & strIt 
from figure 4-16 and pickMov from figure 4-17). The interaction device also has 
only one state i.e. inOperation and stays on it. The connectPow (figure 4-20 mid-
dle) & strIt (figure 4-20 right) activities consist of a user action and as a result, a 
signal is generated that is communicated to the Vacuum Cleaner model using 
UserActions port. Both of these activities link to the PowerCheck (figure 4-15) of 
the Vacuum Cleaner.  

 
Figure 4-20: Interaction Device state machine (left), connectPow activity 

(middle) and strIT activity (right)) 

At any point during execution, the Vacuum Cleaner model can call the pickMov 
action, as a result, the pickMov activity (figure 4-21) from the Interaction Device 
model is executed. This activity mainly connects with the tracking system of the 
current VR-system over a User Diagram Protocol (UDP) connection.  
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The rec_udp42 is an opaque behaviour action in SysML that allows direct integra-
tion of a script inside the modelling. For instance, rec_udp contains a small script 
that implements a UDP connection with the tracking systems and picks the current 
values of the physical interaction device. Depending upon the vendor of SysML 
tool, such a script can be written in multiple languages e.g. Java, Jython, JavaS-
cript, Maple etc. The use of opaque behaviour action offers an excellent possibility 
to reduce modelling effort by packing a small chunk of object-oriented code inside 
a script. The opaque behaviour action rec_udp takes the IP address of the tracking 
computer as a string value and port as an integer value on which the tracking data 
is made available. After establishing the connection, rec_udp receives the current 
status of the interaction device from the tracking system. The received values are 
post-processed to extract the current values of the joystick, its coordinates, orien-
tation and button values etc. An analysis of this data makes it possible to extract 
the user action that is eventually communicated in the form of a respective signal 
to the Vacuum Cleaner model so that user action can be realised. 

 
Figure 4-21: pickMov activity [Mah18a] 

                                              
42 Code in Annexure A  



4 Method  87 

 
 

Section 3.1 mentioned a few of the efforts to simulate the behaviour models of 
SysML. However, these methods rely on transformations in executable languages 
or Petri Nets etc. A detailed discussion or implementation of a transformation 
based method for behaviour model simulation are full-fledged topics for separate 
research. Therefore, instead of implementing a simulation methodology, the built-
in functionality of the modelling tool is used to simulate the behaviour models. 
This simulation logic is based on the Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML) [Omg18a] and State Chart XML (SCXML) [W3c20] 
standards. 

4.3.3.4 Summary 

This sub-section provides the modelling approach for describing the behaviour of 
sub-models in SysML. The interaction between the sub-models and the execution 
of their behaviour are also explained in detail. Although this sub-section has pro-
vided the first proof of concept for modelling of sub-models’ behaviour and their 
interaction over a port, the presented method still has limitations in terms of the 
speed of execution. Figure 4-17 shows that the Vacuum Cleaner model controls 
the overall execution process. After starting its own execution, it first initiates the 
behaviour of Interaction Device and waits for the feedback. After receiving and 
implementing the received feedback, it initiates the behaviour of Living Room 
model and waits for its execution to complete. Such an execution builds a sequen-
tial execution architecture containing unnecessary delays in the execution of the 
Vacuum Cleaner model itself. Furthermore, the initiation of the behaviours of the 
other two sub-models inside Vacuum Cleaner model leads to direct dependencies 
and the sub-models are not described fully isolated from each other. Therefore, the 
next sub-section attempts to overcome these limitations by developing a parallel 
execution architecture that eliminates unnecessary execution delays and also at-
tempts to avoid direct dependencies in-between sub-models. 

4.3.4 Sequential and parallel execution architectures 
The behaviour modelling method described in the last section leads to a sequential 
execution architecture containing unnecessary delays. This sequential architecture 
can be visualised employing figure 4-22. As the Vacuum Cleaner model depends 
on the values/parameters of interaction device, the Vacuum Cleaner model calls 
the behaviour of interaction device while using the respective port right after the 
start of its execution and waits for feedback. 
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Figure 4-22: Sequential execution architecture [Mah18b] 

After receiving the feedback from the Interaction Device, Vacuum Cleaner model 
updates the physics engine model (V-REP discussed in detail in sub-section 5.2.1) 
and calls the behaviour of the Living Room model. The Living Room model checks 
the properties of environmental objects inside the physics engine and in case of a 
collision event, it is communicated to VR-software. Again the Vacuum Cleaner 
model waits for the execution of Living Room model to complete and later, sends 
the updated Vacuum Cleaner model parameters to VR-software. In such an execu-
tion architecture, it is clear that the overall execution time of the Vacuum Cleaner 
model depends on the execution time of Interaction Device and Living Room 
model. As a result, unnecessary delays are incurred and slower execution of the 
Vacuum Cleaner model is carried out. A slower execution of Vacuum Cleaner 
models means that the updates sent to the physics engine and the VR-software will 
be taking place at a slower rate. If the physics calculations are not directly per-
formed inside the VR-software, a smooth simulation in VR directly depends on 
the rate at which the updated parameters are sent to VR-software. A slower execu-
tion of the Vacuum Cleaner model refers to a slower rate of parameter updates to 
VR-software that eventually refers to a slower product simulation in VR. 
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The VR simulation obtained using this execution architecture showed non-smooth 
movements of the Vacuum Cleaner model in VR and noticeable steps in the move-
ments could be observed. Although figure 4-22 depicts the problem at hand, an 
experiment is carried out to quantitatively examine the scope of the problem and 
to understand the delay in the execution in a better way. This experiment records 
the overall execution time of all three models and the times between two adjacent 
data transfer to VR-software. A commercial SysML behaviour model execution 
tool is used along with the physics engine (V-REP). The start times and the end 
times of the executions of each sub-model are recorded in the form of a text file. 
The execution times for each sub-model can be seen in figure 4-23. 

 
Figure 4-23: Model execution times for sequential architecture [Mah18b] 

It can be seen that the execution time (on average 229.49 milliseconds (ms)) of the 
Vacuum Cleaner model is highest among all sub-models. This is because the Vac-
uum Cleaner model contains the execution times of Interaction Device and Living 
Room models in addition to its own execution time, as it is waiting idly during 
their executions. 

As the Vacuum Cleaner model and the Living Room model send parameter updates 
to VR-software, it is important to note down the times between two adjacent data 
transfers made from Vacuum Cleaner and Living Room models each to VR-soft-
ware. Therefore, the time between two adjacent data receptions on the VR-soft-
ware side from Vacuum Cleaner and Living Room model are recorded individually. 
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Furthermore, it is supposed that the Vacuum Cleaner and Living Room model only 
send one parameter update to VR during their one execution cycle so that a clean 
comparison can be achieved. The recorded data transfer times are shown in figure 
4-24. 

 
Figure 4-24: Data transfer times for sequential architecture [Mah18b] 

The average transfer time for both Vacuum Cleaner and Living Room model is 
approximately 247 ms. As the execution of the Living Room model (142.99 ms) is 
much faster than that of the Vacuum Cleaner model (229.49 ms), it can be expected 
that its data transfer time will be lower than that of the Vacuum Cleaner model. 
However, the Living Room model has roughly the same data transfer time as the 
Vacuum Cleaner model. This high data transfer time is due to the sequential exe-
cution architecture and the fact that each model has to wait for its turn during the 
execution (see figure 4-22). Thus, the sequential execution architecture causes a 
decrease in the rate at which the parameters’ updates are sent to VR-software even 
for the sub-models with faster execution. Furthermore, the second disadvantage of 
a sequential execution is the direct dependency of the product model on the other 
sub-models for its execution which eventually constitute a negative aspect regard-
ing the reusability of these sub-models. Therefore, the modelling approach de-
scribed so far needs improvement and a new execution architecture is needed. The 
new execution architecture should support the paralleled execution of sub-models 
and avoid unnecessary delays in the execution of any of the sub-models. 
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Parallel execution of sub-models can be obtained; if no sub-models initiates the 
execution of any other sub-models and all three sub-models are executed inde-
pendently. This can be achieved by initialising the behaviours of each sub-model 
by the overall model (Overall_System in figure 4-12) that contains these three sub-
models. This requires the redefinition of the interfaces as well as the behavioural 
model of Vacuum Cleaner. Therefore, the ports for the communication between 
the sub-model are modified and figure 4-25 represents the modified version of fig-
ure 4-13. The newly added elements are colour filled for easy identification. 

 
Figure 4-25: IBD for parallel execution [Mah18b] 

The main modifications involve the removal of the call_behav port that was used 
by the Vacuum Cleaner model to call the behaviour of Interaction Device model 
and the incorporation of six new ports. Out of the six newly added ports, three are 
added on the Overall_System and one on each of the sub-models. These new ports 
allow direct interactions between Overall_System and the sub-models. These di-
rect interactions can be utilised to call the behaviour of sub-models independent 
from each other and can be realised by an activity diagram as shown in figure 4-26. 
This figure consists of three independent and endless execution loops. The first 
loop corresponds to the behaviour of Interaction Device, second to the Vacuum 
Cleaner and the third to the Living Room. 
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Figure 4-26: Parallel execution of sub-models  [Mah18b] 

After redefining the ports on the sub-models, the execution can be started by exe-
cution of Overall_System that contains the activity diagram (figure 4-26) as its 
main behaviour. As a result, the Overall_System uses the three new ports (interac-
tion, product and environment) to initiate the behaviour of sub-models individu-
ally. This eliminates the need for Vacuum Cleaner to call the behaviour of other 
sub-models and thus, the activity “Usage” (from figure 4-17) of the Vacuum 
Cleaner model also needs modification. The call behaviour actions pickMov and 
checkCollision are no longer necessary, as the product model will no longer initiate 
the behaviour of other sub-models. Hence, pickMov and checkCollision are re-
moved and the resulting activity diagram can be seen in figure 4-27. 
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Figure 4-27: Modified activity diagram "Usage" of Vacuum Cleaner  
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Figure 4-26 shows that the individual behaviour models are executed in parallel 
and none of the sub-model can cause a delay in the execution of others. This can 
be again quantitatively verified by recording the execution times of all sub-models. 
Figure 4-28 shows a clear improvement in the execution time of the Vacuum 
Cleaner model i.e. 84.34 ms against the old value of 229.49 ms. However, it can 
be noticed that the execution times of Interaction Device and Living Room model 
have increased considerably. The reason for this increase is the sharing of the over-
all processing power among three parallel execution loops (execution threads) cor-
responding to each sub-model. This can be handled eventually by the use of paral-
lel computers and by executing each sub-model on a separate computer. However, 
the detailed discussion of parallel computing is not included in this thesis. 

 
Figure 4-28: Execution times for parallel architecture [Mah18b] 

The main goal of the development of a new parallel execution architecture is to 
achieve a faster transfer of parameter updates to VR-software from SysML behav-
iour descriptions. The new data transfer times to VR-software are recorded and are 
shown in figure 4-29. It can be seen that the data transfer rate from the Vacuum 
Cleaner model to VR-software has almost increased by a factor of two as com-
pared to the sequential execution architecture (that was on average approximately 
247 ms). This means that the updates about the parameters of the Vacuum Cleaner 
model are sent two times faster to VR-software that eventually leads to a smoother 
and faster simulation of the Vacuum Cleaner model in VR. There can be no major 
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reduction observed in the data transfer time for the Living Room model and it cor-
responds to the higher execution time of the Living Room model i.e. on avg. 230.73 
ms. The Living Room model mainly updates the collision statuses and the posi-
tional parameters of objects in the environment. These updates may well be less 
critical as compared to a Vacuum Cleaner model that is continuously in motion. 
Furthermore, in an active VR simulation, the parameters of the Vacuum Cleaner 
model are continuously communicated to VR and the parameters of the living 
room are communicated in case of a change in the collision status or object posi-
tions/orientation. A lower transfer rate for the Living Room model can thus be ac-
cepted as a trade-off. 

 
Figure 4-29: Data transfer times for parallel architecture [Mah18b] 

The new parallel execution architecture not only reduces the unnecessary delay in 
the execution of the Vacuum Cleaner model but also removes direct dependencies 
within the sub-models. Each sub-model can now execute independently from other 
sub-models that is very helpful as far as the reusability perspective of these sub-
models is concerned. However, the substitution/replacement of any sub-model will 
require additional modelling effort, as the interfaces (in figure 4-25) and the activ-
ity diagram (figure 4-26) for parallel execution will require remodelling. There-
fore, the presented approach is further refined to eliminate the need for remodelling 
by using SysML instances. This is elaborated in detail in the next sub-section. 
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4.3.5 Automatic behaviour model initialisation and use case generation 
The behaviour modelling methodology presented so far enables the parallel exe-
cution of sub-models to form a product use case. Also, the parallel execution is 
achieved by manual initialisation of each sub-model’s behaviour. To achieve reuse 
of different sub-models and to form new use cases, it is important to replace/sub-
stitute any sub-model and to achieve automatic parallel initialisation of the behav-
iour of sub-models. Although the replacement/substitution is achievable with the 
presented methodology, it requires remodelling effort. For instance, the replace-
ment of the product model from the parallel execution architecture (figure 4-25 & 
figure 4-26) requires 

• the current execution to be stopped,  
• remodelling of figure 4-25 and figure 4-26 for a new use case and  
• start of a new execution. 

This might seem a relatively easy and intuitive task for the explained example of 
Vacuum Cleaner, however, it can be prone to error in case of a large and complex 
overall SysML model. Therefore, in this section, the use of SysML Instances and 
the concept of inheritance is presented. SysML instances can help to create dy-
namic configurations of VR use cases, as they eliminate the need for additional 
modelling for each use case and allow automatic initialisation of the behaviour of 
sub-models in parallel. This can be achieved by developing a High Level Solution 
Architecture (HLSA) that is the core model for each solution architecture against 
the given problem [Ale18]. For instance, an HLSA model can contain the generic 
structure of a system and its components, its interfaces, flows etc. that can be re-
used in the development of its sub-systems. In this way, HLSA serves as a refer-
ence model to avoid inconsistencies in the modelling of sub-systems. This new 
approach does not modify the behaviour model of any of the previously described 
sub-models, but focuses towards a more generic definition of the interfaces be-
tween the sub-model and thus modifies the structural models only. 

Figure 4-12 can be modified to represent a more general structure of the complete 
model as HLSA. Figure 4-30 shows the HLSA for the system consisting of three 
sub-models i.e. product, actor and environment along with the representation of 
their ports. This architecture should be generic enough to cover all the possible use 
cases that may exist. Therefore, all three sub-models should possess all the ports 
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and interface definitions that any of its versions may possess. Only then a replace-
ment of any of the sub-model’s version with another version can be made possible. 

 
Figure 4-30: System Architecture (HLSA) [Mah19b] 

The use of the HLSA model and the definition of all possible interface points inside 
it is useful in the construction of different variants of the system. This may lead to 
models with redundant information (150 % model43), however, this can help man-
age a complex system and its variants [Aki19]. 

The Overall_System block from figure 4-12 is replaced by HLSA_System_PAE and 
its internal structure can be seen in figure 4-31 which shows the connection and 
interfaces between different sub-models that are used by these sub-models to com-
municate data or information. As the goal is to avoid manual initialisation of the 
behaviour of each sub-model, this figure does not include any connections or in-
formation exchange between sub-models and the HLSA_System_PAE model as 
was previously done in parallel execution architecture. The interaction between 
the sub-models mainly consists of the flow of signals, variables, materials etc. and 
all these elements should also be defined in this structure. At this point, all the 
elements that may flow from one sub-model to others in any possible use case 
should be modelled. Now the generic structure of the overall system, the interfaces 
and the flows between the sub-models are defined. As a next step, this complete 
model can be saved as a separate project file for later use in the development of 
the sub-models. This project so far contains only two diagrams i.e. the BDD from 
figure 4-30 and IBD from figure 4-31. 

                                              
43 The concept of 150% model refers to the idea of [Aki19]. It means that the model is 
readily equipped with excessive information about system and its interface, that may not 
be needed in all application scenarios. However, this redundant information may well 
be very helpful in building different variants of a systems as discussed by [Aki19]. 
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Figure 4-31: IBD of HLSA_System_PAE [Mah19b] 

The three sub-models of product, actor and environment modelled so far inside 
HLSA do not contain any behavioural descriptions and only define the generic 
structure of the overall system saved inside a project (Project file 1 in figure 4-33). 
Now this project file can be reused to detail the structure and behaviour of the sub-
models. The structure as well as the behaviour descriptions of sub-models shall 
use the HLSA and the interface definition defined inside it. As a result, consistent 
model interfaces can be achieved in all the sub-models and all the possible use 
cases. These consistent interfaces can be explained employing the BDDs in figure 
4-32. Considering that the actor model may contain a model of interaction device 
or a virtual actor (e.g. human model of a domestic user) depicted as blocks named 
InteractionDeviceV1 and DomesticUserV1 in figure 4-32. These two models rep-
resent two variations or versions of the Actor model. Both these blocks are linked 
with Actor block from HLSA model using generalisation relationship in SysML. 
The generalisation relation is denoted by a solid line connected to a hollow triangle 
and represents inheritances of constrains. This means that InterationDeviceV1 and 
DomesticUserV1 block inherit the constraints defined inside the Actor block. 
These constraints are mainly the interface, ports and signals defined inside the Ac-
tor block. For example, the ports on InteractionDeviceV1 are the direct replica of 
the ports of Actor block as they are inherited ports indicated by the sign “^” on the 
port. It is important to save both these BDDs in separate project files (Project file 
2& 3 in figure 4-33) so that they may facilitate the reuse of sub-models. After 
creating individual projects for each version of the Actor model, the behaviour of 
the InteractionDeviceV1 and DomesticUserV1 can be modelled while using the 
same ports and interfaces inherited from the HLSA model. This modelling of the 
behaviour will take place on the same lines as already described in sub-section 
4.3.3. 
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Figure 4-32: BDD for InteractionDeviceV1 and DomesticUserV1 [Mah19b] 

Similar to the Actor model, the models of Product and Environment may also con-
tain multiple versions. For instance, if the product and environment also possess 
two versions each, the overall structure of the complete system can be depicted as 
figure 4-33. VacuumCleanerV1 and VacuumCleanerV2 are the two versions of the 
Product model whereas LivingRoomV1 and FabricationEnvironmentV1 are the 
two versions of the Environment model. Each of these versions has to be saved in 
individual project files and as a result, there are a total of seven project files (Pro-
ject file 1-7 in figure 4-33). One project file containing the description of HLSA 
(Project file 1 in figure 4-33) and is reused in the six projects (Project file 2-7 in 
figure 4-33) that are containing different versions of sub-models. In this way, the 
interfaces and the ports on all the sub-models will be consistent and compliant with 
that of HLSA. These versions of sub-models can be described in detail to include 
behavioural descriptions in the same way as described in sub-section 4.3.3. 

 
Figure 4-33: Overall structure and components of HLSA [Mah19b] 

Once all six versions include their behavioural descriptions, the next step is to use 
these different versions to construct different use cases. This can be done by first 
loading all six versions of sub-models inside HLSA project file and as a result, the 



100  4 Method 

 
 

model containment tree from modelling tool will contain all seven models (see the 
left side of figure 4-34). 

 
Figure 4-34: Model containment tree (left) and automatic instantiation dia-

log box (right) [Mah19b] 

At this point, the instance specification functionality of SysML can be used to cre-
ate one instance of the HLSA_System_PAE model. Figure 4-34 (right) shows the 
instance specification dialogue box from the modelling tool that offers the possi-
bility to choose one version for each of the sub-models. As a result, an instance 
specification can be created e.g. an instance of VacuumCleanerV1 inside Living-
RoomV1 being controlled with the help of InteractionDeviceV1 is shown in figure 
4-35. This instance shows that HLSA_System_PAE consists of three parts (i.e. sub-
models) and also specifies the exact version of each part used in the construction 
of this particular instance. Execution of this instance automatically initialises the 
behaviours of all sub-model in parallel which are involved in the current instance. 
As a result of this execution, a real-time VR simulation (detailed explanation in 
chapter 5) representing one use case of the product in VR is obtained (see figure 
4-35 (right)). 
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Figure 4-35: One Instance (left), VR simulation (right) [Mah19b] 

Similarly, different instances can be created easily with a few mouse clicks to cre-
ate different use cases containing a different combination of the sub-models. In 
this way, the remodelling needed for the creation of use cases while using parallel 
execution architecture (see sub-section 4.3.4) can be avoided. Furthermore, the use 
of instances and generalisation help to keep the interfaces on all the sub-models 
consistent that is eventually very helpful for the reuse/substitution of sub-models. 
Based on the complete modelling approach presented in this chapter until now, 
generic guidelines can be formulated and are presented in the next sections. 

4.4 Guidelines 

This chapter has described in detail the modelling methodology for describing the 
behaviour of sub-models that resulted from the methodological division of the 
complete VR-model. Section 4.3 has described the modelling approach in detail 
and discussed the advantages and shortcomings of different architectures. A dy-
namic VR-model resulted from the use of a SysML behaviour model which en-
couraged the reuse of parts of the overall VR-model. The knowledge about mod-
elling presented in this chapter can be summarised in the form of general-purpose 
guidelines for the behavioural description of a dynamic VR-model. These guide-
lines can be described as follows: 
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Table 4: General-purpose guidelines for the behavioural description of a dy-
namic VR-model in SysML 

 # Purpose Explanation Examples 

1.
 Id

en
tif

ic
at

io
n 

of
 th

e 
sy

st
em

 o
f i

nt
er

es
t 

1.1  System de-
composition 

Identify the main components or 
sub-systems of the overall system, 
its interface, sub-systems, interac-
tion between sub-systems, signals 
and flows 
 

Refer to figure 
4-7 and sub-
sections 4.3.1 
& 4.3.2 

1.2 Interfaces Identify all interfaces relevant to 
each possible version of each com-
ponent/sub-system. Must include 
interfaces for internal and external 
communication.  

Refer to sub-
section 4.3.2 

1.3 Information 
exchange 

Identify all possible signals or pa-
rameters or values that can flow be-
tween sub-systems or with the out-
side world 

Refer to figure 
4-14 and sub-
section 4.3.2 

2.
 S

tr
uc

tu
ra

l m
od

el
s 

2.1 General  
architecture 
(structure) 

Create an HLSA model containing 
the generic structural definitions of 
the overall system and its sub-sys-
tems 
 

Refer to sub-
section 4.3.5, 
figure 4-30 and 
figure 4-31 

2.2 General  
architecture 
(interaction) 

Model the already identified sig-
nals, interaction points and flows 
identified in 1.2 & 1.3 inside HLSA 
from 2.1 

Refer to figure 
4-30, figure 
4-31 & figure 
4-14 
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3.
 D

ep
en

de
nc

ie
s a

nd
 m

od
el

 m
an

ag
em

en
t 

3.1 Sub-sys-
tems’  
versions 

Realise all possible versions of 
each sub-system of the overall sys-
tem 

See  
sub-sections 
4.3.1 to 4.3.3 

3.2 Managing 
project files 

Each version of each sub-system 
should be saved and organised as a 
separate project file 

Refer to figure 
4-33 

3.3 HSLA as the 
reference 
model 

All project files (3.2) shall link with 
their respective generic representa-
tion in the HLSA model with gen-
eralisation relationship 

Refer to figure 
4-32 

3.4 Consistent  
interfaces 

Inherit the ports, signals and flow 
specification for each version of 
each sub-system from their generic 
representation from HLSA model 

Refer to figure 
4-32 

4.
 B

eh
av

io
ur

 m
od

el
s 

4.1 Behaviour 
modelling 

The behaviour model for each ver-
sion of the sub-system shall be 
modelled inside the respective pro-
ject file (3.2) 

Refer to sub-
section 4.3.3 

4.2 Behaviour 
modelling 
(dependen-
cies) 

The behaviour model description of 
a sub-system shall be kept inde-
pendent from that of other sub-sys-
tems 

Refer to sub-
section 4.3.3 

4.3 Interaction 
over ports 

The information exchange or inter-
action between two sub-systems 
shall only take place over the inter-
faces (ports in SysML) defined in 
the HLSA model  

Refer to figure 
4-25 and figure 
4-33 

4.4 Changes in 
interfaces, 
signals and 
flows 

Is there a redefinition or modifica-
tion in any of interfaces, signals or 
flows needed? It shall be performed 
inside the HLSA model 
 

Refer to figure 
4-30 and figure 
4-31 
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4.5 Missing in-
terfaces,  
signals or 
flows 

A new interface, signal or flow ele-
ment is needed? it shall be modelled 
inside the HLSA model 
 

Refer to figure 
4-30 and figure 
4-31 

5.
 E

xe
cu

tio
n 

/u
se

 c
as

e 
ge

ne
ra

tio
n 

5.1 Execution/ 
simulation 

The behavioural model of the over-
all system or its sub-systems shall 
not be initialised manually. If done 
otherwise, additional modelling ef-
fort is needed. 

Refer to figure 
4-17, figure 
4-26 and figure 
4-35 

5.2 Execution/ 
use case  
generation 

The automatic initialisation of be-
havioural models shall be achieved 
by using instance specifications & 
inheritances in SysML. This ena-
bles parallel execution of sub-sys-
tems and avoids additional model-
ling effort 

Refer to figure 
4-35 

 

The developed guidelines can be categorised in a total of five categories as shown 
in table 4. Table 4 contains the purpose and brief explanation of the mentioned 
guidelines as well as reference to example sections and figure to this thesis for the 
detailed explanation. After identification of the system of interest, the modelling 
process starts with the modelling of structure. After the modelling of structure, the 
important aspects regarding the independent and isolated description of sub-model 
along with the indication of model management aspects are mentioned. The fourth 
part lays out the important aspects related to the modelling of behaviour models 
and finally, the last part talks about automatic parallel execution of sub-model and 
generation of different use cases of the product. These guidelines are intended for 
use by the individuals in academia as well as in industry who are interested in using 
SysML models for VR simulations. 

4.5 Summary 

This chapter has presented the methodological backbone of this thesis in detail. 
Starting from the identification of requirements associated with a new method for 
the preparation of VR-models at the start of this chapter, a basic contextual evalu-
ation model of a product in VR is presented in sub-section 4.1.1. The idea of the 
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division of a complete VR-model into sub-models of product, actor and environ-
ment is put forth in sub-section 4.1.2. Furthermore, the advantages of performing 
such a division and the challenges associated with its implementation are dis-
cussed. An approach based on MBSE and the use of SysML is adopted to describe 
the sub-models. The primary factors that resulted in SysML being the choice as 
the description language are discussed in section 4.2. The process of modelling the 
structure as well as the behaviour of the sub-models in SysML is explained in detail 
and in a systematic way employing a case example of a vacuum cleaner (section 
4.3). A living room environment along with a model of interaction device is con-
sidered as the context of the vacuum cleaner. The first modelling idea is based on 
a sequential execution architecture. Although this architecture can realise a VR 
simulation, it incurs unnecessary delays and direct dependencies in-between sub-
models. These problems are addressed by presenting a parallel execution architec-
ture that removes the unnecessary delays and executes all sub-models in parallel. 
An additional modelling effort is needed in the construction of each new use case 
while using parallel execution architecture. To avoid this extra modelling effort, 
the presented methodology is further extended by incorporating the use of SysML 
instances and the concept of inheritance. 

Thus, this chapter has systematically developed and presented the modelling 
method for the description of VR-models. The final result of the presented method 
enables the reuse of the behaviour of sub-models described in SysML. The use of 
instances in SysML eliminates the need for remodelling effort and the sub-models’ 
behaviour can be automatically executed in parallel. The research question 1 (see 
section 3.5) has been answered by performing the division of complete VR-models 
in sub-models of actor, product and environment. The possibility to construct dif-
ferent use case scenarios of a product in VR by recombining these sub-models 
achieves reusability of the parts of the complete VR-model. The research question 
2 (see section 3.5) has also been answered by creating isolated behaviour descrip-
tions of the sub-models that do not possess any direct dependencies with each 
other. 

Once the isolated behaviour descriptions of sub-models have been developed, the 
next step is to integrate these behaviour models with VR and the physics simula-
tion tool so that they can drive an active VR simulation. This integration method 
is presented in the next chapter.





 

5 Simulation of product properties in VR 

After presenting the modelling methodology in the previous chapter, this chapter 
explains the overall process to achieve a simulation in VR while using the behav-
iour models developed in SysML. The overall process involves the development 
of the visual model for VR, physics simulation model and its integration within 
SysML. Figure 5-1 shows the final goal of this chapter in the form of information 
exchange between different tools involved in achieving the VR simulation. 
UserInterface can contain a graphical user interface or simply be an interaction 
device for VR. The input from the user interface/interaction device flows into the 
Models and Descriptions in SysML (explained in chapter 4). SysML models com-
municate with and control V-REP (Physics Engine) simulation and the updated 
properties of the virtual objects are communicated to VR-software. VR-software 
finally projects the updated content onto a CAVE type VR-system and the VR-user 
can experience an interactive product simulation in VR. 

 
Figure 5-1: Exchange of information between different tools during simula-

tion [Mah18a] 

The VR-software contains the visual model in the form of virtual objects. The as-
pects related to the development of virtual objects corresponding to the product 
and the environment models are discussed in sub-section 5.1. To keep the overall 
implementation easily understandable, the case example of the vacuum cleaner in-
side the living room environment is taken to explain the overall process. The visual 
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model for the case example is developed accordingly. Next, the incorporation of 
physical calculations is brought to light. The aspects related to the choice of phys-
ics engine and physics model development are discussed in sub-section 5.2. Fur-
thermore, the use of SysML behavioural descriptions to control the physics engine 
is discussed in detail. In sub-section 5.3, the integration of SysML behaviour de-
scriptions with VR will be discussed that result in an example simulation of prod-
uct use case in VR. Based on the knowledge gained during the implementation, a 
generic information flow during simulation in different VR-systems is presented 
in sub-section 5.4. Finally, sub-section 5.5 provides a summary of this chapter and 
an outlook on the use of the presented method in different VR-systems. 

5.1 Visual model development for VR 

The VR-software contains the visual model of the product and the environment. 
As this thesis uses an interaction device as a proxy for the actor model, the visual 
model of the actor is not included here. 

5.1.1 Living room visual model 
The living room model used in this thesis originated from a media project con-
ducted in the Media Production Group at Technische Universität Ilmenau [Ang08]. 
The goal of this media project was to study and evaluate the applicability of virtual 
prototypes for use in the product development process. A scenario based on a vac-
uum cleaner model inside a living room was evaluated. The living room model 
developed in this study can be seen in figure 5-2. [Ang08] 

 
Figure 5-2: Screenshot of the VR-scene [Ang08] 
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This living room environment consists of the common objects that can be found in 
any domestic living room environment e.g. sofa, table, bookshelf, TV etc. The size 
of the virtual living room is 25 square meters and the roof is placed at a height of 
2.70 meters. At the time of the development of this living room environment, Vir-
tual Design 2 (VD2) was used as the VR-software. VD2 was originally developed 
by the company vrcom GmbH that was later merged in IC.IDO and VD2 was not 
developed further as a product. In the development of the living room environment, 
a mixture of different software tools was used with a focus on the development of 
a photorealistic model. Mainly, CAD software, 3ds Max44 and VRML [Vrm20] 
exchange format were used to develop the final model in VR. Furthermore, to gen-
erate different textures, Photoshop45 was used as well. [Ang08] 

For the examination inside this thesis, the same living room model46 is used inside 
RTT Deltagen as VR-software with slight modifications. These modifications 
mainly involved 

• the light settings,  
• objects’ materials and textures,  
• rearrangement of object hierarchical tree and  
• removal of unnecessary virtual objects from the VR-scene.  

5.1.2 Vacuum cleaner visual model 
The product model is usually developed as a CAD model during the design and 
therefore, the CAD model is used to prepare the visual model of the product in VR. 
The CAD model for the vacuum cleaner47 is taken from an online website48 that is 
available in the form of SolidWorks parts and assembly files. In the CAVE type 
VR-system available at Technische Universität Ilmenau, RTT Deltagen is used 
currently as the VR-software. Therefore, based on the information presented in 

                                              
44 3DS Max: https://www.autodesk.de/products/3ds-max/overview [last accessed on 
09.03.2020] 
45 Adobe Photoshop: https://www.adobe.com/de/products/photoshop.html [last accessed 
on 09.03.2020] 
46 The conversion from IC.IDO to RTT Deltagen was performed by Dr. Helge Drumm 
(technical supervisor of the FASP in Technische Universität Ilmenau) 
47 Vacuum cleaner CAD model: https://grabcad.com/library/vacuum--3 [last accessed 
on 09.03.2020] 
48 Grabcad.com: Gradcad content is available for personal, non-commercial and internal 
use as mentioned under “3. License” under https://grabcad.com/terms [last accessed on 
09.03.2020] 

https://www.autodesk.de/products/3ds-max/overview
https://www.adobe.com/de/products/photoshop.html
https://grabcad.com/library/vacuum--3
https://grabcad.com/terms
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table 1 and figure 3-10, VRML is the best option available for transferring the 
geometrical model from CAD to VR because 

• it carries the most information (surfaces, colours, size, textures etc.) about 
the original model compared to other CAD exchange formats, 

• SolidWorks supports the direct export in VRML format and  
• RTT Deltagen supports the direct import of VRML format. 

The VRML format can transfer the information about the geometries, scale, col-
ouring etc. However, one limitation of the VRML format is that it does not carry 
any information about the object/part hierarchy from the original CAD model. 
Therefore, after importing the VRML file inside RTT Deltagen, the imported 
model does not contain any information about the object/part hierarchy and each 
object/part is imported as a single surface. The hierarchy tree for the vacuum 
cleaner model is built by manually grouping/rearranging the objects inside VR-
software. It is important to build the hierarchy tree inside VR-software so that the 
positions, orientations, rotations of objects of interest can be read and manipulated 
in VR-software as desired later during the simulation. For instance, rotating a par-
ent object (owing object in the hierarchy) in VR-software will cause all the sub-
parts/child objects to rotate accordingly. After performing the manual modifica-
tions, the resulting VR-scene containing a vacuum cleaner inside a living room 
model can be seen in figure 5-3. 

 
Figure 5-3: Screenshot from the VR-scene in RTT Deltagen 
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So far the VR contents only consist of visual objects and objects’ transforms (po-
sitions, orientations etc.) without any information about animation or simulation. 
The example hierarchy tree inside RTT Deltagen containing the virtual objects can 
be seen in figure 5-4 (left). The transform of any particular object and object’s 
properties can also be visualised and manipulated inside RTT Deltagen. For exam-
ple, figure 5-4 (right) shows the transform and properties of an object cleaner that 
represents the virtual model of the vacuum cleaner. The actual position and the 
orientation of any virtual object are present inside its transform and can be manip-
ulated as well. Furthermore, the objects can be assigned visible or invisible in the 
object’s properties in VR-software. 

 
Figure 5-4: Hierarchy tree (left), object transform and properties (right) 
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The basic interaction possibility inside CAVE type VR-system is facilitated with 
the help of an interaction device e.g. a flystick. A flystick allows the user to change 
the viewpoint, move or fly inside the VR-scene etc. and in this way, the virtual 
objects can be visualised from different points of view. Furthermore, it is also pos-
sible to hide certain objects/parts to achieve visualisation of internal objects/parts. 

This visual model is used to exactly create the physics simulation model that is 
explained in the next sub-section. 

5.2 Calculation of physical behaviour 

In order to verify the product’s functionality or dynamic behaviour, it is very im-
portant to perform physics calculations on the product during its virtual model 
evaluation. Therefore, to build the behaviour of a product model in VR, it is of 
utmost importance to perform real-time physical calculations on the geometric ob-
jects as well. For instance, the very basic behaviour of a product may need the 
physical calculations to examine the reaction of certain forces on a certain compo-
nent or the collision detection between two objects. 

A few of the currently available VR-software products offer dedicated physics cal-
culation modules, however, the use of these integrated modules is subjected to the 
following limitations (see also sub-section 2.2.3 and section 3.3): 

• Their use is subjected to extensive programming or visual scripting etc.,  
• different VR-software use different programming languages that lead to in-

teroperability issue between them and 
• as different VR-systems use different VR-software, the use of integrated 

modules for performing physical calculations limits the reusability of VR 
content across different VR-systems. 

To overcome the above-mentioned limitations, this thesis proposes the use of an 
external dedication physics calculation software. In this case, the VR-model has to 
be constantly updated with the newly calculated parameters from the physics en-
gine to update the virtual objects’ transforms/properties in real-time. As the de-
scription of the dynamic behaviour of the VR-model is done outside VR-software 
(i.e. in SysML), the use of physics calculation software external to VR-software 
helps to keep the overall description of VR-model independent of the used VR-
software. A VR-software independent description of a VR-model also possesses 
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the potential of being reusable across different VR-systems (also see the reasoning 
in section 3.3). Furthermore, performing physical calculations on a product with 
the complex geometrical model can be very demanding in terms of the required 
computational power and it is also critical that it should function in real-time. Car-
rying out the physical calculations outside of VR is helpful as it can let us perform 
the computations on a computer other than the one used for rendering the contents 
of a VR-scene. 

There are several physics engines currently available as open-source and as com-
mercial licences. A few of the renowned physics engines are 

• Bullet Physics49, 
• Open Dynamics Engine50 (ODE), 
• NVIDIA PhysX51, 
• Newton Dynamics52 and 
• Vortex Studio53 

A detailed comparison of a few of these physics engines and some additional ones 
is provided by [Hum12] who examine them for different parameters like speed, 
precision, parameter tweaking etc. These physics engines are usually available ei-
ther in form of a software package or build libraries. Furthermore, there are a few 
software solutions available that allow the construction of a geometric scene and 
integrate multiple physics calculation engines for the user’s choice. For example, 
two of such software solutions exist as robotic simulators i.e. V-REP [Vre20] and 
Gazebo [Koe04]. Gazebo is in general open-source whereas V-REP offers a free 
version for academic use only. The significant features of both these simulators 
can be summarised as described in table 5. The most powerful feature of V-REP 
is its API support for multiple programming languages and hence, it can attract a 

                                              
49 Bullet Physics: https://pybullet.org/wordpress/ [last accessed on 09.03.2020] 
50 Open Dynamics Engine: https://www.ode.org/ [last accessed on 09.03.2020] 
51 NVIDIA PhysX : https://developer.nvidia.com/gameworks-physx-overview [last ac-
cessed on 09.03.2020] 
52 Newton Dynamics: http://newtondynamics.com/forum/newton.php [last accessed on 
09.03.2020] 
53 Vortex: https://www.cm-labs.com/vortex-studio/ [last accessed on 09.03.2020] 

https://pybullet.org/wordpress/
https://www.ode.org/
https://developer.nvidia.com/gameworks-physx-overview
http://newtondynamics.com/forum/newton.php
https://www.cm-labs.com/vortex-studio/
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broad audience. The external APIs are used to control the objects inside the simu-
lators and typically, their positions, orientations, collisions status etc. can be ma-
nipulated and read as well. 

Table 5: Gazebo vs V-REP 

 V-REP Gazebo 
Open-source No (but free for academic research) Yes 
Supported 
physics engines 

Bullet 2.78 & 2.83 
ODE 
Vortex 
Newton 

Bullet 
ODE 
DART54 
Simbody55 

Main Language LUA C++ 
External APIs C/C++, Python, Java, Urbi, Matlab/Oc-

tave 
C++ 

A comparative analysis of both of these simulators for use in the Robot Operating 
System (ROS)56 is presented by [Nou14] that concludes: 

• V-REP is more intuitive, user-friendly and contains more features 
• Gazebo is more integrated into ROS framework, is open-source but requires 

extra tools to achieve functionality comparable to V-REP 
• Gazebo is more hardware-demanding than V-REP 

On the basics of intuitiveness, support for multiple external APIs and relatively 
less expensive execution of VREP, V-REP is chosen as the simulator for perform-
ing the physical calculation on virtual objects in VR. The next sub-section will 
explain in details the development process of V-REP model. 

5.2.1 V-REP model development 
V-REP typically contains a virtual scene of simplified geometric shapes. The scene 
in V-REP must be the replica of the VR-scene, so that the updated parameters after 
the physics calculations may well be communicated to update the objects in the 
VR-scene. For example, the positions, orientations and sizes of objects in V-REP 

                                              
54 Dynamic Animation and Robotics Toolkit(DART): https://dartsim.github.io/ [last ac-
cessed on 09.03.2020] 
55 Simbody – Multibody Physics API : https://simtk.org/projects/simbody/ [last ac-
cessed on 09.03.2020] 
56 ROS – Robot Operating System : https://www.ros.org/ [last accessed on 09.03.2020] 

https://dartsim.github.io/
https://simtk.org/projects/simbody/
https://www.ros.org/
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must correspond/ be proportionate to that of the VR-scene. By default, V-REP can 
support the geometric import of the following file formats: 

• Mesh formats 
o .STL57  – Contains the geometry in the form of triangle meshes 
o .OBJ58  – Wavefront OBJ contains polygonal data in ASCII 

form 
o .DXF59  – Drawing exchange format 

• Model formats 
o COLLADA60 – XML based schema for the transportation of 3D as-

sets 
o SDF61   – XML based format for defining objects and environ-

ments in robot simulators 
o URDF62  – XML based format for representing a robot model 

To develop the environmental model in V-REP, the living room objects from the 
VR-scene (see figure 5-3) are exported as individual STL files and later are im-
ported in V-REP. Although this import generates a living room environment pro-
portionate to that of VR containing simplified geometric meshes in V-REP, the 
orientation is not the same. The difference in the orientation (see figure 5-5) is the 
result of different global coordinate systems in RTT Deltagen and V-REP. There-
fore, the orientation of the environment model inside V-REP has to be adjusted 
manually. 

                                              
57 STL Format : http://www.fabbers.com/tech/STL_Format [last accessed on 
09.03.2020] 
58 OBJ : http://www.fileformat.info/format/wavefrontobj/egff.htm [last accessed on 
09.03.2020] 
59 DXF Format : http://www.fileformat.info/format/dxf/egff.htm [last accessed on 
09.03.2020] 
60 COLLADA - https://www.khronos.org/collada/ [last accessed on 09.03.2020] 
61 SDF : http://sdformat.org/spec?ver=1.6&elem=geometry [last accessed on 
09.03.2020] 
62 URDF - Unified Robot Descriptions Format : http://wiki.ros.org/urdf [last accessed 
on 09.03.2020] 

http://www.fabbers.com/tech/STL_Format
http://www.fileformat.info/format/wavefrontobj/egff.htm
http://www.fileformat.info/format/dxf/egff.htm
https://www.khronos.org/collada/
http://sdformat.org/spec?ver=1.6&elem=geometry
http://wiki.ros.org/urdf
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Figure 5-5: Coordinates system in RTT Deltagen and V-REP 

As the STL file does not contain any kinematic information about joints, rotations, 
degrees of freedoms (DoF) of joint etc., it is not suitable for the transfer of vacuum 
cleaner model. The vacuum cleaner model contains wheels, handle joint, geomet-
ric shapes in between joints and is available as a CAD model in SolidWorks. The 
URDF format can contain the information about the joints, their position, the geo-
metric meshes connecting the joints, information about coordinates etc. and there-
fore, offers the best possibility to transfer CAD model to V-REP. To transfer the 
vacuum cleaner model from SolidWorks to V-REP, the URDF-Plugin63 that is 
available as an add-on for SolidWorks is used. This plugin provides an interactive 
GUI inside SolidWorks and lets the user build the hierarchy tree of the exported 
model manually. A part or assembly or multiple assemblies inside SolidWorks can 
be selected as the model base that represents the first object in the hierarchy 
(base_link in figure 5-6). This defines the first parent in the hierarchy and also 
specifies the number of children it contains. Similarly, each joint of interest can be 
identified and the geometric assemblies or parts between two joint nodes can be 
identified as linked geometric components. 

                                              
63 SolidWorks to URDF Exporter by Stephan Brawer: http://wiki.ros.org/sw_urdf_ex-
porter [last accessed on 09.03.2020] 

http://wiki.ros.org/sw_urdf_exporter
http://wiki.ros.org/sw_urdf_exporter
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Figure 5-6: SolidWorks to URDF export 

The URDF export from this hierarchy tree automatically detects the joints and their 
type (e.g. fixed, revolute etc.) as well as their exact positions and axis of rotations 
from the CAD model. The exporter calculates the exact placement of axis of rota-
tion of a joint based on the assembly constraints defined inside SolidWorks. Before 
performing the final export the user can individually rename joints, view their axis 
of rotations, coordinate systems, orientation values etc. that is presented in the 
form of a dialog box (figure 5-7). The purpose of this dialog box is also to provide 
the user with the possibility to verify the information that is automatically extracted 
by the URDF exporter before performing the final export. The exported package 
contains a URDF file that contains the information about the complete model in 
the form of XML text and the geometries between two adjacent joints exported as 
STL mesh files. The XML file specifies all the nodes present in the model and 
specifies the name as well as locations of STL meshes that links two corresponding 
joints. Furthermore, the information about the joint type, its location, the axis of 
rotation etc. is also specified. A more detailed overview and guidelines to perform 
the export of SolidWorks assembly into URDF are also available in the form of an 
online tutorial64. 

                                              
64 SolidWorks Assembly to URDF tutorial: http://wiki.ros.org/sw_urdf_exporter/Tutori-
als/Export%20an%20Assembly [last accessed on 09.03.2020] 

http://wiki.ros.org/sw_urdf_exporter/Tutorials/Export%20an%20Assembly
http://wiki.ros.org/sw_urdf_exporter/Tutorials/Export%20an%20Assembly
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Figure 5-7: URDF exporter dialog box 

The exported URDF model can be imported inside V-REP by using the default 
URDF importer and the resulting model in V-REP can be seen in figure 5-8. As a 
result, the exact geometrical model of the vacuum cleaner is constructed in V-REP 
with the help of URDF exporter. The imported model has preserved the infor-
mation about the inertia, mass, joint locations, joint types etc. as well the hierarchy 
defined at the time of the export from SolidWorks. 

 
Figure 5-8: Vacuum cleaner in V-REP 
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This sub-section has described the process of creating the V-REP model that is the 
exact replica of the VR-scene (see Figure 5-3). Although the scene is a geometric 
replica, the geometric representations contain fewer amounts of polygons so that 
fast and real-time physics computations can be facilitated. This complete V-REP 
model with simplified geometrical objects can be seen in figure 5-9. The next step 
is to integrate this model with the SysML behaviour models presented in chapter 
4. This is explained in detail in the next sub-section. 

 
Figure 5-9: V-REP model for the computation of physics calculation 

5.2.2 Integration of physics engine (V-REP) with SysML 
In order to control the V-REP physics model from the behavioural descriptions in 
SysML, it is important to achieve bidirectional communication between the 
SysML models and V-REP. V-REP offers support for multiple programming lan-
guages (see table 5) so that the geometric objects can be accessed remotely. How-
ever, it is not possible to directly manipulate the V-REP physics model from 
SysML because the available API libraries of V-REP do not offer direct support 
for SysML. Therefore, an intermediate plugin or script is needed that can translate 
the intended functionality required by the SysML behaviour models into direct 
object manipulations in V-REP and can also provide feedback. For instance, if the 
SysML behaviour model requests a forward movement of the vacuum cleaner 
model, the intermediate script must implement it by manipulating the joint param-
eter, rotations, positions etc. in V-REP. This plugin is written in the form of python 
based script and serves to achieve bidirectional exchange of information between 
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SysML and V-REP. This plugin is referred to as “python control plugin” from 
here onwards. 

At this point, it is important to revisit the figure 4-17/figure 4-27 containing the 
action “vrep_send”. The SysML behaviour model of the vacuum cleaner first eval-
uates the input from the interaction device. This input may contain an intent of the 
VR-user to move or turn the vacuum cleaner or to change the angle of its handle. 
However, this may cause a collision between the vacuum cleaner and an environ-
mental object that can be detected with the help of V-REP physics model. There-
fore, the SysML behaviour model of the vacuum cleaner after evaluating the input 
from the interaction device sends a command to the python control plugin. This 
command contains two parameters i.e. [intended movement type, intended handle 
angle]. An elaboration of these commands can be seen in table 6. The speed of 
movement of the vacuum cleaner and the speed of change of its handle angle can 
be fed as an additional parameter with these commands to achieve a more precise 
implementation. 

Table 6: Movement commands sent from SysML to V-REP (python control 
plugin) 

Command Purpose 
[forward, handle++ or han-
dle-- or handle] 

Move the vacuum cleaner forward and increase, 
decrease or don’t change its handle angle 

[backwards, handle++ or 
handle-- or handle] 

move the vacuum cleaner backwards and in-
crease, decrease or don’t change its handle angle 

[turn right, handle++ or 
handle-- or handle] 

turn the vacuum cleaner right and increase, de-
crease or don’t change its handle angle 

[turn left, handle++ or han-
dle-- or handle] 

turn the vacuum cleaner left and increase, de-
crease or don’t change its handle angle 

[no movement, handle++ or 
handle-- or handle] 

do not move the vacuum cleaner and increase, de-
crease or don’t change its handle angle 

 

As table 6 mentions, the movement can have five possible values i.e. move for-
ward, move backwards, turn right, turn left and do nothing. The handle angle val-
ues just indicate a positive or negative change or no change in the vacuum cleaner 
handle’s inclination. One of these commands is sent out of the SysML behaviour 
model using “vrep_send” action (see figure 4-17) over a TCP/IP connection during 
each execution. This connection points to the python control plugin that receives 
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the values and the basic functionality of this plugin can be seen as a graphical 
representation in figure 5-10. 

 
Figure 5-10: Python plugin for V-REP model control 

The plugin connects to the V-REP client at the start and acquires the handles for 
the objects of interest in V-REP. The object handle65 is a unique identifier for an 
object that is present inside the V-REP model. For instance, each joint in the vac-
uum cleaner model has its own identification handle so that each joint can be later 
accessed by the python control plugin. Similar to the objects, there are collision 
handles that refer to the collision event between two certain objects. For instance, 
the collision of the vacuum cleaner with the sofa and with the table will have 

                                              
65 V-REP object handle: Object handle is a programmatic term that serves as a unique 
identifier for a given object in V-REP model  
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unique identifiers. The collision detection is implemented here by using the default 
collision detection module inside V-REP. As mentioned in table 5, V-REP offers 
multiple physics engines. One of these physics engines can be chosen by using 
GUI or employing an API command. After acquiring all the object handles and 
collision handles the simulation is started and the physics calculation module 
against the chosen physics engine is now active. 

Once the simulation is active, two parallel programming threads (indicated as Loop 
1 and Loop 2 in figure 5-10) are launched. The first loop (Loop 1) keeps a check 
on the connection with SysML behaviour models and as soon as a movement com-
mand (see table 6) comes in, it is implemented. The “Implement command” inter-
prets the SysML command and manipulates the wheels of the vacuum cleaner 
model in V-REP. For instance, the forward movement is achieved by assigning the 
wheels with rotation speeds and rotational force values that results in a forward 
movement of the vacuum cleaner model. Furthermore, the SysML command re-
garding the vacuum cleaner’s handle is implemented by calculating and changing 
the value of the joint that is present in between the vacuum cleaner handle and the 
vacuum cleaner base. 

The second loop (Loop 2) is a feedback loop that constantly delivers feedback 
about the positions, orientations etc. of objects as well as collision statuses using 
two UDP connections. The reason for using UDP connection here is the fact that 
the values can be continuously sent out to a certain UDP port even in the absence 
of a UDP listener. This means that the feedback is continuously provided even if 
the SysML behaviour models are not listening. As soon as SysML requires feed-
back, updated feedback is readily available for use. Get position, orientation etc. 
refers to the feedback about positions and orientation of the vacuum cleaner model 
in V-REP. This feedback is received in SysML using rec_pos_Vrep action in fig-
ure 4-17. Get collisions, position, orientations etc. refer to the objects in V-REP 
model that correspond to the environment model. Visually, a collision is indicated 
inside V-REP by showing the colliding objects in orange colour. In programming, 
a collision is indicated by a collision flag of value 1 that can be read using the 
collision handles. This means that a collision flag of value 1 indicated that the two 
objects defined in the corresponding collision handle are colliding with each other. 
This feedback is received by the living room model in SysML using “rec_Simu” 
action from figure 4-19. Based on this feedback, the living room model in SysML 
can determine which two objects are currently taking part in a collision. The action 
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vrep_send and rec_pos_Vrep from figure 4-17 along with rec_Simu from figure 
4-19 are “opaque actions” in SysML that contain a chunk of object-oriented code 
to implement as TCP/IP or UDP based socket connections (see Annexure A ). 

In this way, the python control plugin mediates between SysML behaviour models 
and V-REP, thus it facilitates 

• direct control of V-REP physics model from SysML behaviour models,  
• collection of real-time feedback about objects present inside V-REP model,  
• provision of this feedback back to SysML behaviour models and  
• eventually, two-way communication between SysML and V-REP. 

The python control plugin also helps to keep the SysML behaviour models free 
from detailed implementation information about V-REP physics model. As a re-
sult, the modelling effort in SysML can also be spared. In this way, the V-REP 
model can directly be controlled form SysML behaviour descriptions. This adds to 
the capability of SysML behaviour descriptions as they now also incorporate indi-
rect physics calculations with the help of V-REP. The next step is to integrate the 
SysML behaviour descriptions with VR-software so that an interactive simulation 
of the vacuum cleaner inside the living room can be obtained in VR. This integra-
tion is discussed in the next section. 

5.3 Integration of SysML behavioural descriptions with VR 

After achieving a bidirectional communication between SysML behaviour de-
scriptions and V-REP in the last section, the SysML behaviour descriptions con-
tain the updated properties of virtual objects in real-time. Now, this section is going 
to explain  

• the integration of VR interaction device with SysML and  
• the transfer of the updated objects’ properties from SysML to VR-software.  

The interaction device for the CAVE type VR-system available at Technische Uni-
versität Ilmenau (see also figure 2-9) is based on an ART66 tracking system. This 
tracking system supports flystick as interaction device and its data can be read in 

                                              
66 ART – Advanced Real-time Tracking: https://ar-tracking.com/ [last accessed on 
09.03.2020] 

https://ar-tracking.com/
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real-time. The flystick data can be read in multiple predefined string formats. 6df 
format67 of the flystick is used in this thesis and is detailed in table 7. 

Table 7: Flystick data string format [Art17] 

6df Format: 6df 1 [id qu bt][sx sy sz η θ φ][b0 b1 b2 b3 b4 b5 b6 b7 b8] 
id identification number of interaction device (starting with 0) 
qu quality of tracking (-1.000 to 1.000) 
bt joystick value (0, 16, 32, 64 or 128 refer to up, down, left, right and 

no movements) 
si position of flystick (x, y, z values in millimetres) 
(η θ φ) orientation angles of flystick 
bi the orientation of flystick as a rotation matrix 
Example string: 6df 1 [0 1.000 64][261.103 116.520 41.085 19.6522 -57.3530 
116.5992][-0.241543 0.968868 -0.054332 -0.482366 -0.168461 -0.859619 
-0.842010 -0.181427 0.508039] 

 

To achieve an intuitive interaction, the height of the flystick from the floor is taken 
as a measure to calculate the angle of vacuum cleaner handle. bt represents the 
multifunction joystick button and is used as input for movement of the vacuum 
cleaner (forward, backwards, left, right or no movement). The flystick tracking 
data is available as a string value over a UDP connection. The interaction device 
model in SysML (see 4.3.3.3) uses the “rec_udp” action (figure 4-21) to receive 
the flystick data as a string. The received string is evaluated to extract the intended 
movement and to calculate the angle of vacuum cleaner handle. In this way, the 
interaction device is integrated with the SysML behaviour models. 

The next step is to communicate the updated properties of virtual objects from 
SysML to VR-software so that the VR-scene contents can be updated. These up-
dated properties mainly involve 

• updated positions of virtual objects,  
• updated orientations of virtual objects and  
• names of objects taking part in a collision. 

                                              
67 Pre-defined by ART tracking 
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The updates about the positions and orientations are transferred to VR-software 
using the build-in functionality of RTT Deltagen. RTT Deltagen offers direct ac-
cess to the transforms (position, orientation, scale, centre etc.) of virtual objects 
present inside the VR-scene using predefined commands (instruction based com-
munication). These external commands can be sent to RTT Deltagen over a prede-
fined TCP/IP connection and once such a commend is received, RTT Deltagen 
implements it using its default functionality. A few of the commands can be seen 
in table 8. 

Table 8: External commands in RTT Deltagen68 

Command Description Example syntax 
TRANS Sets the absolute position of an 

object 
TRANS object1 0 10 0 

ROT PHR Sets the absolute rotation of an 
object in its object coordinate 
system. PHR = Pitch, Head, Roll 

ROT PHR object1 2.2 0.8 
0.0 

ROT XYZ Sets the absolute Euler rotations 
of an object in degrees 

ROT XYZ object1 45 60 30  

ROTCENTER Sets the absolute position of the 
centre of rotation of an object 

ROTCENTER object1 2.5 
10.9 8.7 

 

TRANS and ROT PHR commands are mainly used to communicate the updated 
positions and orientations values to VR-software form SysML. The action 
“VR_Send” from figure 4-17 is used to construct a string of data consisting of a 
combination of TRANS & ROT PHR commands and is sent to VR-software. As 
mentioned in figure 5-5, the difference in the coordinates systems is also kept in 
consideration while forming this data string. As soon as this data string consisting 
of the updated properties of objects is received by VR-software, the transforms and 
properties of the virtual object in VR-scene are updated. As a result, the VR-user 
can observe visual changes in the positions and orientations of objects. 

There is no built-in functionality of RTT Deltagen to show a collision indication 
e.g. a colour change etc. Therefore, the visualisation of collision in VR is imple-
mented by using the API interface of RTT Deltagen. The same idea as present in 

                                              
68 Contents in this table are taken from the user manual of RTT Deltagen version 12.2 
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V-REP i.e. showing the colour of colliding objects in bright orange colour is used 
to indicate a collision object. This is achieved by a small add-on that is written in 
the default programming language in RTT Deltagen i.e. C++ and the basic func-
tionality of this add-on can be understood using figure 5-11.  

 
Figure 5-11: Collision implementation add-on 

The add-on starts on the launch of RTT Deltagen and immediately open a new 
parallel execution thread. It is very important to open a new parallel thread because 
RTT Deltagen performs the rendering in loop-based execution. This execution 
loop checks all the default and modified add-ons before rendering the VR-scene. 
If a parallel thread is not opened, then RTT Deltagen gets stuck on “Wait for col-
lision command from SysML” and only updates the VR-scene once a value is re-
ceived from SysML. This can make the rendering of VR-scene contents extremely 
slow. Therefore, a parallel execution thread is opened so that the waiting time for 
a collision command from SysML can no longer influence the speed of rendering. 
After opening the parallel execution thread, the add-on goes into an endless loop. 
This loop waits for a collision command form SysML. There are two kinds of col-
lision update commands sent from SysML to VR-software and can be seen in table 
9. As soon as the collision command is received, the add-on extracts the object 
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name from the collision command. If a new collision object comes in the com-
mand, its virtual object is the VR-scene tree is searched, found and changed to 
bright orange colour. If the command contains the name of the default object69 
(predefined during add-on development), all the collision indications are removed 
by setting the orange coloured objects back to the default colour. 

Table 9: Collision commands sent from SysML to VR-software(CAVE) 

Command Purpose 
<mode | obj=objectName> Make the colour of “objectName” vir-

tual object bright orange 
<mode | obj=defaultObject> Reset all visible orange colour objects 

to their original colours 
 

In this way, the updated values present inside SysML behaviour models about the 
positions, orientations and collisions are transferred to VR-software. This enables 
the SysML behaviour models to directly manipulate objects in VR-software using 
the commands mentioned in table 8 and table 9. RTT Deltagen independently ren-
ders the contents of VR-scene in real-time and together with the information from 
SysML, provides the user with a product simulation in VR. 

5.4 Generic information flow during VR simulation 

A CAVE type VR-system is used for example in this chapter to explain the com-
plete development process in detail. However, the VR-model descriptions based 
on descriptions external to VR-software may also possess the reusability capability 
across different VR-systems. Figure 5-1 shows the overall flow of information be-
tween different tools participating in the VR simulation but is specific to CAVE 
type VR-system. The same can be extended to develop a more generic information 
flow diagram as shown in figure 5-12.  

                                              
69 An object that is invisible to VR-user and is used for resetting the collision indica-
tions. Indicating a collision on this object removes all present collision indications. 



128  5 Simulation of product properties in VR 

 
 

 
Figure 5-12: Flow of information during a VR simulation (extended from 

[Mah19a]) 

The upper half of the figure refers to the behaviour descriptions of VR-model and 
the lower half refers to the VR side of the story i.e. VR-software, -hardware and -
interaction devices. To use the same behaviour description in different VR-sys-
tems, the interfaces marked as 1 and 2 in figure 5-12 may require one-time modi-
fication against each VR-system. VR technology refers to different VR-systems 
currently available. Only by managing interface 1 and 2, it is possible to reuse the 
VR-model descriptions in different VR-systems. In this way, VR-model descrip-
tions based on SysML with the help of V-REP may build a VR technology-inde-
pendent description method. The next chapter will provide proof of reusability of 
these behaviour descriptions across different VR-systems by achieving example 
simulations in an HMD and sVR. 
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5.5 Summary 

This chapter supplements chapter 4 and explains the method for achieving simu-
lation in VR. The development of a visual model of the living room and the vac-
uum cleaner is discussed in detail. The idea of usage and integration of a dedicated 
physics calculation software external to VR-system is presented. The development 
of the physics simulation model and its integration with SysML behaviour models 
is discussed in detail. Furthermore, the integration of interaction device input from 
VR in SysML behaviour models and the transfer of updated objects’ properties 
from SysML to VR are discussed in detail. As a result of the presented VR appli-
cation, it is clear that SysML behaviour models can control the physics calculation 
on one side and can update the visual model in VR-software on the other side. The 
overall simulation in VR could be achieved with real-time conditions. A VR-model 
description performed using SysML and outside of the VR-software also possess 
the potential to be reused in different VR-systems. Based on the knowledge gained 
while achieving first example simulation in CAVE type VR-system, a general flow 
of information involving reuse of VR-model descriptions in different VR-systems 
is also proposed. The reuse of VR-model descriptions in different VR-systems is 
further discussed and proof of this concept is provided in chapter 6.  

In this way, this chapter has contributed to answering the research question 3 (sec-
tion 3.5) by deriving a VR simulation with SysML behaviour models. The sub-
question II (section 3.5) is partially answered as well by proposing a reuse concept 
and generic flow during a VR simulation in different VR-systems. Furthermore, 
the incorporation of real-time physical calculation inside SysML with the help of 
V-REP has contributed to answering the sub-question III (section 3.5). 

 

 





 

6 VR prototypes  

Chapter 4 has put forth the method for the description of VR-models using SysML 
behaviour models followed by chapter 5 that demonstrated the use of these SysML 
behaviour models to achieve a product use case simulation in VR. This chapter 
takes a deeper look at the application of the developed method and the reusability 
of SysML behaviour descriptions in different VR-systems. In this regard, two VR 
prototypes i.e. the vacuum cleaner and 6 degrees of freedom (DoF) robot respec-
tively are going to be presented in this chapter. With the help of these VR proto-
types, this chapter will contribute to answering research question 3 partially and 
sub-question III completely (see section 3.5). 

6.1 VR prototype 1: Vacuum cleaner 

As already mentioned in the former part of this thesis, a vacuum cleaner model is 
considered as a product inside a living room environment, as a case example to 
demonstrate the modelling method (chapter 4) as well as the simulation process 
(chapter 5). In this section, the already developed SysML behaviour models of 
vacuum cleaner, living room and interaction device along with their physics cal-
culation models in V-REP are reused to achieve VR simulation in different VR-
systems. 

6.1.1 CAVE 
The VR simulation inside CAVE type VR-system is already described in chapter 
5. Therefore, it is not described again in this sub-section. The reader can refer to 
the modelling methodology in chapter 4 and the simulation concept in chapter 5 
for a detailed explanation about VR simulation inside the CAVE type VR-system. 

6.1.2 HMD 
An HMD offers a cost-effective and relatively mobile VR-system that is accessible 
to small and medium-sized enterprises as well as domestic users. The important 
aspects related to the hardware setup of an HMD have already been discussed in 
2.2.2.2. This sub-section uses HTC Vive as the HMD for achieving a VR simula-
tion. The same SysML behaviour models as used to achieve VR simulation in the 
CAVE are used here. However, the VR technology-specific components (see fig-
ure 5-12) have to be adjusted before a simulation can be achieved inside an HMD. 
In other words, the lower half of figure 5-12 has to be modified and its HMD spe-
cific form can be seen in figure 6-1. 
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Figure 6-1: Simulation in HMD ([Mah19a]) 

Two of the most significant VR-software for HMDs are the gaming engines, i.e. 
Unity3d and Unreal Engine. Unity3d uses C# based scripting to extend its func-
tionality and Unreal Engine uses C++. Unity3d is used in this prototype due to 
personal preference and past experience with C# based scripting. To achieve the 
VR simulation in the HMD, the following development-related aspects have to be 
addressed i.e.: 

• Development of a visual model in Unity3d 
• Adjustment of interface point 1 to integrate HMD’s interaction device with 

SysML 
• Adjustment of interface point 2 to receive the updates of objects’ properties 

in Unity3d from SysML 

6.1.2.1 Visual Model  

The visual model of the vacuum cleaner and the living room from RTT Deltagen 
(figure 5-3) is used to construct the visual model inside Unity3d. RTT Deltagen 
supports the export of complete visual model in FBX70 format. The FBX format 
can carry information about  

• objects’ sizes,  
• objects’ surfaces,  
• objects’ transform (positions, orientations etc.),  

                                              
70 FBX – Adaptable file format for 3D animation software: https://www.auto-
desk.com/products/fbx/overview [last accessed on 09.03.2020] 

https://www.autodesk.com/products/fbx/overview
https://www.autodesk.com/products/fbx/overview
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• textures,  
• materials 
• and object hierarchy etc. 

Unity3d offers native support for the import of models in FBX format. The FBX 
model from RTT Deltagen is imported into Unity3d and as a result, an exact replica 
containing all the geometric objects, surfaces, materials, textures as well as hierar-
chy tree is constructed inside Unity3d. During the transfer of the visual model from 
RTT Deltagen to Unity3d, a few of the objects lost their textures and materials 
based information. Therefore, the texture and materials are adjusted manually to 
match those of the visual model of RTT Deltagen. 

Hence, the (almost71) exact visual model used for the CAVE type VR-system is 
constructed for use in HMD. 

6.1.2.2 Integration of SysML behavioural descriptions with VR 

Interaction device integration (interface 1) 

Similar to the CAVE type VR-system, HMDs also possess a dedicated tracking 
system consisting of usually two tracking cameras. These tracking cameras can 
track the interaction controllers as well as the HMD. The tracking data contains 
information about the positions, orientations, buttons, triggers as well as the touch-
pad related real-time data of the controllers. Furthermore, the position and orien-
tation of the HMD itself are also available inside tracking data. The tracking values 
of the controllers, as well as the HMD, can be read inside Unity3d by using the 
SteamVR Plugin72. This plugin also manages the 3D geometric models of the con-
trollers in VR and offers the possibility to configure controller inputs against dif-
ferent physical buttons that are available on the controllers. Figure 6-2 shows an 
example controller for an HMD in particular for HTC Vive. 

                                              
71 Differences between the colouring, lighting and textures tones are possible. 
72 SteamVR Plugin by VALVE Corporation: https://assetstore.unity.com/pack-
ages/tools/integration/steamvr-plugin-32647 [last accessed on 09.03.2020] 

https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
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Figure 6-2: HTC Vive’s controller [Htc20] 

The tracked position and orientation of the controller is used by the SteamVR 
Plugin to exactly draw a visual model of this controller inside the VR-scene. The 
basic interaction is available with the help of the menu button, trackpad, trigger 
and grip button. For any given application, the feedback from these buttons can be 
configured to achieve the desired interaction possibilities. To achieve a similar in-
teraction as in the case of CAVE type VR-system, the trackpad is used to control 
the movements of the vacuum cleaner model and the height of the controller from 
the ground is taken as a measure to calculate the inclination of the vacuum 
cleaner’s handle. SteamVR Plugin offers the API libraries that allow the access to 
real-time button values, trackpad values as well as the transform information of 
the controllers. Unity3d allows by default the scripting in C# programming lan-
guage. Therefore, a script is written in C# that reads and provides feedback about 
the controllers’ button status, trackpad values, positions, orientations etc. The basic 
functionality of this script can be understood as shown in figure 6-3. This script is 
attached to the virtual object corresponding to the controller and starts executing 
as soon as the scene is played in Unity3d. The scene play refers to the start of VR 
application in HMD where the virtual objects start to be projected onto the HMD. 
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Figure 6-3: Controller script 

The controller script searches for the controller of interest and once it is found, a 
UDP socket connection is opened in a separate parallel thread. This UDP socket 
refers to the interaction device model in SysML (see 4.3.3.3). The purpose of open-
ing a parallel thread is to have the faster transmission of controller feedback to 
SysML and to abstain from causing any delay in the main rendering loop of 
Unity3d. Once the UDP connection is configured, the script moves in a loop (Loop 
2 in figure 6-3) and constantly sends the available data string to SysML models and 
descriptions. Another loop (Loop 1 in figure 6-3) executes inside the main render-
ing loop of Unity3d. This loop constantly reads the information about the control-
ler and packs it into a string of the same format as used for CAVE type VR-system 
i.e. 6df Format as shown in table 7. The purpose of using the same string format 
in two different VR-systems is to avoid remodelling of the interaction device 
model in SysML. Thus, the same format facilitates the use of the same SysML 
behaviour model of interaction device in HMD as used in the CAVE. In this way, 
the controller script provides real-time feedback about the controller’s data to 
SysML behaviour models using a UDP socket connection. As a result, the HMD’s 
controller is integrated with SysML and interface 1 (see figure 5-12 & figure 6-1) 
is configured for use in HMD. The development of this script is typically a one-
time task that can be reused in multiple similar applications. The next step is to 
configure the interface 2 that handles the updated parameters from SysML behav-
iour models and is discussed next. 
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Updating virtual objects’ properties (interface 2) 

As described in section 5.3, the updates about the positions and orientations of 
objects are handled by the built-in external commands from the RTT Deltagen 
(VR-software for CAVE). The VR-software for HMD i.e. Unity3d does not offer 
any such functionality. However, the API libraries of Unity3d can be used to write 
a C# script that can achieve the same functionality. Furthermore, such a script can 
also include the implementation of collision visualisation that was handled by an 
Add-on (see also figure 5-11) in RTT Deltagen. Therefore, a C# script is written 
to receive objects’ updates from SysML behaviour models and to implement them 
in Unity3d. The functionality of this update script can be understood using figure 
6-4. 

 
Figure 6-4: Objects’ update script73 

                                              
73 The variable name X & Y are just mentioned for the sake of explanation. The actual 
variables used inside the implementing script contain other names. 
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As soon as the scene enters the play mode, two parallel threads are opened and in 
these threads, two unique TCP/IP receiver socket connections are opened. One 
connection receives the updates about the positions, orientations etc. from SysML. 
This thread works as an infinite loop (Parallel loop 1 in figure 6-4) and “Wait for 
position and orientation commands from SysML” keeps waiting till a command is 
received. Once a command is received, it saves this command into a variable e.g. 
X in figure 6-4. The second connection receives the updates about collision statuses 
from SysML. This loop is also an infinite loop (Parallel loop 2 in figure 6-4) and 
uses “Wait for collision commands from SysML” to receive collision statuses from 
SysML. As soon as a collision command is received, it is saved in a variable e.g. 
Y. On the left side in figure 6-4, the Main loop can be seen that is used to implement 
these commands. This loop runs in the main rendering loop of Unity3d, however, 
the implementation is done in a way that it may not cause any unnecessary delay 
in the rendering. At the start, this loop checks the X variable’s value to see if there 
is a command present or if it is empty. If X is empty, the execution jumps to check 
the Y variable. If X is not empty and contains a command than this command is 
implemented. After the implementation variable X is made empty. Assigning an 
empty value to the X variable, avoids the multiple times’ implementation of a com-
mand e.g. in the next rendering cycle, because an empty X means that no new 
values are received from SysML and no implementation is needed. The same logic 
is used on the value of Y and if it contains a command, it is implemented and as-
signed an empty value. If Y is empty, the loop goes back to check the X value. This 
loop runs once during one scene update74. Implement X and Implement Y from 
figure 6-4 possess a detailed implementation logic that can be seen in figure 6-5. 

                                              
74 Unity3d updates a VR-scene multiple times in a second e.g. depending upon the vis-
ual contents of the VR-scene the updates may well be around 100 times per seconds.  
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Figure 6-5: Command implementation75 

Implement X starts by interpreting the received command and extracts the objects 
mentioned in the command. The extracted objects are searched in the VR-scene 
and the new position and/or orientation values are applied respectively against the 
presence of trans or rot words (see command structure in table 10) in the command 
respectively. Implement Y also interprets the command and extracts the object of 
interest. At the same time, it differentiates between the mode (new collision indi-
cation) and nmode (remove old collision indication). If the commands request a 
new collision indication, then before indicating this collision, all the old colours 
and textures corresponding to the collision object(s) are saved in a matrix Z. These 
colours have to be saved so that they can be applied back to the corresponding 
object when the collision indication is no longer needed. After that, the colour of 
the collision object and all its child objects are made bright orange. Hence, a col-
lision is indicted in HMD. Later, if the collision indication has to be removed then 
it is achieved by applying the original colours and textures previously saved inside 
matrix Z. In this way, the indication and removal of the collision are handled inside 
Unity3d. 

The structure of the commands (position, orientation, collision etc.) originating 
from SysML is kept similar to that of the ones used in CAVE type VR-system with 
the slight modification of syntax. The structure of the used commands can be seen 

                                              
75 The matrix Z is just mentioned for the sake of explanation. The actual matrix used in-
side the implementing script contains another name. 
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in table 10. These slight modifications are made to achieve an easier implementa-
tion of these commands in Unity3d and to achieve finer implementation at the 
same time. For instance, the inclusion of nmode command offers the possibility to 
remove the collision indication from those objects that were previously indicating 
a collision. This command also eliminates the need for defining a predefined reset 
object for collision as done in case of CAVE (see table 9). 

Table 10: Commands from SysML to VR-software (HMD) 

Type Command syntax Purpose 
Translation <trans | obj=name | x= value 

| y= value | z=value> 
Translate the object to the 
given position (x, y, z) 

Orientation <rot | obj=name | rx= value 
| ry= value | rz=value> 

Set the object’s orientation. rx, 
ry, rz are euler angles 

Show collision  <mode | obj=name> Indicate object as colliding 
Remove  
collision 

<nmode | obj=name> Remove the indicated collision 

 

Hence, with the help of the objects’ update script the interface 2 (figure 6-1) is 
managed and SysML behaviour models are integrated with Unity3d for an HMD. 
Similar to interface 1, the development of interface 2 for HMD is also a one-time 
task and can be reused for future applications. 

6.1.2.3 Summary 

The sub-section 6.1.2 has presented the development of a VR-model for HMD that 
uses the same SysML behaviour models as used in CAVE to achieve a product’s 
use case simulation. By managing the interface point 1 and 2, the already described 
SysML behaviour models can be reused. The development of the visual model and 
the scripting methodology to achieve the required functionality are discussed in 
detail. 

There are only two small changes required in the SysML behaviour models be-
cause of the change in the command syntax i.e. the script in “vrep_send” figure 
4-17 and rec_Simu from figure 4-19 have to be slightly modified to match the new 
syntax. Other than these changes, the SysML behaviour models along with the 
physics model in V-REP can be used as they are used in the CAVE. 
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6.1.3 sVR 
An overview of Smartphone VR (sVR) has already been provided in 2.2.2.3. 
Smartphones have gained considerable attention recently for the use as VR and 
AR devices. Small and relatively computationally non-intensive VR games and 
applications have already surfaced. However, the use of sVR in the product devel-
opment process is limited which is mainly due to: 

• the absence of direct positional tracking and 
• the perceptions of sVR as not being a high-performance device deems it 

non-suitable for industrial application. 

The computational and graphical performance of smartphones is improving with 
every passing day. The highly competitive smartphone market along with increas-
ing expectations/demands of users are pushing the smartphone manufacturer to 
increase the performance. Almost all the high-end smartphones from all manufac-
turers that are currently available in the market are capable of executing VR- and 
AR-based applications. However, the absence of direct positional tracking is a ma-
jor factor that limits the use of sVR mainly to the visualisation of 360° videos for 
example [Bor17]. 

To use sVR for industrial applications, it is very important to achieve positional 
tracking of the VR-user. The head tracking (orientation only) of the VR-user is 
already achievable in sVR using Google’s VR SDK76 that works on the feedback 
from the gyroscope sensor of the phone. However, an application based on the 
tracking of the orientation of the VR-user’s head only allows the user to look 
around. However, it is not possible to move inside the VR-scene as direct posi-
tional tracking against the VR-user’s movement is absent. There are already efforts 
that have tried to achieve positional tracking in sVR e.g. [Fan17]. However, such 
tracking is achieved by an additional tracking sensor. Along with positional track-
ing, the quality of visualisation and computational capability of a smartphone are 
also the topics of concern that are not discussed here. 

[Mah19c] points out that for sVR to be suitable for industrial use, the sVR appli-
cations shall ensure: 

                                              
76 Google VR SDK for Android: https://developers.google.com/vr/develop/android/get-
started [last accessed on 09.03.2020] 

https://developers.google.com/vr/develop/android/get-started
https://developers.google.com/vr/develop/android/get-started
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• a real-time visualisation as well as the simulation,  
• good quality of visualisation, 
• reliable position tracking to enable user movements in the virtual space, 
• easy preparation of VR-scenes and  
• good interaction possibilities (e.g. integration of an interaction device). 

Therefore, in the light of the above discussion, the capability of a smartphone for 
use in VR for product development is tested in this sub-section and an implemen-
tation idea for achieving real-time positional tracking is presented. Furthermore, 
the achieved tracking results are analysed quantitatively as well as using a user 
survey. 

6.1.3.1 Visual model 

Unity3d offers direct support for smartphone development (both iOS77 and An-
droid78) and therefore, the visual model created in 6.1.2.1 for HMD can directly be 
used inside the smartphone. The Android development support of Unity3d is used 
here because the smartphone used in this thesis is Android-based. The main differ-
ence between HMD and sVR is that the contents of a VR-scene for HMDs during 
execution are saved on a computer and are projected live onto HMD, whereas in 
sVR the complete contents of the VR-scene are compiled and saved in the form of 
a smartphone application. Such an application may work only using a smartphone 
and a dedicated computer is no longer needed as is the case with HMDs. 

A VR application in the smartphone can be achieved by using the Google VR SDK. 
Therefore, the libraries for Google VR SDK (v1.150.0) are imported into the visual 
model for HMD (6.1.2.1) and unity development support is changed to Android. 
The Google VR SDK divides the smartphone screen in half and creates two distinct 
imageries that are slightly offset from each other. Using any VR headset/holder for 
the smartphone holder, for instance, Google Cardboard (also see figure 2-11) is the 
simplest smartphone holder that makes sure each eye of the VR-user sees a differ-
ent image and unnecessary environmental light is stopped from entering the eyes. 

                                              
77 Apple iOS: https://www.apple.com/de/ios/ios-13/ [last accessed on 09.03.2020] 
78 Android by Google : https://www.android.com/ [last accessed on 09.03.2020] 

https://www.apple.com/de/ios/ios-13/
https://www.android.com/
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After configuring the Google VR SDK inside the visual model, the complete con-
tents of the VR-scene can be compiled as an Android application. A screenshot of 
this application can be seen in figure 6-6. 

This application can map the head movements of the VR-user using feedback from 
the gyroscope sensor inside the smartphone with the help of the functionality of 
Google VR SDK. As a result, the VR-user can look around (360°) and visualise 
the contents of the VR-scene. However, this application so far does not contain 
any positional tracking implementation. An idea about implementing positional 
tracking without the need for any dedicated tracking sensors is presented next in 
6.1.3.2. 

 
Figure 6-6: VR-scene contents in a smartphone application [Mah19c] 

6.1.3.2 sVR positional tracking 

The Google ARCore79 includes positional tracking as built-in functionality. 
ARCore renders the camera feed of the smartphone directly onto its screen. Virtual 
objects can be overplayed onto the camera feed and manipulated. The positional 
tracking in ARCore is based on the environmental understanding with the help of 
the smartphone camera. The flat surfaces in the surroundings can be identified as 
references and the movement of the smartphone compared to these references help 
to provide an estimate of the positional movements. The orientation of the 
smartphone is tracked by evaluating the feedback from the gyroscope sensor inside 
the smartphone. As a result, positional tracking is achieved using ARCore in an 

                                              
79 Google ARCore for Android: https://developers.google.com/ar/discover [last ac-
cessed on 09.03.2020] 

https://developers.google.com/ar/discover
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AR application. One possible way to achieve positional tracking in sVR is to in-
clude ARCore’s functionality inside the VR application. Cardboard requires a 
smartphone with Android 4.4 or higher with gyroscope whereas ARCore requires 
a smartphone with Android 7.0 or higher with camera and gyroscope sensor. 
Therefore, a smartphone running either Android 7.0 or a higher version with a 
camera sensor and a gyroscope sensor is needed as sVR device. Normally, all the 
High-End smartphones currently available in the market can fulfil these require-
ments. 

The smartphone used in the development and to generate the results presented here 
possessed the following technical specifications: 

• CPU: 8 core processor (4*2.36 GHz + 4*1.8 GHz) 
• GPU: ARM Mali-G72 MP12 (12 cores with 850 Mhz each) 
• 6 GB RAM 
• 407 dots per inch (dpi) with 2240x1080 resolution 
• Android 9.0 
• Gyroscope and accelerometer 

Tracking algorithm 

[Men17] has used a similar fusion of ARCore and VR SDK to achieve positional 
tracking in sVR. However, this work applies a scaling factor of 6 in Y-axis and 10 
in both X- and Z-axis values after reading the tracked position values from 
ARCore. If such scaling factors are applied, the achieved positional tracking can-
not be of comparable proportion to the physical world movements. Although the 
experiments conducted in the scope of this thesis use a similar idea, the mapping 
of 1:1 is used and no scaling factor is applied. The purpose of 1:1 mapping between 
ARCore positional values and the positional movement of the virtual camera in the 
VR-scene is to achieve positional tracking comparable to the VR-user’s physical 
movements. 

The visual model with already loaded VR SDK libraries is extended to include 
ARCore (v1.5.0) libraries for Unity3d. ARCore libraries tend to render the camera 
feed onto the smartphone screen. As in a VR application, the camera feed is not 
required, it is stopped and only the content rendered by the VR SDK is left for VR-
user’s view. To integrate the positional tracking capability of ARCore in the sVR 
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application a small position tracking script is written and attached to the camera 
object in the scene. The functionality of this script can be understood by figure 6-7. 

 
Figure 6-7: Positional tracking script 

Once the smartphone application containing the positional tracking script is 
launched, the script defines a “Camera” object that refers to the main camera80 in 
the VR-scene. A new variable Position0 is defined and assigned absolute global 
origin (0,0,0). From here onwards, the script enters into an endless loop, that reads 
the values of ARCore’s camera and saves it into Position1 variable. Position1 re-
fers to the new position of the VR-user and a comparison of it with the old refer-
ence value i.e. Position0 provides the relative change in the position. This relative 
change is saved inside the Transition variable and is applied to the Camera object. 
In this way, the positional movements of the VR-user from real-world are trans-
lated to the positional change of the virtual camera in the VR-scene. As a result, 
the direct positional tracking in sVR is achieved with the help of ARCore and the 
smartphone’s camera. In the end, the new position (Position1) is saved in Position0 
for use in the next execution cycle. 

  

                                              
80 The position of main camera decides what content will be shown to the VR-user or in 
other words, it is the view point in the VR-scene 
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Accuracy of sVR’s positional tracking 

A working positional tracking is not enough to justify the use of sVR as a device 
for VR in industrial applications. Therefore, a judgment about the preciseness and 
quality of the achieved tracking shall also be made. There can be two possibilities 
to measure the quality of positional tracking i.e. 

• manually by moving smartphone between measurable marked points or 
• by comparing it with an HMD containing a dedicated tracking system. 

The manual measurement can be prone to error in multiple ways as the global 
origin (0,0,0) in ARCore refers to the position of the smartphone’s physical cam-
era. The camera position can be different on different smartphones based on their 
design. Furthermore, keeping the width and thickness of a smartphone in mind, it 
is extremely difficult to locate the exact position of the physical camera that refers 
to (0,0,0) position. As a result, an unmeasurable offset can be induced in the meas-
ured values. The second possibility is to compare the positional tracking in sVR 
with that of an HMD. An HMD usually has two tracking cameras and works on 
marker-based tracking principle to track the position as well orientation of the 
HMD and controllers. This approach is adopted to achieve a measure of the quality 
of sVR’s positional tracking. There are three main reasons for choosing such a 
comparative method because 

• such an experiment is easy to set-up, 
• it is less error-prone as compared to the manual method and 
• it is easily reproducible. 

The physical construction for this experiment involves the mounting of the 
smartphone directly onto the HMD as shown in figure 6-8. Caution must be exer-
cised in the understanding of this experiment and the results that follow i.e. the 
HTC Vive’s tracking is assumed to be perfectly accurate and a reference for the 
comparison. Furthermore, it should be made clear that the author does not make 
any claim about the quality of the tracking of HTC Vive. 
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Figure 6-8: Physical construction 

Several reference positions within the tracking range of HTC Vive are marked on 
the floor to form a shape of the digit “8”. Two empty Unity3d VR projects are 
constructed that contain no visual objects and can only store the tracking values 
for both HMD and sVR respectively. After starting the VR application on the 
smartphone, it is mounted onto the HMD and placed on the start position (big white 
spot in the middle). Now, exactly one value each containing the 3D coordinates of 
the Vive’s and sVR’s tracking values are received and saved in separate text files. 
The same procedure is adopted to record the values for all the marked points while 
completing a movement along the shape corresponding to the digit “8”. In per-
forming this manoeuvre, efforts are made to avoid any drastic change in the orien-
tation of both the devices so that a clean comparison can be obtained. Finally, a 
total of 15 values are recorded in individual text files. The first tracking values for 
both devices are shifted to (0,0,0) to achieve uniform tracking comparison and the 
remaining tracked values are also shifted accordingly. As during the experiment 
both devices are always placed on the floor, the height value is neglected for this 
comparison and the resulting 2D plot can be seen in figure 6-9. 
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Figure 6-9: Tracking values from both devices (i.e. sVR & Vive) 

The numbers 1 to 15 placed next to the measured point indicate the sequence in 
which the tracking values are recorded. sVR’s tracking followed the path of the 
Vive’s tracking with some deviation. Although both devices are always placed on 
the floor before recording a value, there are still variations81 in the y-axis values 
as well. In the case of Vive, the y-axis values vary between -4.4cm to1.4cm and 
for sVR, it is between -4.1cm to 0.5cm. To calculate the absolute positional error 
(i.e. the distance between both tracked points), all three axes (x, y, z) values are 
considered. 

 
Figure 6-10: Positional error 

                                              
81 One possible cause of these deviation can be an inclined placement of HMD on the 
floor that causes the HTC Vive’s markers to have different height at different calcula-
tion points. 
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Figure 6-10 shows the distance between tracked values from both devices for a 
given marked point on the floor as the positional error. The error increases (ap-
proximately) linearly as the distance from the starting point increases as can be 
seen by the best fit line plotted on figure 6-10. The average error for the 15 meas-
urements done in a 2D movement space of approximately 2.6x1.2 meters is 6 cm. 

It can be argued that a 2D measurement can only deliver a vague comparison about 
the tracking quality as the actual use of sVR tracking is intended for a 3D space. 
Therefore, a quantitative comparison of points in 3D space is also required which 
can be achieved by moving both devices in 3D space. This requires the values of 
the tracking to be recorded continuously. The continuous recording of tracking 
values can be challenging as both the application are running on different frames 
per seconds (fps). The smartphone achieves 60 fps while Vive is running on 105 
fps. The difference in fps can make a comparison of the recorded values difficult 
and potentially inaccurate. To have the same number of tracking values at the same 
instance in time, a delay of 100 milliseconds is used as a workaround i.e. after 100 
milliseconds both tracking values are recorded instantaneously. The recorded 
points in the 3D space are visualised in figure 6-11. 

 
Figure 6-11: Measured points in 3D space 

The movement involved lifting both devices that are mounted together, performing 
a movement that resembles the digit “8” and finally, placing both the devices on 
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the floor. The size of the 3D movement space is approximately 1.0 X 2.4 X 0.7 
meters. The positional error between the tracked values from both the devices can 
be seen in figure 6-12. To have a fair mean error calculation, the tracked values at 
the start and end of the movement are ignored because both devices are placed on 
the floor. As a result, a mean error of 5.57 cm is achieved. 

 
Figure 6-12: 3D positional error 

Hence, the conducted experiment has shown that although sVR’s positional track-
ing is not as accurate as of Vive, it lies in a comparable range. After presenting the 
tracking implementation idea and the quantitative comparison of tracking quality, 
the integration of SysML behaviour models with sVR is discussed next. 

6.1.3.3 Integration of SysML behavioural descriptions with VR 

Interaction device integration (interface 1) 

After presenting the implementation of positional tracking in sVR, the integration 
of SysML behaviour models is discussed here. Similar to the case of HMD, the 
technology-specific components mentioned in figure 5-12 can be adjusted for the 
sVR and resulting lower half of this diagram can be seen in figure 6-13. 
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Figure 6-13: Simulation in sVR82 

In case of CAVE and HMD type VR-systems, the VR-software directly renders 
the contents of a VR-scene. However, in the case of sVR, it is achieved by first 
compiling the contents into an executable Android application. This application 
can be executed with the help of a smartphone’s hardware and placing the 
smartphone inside any available VR glasses/ smartphone holder can complete the 
setup for a VR device. The controller here can be a Bluetooth gamepad or game 
controller available for Android devices. Similar to the HMD, Unity3d is used here 
as the VR-software to develop the smartphone application. Therefore, the plugins 
developed for HMD are reused for sVR as well with minor modifications. A low 
cost (<10 €) Bluetooth controller (figure 6-14) for Android devices is used as an 
interaction device and is integrated into the sVR application. 

 
Figure 6-14: Bluetooth controller 

                                              
82 Smartphone holder: A device to hold the smartphone, possess a construction to block 
unnecessary light from entering VR-user’s eye, let each eye view only half of 
smartphone’s screen e.g. a Google Cardboard 
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The status of the individual buttons and the joystick of the Bluetooth controller can 
be read inside Unity3d. These are arranged and packed inside a 6df Format (see 
table 7) in the form of a data string. This data string is sent to SysML behaviour 
models reusing the same controller script (see figure 6-3) as used in the case of 
HMD. In this way, the Bluetooth controller is integrated with SysML behaviour 
models. 

Updating virtual objects’ properties (interface 2) 

The same behavioural descriptions in SysML that are already used in CAVE and 
HMD are reused to achieve simulation in sVR. The execution of SysML behaviour 
models and the physics engine calculations are executed inside a laptop and up-
dated parameters are transferred wirelessly to the smartphone utilizing a Wi-Fi 
connection. To receive the updated properties and collision statuses of virtual ob-
jects form SysML, the objects’ update script (figure 6-4 & figure 6-5) from HMD 
is reused. It can be difficult at times to establish a reliable TCP/IP socket connec-
tion with an Android smartphone because of Android security protocols. There-
fore, both the TCP/IP receiver socket connections in figure 6-4 are changed to UDP 
socket connections. The implementation of the received command is performed in 
the same way as done in the case of HMD. In this way, SysML behaviour models 
are integrated with sVR. 

Inside an active simulation in sVR, the laptop performs the computationally ex-
pensive physical calculation and the execution of SysML behaviour models (see 
figure 6-15). The smartphone performs the rendering, visualisation and position 
tracking. Furthermore, the smartphone updates the properties of virtual objects in 
the scene against the updated objects’ properties received from SysML and also 
provides feedback about the controller state to SysML. 
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Figure 6-15: Concept of simulation in sVR [Mah19c] 

In this way, a real-time VR simulation is achieved inside sVR that uses the same 
behavioural models as used for CAVE and HMD type VR-systems. 

6.1.3.4 Survey 

To achieve initial feedback about the use of sVR in product development, a survey 
was conducted. The primary goal of this survey was to collect first feedback about 
the sVR’s use as a VR-system for industrial application. The Cognitive 
Walkthrough83 [Lew90] methodology was used to conduct this survey where the 
test persons were shown two example VR applications. The test persons were 
given the task to  

• familiarise themselves with the virtual environment by walking around,  
• access the tracking quality of implemented positional tracking and  
• provide potential application area for sVR. 

After showing the VR application, the test persons were asked some questions to 
collect feedback (see the questionnaire in Annexure B ). The test persons were 

                                              
83 A Cognitive Walkthrough is a form of usability study where the users are provided 
with a system/interface and asked to perform certain tasks. After experiencing the sys-
tem, the users are asked a series of questions to access the system’s learnability by the 
users. 
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asked to freely express themselves by filling in self-thought keywords and termi-
nologies to answer the questions in the survey. 

The survey included the vacuum cleaner (see figure 6-6) as example 1 that inte-
grated the behaviour models as well. A second example based on the visualisation 
of an automobile (see figure 6-16) is included in this survey. 

 
Figure 6-16: Automobile84 visualisation in sVR [Mah19c] 

The control of the vacuum cleaner model is done using the laptop keyboard as at 
the time of performing this survey, the Bluetooth controller was not integrated in-
side the smartphone application. The frames per second (fps) for this application 
varied between 35-60 fps depending on the number of objects that had to be ren-
dered by the smartphone. The second example achieved a frame rate of 40-60 fps 
at the time of conducting this survey. The purpose of this survey was to simulate 
industrial design evaluation and visualisation scenarios and was presented to a total 
of 15 participants. All the participants consisting of 14 males and 1 female had a 
background in mechanical engineering. Among the participants were professors, 
researchers, PhD students and 4 alumni members related to a technical university 
in Germany. The test persons were asked to move inside the virtual space and ex-
amine the feasibility of sVR for use in product development. The age distribution 
of the test persons and their past experience with VR/AR can be seen in figure 
6-17. 

                                              
84 The geometric model of the car is taken from RTT Deltagen v12.2 
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Figure 6-17: Age distribution of test persons (left), past experience with 
VR/AR- technologies (right) [Mah19c] 

The test consisting of both the applications that lasted between 5 to 8 minutes and 
at the end of the test, the test persons were asked a series of questions. They were 
asked to mention their expectations from VR technologies and smartphone VR in 
particular. The key expectations of the test persons from the sVR technology that 
can be seen in figure 6-18 and from sVR applications that can be seen in figure 
6-19. 

 
Figure 6-18: What do you expect from sVR technology? 

Good visualisation, minimum hardware requirement, realistic visual contents and 
real-time simulation capability are pointed out by the test persons as key expecta-
tions from the VR technologies. In the particular case of sVR, the test persons 
mentioned the following key expectations: 

• Better visualisation 
• smoother movements 
• easy use 
• better interaction 

Good visualisaiton; 3

Low cost ; 1

No delay ; 1

Realistic ; 2Real-time ; 2

Disturbance free; 1

Minimum hardware; 3

Real behaviour; 1



6 VR prototypes  155 

 
 

The smartphone used for conducting this survey possessed only 409 dpi that can-
not offer a very fine visualisation. This problem can be solved by using a 
smartphone with higher dpi. The expectation “smoother movements” links to the 
drop of fps to 35 against higher rendering effort from the smartphone. The reduced 
fps induce jerks in the positional tracking that induced noticeable steps for the VR-
users during the positional tracking and rendering. An increase in the fps can help 
to overcome this limitation and to achieve smoother movements. Furthermore, the 
test persons expected an easy and intuitive use of sVR along with good interaction 
possibilities. 

 
Figure 6-19: What do you expect from sVR applications? 

The accuracy of the positional tracking of a smartphone is sensitive to the visibility 
of virtual markers at all times. If the smartphone camera is covered while conduct-
ing the tests, it can lead to inaccurate positional tracking in sVR. The tests were 
conducted in the proximity of 4m X 8m while all 15 test persons were present 
within this area. This led to a situation that at times, the field of view of the 
smartphone was fully covered by the body of a person standing right next to the 
test person. If the smartphone camera cannot see the virtual markers, the ARCore 
can lose the track of positional tracking and random jumps start to occur. To over-
come this problem, the smartphone application was restarted from time to time. 
Test persons were expected to rate the quality of tracking. The rating expected the 
test person to characterise the quality in five levels (very imprecise to very precise) 
as shown in figure 6-20. 

Realistic; 1
Better visualisaiton; 3

Product 
development; 2

No motion 
sickness; 1Interaction; 3

Environmental awareness; 1

Easy preparation; 1

Easy use; 2

Smoother movements; 2
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Figure 6-20: The evaluation of tracking quality by test persons 

14 out of 15 test persons rated the quality of tracking and the overall rating tends 
to possess average to precise characteristics. Finally, the test persons were asked 
to suggest the possible applications of sVR based on its capabilities as depicted by 
the two presented applications. The test persons were allowed to express freely in 
the form of keywords and the received feedback can be visualised employing fig-
ure 6-21. The use in learning, visualisation, product development and gaming were 
among the major suggested applications. Under product development, the use in 
prototyping and the evaluation of Computer Aided Engineering (CAE) was also 
suggested as application areas by the test persons. 

 
Figure 6-21: Possible application fields for sVR according to test persons 

The received feedback against the conducted survey is encouraging as far as the 
quality of positional tracking and sVR’s potential use in industrial applications are 
concerned. The quality of visualisation can be improved by using a smartphone 
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with higher dpi e.g. smartphones with 540 dpi are already available in the market. 
Although the sVR tracking is reliable, caution must be exercised so that the field 
of view of the camera stays free at all times and is not covered. The comparisons 
of sVR’s tracking with HTC Vive shows comparable results, however, sVR is not 
exactly as accurate as HTC Vive. Therefore, the use of sVR may depend on the 
level of the preciseness of the tracking needed for any given application. 

6.1.3.5 Overall Simulation flow in sVR 

Although the overall flow of simulation in sVR (see 6.1.3 & 6.2.2) is based on 
figure 5-12, a more smartphone specific flow of information can also be developed 
based on the experiments conducted in sub-section 6.1.3. This information flow 
specific to the sVR can be seen as shown in figure 6-22.  

 
Figure 6-22: Flow of information and execution hardware in sVR (extended 

from [Weg19]) 

The geometric models, SysML behaviour descriptions and V-REP model can be 
loaded inside VR-software, SysML execution tool and V-REP respectively as a 
one-time process from the model database. The model database contains already 
developed models and descriptions. The visual content can then be compiled as an 
Android application from the VR-software. This Android application can be exe-
cuted stand-alone and it actively exchanges information with SysML behaviour 
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models to achieve an interactive VR simulation. The SysML behaviour models 
communicate with real-time physics calculations that are performed inside V-REP 
and updates the content of smartphone application continuously. The interaction 
with the user is achieved using controller feedback that flows from the smartphone 
to the SysML behaviour models over a Wi-Fi connection. The smartphone itself 
performs rendering, visualisation and positional tracking (see 6.1.3.2). The SysML 
behaviour models and V-REP physical calculations are computationally expensive 
and therefore, are executed on a high-performance laptop. The smartphone is con-
nected wirelessly with the laptop over a Wi-Fi connection so that information ex-
change can be made possible. 

In this way, sVR builds a cost-effective and mobile VR hardware setup that uses a 
smartphone, smartphone controller, smartphone holder and a laptop for computa-
tion. Such a hardware setup is easy to carry on the way and remote product presen-
tation can also be made possible. 

6.1.4 Summary  
Section 6.1 has presented a detailed explanation about the use of SysML behaviour 
models together with physical calculation in V-REP to achieve VR simulations in 
different VR-systems. The use of the same behaviour descriptions in different VR-
systems proves the generality of the behaviour description method presented in 
chapter 4 & 5. Furthermore, the reuse of the same SysML behaviour description 
and physics simulation model to achieve simulation in different VR-system par-
tially answers the research question 3 and sub-question III in full capacity (see 
section 3.5). Thus, the overall preparation effort needed to achieve VR simulations 
is reduced as the VR preparation for one VR-system can be reused across different 
VR-systems. As CAVE, HMD and sVR lie in different price budgets, the presented 
method can target a vast industrial audience ranging from small to medium-sized 
enterprises up to large enterprises as well. 

6.2 VR prototype 2: 6 DoF robot 

A vacuum cleaner is typically a consumer product and the presented scenario in 
this thesis simulates a household product use situation. To simulate an industrial 
scenario and to show the generic applicability of the developed method, a 6 DoF 
robot inside an assembling environment is presented in this sub-section. 6 DoF 
robot as the second prototype demonstrates a 6 DoF robot working on a conveyor 
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belt inside an assembly line. The conveyor belt transports cube-shaped objects that 
are picked by the robot and placed inside a basket. The robot itself can be operated 
in automatic and in manual modes. In automatic mode, it continuously picks the 
objects from the conveyor belt and places them in the basket. In manual mode, the 
same task can be performed by a user who manipulates the position of the robot’s 
gripper, grips cubes and drops them in the basket by opening the robot’s gripper. 
This scenario is constructed inside HMD and sVR. The construction of VR appli-
cation for CAVE type-systems is excluded for this prototype. The three sub-mod-
els for this VR prototype are 6 DoF robot as the product, a room containing a 
conveyer belt as environment and interaction device as the actor. 

6.2.1 HMD 
The same VR equipment (i.e. HTC Vive) and VR-software (i.e. Unity3d) are used 
for this prototype as they were used for the vacuum cleaner example (see 6.1.2). 

6.2.1.1 Visual model  

The CAD model85 of the robot used in this prototype is first exported as VRML 
format. As Unity3d cannot directly facilitate the import of VRML format, it is 
converted to FBX format using Blender 2.79. The resulting FBX file can directly 
be imported into Unity3d and the resulting VR-scene can be seen in figure 6-23. 

 
Figure 6-23: Contents of the VR-scene 

                                              
85 CAD Model of robot is taken from grabcad.com. URL: https://grabcad.com/li-
brary/ur10-robot-w-robotiq-3-finger-gripper-1 [last accessed on 09.03.2020] 

https://grabcad.com/library/ur10-robot-w-robotiq-3-finger-gripper-1
https://grabcad.com/library/ur10-robot-w-robotiq-3-finger-gripper-1
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The core components of the visual model are the robot model itself, conveyor belt, 
basket and a simple room model86. The room model together with the conveyer 
belt, cubes and the basket built the environment model for this VR prototype. The 
same visual environment model is used to build the environment model in V-REP 
and is explained next. 

6.2.1.2 V-REP model 

The individual objects present in the room in Unity3d are used to export STL ge-
ometric files that are later imported inside V-REP to build the exact replica of the 
room. The conveyor belt is used from the default objects of V-REP. This conveyor 
belt is the default asset of V-REP and allows the modification of its size as well as 
the movement speed. A specific position on one end of the conveyor belt that is in 
the reach of the robot is chosen as the default position from where the cube can be 
picked by the robot. The conveyor belt moves till this positions is empty and stops 
as soon as a cube reaches this place. In this way, the conveyor belt feeds the cubes 
one after another to the default position so that the robot model can pick them. 

The robot model that is available as a CAD model has a total of 6 joints that con-
struct 6 degrees of freedom. It also possesses a gripper with three fingers and each 
finger has three joints that help it to grip objects. The CAD model is converted to 
the URDF model on the same lines as already explained in sub-section 5.2.1 that 
explains the construction of the kinematic model in V-REP. The URDF model is 
then imported in V-REP and as a result, the completed V-REP model can be seen 
in figure 6-24. 

                                              
86 The room model is taken from free assets at unity Asset Store https://as-
setstore.unity.com/packages/3d/environments/morgue-room-pbr-65817 [last accessed 
on 09.03.2020]  

https://assetstore.unity.com/packages/3d/environments/morgue-room-pbr-65817
https://assetstore.unity.com/packages/3d/environments/morgue-room-pbr-65817
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Figure 6-24: V-REP model for the computation of physics calculation 

The default collision calculation module in V-REP is used to perform the collision 
detection between geometric objects. V-REP also offers an inverse kinematic cal-
culation module by default. This inverse kinematic module is used to calculate the 
exact joint rotations against any given goal position/orientation of the robotic grip-
per. Furthermore, V-REP also provides pre-implemented examples for path plan-
ning for such robots and further similar robotic arms that are used to perform grasp-
ing tasks. As a result, the position of the robot gripper can be controlled by instruc-
tion commands (e.g. move to a point, set orientation etc.) and automatic path plan-
ning can also be used to grip the cubes from the conveyor and drop them into the 
basket. 

6.2.1.3 Development of SysML behaviour models  

To control the physics simulation model and to update properties of virtual objects 
in VR-software, the SysML behaviour models are modelled keeping in view the 
guidelines mentioned in section 4.4. First, the HLSA model containing the struc-
ture of the overall system, its interfaces and signals is modelled. The structure of 
the overall system can be seen in figure 6-25 and the interconnection of ports can 
be seen in figure 6-26. 
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Figure 6-25: HLSA of the complete system 

 
Figure 6-26: Internal structure of the overall system 

The structural model of the overall system is saved in a project file and is reused 
in the modelling of product, interaction and environment models. Furthermore, the 
possible signals that can flow in between the three sub-models over the defined 
ports are also modelled and saved in this project file. This project file is loaded and 
shared inside the product (robot) model that is saved in its own project file. The 
description of the robot model uses the ports defined inside the HLSA model and 
inherits them as shown in figure 6-27. 

 
Figure 6-27: Structure of product (robot) model  

Along with the inherited ports (indicated with “^”), figure 6-27 also specifies the 
structure of the robot model i.e. its joints, gripper and base on which the robot is 
fixed. Similar to the product model, individual models of environment and inter-
action device are created and saved in their individual project files. Both the inter-
action device and the environment model inherit the ports from the HLSA model 
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so that the interaction points could be kept consistent throughout the modelling 
process. The simplified structural definition of the environment model can be seen 
in figure 6-28 (Room) and that of the interaction device can be seen in figure 6-29 
(Interaction_1). The structural definition starting from figure 6-27 until figure 6-29 
are used in describing the behavioural models of product, interaction and environ-
ment. 

 
Figure 6-28: Structure of the environment model 

 
Figure 6-29: Structure of the interaction device model 

Figure 6-30 shows the activity diagram in SysML corresponding to Interaction_1 
model and describes its main behaviour in case of manual execution of the robot. 
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Figure 6-30: Main behaviour of interaction device as ACT 

First, a signal “mode_manual” is sent to the robot model indicating the mode of 
operation is manual and later the data coming from the interaction device is con-
stantly evaluated. In the manual mode, the user can manually manipulate the posi-
tion and orientation of the gripper of the robot by changing the position and orien-
tation of the controller of HMD. The position, orientation and statuses of the button 
of HMD’s controller are analysed, interpreted and extracted data of interest is com-
municated to the robot model using userAction signal over p1_inter port. 

Figure 6-31 shows the main behaviour of the robot model as STM in SysML. 

 
Figure 6-31: Main behaviour of the robot model as STM 
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After the initialisation, the robot model waits for one of the mode_auto or 
mode_manual signals originating from the interaction device model. Two im-
portant states of the robot are Automatic and Manual that corresponds to the mode 
of its operation. In case of automatic operation, an activity Schematic is performed 
that communicates with the physics model in V-REP and puts the execution in 
automatic mode. In the automatic model, the conveyer belt feeds the cubes to the 
default position and the robot grasp the cubes and places them into the basket. To 
accurately achieve the pick and placement of cubes, inverse kinematics module of 
V-REP along with the path planning is used. 

In the case of the manual operation, an activity Schematic_manual is performed 
endlessly. This activity instructs V-REP to move the position of robotic gripper 
based on the HMD’s controller position and orientation that is received from the 
interaction device model. The closing of the gripper for grabbing a cube and open-
ing of the gripper to drop the cube into the basket are also handled inside this ac-
tivity based on the actions performed by the user. The user can directly open and 
close the gripper using the trigger button (see figure 6-2) of HMD’s controller. In 
this way, the robot can be operated in automatic as well as in manual operation 
mode that corresponds to an industrial use case in an assembly environment. Fur-
thermore, once the intended robot movement is performed by the V-REP model, a 
feedback corresponding to the actual position of the gripper, its status and the ro-
tational position of robot joints are received in robot model in SysML. Both the 
Schematic and Schematic_manual activities evaluate this feedback and send the 
updated parameters (e.g. gripper state, position, orientation, joint rotations etc.) to 
VR-software so that the robot model in VR-scene can be updated.  

It can occur during the simulation that the robot hits the conveyor belt or some 
object in the environment. The V-REP’s collision detection module keeps a check 
on the occurrence of a collision event between two geometric objects and provides 
continuous feedback to the room model in SysML. Figure 6-32 shows the main 
behaviour of the environment model as an activity diagram in SysML. This dia-
gram evaluates the feedback about the collisions received from the V-REP model, 
compares it with the collision status from the last execution run and finally, com-
municate the changes to VR-software. 
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Figure 6-32: Main behaviour of the environment model as ACT 

6.2.1.4 Integration of SysML behaviour description with VR 

Interaction device integration (interface 1) 

To provide interaction device model in SysML with the feedback about the user 
actions, the controller script (from figure 6-3) is reused that sends out the state of 
controller buttons, its positions as well its orientation over a UDP connection. In 
this way, the interface 1 mentioned in figure 5-12 is handled exactly in the same 
manner as done in 6.1.2.2 by reusing the already developed script. 

Updating virtual objects’ properties (interface 2) 

The updated parameters about the positions of the robot, its gripper, its joints along 
with the collision statuses are received inside the VR-software by an objects’ up-
date script. The same objects’ update script (from figure 6-4 & figure 6-5) is reused 
with minor adjustments. This script receives that updated parameters (position, 
orientation, rotations, collision etc.) from SysML and updates the objects’ proper-
ties inside the VR-scene. In this way, the interfaces 2 mentioned in figure 5-12 is 
implemented by using the same idea as done for the vacuum cleaner example (see 
6.1.2.2). 

6.2.1.5 Summary 

Sub-section 6.2.1 has presented the second VR prototype consisting of 6 degrees 
of freedom robot working on a conveyor belt that simulates the industrial assembly 
line scenarios. The behaviour models of the sub-models of product, interaction 
device and environment are modelled based on the modelling method presented in 
chapter 4. The modelling of the SysML behaviour models is explained briefly and 
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the behaviour models are integrated with V-REP and VR-software in the same way 
as explained in chapter 5.  

Thus, this prototype  

• uses the modelling method developed in chapter 4,  
• uses the integration concept as presented in chapter 5 and  
• reuses the plugins written in VR-software for the first VR prototype (see 

6.1.2.2). 

6.2.2 sVR 
After presenting the second VR prototype in HMD, the same example scenario is 
achieved inside sVR using the same SysML behaviour models and V-REP model 
as used for the case of HMD. The interaction device model in SysML is replaced 
with the model of Bluetooth controller (see figure 6-14), the already developed 
positional tracking algorithm (see 6.1.3.2) is reused as it is. 

6.2.2.1 Visual model 

As the visual model for the second prototype has already been developed inside 
Unity3d (see 6.2.1.1), it is reused using the same method as described in 6.1.3.1 to 
create the visual model for sVR. Again Google VR SDK and Google AR Core are 
used to create the sVR Android application. As a result, a screenshot of the visual 
model can be seen in figure 6-33. 

 
Figure 6-33: VR-scene contents in a smartphone application 

6.2.2.2 Integration of SysML behaviour descriptions with VR 

The same V-REP model as described in 6.2.1.2 is used in sVR application as well. 
The SysML behaviour models described in 6.2.1.3 are reused again. 
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Interaction device integration (interface 1) 

The updated data about the Bluetooth controller is sent to SysML behaviour mod-
els using the controller script (see figure 6-3) with minor changes. The main 
change is the use of two physical buttons (“Two interaction buttons” in figure 
6-14) to control the upwards and downwards movement of the robot gripper. Such 
modification is necessary to pertain to the fact that the Bluetooth controller does 
not record and provide the changes in controller height from the floor. In this way, 
interface 1 mentioned in figure 5-12 is handled exactly in the same manner as done 
in 6.1.2.2 by reusing the already developed script. Unfortunately, the used control-
ler does not provide any information about its position and orientation. Therefore, 
the feedback about position and orientation is not included here. This limitation 
can be removed by using a 6 DoF controller that can provide feedback about its 
position and orientation as well. 

Updating virtual objects’ properties (interface 2) 

Similar to the case of HMD, the objects’ properties are updated by reusing the 
object update script (from figure 6-4). The TCP/IP connection to receive the up-
dates from SysML behaviour models is changed to UDP connection so that a reli-
able socket connection can be achieved under Android smartphone. In this way, 
the interfaces 2 mentioned in figure 5-12 is implemented by using the same idea 
as done for the vacuum cleaner example (see 6.1.2.2). 

6.2.2.3 Summary 

Sub-section 6.2.2 has presented the second VR prototype implementation in sVR. 
The visual model, SysML behaviour models and V-REP developed for achieving 
VR prototype in HMD are reused to achieve the VR prototype in sVR. Minor mod-
ifications are performed to integrate the Bluetooth controller and the connection 
with SysML is switched from TCP/IP to UDP. On a whole, the VR preparation 
made for HMD could be reused by large in achieving VR application in sVR. 

6.3 Summary 

Chapter 6 has presented two VR prototypes that use the method developed in this 
thesis. The research question 3 mentioned in section 3.5, is answered by reusing 
the SysML behaviour descriptions, V-REP physics calculation models and geo-
metric models from the VR-software to achieve VR simulation in different VR-
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systems. These VR simulations have established that SysML behaviour models 
together with the physics calculations in V-REP build a generic description of 
complete VR-model that can be reused. Furthermore, these behaviour descriptions 
are used as a driver of the complete VR simulation in different VR-systems. This 
proves that SysML behaviour descriptions lie at the core of the simulation process 
in different VR-systems and thus the sub-question III from section 3.5 is answered. 

The next chapter will evaluate the VR applications in CAVE, HMD and sVR for 
the case of the vacuum cleaner.  

 





 

7 Evaluation 

It is always an extremely challenging task to perform an extensive evaluation of 
the conducted research and the outcomes that follow. The evaluation of the method 
for the description of VR-models (see also chapter 4 and 5) that is put forth in this 
thesis is performed with the help of industrial and academic experts. A holistic 
evaluation is performed with a focus on the following main categories: 

The Utility87 of the Usability88 

1. Use of VR in product evaluation 
2. Overall satisfaction of experts to VR evaluation in above mentioned VR-

systems 
3. Concept of context consideration inside the product evaluation 

Technical feasibility 

4. Feasibility of different VR-systems 
a. CAVE and HMD 
b. HMD and sVR 

The focus of the evaluation was put on the developed VR applications (see also 
6.1). In this regards, two case studies are performed consisting of a total of 17 test 
persons including experts from industry as well as academia. Past experience with 
at least one VR-system was taken as the requirement for the choice of test persons 
so that the chosen test persons must be familiar with the VR-system. The method 
used to conduct these case studies as well as the outcomes are described in this 
chapter. 

7.1 Method 

The use of VR in the product evaluation, the concept of incorporation of the con-
text of a product inside this evaluation and the feasibility of different VR-systems 

                                              
87 Utility is justified, when a product can provide the functionality required by the user 
that is eventually useful for performing the tasks by the user. [Nil93] 
88 Usability is the extent to which a system, a product or a service can be used by certain 
users in a certain context of use for a certain task so that defined goals of effectivity, ef-
ficiency and satisfaction can be achieved [Iso10][Iso98] 
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for use in product development are tested with the help of empirical evaluations. 
Next, the design and execution of these evaluations are presented in detail. 

7.1.1 Evaluation design 
The method presented in this thesis attempts to reduce the overall VR-model prep-
aration effort and thus, attempts to achieve easy incorporation of VR in the current 
development process. The incorporation of the context (e.g. environment) of a 
product inside the product evaluation process is also emphasised. Furthermore, the 
focus is put on the generic behavioural descriptions of a VR-model, that can be 
reused across different VR-systems. To receive feedback about the usefulness of 
the presented method, the experts’ feedback is obtained using two case studies. A 
total of 17 experts were involved in both case studies. For ease of understanding, 
these case studies will be referred to as case study A and case study B. The method 
used and the execution of both these case studies are performed based on the same 
mythological concept, however, the times of their execution were different. In each 
case study, a guided questionnaire is used to collect feedback. 

7.1.1.1 Theoretical basis 

VR has already found different applications in the industry (see 3.2) and there is 
even more potential for further applications (see figure 3-9). However, the prepa-
ration for VR-models is a difficult task and there is no general method available 
(see 3.3). Furthermore, in the current product evaluation process, the product re-
mains as the focus of the evaluation and limited consideration of contextual aspects 
(e.g. life-phase-specific environment of the product) of the evaluation are consid-
ered (see table 3 and section 3.3). 

The use of any particular VR-system in the industry depends on several factors e.g. 
the organisation size, turn over, evaluation goal etc. An easy distinction can be 
made on the base of the size and annual turnover of an industrial organisation. For 
example, CAVE type VR-system is mainly used by the industrial OEMs whereas 
HMD finds its application inside small and medium-sized enterprises, game de-
velopment groups as well as in the domestic market. The current use of VR in the 
industry is mainly in the design visualisation scenarios and the incorporation of 
behavioural simulations is limited (see details in 3.2 & 3.3). Smartphone VR (sVR) 
builds a mobile VR-system, so far its use is limited to the visualisation of 360° 
videos [Bor17]. 
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Based on the highlighted aspects in this section, the following key areas are iden-
tified as the focus of the evaluation: 

1. Use of VR in product evaluation 
2. Concept of context consideration inside the product evaluation 
3. Feasibility of different VR-systems  

a. CAVE and HMD 
b. HMD and sVR 

4. Overall satisfaction of experts to VR evaluation in above mentioned VR-
systems 

These key areas are also kept in consideration while forming the feedback ques-
tionnaires and will be discussed in 7.1.2. The evaluation of these aspects is carried 
out in two case studies and the individual scope of both case studies can be seen in 
table 11. The greyed out elements are not evaluated inside the mentioned study. 
Initially, the evaluation focus was only the CAVE and HMD as described in case 
study A. However, the outcome of case study A suggested an inclination of the test 
persons towards a mobile and cost-effective VR-system. This motivated the devel-
opment in sVR. The evaluation of the sVR together with HMD was performed two 
years later than the first case study and is referred to as the case study B. Therefore, 
the evaluation process is explained here in exactly the same way as two separate 
studies with different evaluation scopes. 

Table 11: Scope of both case studies and evaluated aspects 

Case Study A Case Study B 
1. Use of VR in product evaluation 
2. Concept of context consideration 

in the evaluation 
3. Feasibility of different VR-sys-

tems  
a. CAVE and HMD 
b. HMD and sVR 

4. Overall satisfaction of experts to 
VR evaluation in above mentioned 
VR-systems 

1. Use of VR in product evaluation 
2. Concept of context consideration 

in the evaluation 
3. Feasibility of different VR-sys-

tems  
a. CAVE and HMD 
b. HMD and sVR 

4. Overall satisfaction of experts to 
VR evaluation in above mentioned 
VR-systems 
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The highlighted evaluation aspects from table 11 are used in the development of 
the feedback questionnaire for each case study. For each case study, a separate 
questionnaire is used that contains the questions addressing the evaluation aspects 
relevant to the respective study. One evaluation aspect may require multiple ques-
tions from the questionnaire to collect the feedback about it. The complete ques-
tionnaires corresponding to study A & B can be seen under Annexure D as Ques-
tionnaire A and B respectively. The settings for both these case studies are pre-
sented next. 

7.1.1.2 Setting 

Case Study A 

As the CAVE type VR-system was involved in the first case study, the experts had 
to be invited to visit the CAVE VR setup (FASP – see also 2.2.2.1) available at the 
Technische Universität Ilmenau. Followed by CAVE tests, the tests in HMD (HTC 
Vive) were also conducted at the Technische Universität Ilmenau in a usability lab 
on the same day. The important features and hardware setting for the used CAVE 
are mentioned in 2.2.2.1. HTC Vive with its standard hardware configurations i.e. 
2 tracking camera, 2 controllers, HMD itself and a dedication computer for ren-
dering and simulation was used. The usability lab used for conducting the tests 
provided a 3m X 3m free space for the installation and execution of tests. The 
CAVE (FASP) and the HTC Vive (Usability Lab) setting used for conducting case 
study A can be seen in figure 7-1 on the left and middle respectively. 

 
Figure 7-1: CAVE (left), Usability Lab (middle) und Office room (right) 
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Case Study B 

In the case study B, HTC Vive Pro89 was either used inside an office room envi-
ronment or was carried directly to the workplace of the test person. The minimum 
requirement of 3 m X 2.5 m free space was considered while installing HTC Vive 
Pro on any of the locations. Similar to the HTC Vive Pro setup, sVR consisting of 
a smartphone90 with a Bluetooth controller (see also figure 6-14) and VR glasses 
(Gear VR91) for smartphone were used in the same amount of free space at the 
respective test locations. A sample picture taken during the test in the office room 
setup can be seen in figure 7-1 on the right. 

7.1.1.3 Target group 

The target group for the evaluation was the application and research-oriented VR 
experts. As the goal of the method developed in this thesis is to facilitate the use 
of VR in product evaluation in industry, the following three groups: 

• the product designers/managers/sales personal from industry, 
• research assistants from academia and  
• the VR-developers 

are identified as the target group for conducting these tests. This is because the 
product designer or manager or salesperson is the eventual user of VR, developers 
are directly involved in the development of such virtual models and academic re-
searchers can evaluate the application from the scientific perspective. 

7.1.1.4 Object 

The VR application containing a vacuum cleaner inside a living room environment 
(explained in chapter 4 and 5) was used as the object. This application as a test 
object demonstrated a scenario based on real-time vacuum cleaner model simula-
tion inside a virtual living room environment The application allowed control of 

                                              
89 HTC Vive Pro is the successor of HTC Vive that offer better resolution, improved ca-
ble management, coverage area and few other improvement (see for details 
https://www.vive.com/de/product/vive-pro/ last accessed 23.03.2020) 
90 Smartphone specifications: 8 core processor (2x 2.6 GHz, 2x 1.92 GHz, 4x 1.8 GHz), 
6 GB RAM, 3120x1440 resolution (538ppi), Bluetooth 5.0 and Wifi equipped. Android 
10 operating system  
91 Samsung Gear VR: https://www.samsung.com/de/wearables/gear-vr-r323/ [last ac-
cessed on 27.03.2020] 

https://www.vive.com/de/product/vive-pro/
https://www.samsung.com/de/wearables/gear-vr-r323/
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the vacuum cleaner model with the help of the VR interaction device. The test 
persons could move and rotate the vacuum cleaner model as well as could manip-
ulate the angle of its handle using the interaction device. In case of a collision with 
an object in the living room environment, the change of colour of the colliding 
object as bright orange was used as a collision indication. The process of achieving 
this application in CAVE as well HMD is described in detail in chapter 6. The 
same application was used to achieve one VR application in CAVE type VR-Sys-
tem and one in HMD. The contents of both the applications were the same, how-
ever, the differences were present due to different interaction possibilities present 
in both VR-systems. These differences were unavoidable, as they refer to different 
technological setups in both VR-systems (see also 2.2.2.1 & 2.2.2.2). 

Case study A consisted of applications in CAVE and HMD and was conducted 
inside the CAVE test environment and the Usability Lab. In figure 7-1, the test 
environment for the CAVE and the Usability lab can be seen. This interaction de-
vice was the flystick92 device in case of CAVE VR-systems and the game control-
ler (see also figure 6-2) in case of HMD. 

Case study B was conducted almost two years after the first case study and hence, 
based on the received feedback, the application was slightly optimised in terms of 
speed and product behaviour. This improved application was reused to achieve one 
VR application in HMD and one in sVR. The example test environment as an of-
fice room for this case study can be seen in figure 7-1. The control of the vacuum 
cleaner was the same as in the former study. The interaction device for HMD was 
again the game controller and for the sVR, a Bluetooth controller (see also figure 
6-14) was used. Besides, the sVR application also possessed the active position 
tracking algorithm (see 6.1.3.2) that allowed the test persons to move in the virtual 
living room. 

7.1.2 Operationalisation 
The basic operationalisation model followed for both case studies can be visualised 
employing figure 7-2. The first part of the process deals with the introduction to 
the study and collect the test persons’ specific demographical information. The 
second part contains the variable part of the operationalisation i.e. test object and 
the tasks performed by the test persons. Although the test object stayed by large 
                                              
92 ART Flystick 2: https://ar-tracking.com/products/interaction/flystick-2/ [last accessed 
on 27.03.2020] 

https://ar-tracking.com/products/interaction/flystick-2/
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the same in all the studies, the different VR-systems bring in variable aspects in 
the application evaluation. For instance, the interaction and the control (due to dif-
ferent interaction devices) of the vacuum cleaner model are different in different 
VR-systems. Similarly, against the given VR-system, the test persons had to per-
form tasks that can be completed in multiple ways. The third part collects the feed-
back from the test persons in each case study against individual questionnaires and 
finally, the feedback is analysed in the fourth part. 

 

Figure 7-2: Operationalisation model 

7.1.2.1 Situation factors 

In this operationalisation process model, the experience of the test persons and 
VR-system related aspects are variables that cannot be influenced directly. The 
choice of the tasks in each case study is also variable but can be influenced. The 
variable tasks make it possible to highlight the evaluation related aspects from each 
case study and therefore, the choice of the tasks is performed keeping in view these 
aspects (table 11). One situational factor in the case studies was the different inter-
action device in different VR-systems. For instance, the angle of the vacuum 
cleaner handle could be changed by varying the height of flystick in CAVE and of 
the controller in HMD. However, this was not possible in the case of sVR, as the 
used Bluetooth controller could not measure and provide feedback about its height. 
Therefore, the angle of vacuum cleaner handle was changed manually by using 
two buttons (Two interaction buttons in figure 6-14) on the Bluetooth controller. 
Other than this interaction aspects, the chosen tasks and the experience of test per-
sons are considered variables that are discussed next. 

Tasks  

It is of utmost importance to familiarise the tests persons with the VR applications 
before collecting the feedback. To ensure that the test persons have not missed any 
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important aspect of the VR application, a total of nine different tasks were used in 
both studies. These tasks can be seen in table 12 along with the mention of the 
relevant case study. 

Table 12: Tasks performed by test persons in both studies 

Tasks Case 
Study 

1. Please familiarize yourself with the control first B 
2. Please use the vacuum cleaner as a vacuum cleaner in a private 

living room and try to follow its movement and always stand 
behind it 

A & B 

3. Try to clean under the table A & B 
4. Initiate a collision event by making the vacuum cleaner model 

collide with an environmental object 
A & B 

5. Change the point of view to visualise the virtual model from 
different viewpoints 

A 

6. Try to reach all four corners of the room with the vacuum 
cleaner (if possible) 

A & B 

7. Try to look into the virtual model of the vacuum cleaner and 
identify geometric parts 

B 

8. Try to clean the space between the table and the sofa B 
9. Try to walk around the table B 

 

The purpose of the first two tasks was to familiarise the test persons with the con-
trol of vacuum cleaner model and with the interaction devices’ functionality. Tasks 
3 and 4 were targeted to bring the contextual aspect of the evaluation in focus i.e. 
the evaluation of product functionality along with its context that was in this par-
ticular case, product’s environment. Task 4 also demonstrated the indication of a 
collision happening with an environmental object. Task 5 was assigned to famil-
iarise the test persons with different hardware settings and visualisation perspec-
tives available in CAVE and HMD. Once the first five tasks were carried out, the 
test persons were able to perform task 6 at their own. The purpose of task 6 was to 
provide test persons with some time so that they may experience the application at 
their own without the need for any assistance from the organisers. 
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The task 7 to 9 were added in the case study B because of two reasons. First, both 
HMD and sVR are very similar in their setup and second, a comparison of the 
tracking quality of both systems was needed. Therefore, these tasks helped the test 
persons to estimate a comparison of the tracking quality in both systems. Each of 
the nine tasks can be practised in multiple ways e.g. the test person can make a 
collision event with the nearest object or the farthest object. Such a situation makes 
it difficult to calculate the durations for individual tasks and eventually makes it 
difficult to perform time-based analysis. Therefore, the focus was not put here on 
the success rate or time duration of the completion of the tasks, instead, the main 
goal was to familiarise the test persons with the VR application as well as naviga-
tion and interaction possibilities. 

7.1.2.2 Person factors 

Experience and the current professional position of test persons can on one side 
greatly influence the test outcome and on the other side, can help to analyse the 
collected feedback. Therefore, the demographical data about the test persons is 
collected at the start of each test by using the demographical questionnaires (see 
under Annexure D). In the choice of test persons, it was made sure that only those 
test persons are considered who had experience with at least one of VR-system 
(CAVE, Powerwall, HMD or Smartphone VR) in either private or professional 
capacity. As a result, a total of 17 test persons (all male gender) participated in 
both studies including 9 for the case study A and 8 for the case study B. The com-
plete profile of these test persons, their affiliations, age group and past VR experi-
ence can be found under Annexure D in table 16. As a whole, there were seven 
industrial experts affiliated to consumer goods manufacturer, mechanical machin-
ery manufacturer and VR application development. The rest of the ten participants 
were from academia, among them were researchers from the field of product de-
velopment, VR developers, programmers etc. The overall experience of the test 
persons can be seen in figure 7-3 as a graphical depiction. 
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Figure 7-3: Past experience of participants in VR 

In an evaluation that is based on the post-test questionnaire, a person related factor 
is the forgetfulness. The test persons can forget how they felt during the test and 
fill out the questionnaire on the base of their last feeling. To avoid this, the test 
persons were given the possibility to go back to test the application again, if they 
were unsure in answering any question on the questionnaire. 

Another crucial person factor occurs in the case study B, as the HMD and sVR are 
very similar to each other as VR-systems. This leads to the situation that the order 
in which both applications are shown to the test persons may well influence their 
final answers. Practically, it is not possible to eliminate this factor, however, 
change of application order was used as a small workaround so that more objective 
feedback can be received. This means that the order in which the applications in 
HMD & sVR were shown to the test persons was flipped for every new test. 

7.1.2.3 Scale 

The questions in both post-test questionnaires were formulated in a way that a pos-
itive or negative answer could be provided. For instance, the test persons could 
agree with the statement inside the question or can disagree with it. Therefore, a 
subjective formulation i.e. “strongly agree” to “strongly disagree” was given as 
answer possibilities for each question. On a four-point Likert scale [Lik32] i.e. 
strongly agree(++), agree (+), disagree (-) and strongly disagree (--) were the four 
options against each question. The preference was given to a four-point scale over 
a five-point scale to avoid middle-value feedbacks and to collect answers that in-
dicate positive or negative tendencies from the test persons.  

0 2 4 6 8 10 12

Powerwall
CAVE
HMD

Smartphone-VR

No. of Participants

Past experience with VR
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After laying down the design of the evaluation, the research questions and hypoth-
esis are formulated in the next sub-section 7.1.3. 

7.1.3 Research questions and hypothesis 
The prime aim of this evaluation was to obtain first feedback from experts affili-
ated to industry and academia about the developed methodology and the resulting 
VR applications for use during the product development process. To address these, 
the following research questions (RQ) were identified to be addressed by the eval-
uation: 

RQ1: Can VR technology be effectively used in industry for product evaluations 
consisting of not only the geometry but the behaviour of the product as well? 

RQ2: Is it important to incorporate the contextual aspects (e.g. environment) of 
a product during the evaluation? 

RQ3: Based on the presented VR applications and application experience in 
different VR-systems (CAVE, HMD and sVR), is one of the VR-system pre-
ferred over the others? 

The individual evaluation aspects (table 11) are formulated in the form of hypoth-
eses that shall contribute to answering the above-mentioned research questions. A 
total of nine hypotheses are formulated and the question numbers (A1-A22 and 
B1-B17) form feedback questionnaires that address individual hypothesis (H) are 
also mentioned. 

H1: A virtual model is very useful for the evaluation of coherence of product 
behaviour, its functionality and task practicality (addressed by questions A1 
and A2) 

H2: It is very important to build the realistic behaviour of the product in VR 
(addressed by questions A4, A5, A6 and A7) 

H3: The consideration of environment model as the product’s context is im-
portant for product evaluation (addressed by questions A12, A13 and A14) 

H4: The collision indication in VR by changing the colour of the collision ob-
ject is helpful (addressed by question A11) 
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H5: A virtual model can be detailed to a primitive level for a specific evaluation 
(addressed by questions A3, A8, A15, B1 and B5) 

H6: The vacuum cleaner model possesses realistic behaviour and can be con-
trolled in the desired way (addressed by questions A9, A10, B2, B3, B4, B6 
and B7) 

H7: HMDs are preferred over CAVE type VR-Systems (addressed by questions 
A16, A17, A18, A19 and A22) 

H8: sVR offers a cost-effective, mobile and better alternative to HMDs (ad-
dressed by questions B8, B9, B10, B11, B12, B13, B16 and B17) 

H9: The overall evaluation process in VR is very suitable for use in product 
development (addressed by questions A20 and B14) 

The above-mentioned hypotheses are self-explanatory and target the following re-
search fields from this thesis: 

1. Product evaluation in VR (see 4 and 5) 
a. Behavioural evaluation (see 4.3.3) 
b. Functional evaluation (see 4.3.3) 
c. Details (see 4.3.3, 5.1, 5.2 and 5.3)  
d. Collision indication (see 5.2 and 5.3) 

2. Inclusion of life-phase-specific environment as the context (see 4.1) 
3. Comparison of different VR-systems (see 2.2.2, 6 and 7.2) 

a. Immersion 
b. Real (close to reality) 
c. Interaction 
d. Individual preference 

4. The usefulness of the overall evaluation method in VR (see 4.1) 

After explaining the layout of tests, the rest of this chapter will describe the find-
ings and will also discuss the above-mentioned research fields. 

7.1.4 Test execution/organisation 
A total of three persons managed the tests conducted under case study A. One 
person was responsible to handle the technical aspects during simulation, second 
for assisting the participants in case of questions and the third person noted down 
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any important comments/remarks given by test persons. For the case study B, the 
tests conducted in the office room setup were handled by a single person, whereas 
in case of a remote test at test persons’ workplace, it was managed by two persons. 
The execution sequence of both studies can be seen in figure 7-4. 

 
Figure 7-4: Execution sequence 

At the start of the tests, the test persons were asked to fill the demographic ques-
tionnaire (see in Annexure D) and explanations about basics of the application as 
well as the use of interaction device were explained. In case study A, the test per-
sons were allowed to experience the application in CAVE VR-system followed by 
the respective feedback questionnaire. After that, the HMD application was shown 
followed by the feedback questionnaire. The case study B was carried out in the 
same way, however, the VR-system here were the HMD and sVR. Furthermore, 
the sequence of showing each application in HMD and sVR was changed in each 
test so that more objective feedback can be collected. 
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7.2 Findings 

In this section, the feedback received through the questionnaire will be described 
and analysed against the hypotheses formulated before conducting the tests. 

7.2.1 Pre-processing the data 
As a subjective formulation i.e. “strongly agree” to “strongly disagree” on a four-
point scale was used, it is necessary to digitalise this formulation so that the re-
ceived feedback can be demonstrated in the form of easily understandable graphs. 
Therefore, the four-point scale is digitalised as shown in table 13. 

Table 13: Digitalisation of the four-point scale 

Subjective formulation Digital scale 
Strongly agree 4 

Agree 3 
Disagree 2 

Strongly disagree 1 
 

All of the feedback data that is presented next in the form of graphs follow the 
digitalised four-point scale. The vertical axis shows the feedback as mean values 
(if not mentioned otherwise) of all test persons’ answers with standard deviation 
and a colouring scheme is also used to make the graphics easily understandable. 
The grey colour scheme is used to plot the bars for general answers about the 
method developed in this thesis and also for the answers that refer to VR-system 
independent questions. Blue colour bars are used for CAVE, orange for HMD and 
green bars are used to plot sVR related answers. 

7.2.2 Answers of hypotheses 
Hypothesis 1: A virtual model is very useful for the evaluation of coherence of 
product behaviour, its functionality and task practicality. 

This hypothesis is answered by reference to the question A1 and A2 from the feed-
back questionnaire A that talks about the usefulness of the virtual model for the 
evaluation of coherence of product functionality and behaviour respectively. The 
mean values calculated from the nine answers and their standard deviation can be 
visualised in figure 7-5. The received feedbacks roughly vary from “agree” to 
“strongly agree” opinion and thus conclude the first hypothesis to be true. 
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Figure 7-5: Virtual model for the coherence of product functionality and be-

haviour 

Hypothesis 2: It is very important to build the realistic behaviour of the product in 
VR 

The question A4 asks if the vacuum cleaner behaves as expected, A5 asks if the 
behaviour is realistic, A6 asks if it is realistic to carry out the tasks and A7 asks the 
importance of building the realistic behaviour in VR. The received feedback (see 
figure 7-6) indicates that the behaviour of the vacuum cleaner could be improved 
further and also that realistic behaviour was deemed very important. The relatively 
low values for A4 to A6 in figure 7-6 refer to an unrealistic/strange turning behav-
iour of vacuum cleaner model that was observed in the first case study. Based on 
the feedback, hypothesis 2 can also be concluded true and that it is very important 
to build realistic behaviour of the product in VR. 

 
Figure 7-6: Realistic behaviour of VC and the importance of realistic 

behaviour in general 
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Hypothesis 3: The consideration of environment model as the product’s context is 
important for product evaluation 

Hypothesis 4: The collision indication in VR by changing the colour of the collision 
object is helpful 

Hypothesis 3 can be concluded also as true by evaluating the feedback against 
question A12, A13 and A14 in figure 7-7. These questions refer to the importance 
of environment model in evaluating the coherence of product functionality, behav-
iour and task practicality respectively. Furthermore, hypothesis 4 can also be con-
cluded as true because the collision indication that was implemented as a colour 
change of colliding object received a higher consent of the test persons (depicted 
against question A11) 

 
Figure 7-7: Importance of context in evaluation and collision indication 

Hypotheses 5: A virtual model can be detailed to a primitive level for a specific 
evaluation 

Questions A3 and A8 ask about the detailed definition of product functions and 
the level of detail in the product & environment model respectively for the shown 
application. The lower value against A3 in figure 7-8 refers to the fact that the test 
persons were not happy about the exclusion of vacuum cleaner power cable in the 
VR simulation. The inclusion of power cable requires the incorporation of soft 
body simulation that was left out due to the needed high implementation effort. 
The questions A15, B1 and B5 refer to the level of detail in the environment and 
product models as well as the VR-system specific experience. The overall VR-
model of product, environment and the control logic was improved after the study 
A and a slightly optimised version of the application was used in the study B. The 
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received feedback against the questions in figure 7-8 concludes that the hypothesis 
5 is false and the virtual model must be as detailed as possible for performing the 
product evaluation in VR. 

  
Figure 7-8: Level of details 

Hypothesis 6: The vacuum cleaner model possesses realistic behaviour and can 
be controlled in the desired way  

The questions B2, B3 and B6 refer to the realisticness of the vacuum cleaner 
behaviour in case study B. The question B6 is the replica of A6 and B7 is of A10. 
Although the trend from figure 7-9 is positive as the answer lies in the upper half, 
the application can still be improved further. Furthermore, the lower values of B6 
and B7 in the case of sVR refer to the low-cost Bluetooth controller that gave an 
unnatural feeling and the test persons were often irritated by the control. Thus, a 
better interaction device for sVR can greatly improve the control/interaction 
of/with the application in sVR. Based on this received data it can be said that 
hypothesis 6 is not false, however, it is also not completely proved to be true. 
Against the feedback, this hypothesis can be concluded as partially true. 
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Figure 7-9: Control and realistic behaviour of VC 

Hypothesis 7: HMDs are preferred over CAVE type VR-Systems 

Question A16 refers to the overall usefulness of the virtual model and A17 to A19 
refer to comparative feedback about both VR-systems (CAVE vs HMD) that were 
tested in study A. Speed, immersion and virtual environment being close to reality 
in figure 7-10 are rated higher in case of HMD than that for CAVE. Furthermore, 
figure 7-11 shows the feedback against question A22 that asks the test persons’ 
preference for use of one of the VR-system. Seven persons straight preferred the 
HMD and two deemed the choice of VR-system to be application depended. 
Therefore, hypothesis 7 can be concluded true as the HMD is a preference as the 
VR-system by the test persons. 

 
Figure 7-10: VR-system (CAVE vs HMD) 
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Figure 7-11: VR technology preference 

Hypothesis 8: sVR offers a cost-effective, mobile and better alternative to HMDs 

The question B8 refers to speed, B9 to B11 to the immersion and being close to 
reality respectively, B12 to position tracking, B13 to display quality and B16 refers 
to the installation effort for the VR-system. As depicted graphically in figure 7-12, 
all of these aspects were rated more positive in case of HMD with the expedition 
of B16. This suggested that the test persons were more comfortable and inclined 
towards HMD as the preferred VR-system. However, a lower value of B16 sug-
gests lower installation effort that indicates towards sVR being a more mobile VR-
system. Question B17 asked the direct preference of a VR-system (HMD or sVR) 
and the feedback can be seen in figure 7-13. Multiple answers were possible for 
this question and four test persons directly preferred HMD over sVR. Five persons 
considered the choice to be application-specific with one additional person didn’t 
mention any preference. This feedback suggests that hypothesis 8 is false and sVR 
in the current state is not directly an alternative to HMDs. However, its mobility 
and current performance make it very suitable for a few VR applications. It was 
also observed during the tests that the test persons were positively surprised by the 
capability of sVR. However, the test persons deemed further development as nec-
essary for sVR to be an alternative for HMDs. 
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Figure 7-12: VR-system (HMD vs sVR) 

 
Figure 7-13: VR technology preference 

Hypothesis 9: The overall evaluation process in VR is very suitable for use in prod-
uct development 

Finally, the test persons were asked to rate their overall satisfaction from the eval-
uation process in VR based on the shown applications. The feedback can be seen 
in figure 7-14 that shows encouraging feedback about the overall evaluation pro-
cess in VR. Thus, hypothesis 9 can be concluded as true and VR can be identified 
as an important tool for product evaluation during the product development pro-
cess. 
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Figure 7-14: Overall satisfaction from VR evaluation 

Furthermore, none of the test persons reported any physical or mental disabilities 
or the effects of motion sickness after conducting the tests under case study A. For 
case study B, this phenomena can be understood by using the answer of question 
B15 in figure 7-15. 

.  
Figure 7-15: Mental or physical limitations after the tests 
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7.2.3 Answering the research questions 
In light of the feedback received from the test persons, the research questions men-
tioned in 7.1.3 can now be answered. A summary of the outcome of the individual 
hypothesis and their link to the respective research question can be seen in table 
14. 

Table 14: Hypotheses involved in answering the RQs 

Research Question 1: Can VR technology be effectively used in industry for 
product evaluations consisting of not only the geometry but the behaviour of the 
product as well? 
Hypothesis Outcome 
   H1: A virtual model is very useful for the evaluation of coher-
ence of product behaviour, its functionality and task practicality 

True 

   H2: It is very important to build the realistic behaviour of the 
product in VR 

True 

   H5: A virtual model can be detailed to a primitive level for a 
specific evaluation 

False 

   H6: The vacuum cleaner model possesses realistic behaviour 
and can be controlled in the desired way 

Partially 
(True) 

   H9: The overall evaluation process in VR is very suitable for 
use in product development 

True 

 
Research Question 2: Is it important to incorporate the contextual aspects (e.g. 
environment) of a product during the evaluation? 
Hypothesis Outcome 
   H3: The consideration of environment model as the product’s 
context is important for product evaluation 

True 

   H4: The collision indication in VR by changing the colour of 
the collision object is helpful 

True 

 
Research Question 3: Based on the presented VR applications and application 
experience in different VR-systems (CAVE, HMD and sVR), is one of the VR-
system preferred over the others? 
Hypothesis Outcome 
   H7: HMDs are preferred over CAVE type VR-Systems True 
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   H8: sVR offers a cost-effective, mobile and better alternative 
to HMDs 

False 
 

 

The outcome of hypotheses 1, 2, 5, 6 and 9 can contribute to answering RQ1 and 
allows to say that VR technology can be used in industry to perform different vir-
tual evaluations of the product. The outcome of hypotheses 3 and 4 suggest that 
the test persons rate the incorporation of the context of the product (here environ-
ment only) as an important value addition to the evaluation process. Thus, RQ2 is 
also answered. The direct comparison of different VR-systems in hypotheses 7 and 
8 has shown that the test persons were inclined towards HMD as the VR-system. 
Hence, the HMD can be answered as a preferred VR-systems. 

7.3 Summary, conclusion and discussion 

In this chapter, the results of an empirical evaluation performed on VR application 
in different VR-systems were presented. Test persons from the industry, as well as 
academia, were invited to perform the evaluations. The received feedback was en-
couraging as far as the use of VR for product evaluation is concerned. The overall 
usefulness of the VR evaluation method developed in this thesis was rated posi-
tively. Furthermore, the concept of incorporation of environment model as the 
product’s context in the evaluation was considered as an added value. In terms of 
VR-system preference, the test persons preferred the HMD over the CAVE in the 
direct comparison inside the case study A. 

The use of Smartphone VR (sVR) as a VR-system in the industry gathered the 
huge interest of test persons and they were surprised by the capability of sVR for 
product simulation. However, the test persons rated the interaction possibility to 
be poor, display quality to be poor and identified a lag comparative to HMD. Due 
to these aspects, again HMD emerged as a preferred VR-system. However, the 
possibility of using sVR in product development was not eliminated, the test per-
sons considered it very suitable for remote presentations to the customer, for out-
door application, for quick reviews by the designer during development and in 
sales for product presentations. 

The general feedback from the evaluation and the discussions with the experts 
showed an inclination towards an HMD based VR-system and the factor related to 
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cost, mobility and minimal need of technical/hardware components were of im-
portance for the test persons. sVR is not mature right now to be a replacement for 
HMDs but is identified as an important topic for further improvement and research. 

 



 

8 Conclusion and outlook 

In this thesis, a method for the description of VR-models is developed that attempts 
to reduce the preparation effort by performing a division of the complete VR-
model into sub-models (product, actor and environment) and by achieving generic 
behavioural descriptions of these sub-models. These sub-models can be reused to 
form different use cases of a product in VR. The thesis contributes to the early 
evaluation of a product by developing a generic description method based on 
MBSE approach and by achieving real-time product simulations in VR. The eval-
uation in VR is not based only on the visualisation, instead, the behaviour of the 
product is also included. The relevance of the context of a product consisting of 
the life-phase-specific actor(s) and the environment is also brought to focus and 
incorporated in the product use cases in VR. 

8.1 Summary and discussion 

The different VR-systems (CAVE, Powerwall, HMD, Smartphone VR etc.) are 
already used in industry and their choice for any particular industrial organisation 
is influenced by factors like organisation size, turnover, developmental goals etc. 
As a result, different VR-systems find their application in different organisations. 
The different VR-systems require different VR-software tools and these tools sup-
port different programming languages as well as logic. Therefore, a VR-model 
preparation method based on in VR-software tool programming is not suitable for 
use during product development (see also 3.3), as it can greatly limit the interop-
erability and reuse of created VR content in different VR-systems. Therefore, this 
thesis developed a method based on VR-software independent description method 
and these descriptions are executed outside of the VR-software. 

First, the methodological division of the complete VR-models into sub-models is 
performed that facilitated the reuse/recombination of these sub-models for the con-
struction of different use cases. Such reuse required generic descriptions of these 
sub-models and their interactions which was achieved by using MBSE approach 
with SysML as the modelling language. As a growing interest of industry towards 
the incorporation of MBSE in the current product development process is present 
(see also 3.1), the VR-model descriptions based on SysML may pave the way for 
easy incorporation of VR in the current product development process. The behav-
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ioural modelling process in SysML is explained systematically by an example sce-
nario consisting of a vacuum cleaner as a product inside the living room environ-
ment. Although the actor model is included inside the methodological foundation 
of this thesis, the implementation of an actor model is not performed and the VR 
interaction device is used as its proxy. SysML allowed the description of structural 
as well as behaviour models, however, the structural models are detailed to the 
level deemed necessary for the description of the behaviour models. The behaviour 
models for the sub-models are modelled isolated from each other and direct de-
pendencies are avoided, as direct dependencies in-between sub-models can limit 
their reuse. The interaction between the sub-models is only allowed over the 
SysML ports that has facilitated the substitution/reuse of individual sub-models. 
The behaviour modelling approach in SysML is explained in detail and different 
execution architectures that are developed and examined throughout the research, 
are also discussed in detail (see also 4.3.3). As a result, the final modelling ap-
proach (see also 4.3.4) is based on the automatic parallel execution of sub-models 
that has matured over time as a result of continuous research and regular improve-
ments. This modelling approach enabled the automatic parallel behaviour initiali-
sations and generation of different use case configurations of a product for use in 
VR that were based on the reuse of already created individual descriptions of sub-
models. The knowledge gained in developing the final behaviour modelling ap-
proach as well as the approach itself is summarised in the form of general-purpose 
guidelines for developing behavioural descriptions of a dynamic VR-model (see 
also 4.4). 

Although SysML allowed the modelling of the static and dynamic behaviour of 
the product, it did not offer any possibility to incorporate physical calculations on 
virtual objects. This is tackled by using a dedicated physics computation software 
(physics engine) that was also integrated with SysML behaviour models. The in-
tegration of the physics engine brought on one side, the much needed physical 
calculations in the simulation and on the other side, it also contributed to the over-
all capability of SysML behaviour models. The integration of physics engine and 
SysML behaviour models is performed in such a way that the physics engine can 
later also be replaced by any domain-specific simulation tool (see also 5.2). Thus, 
SysML behaviour models together with a dedicated physics engine built the de-
scription of the VR-model that are completely independent of the VR-system used. 
These descriptions were integrated first with CAVE type VR-system available at 
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the Technische Universität Ilmenau by managing two interface points (see also 5.3 
& 5.4). The first interface point received the feedback from the VR-system about 
the actions performed by the VR-user, interaction device values etc. The second 
interface point acted as a bridge between SysML behaviour models and VR-soft-
ware so that the updated properties of virtual objects could be communicated to 
VR. As a result, a real-time VR simulation of a vacuum cleaner inside a living 
room was obtained in CAVE type VR-system. Later the same idea was used to 
achieve similar simulations in an HMD and a Smartphone VR (see also 6.1.2 & 
6.1.3). The use of the same behaviour descriptions in different VR-systems vali-
dated the generic applicability of the SysML behaviour model and eventually the 
developed method as well. To further test the presented method, a second VR pro-
totype depicting an industrial robot working on a conveyor belt was developed 
inside HMD and Smartphone VR (see also 6.2). Again the same SysML behaviour 
descriptions were used in two different VR-systems with ease. 

A partial result of the conducted research is also the use of a Smartphone as a VR 
device. Smartphone as a VR device lacked direct positional tracking without re-
quiring additional tracking hardware. This was addressed by implementing a posi-
tional tracking algorithm that only used the smartphone’s camera and achieved 
direct positional tracking. The achieved positional tracking was tested quantita-
tively as well as using a survey and encouraging results were obtained, suggesting 
the diverse application of sVR in the product development process (see 6.1.3.4). 
One of the goals of the conducted research was to facilitate the incorporation of 
VR in the current development process, therefore, regular feedbacks were obtained 
during the research. The final evaluation of vacuum cleaner application inside 
CAVE, HMD and sVR was performed in the form of empirical evaluations that as 
well showed encouraging results. 

The scope of application of the presented method is neither limited to the size of 
an industrial organisation nor is it dependent on used VR-systems. The incorpora-
tion of HMD and sVR widened the intended audience for the conducted research, 
as both HMD and sVR offer cost-effective, portable and easily accessible VR so-
lutions. Furthermore, the integration of a physics engine demonstrates the possi-
bility of integrating a domain-specific simulation tool. This means that in the later 
applications, a domain-specific simulation tool for a particular organisation can be 
integrated with VR. The domain-specific tool can be a commercial product as well 
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as an in house development, but it must possess an open Application Programming 
Interface (API) for integration with SysML. 

The research questions mentioned in section 3.5 that were the starting point of the 
conducted research can now be discussed with relevance to the outcomes of this 
thesis. The first research question was answered by performing a methodological 
division of the complete VR-model into sub-models of product, actor and environ-
ment in section 4.1. The second research question was answered by developing 
separate isolated behavioural descriptions of the sub-models using SysML in sec-
tion 4.3. The third research question was addressed by presenting a generic ap-
proach for describing VR-models in section 4.2 and achieving generic behavioural 
descriptions in section 4.3 that can be reused in different VR-systems. The behav-
iour description methodology was summarized in the form of implementation 
guidelines (section 4.4) and the generality of the behavioural descriptions was val-
idated by achieving product use case simulations in different VR-systems (chapter 
5 and 6). The underlying sub-questions I, II and III were also addressed systemat-
ically. The sub-question I was answered by modelling the interaction between the 
sub-models generically with the help of SysML ports (sub-section 4.3.2). The sub-
question II was addressed in chapter 5 by integrating the SysML behaviour de-
scriptions with a dedication physics calculation software. The sub-question III was 
addressed by achieving VR simulation that used the SysML behavioural descrip-
tion as the core of the simulation process. Furthermore, these behavioural descrip-
tions were used to build two VR prototypes in different VR-systems (chapter 5 and 
6) that demonstrated interactive product simulation in VR. 

In this way, this thesis has developed a method for the description of VR-models 
for use in product development to make the early evaluation of product possible in 
VR. The focus is also put on building the behaviour of the product along with 
visual representations in VR. The division of complete VR-model in sub-models 
allow the reuse of these sub-models to build different use cases of a product. Fur-
thermore, VR descriptions developed for a particular VR-system can be reused in 
different VR-systems. Thus, the VR-model preparation effort is reduced by reus-
ing the already generated VR contents. The VR prototypes validate the method by 
reusing the VR content developed for one VR-system in other VR-systems as well. 
Similar to the other scientific researches, the research conducted in this thesis also 
possesses limitations that are discussed next. 
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8.2 Limitations and future work 

As the presented method is based on a simulation method outside of VR-software, 
the speed/ data transfer rate with which the data is communicated between VR and 
SysML behaviour models is very critical. To have a smooth simulation in VR, the 
updated object parameters must be communicated to VR regularly. Once the up-
dated parameters are received at the VR-software side, they should be immediately 
implemented. However, the speed of this update depends on the rendering speed 
of the VR-software and can be critical at times, when a huge data has to be rendered 
during a VR simulation. It was observed during the simulation that a slower ren-
dering directly affected the simulation speed and as a result, small steps in the 
movements could be observed. Thus, the speed of communication between SysML 
and VR-software can be improved further in the future. 

Another critical factor is the speed of execution of SysML behaviour models. In 
the experiments conducted in this thesis, all three sub-models were executed on a 
single computer that was usually running on 90-95 per cent of its processing ca-
pacity. The author believes that the execution speed of the SysML model can be 
further improved by executing each sub-model on individual computers added to 
the use of parallel execution architecture. In this way, a parallel computation clus-
ter consisting of multiple computers can be built that may eventually increase the 
overall application execution speed. 

The smartphone used for sVR applications in the evaluation had a pixel density of 
538, the maximum resolution of (3120 X 1440), 6 GB of RAM and an 8 core pro-
cessor. The achieved sVR application possessed 45-60 fps. The smartphones are 
increasingly equipped with higher hardware specification and even at the time of 
writing this thesis, there are already some smartphone devices available with even 
better hardware specifications and performance. Therefore, the display quality and 
the overall performance of the sVR application can be further improved by using 
better-equipped smartphones in future. Furthermore, the collaborative VR experi-
ence using multiple smartphones can also be investigated. 

Unfortunately, it was not possible in this thesis to include a virtual human model 
as the actor model, as it is a full-fledged research topic in itself. However, the 
inclusion of a virtual human model can greatly contribute to the usefulness of the 
overall system, as it can allow the product designer to be the observer of the inter-
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play of actor, product and environment model during product evaluation. There-
fore, the inclusion of a virtual human model is identified as the topic of further 
research. 
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Abbreviations and terms 

Abbreviation Denomination 
ACT Activity Diagram SysML 
Actor Actors are the persons with specific roles over the product life 

cycle e.g. fabricator, assembler or the end-user 
API Application programming interface 
AR Augmented Reality 
BDD Block Definition Diagram SysML 
C# C-Sharp object-oriented programming language 
CAVE Cave Automatic Virtual Environment 
Context A specific combination of environment and actor(s) in a specific 

product life-phase 
CPM Characterises Properties Modelling 
CSM Cameo Systems Modeler 
DoF Degrees of Freedom 
dpi “Dots per inch” can be understood as the number of pixels per 

inch 
Environment The surroundings of a product in a life-phase 
FAS4M Functional Architecture of Systems for Mechanical Engineers  
FASP Flexible Audio-visual Stereoscopic Projection system 
fps Frames per second 
GUI Graphical user interface 
HLSA High Level Solution Architecture 
HMD Head Mounted Display 
IBD Internal Block Definition Diagram SysML 
MBSE Model Based Systems Engineering 
mecPro2 Modellbasierter Entwicklungsprozess cybertronischer Produkte 

und Produktionssysteme 
ms Milliseconds 
OMG Object Management Group 
OOSEM Object-Oriented Systems Engineering Method 
PDD Properties Driven Development 
PLM Product Lifecycle Management 
PSS Product Service System 
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Python control 
plugin 

Python-based script to achieve bidirectional communication be-
tween SysML and V-REP 

SE Systems Engineering 
SM State Machine Diagram SysML 
sVR Smartphone Virtual Reality 
SysML Systems Modeling Language 
SYSMOD The Systems Modeling Toolbox 
SysLM System Lifecycle Management 
TDM Team Data Management 
UDP User Datagram Protocol 
UML Unified Modeling Language 
Use case Specific demand and interaction of environment and actor(s) 

with the product 
VP Virtual prototyping 
VPD Virtual product development 
VRML The Virtual Reality Modeling Language 
VR-model A model containing geometrical, structural and behavioural de-

scriptions of a VR application consisting of product, actor and 
environment models 

VR-scene A scene in VR-software containing the geometrical objects 
along with their meta-data 

VR-software VR object modelling and rendering software 
VR-system CAVE, Powerwall, HMD, sVR 
VR-user The user of the VR-system (for the model developed in this the-

sis“Product Designer” is the VR-use) 
V-REP Virtual robot experimentation platform (Robot simulator). The 

new name “CoppeliaSim” 
WFS Wave Field Synthesis 
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Annexure A (Codes) 

:red_udp from figure 4-21 
import socket                                
import math 
IP = "127.0.0.1" 
Port = 5007 
server_address = (IP, Port) 
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
sock.bind(server_address) 
try: 
   data, address = sock.recvfrom(1024) # buffer size is 1024 bytes             
finally: 
   sock.close()    
array = data.split(" ")  
joy_x = array[4]       
joy_x = joy_x.split("]") 
button = int(joy_x[0])     
joy_x = joy_x[1] 
joy_y = array[5] 
joy_z = array[6] 
y = joy_y   
 
:VR_Send from figure 4-17 
import socket      
import math 
BUFFER_SIZE = 20     
UDP_IP = "127.0.0.1" 
UDP_Port = 8051    
def udp_send(data): 
   sock =socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
   sock.sendto(data, (UDP_IP, UDP_Port))   
def tcp(data): 
   try: 
       s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)     
       s.connect(('127.0.0.1',5555)) 
       s.send(data)  
       print data 
   finally: 
       s.close() 
ori_cleaner = ori_cleaner -90    
ori_handle = -ori_handle   
ori_handle = ("%.3f" % ori_handle)          
ori_cleaner = ("%.3f" % ori_cleaner) 
data_1 = '<trans | obj=cleaner | x='+ str((-pos_0*2.5))+ '| y=0.1 | z='+ str((-pos_1*2.5)) 
+'>' 
data_2 = '<rot | obj=cleaner | x=0 | y='+str(ori_cleaner)+' |z=0>' 
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data_3 = '<rot | obj=handle | x='+str(ori_handle)+' | y=0 | z=0>'  
data = ' '+str(data_1) +' '+ str(data_2) +' '+str(data_3)      
MESSAGE = str(data) 
tcp(data) 
 
:rec_pos_vrep from figure 4-17 
import socket 
import math 
IP = "127.0.0.1" 
Port = 23 
server_address = (IP,Port) 
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
sock.bind(server_address) 
try: 
   data, address = sock.recvfrom(1024) # buffer size is 1024 bytes    
finally: 
   sock.close()    
array = data.split(",")  
pos_0 = array[0]  
pos_0 = pos_0.split("[") 
pos_0 = pos_0[1]   
pos_1 = array[1] 
ori_cleaner = array[2] 
ori_handle = array[3].split("]") 
ori_handle = ori_handle[0]  
 
:Rec_Simu from figure 4-19 
import socket  
import math 
IP = "127.0.0.1" 
Port = 22 
server_address = (IP,Port) 
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
sock.bind(server_address) 
try: 
   data, address = sock.recvfrom(1024) # buffer size is 1024 bytes    
finally: 
   sock.close()        
array = data.split(",")  
Beuecherregal = array[0]  
Beuecherregal = Beuecherregal.split("[") 
Beuecherregal = int(Beuecherregal[1])        
Bigsofa = int(array[1]) 
Bodenleiste_01 = int(array[2]) 
Bodenleiste_02 = int(array[3]) 
Bodenleiste_03 = int(array[4]) 
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Cube0 = int(array[5]) 
Phonoschrank = int(array[6]) 
Plant = int(array[7]) 
Quader02 = int(array[8]) 
Quader04 = int(array[9]) 
Quader05 = int(array[10]) 
Quader69 = int(array[11]) 
Sessel = int(array[12]) 
Sessel__ottomane = int(array[13])   
Stehlampe = int(array[14]) 
Tischplatt = int(array[15]) 
Tuer = array[16] 
Tuer = Tuer.split("]") 
Tuer= int(Tuer[0])      
if Beuecherregal==0 and Bigsofa==0 and Bodenleiste_01==0 and Bodenleiste_02==0 
and Bodenleiste_03==0 and Cube0==0 and Phonoschrank==0 and Plant==0 and 
Quader02==0 and Quader04==0 and Quader69==0 and Sessel==0 and Sessel__otto-
mane==0 and Stehlampe==0 and Tischplatt==0 and Tuer==0: 
   noone = 1  
else: 
   noone =0 
 





 

 
 
Annexure B (Survey questionnaire) 

Questionnaire about Smartphone VR (Translated from the German language) 

Kindly provide us with answers of a few questions once you have tested both sVR 
applications. This questionnaire and the results will be completely handled anon-
ymously.  

1. Please choose your gender: (Please mark the relevant answer) 

 □ Male 

 □ Female 

2. Which age group describes your age? 

 □ <25 

 □ 25-34 

 □ 35-44 

 □ 45-54 

 □ >54 

2. Do you have past experience with VR and/or AR? 

 □ no 

 □ yes, and with 

     □ VR-HMDs (HTC Vive, Oculus Rift, PlayStation VR, …) 

     □ AR-HMDs (Microsoft HoloLens, …) 

     □ Powerwall, CAVE (from one to multiple projections walls) 

     □ Mobile-VR (360°-videos… on a tablet or a smartphone) 

     □ Mobile-AR (Extended catalogues, games… on a tablet or a 
smartphone) 

     □ others 

3. What expectations do you have from Smartphone VR technology?  

  ______________________________________ 
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  ______________________________________ 

  ______________________________________ 

 

 

4. What expectations do you have from a smartphone VR application? 

  ______________________________________ 

  ______________________________________ 

  ______________________________________ 

5. How do you rate the quality of the positional tracking based on the presented 
application in sVR? 

 very imprecise  ○      ○      ○      ○      ○    very precise 

6. Which application areas you consider most suitable for the application of sVR-
system? 

 1. ______________________________________ 

 2. ______________________________________ 

 3. ______________________________________ 

7. Please take any two application area and individually evaluate the suitability of 
the display quality of the shown sVR-applications for your suggested areas of ap-
plication. 

 Application area 1: ______________________________________ 

 very poor  ○      ○      ○      ○      ○    very good 

 Application area 2: ______________________________________ 

 very poor ○      ○      ○      ○      ○    very good 

8. Do you have any further comments/suggestions about the sVR-system? 

  ______________________________________ 

  ______________________________________ 

 



 

Annexure C (SysML notations) 

Table 15: SysML elements’ notation and use 

Symbol Name Explanation 

 Block To represent a system or sub-
system with own structural and 
behavioural representations 

 Interface 
Block 

Defines the specification of in-
terfaces e.g. flows, signals, flow 
directions etc. 

 Standard port Standard port typed by an inter-
face block for communication 
with other elements 

 Full port Full port typed by an interface 
block for communication with 
other elements 

 Proxy port Proxy port typed by an interface 
block for communication with 
other elements 

 

Generalisa-
tion relation-
ship 

Block 1 is a more generic ver-
sion of Block 1.1. Block 1.1 in-
herits the interface specifica-
tions and ports from Block 1  

 Directed com-
position 

Block B is a component of 
Block A 

 

A Package A package is used to organise 
model elements and diagrams 

 
Initial node The start point of an activity di-

agram 

 
Activity Final The endpoint of an activity dia-

gram 

 Control flow Represents the flow of an exe-
cution token in an activity dia-
gram 
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 Object flow Represents the flow of object 
e.g. values in an activity dia-
gram 

 

An Action  An Action with input “argu-
ment” and output “result” pins 

 Send Signal 
Action 

Used to generate a signal event 

 

Accept Event 
Action 

Used to simulate the reception 
of a signal or change event 

 

Merge Used to merge multiple control 
flow into one 

 

Decision Used to split control flow 
against the fulfilment of some 
conditions 

 

Fork horizon-
tal 

Used to split control and object 
flow into multiple flows 

 

Join  
horizontal 

Used to join multiple control or 
object flows 

 
Nested  
behaviour 

Sign to indicate nested behav-
iour i.e. a diagram or behaviour 
element contains another be-
haviour element 

 
A state  A state with a transition arrow 

 

State with 
self-transition 

A State that transits to its own-
self after one execution 
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 Opaque  
action 

Allows integration of object-
oriented script directly inside 
the modelling (See also Annex-
ure A ) 

 

 





 

Annexure D (Evaluation) 

Table 16: Participants’ profile 

No. Sector Role Age VR experience Study 
1 Consumer goods 

manufacturer 
Product  
developer 

45-54 CAVE, HMD A 

2 Consumer goods 
manufacturer 

Production 
manager 

35-44 CAVE A 

3 Consumer goods 
manufacturer 

Product  
developer 

35-44 CAVE A 

4 Academia  
(VR-developer) 

VR-developer/ 
programmer 

35-44 CAVE, HMD, 
Smartphone 

A 

5 Academia  
(VR-developer) 

Programmer 45-54 CAVE, HMD, 
Smartphone 

A 

6 Academia  
(Research) 

Developer/  
Programmer 

35-44 CAVE A 

7 Academia  
(Research) 

Researcher/ 
Product  
developer 

35-44 CAVE, HMD A 

8 Machinery  
manufacturer 

Product  
developer 

24-34 Smartphone A 

9 Machinery  
manufacturer 

Product  
developer 

24-34 Smartphone A 

10 Academia  
(Research) 

Researcher/ 
Product  
developer 

25-34 CAVE, HMD, 
Smartphone 

B 

11 Academia  
(Research) 

Researcher/ 
Product  
developer 

25-34 HMD B 

12 Academia  
(Research) 

Researcher/ 
Product  
developer 

25-34 HMD B 

13 VR/AR Develop-
ment Company 

Developer/  
Programmer 

<25 HMD, 
Smartphone 

B 

14 VR/AR application 
development com-
pany 

Developer / 
Programmer 

<25 HMD, 
Smartphone 

B 

15 Academia  
(Research) 

Developer/  
Programmer 

25-34 CAVE, HMD B 

16 Academia  
(Research) 

Researcher/ 
Product  
developer 

35-44 CAVE, 
Smartphone 

B 
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17 Academia  
(Research) 

Requirements 
engineer 

35-44 HMD, CAVE, 
Smartphone, 
Powerwall 

B 
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Table 17: Questionnaire A93 (Translated from the German language) 

No. Question 

A1 How useful is the virtual model for the evaluation of the coherence of 
product functionality? 

A2 How useful is the virtual model for evaluating the coherence of product 
behaviour? 

A3 Are all product relevant functions built in the shown application? This 
does not refer to the behaviour? 

A4 Does the vacuum cleaner behave as expected? 

A5 How realistic did you find the behaviour of the product? 

A6 How realistic did you find carrying out the tasks with the product? 

A7 How important is to build the realistic behaviour of the product? 

A8 Are the product and environment model detailed enough for the evalua-
tion of the conducted tasks? 

A9 How well the product allows itself to be controlled in the desired way? 

A10 How exact is the control of the product according to you? 

A11 Would the indication of the collision of the product with its environment 
helpful in its current implementation? 

A12 How important is the environment model for evaluating the coherence of 
product behaviour? 

A13 How important is the environment model for the evaluation of the coher-
ence of product functionality? 

A14 How important is the environment model for evaluating the task practi-
cality? 

A15 How real did the environment appeal to? 

A16 How useful is the virtual model for evaluating the task practicality? 

A17 How did you find the speed of the VR-system? 

A18 Did you have the feeling to be present inside the virtual world? 

                                              
93 This questionnaire was used inside an extended questionnaire (containing additional 
question about other evaluation aspects) for evaluation of a collective research project. 
To keep clarity, the complete extended questionnaire is not shown here and only the 
part relevant to this thesis is included.  
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A19 How close was your experience of the virtual environment to experiencing 
a real environment? 

A20 How satisfied you were with the overall VR evaluation process? 

A21 Could you experience any short-term mental or physical disabilities re-
lated to working in VR after the conducted tests? 

A22 Would you prefer one of the technology over the other one for the evalu-
ation of work goals or different work goals require different technologies 
[Possible answers: CAVE, HMD, it depends]? 
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Table 18: Questionnaire B (Translated from the German language) 

No. Question 

B1 Are all the relevant functions of vacuum cleaner built? 

B2 Does the vacuum cleaner behave as expected? 

B3 How realistic did you find the behaviour of the product? 

B4 How realistic did you find carrying out the tasks with the product? 

B5 Are the product and environment model detailed enough for the evaluation 
of criteria and the conducted tasks? 

B6 How well the product allows itself to be controlled in the desired way? 

B7 How exact is the control of the product according to you? 

B8 How did you find the speed of the VR-system? 

B9 Did you have the feeling to be present inside the virtual world? 

B10 How real did the environment appeal to? 

B11 How close was your experience of the virtual environment to experiencing 
a real environment? 

B12 How precise is the tracking according to you? 

B13 How good is the display quality? 

B14 How satisfied you were with the overall VR evaluation process? 

B15 Could you experience any short-term mental or physical disabilities re-
lated to working in VR after the conducted tests? 

B16 How do you rate the installation effort for the VR-system? 

B17 Would you prefer one of the technology over the other one for the evalu-
ation of work goals or different work goals require different technologies. 
Possible answers:  

o I will fundamentally prefer HMD 
o I will fundamentally prefer sVR 
o HMD is better suited for ______________________ 
o sVR is better suited for _______________________ 
o I would not use either of the technologies 
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General Questionnaire (Case Study A) (Translated from the German language) 

Test person number.:        Date: 

A. Demographic information 
 
1. Please specify your gender: (Please cross where suitable) 

☐ Male 
☐ Female 

 
2. Please specify your age group: (Please cross where suitable) 

☐ <25 
☐ 25-34 
☐ 35-44 
☐ 45-54 
☐ >54 

 
3. Please specify your professional position: (Please cross where suitable) 
 ☐ Product developer 

☐ Requirements Engineer 
☐ Constructor 
☐ Developer/Programmer 
☐ other, namely: ______________________________________________ 

 
B. Virtual Reality 
4. How much experience do you have in the use of Virtual Reality in a private 
capacity? 

   4.1 If yes, which? (Please specify as detailed as possible) 

 
 
 
 

 

5. How much professional experience do you have in dealing with Virtual Reality? 

5.1 If yes with which technologies?  

A lot of experience ++ + - -- No experience 

A lot of experience ++ + - -- No experience 
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 ☐ HMD (Head-Mounted-Displays e.g. Vive or Oculus Rift) 
☐ Mobile VR (VR-glasses with Smartphone e.g. Samsung Gear) 
☐ CAVE (multi-sided stereo projection) 
☐ Powerwall (Stereo projection screen) 
☐ other, namely: ______________________________________________ 

5.2 If yes, which models were part of the virtual environment?  

☐ the product to be accessed 
☐ the production related environment 
☐ a product related digital human model 

5.3 If yes, for what purpose? (Please specify as detailed as possible) 

 

 

5.4 If yes, how? (Please specify as detailed as possible) 

☐ for observation or assessment (passive) 
 ☐ Observation through the eyes of a digital human model 

☐ External observation 
☐ for interaction (active) 
☐ others, namely: (Please specify as detailed as possible) 
 

 
6. How much experience do you have with 3D input devices (Flystick, 3D mouse, 
video game controller…)? 

7. What expectations do you have for working with virtual environments in the 
context of the desired task? (Please specify as detailed as possible) 

 
 
 
 
 

  

A lot of experience ++ + - -- No experience 



240  Annexure D (Evaluation) 

 
 

General Questionnaire (Case Study B) (Translated from the German language) 

Test person number:       Date: 
Start:          End: 

A. Demographic information 
 
1. Please specify your gender: (Please cross where suitable) 

☐ Male 
☐ Female 

 
2. Please specify your age group: (Please cross where suitable) 

☐ <25 
☐ 25-34 
☐ 35-44 
☐ 45-54 
☐ >54 

 
3. Please specify your professional position: (Please cross where suitable) 
 ☐ Product developer 

☐ Requirements Engineer 
☐ Constructor 
☐ Developer/Programmer 
☐ other, namely: ______________________________________________ 

 
 

B. Virtual Reality 
 

4. How much experience do you have in the use of Virtual Reality in a private 
capacity? 

   4.1 If yes, which? (Please specify as detailed as possible) 

 
 
 
 

 

A lot of experience ++ + - -- No experience 
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5. How much professional experience do you have in dealing with Virtual Reality? 

5.1 If yes with which technologies?  

 ☐ HMD (Head-Mounted-Displays e.g. Vive or Oculus Rift) 
☐ Mobile VR (VR-glasses with Smartphone e.g. Samsung Gear) 
☐ CAVE (multi-sided stereo projection) 
☐ Powerwall (Stereo projection screen) 
☐ other, namely: ______________________________________________ 

 

6. How much experience do you have with 3D input devices (Flystick, 3D mouse, 
video game controller…)? 

 

7. What expectations/requirements do you have for working with VR technolo-
gies? (Please specify as detailed as possible) 

 
 
 
 

 

A lot of experience ++ + - -- No experience 

A lot of experience ++ + - -- No experience 
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