

TU Ilmenau | Universitätsbibliothek | ilmedia, 2020
http://www.tu-ilmenau.de/ilmedia

Al-Sayeh, Hani; Hagedorn, Stefan; Sattler, Kai-Uwe:

A gray-box modeling methodology for runtime prediction of Apache Spark jobs

Original published in: Distributed and parallel databases. - New York, NY [u.a.] : Consultants

Bureau. - 38 (2020), 4, p. 819-839.

Original published: 2020-03-10

ISSN: 1573-7578
DOI: 10.1007/s10619-020-07286-y
[Visited: 2020-11-17]

This work is licensed under a Creative Commons Attribution 4.0
International license. To view a copy of this license, visit
https://creativecommons.org/licenses/by/4.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1007/s10619-020-07286-y
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Vol.:(0123456789)

Distributed and Parallel Databases (2020) 38:819–839
https://doi.org/10.1007/s10619-020-07286-y

1 3

A gray‑box modeling methodology for runtime prediction
of Apache Spark jobs

Hani Al‑Sayeh1 · Stefan Hagedorn1  · Kai‑Uwe Sattler1

Published online: 10 March 2020
© The Author(s) 2020

Abstract
Apache Spark jobs are often characterized by processing huge data sets and, there-
fore, require runtimes in the range of minutes to hours. Thus, being able to predict
the runtime of such jobs would be useful not only to know when the job will finish,
but also for scheduling purposes, to estimate monetary costs for cloud deployment,
or to determine an appropriate cluster configuration, such as the number of nodes.
However, predicting Spark job runtimes is much more challenging than for stand-
ard database queries: cluster configuration and parameters have a significant perfor-
mance impact and jobs usually contain a lot of user-defined code making it difficult
to estimate cardinalities and execution costs. In this paper, we present a gray-box
modeling methodology for runtime prediction of Apache Spark jobs. Our approach
comprises two steps: first, a white-box model for predicting the cardinalities of the
input RDDs of each operator is built based on prior knowledge about the behavior
and application parameters such as applied filters data, number of iterations, etc. In
the second step, a black-box model for each task constructed by monitoring runtime
metrics while varying allocated resources and input RDD cardinalities is used. We
further show how to use this gray-box approach not only for predicting the runtime
of a given job, but also as part of a decision model for reusing intermediate cached
results of Spark jobs. Our methodology is validated with experimental evaluation
showing a highly accurate prediction of the actual job runtime and a performance
improvement if intermediate results can be reused.

Keywords  Big data · Runtime prediction · Modeling

 *	 Hani Al‑Sayeh
	 hani‑bassam.al‑sayeh@tu‑ilmenau.de

 *	 Stefan Hagedorn
	 stefan.hagedorn@tu‑ilmenau.de

	 Kai‑Uwe Sattler
	 kus@tu‑ilmenau.de

1	 Technische Universität Ilmenau, Ilmenau, Thüringen, Germany

http://orcid.org/0000-0002-0172-8162
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-020-07286-y&domain=pdf

820	 Distributed and Parallel Databases (2020) 38:819–839

1 3

1  Introduction

Big data platforms such as Hadoop, Spark or Flink are mainly used to process and
analyze huge volumes of data resulting in runtimes of minutes or even hours. For
many users, the prediction of the expected runtime of such jobs would be very help-
ful. Based on this information, cluster resources could be allocated, scheduling of
jobs can be improved, and costs for cloud deployment (e.g., in the form of a what-if
analysis) can be estimated.

Though predicting the runtime of arbitrary Spark jobs seems to be nearly impos-
sible simply due to numerous parameters and user-written code, there are scenar-
ios where several opportunities for collecting the information necessary for a good
prediction model exist. Often, the development of Spark programs is an explorative
task and programs written once are executed multiple times. Consider the following
scenarios:

1.	 A data scientist loads several data files and performs some basic preprocessing
and transformation tasks. After looking at the results she chooses the next pro-
cessing operators to apply. Then, she investigates the results again and continues
to modify operators and adds new operators until the original task is solved and
the final result is produced.

2.	 After a (sometimes complex) Spark program has been developed, it is executed
again and again with varying parameter values such as thresholds for filters,
attributes to extract, or even flags to apply different algorithms/processing steps.

3.	 Often, different data scientists work with the same input data. Thus, they all have
to apply the same preprocessing steps (data cleaning, transformation, etc.) and
the different jobs share common sub-tasks which consume computing resources
although they all produce the same result. Unfortunately, this sharing (e.g., by
materializing intermediate results) is not done automatically and transparently.

From these scenarios we can conclude that (parts of) the same programs are run
over and over again and that they often take application parameters that affect the
runtime of the resulting Spark jobs. By monitoring the execution of these jobs and
collecting information we can try to construct a prediction model. Furthermore, to
reduce the runtime and the resource utilization of these jobs, intermediate results of
the operations should be shared among different jobs, i.e., an intermediate result that
has been computed before and is needed frequently should be materialized in one,
and be reused in other jobs. To shift as much responsibilities from the data scientist
into the processing engine, the decision for materialization, the actual materializa-
tion on persistent storage as well as the reuse must be performed transparently with-
out any user interaction. For this, a decision model based on the costs of operators
is needed and to predict these costs, it is imperative to consider also the application
parameters beside the allocated resources.

Building a prediction runtime model for a Spark job is non-trivial [27], because
it depends on numerous factors such as the input data cardinalities, content and dis-
tribution of data, allocated processing resources, current cluster utilization, and the

821

1 3

Distributed and Parallel Databases (2020) 38:819–839	

configuration parameters of the Apache Spark platform (more than 210 parameters
[2]). Taking application parameters into account adds to the complexity of building
the runtime model. To the best of our knowledge, all previous modeling methodolo-
gies for runtime prediction of Spark jobs use only the data size, Spark configuration
and allocated resources without the application parameters. This results in unaccep-
table variance between the predicted and the actual runtimes. To address this prob-
lem and improve the prediction accuracy, we present in this study a gray-box runt-
ime modeling methodology of Apache Spark jobs that incorporates the application
parameters. This methodology consists of the following two steps:

1.	 White-box modeling: We study the influence of each application parameter on
the RDD cardinality while varying the application parameter values and estimate
the RDD cardinality for each operator.

2.	 Black-box modeling: We run experiments with the estimated RDD partition sizes
and the allocated resources to obtain the runtime metrics for each task, from
which we then make observations to build our prediction model.

The white- and black-box modeling complement each other, resulting in a two-step
gray-box modeling methodology. The white-box model predicts the RDD sizes with
respect to the application parameters. The predicted RDD sizes are then taken as
input to the black-box model for predicting the runtime of tasks and hence the job
runtime.

The remainder of the paper is organized as follows: Sect. 2 discusses related
work. Section 3 presents background concepts including the Spark job execution
model. In Sect. 4 we explain our gray-box modeling methodology for runtime pre-
diction, while we describe in Sect. 5 in detail how to construct a gray-box model
for a Spark job. As one of the use cases of this model we describe the materializa-
tion and reuse of intermediate job results in Sect. 6. Results of our experimental
evaluation are presented in Sect. 7. Finally, Sect. 8 concludes the paper and gives an
outlook.

2 � Related work

2.1 � Runtime prediction modelling

Many works such as [14, 20, 24, 26, 31, 32] have been proposed recently to observe,
analyze and predict the runtime performance of large-scale data processing plat-
forms. To predict the runtime of MapReduce jobs, Starfish [14] introduced a self-
tuning framework on top of Hadoop that applies an analytical approach to observe
and analyze runtime metrics of jobs by running them on a fraction of the data and
to optimize system performance by tuning its configuration options. PREDIcT pro-
posed in [20] is an experimental methodology to predict the runtime of a class of
iterative algorithms like graph processing, semi-clustering and ranking implemented
on the Hadoop MapReduce platform. Its main idea is to predict the number of

822	 Distributed and Parallel Databases (2020) 38:819–839

1 3

iterations and build the runtime model of each from sample runs. A bounds-based
performance model is presented in [31] to predict the execution time of MapReduce
jobs running on heterogeneous clusters. In [26], the authors introduced a simulation-
driven model to predict the execution time of Spark jobs by simulating their execu-
tion on a fraction of the data and collecting their execution metrics like memory
consumption, I/O costs and runtime. Another approach is presented in [16] which
models the memory behavior of Spark jobs based on a collection of experiments.
Runtime prediction models were presented and a task co-location strategy proposed
to improve system throughput. Ernest [24] is a large-scale performance prediction
framework that presents a general runtime model for Spark jobs. For each Spark
job, Ernest runs it with various configurations on a fraction of the data to build its
model. Doppio [32] proposed a runtime prediction model for Spark jobs by study-
ing the I/O impact on in-memory cluster computing frameworks and identified I/O
overhead as a dominant bottleneck in such frameworks. Beside these studies, many
others focused on constructing runtime models based on statistics [7, 17, 21].

2.2 � Reuse and materialization

Reusing partial results has been extensively studied for data warehouses and rela-
tional databases, such as [8, 12, 13]. Early works focusing on reusing materialized
views (or derived relations) are [15, 29] as well as [4] or [23] investigating the view-
matching problem.

In [19] the Hawc architecture is introduced that extends the logical optimizer of
an SQL system and considers the query history in order to decide which intermedi-
ate result may be worth materializing to speed up further executions – even if this
would create a more expensive plan which, however, is executed only once.

For Hadoop MapReduce the MRShare framework [18] merges a batch of jobs
into a new batch of jobs so that groups of jobs can share scans over input files and
the Map output. Other projects such as ReStore [9], PigReuse [5], or [25] are similar
to MRShare in the sense that they all merge a batch of scripts into a single plan or
share the intermediate results after a map phase. In PigReuse, the optimization goal
is to minimize the number of operators and the number of generated MapReduce
jobs - but they do not analyze the total cost of the generated plans.

For Spark several additional frameworks were created to support data ana-
lysts with their tasks. KeystoneML [22] is able to identify expensive operations in
machine learning pipelines on Big Data platforms like Apache Spark. They employ
a cost model using cluster costs (such as network bandwidth, CPU speed, etc.) and
operator costs to estimate total execution costs. From this physical operators for a
logical plan are chosen and materialization points are determined. RDDShare [6] is
also based on Spark and simply identifies common operators in a batch of Spark
programs and merges them into a single program.

The presented performance prediction models focused on the impact of data size,
platform configuration settings and allocated resources like memory consumption, I/O
overhead and network bandwidth with the goal of choosing optimal cluster resource
configuration and increasing the cluster throughput. However, none of these considered

823

1 3

Distributed and Parallel Databases (2020) 38:819–839	

the application parameters which can affect the runtime performance significantly. Fur-
thermore, we not only use our prediction model to manage cluster resources, but also
as input for a cost based decision model to decide which intermediate results should
be materialized and to be reused, rather than only merging a batch of programs into a
single job.

3 � Background

A Spark job consists of one or more stages [26], each consisting of multiple homoge-
neous tasks that run in parallel and process various RDD partitions of the same data
source. The first stage reads data blocks from HDFS and loads them into memory as
RDD partitions. Then for each RDD partition, it launches a task to process it. The level
of stage execution parallelism is determined by the number of cores allocated for run-
ning the Spark job:

The file block size is set using the dfs.block.size option when storing the file
in HDFS. The number of executors and the number of cores per executor are set,
when submitting the Spark job, using the num-executors and the executor-
cores options respectively. Theoretically, the total execution time of a stage is as
follows:

Practically, however, the program driver makes an unbalanced distribution of tasks
among cores:

4 � Gray‑box modeling methodology

To develop a comprehensive runtime model for Spark jobs we first study the relation-
ship between its application parameters and the RDD sizes (white-box modeling). We
then develop the runtime model of each task individually regarding its input RDD par-
tition size and its allocated resources (black-box modeling). Figure 1 shows a general
overview on the gray-box modeling concept.

(1)#AllocatedCores = #Executors × #CoresPerExecutor

(2)Runtime(Stagei) = Runtime(TaskOfStagei) ×
⌈

#TasksPerStage

#AllocatedCores

⌉

(3)Runtime(job) = Startup +

#Stages
∑

i=1

Runtime(Stagei) + Cleanup

824	 Distributed and Parallel Databases (2020) 38:819–839

1 3

4.1 � White‑box model

A Spark job consists of multiple stages running sequentially. Each stage takes an RDD
as input (RDDin) and produces another as output (RDDout). The RDDout of a stage
will be the RDDin to the one immediately after it. Knowledge of the size of RDDin and
the selectivity of all operators that affect the RDD size is required to predict the size of
RDDout in terms of the number of tuples and the tuple size.

Figure 2 shows an example of a stage containing three operators: two filters and
one projection. p1, p2, and p3 are application parameters that affect the RDDout size.
Assuming that the selectivity of each filter operator and the size of the projected col-
umns are known, the resulting RDDout size can be predicted by estimating the output
RDD size of each operator in turn (RDD1 -> RDD2 -> RDDout).

(4)#RDDPartitionTuples =
#RDDTuples

#TasksPerStage

(5)#RDDPartitionTupleSize =#RDDTupleSize

Fig. 1   Overview of gray-box modeling

Fig. 2   Example of Apache Spark stage

825

1 3

Distributed and Parallel Databases (2020) 38:819–839	

Application parameters can be categorized by their influence on the RDD sizes and
runtime:

Condition parameters Tuning these parameters affects the selectivity of filter
operators and the cardinality of joins. In the example shown in Fig. 2:

In many cases, the selectivity of some operators is indirectly influenced by other
parameters:

Field selection parameters Tuning these parameters affects RDD tuple sizes. Exam-
ples are map and projection (in Spark SQL). Predicting tuple size is important in
estimating the required memory size, shuffling runtime, tuple compression and other
performance metrics.

Workflow control parameters These parameters, like selecting processing algo-
rithm or the number of iterations in a PageRank application, affect the RDD line-
age and therefore the total job runtime.

4.2 � Black‑box model

The main allocated resources considered during the black-box modeling, in
addition to the size of the input RDD partition, are the allocated memory which
affects the rate of data spill to disk and the number of allocated executor cores
that run concurrently and compete for shared executor resources like disk, mem-
ory and network. To build the runtime model of each task, we run the job sev-
eral times with varying memory allocation, cores per executor and RDD partition
sizes. We then collect runtime metrics of tasks using SparkListener [1] and ana-
lyze the metrics using regression analysis methods.

A noteworthy phenomenon is that the runtime of tasks may vary significantly
on multiple runs on the same resources and with identical input RDD partitions.
That is due to presence of straggler tasks [28] and it affects the prediction model.
Analyzing the causes of straggler tasks and their impact is out of the scope of this
work. However, to deal with this uncertainty, we increase the data size to increase
the number of tasks in each job and take their average runtimes.

5 � Building the gray‑box model

This sections presents how to construct a gray-box model in detail. It then dem-
onstrates the model building with real-world applications: WordCount, PageRank
and K-Means.

(6)#RDD1Tuples = #RDDinTuples × Filter1Selectivity(p1)

(7)#RDD2Tuples = #RDD1Tuples × Filter2Selectivity(p1, p2)

826	 Distributed and Parallel Databases (2020) 38:819–839

1 3

5.1 � Building the white‑box model

We discuss general rules for constructing the white-box model. The following are
three ways to build the model depending on our knowledge of the application:

Knowledge of operators This is the approach to building the model when we
have an understanding of the application, knowledge of how the operators work
and collection of the data properties. Therefore, for any given application param-
eters and their values, such prior knowledge allows for building two models with
which to predict two cardinalities: one in terms of the number of tuples (i.e., ratio
of the number of tuples in output RDD partition to the number of tuples of input
RDD partition) and the other in terms of the average tuple size (i.e., ratio of the
average size of tuples in output RDD partition to the average size of tuples in
input RDD partition). The output of these two models are used for the black-box
modelling.

Observing history of runs The second approach is to observe previous applica-
tion runs with different application parameters and use it to train the two models
for predicting the two cardinalities mentioned in the first approach. This approach
is useful when we do not know the characteristics of the data or the workings
of the operators. It differs from the previous one in building the two models:
while the models in the first approach are built from our knowledge of the opera-
tors, this approach builds the models from the history. From the history runs, we
obtain numerous values of all application parameters and the corresponding car-
dinalities in terms of the number of tuples and the average tuple size. We start by
computing the standard correlation coefficient between all application parameters
and each of the two cardinalities of each operator individually. Then we select the
application parameters as features of the corresponding model based on their high
correlation with a cardinality, which is the label. That way, we avoid incorporat-
ing features that do not have impact on the label into the model. Next, we develop
the two linear regression models for the two cardinalities. The first model takes
the (high-correlation) application parameters as features and the cardinality of the
number of tuples as labels, while the second model takes the (high-correlation)
application parameters as features and the cardinality of average size of tuples as
labels. For any given values of application parameters, we use these two models
to make predictions of the RDD sizes in terms of the number of tuples and the
average tuple size.

Training The third approach is to generate a training data and use it to train the
two models discussed previously. This approach is useful when we neither have
a history of runs nor know the characteristics of the data or the workings of the
operators. We run the application multiple times while tuning the values of appli-
cation parameters and observe the RDD sizes and study the correlation between
them, similar to observing history of runs.

827

1 3

Distributed and Parallel Databases (2020) 38:819–839	

5.2 � Building the black‑box model

We run the job multiple times, varying RDD partition sizes and allocated
resources. Then we build the runtime model based on the observed runtime met-
rics. The difference in run configurations is based on:

–	 RDD partition size: The simplest way to modify it is to change the HDFS block
size by creating multiple versions of the input file with various block sizes.

–	 Cores allocated per executor: It is set using the –executor-cores Spark con-
figuration option.

–	 Memory allocated per core: It is set using the –executor-memory Spark
configuration option.

5.3 � Use cases

We demonstrate how to apply our approach on three real-world applications and dis-
cuss the influence of their application parameters on their runtime.

5.3.1 � WordCount

Our first use case is WordCount. Assume that users are allowed to select a group of
letters with which to run WordCount jobs via a web portal. The result is the number
of words in the source file that do not begin with any of the letters selected. The
only application parameter is the list of letters. One filter operator is injected in the
first stage’s lineage of operators to filter out words that start with the selected letters.
Figure 3 depicts the lineage of operators in the WordCount application with their
RDDs.

To build the white-box model, RDD sizes are predicted based on the selected
letters. The cardinality models of all operators in the lineage are static and can be
observed during running sample tests except the cardinality model of the filter,
which is dynamic and influenced by the selected letters. The white-box model accu-
rately predicts the number of FilteredRDD (cf. Fig. 3) tuples and their average size
for all possible 226 combinations of selected letters. 226 is the powerset of the set of

Fig. 3   A WordCount lineage with an application purpose filter

828	 Distributed and Parallel Databases (2020) 38:819–839

1 3

all English letters and comprises all possible lists of letters (i.e., application param-
eters). The relative frequencies of the first letters of words in the English language
are known in advance and used to predict the number of tuples in FilteredRDD.
Statistics of length of words based on their first letter (obtainable from a 16MB
MySQL English dictionary database [3]) are used to predict the average tuple size of
FilteredRDD.

Let us assume that a user selects the list {a, f, h, n} as application para-meter.
From the statistics, the relative frequencies of words that start with a, f, h and n are
11.68%, 4.03%, 4.20% and 2.28% respectively. Thus:

–	 Ratio of number of FilteredRDD Tuples:

–	 Average size of FilteredRDD tuple:

Where frequency is the relative frequency of words that start with the corresponding
letter and WordAverageSize is the average length of words that start with the same
letter. The cardinality model can be enhanced by including statistics of the most fre-
quently occurring words and other useful distributions of English words. Although
this increases the model accuracy, it also increases the modeling efforts and time. In
this use case, the selectivity of each operator is as follows:

–	 flatMap: splits the sentence into a list of words. Assuming that the average num-
ber of words per line is known to be T, the selectivity of this operator is T x
100%.

–	 filter: the selectivity of this operator is dynamic.
–	 mapToPair: maps each word to a key-value pair. Its selectivity is 100%.
–	 reduceByKey: the resulting number of RDD tuples equals the number of unique

words in the source file, which can be estimated even without knowing the num-
ber of tuples input to this operator.

After defining the cardinality model for each operator, we predict the initial RDD
size. From the statistics [3], the average word length is 8.12. The average tuple
size of the initial RDD is then the summation, in bytes, of the average word length
(8.12) and newline delimiter (1). The number of its tuples equals the source file size
divided by 9.12.

To build the black-box model, we run the WordCount job multiple times, varying
RDD partition sizes and allocated resources. Each experimental dimension is varied
to have at least three values like {32 MB, 64 MB and 128 MB block size}, {1, 2
and 4 cores per executor}, {1GB, 2GB and 4GB allocated memory}. To cover all

1 − (11.68% + 4.03% + 4.20% + 2.28%) = 79.81%

∑NonFilteredLetters

i=�b�
(frequency(i) ×WordAverageSize(i))

∑NonFilteredLetters

i=�b�
frequency(i)

=

∑NonFilteredLetters

i=�b�
(frequency(i) ×WordAverageSize(i))

79.81%

829

1 3

Distributed and Parallel Databases (2020) 38:819–839	

possibilities, we run the job 27 times and the average runtime model of each task is
extracted by analyzing the runtime logs provided by SparkListener [1].

Further model enhancements need to be performed to improve the model accu-
racy. For example, the runtime of Stage 1 is determined by sizes of RDD1 and Fil-
teredRDD, while the runtime of Stage 2 is influenced by the size of RDD2. Also,
the runtime of flatMap and filter operators are determined only by RDD1. Although
we predict the size of FilteredRDD from the size of RDD1 based on the application
parameters, the runtime of reduceByKey operator is influenced only by the size of
FilteredRDD. By taking the whole of Stage 1 as a black-box, we would not be able
to predict the size of FilteredRDD from that of RDD1. To overcome this, the first
stage is divided into two parts, as shown in Fig. 3, and runtime models are devel-
oped for both parts separately by injecting a modeling purpose mapPartitions
operator after the filter. The aim of this injected operator is to profile the task runt-
ime by sending the current timestamp to a central storage unit prepared for modeling
purposes [11]. The runtime of the filter is profiled and its runtime cost model is
built. The total job runtime decreases when the user selects more letters, while the
time required to perform filtering operation increases. In this example, it takes just 2
ms more to filter 25 letters (in 1GB HDFS block) than to filter only one.

5.3.2 � PageRank

The second use case is PageRank. We illustrate the construction of its white-box
model. We do not discuss its black-box model as it is similar to the black-box model
construction described earlier in the WordCount application. Unlike the WordCount
use case where the application parameter (list of selected letters) is a condition
parameter, the application parameter in the PageRank use case is a workflow con-
trol parameter: the number of iterations. The PageRank application consists of only
one job. The job is constituted of two static stages at the beginning (i.e., the number
of stages is constant), one static stage at the end and dynamic stages in the middle
(i.e., the number of stages varies). The number of dynamic stages is determined by
the number of iterations: one iteration results in one dynamic stage, two iterations
result in two dynamic stages and so on. However, varying the number of iterations
does not change the RDD sizes or cardinalities. It only influences the number of the
dynamic stages. The runtimes of the dynamic stages are equal because the operation
is the same, with the same input data size and allocated resources.

5.3.3 � K‑Means

Our third use case is K-Means. For this clustering application, the number of clusters
(i.e., K) is the application parameter. Similar to PageRank, the application parameter
is a workflow control parameter. However, unlike in PageRank where the number
of iterations influence the number of stages, in K-Means, it influences the number
of jobs. There are eight static jobs at the beginning of the application, one static job
at the end of the application, and dynamic jobs in the middle. Each of the dynamic
jobs consists of two stages. Secondly, while an iteration in PageRank maps to a stage
(x iterations result in x dynamic stages), it is not as simple and straightforward with

830	 Distributed and Parallel Databases (2020) 38:819–839

1 3

respect to jobs in K-Means. Thirdly, the runtime of dynamic stages in PageRank is
not influenced by the application parameter. But in K-Means, the application param-
eter influences the runtime of dynamic jobs linearly (in addition to its linear cor-
relation with the number of iterations). This results due to the influence of K on the
cardinality (and thus the output RDD) of one of the operators in the job. Ultimately,
that influences the runtime of the part of the job following the output RDD of the
operator.

6 � Using the prediction model for cost‑based recycling

While the runtime prediction is crucial for scheduling jobs and allocating enough
(but not too many) resources, it can be applied in combination with a cost-based
decision model to identify operators whose results should be materialized for shar-
ing and reuse.

Figure 4 shows the DAG of a job where the width of a node’s box represents its
processing time. If, e.g., the result of the second join operator is materialized, subse-
quent executions of dataflow programs that also contain this part in their respective
DAG will benefit by only having to load the already present result from disk.

In [11] we introduced the decision model together with its integration in out Pig-
let [10] engine. Piglet translates Pig Latin scripts into Spark programs and instru-
mented the generated code to gather profiling information. The profiling data was
used as input for the decision model. With the prediction model of Sect. 5 we are
able to apply the decision model, without having to gather profiling information first.

The goal of the decision model is to increase the benefit for Spark jobs. The ben-
efit is the execution time a job saves when reusing a materialized result from a pre-
vious job, as depicted in Fig.4. Alternatively, one can also regard the benefit as the
amount of money saved by needing to rent fewer machines or less resources in a
public cloud. To calculate the benefit, the decision model is based on the costs of
operators which are taken from the prediction model described in Sects. 4 and 5.

The decision model is built around materialization points:

Definition 6.1  A materialization point M is a logical marker in a DAG denoting a
position for the decision model to write or load the materialized results and thus,
refers to the output of an operator.

Fig. 4   Runtime difference for loading materialized result

831

1 3

Distributed and Parallel Databases (2020) 38:819–839	

To decide the result of which operator should be materialized, we introduce the
notion of the benefit:

Definition 6.2  The benefit of a materialization point Mi is the execution time saved
when loading materialized data instead of recomputing it. It can be expressed as
in Eq.(8).

Here t�����(Mi) is the cumulative execution time of all operators in the prefix of oi
from the source operator to Mi , whereas t����(Mi) denotes the time required to load
the materialized data of Mi . We have to distinguish two cases: the prefix of Mi does
not contain a join (or similar) operator, or it does. In the first case, t�����(Mi) can be
calculated as in Eq.(9). Otherwise, if there is a join operator j, only the longest exe-
cution time of the input branches k1(j),… , kn(j) of j is considered for t�����(Mi):

The time required to load existing materialized data for Mi from disk depends on the
cardinality of Mi as well as the hardware-dependent factor bps, denoting the number
of bytes that can be read per second. The time to read the materialized result of Mi is
calculated as:

6.1 � Decision model

The decision model has three dimensions to consider when choosing a materializa-
tion point to actually write to persistent storage.

(1)	 Which materialization points should be selected for further investigation?
(2)	 From the list of materialization points resulting from (1), which of those should

be materialized?
(3)	 If the persistent storage is limited in space, decide which existing materialized

result has to be deleted.

Please note that due to space limitations, we only briefly describe one strategy
for (2) and refer the reader for more details to [11]. Furthermore, we consider the

(8)t����� ��(Mi) = t�����(Mi) − t����(Mi)

(9)t�����(Mi) =
∑

o∈���� ��(Mi)

t����(o)

(10)
t�����(Mi) = max{t�����(k1(j)),… , t�����(kn(j))} +

∑

o ∈ ���� ��(Mi)

∧o ∉ ���� ��(j)

t����(o)

(11)t����(Mi) =
����(oi) ⋅ �����(oi)

bps

832	 Distributed and Parallel Databases (2020) 38:819–839

1 3

dimension of cache eviction as out-of-scope of this paper and trivially assume an
infinite cache.

(1) Selection Obviously, the materialization points belonging to sources and sinks
do not need to be considered further as they just materialize the original data or the
data that is stored anyway. Therefore, subsequent operations only need to consider
materialization points that do not belong to a source or sink operator.

(2) Ranking materialization points A ranking strategy is needed to select one or
more materialization points from the list of candidates. An obvious strategy is to
always materialize the materialization point that yields the highest benefit to the
program.

However, using only the benefit might not be enough as it does not consider if
that materialization point will be ever reused. Thus, one could also consider the
probability for reuse in combination with the achievable benefit, using a e.g., Sky-
line approach. The probability of one operator following another one can then be
modeled using a Markov chain.

(3) Cache eviction In practice, the space occupied by materialized results needs
to be limited. Thus, when selecting a new Mj

i
 for a job j, one might have to evict an

older Mk
o
 . To decide which to evict one can employ algorithms like LRU, LFU, etc.

well-known from traditional database systems. As these do not account for the ben-
efit these Ms bring, a modified ARC or KNAPSACK may help. However, the cache
eviction strategies are not in the scope of this paper and will be investigates in future
work.

7 � Evaluation

We performed experiments on our Spark cluster to evaluate the proposed modeling
methodology. The 16-node cluster has the following specifications per node: Intel
Core i5 2.90 GHz, 16 GB DDR3 RAM, 1 TB disk, 1 GBit/s LAN. The cluster runs
Hadoop 2.7, Spark 2.0.1, Java 8u102, and Apache YARN on top of a Hadoop Dis-
tributed File System (HDFS).

In this evaluation, we first demonstrate the accuracy of the prediction model and
then show that the materialization decision significantly improves the overall execu-
tion time.

7.1 � Prediction model

7.1.1 � WordCount

To evaluate the white-box model, we ran the job with various application parameter
values 26 times. An empty list was first passed as a parameter to J1. Each of the sub-
sequent jobs added one additional letter to the list in turn, e.g., J2 {’a’}, J3 {’ab’}, J4
{’abc’} and so on.

We built the white-box model to predict the RDD sizes across the operator line-
age. Figure 5 shows the experimental results for the white box model.

833

1 3

Distributed and Parallel Databases (2020) 38:819–839	

To evaluate the black-box model, the job was executed 20 times with randomly
selected values of data sizes {1–2 GB}, allocated memory {1, 2, 4 GB} and allo-
cated cores {1, 2, 4} per executors. The results are shown in Fig. 6. Finally, we exe-
cuted 50 WordCount jobs with arbitrary values of application parameters, allocated
memory {1, 2, 4 GB}, allocated cores {1, 2, 4} per executor on various source files
(3-6 GB) stored in the HDFS with varying block sizes (64 and 128 MB). Figure 7
shows the comparison between the observed actual runtimes and the predicted runt-
imes (which are calculated using our prediction model) of each job. The average
prediction accuracy of the runtime model for this use case was 89.84%.

7.1.2 � PageRank

Our approach to constructing the white-box model in PageRank is based on history.
We ran the PageRank application on a data set of 5 million pages with three itera-
tions, which resulted in three iterative stages, in addition to the three static stages

Fig. 5   (Left) Number of RDD tuples resulting from filter and mapToPair operators. (Right) Number of
RDD tuples resulting from reduceByKey operator

Fig. 6   Black-box model evaluation results

834	 Distributed and Parallel Databases (2020) 38:819–839

1 3

(ref. 5.3.2). The runtime metrics for this job served as our history, from which we
predicted the application runtime for different number of iterations. Then we dou-
bled the input data size and made predictions of the application runtime for different
number of iterations on the same allocated resources. Figure 8 depicts our prediction
accuracy after comparing the actual runtimes with the predicted runtimes using our
prediction model. F1 and F2 represent the initial and the doubled data sizes respec-
tively. The figure shows predictions for the initial data size with 10 and 20 iterations,
and for the doubled data size with 1, 10 and 20 iterations. Our average prediction
accuracy for this use case was 95.72%. The historical run took around 4 min, which
is 5.90% of the total time taken by just these few actual runs (67.7 minutes).

7.1.3 � K‑Means

We carried out evaluation for K-Means using a dataset containing 2 million points
with 20 dimensions. We followed the training approach for this use case to construct
the white-box model. The number of iterations is influenced by the number of clus-
ters K. Thus, we ran the experiments while varying the values of K and allowed the
application to run for as many number of iterations as K results into. As mentioned

Fig. 7   Gray-box model evaluation results

Fig. 8   Application runtime prediction for PageRank

835

1 3

Distributed and Parallel Databases (2020) 38:819–839	

1  https​://www.gdelt​proje​ct.org/.

earlier, the correlation between K and the number of iterations, as well as the cor-
relation between K and the runtime of the dynamic job (i.e., iteration) are both lin-
ear. However, for some instances of K, different runs of the application with the
same value of K results in slightly different number of iterations. We made runs
with K=10 and K=50 in the training phase. Figure 9 shows the accuracy of our
prediction of both the number of iterations and the runtime of the iterative job from
K after compering the actual number of iterations and runtimes with the predicted
number of iterations and runtimes using our prediction model. With regards to runt-
ime of the iterative job, we realized that the operator whose cardinality is influenced
by K in the iterative job is the mapPartition operator. The mapPartition is the first
operator in the job. That way, K influences the output RDD of the operator, and ulti-
mately, the job runtime. In addition to the iterative job(s), there are eight static jobs
at the beginning of the application and one static job at the end of the application.
Based on that, we made predictions of the application runtime on the same allocated
resources for different instances of K as shown in Fig. 10. We achieved an average
prediction accuracy of 85.62%. The training took around 6.5 min, which is 13.97%
of the total time taken by just these few actual runs (46.50 min).

To study the impact of the unbalanced distribution of tasks among cores on our
modeling methodology, we ran additional experiments that showed the following
outcomes:

–	 The variance between the minimum and the maximum allocated tasks per core
did not exceed 12% even when the average number of tasks per core was 40.

–	 Although, theoretically, uneven distribution of tasks is expected to decrease the
model accuracy, it also reduces the impact of variance between tasks runtime
which eliminates the impact of stragglers. We analyzed the affect of this in the
presented applications by comparing the actual runtime of stages with the pre-
dicted runtime of them (by applying Equation 3) and realized that the accuracy
of our prediction model was reduced in the worst case by 7.23%.

7.2 � Materialization

As we already demonstrated the quality and applicability of the cost-based deci-
sion model for materialization in [11], we want to show here the results based on
the prediction model. To do so, we took two exemplary Spark programs, depicted
in Fig.11. Program GDELT loads a 45GB CSV file G from the GDELT1 project and
performs basic preprocessing (projection, filtering), computes average tone of news
published per website, and returns only those with an average tone greater than a
threshold provided as input parameter. The indicated materialization points are the
ones used in Fig. 13. The Weather program loads weather observations O and sensor

https://www.gdeltproject.org/

836	 Distributed and Parallel Databases (2020) 38:819–839

1 3

information S from the SRBench [30] project. The two input files are filtered accord-
ing to provided input parameters and joined by sensor. The aggregation counts the
number of observations per sensor.

We used the prediction model to obtain operator costs (runtimes) as well as
their expected result sizes. Based on these values, we used the MaxBenefit strat-
egy to find which operators should be materialized. Figure 12 compares the exe-
cution times of the two scripts without any materialization (plain), when writing
the materialized result to disk (materialize), and when reusing the materialized
data in the same program (reuse). As one can see, the execution time is drasti-
cally reduced when we are able to reuse previously computed and materialized
intermediate results. Writing the materialized data has a small impact on the
execution time, which however is amortized by the time saved when reusing the
the materialized data. Figure13 exemplary shows for the GDELT program that

Fig. 9   (Left) Prediction of Number of Job Iterations from Number of Clusters. (Right) Prediction of Out-
put Data Size from Number of Clusters

Fig. 10   Application runtime prediction for K-Means

Fig. 11   Depiction of the two Spark jobs used to evaluate the materialization decision

837

1 3

Distributed and Parallel Databases (2020) 38:819–839	

the runtime prediction for the materialization points from Fig.11 in combination
with the cost model does not produce wrong decisions. We rather predict slightly
longer execution times for materialization points highlighted in Fig.4 and there-
fore a smaller (or no) benefit, that are, however, not too far off. The reason for the
higher prediction has several reasons. One is the calibration of the read and write
performance from and to HDFS, and of course the measurements of the operator
costs, which are pessimistic and orientated on the slowest task. This avoids wrong
decisions were the model decides to materialize a result that would actually pro-
duce longer execution times when reusing that data.

8 � Conclusion and Outlook

In this paper, we presented a gray box modeling methodology for runtime predic-
tion of Apache Spark jobs and its application for reusing intermediate results of
such jobs, for which a cost-based decision model is used. The prediction model con-
sists of a white-box model and a black-box model. The white-box model uses prior
knowledge to predict the sizes of (intermediate) RDDs in each stage under varying
input parameter values, whereas the black-box model is constructed for each task

Fig. 12   Impact of materializing (middle) and reusing (right) materialized results compared to normal
execution (left)

Fig. 13   Predicted versus actual execution time of materialization points of GDELT program

838	 Distributed and Parallel Databases (2020) 38:819–839

1 3

by observing runtime metrics with varying allocated resources and input partition
sizes. The decision model is based on the cost information taken from the gray-box
model and identifies operators in a job whose result should be materialized in order
to share it with other jobs or future executions of the same job.

In the experimental evaluation of the prediction methodology, we showed that
the model achieves a high prediction accuracy of up to 83–94%. Furthermore, we
showed that the information is very useful for the materialization and a drastic runt-
ime improvement could be achieved when reusing previously computed intermedi-
ate results.

In future, we plan to develop a scheduling methodology based on the developed
runtime models in this study to improve resource utilization and increase the overall
system throughput. Additionally, the developed runtime models in this study will be
used in a simulation-based prediction approach to analyze system performance (e.g.,
throughput, latency average and the utilization of cluster resources) and to answer
what-if questions about system configuration. Currently, the materialization deci-
sion model can only reuse results that were produced by the exact same lineage of
operators with the same parameter values. This will be extended using a query con-
tainment approach to be able to decide that a materialized result can be reused by
another job if that new job, e.g., was started using different parameter values.

Acknowledgements  Open Access funding provided by Projekt DEAL. Funding for Hani Al-Sayeh was
provided by Deutsches Zentrum fϋr Luft-und Raumfahrt (DLR). Funding for Stefan Hagedorn Partially
funded by DLR.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Apache spark: Monitoring and instrumentation. https​://spark​.apach​e.org/docs/lates​t/monit​oring​.html
(2019). Accessed 22 Feb 2019

	 2.	 Apache spark official website. https​://spark​.apach​e.org/docs/lates​t/confi​gurat​ion.html (2019). Accessed 22
Feb 2019

	 3.	 Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views. In: Proceedings
of the PODS, pp. 254–263, (1998)

	 4.	 Camacho-Rodríguez, J. et al.: PigReuse: a reuse-based optimizer for Pig Latin. Technical Report, Inria
Saclay (2016)

	 5.	 Chao-Qiang, H. et al.: RDDShare: reusing results of spark RDD. In: Proceedings of the DSC, pp. 370–
375, (2016)

	 6.	 Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating progress of execution for sql queries. In: Pro-
ceedings of the SIGMOD, pp. 803–814, (2004)

	 7.	 Chirkova, R., Halevy, A.Y., Suciu, D.: A formal perspective on the view selection problem. In: Proceed-
ings of the VLDB, pp. 59–68, (2001)

	 8.	 Elghandour, I., Aboulnaga, A.: Restore: reusing results of mapreduce jobs. VLDB 5, 586–597 (2012)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/latest/configuration.html

839

1 3

Distributed and Parallel Databases (2020) 38:819–839	

	 9.	 Hagedorn, S., Sattler, K.: Piglet: interactive and platform transparent analytics for rdf & dynamic data. In:
Proceedings of the 25th international conference companion on world wide web, WWW 2016 Com-
panion, pp. 187–190, (2016)

	10.	 Hagedorn, S., Sattler, K.U.: Cost-based sharing and recycling of (intermediate) results in dataflow pro-
grams. In: Proceedings of the ADBIS, pp. 185–199. Springer, (2018)

	11.	 Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294 (2001)
	12.	 Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Rec.

25(2), 205–216 (1996)
	13.	 Herodotou, H., Lim, H., et al.: Starfish: a self-tuning system for big data analytics. Cidr 11, 261–272

(2011)
	14.	 Larson, P.A., Yang, H.Z.: Computing Queries from Derived Relations: Theoretical Foundation. Depart-

ment of Computer Science, University of Waterloo, Waterloo (1987)
	15.	 Marco, V.S., Taylor, B. et al.: Improving spark application throughput via memory aware task co-loca-

tion: a mixture of experts approach. In: Proceedings of the Middleware, pp. 95–108. ACM, (2017)
	16.	 Morton, K., Balazinska, M., Grossman, D.: Paratimer: a progress indicator for mapreduce dags. In:

Proceedings of the SIGMOD, pp. 507–518. ACM, (2010)
	17.	 Mysql english dictionary. https​://sourc​eforg​e.net/proje​cts/mysql​engli​shdic​tiona​ry/ (2019). Accessed 22

Feb 2019
	18.	 Nykiel, T., et al.: MRShare: sharing across multiple queries in MapReduce. PVLDB 3(1–2), 494–505

(2010)
	19.	 Perez, L.L., Jermaine, C.M.: History-aware query optimization with materialized intermediate views.

In: Proceedings of the ICDE, pp. 520–531. IEEE, (2014)
	20.	 Popescu, A.D., Balmin, A., et al.: Predict: towards predicting the runtime of large scale iterative analyt-

ics. PVLDB 6(14), 1678–1689 (2013)
	21.	 Selinger, P., Astrahan, M.M. et al. Access path selection in a relational database management system.

In: Proceedings of the SIGMOD, pp. 23–34. ACM, (1979)
	22.	 Sparks, E.R. et al. KeystoneML: optimizing pipelines for large-scale advanced analytics. In: Proceed-

ings of the ICDE, pp. 535–546, (2017)
	23.	 Srivastava, D., Dar, S., Jagadish, H.V., Levy, A.Y.: Answering queries with aggregation using views.

VLDB 96, 318–329 (1996)
	24.	 Venkataraman, S., Yang, Z. et al. Ernest: efficient performance prediction for large-scale advanced ana-

lytics. In: Proceedings of the NDIS, pp. 363–378, (2016)
	25.	 Wang, G., Chan, C.Y.: Multi-query optimization in MapReduce framework. In: Proceedings of the

PVLDB, pp. 145–156, (2013)
	26.	 Wang, K., Khan, M.M.H.: Performance prediction for apache spark platform. In: Proceedings of the

HPCC, pp. 166–173, (2015)
	27.	 Wang, K., Khan, M.M.H., Nguyen, N., Gokhale, S.: Modeling interference for apache spark jobs. In:

Proceedings of the CLOUD, pp. 423–431. IEEE, (2016)
	28.	 Xin, R., Deyhim, P., Ghodsi, A., Meng, X., Zaharia, M.: Graysort on apache spark by databricks. In:

Proceedings of the GraySort Competition, (2014)
	29.	 Yang, H.Z., Larson, P.A.: Query transformation for PSJ-queries. PVLDB 87, 245–254 (1987)
	30.	 Zhang, Y. et al. SRBench: a streaming RDF / SPARQL Benchmark. In: Proceedings of the ISWC, pp.

641–657, (2012)
	31.	 Zhang, Z., Cherkasova, L., Loo, B.T.: Performance modeling of MapReduce jobs in heterogeneous

cloud environments. In: Proceedings of the CLOUD, pp. 839–846, (2013)
	32.	 Zhou, P., Ruan, Z. et al.: Doppio: I/o-aware performance analysis, modeling and optimization for in-

memory computing framework. In: Proceedings of the ISPASS, pp. 22–32. IEEE, (2018)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://sourceforge.net/projects/mysqlenglishdictionary/

	A gray-box modeling methodology for runtime prediction of Apache Spark jobs
	Abstract
	1 Introduction
	2 Related work
	2.1 Runtime prediction modelling
	2.2 Reuse and materialization

	3 Background
	4 Gray-box modeling methodology
	4.1 White-box model
	4.2 Black-box model

	5 Building the gray-box model
	5.1 Building the white-box model
	5.2 Building the black-box model
	5.3 Use cases
	5.3.1 WordCount
	5.3.2 PageRank
	5.3.3 K-Means

	6 Using the prediction model for cost-based recycling
	6.1 Decision model

	7 Evaluation
	7.1 Prediction model
	7.1.1 WordCount
	7.1.2 PageRank
	7.1.3 K-Means

	7.2 Materialization

	8 Conclusion and Outlook
	Acknowledgements
	References

