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Abstract
Apache Spark jobs are often characterized by processing huge data sets and, there-
fore, require runtimes in the range of minutes to hours. Thus, being able to predict 
the runtime of such jobs would be useful not only to know when the job will finish, 
but also for scheduling purposes, to estimate monetary costs for cloud deployment, 
or to determine an appropriate cluster configuration, such as the number of nodes. 
However, predicting Spark job runtimes is much more challenging than for stand-
ard database queries: cluster configuration and parameters have a significant perfor-
mance impact and jobs usually contain a lot of user-defined code making it difficult 
to estimate cardinalities and execution costs. In this paper, we present a gray-box 
modeling methodology for runtime prediction of Apache Spark jobs. Our approach 
comprises two steps: first, a white-box model for predicting the cardinalities of the 
input RDDs of each operator is built based on prior knowledge about the behavior 
and application parameters such as applied filters data, number of iterations, etc. In 
the second step, a black-box model for each task constructed by monitoring runtime 
metrics while varying allocated resources and input RDD cardinalities is used. We 
further show how to use this gray-box approach not only for predicting the runtime 
of a given job, but also as part of a decision model for reusing intermediate cached 
results of Spark jobs. Our methodology is validated with experimental evaluation 
showing a highly accurate prediction of the actual job runtime and a performance 
improvement if intermediate results can be reused.
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1  Introduction

Big data platforms such as Hadoop, Spark or Flink are mainly used to process and 
analyze huge volumes of data resulting in runtimes of minutes or even hours. For 
many users, the prediction of the expected runtime of such jobs would be very help-
ful. Based on this information, cluster resources could be allocated, scheduling of 
jobs can be improved, and costs for cloud deployment (e.g., in the form of a what-if 
analysis) can be estimated.

Though predicting the runtime of arbitrary Spark jobs seems to be nearly impos-
sible simply due to numerous parameters and user-written code, there are scenar-
ios where several opportunities for collecting the information necessary for a good 
prediction model exist. Often, the development of Spark programs is an explorative 
task and programs written once are executed multiple times. Consider the following 
scenarios: 

1.	 A data scientist loads several data files and performs some basic preprocessing 
and transformation tasks. After looking at the results she chooses the next pro-
cessing operators to apply. Then, she investigates the results again and continues 
to modify operators and adds new operators until the original task is solved and 
the final result is produced.

2.	 After a (sometimes complex) Spark program has been developed, it is executed 
again and again with varying parameter values such as thresholds for filters, 
attributes to extract, or even flags to apply different algorithms/processing steps.

3.	 Often, different data scientists work with the same input data. Thus, they all have 
to apply the same preprocessing steps (data cleaning, transformation, etc.) and 
the different jobs share common sub-tasks which consume computing resources 
although they all produce the same result. Unfortunately, this sharing (e.g., by 
materializing intermediate results) is not done automatically and transparently.

From these scenarios we can conclude that (parts of) the same programs are run 
over and over again and that they often take application parameters that affect the 
runtime of the resulting Spark jobs. By monitoring the execution of these jobs and 
collecting information we can try to construct a prediction model. Furthermore, to 
reduce the runtime and the resource utilization of these jobs, intermediate results of 
the operations should be shared among different jobs, i.e., an intermediate result that 
has been computed before and is needed frequently should be materialized in one, 
and be reused in other jobs. To shift as much responsibilities from the data scientist 
into the processing engine, the decision for materialization, the actual materializa-
tion on persistent storage as well as the reuse must be performed transparently with-
out any user interaction. For this, a decision model based on the costs of operators 
is needed and to predict these costs, it is imperative to consider also the application 
parameters beside the allocated resources.

Building a prediction runtime model for a Spark job is non-trivial [27], because 
it depends on numerous factors such as the input data cardinalities, content and dis-
tribution of data, allocated processing resources, current cluster utilization, and the 
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configuration parameters of the Apache Spark platform (more than 210 parameters 
[2]). Taking application parameters into account adds to the complexity of building 
the runtime model. To the best of our knowledge, all previous modeling methodolo-
gies for runtime prediction of Spark jobs use only the data size, Spark configuration 
and allocated resources without the application parameters. This results in unaccep-
table variance between the predicted and the actual runtimes. To address this prob-
lem and improve the prediction accuracy, we present in this study a gray-box runt-
ime modeling methodology of Apache Spark jobs that incorporates the application 
parameters. This methodology consists of the following two steps: 

1.	 White-box modeling: We study the influence of each application parameter on 
the RDD cardinality while varying the application parameter values and estimate 
the RDD cardinality for each operator.

2.	 Black-box modeling: We run experiments with the estimated RDD partition sizes 
and the allocated resources to obtain the runtime metrics for each task, from 
which we then make observations to build our prediction model.

The white- and black-box modeling complement each other, resulting in a two-step 
gray-box modeling methodology. The white-box model predicts the RDD sizes with 
respect to the application parameters. The predicted RDD sizes are then taken as 
input to the black-box model for predicting the runtime of tasks and hence the job 
runtime.

The remainder of the paper is organized as follows: Sect.  2 discusses related 
work. Section  3 presents background concepts including the Spark job execution 
model. In Sect. 4 we explain our gray-box modeling methodology for runtime pre-
diction, while we describe in Sect. 5 in detail how to construct a gray-box model 
for a Spark job. As one of the use cases of this model we describe the materializa-
tion and reuse of intermediate job results in Sect.  6. Results of our experimental 
evaluation are presented in Sect. 7. Finally, Sect. 8 concludes the paper and gives an 
outlook.

2 � Related work

2.1 � Runtime prediction modelling

Many works such as [14, 20, 24, 26, 31, 32] have been proposed recently to observe, 
analyze and predict the runtime performance of large-scale data processing plat-
forms. To predict the runtime of MapReduce jobs, Starfish [14] introduced a self-
tuning framework on top of Hadoop that applies an analytical approach to observe 
and analyze runtime metrics of jobs by running them on a fraction of the data and 
to optimize system performance by tuning its configuration options. PREDIcT pro-
posed in [20] is an experimental methodology to predict the runtime of a class of 
iterative algorithms like graph processing, semi-clustering and ranking implemented 
on the Hadoop MapReduce platform. Its main idea is to predict the number of 
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iterations and build the runtime model of each from sample runs. A bounds-based 
performance model is presented in [31] to predict the execution time of MapReduce 
jobs running on heterogeneous clusters. In [26], the authors introduced a simulation-
driven model to predict the execution time of Spark jobs by simulating their execu-
tion on a fraction of the data and collecting their execution metrics like memory 
consumption, I/O costs and runtime. Another approach is presented in [16] which 
models the memory behavior of Spark jobs based on a collection of experiments. 
Runtime prediction models were presented and a task co-location strategy proposed 
to improve system throughput. Ernest [24] is a large-scale performance prediction 
framework that presents a general runtime model for Spark jobs. For each Spark 
job, Ernest runs it with various configurations on a fraction of the data to build its 
model. Doppio [32] proposed a runtime prediction model for Spark jobs by study-
ing the I/O impact on in-memory cluster computing frameworks and identified I/O 
overhead as a dominant bottleneck in such frameworks. Beside these studies, many 
others focused on constructing runtime models based on statistics [7, 17, 21].

2.2 � Reuse and materialization

Reusing partial results has been extensively studied for data warehouses and rela-
tional databases, such as [8, 12, 13]. Early works focusing on reusing materialized 
views (or derived relations) are [15, 29] as well as [4] or [23] investigating the view-
matching problem.

In [19] the Hawc architecture is introduced that extends the logical optimizer of 
an SQL system and considers the query history in order to decide which intermedi-
ate result may be worth materializing to speed up further executions – even if this 
would create a more expensive plan which, however, is executed only once.

For Hadoop MapReduce the MRShare framework  [18] merges a batch of jobs 
into a new batch of jobs so that groups of jobs can share scans over input files and 
the Map output. Other projects such as ReStore [9], PigReuse [5], or [25] are similar 
to MRShare in the sense that they all merge a batch of scripts into a single plan or 
share the intermediate results after a map phase. In PigReuse, the optimization goal 
is to minimize the number of operators and the number of generated MapReduce 
jobs - but they do not analyze the total cost of the generated plans.

For Spark several additional frameworks were created to support data ana-
lysts with their tasks. KeystoneML [22] is able to identify expensive operations in 
machine learning pipelines on Big Data platforms like Apache Spark. They employ 
a cost model using cluster costs (such as network bandwidth, CPU speed, etc.) and 
operator costs to estimate total execution costs. From this physical operators for a 
logical plan are chosen and materialization points are determined. RDDShare [6] is 
also based on Spark and simply identifies common operators in a batch of Spark 
programs and merges them into a single program.

The presented performance prediction models focused on the impact of data size, 
platform configuration settings and allocated resources like memory consumption, I/O 
overhead and network bandwidth with the goal of choosing optimal cluster resource 
configuration and increasing the cluster throughput. However, none of these considered 
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the application parameters which can affect the runtime performance significantly. Fur-
thermore, we not only use our prediction model to manage cluster resources, but also 
as input for a cost based decision model to decide which intermediate results should 
be materialized and to be reused, rather than only merging a batch of programs into a 
single job.

3 � Background

A Spark job consists of one or more stages [26], each consisting of multiple homoge-
neous tasks that run in parallel and process various RDD partitions of the same data 
source. The first stage reads data blocks from HDFS and loads them into memory as 
RDD partitions. Then for each RDD partition, it launches a task to process it. The level 
of stage execution parallelism is determined by the number of cores allocated for run-
ning the Spark job:

The file block size is set using the dfs.block.size option when storing the file 
in HDFS. The number of executors and the number of cores per executor are set, 
when submitting the Spark job, using the num-executors and the executor-
cores options respectively. Theoretically, the total execution time of a stage is as 
follows:

Practically, however, the program driver makes an unbalanced distribution of tasks 
among cores:

4 � Gray‑box modeling methodology

To develop a comprehensive runtime model for Spark jobs we first study the relation-
ship between its application parameters and the RDD sizes (white-box modeling). We 
then develop the runtime model of each task individually regarding its input RDD par-
tition size and its allocated resources (black-box modeling). Figure 1 shows a general 
overview on the gray-box modeling concept.

(1)#AllocatedCores = #Executors × #CoresPerExecutor

(2)Runtime(Stagei) = Runtime(TaskOfStagei) ×
⌈

#TasksPerStage

#AllocatedCores

⌉

(3)Runtime(job) = Startup +

#Stages
∑

i=1

Runtime(Stagei) + Cleanup
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4.1 � White‑box model

A Spark job consists of multiple stages running sequentially. Each stage takes an RDD 
as input (RDDin) and produces another as output (RDDout). The RDDout of a stage 
will be the RDDin to the one immediately after it. Knowledge of the size of RDDin and 
the selectivity of all operators that affect the RDD size is required to predict the size of 
RDDout in terms of the number of tuples and the tuple size.

Figure  2 shows an example of a stage containing three operators: two filters and 
one projection. p1, p2, and p3 are application parameters that affect the RDDout size. 
Assuming that the selectivity of each filter operator and the size of the projected col-
umns are known, the resulting RDDout size can be predicted by estimating the output 
RDD size of each operator in turn (RDD1 -> RDD2 -> RDDout).

(4)#RDDPartitionTuples =
#RDDTuples

#TasksPerStage

(5)#RDDPartitionTupleSize =#RDDTupleSize

Fig. 1   Overview of gray-box modeling

Fig. 2   Example of Apache Spark stage
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Application parameters can be categorized by their influence on the RDD sizes and 
runtime:

Condition parameters Tuning these parameters affects the selectivity of filter 
operators and the cardinality of joins. In the example shown in Fig. 2:

In many cases, the selectivity of some operators is indirectly influenced by other 
parameters:

Field selection parameters Tuning these parameters affects RDD tuple sizes. Exam-
ples are map and projection (in Spark SQL). Predicting tuple size is important in 
estimating the required memory size, shuffling runtime, tuple compression and other 
performance metrics.

Workflow control parameters These parameters, like selecting processing algo-
rithm or the number of iterations in a PageRank application, affect the RDD line-
age and therefore the total job runtime.

4.2 � Black‑box model

The main allocated resources considered during the black-box modeling, in 
addition to the size of the input RDD partition, are the allocated memory which 
affects the rate of data spill to disk and the number of allocated executor cores 
that run concurrently and compete for shared executor resources like disk, mem-
ory and network. To build the runtime model of each task, we run the job sev-
eral times with varying memory allocation, cores per executor and RDD partition 
sizes. We then collect runtime metrics of tasks using SparkListener [1] and ana-
lyze the metrics using regression analysis methods.

A noteworthy phenomenon is that the runtime of tasks may vary significantly 
on multiple runs on the same resources and with identical input RDD partitions. 
That is due to presence of straggler tasks [28] and it affects the prediction model. 
Analyzing the causes of straggler tasks and their impact is out of the scope of this 
work. However, to deal with this uncertainty, we increase the data size to increase 
the number of tasks in each job and take their average runtimes.

5 � Building the gray‑box model

This sections presents how to construct a gray-box model in detail. It then dem-
onstrates the model building with real-world applications: WordCount, PageRank 
and K-Means.

(6)#RDD1Tuples = #RDDinTuples × Filter1Selectivity(p1)

(7)#RDD2Tuples = #RDD1Tuples × Filter2Selectivity(p1, p2)
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5.1 � Building the white‑box model

We discuss general rules for constructing the white-box model. The following are 
three ways to build the model depending on our knowledge of the application:

Knowledge of operators This is the approach to building the model when we 
have an understanding of the application, knowledge of how the operators work 
and collection of the data properties. Therefore, for any given application param-
eters and their values, such prior knowledge allows for building two models with 
which to predict two cardinalities: one in terms of the number of tuples (i.e., ratio 
of the number of tuples in output RDD partition to the number of tuples of input 
RDD partition) and the other in terms of the average tuple size (i.e., ratio of the 
average size of tuples in output RDD partition to the average size of tuples in 
input RDD partition). The output of these two models are used for the black-box 
modelling.

Observing history of runs The second approach is to observe previous applica-
tion runs with different application parameters and use it to train the two models 
for predicting the two cardinalities mentioned in the first approach. This approach 
is useful when we do not know the characteristics of the data or the workings 
of the operators. It differs from the previous one in building the two models: 
while the models in the first approach are built from our knowledge of the opera-
tors, this approach builds the models from the history. From the history runs, we 
obtain numerous values of all application parameters and the corresponding car-
dinalities in terms of the number of tuples and the average tuple size. We start by 
computing the standard correlation coefficient between all application parameters 
and each of the two cardinalities of each operator individually. Then we select the 
application parameters as features of the corresponding model based on their high 
correlation with a cardinality, which is the label. That way, we avoid incorporat-
ing features that do not have impact on the label into the model. Next, we develop 
the two linear regression models for the two cardinalities. The first model takes 
the (high-correlation) application parameters as features and the cardinality of the 
number of tuples as labels, while the second model takes the (high-correlation) 
application parameters as features and the cardinality of average size of tuples as 
labels. For any given values of application parameters, we use these two models 
to make predictions of the RDD sizes in terms of the number of tuples and the 
average tuple size.

Training The third approach is to generate a training data and use it to train the 
two models discussed previously. This approach is useful when we neither have 
a history of runs nor know the characteristics of the data or the workings of the 
operators. We run the application multiple times while tuning the values of appli-
cation parameters and observe the RDD sizes and study the correlation between 
them, similar to observing history of runs.
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5.2 � Building the black‑box model

We run the job multiple times, varying RDD partition sizes and allocated 
resources. Then we build the runtime model based on the observed runtime met-
rics. The difference in run configurations is based on:

–	 RDD partition size: The simplest way to modify it is to change the HDFS block 
size by creating multiple versions of the input file with various block sizes.

–	 Cores allocated per executor: It is set using the –executor-cores Spark con-
figuration option.

–	 Memory allocated per core: It is set using the –executor-memory Spark 
configuration option.

5.3 � Use cases

We demonstrate how to apply our approach on three real-world applications and dis-
cuss the influence of their application parameters on their runtime.

5.3.1 � WordCount

Our first use case is WordCount. Assume that users are allowed to select a group of 
letters with which to run WordCount jobs via a web portal. The result is the number 
of words in the source file that do not begin with any of the letters selected. The 
only application parameter is the list of letters. One filter operator is injected in the 
first stage’s lineage of operators to filter out words that start with the selected letters. 
Figure 3 depicts the lineage of operators in the WordCount application with their 
RDDs.

To build the white-box model, RDD sizes are predicted based on the selected 
letters. The cardinality models of all operators in the lineage are static and can be 
observed during running sample tests except the cardinality model of the filter, 
which is dynamic and influenced by the selected letters. The white-box model accu-
rately predicts the number of FilteredRDD (cf. Fig. 3) tuples and their average size 
for all possible 226 combinations of selected letters. 226 is the powerset of the set of 

Fig. 3   A WordCount lineage with an application purpose filter
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all English letters and comprises all possible lists of letters (i.e., application param-
eters). The relative frequencies of the first letters of words in the English language 
are known in advance and used to predict the number of tuples in FilteredRDD. 
Statistics of length of words based on their first letter (obtainable from a 16MB 
MySQL English dictionary database [3]) are used to predict the average tuple size of 
FilteredRDD.

Let us assume that a user selects the list {a, f, h, n} as application para-meter. 
From the statistics, the relative frequencies of words that start with a, f, h and n are 
11.68%, 4.03%, 4.20% and 2.28% respectively. Thus:

–	 Ratio of number of FilteredRDD Tuples: 

–	 Average size of FilteredRDD tuple: 

Where frequency is the relative frequency of words that start with the corresponding 
letter and WordAverageSize is the average length of words that start with the same 
letter. The cardinality model can be enhanced by including statistics of the most fre-
quently occurring words and other useful distributions of English words. Although 
this increases the model accuracy, it also increases the modeling efforts and time. In 
this use case, the selectivity of each operator is as follows:

–	 flatMap: splits the sentence into a list of words. Assuming that the average num-
ber of words per line is known to be T, the selectivity of this operator is T x 
100%.

–	 filter: the selectivity of this operator is dynamic.
–	 mapToPair: maps each word to a key-value pair. Its selectivity is 100%.
–	 reduceByKey: the resulting number of RDD tuples equals the number of unique 

words in the source file, which can be estimated even without knowing the num-
ber of tuples input to this operator.

After defining the cardinality model for each operator, we predict the initial RDD 
size. From the statistics [3], the average word length is 8.12. The average tuple 
size of the initial RDD is then the summation, in bytes, of the average word length 
(8.12) and newline delimiter (1). The number of its tuples equals the source file size 
divided by 9.12.

To build the black-box model, we run the WordCount job multiple times, varying 
RDD partition sizes and allocated resources. Each experimental dimension is varied 
to have at least three values like {32 MB, 64 MB and 128 MB block size}, {1, 2 
and 4 cores per executor}, {1GB, 2GB and 4GB allocated memory}. To cover all 

1 − (11.68% + 4.03% + 4.20% + 2.28%) = 79.81%

∑NonFilteredLetters

i=�b�
(frequency(i) ×WordAverageSize(i))

∑NonFilteredLetters

i=�b�
frequency(i)

=

∑NonFilteredLetters

i=�b�
(frequency(i) ×WordAverageSize(i))

79.81%
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possibilities, we run the job 27 times and the average runtime model of each task is 
extracted by analyzing the runtime logs provided by SparkListener [1].

Further model enhancements need to be performed to improve the model accu-
racy. For example, the runtime of Stage 1 is determined by sizes of RDD1 and Fil-
teredRDD, while the runtime of Stage 2 is influenced by the size of RDD2. Also, 
the runtime of flatMap and filter operators are determined only by RDD1. Although 
we predict the size of FilteredRDD from the size of RDD1 based on the application 
parameters, the runtime of reduceByKey operator is influenced only by the size of 
FilteredRDD. By taking the whole of Stage 1 as a black-box, we would not be able 
to predict the size of FilteredRDD from that of RDD1. To overcome this, the first 
stage is divided into two parts, as shown in Fig. 3, and runtime models are devel-
oped for both parts separately by injecting a modeling purpose mapPartitions 
operator after the filter. The aim of this injected operator is to profile the task runt-
ime by sending the current timestamp to a central storage unit prepared for modeling 
purposes [11]. The runtime of the filter is profiled and its runtime cost model is 
built. The total job runtime decreases when the user selects more letters, while the 
time required to perform filtering operation increases. In this example, it takes just 2 
ms more to filter 25 letters (in 1GB HDFS block) than to filter only one.

5.3.2 � PageRank

The second use case is PageRank. We illustrate the construction of its white-box 
model. We do not discuss its black-box model as it is similar to the black-box model 
construction described earlier in the WordCount application. Unlike the WordCount 
use case where the application parameter (list of selected letters) is a condition 
parameter, the application parameter in the PageRank use case is a workflow con-
trol parameter: the number of iterations. The PageRank application consists of only 
one job. The job is constituted of two static stages at the beginning (i.e., the number 
of stages is constant), one static stage at the end and dynamic stages in the middle 
(i.e., the number of stages varies). The number of dynamic stages is determined by 
the number of iterations: one iteration results in one dynamic stage, two iterations 
result in two dynamic stages and so on. However, varying the number of iterations 
does not change the RDD sizes or cardinalities. It only influences the number of the 
dynamic stages. The runtimes of the dynamic stages are equal because the operation 
is the same, with the same input data size and allocated resources.

5.3.3 � K‑Means

Our third use case is K-Means. For this clustering application, the number of clusters 
(i.e., K) is the application parameter. Similar to PageRank, the application parameter 
is a workflow control parameter. However, unlike in PageRank where the number 
of iterations influence the number of stages, in K-Means, it influences the number 
of jobs. There are eight static jobs at the beginning of the application, one static job 
at the end of the application, and dynamic jobs in the middle. Each of the dynamic 
jobs consists of two stages. Secondly, while an iteration in PageRank maps to a stage 
(x iterations result in x dynamic stages), it is not as simple and straightforward with 
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respect to jobs in K-Means. Thirdly, the runtime of dynamic stages in PageRank is 
not influenced by the application parameter. But in K-Means, the application param-
eter influences the runtime of dynamic jobs linearly (in addition to its linear cor-
relation with the number of iterations). This results due to the influence of K on the 
cardinality (and thus the output RDD) of one of the operators in the job. Ultimately, 
that influences the runtime of the part of the job following the output RDD of the 
operator.

6 � Using the prediction model for cost‑based recycling

While the runtime prediction is crucial for scheduling jobs and allocating enough 
(but not too many) resources, it can be applied in combination with a cost-based 
decision model to identify operators whose results should be materialized for shar-
ing and reuse.

Figure 4 shows the DAG of a job where the width of a node’s box represents its 
processing time. If, e.g., the result of the second join operator is materialized, subse-
quent executions of dataflow programs that also contain this part in their respective 
DAG will benefit by only having to load the already present result from disk.

In [11] we introduced the decision model together with its integration in out Pig-
let  [10] engine. Piglet translates Pig Latin scripts into Spark programs and instru-
mented the generated code to gather profiling information. The profiling data was 
used as input for the decision model. With the prediction model of Sect. 5 we are 
able to apply the decision model, without having to gather profiling information first.

The goal of the decision model is to increase the benefit for Spark jobs. The ben-
efit is the execution time a job saves when reusing a materialized result from a pre-
vious job, as depicted in Fig.4. Alternatively, one can also regard the benefit as the 
amount of money saved by needing to rent fewer machines or less resources in a 
public cloud. To calculate the benefit, the decision model is based on the costs of 
operators which are taken from the prediction model described in Sects. 4 and 5.

The decision model is built around materialization points:

Definition 6.1  A materialization point M is a logical marker in a DAG denoting a 
position for the decision model to write or load the materialized results and thus, 
refers to the output of an operator.

Fig. 4   Runtime difference for loading materialized result
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To decide the result of which operator should be materialized, we introduce the 
notion of the benefit:

Definition 6.2  The benefit of a materialization point Mi is the execution time saved 
when loading materialized data instead of recomputing it. It can be expressed as 
in Eq.(8).

Here t�����(Mi) is the cumulative execution time of all operators in the prefix of oi 
from the source operator to Mi , whereas t����(Mi) denotes the time required to load 
the materialized data of Mi . We have to distinguish two cases: the prefix of Mi does 
not contain a join (or similar) operator, or it does. In the first case, t�����(Mi) can be 
calculated as in Eq.(9). Otherwise, if there is a join operator j, only the longest exe-
cution time of the input branches k1(j),… , kn(j) of j is considered for t�����(Mi):

The time required to load existing materialized data for Mi from disk depends on the 
cardinality of Mi as well as the hardware-dependent factor bps, denoting the number 
of bytes that can be read per second. The time to read the materialized result of Mi is 
calculated as:

6.1 � Decision model

The decision model has three dimensions to consider when choosing a materializa-
tion point to actually write to persistent storage. 

(1)	 Which materialization points should be selected for further investigation?
(2)	 From the list of materialization points resulting from (1), which of those should 

be materialized?
(3)	 If the persistent storage is limited in space, decide which existing materialized 

result has to be deleted.

Please note that due to space limitations, we only briefly describe one strategy 
for (2) and refer the reader for more details to [11]. Furthermore, we consider the 

(8)t����� ��(Mi) = t�����(Mi) − t����(Mi)

(9)t�����(Mi) =
∑

o∈���� ��(Mi)

t����(o)

(10)
t�����(Mi) = max{t�����(k1(j)),… , t�����(kn(j))} +

∑

o ∈ ���� ��(Mi)

∧o ∉ ���� ��(j)

t����(o)

(11)t����(Mi) =
����(oi) ⋅ �����(oi)

bps
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dimension of cache eviction as out-of-scope of this paper and trivially assume an 
infinite cache.

(1) Selection Obviously, the materialization points belonging to sources and sinks 
do not need to be considered further as they just materialize the original data or the 
data that is stored anyway. Therefore, subsequent operations only need to consider 
materialization points that do not belong to a source or sink operator.

(2) Ranking materialization points A ranking strategy is needed to select one or 
more materialization points from the list of candidates. An obvious strategy is to 
always materialize the materialization point that yields the highest benefit to the 
program.

However, using only the benefit might not be enough as it does not consider if 
that materialization point will be ever reused. Thus, one could also consider the 
probability for reuse in combination with the achievable benefit, using a e.g., Sky-
line approach. The probability of one operator following another one can then be 
modeled using a Markov chain.

(3) Cache eviction In practice, the space occupied by materialized results needs 
to be limited. Thus, when selecting a new Mj

i
 for a job j, one might have to evict an 

older Mk
o
 . To decide which to evict one can employ algorithms like LRU, LFU, etc. 

well-known from traditional database systems. As these do not account for the ben-
efit these Ms bring, a modified ARC or KNAPSACK may help. However, the cache 
eviction strategies are not in the scope of this paper and will be investigates in future 
work.

7 � Evaluation

We performed experiments on our Spark cluster to evaluate the proposed modeling 
methodology. The 16-node cluster has the following specifications per node: Intel 
Core i5 2.90 GHz, 16 GB DDR3 RAM, 1 TB disk, 1 GBit/s LAN. The cluster runs 
Hadoop 2.7, Spark 2.0.1, Java 8u102, and Apache YARN on top of a Hadoop Dis-
tributed File System (HDFS).

In this evaluation, we first demonstrate the accuracy of the prediction model and 
then show that the materialization decision significantly improves the overall execu-
tion time.

7.1 � Prediction model

7.1.1 � WordCount

To evaluate the white-box model, we ran the job with various application parameter 
values 26 times. An empty list was first passed as a parameter to J1. Each of the sub-
sequent jobs added one additional letter to the list in turn, e.g., J2 {’a’}, J3 {’ab’}, J4 
{’abc’} and so on.

We built the white-box model to predict the RDD sizes across the operator line-
age. Figure 5 shows the experimental results for the white box model.
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To evaluate the black-box model, the job was executed 20 times with randomly 
selected values of data sizes {1–2 GB}, allocated memory {1, 2, 4 GB} and allo-
cated cores {1, 2, 4} per executors. The results are shown in Fig. 6. Finally, we exe-
cuted 50 WordCount jobs with arbitrary values of application parameters, allocated 
memory {1, 2, 4 GB}, allocated cores {1, 2, 4} per executor on various source files 
(3-6 GB) stored in the HDFS with varying block sizes (64 and 128 MB). Figure 7 
shows the comparison between the observed actual runtimes and the predicted runt-
imes (which are calculated using our prediction model) of each job. The average 
prediction accuracy of the runtime model for this use case was 89.84%.

7.1.2 � PageRank

Our approach to constructing the white-box model in PageRank is based on history. 
We ran the PageRank application on a data set of 5 million pages with three itera-
tions, which resulted in three iterative stages, in addition to the three static stages 

Fig. 5   (Left) Number of RDD tuples resulting from filter and mapToPair operators. (Right) Number of 
RDD tuples resulting from reduceByKey operator

Fig. 6   Black-box model evaluation results
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(ref. 5.3.2). The runtime metrics for this job served as our history, from which we 
predicted the application runtime for different number of iterations. Then we dou-
bled the input data size and made predictions of the application runtime for different 
number of iterations on the same allocated resources. Figure 8 depicts our prediction 
accuracy after comparing the actual runtimes with the predicted runtimes using our 
prediction model. F1 and F2 represent the initial and the doubled data sizes respec-
tively. The figure shows predictions for the initial data size with 10 and 20 iterations, 
and for the doubled data size with 1, 10 and 20 iterations. Our average prediction 
accuracy for this use case was 95.72%. The historical run took around 4 min, which 
is 5.90% of the total time taken by just these few actual runs (67.7 minutes).

7.1.3 � K‑Means

We carried out evaluation for K-Means using a dataset containing 2 million points 
with 20 dimensions. We followed the training approach for this use case to construct 
the white-box model. The number of iterations is influenced by the number of clus-
ters K. Thus, we ran the experiments while varying the values of K and allowed the 
application to run for as many number of iterations as K results into. As mentioned 

Fig. 7   Gray-box model evaluation results

Fig. 8   Application runtime prediction for PageRank
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1  https​://www.gdelt​proje​ct.org/.

earlier, the correlation between K and the number of iterations, as well as the cor-
relation between K and the runtime of the dynamic job (i.e., iteration) are both lin-
ear. However, for some instances of K, different runs of the application with the 
same value of K results in slightly different number of iterations. We made runs 
with K=10 and K=50 in the training phase. Figure  9 shows the accuracy of our 
prediction of both the number of iterations and the runtime of the iterative job from 
K after compering the actual number of iterations and runtimes with the predicted 
number of iterations and runtimes using our prediction model. With regards to runt-
ime of the iterative job, we realized that the operator whose cardinality is influenced 
by K in the iterative job is the mapPartition operator. The mapPartition is the first 
operator in the job. That way, K influences the output RDD of the operator, and ulti-
mately, the job runtime. In addition to the iterative job(s), there are eight static jobs 
at the beginning of the application and one static job at the end of the application. 
Based on that, we made predictions of the application runtime on the same allocated 
resources for different instances of K as shown in Fig. 10. We achieved an average 
prediction accuracy of 85.62%. The training took around 6.5 min, which is 13.97% 
of the total time taken by just these few actual runs (46.50 min).

To study the impact of the unbalanced distribution of tasks among cores on our 
modeling methodology, we ran additional experiments that showed the following 
outcomes:

–	 The variance between the minimum and the maximum allocated tasks per core 
did not exceed 12% even when the average number of tasks per core was 40.

–	 Although, theoretically, uneven distribution of tasks is expected to decrease the 
model accuracy, it also reduces the impact of variance between tasks runtime 
which eliminates the impact of stragglers. We analyzed the affect of this in the 
presented applications by comparing the actual runtime of stages with the pre-
dicted runtime of them (by applying Equation 3) and realized that the accuracy 
of our prediction model was reduced in the worst case by 7.23%.

7.2 � Materialization

As we already demonstrated the quality and applicability of the cost-based deci-
sion model for materialization in  [11], we want to show here the results based on 
the prediction model. To do so, we took two exemplary Spark programs, depicted 
in Fig.11. Program GDELT loads a 45GB CSV file G from the GDELT1 project and 
performs basic preprocessing (projection, filtering), computes average tone of news 
published per website, and returns only those with an average tone greater than a 
threshold provided as input parameter. The indicated materialization points are the 
ones used in Fig. 13. The Weather program loads weather observations O and sensor 

https://www.gdeltproject.org/
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information S from the SRBench [30] project. The two input files are filtered accord-
ing to provided input parameters and joined by sensor. The aggregation counts the 
number of observations per sensor.

We used the prediction model to obtain operator costs (runtimes) as well as 
their expected result sizes. Based on these values, we used the MaxBenefit strat-
egy to find which operators should be materialized. Figure 12 compares the exe-
cution times of the two scripts without any materialization (plain), when writing 
the materialized result to disk (materialize), and when reusing the materialized 
data in the same program (reuse). As one can see, the execution time is drasti-
cally reduced when we are able to reuse previously computed and materialized 
intermediate results. Writing the materialized data has a small impact on the 
execution time, which however is amortized by the time saved when reusing the 
the materialized data. Figure13 exemplary shows for the GDELT program that 

Fig. 9   (Left) Prediction of Number of Job Iterations from Number of Clusters. (Right) Prediction of Out-
put Data Size from Number of Clusters

Fig. 10   Application runtime prediction for K-Means

Fig. 11   Depiction of the two Spark jobs used to evaluate the materialization decision



837

1 3

Distributed and Parallel Databases (2020) 38:819–839	

the runtime prediction for the materialization points from Fig.11 in combination 
with the cost model does not produce wrong decisions. We rather predict slightly 
longer execution times for materialization points highlighted in Fig.4 and there-
fore a smaller (or no) benefit, that are, however, not too far off. The reason for the 
higher prediction has several reasons. One is the calibration of the read and write 
performance from and to HDFS, and of course the measurements of the operator 
costs, which are pessimistic and orientated on the slowest task. This avoids wrong 
decisions were the model decides to materialize a result that would actually pro-
duce longer execution times when reusing that data. 

8 � Conclusion and Outlook

In this paper, we presented a gray box modeling methodology for runtime predic-
tion of Apache Spark jobs and its application for reusing intermediate results of 
such jobs, for which a cost-based decision model is used. The prediction model con-
sists of a white-box model and a black-box model. The white-box model uses prior 
knowledge to predict the sizes of (intermediate) RDDs in each stage under varying 
input parameter values, whereas the black-box model is constructed for each task 

Fig. 12   Impact of materializing (middle) and reusing (right) materialized results compared to normal 
execution (left)

Fig. 13   Predicted versus actual execution time of materialization points of GDELT program



838	 Distributed and Parallel Databases (2020) 38:819–839

1 3

by observing runtime metrics with varying allocated resources and input partition 
sizes. The decision model is based on the cost information taken from the gray-box 
model and identifies operators in a job whose result should be materialized in order 
to share it with other jobs or future executions of the same job.

In the experimental evaluation of the prediction methodology, we showed that 
the model achieves a high prediction accuracy of up to 83–94%. Furthermore, we 
showed that the information is very useful for the materialization and a drastic runt-
ime improvement could be achieved when reusing previously computed intermedi-
ate results.

In future, we plan to develop a scheduling methodology based on the developed 
runtime models in this study to improve resource utilization and increase the overall 
system throughput. Additionally, the developed runtime models in this study will be 
used in a simulation-based prediction approach to analyze system performance (e.g., 
throughput, latency average and the utilization of cluster resources) and to answer 
what-if questions about system configuration. Currently, the materialization deci-
sion model can only reuse results that were produced by the exact same lineage of 
operators with the same parameter values. This will be extended using a query con-
tainment approach to be able to decide that a materialized result can be reused by 
another job if that new job, e.g., was started using different parameter values.
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