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A B S T R A C T

Motivated by the ever-growing demand for high-quality optical systems, the

field tracing approach becomes increasingly significant in physical-optics mod-

eling. Instead of employing a universal Maxwell solver for the whole system, we

follow the concept of field tracing, to decompose the system into regions and

apply various regional Maxwell solvers. The field solvers may work in the spa-

tial (x) or the spatial frequency (k) domain. To enable the connection of different

solvers and functions, the transforming between the x and k domains is a crucial

step.

Since the Fourier transform gives the connection between these two domains,

it becomes paramount to optimize the Fourier-transforming step. The Fast Fourier

Transform (FFT) constitutes a huge improvement on the original Discrete Fourier

Transform (DFT), since its (the former’s) numerical effort is approximately linear

on the sample number of the function to be transformed. However, this orders-

of-magnitude improvement in the number of operations required can fall short

in optics, where the tendency is to work with field components that present

strong wavefront phases. In this work, we propose two innovative Fourier trans-

form techniques. The Semi-analytical Fourier Transform (SFT) is a rigorous ap-

proach without any approximation, in which we avoid the sampling of quadratic

phases, handling them analytically instead. The homeomorphic Fourier trans-

form (HFT) is an approximate approach, but highly efficient and accurate for

fields with intense wavefront phases.

Furthermore, we investigate these Fourier transform techniques (FFT, SFT,

and HFT) applied to the problem of light propagation, to verify their influence

on the system modeling. Consequently, the unified free space propagation oper-

ator is concluded. All proposed techniques in this thesis are implemented and

diverse numerical examples are presented to illustrate their vast potential.

iii



Z U S A M M E N FA S S U N G

Motiviert durch die steigende Nachfrage an hochqualitativen optischen Sys-

teme wird der “Field Tracing” Ansatz stetig signifikanter im Bereich der physikalisch-

optischen Modellierung. Anstatt einen allgemeinen Lösungsalgorithmus für das

gesamte System zu verwenden, folgen wir den Ansatz des “Field Tracings”, bei

dem das System in verschiedene Regionen aufgeteilt und anschließend für jede

Region ein passender “Maxwell Solver” verwendet wird. Diese Algorithmen

können für die Raum(x)- oder die Raumfrequenz-Domäne (k) definiert sein. Um

verschiedene Lösungsalgorithmen verbinden zu können sind entsprechende Trans-

formationen zwischen x- und k- Domäne von entscheidender Bedeutung.

Da die Fourier-Transformation bekanntermaßen die Verbindung zwischen diesen

beiden Domänen beschreibt, ist es entscheidend diese Art der Operationen zu

optimieren. Die “Fast Fourier Transformation” (FFT) stellt dabei eine deutliche

Verbesserung gegenüber der originalen “Discrete Fourier Transform” (DFT) dar,

weil der numerischen Aufwand von erstere approximiert linear mit der Zahl

der verwendeten Sampling-Punkten der zu transformierenden Funktion steigt.

Allerdings kann diese um Größenordnungen reduzierte Anzahl an notwendi-

gen Operationen für Anwendungen im Bereich der Optik zu kurz greifen, da

dort tendenziell eher mit Feld-Komponenten gearbeitet wird, die starke Wellen-

fronten aufweisen. In dieser Arbeit stellen wir zwei neue, innovative Fourier

Transformationen vor. Die “Semi-Analytical Fourier Transform” (SFT) ist ein

rigoroser Ansatz, bei welchem das Absamplen der quadratischen Phase ver-

mieden und diese stattdessen analytisch berechnet wird. Die homeomorphische

Fourier Transformation (HFT) ist ein approximativer Ansatz, der allerdings hoch

effizient und akkurat für Felder mit ausgeprägter Wellenfront Phase verwendet

werden kann.

Außerdem untersuchen wir diese Fourier-Trasformationen (FFT, SFT, HFT)

angewendet auf das Problem der Lichtpropagation, um ihren Einfluss auf die

Systemmodellierung zu klären. Folglich wird ein “Unified Free Space Opera-

tor” definiert. Alle vorgestellten Techniken in dieser Thesis sind implementiert

und diverse numerische Experimente werden präsentiert, um ihr Potenzial zu

verdeutlichen.
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1
I N T R O D U C T I O N

With the ongoing progress in optical manufacturing and processing, there is a

tendency for optical systems to become ever more miniaturized and precise [1].

This is accompanied by an increasing demand for the capability to model and

analyze these sophisticated systems [2–4]. Nowadays, conventional ray optics

is nowhere near enough to sustain the continued innovation in optical model-

ing and design [5–7]. Physical optics, based on Maxwell’s equations, enables

the inclusion of both electromagnetic field properties and wave properties, e.g.,

interference, coherence, and diffraction [8–10]. However, one widespread mis-

understanding has still not been completely overcome: that physical optics per-

forms slowly in simulation. This is due to the fact that physical-optics is still

associated in the field with the indiscriminate application of a single universal

Maxwell solver, e.g., the Fourier Modal Method (FMM) [11–14] and the Finite

Element Method (FEM) [15–17], to the modeling of an entire complicated sys-

tem.

During the last two decades, Wyrowski et al. have proposed and refined the

concepts of field tracing [18–20]. Driven by these innovative notions, fast physi-

cal optics becomes possible with, in some cases, even faster simulations than ray

tracing can provide. The field-tracing strategy overcomes the numerical draw-

backs of the single universal Maxwell solver by tearing the system into sub-

domains. As shown in Fig. 1, each sub-domain can be modeled by a different

method. For example, there is a system containing both gratings and lenses.

To know the fields before and after interaction with the different optical com-

ponents in the system, we can employ FMM for the gratings, the Local-Plane-

Interface Approximation (LPIA) [21, 22] for the lenses, and the free-space prop-

agation operator for the spaces in-between. In short, the field tracing concept

enables the smooth combination of different field solvers and achieves unified

modeling. Selected modeling techniques need to offer convincing arguments in

terms of both efficiency and accuracy. They may either work in the spatial (x)

3



4 introduction

domain or the spatial frequency (k) domain. As a consequence, we can see that

one technique in particular is frequently used in the field tracing diagram to

interconnect different field solvers, i.e., the Fourier transform operation. Typi-

cally, the modeling of sophisticated systems involves various field solvers and

requires multiple trips between the different domains [23, 24]. The transforming

between the x and k domains is a crucial modeling step, and the performance

of the Fourier transform technique will significantly influence the efficiency of

the simulation.

(ρ, ω)

(κ, ω)
P̃P̃

Ṽin
⊥ ⇒ Ẽz, H̃ Ṽout

⊥ ⇒ Ẽz, H̃

E, HVin
⊥ =

(
Ex, Ey

)
B1

B̃2

FκFκ F−1
κF−1

κ

Figure 1: Illustration of the physical-optics modeling of a light path by a field-tracing

diagram. P̃ indicates the free-space propagation operator in the k domain.

B and B̃ denote the physical response of an optical element in the x or in

the k domain respectively. The entire process includes the handling of all six

electromagnetic field components.

The Fourier transform is one of the essential mathematical tools for comput-

ing the frequency representation of a given function [25–27]. It is widely used

in different disciplines, like image processing, communications, astronomy, as

well as optical modeling and design. Considering the usage of the Fourier trans-

form in practice, we come to the question of the different computational imple-

mentations of the mathematical operation. The brute-force approach that stems

from simply discretizing the Fourier integral is commonly referred to as the

Discrete Fourier Transform (DFT) [28] and presents a complexity of O(N2) for

a function with N sampling points. The computational effort of the operation

is already greatly reduced by the Fast Fourier Transform (FFT) [29, 30], the

most famous version of which is the one introduced by Cooley and Tukey, and

which requires O(N log N) individual computations. However, even this orders-

of-magnitude improvement in the number of operations required can fall short
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in optics, where the tendency is to work with field components that present

strong wavefront phases: this translates, as per the Nyquist-Shannon sampling

theorem [31, 32], into a huge sample number; that is the case for a spherical

wave with moderately high numerical aperture (NA). Only the most paraxial

fields can be feasibly Fourier-transformed with the FFT. This caveat for the prac-

ticality of the FFT in optics comes as a consequence of the need to resolve the

complex amplitude with a 2π-modulo (or wrapped) phase [33–35].

Since the same numerical issue caused by the 2π-modulo phase also occurs in

typical optical simulation scenes, e.g., propagation of the light field, our initial

idea of the advanced Fourier transform is inspired by some well-demonstrated

algorithms. The optics community recognizes a series of papers based on the

Chirp Z-transform (CZT) [36–38]. This technique is established on the conve-

nient property whereby the quadratic phase term in the Fourier transform is

extracted. It can be used to advantage in terms of numerical effort since, ac-

cording to convolution theory, a single Fourier-transform operation can be re-

placed by a pair of Fast Fourier Transform steps, which, even together, require

a much lower sampling number. Another useful trick included in this tech-

nique is that the Fourier transform of a quadratic phase turns out to also be

quadratic. However, the discussion of this quadratic-phase trick tends to be lim-

ited to one-dimensional
(

x2) or, at most, separable problems
(

x2, y2), without

including the cross term xy which constitutes a prominent part of diffraction the-

ory. What’s more, in some cases, the scaling factors of the quadratic phase term

are deduced via the paraxial approximation (which mathematically translates

as using the Taylor expansion of a spherical phase around its center, instead of

the full spherical phase). Consequently, the performance and accuracy of any

approaches thus limited may suffer in the face of non-paraxial configurations.

Enlightened by this notable work, we introduce an algorithm, which we have

named “semi-analytical Fourier transform” [39], whose aim is to efficiently com-

pute the Fourier transform of a field without reverting to any approximations.

We describe the full derivation in Chapter 2, taking as our starting point the

mathematical definition of the Fourier transform and using convolution theory.

Although the semi-analytical Fourier transform is a rigorous algorithm and

enables certain relief of the sampling effort, its scope of application is restricted

to the problem caused by quadratic phases. This kind of advantage can promptly
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fail for fields with more general wavefront phases. Therefore, we explore, in

parallel, a different line of thought. From the mathematical point of view, the

Fourier-transform integrals are rapidly oscillating functions in the case of strong

wavefront phases. There is a mathematical method, working on the basis of an

asymptotic approximation to integrals of such rapidly varying functions, which

occasionally comes up in wave theory, applied usually with the aim of obtain-

ing an analytical solution to a specific problem (as is the case with the Debye

integral): the Method of Stationary Phase (MSP) [40, 41]. Jakob J. Stamnes al-

ready revealed the connection between waves and rays with the application of

the Method of Stationary Phase in his publication [42]. Performing the method

of stationary phase in the Fourier transform integral, we can see the Fourier

integral operator reduces mathematically to a pointwise operation, a behavior

of the Fourier transform which was already discussed by Bryngdahl in the con-

text of geometric transformations in optics [43]. In Chapter 3, the full derivation

process is presented. We named this fast, pointwise, approximated and accurate

Fourier transform operation “homeomorphic Fourier transform” [44, 45]. Differ-

ent from the semi-analytical Fourier transform, there is no constraint on the type

of the wavefront phase. Furthermore, to ensure a good level of accuracy, we also

derive the application conditions of the homeomorphic Fourier transform and

deduce some reasonable criteria for practical simulations.

Counting also the FFT, we have at our disposal three advanced Fourier trans-

form techniques in total. It is meaningful to utilize these novel tools when solv-

ing real modeling tasks. However, instead of more sophisticated systems, in the

present work we intend to start our investigation from the most fundamental

and widely used modeling scenario: the problem of light propagation in free

space (where, by “free space”, we understand any isotropic and homogeneous

medium) [46, 47]. It is one of the most crucial parts of physical-optics modeling

and design. Any improvements in accuracy and speed are helpful. On this prob-

lem, there are two rigorous Maxwell’s solvers, the method of the angular spec-

trum of plane waves (SPW) [48, 49] and the Rayleigh-Sommerfeld integral [50–

54], which work, respectively, in the k and the x domain. However, since both rig-

orous approaches are integral operators, when the propagating field presents an

intense wavefront phase, they would suffer from massive numerical effort [55–

57]. Thus, various approximate diffraction integrals were developed to deal with
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different specific types of configurations [58–61]. For instance, the Debye inte-

gral is commonly used to efficiently tackle the problem of focusing light in lens

design, and the far-field integral is used to calculate the diffraction pattern at

large distances [62, 63]. Despite both the derivation process and the application

scope of these approximate operators having already been discussed in the lit-

erature, the comprehensive understanding of their intrinsic connection is still

missing. In Chapter 4, we propose a unified free-space propagation operator

via the k-domain analysis alongside the advanced Fourier transform techniques.

The unified operator follows directly from the SPW approach by performing

an automatic selection of the Fourier transform techniques in different propa-

gation scenes. Also, the propagation between non-parallel planes is taken into

account [64, 65]. To drive the point home, we generalize and interpret several

well-known and influential diffraction integrals and propagation operators, e.g.,

the Debye integral [66, 67], the far-field integral [68, 69] and the Fresnel inte-

gral [70, 71]. We have proven that these diffraction integrals can be understood

as a special case of the unified propagation operator. All techniques drawn from

this work are implemented in the physical-optics modeling and design software

VirtualLab Fusion [72]. In each chapter, simulation results are presented along-

side the theoretical derivation to illustrate the potential of the Fourier transform

techniques as well as the unified free-space propagation operator.





2
S E M I - A N A LY T I C A L F O U R I E R T R A N S F O R M

In this chapter, we propose an algorithm, which we have named “semi-analytical

Fourier transform”, whose aim is to efficiently carry out the Fourier transform

of a field without reverting to any approximations. The full derivation process

is presented in section 2.1. The idea of the proposed method is to extract the

quadratic phase from the input field/spectrum with the help of some numeri-

cal evaluation techniques, e.g., the Gaussian Newton fitting method [73, 74] or

the Levenberg-Marquardt fitting method (LMM) [75]. By grouping the rest of

the phase alongside the amplitude part, we obtain the residual field whose sam-

pling effort must less than the original complete field. Then, the semi-analytical

Fourier transform (SFT) can be used to replace the regular FFT of the fully sam-

pled field by two FFTs of complex functions that require much fewer sampling

points. The sampling issue is entirely dependent on the residual field so that in

contrast to the regular FFT, the numerical effort is reduced significantly. Also,

by combing the regular FFT and the semi-analytical Fourier transform, we de-

velop the so-called hybrid semi-analytical Fourier transform algorithm, which

generalizes the usage of the semi-analytical Fourier transform to the field with

a one-dimensional quadratic phase. In section 2.2, we consider the application

of the algorithm to numerical simulations. Simulation results illustrate the vast

potential of the semi-analytical Fourier transform. Two fundamental simulation

scenes, free-space propagation of the higher-order Gaussian mode and calcula-

tion of the Ez component, are discussed in relation to the proposed technique.

On the other hand, different fitting methods are taken into account in the numer-

ical simulations to extract a polynomial of the second order from said general

phase component. According to the simulation results, we obtain a more pre-

cise awareness about how to reduce the sampling effort for fields with a general

wavefront phase.

9



10 semi-analytical fourier transform

2.1 theorem derivation

2.1.1 Semi-analytical Fourier transform

We assume a general electromagnetic field at a certain plane

V�(ρ) = |V�(ρ)| exp[iγ�(ρ)] , (1)

where the index � = 1, . . . , 6 is used to account all six electromagnetic field

components
{

Ex, Ey, Ez, Hx, Hy, Hz
}

. In our notation, r = (x, y, z) and ρ = (x, y)

are respectively the position vector and its projection onto the transversal plane.

As shown in Eq. (1), the complex amplitude V�(ρ) can be written into two parts,

amplitude, |V�(ρ)|, and phase, exp[iγ�(ρ)].

As we all know that the complex exponential function can be written into two

trigonometric functions, namely exp [iγ�(ρ)] = cos γ�(ρ) + i sin γ�(ρ). Because

of the periodic nature of the trigonometric functions, all phase points are con-

strained to the range (−π, π]. It is referred to as a “2π-wrapped phase” or “2π-

modulo phase”. Generally, a “smooth” (C1 ) phase function becomes jaggedly

discontinuous when it is wrapped. It is important to remark that as the slope of

the original unwrapped phase function increases, the teeth of its wrapped coun-

terpart become denser. According to the Shannon-Nyquist theorem that at least

two sampling points must be used per period of the exponential phase function,

the sampling effort is corresponding to the smallest period of the wrapped func-

tion. Here, the periods are inversely proportional to the slope of the unwrapped

phase function, i.e., to the local gradient of γ�(ρ). Because of that, it is very

typical that an easily sampled smooth wavefront becomes much more difficult

sampled in the form of 2π-modulo.

The most straightforward method to overcome such sampling overkill is to

eschew the sampling of wrapped phase terms but handle them analytically.

Mathematically, there are lots of analytical polynomials that can be used to

represent the smooth phase function. Meanwhile, with the suitable fitting tech-

nique, the majority of the smooth phase can be extracted from the numerical

sampled data and stored analytically. However, to employ them into the Fourier

transform, some available property is exceptionally significant. For instance, The

well-known shift theorem benefits from the properties of the linear phase and
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the convolution, where the Fourier transform of a linear phase turns out to a

Dirac delta function, and the effect of convolving a function with the Dirac delta

function is to shift the function by the same amount. Unfortunately, it is not easy

to generalize the shift theorem to other higher-order phase terms. First of all, for

other phase terms, it is not easy to find the analytical expression of their Fourier

transform.

Furthermore, even though we obtain their Fourier transforms, the deduction

of the convolution might be unsolvable. Therefore, in the following, we con-

centrate precisely on the way to tackle the Fourier transform that eschews the

sampling of quadratic phase terms. The corresponding trick is that the Fourier

transform of a quadratic phase turns out also to be quadratic. L. Mandel and

E. Wolf have demonstrated the application of the trick to different diffraction

integrals. Most of the discussion is still limited to the one-dimensional (x2) or

separable problems (x2, y2). The cross term xy, which constitutes a prominent

part of diffraction theory, is not involved [76, 77].

On the other hand, in most optical scenes, the scaling factors of the quadratic

phase terms are determined by the Taylor expansion. In the paraxial approxi-

mation, the spectral bandwidth of the electromagnetic field is so small that the

local approximation method can provide accurate results. But, in the face of

non-paraxial configuration, the performance and accuracy of this approach may

suffer limitations.

The fast calculation of the field distribution in the focal region of a non-

paraxial imaging system is a vital topic in physical optical modeling [78, 79]. Var-

ious publications based on the Chirp Z-transform (CZT) have been proposed in

the last decades. The foundation of CZT is as same as the semi-analytical Fourier

transform, which is the convenient property whereby we extract the quadratic

phase term in the Fourier transform. It should be noted that the consideration of

two dimensions and the cross-talk term in the CZT has been done in [80]. And,

the end result bears a definite resemblance to the conclusions we present below.

However, the derivation of the CZT is centered on the Fourier-transform ker-

nel of the already-discretized operation, while the method we put forth focuses,

instead, on the field term.
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Let us start from a new representation of the field

V�(ρ) = U�(ρ) exp
[
iψq(ρ)

]
, (2)

with

|V�(ρ)| = |U�(ρ)| , (3)

arg[U�(ρ)] = γ�(ρ)− ψq(ρ) , (4)

ψq(ρ) = Dxx2 + Cxy + Dyy2 . (5)

In Eq. (2) the quadratic phase terms are extracted with real-valued coefficients

C, Dx and Dy. Then, the amplitude and the remains of the phase are combined

together and denoted by U�(ρ). In practice, we still must sample U�(ρ). Com-

pared to the full phase function arg [V�(ρ)] = γ�(ρ), arg[U�(ρ)] has a much less

pronounced local gradient so that the sampling effort is reduced dramatically.

However, this approach only works when the demanded FFT can be performed

without the sampling of exp
[
iψq(ρ)

]
. It means that we must handle this infor-

mation analytically in the entire process.

After that, we try to derive the Fourier transform of V�(ρ) without sampling

the quadratic phase term defined in Eq. (5).

Plugging Eq. (2) into the Fourier transform equation, we obtain

Ṽ�(κ) = Fκ [V�(ρ)] =
1

2π

∫∫ ∞
−∞ V�(ρ) exp(−iκ · ρ)d2ρ

= Fκ

{
U�(ρ) exp

[
iψq(ρ)

]}
,

(6)

where κ =
(
kx, ky

)
is the projection of the spatial frequency vector onto the

plane transversal to z.

From the convolution theorem, we know that

Ṽ�(κ) =
1

2π
Fκ [U�(ρ)] ∗ Fκ

{
exp

[
iψq(ρ)

]}
, (7)

where the symbol “∗” indicates convolution.

In principle, the term Fκ [U�(ρ)] must be treated numerically. On the other

hand, we find that the Fourier transform of the polynomial of second order

Fκ

{
exp

[
iψq(ρ)

]}
can be solved with the integral formula

∫ ∞

−∞
exp

(
−ax2 + bx + c

)
dx =

√
π

a
exp

(
b2

4a
+ c

)
, (8)
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which is valid for any a, b, c ∈ C, provided that �{a} ≥ 0 and a �= 0.

With the help of Eq. (8) [81], we deduce the Fourier transform of the polyno-

mial of second order

Fκ

{
exp

[
iψq(ρ)

]}
= α exp

[
iψ̃q(κ)

]
(9)

with

ψ̃q(κ) = D̃xk2
x + C̃kxky + D̃yk2

y , (10)

and with constant factors α, C̃, D̃x and D̃y

α =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
i

Dx

√
Dx

i(C2−4DxDy)
, Dx �= 0√

i
Dy

√
Dy

i(C2−4DxDy)
, Dx = 0 and Dy �= 0√

1
C2−4DxDy

, Dx = 0 and Dy = 0

. (11)

and
C̃ = − C

C2−4DxDy

D̃x =
Dy

C2−4DxDy

D̃y = Dx
C2−4DxDy

.

(12)

It should be remarked that when C2 − 4DxDy = 0, the two-dimensional phase

function ψq(ρ) degenerates into a rotated one-dimensional function. For such

special cases, we need to do the coordinate transformation and then treat them

similarly in one dimension. More details of the special cases will discussed in

the next sections.

Substituting for Fκ

{
exp

[
iψq(ρ)

]}
in Eq. (7) and expanding the convolution,

we get

Ṽ�(κ) = 1
2π

∫∫ ∞
−∞ Fκ′ [U�(ρ)] α exp

[
iψ̃q(κ − κ′)

]
d2κ′

= α exp
[
iψ̃q(κ)

] 1
2π

∫∫ ∞
−∞ Fκ′ [U�(ρ)] exp

[
iψ̃q(κ′)

]

× exp
(
−iC̃kxk′y − iC̃kyk′x − i2D̃xkxk′x − i2D̃ykyk′y

)
d2κ′ .

(13)
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And by defining the coordinate transform vector β = (βx, βy)

βx = −2D̃xkx − C̃ky

βy = −C̃kx − 2D̃yky ,
(14)

the integral in Eq. (13) can be written as

Ṽ�(κ) = α exp
[
iψ̃q(κ)

] 1
2π

∫∫ ∞
−∞ Fκ′ [U�(ρ)] exp

[
iψ̃q(κ′)

]
exp

(
iβxk′x + iβyk′y

)
d2κ′

= α exp
[
iψ̃q(κ)

]F−1
β

{Fκ′ [U�(ρ)] exp
[
iψ̃q(κ′)

]}

= α exp
[
iψ̃q(κ)

]F−1
β

{
Ũ�(κ) exp

[
iψ̃q(κ)

]}
.

(15)

The interpretation of Eq. (15) as the product of a Fourier transform and a

polynomial of the second order

Ṽ�(κ) = F semi
κ [V�(ρ)]

= Ã�(κ) exp
[
iψ̃q(κ)

] (16)

with

Ã�(κ) = αF−1
β

{
Ũ�(κ) exp

[
iψ̃q(κ)

]}
(17)

has the same form as the field representation in the spatial domain, that is,

a numerical spectrum and an analytical quadratic phase term. In a numerical

implementation of the method here proposed, all the above-presented formu-

las can be written in the discrete, finite-dimensional version, e.g. V�(xm, yn) =

U�(xm, yn) exp
(
iψq(xm, yn)

)
, xm ∈

(
−ΔX

2 , ΔX
2

)
and yn ∈

(
−ΔY

2 , ΔY
2

)
. Accord-

ing to sampling theory, the sampling number is determined by the extension

of V�(xm, yn) and Ṽ�

(
kxm, kyn

)
in both domains, i.e. Nx = ΔX/ 2π

ΔKx
and Ny =

ΔY/ 2π
ΔKy

. These numbers refer to the full field V�(xm, yn). Then, considering our

chosen field representation, in the case of a strong quadratic phase ψq(xm, yn),

at the boundary of the effective range there would be a very high local gradi-

ent ∇⊥ψq(xm, yn), which will result in a large extension in the other domain:

this is the reason behind the high sampling effort of the full field. On the other

hand, the sampling required for the residual field remains relatively small. It is

important to note that, in the semi-analytical Fourier transform, the quadratic
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phase is always handled analytically. When the semi-analytical Fourier trans-

form is being performed, the first FFT is numerically used on U�(xm, yn), with

a much lower sampling number than that required for the full field. The sec-

ond, inverse, FFT is not only applied to the residual spectrum, but also to an

additional phase term. In Eqns. (10)-(11) we see that the quadratic phase fac-

tors in the spatial-frequency domain D̃x, D̃y and C̃ are inversely proportional to

the quadratic factors in the spatial domain. Therefore, when the field possesses a

strong quadratic phase in the spatial domain, the corresponding quadratic phase

in the spatial-frequency domain will be very weak, which means we can neglect

its influence on the sampling of Ũ�(κ) exp
[
iψ̃q(κ)

]
. Therefore, even though an

additional FFT is used, the numerical effort of performing two FFT is still smaller

than that required for the FFT of the fully sampled, complete field.

2.1.2 Inverse semi-analytical Fourier transform

Analogously to the regular Fourier transform, the semi-analytical FT has its

reverse operation, namely the inverse semi-analytical Fourier transform.

The spectrum in the spatial-frequency domain is written as

Ṽ�(κ) = |Ṽ�(κ) | exp[iγ̃�(κ)]

= Ã�(κ) exp
[
iψ̃q(κ)

] (18)

with

arg
[
Ã�(κ)

]
= γ̃�(κ)− ψ̃q(κ) (19)

where ψ̃q(κ) is the polynomial of second order in the κ-domain which has been

previously described in Eq. (10).

Using the same trick as Sec. 2.1.1, we can deduce the analytical representation

of the inverse semi-analytical FT

V�(ρ) = F−1,semi
κ

[
Ṽ�(κ)

]
= U�(ρ) exp

(
iψq(ρ)

) (20)

with

U�(ρ) = α̃Fβ̃

{
F−1

κ

[
Ã� (κ)

]
exp

[
iψq(ρ)

]}
(21)
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and the constant factor α̃

α̃ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
i

D̃x

√
D̃x

i(C̃2−4D̃xD̃y)
, D̃x �= 0

√
i

D̃y

√
D̃y

i(C̃2−4D̃xD̃y)
, D̃x = 0 and D̃y �= 0√

1
C̃2−4D̃xD̃y

, D̃x = 0 and D̃y = 0

(22)

and,

C = − C̃
C̃2−4D̃xD̃y

Dx =
D̃y

C̃2−4D̃xD̃y

Dy = D̃x
C̃2−4D̃xD̃y

.

(23)

and with the coordinate transform vector β̃ =
(

β̃kx , β̃ky

)

β̃kx = 2Dxx + Cy ,

β̃ky = Cx + 2Dyy .
(24)

Up to this point, we have obtained the representation of the inverse semi-

analytical FT. Similar to the forward operation, the polynomial of the second

order ψ̃q (κ) in κ-domain is fully analytically handled in the entire process. The

sampling effort depends on the two FFTs of the spectrum with less sampling,

the Ã� (κ) in Eq. (21).

2.1.3 Hybrid semi-analytical Fourier transform and its inverse operation

Without the loss of generality, in the practical modeling, we might need to work

with the electromagnetic field whose quadratic phase is very intense only on one

dimension. The most typical examples are the cylindrical wave and the astigma-

tism Gaussian beam. In this kind of situation, the resulting quadratic phase

factor (determinant of the Hessian matrix) becomes zero or relatively small,

i.e., C2 − 4DxDy ≈ 0. Consequently, all the above-concluded formulas cannot

be used. Meanwhile, because of the sampling effort of this one-dimensional

quadratic phase, the regular FFT faces a huge numerical issue. Therefore, we

would like to develop a new technique to overcome it. In what follows, we will

extend the semi-analytical Fourier transform algorithm to the singularity cases.
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First of all, from the mathematical point of view, the possibilities of singularity

cases and their physical meaning are demonstrated. According to the numerical

criterion, we can classify the possible situation into three groups:

• C2 − 4DxDy = 0 (Dx �= 0, Dy = 0, C = 0): the quadratic phase only is on

the X-axis.

• C2 − 4DxDy = 0 (Dx = 0, Dy �= 0, C = 0): the quadratic phase only is on

the Y-axis.

• C2 − 4DxDy = 0 (Dx �= 0, Dy �= 0, C �= 0): the quadratic phase only is on a

tilted direction.

In principle, since the physical model behind them are the same, we can use

the same strategy to deal with all these three singularity cases. The only differ-

ence between them is the working coordinate system. By rotating the coordinate

system, we can always transform the latter two cases into the first kind of sit-

uation. Therefore, in the following part, we will concentrate on the theoretical

derivation for the first case. The related formulas for the other two cases are

given in the Appendix.

Let us consider the one-dimensional quadratic phase on the X-axis and rewrite

the Eq. (2) and Eq. (5) to

V�(ρ) = U�(ρ) exp
[
iψq(x)

]
, (25)

with

ψq(x) = Dxx2. (26)

Like that for the standard semi-analytical Fourier transform, with the help of

the property of the quadratic phase and the convolution trick, we can carry out

a similar derivation process and obtain the analytical expression of the hybrid

semi-analytical Fourier transform.

Ṽ�(κ) = α exp
[
iψ̃q(kx)

]F−1,x
βx

{
Ũ�(κ) exp

[
iψ̃q(kx)

]}
(27)

with

ψ̃q(kx) = − 1
4Dx

k2
x = D̃xk2

x (28)
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and

α =

√
i

2Dx
. (29)

Here, the quadratic phase function is independent of the variable y. And, the op-

erator F−1,x
βx

denotes the one-dimensional Fourier transform operation and the

one-dimensional coordinate transform operation on the x-axis. The coordinate

transform factor βx is defined as

βx =
kx

2Dx
. (30)

It is relevant to highlight that the one-dimensional Fourier transform must be

done row by row on the sampled data set. For instance, there is an equidis-

tant sampled field with sampling points
(

Nx, Ny
)
. Assuming a strong quadratic

phase on the x-dimension, in the case that Hybrid semi-analytical Fourier trans-

form is allowed, we must execute 1D FFT per row, in total Ny times.

Inverse hybrid semi-analytical Fourier transform

In an analogous manner, we can perform the derivation of the inverse hybrid

semi-analytical Fourier transform. Let us start from the spectrum of the field

with one-dimensional quadratic phase on x-axis

Ṽ�(κ) = Ã�(κ) exp
[
iψ̃q(kx)

]
, (31)

where ψ̃q(kx) is the quadratic phase in k-domain whose definition is given in

Eq. (28).

Again, carrying out a similar process, the field representation in the spatial

domain is derived out.

V�(ρ) = α̃ exp
[
iψq(x)

]F x
β̃x

{
Ã�(ρ) exp

[
iψq (x)

]}
(32)

with

α̃ =

√
i

2D̃x
(33)

and with

β̃x = − x
2D̃x

. (34)
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As same as the standard semi-analytical Fourier transform, the initial field

V�(ρ) is retrieved. The fact reveals the consistency of the hybrid semi-analytical

Fourier transform and its inverse operation.

2.1.4 Handling of the quadratic phase

As we have emphasized in the previous sections, by using the semi-analytical

Fourier transform, we would like to improve the computational efficiency of the

Fourier transform operation. The sampling effort of the semi-analytical Fourier

transform has been well discussed at the end of section 2.1.1. In short, it is en-

tirely dependent on the sampling of the residual field U�(ρ) or the residual

spectrum Ã�(κ). In practice, the initial field is usually given in the form of the

2
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(a) Quadratic phase fitting of ψ (ρ) (b) Fitting deviation of two methods

Figure 2: Extraction of the quadratic phase ψq(ρ) from a general phase function ψ(ρ)

by using the Taylor expansion approach and the Levenberg-Marquardt fitting

method. (a) Applying both methods to an aberrated phase function (spherical

phase with coma and astigmatism aberration) in the spatial domain. (b) Com-

parison of the performance of the Taylor expansion method and Levenberg-

Marquardt fitting method. Taylor expansion approach only works well locally

around the central area. Both the function value and the gradient of the resid-

ual phase are higher with the Taylor expansion than with the LMM.

hybrid sampling strategy, i.e., equidistant sampled residual field/spectrum and

non-equidistant sampled smooth phase component. Since the semi-analytical
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Fourier transform can handle only the quadratic phase, we must try to extract

the corresponding second-order phase terms as much as possible from the orig-

inal smooth phase. One reasonable way that works is to minimize the gradient

of the smooth phase ψ(ρ) or ψ̃(κ) over the given function support. To achieve

this goal, we have to find an effective method of determining the optimal factors

of the quadratic phase ψq(ρ) or ψ̃q(κ).

There are two alternatives, analytical or numerical. The most widely recog-

nized analytical approach is the Taylor expansion. For a given smooth phase

function ψ(ρ), by using Taylor expansion up to the second order, we can obtain

ψq(ρ) analytically

ψ(ρ) = (x − x0)
2ψxx(ρ0) + (x − x0)(y − y0)ψxy(ρ0) + (y − y0)

2ψyy(ρ0) + h(ρ)

= ψxx(ρ0) x2 + ψxy(ρ0) xy + ψyy(ρ0) y2 + Δψ(ρ)

= ψT
q(ρ) + Δψ(ρ)

(35)

where ψxx, ψxy and ψyy are the entries of Hessian of the phase function ψ(ρ)

at the reference point ρ0 = (x0, y0). The h(ρ) presents the constant, linear and

higher order Taylor polynomials.

Even though the analytical Taylor formula can directly provide us the desired

quadratic phase factors without any numerical operations, two practical valid-

ity conditions constrain its usage and the performance in the real scenes. The

first reason is because of the demand for an analytical phase function ψ(ρ). The

second point is the fact that the formula has only local validity. According to

Eq. (35), we can say in a neighborhood that around the reference point, the gra-

dient of ψ(ρ) would be quite small. However, in a range farther away from the

reference point, we cannot conclude this. Besides the Taylor expansion, there are

also various analytical approaches, e.g., the Avoort fit [82]. While these analyti-

cal approaches are applicable to some specific cases and have good performance,

all of them have more or less some limitations.

It is for these reasons that we decide to use numerical approaches for more

general situations. As an example, we can choose Gaussian Newton method

and Levenberg-Marquardt method which are devoted to solving minimization
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problems and is especially suitable for the least squares curve fitting. The fitting

model of quadratic terms can be written as

ψ(ρ) = Dxx2 + Cxy + Dyy2 + Δψ(ρ)

= ψL
q(ρ) + Δψ(ρ) .

(36)

Here, Δψ is the deviation between the value of the actual function and that of

the fitting result. Typically, a numerical fitting is an iterative process and the

merit function is set to the imperfect function value Δψ. However, in this task

our goal is to minimize the sampling, which is only related to the gradient of the

residual phase. Therefore, we select ∇⊥(Δψ(ρ)) as the merit function instead.

In order to compare the difference between the numerical and analytical ap-

proaches, we prepare an example to demonstrate their performance. Some an-

alytical coma and astigmatism aberration are added on an analytically known

spherical phase, and the solid line is shown in Fig. 2(a). Both the Taylor expan-

sion and the Levenberg-Marquardt method are applied for the quadratic phase

fitting. The comparison of the deviation of the Taylor expansion method and the

LMM is shown in Fig. 2(b). We can see that the Taylor expansion method only

works well locally around the central zone, which is the reference point of the

expansion. In the range far from the central area, both the deviation of the func-

tion value and the gradient of the deviation at the edge are much larger than for

the other approach. The facts prove that the numerical method provides better

results than the analytical Taylor expansion method. Therefore, we recommend

using numerical methods in practical tasks.

2.1.5 Validity condition and the numerical criterion

Up to now, we have presented the theoretical derivation and the physical inter-

pretation of the semi-analytical Fourier transform. As we mentioned, only for

the input field with a strong quadratic phase, the proposed approach will show

its advantages that can tackle the Fourier transform operation efficiently. There-

fore, to carry out a robust and user-friendly algorithm in practice, a reasonable

criterion to judge the validity of the SFT is necessary. As a competition of the

proposed technique, the regular FFT is regarded as our reference. We will esti-
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mate the required sampling points for both approaches and return the method

whose required sampling points are less.

As an example, let us analyze the forward Fourier transform. In general, the

equidistance sampled residual field/spectrum, and the quadratic phase factors

are given as the input of the Fourier transform operator. We assume sampling

parameters of the residual field: sampling points
[
Nx(U) , Ny(U)

]
and sampling

distance [δx(U) , δy(U)]. We have concluded in section 2.1.1 that the numerical

effort of semi-analytical Fourier transform depends only on the residual field.

Then, we need to know the sampling effort of the regular FFT in the case that

the quadratic phase dominates the sampling. In the following, we will analyze

the contribution of different quadratic phase term individually.

Dxx2 term

For the quadratic phase term Dxx2, we can compute out its maximum frequency

kmax
x =

d
dx

Dxx2|x=xmax = DxNx(U) δx(U) (37)

where the xmax = 1
2 Nx(U)× δx(U) is the half of the field size in x-dimension.

Based on this maximum frequency, we can estimate the sampling distance of

the complete field V�(ρ) in x-dimension by

δx(V) =
2π

2kmax
x

. (38)

So, the sampling points of the complete field V�(ρ) in x-dimension is

Nx(V) =
2xmax

δx(V)
=

Dx [Nx(U) δx(U)]2

π
. (39)

Finally, we define a factor to depict the difference of the sampling numbers

between two approaches

ηDx =
Nx (V)

Nx (U)
=

Dx [δx (U)]2 Nx (U)

π
. (40)

Dyy2 term

Using the same method, we obtain the factor in y-dimension

ηDy =
Ny(V)

Ny(U)
=

Dy [δy(U)]2 Ny(U)

π
. (41)
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Cxy term

For the crosstalk term, we need to analyze the factor in both x- and y-dimension.

⎧⎨
⎩ ηCx =

Cδx(U)δy(U)Ny(U)
2π

ηCy =
Cδx(U)δx(U)Ny(U)

2π

(42)

For any input field, we can calculate the above four factors. If the correspond-

ing factor is larger than 1, it means that the quadratic phase factor is strong

enough that it dominates the sampling of the field in this dimension. And then,

we can say it is possible to apply the semi-analytical Fourier transform. In the

end, we conclude the following workflow in the implementation.

1. Examine the quadratic phase factor

• if ηDx > 1, keep Dx the same. Otherwise, Dx = 0

• if ηDy > 1, keep Dy the same. Otherwise, Dy = 0

• if ηCx > 1 or ηCy > 1, keep C the same. Otherwise, C = 0

2. Make decision (the threshold value can be set by the user)

• if Max
(

ηDx , ηDy , ηCx , ηCy

)
> threshold, use semi-analytical Fourier

transform

• if Max
(

ηDx , ηDy , ηCx , ηCy

)
< threshold, use regular fast Fourier trans-

form

2.2 numerical examples

So far in this chapter, we have concentrated on the theoretical derivation of the

semi-analytical Fourier transform algorithm. And, we have implemented this

new technique in the physical optics modeling and design software VirtualLab

Fusion. In the coming section, therefore, we will apply this new approach to

different numerical experiments to compare its performance with that of the

regular FFT. All simulations were done with the optics software VirtualLab Fu-

sion.
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2.2.1 Fourier transform of a field with a purely quadratic phase

As our starting point, we would like to investigate the Fourier transform of

an essential type of light field, i.e., the Gaussian beam [83, 84]. Specifically, we

select the Laguerre Gaussian 01-mode. In the numerical simulation, we employ a

linearly Ex polarized Gaussian field, with the Rayleigh length zR = of 29.53 mm

and a wavelength of 532 nm as the input. Its half-divergence angle is about

Amplitude |V�(ρ) | Amplitude |V�(ρ) |

Phase arg [V�(ρ)] Phase arg [V�(ρ)]

1V/m

3
0
0
μ
m

3
0
0
μ
m
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μ
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0
0
μ
m

+π

−π

(a) Laguerre Gaussian 01 Mode (c) behind the aperture

(b) elliptical aperture

Figure 3: Truncated Laguerre Gaussian 01-mode at the wasit plane. Panel (a) shows

the amplitude and phase distribution of the Ex-component of the initial La-

guerre Gaussian 01-mode. Panel (b) presents an elliptical aperture whose size

is (150 μm × 80 μm) and with 10% soft edge. Panel (c) shows the amplitude

and phase distribution of the Laguerre Gaussian field behind the aperture.

0.194°, and its beam waist radius is 100 μm. The amplitude distribution of the

Ex component and the corresponding phase distribution are shown in Fig. 3(a).

Then, an elliptical aperture, whose size is (150 μm × 80 μm) and with 10% soft

edge, is used to truncate the given Laguerre Gaussian mode. The light field

behind the aperture is presented in Fig. 3(b).
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Considering the physical property of the semi-analytical Fourier transform,

in the first example, we would like to investigate the influence of the purely

quadratic phase. Here, we select a lower-order, symmetric aberration phase,

namely defocus aberration, which can be described by the Zernike polynomi-

als [85–87]. Its mathematical expression can be written as ψq(ρ) =
√

3kc0
2

(
2 ρ2

ρ2
max

− 1
)

,

where k = 2π
λ ň, λ being the wavelength, ρmax = 200 μm indicates the normalized

radius of the Zernike polynomials. In this set of experiments, we configure the
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Phase arg
[
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]
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Figure 4: Semi-analytical Fourier transform of the truncated Laguerre Gaussian mode

with different values of the quadratic phase coefficient. Panel (a)-(d) show

the result of said Fourier transform operation (amplitude and residual phase

distribution of Ex component). Since the quadratic phase is individual ana-

lytically handled in the SFT, we don’t resample and present it in this picture.

The required numbers of sampling points of SFT and FFT for each case are

respectively given in Tab. 1.

input field by superposing different quadratic phase ψq(ρ) onto the truncated

Laguerre Gaussian mode U� (ρ). In detail, we choose four typical quadratic

phase coefficients and respectively perform the SFT. The resulting spectrum pat-

tern are shown in Fig. 4. We can see that for all four cases the remaining phase

term arg
[
Ã�(κ)

]
is not strong. Especially in case (d), the residual phase is only

the vertex phase, which is caused by the higher-order Gaussian.
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Table 1: Comparison of the required sampling points for the Fourier transform of a

truncated Laguerre Gaussian 01-mode: SFT vs. FFT. Corresponding field dis-

tribution and Fourier transform result are respectively presented in Fig. 3 and

Fig. 4 .

No. ψq(ρ) coefficients FFT sampling points SFT sampling points

Fig. 4 (a) c0
2 = 0 (111 × 119) (111 × 119)

Fig. 4 (b) c0
2 = 3 (225 × 235) (111 × 119)

Fig. 4 (c) c0
2 = 12 (329 × 235) (111 × 119)

Fig. 4 (d) c0
2 = 30 (659 × 353) (111 × 119)

To investigate the numerical performance comprehensively, we also perform

FFT on the same fields and list the required Nyquist sampling points of both

the regular FFT and the SFT in Table 1. By comparison, we can find that as the

quadratic coefficients increases, the sampling number of FFT overgrows. But,

the sampling number of SFT keeps a constant. It is because that in FFT, the

quadratic phase must be fully sampled in 2π-modulo. It would lead to an enor-

mous sampling effort for a sizeable quadratic coefficient. On the other hand, in

SFT, the quadratic phase is handled analytically so that the sampling number is

just dependent on the residual field U� (ρ).

2.2.2 Fourier transform of a field with a spherical phase

In the practical simulation, it is not very common that the light field presents

only the quadratic phase. In contrast, the spherical phase is a more substantial

model for physical optical modeling. Thus, in the second example, we would

like to concentrate on the Fourier transform of a field with a spherical phase.

First of all, we build up a simple optical setup to generate the working field:

a Ex polarized ideal plane wave is truncated by a circular mask whose size is

(2 mm × 2 mm) and with 10% soft edge. Its wavelength is at 532 nm. Behind

the mask, a divergent spherical phase is superimposed onto the light field. The

spherical phase is expressed as ψsph(ρ) = sgn (R) k0ň
√

ρ2 + R2, where factor

R > 0 denotes the radius of the curvature of the spherical phase.
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Table 2: Comparison of the required sampling points for the Fourier transform of a

truncated spherical wave: SFT vs. FFT. Corresponding field distribution and

semi-analytical Fourier transform result are respectively presented in Fig. 5 and

Fig. 6.

No. spherical radius R FFT sampling points SFT sampling points

Fig. 5 (b) R = +∞ (79 × 79) (79 × 79)

Fig. 5 (c) R = 50 mm (873 × 873) (173 × 173)

Fig. 6 (d) R = 10 mm (3743 × 3743) (233 × 233)

Fig. 6 (e) R = 3 mm (11031 × 11031) (289 × 289)

Fig. 6 (f) R = 2 mm (13521 × 13521) (501 × 501)

The amplitude and phase distribution of the residual field U�(ρ) in the spatial

domain are shown in Fig. 5(a). We can see that the residual phase is zero in

the definition domain, i.e., arg[U�(ρ)] = 0. It means that all phase information

comes from the customized spherical phase. The complete field can be expressed

as V�(ρ) = U�(ρ) exp
[
iψsph(ρ)

]
. In the numerical simulation, by adjusting the

weight factor of the spherical phase, namely the spherical radius R, we obtained

the desired working fields. By applying the Taylor expansion to the spherical

phase function, the quadratic phase coefficients can be calculated analytically.

Afterward, we can perform the semi-analytical Fourier transform and compare

the resulting spectrum in the k-domain. Simulation results, for the spherical

radius in the range of R ∈ (2 mm,+∞), are presented in Fig. 5 and Fig. 6.

In this set of experiments, we fix the size of the input field but allow configur-

ing the magnitude of the spherical phase factor R. More specifically, the smaller

factor R, the larger numerical aperture(NA), and the more intense spherical

phase. The result of the experiment showed, in the case of a large-valued spher-

ical radius factor (corresponding to a very weak spherical phase), the residual

phase arg
[
Ã�(κ)

]
in the k-domain is also very simple, e.g., Fig. 5 (b) and (c). It is

because, for the low NA cases, the difference between the spherical function and

the quadratic function is tiny. Then, when the spherical phase factor R increases,

the residual phase arg
[
Ã�(κ)

]
becomes more and more complicated, shown in

Fig. 6. Indeed, these residual phases require more sampling points and lead to
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|U�(ρ)|

arg[U�(ρ)]
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∣∣
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(a) residual field (b) R = +∞ (c) R = 50mm

Figure 5: Semi-analytical Fourier transform of a field with a spherical phase, part I.

Panel (a) shows the amplitude distribution of the Ex component in the spatial

domain and the phase distribution of the residual field. The complete working

field is defined as V�(ρ) = U�(ρ) exp
[
ψsph(ρ)

]
. Adjusting the spherical radius

R and performing the semi-analytical Fourier transform, we obtain the resid-

ual spectrum Ã�(κ) and analytical quadratic phase in the k-domain. Panel

(b) and (c) present the result of semi-anlytical Fourier-transform operation for

different values of R.

higher computational effort. The required number of sampling points for FFT

and SFT are listed in Table. 2. As we mentioned before, the SFT can deal with the

quadratic phases only. Different from the situation of the pure quadratic phase,

we can imagine when the spherical radius is very tiny, the resulting residual

phase might be even harder sampling than the original spherical phase. The fact

proves that the SFT can benefit the Fourier transform for the field with a small

or medium spherical phase. But, for field involving an intense wavefront phase,

We need other advanced Fourier transform techniques.
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(d) R = 10mm (e) R = 3mm (f) R = 2mm

Figure 6: Semi-analytical Fourier transform of a field with a spherical phase, part II. Pan-

els (d) to (f) present the result of semi-anlytical Fourier-transform operation

for different values of R. The residual phase arg
[
Ã�(κ)

]
is the phase excluding

the quadratic terms. Please note the original light field in the spatial domain

is given in Fig. 5(a).

2.2.3 Fourier transform of a field with a general wavefront phase

Up to this point, we have investigated the performance of SFT for the field with

purely quadratic phases or a spherical phase. In the last example, we would

like to consider an exactly practical situation, namely, a field including aberrant

phases. We straightforward use the same optical setup as the last experiment

to generate the testing light field. But, instead of a varying spherical phase,

a general wavefront phase (including aberrant phase) is superimposed on the

field behind the mask.

Simulation parameters of the wavefront phase are described in the form of

Zernike polynomials and presented in Table. 3. In the last column of the table,

the expectation of the quadratic phase handling is given from a mathematical
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Table 3: Simulation parameters of the general wavefront phase for the example pre-

sented in Section 2.2.3.

name & type expression value handling

spherical phase ψsph = sgn (R) k0
√

ρ2 + R2 R = −3 mm partly analytical

vertical astigmatism Z−2
2 = x2 − y2 c−2

2 = 10 fully analytical

oblique astigmatism Z2
2 = 2xy C2

2 = 5 fully analytical

horizontal coma Z1
3 = −2x + 3x3 + 3xy2 C1

3 = 2 numerical

Amplitude
∣∣Ã�(κ)

∣∣ Phase arg
[
Ã�(κ)

]
2.75× 10−10 V ·m

1
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×

1
0
7
1
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7
1
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m

+π
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(a) (b)

Figure 7: Semi-analytical Fourier transform of a field with a general wavefront phase.

Panel (a) and (b) shows amplitude distribution of the Ẽx-component
∣∣Ã�(κ)

∣∣
and the residual phase arg

[
Ã�(κ)

]
. The original light field in the spatial do-

main is given in Fig. 5(a).

point of view. In contrast to the situation of a spherical phase, for a general wave-

front phase, we cannot use Taylor expansion to estimate the quadratic phase

coefficients in terms of the spherical phase factor. Still, we must perform some

numerical fitting algorithm to extract the quadratic phase function. Simulation

results of the SFT are shown in Fig. 7. Panel (b) presents the residual phase of

the resulting spectrum. In line with our expectation, the remained non-quadratic

phases are fully numerically handled. Furthermore, comparing the numerical ef-

fort of the SFT with the FFT, the sampling effort is significantly reduced from

(13271 × 12653) to (1721 × 1683).
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In Chapter 2, we proposed the so-called semi-analytical Fourier transform, which

can be applied to carry out the Fourier transform of the field with a strong

quadratic phase efficiently. This technique is established on the properties of the

quadratic phase and the convolution and it is a rigorous algorithm. However,

this kind of algorithm can fall short in non-paraxial cases. The sampling effort

of the semi-analytical Fourier transform is entirely dependent on the sampling

of the residual field/ spectrum, which is the remaining part of the electromag-

netic field after the extracting of the quadratic phase. In the non-paraxial situ-

ation, the semi-analytical Fourier transform will suffer even in the case of the

field with the most common spherical wavefront phase. Because of the increas-

ing of the divergent angle, the difference between the spherical phase and the

quadratic phase becomes too significant to be neglected. The residual phase has

to be treated in the form of “2π-modulo” that the wrapped phase leads to much

larger sample numbers necessary for good resolution. Therefore, in this chapter,

we propose another approximated algorithm to compute the Fourier transform

in such a situation.

Through several practical experiments, we observe that the Fourier transform

of fields with strong wavefront phases exhibits behavior that can be described as

a bijective mapping of the amplitude distribution. Hence, we name this opera-

tion “homeomorphic Fourier transform”. From the mathematical point of view,

the Fourier-transform integrals are rapidly oscillating functions in the case of

strong wavefront phases. There is a mathematical method, working on the basis

of an asymptotic approximation to integrals of such rapidly varying functions,

which occasionally comes up in wave theory, applied usually with the aim of

obtaining an analytical solution to a specific problem (as is the case with the

Debye integral): the Method of Stationary Phase (MSP). Jakob J. Stamnes al-

ready revealed the connection between waves and rays with the application of

the Method of Stationary Phase in his publication. Despite the MSP being an

31
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algorithm with a much more general scope of application to the Fouier inte-

gral [88], the author restricted its application only to the spherical phase or the

quadratic phase [89]. In what follows, we generalize the usage of the method

of stationary phase to the Fourier transform integral without any constraints

on the wavefront phase. The full derivation is presented in Section 3.1, taking as

our starting point an alternative expression of the electromagnetic field in which

the wavefront phase is extracted, and using the method of stationary phase to

solve the integrand. After that, in Section 3.2 we consider the application of the

algorithm to numerical simulations. In four groups of experiments, we select

different wavefront phases and test their influence on the Fourier transform,

from the most fundamental spherical phase, through the case where a single

aberration term is present, to a general arbitrary numerical phase. Simulation

results are presented alongside an accuracy and efficiency analysis to illustrate

the advantages of the homeomorphic Fourier transform.

3.1 theorem derivation

3.1.1 Homeomorphic Fourier transform

Like the semi-analytical Fourier transform in Section 2.1.1, let us start from the

general expression of any electromagnetic field component that we can write

the field component in terms of its amplitude and phase,

V�(ρ) = |V�(ρ)| exp{i arg[V�(ρ)]} . (43)

In optics, it is very typical to encounter fields that posses a smooth wavefront,

which is common to all field components, for instance, the spherical phase in

the far-field region. In such kind of situation, Eq. (43) can be reformulated to

yield

V�(ρ) = U�(ρ) exp[iψ(ρ)] . (44)

Here, we extract the smooth wavefront phase ψ(ρ) and grouped the rest of the

phase alongside the amplitude |V�(ρ)| into U�(ρ). From a mathematical point

of view, there is no approximation in the reformulation of Eq. (44). It merely

constitutes an alternative way to express V�(ρ).
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We have now rewritten the expression of our field component in a way which

isolates the troublesome phase term exp[iψ(ρ)], so now, considering that the

present discussion is not merely concerned with the underlying mathematics,

but also with the implementation of the method for simulation purposes, in

order to numerically store V�(ρ) we could follow a hybrid sampling strategy,

one which employs different sampling and interpolation techniques for the two

terms involved, namely, U�(ρ) and exp[iψ(ρ)]: a strict equidistant Nyquist sam-

pling applied to the residual complex amplitude U�(ρ), and a non-equidistant

sampling approach for the smooth wavefront phase ψ(ρ), with such varied op-

tions as spline or quadratic interpolation methods available for ψ(ρ). The appli-

cation of this hybrid approach provides a workaround that allows us to avoid

having to sample the exponential term associated with the wavefront phase, as

N{exp[iγ(ρ)]} � N[γ(ρ)]. Very often, in the absence of the wrapped wave-

front phase, the sampling of U�(ρ) does not pose much of a challenge, and

N(V) � N(U). Consequently, for strong wavefront phases, the hybrid sampling

strategy can result in a dramatic decrease of the computational effort.

Then, from a practical point of view, let us analyze the practicalities of the

hybrid sampling strategy. The most important two questions are how to obtain

the smooth wavefront phase and how to deal with it in actual simulations of

optical systems. The complete solution to obtain the optimal smooth wavefront

phase from arbitrary complex field data is to combine the phase unwrapping al-

gorithm and an appropriate interpolation algorithm. However, it is common for

the wavefront phase to be directly established with the model of the source, e.g.,

an ideal spherical wave. And then, for most optical components, the physical

response of the element on the wavefront phase is known. For instance, in the

case of lenses and interfaces. However, for Fourier transform operations, there is

no straightforward solution: the Fast Fourier Transform (FFT) algorithm cannot

handle a field sampled in a hybrid manner. With an eye to taking the numerical

advantage of the hybrid sampling strategy into the Fourier transform, we have

developed the following algorithm.
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Now, let us consider the Fourier transform integral and insert the alternative

expression of the field into it.

Ṽ�(κ) = 1
2π

∫∫ ∞
−∞ V�(ρ) exp(−iρ · κ)d2ρ

= 1
2π

∫∫ ∞
−∞ U�(ρ) exp[iψ(ρ)− iρ · κ]d2ρ ,

(45)

where the tilde in Ṽ makes explicit reference to a function defined in the spatial

frequency domain, spanned by κ, as opposed to a function defined in the space

domain – spanned by ρ, as already introduced above – which would have no

diacritic.

Comparing Eq. (45) with the stationary phase approximation formula, we can

see several glaring similarities. The main idea of stationary phase methods re-

lies on the cancellation of triangular function with a rapidly varying phase. The

derivation and working assumption can be found in the work by XXX. Con-

sequently, from the cited literature, we can directly extract the following two

precondition for the usage of the stationary phase method:

• The term U�(ρ) must be slowly varying.

• In the domain where the transversal position vector ρ is defined, there

is one and only one critical point of the first kind defined by the formula

∇⊥ [ψ(ρ)− ρ · κ] = 0.

Mathematically, the first condition means that the exponential term in Eq. (45)

has a character of high-frequency oscillation in the given definition domain. The

exponential term dominates the integrand so that U�(ρ) can be regarded as

a constant term and be taken out of the integral. From the second condition,

we can conclude a bijective mapping from the spatial domain to the spatial

frequency domain, i.e. a homeomorphism.

With the help of the method of stationary phase, the following result can be

deduced from Eq. (45):

Ṽ�(κ) ≈ a[ρ(κ)]U�[ρ(κ)] exp{iψ[ρ (κ)]− iκ · ρ(κ)} , (46)

with the bijective mapping relation ρ → κ

∇⊥ψ(ρ) = κ, (47)
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and with

a(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
√

i
ψxx(ρ)

√
− iψxx(ρ)

ψ2
xy(ρ)−ψxx(ρ)ψyy(ρ)

, ψxx(ρ) �= 0

1
|ψxy(ρ)| , ψxx(ρ) = 0

, (48)

where ψxixj
def
= ∂ψ

∂xi∂xj
.

Remarkably, we can also write the Eq. (48) into a compact form,

a(ρ) = σ(ρ)
1√∣∣∣ψ2

xy(ρ)− ψxx(ρ)ψyy(ρ)
∣∣∣ (49)

with

σ(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
i · √i = i

√
i · √−i = 1

√−i · √−i = −i

. (50)

where
√

i = 1+i
2 and

√−i = 1−i
2 indicate the sign of the square root term in

Eq. (48).

The sign (in a broad sense of the word) of the amplitude scaling factor a(ρ)

defined in Eq. (49), i.e., σ(ρ) = sgn[a(ρ)], can take one of the three possible

values: i, −i and 1. Each of these three options has its own physical implications:

the first two have already been analyzed in literature and correspond, respec-

tively, to a convergent wavefront or a divergent wavefront of the light field. The

third case, sign[α(ρ)] = 1, denotes a situation in which the light field possesses

an astigmatic wavefront phase, namely, the light field is convergent on one di-

mension and divergent on the other dimension.

Then, let us have deep learning on the relationship between the wavefront

and the sign of the amplitude scaling factor from the mathematical point of

view. From Eq. (48), we know that the sign of the amplitude scaling factor are

determined by the second derivative term ψxx(ρ) /ψyy(ρ) and the determinant

term ψ2
xy(ρ) − ψxx(ρ)ψyy(ρ). Hence, it is essential to know how these terms

associate with the wavefront of the field. In differential geometry, we find the

concept of “the second fundamental form” [90, 91] which is a quadratic form on

the tangent plane of a smooth surface in the three-dimensional Euclidean space.
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(a) M2 − LN < 0 (b) M2 − LN = 0 (c) M2 − LN > 0

Figure 8: Illustration of the relationship between the geometric shape and the second

fundamental form of a smooth parametric surface. Panel (a) shows that when

the determinant of the second fundamental form is negative-valued, there is

only one intersection point between the parametric surface and its tangent

plane. Panel (b) presents that in the case of the determinant of the second fun-

damental form is zero-valued, the surface intersects its tangent plane with one

line, which passes through the selected local point. Panel (c) illustrates when

the determinant of the second fundamental form is positive-valued, the sur-

face intersects its tangent plane with two lines, which intersect at the selected

local point.

It serves to qualify the extrinsic invariant of the surface, its principal curvatures.

The second fundamental form of any smooth surface can be written as

IIψ = Ldx2 + 2Mdxdy + Ndy2

= ψxx(ρ)dx2 + 2ψxy(ρ)dxdy + ψyy(ρ)dy2.
(51)

Based on the knowledge of differential geometry, we have the following conclu-

sions:

• M2 − LN = ψ2
xy(ρ)− ψxx(ρ)ψyy(ρ) < 0: There is no intersection between

the surface and its tangent plane except the selected local point. Fig. 8 (a)

• M2 − LN = ψ2
xy(ρ)− ψxx(ρ)ψyy(ρ) = 0: The surface intersects its tangent

plane with one line, which passes through the selected local point. Fig. 8 (b)

• M2 − LN = ψ2
xy(ρ)− ψxx(ρ)ψyy(ρ) > 0: The surface intersects its tangent

plane with two lines, which intersect at the selected local point. And this

point is called hyperbolic point. Fig. 8 (c)

Consequently, we know that the shape of the parametric surface is correspond-

ing to the sign of the determinant term. Meanwhile, Eq. (49) tells us that the
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Table 4: Physical implications of the amplitude scaling factor of the forward homeomor-

phic Fourier transform.

ψxx(ρ) and ψyy(ρ) ψxy(ρ) ψ2
xy(ρ)− ψxx(ρ)ψyy(ρ) wavefront σ(ρ)

one/both = 0 �= 0 > 0 astigmatic 1

different sign any > 0 astigmatic 1

same sign (+/−) large > 0 astigmatic 1

same sign (+) small < 0 divergent i

same sign (−) small < 0 convergent −i

determinant term can not be zero-valued. Thus, considering the constraints of

the second derivative term of the wavefront phase and all possibilities of per-

mutation and combination for the sign of the second derivative terms, we can

summarize the physical meaning of the scaling factor in Tab. 4.

So far, so forth, the full derivation of the homeomorphic Fourier transform

and the corresponding physical interpretation are given in detail. It should be

noted that the derivation presented above incurs no approximation whatsoever

up to and including Eq. (45). It is only when the two preconditions for the va-

lidity of the stationary phase method are employed in the simplification of the

Fourier integral to produce Eq. (46) that we finally abandon the path of full rigor.

The resulting expression (namely, as already stated, Eq. (46)) constitutes an ap-

proximation, albeit a good and accurate one as long as the two aforementioned

preconditions hold.

3.1.2 The inverse homeomorphic Fourier transform

The derivation of the inverse operation can be performed in an analogous man-

ner. Let us then start from the spectrum of the field, Ṽ�(κ), and rewrite it by

extracting a smooth wavefront phase term, like we did for the direct homeomor-

phic Fourier transform in Eq. (44):

Ṽ�(κ) = Ã�(κ) exp[iψ̃(κ)] . (52)
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Identifying this expression with the direct homeomorphic Fourier transform

presented in Eq. (46) it is possible to write Ã�(κ) and ψ̃(κ) as follows:⎧⎨
⎩ Ã�(κ) = α[ρ(κ)]U�[ρ(κ)]

ψ̃(κ) = ψ[ρ(κ)]− κ · ρ(κ)
. (53)

We can then use Eq. (52) to substitute for Ṽ�(κ) in the definition of the inverse

Fourier transform integral

V�(ρ) = 1
2π

∫∫ ∞
−∞ Ṽ�(κ) exp(iρ · κ)d2κ

= 1
2π

∫∫ ∞
−∞ Ã�(κ) exp[iψ̃(κ) + iρ · κ]d2κ .

(54)

Again, carrying out a similar process as that for the direct transform, the smooth

phase term ψ̃(κ) will provide the inverse bijective mapping relation κ → ρ,

∇̃⊥ψ̃(κ) = −ρ. (55)

Applying the method of stationary phase, the integral in Eq. (54) becomes

V�(ρ) = ã[κ(ρ)] Ã�[κ(ρ)] exp{iψ̃[κ(ρ)] + iρ · κ(ρ)} , (56)

with

ã(κ) =

⎧⎪⎪⎨
⎪⎪⎩
√

i
ψ̃kxkx (κ)

√
− iψ̃kxkx (κ)

ψ̃2
kxky

(κ)−ψ̃kxkx (κ) ψ̃kyky (κ)
, ψ̃kxkx(κ) �= 0

1
|ψ̃kxkx (κ)| , ψ̃kxkx(κ) = 0

. (57)

As same as the forward homeomorphic Fourier transform, we can also rewrite

the scaling factor for the inverse transformation in a compact form,

ã(κ) = σ̃(κ)

√√√√ 1∣∣∣ψ̃2
kxky

(κ)− ψ̃kxkx (κ) ψ̃kyky (κ)
∣∣∣ . (58)

According to the sign of the second derivative terms, we can justify the char-

acteristics of the wavefront for the given spectrum. In Table. 5, we present the

examining conditions and corresponding physical interpretation. It is then pos-

sible to identify the terms⎧⎨
⎩ U�(ρ) = α̃[κ(ρ)] Ã�[κ(ρ)]

ψ(ρ) = ψ̃[κ(ρ)] + ρ · κ(ρ)
, (59)

in Eq. (56), so that after subsequent application of first the direct and then the

inverse homeomorphic Fourier transforms, the original expression of the field

V�(ρ) is retrieved, thus proving the consistency of the method.
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Table 5: Physical implications of the amplitude scaling factor for the inverse homeomor-

phic Fourier transform.

ψ̃kxkx(κ) and ψ̃kyky(κ) ψ̃kxky(κ) ψ̃2
kxky

(κ)− ψ̃kxkx(κ) ψ̃kyky(κ) wavefront σ̃(κ)

one/both = 0 �= 0 > 0 astigmatic 1

different sign any > 0 astigmatic 1

same sign (+/−) large > 0 astigmatic 1

same sign (+) small < 0 convergent i

same sign (−) small < 0 divergent −i

3.1.3 Validity condition and the numerical criterion

The present discussion is not merely concerned with the theoretical derivation,

but also with the implementation of the method for practical simulation. It is

worthwhile at this point to emphasize the numerical criterion for the validity

conditions of the homeomorphic Fourier transform. As presented in the last

two sections, when the homeomorphic Fourier transform is allowed, two pre-

conditions must be fulfilled. Thus, we can design a practical criterion in terms

of these two conditions.

Condition one: “slowly varying”

Let us start from the first condition: the residual field U�(ρ) is slowly varying.

Physically, “slowly varying” means that the given field doesn’t involve high-

frequency components. Since both “slowly varying” or “high-frequency” are

relative concepts, an appropriate reference is inevitable. Apparently, we should

select the entire field V�(ρ) as a reference for the comparison. Theoretically, we

need respectively to perform the Fourier transform on the residual field and the

entire field and then compare their spectrum bandwidth. If the bandwidth of the

residual field is much smaller than the bandwidth of the entire field, we can say

that the wavefront phase dominates the Fourier transform. Here, we introduce

four variables to indicate the bandwidth of the residual/entire field on x-and

y-dimension.
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•
(

ΔkU
x , ΔkU

y

)
: bandwidth of the residual field Fκ [U�(ρ)].

•
(

ΔkV
x , ΔkV

y

)
: bandwidth of the entire field Fh

κ {U�(ρ) exp [iψ(ρ)]},

According to the hybrid sampling strategy, the residual field is sampled numer-

ically on the equidistant grid. Therefore, we can directly perform FFT to calcu-

late its spectrum Fκ [U�(ρ)]. On the other hand, instead of the fully sampling

of the exponential phase term, we only store the information of the wavefront

phase numerically in the manner of non-equidistant sampling [92]. It doesn’t

make sense to resample the wavefront phase and use FFT to the calculation of

the spectrum of the entire field. Therefore, in practice, we recommend enforc-

ing the pointwise Fourier transform on the entire field, Fh
κ {U�(ρ) exp [iψ(ρ)]}.

Here, the mapping relation follows the gradient of the wavefront phase, given

in Eq. (47). Finally, we obtain the Fourier transform for both the residual field

and the entire field.

Remarkably, the determination of the bandwidth is based on the theory of

second-order moments. Corresponding physical operators and mathematical ex-

pression can be found in the book. Besides, since the vector’s feature of the elec-

tric field, i.e., E(ρ) =
{

Ex(ρ) , Ey(ρ) , Ez(ρ)
}

, need to be taken into account, the

above calculation must be done for all three electric-field components. To this

end, we would like to introduce two variables to describe the resulting ratio of

the bandwidth: ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

px = Min
(

Δk
V1
x

Δk
U1
x

, ΔkV2
x

ΔkU2
x

, ΔkV3
x

ΔkU3
x

)

py = Min
(

Δk
V1
y

Δk
U1
y

,
ΔkV2

y

ΔkU2
y

,
ΔkV3

y

ΔkU3
y

) . (60)

Consequently, when the bandwidth of the entire field is much larger than the

residual field, the resulting ratio factors are some values much larger than 1. In

this situation, we can say the residual field is slowly varying and the Fourier

transform is dominated by the wavefront phase term. Finally, we would like to

emphasize that the user can specify the threshold value adjustable. Based on

our experience, the selection of the threshold refers to the Fresnel number and

we recommend setting the critical value is equal to 200, pcritical = 200.
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Condition two: homeomorphism

The second validity condition is about the constraint of the wavefront phase. It

requires that in the definition domain of the coordinates, there is one and only

one critical point of the first kind defined by the formula ∇⊥ [ψ(ρ)− ρ · κ] = 0.

FFrom a mathematical point of view, the qualified wavefront must be smooth

(continuous and differentiable). It also must be capable of generating a bijective

mapping relation, following the gradient equation, between the Fourier domain

and the original domain. Thus, the second validity condition can be referred to

as the homeomorphism condition or the bijectivity condition. The characteristics

of the bijection and how they relate to the generation of a homeomorphism

are shown in the Appendix. In a short, for the given smooth wavefront phase

ψ(ρ), the homeomorphism condition is contained in the requirement that the

determinant of the Hessian matrix ψ2
xy(ρ)− ψxx(ρ)ψyy(ρ) are all non-negative

or non-positive.

As we mentioned in the previous sections, in practice, the wavefront phase

is numerically stored in the manner of non-equidistant sampling. That means

we need to compute the determinant of the Hessian matrix per data points

and examine whether their signs are the same. However, in general, we only

store the coordinates vector, the gradient vector, and the phase value per data

point. Due to the lack of the second derivative terms, it is not straightforward

to achieve the Hessian determinant. To overcome this difficulty, we must se-

lect some appropriate interpolation technique, which allows the evaluation of

the derivative terms. Comparing to some regular techniques, e.g., cubic inter-

polation [93] or quadratic interpolation [94], we recommend using the B-spline

interpolation method [95–97]. Importantly, the construction of the B-Spline in-

terpolation requires only the function value, and then it allows the evaluation

for both the function value and gradient value. In our case, by providing the

gradient vector information, we can obtain the corresponding second derivative

terms. Finally, we can achieve the calculation of the determinant of the Hessian

matrix.

As a summary of this section, we conclude the two numerical criteria to ex-

amine whether the HFT or IHFT is valid for the given field/spectrum.
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1. The slowly varying condition

both px and py are larger than the threshold (The selection of the threshold

can refer to the Fresnel number, which establishes a coarse criterion to

define the near and far-field approximations. We recommend setting the

threshold is equal to 200, pcritical = 200.)

2. The homeomorphism condition

the determinants of the Hessian matrix ψ2
xy(ρ)− ψxx(ρ)ψyy(ρ) are all non-

negative or non-positive in the definition domain of the light field.

3.1.4 Pointwise Fourier transform in the case of a non-bijective wavefront phase

In the previous sections, the precondition of the homeomorphic Fourier trans-

form and the corresponding numerical criteria have been demonstrated in detail.

However, in an optics context, it is very common to encounter the working field

or spectrum with strong aberration. In such kind of situation, the pre-requisite

for bijection is not fulfilled which leads to all formulas derived in the first two

sections that will totally be unavailable. Therefore, we must develop another

robust algorithm and extend the validity of the HFT.

As before, we start from the decomposition of the electric field as shown in

the Eq. (44). In this step, we have total freedom when deciding exactly what

part of the total phase is included in the wavefront phase ψ (ρ), and what part

remains in residual field U�(ρ). In the case of the non-bijective wavefront phase,

we aim to extract the bijective part from the original smooth phase term ψ(ρ)

and name it as ψmap(ρ).

V�(ρ) = U�(ρ) exp[iψ(ρ)] =

= U�(ρ) exp[iψres(ρ)] exp[iψmap(ρ)] .
(61)

In the following process, we employ the modified homeomorphic Fourier trans-

form, which is based on the bijective part of the wavefront phase, on the given

field. Thus, the choice of the bijective phase part will affect the accuracy of the

HFT. Our aim is to contain as much of the bijective phase as possible from the

original wavefront phase. But we must bear in mind that the condition for bi-

jectivity must prevail, as on it hinges the consistency of the definition of the
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HFT/IHFT method. Indeed, we need a workflow to eliminate the part of that

non-bijectivity while leaving as much of the bijective phase as possible intact.

For the numerical simulation of similar tasks, we propose the following work-

flow:

1. Perform phase fitting on the initial wavefront phase.

As a first step, with the help of fitting techniques, we sequentially extract

the linear phase, spherical phase and Zernike terms from the initial smooth

phase ψ(ρ). The fitting result can be expressed as ψ(ρ) = ψfit(ρ) + ψres(ρ),

where the difference ψres between the original phase ψ and the fitted result

ψfit should be very small so that it can be negligible.

ψfit(ρ) = ψlinear(ρ) + ψsph(ρ) + ψzer
0 (ρ) (62)

where the ψzer
0 (ρ) indicates the resulting Zernike phase, in terms of the

default fitting module. Usually, the maximum order of the Zernike poly-

nomial is customized by the user.

2. Elementary optimization.

Since the analytical expression of the fitting model is known, we can now

examine whether the result of the fitting ψfit (ρ) is bijective, according to

the homeomorphism criterion (as presented in the Appendix). Numeri-

cally, we compute the second derivatives of the fitted phase ψfit at the

position of each sampling point, and check whether they have the same

sign. If this check reveals a non-bijective phase, an iterative approach is

introduced to omit the highest-order term in the list of Zernike polynomi-

als and afterward re-examine the homeomorphism criterion. This step is

repeated until a bijective phase ψ
map
0 (ρ) is obtained.

ψ
map
0 (ρ) = ψlinear(ρ) + ψsph(ρ) + ψzer(ρ) (63)

where ψ
map
0 (ρ) is the first guess of the bijective phase and ψzer(ρ) corre-

sponds to the residual bijective part of the Zernike phase.

3. Advanced optimization.

In the elementary optimization we roughly omit the highest-order Zernike
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term, but it is important to note that Zernike polynomials are global func-

tions which operate on the entirety of the definition domain, and many

commonly encountered cases of non-bijective phases are caused by local

phase defects. It would then make sense, taking the result of the elemen-

tary optimization as the starting point, to perform a more thorough inves-

tigation of the possible sources of the violation of bijectivity. In practice,

due to the different methods used in the wavefront phase interpolation,

the specific approach would be quite different. For example, if we use the

quadratic interpolation method to store the initial wavefront phase infor-

mation on a non-equidistant grid, we recommend applying the following

strategy: First of all, we need to convert the elementary analytical result

ψ
map
0 (ρ) onto the same non-equidistant grid. Generally, we need two data

sets. One is to store the coordinate information ρ = (x, y). The other one is

to save the direction information s(ρ) =
(
sx, sy, sz

)
. It should be noted that

data of the position vector are the same for both phases, but data of the di-

rection vector are different for the original phase and elementary bijective

phase. In the second step, we propose an iterative optimization. For each

sampled point, we try to modify the local bijective direction vector with the

compensating direction. The compensating direction is equal to the differ-

ence between the original local direction and the local elementary bijective

direction. Afterward, we need to examine the homeomorphism condition.

If it is still bijective, we proceed with the next point. Otherwise, we can re-

duce the compensating direction vector half and repeat this process until

ten times or fulfilling the homeomorphism condition. For a better result,

we must scan all positions several times, and finally, we can obtain the

optimal bijective phase part ψmap(ρ).

We would now, after the application of the steps described above, have suc-

ceeded in the extraction of the bijective phase part ψmap(ρ), which provides the

mapping relation from spatial domain to the frequency domain ρ → κ,

κmap = ∇⊥ψmap(ρ) . (64)

We could now apply the stationary phase method to the expression Eq. (61), but

this time using the mapping relation from Eq. (64). The resulting expression is
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the same as the standard homeomorphic Fourier transform. It reveals that the

only difference is that the general mapping relation has been replaced by the bi-

jective mapping. The approximation intrinsic to the forced regularization of the

mapping relation will certainly lead to a dislocation in the spectrum position

and a resulting, inevitable, error. This error can be numerically investigated and

compared against a given accuracy threshold, on the basis of which the final

decision could be made whether to go ahead with the application of the home-

omorphic Fourier transform in that specific case, or to discard it in favor of the

rigorous variant.

3.2 numerical examples

In the previous sections, the background knowledge and theoretical derivation

of the homeomorphic Fourier transform algorithm have been introduced. How-

ever, one of the most promising aspects of this concept in pragmatic terms is its

application in computer simulations of optical systems. In the following sections,

we will present several illustrative examples of the application of this technique.

All simulations were done with the physical optics modeling and design soft-

ware VirtualLab Fusion.

3.2.1 Fourier transform of a field with spherical phase

In the first example, we would like to consider the most simple optical scene:

Fourier transform of a field with a spherical phase. To carry out the simula-

tion, we build up the corresponding optical setup: an ideal plane wave illu-

minates a house-shaped mask behind which a divergent spherical phase is su-

perimposed onto the field. The spherical phase can be expressed as ψsph(ρ) =

sgn(R) k0ň
√

ρ2 + R2, where the factor R indicates to the radius of the curvature

of the spherical wavefront. Since the working spherical phase is divergent, R

is taken on a positive value. In this set of experiments, we fix the ideal plane

wave which is Ex polarized at 532 nm, and the size of the house-shaped mask.

Therefore, the amplitude distribution of the working field is always the same,

as per Fig. 9 (a), which shows the Ex component of the field behind the mask.
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Figure 9: Fast Fourier transform of a field with house-shaped amplitude and different

values of the spherical-phase radius. Panel (a) shows the amplitude distribu-

tion of the Ex component in the spatial domain, common starting point to all

results. A spherical phase with radius of curvature R is then superimposed on

this amplitude, and its Fourier transform computed. Panels (b) to (g) present

the Ẽx component (i.e. the result of said Fourier-transform operation) for differ-

ent values of R, as indicated below each of the individual panels. The required

numbers of sampling points of fast Fourier transform for each case are given

in Tab. 6.

In the functional phase plate, we can configure the radius of curvature R of the

spherical phase and then superimpose it onto the amplitude. The factor R is

employed as the variable in this set of experiments.

Simulation results of the Fourier transform corresponding to different values

of R is then shown in Fig. 9 (b)–(g). The case of R = +∞, which is pictured in

panel (b), is the limit case of a planar wavefront. We cannot see any resemblance

between its original pattern and its Fourier transform. It shows the integral na-

ture of the Fourier-transform operation. On the other hand, as the magnitude

of R progressively decreases, the importance of the spherical phase increases.

Meanwhile, one can ever more and more easily discern a house-shaped distri-

bution also in the Fourier transform. In panel (c) and (d), there are still some

diffraction effects at the edge of the Fourier pattern. Panel (e) happens to be a
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Figure 10: Homeomorphic Fourier transform of the same house-shaped amplitude with

a superimposed spherical phase in comparison to Fig. 9. Panel (a) shows the

amplitude distribution of the Ex component in the spatial domain. Panels

(b) to (g) present the result of Homeomorphic Fourier-transform operation

for different values of R. Please note the window size of panel (b) and the

scale of panels (b) to (d) are different from Fig. 9. The required numbers of

sampling points of homeomorphic Fourier transform for each case are given

in Tab. 6.

particularly evident instance on that score – the one-to-one bijective mapping

behavior is crystal clear by this point. Still, even for stronger distortion, as is

the case for the results of panels (f) and (g), the bijective mapping behavior is

incontestable, since distortion does not inherently violate the homeomorphism:

the definition of a homeomorphism hinges on the fact that the coordinates may

be changed by the transformation, but the neighbors of the points remain the

same.

The purpose of this experiment is to investigate when the homeomorphic

Fourier transform constitutes a good approximation of the rigorous integral.

Serving as a contrast, we compute the homeomorphic Fourier transform of the

same house-shaped fields, shown in Fig. 10. Besides, we have performed an

analysis of the accuracy of the HFT using the FFT as reference. Here, according
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Table 6: Comparison of the homeomorphic Fourier transform and the fast Fourier trans-

form: number of sampling points and deviation. The numerical aperture (NA)

is defined as n sin θ = na√
a2+R2 . Here, a is the radius of the aperture and n is the

real part of the refractive index of the surrounding medium. Corresponding

field distribution results are respectively shown in Fig. 9 and Fig. 10.

spherical radius NA sampling (FFT) sampling (HFT) deviation

R = ∞ NA = 0 (59 × 55) (59 × 55) 99.99 %

R = 200 mm NA = 0.006 (97 × 95) (59 × 55) 17.17 %

R = 50 mm NA = 0.026 (281 × 23) (59 × 55) 4.1 %

R = 10 mm NA = 0.13 (1299 × 915) (59 × 55) 0.28 %

R = 2.5 mm NA = 0.45 (4557 × 3323) (59 × 55) 0.067 %

R = 1 mm NA = 0.71 (7753 × 6091) (59 × 55) 0.021 %

to Wyrowski and Kuhn, the deviation between the FFT result and the HFT result

is evaluated by

deviation :=
∑x,y

∣∣ṼFFT(κ)− ṼHFT(κ)
∣∣2

∑x,y
∣∣ṼFFT(κ)

∣∣2 (65)

where the reference ṼFFT(κ) is computed by the rigorous fast Fourier trans-

form technique and ṼHFT(κ) denotes the result obtained by the homeomorphic

Fourier transform. For each case, the deviation between the two approaches is

presented in Tab. 6. The deviation exhibits initially high values at the low-NA

which rapidly drop as the NA increases, with an asymptotic tendency as the NA

continues to increase even further. That is, when the smooth wavefront phase

term is strong enough to dominate the Fourier transform, the HFT will yield a

result that is in practice indistinguishable from that of the rigorous FFT integral.

The investigation of the behavior of the fast Fourier transform and the homeo-

morphic Fourier transform with respect to the significance of the smooth wave-

front (of which a spherically shaped one is just one example) for a given field dis-

tribution illustrates, is the effect of the stationary phase condition on the Fourier

transform. In other words, when the aforementioned smooth wavefront is strong

enough, the stationary phase assumption will be fulfilled and the Fourier trans-
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Figure 11: Comparison of the numerical effort of the homeomorphic and the Fast

Fourier transforms (HFT and FFT respectively, for short) for the case of a

house-shaped field with a spherical phase, for different values of the numer-

ical aperture (NA) of said spherical phase. The abscissa records increasing

values of the NA, which correspond to decreasing values of the radius of cur-

vature R of the spherical phase. The ordinate corresponds to a logarithmic

scale of the number of sampling points. The dashed line for the number of

sampling points used to sample the function in the case of the HFT opera-

tion, and, the solid line for the number of sampling points necessitated by

the computation of the FFT. Finally, the CPU time at two specific positions,

where R = 10 mm and R = 5 mm, are pointed out.
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form will cease to exhibit an integral behavior, and effect a mere homeomor-

phism between the space and the spatial frequency domains: when this is true,

the substitution of the (albeit strictly speaking approximated) homeomorphic

Fourier transform – as presented in Section 3.1.1 – for the rigorous Fourier inte-

gral will be justified.

Let us at this point retrieve another dimension of the discussion which was al-

ready mentioned in the previous section: numerical effort. When, in Section 3.1.1,

we presented the theoretical derivation of the homeomorphic Fourier transform,

we indicated how using a hybrid sampling strategy for a field given in the

form of Eq. 44 could effectively massively reduce the sampling effort compared

against an indiscriminate Nyquist sampling of the entire field, including the 2π-

wrapped wavefront phase. In the following experiment we seek to compare the

numerical effort of computing the Fast Fourier Transform (FFT) against that re-

quired to calculate the corresponding homeomorphic Fourier transform (HFT)

of the same function. Even though the number of sampling points has been

given in Tab. 6, for better visualization of the results and gauging of conclu-

sions, we have plotted in Fig. 11 the numerical effort of the FFT and of the HFT

in terms of the number of sampling points as function of the numerical aperture

(NA).

The graphs in Fig. 11 and Tab. 6 reveal that, as the numerical aperture in-

creases as R decreases, there is a steep rise in the number of sampling points

required by the sampling conditions of the FFT operation. In the case of the

HFT, however, the number of necessary sampling points remains constant with

increasing NA. This is due to the fact that the residual field U and the smooth

phase ψ are sampled separately, following the aforementioned hybrid sampling

strategy. How many samples it is necessary to handle in order to compute the

HFT of a given function depends on which of the two terms demands a larger

sampling number; in the particular case considered here, taking into account the

fact that the smooth phase is a simple spherical phase, and sampling the resid-

ual field U(ρ) necessitates resolving all the details in the house-shaped aperture,

the sampling heft of the latter clearly trumps that of the former. Finally, to clar-

ify the performance of the HFT in practical tasks, we record the CPU time at

two specific positions for both FFT and HFT, shown in Fig. 11. It reveals that

the small number of sampling points translates into a short computational time.
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HFT does contribute to reduce the numerical complexity and could have broad

application prospects.

3.2.2 Fourier transform of a field with a simple aberrant phase

In the field of optical system design, the aberration theory plays the most impor-

tant role and has a long and prominent history. Among other things, it is used

to characterize the shape of wavefront phases, usually as a means of identifying

and quantifying in what way and how much that phase differs from a certain

reference. There are various alternatives to describe aberration. In this work, we

select one of the most often encountered representations is that provided by the

set of Zernike polynomials.

In last example, we discuss the Fourier transform of the field with an ideal

spherical phase. So, in the second set of experiments, we intend to investigate

a more common situation that is the influence of the aberrant phases on the

Fourier transform. We selected a similar optical setup as the one used in the last

work: an ideal plane wave is truncated by an aperture shaped as a sequence of

letters spelling “Light”, after which aperture an aberrant phase is superimposed

on the field. In this case, as shown in Fig. 12 (a), the amplitude distribution will

remain unchanged throughout the sequence of experiments.

In the following set of experiments, we will vary the Zernike polynomial

terms imposed on the field and study the effect of different types of aberra-

tions on the Fourier transform. The smooth wavefront phase in the test can be

mathematically described by means of its Zernike decomposition:

ψ(ρ) = ψzer(ρ) = k
M

∑
m=0

N

∑
n=0

cm
n Zm

n (r, θ) , (66)

where k = 2π
λ ň, λ being the wavelength, r = |ρ|

|ρmax| and θ = arctan
( y

x
)
; cm

n

denotes the coefficients of the corresponding Zernike term. For the experiment,

we have selected six types of lower-order Zernike phases, which we enumerate

and express in Table 7. They all have the mathematical characteristic of being

quadratic polynomial terms so that the resulting mapping relation ρ → κ :

∇⊥ψ(ρ) = κ is an exactly linear transformation.
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Figure 12: Homeomorphic Fourier tranform (FFT results are not shown, since deviation

between HFT and FFT just 0.2 %) of a field with amplitude shaped in the

form of a letter sequence spelling “Light”, in the cases of different aberrant

phases. Panel (a) shows the amplitude distribution of the Ex component in

the space domain, common starting point to all results. Different aberrations

are then superimposed on this amplitude, and its Fourier transform com-

puted. The remaining panels present the Ẽx component (i.e. the result of said

Fourier-transform operation) for (b) positive defocus, (c) negative defocus, (d)

positive astigmatism x, (e) negative astigmatism x, (f) positive astigmatism y

and (g) negative astigmatism y.

Table 7: Simulation parameters of the aberrant phase for the example presented in Sec-

tion 3.2.2.

No. name & type expression (Zernike) value

Fig. 12 (b) defocus Z0
2 =

√
3
(
2r2 − 1

)
c0

2 = 100λ

Fig. 12 (c) defocus Z0
2 =

√
3
(
2r2 − 1

)
c0

2 = −100λ

Fig. 12 (d) vertical astigmatism Z−2
2 =

√
6r2 cos 2θ c−2

2 = 200λ

Fig. 12 (e) vertical astigmatism Z−2
2 =

√
6r2 cos 2θ c−2

2 = −200λ

Fig. 12 (f) oblique astigmatism Z2
2 =

√
6r2 sin 2θ c2

2 = 200λ

Fig. 12 (g) oblique astigmatism Z2
2 =

√
6r2 sin 2θ c2

2 = −200λ
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In Fig. 12, the result of the Fourier transform for different lower-order aberra-

tions is presented. It must be emphasized that all the results presented in Fig. 12

are computed by the rigorous FFT. From Table 7, we know that the scaling fac-

tors for different aberrations are all larger than hundreds of the wavelength. It

means that, as before, the smooth wavefront phase term is strong enough to

dominate the Fourier transform. Therefore, for all the cases, the homeomorphic

Fourier transform is employed for the comparison and would produce virtually

the same results as the rigorous FFT, with ∼ 0.2 % deviation when compared

against the FFT reference. One can see that, regardless of the scaling, the Fourier-

transform operation delivers either a rotation or a mirroring of the original pat-

tern. Additionally, we discussed the appearance of distortion in the mapping in

the case of the spherical phase, but it is worth mentioning that no such effect

arises for the aberrations considered in this experiment. This is related to the

fact, already pointed out above, that all the aberration terms we have selected

produce a linear mapping relation between ρ and κ, and the fact that the scaling

factor for the selected Zernike polynomials is symmetric for both the x and y

dimensions.

3.2.3 Fourier transform of a field with a general, bijective, wavefront phase

The application of the homeomorphic Fourier transform to fields exhibiting

spherical phases or simple aberrant phases has been demonstrated respectively

and in isolation in the previous two sections with the help of two typical in-

stances. In the third experiment, we would like to extend the case study to a

more general optical scene. For this purpose, we build up a simple optical sys-

tem: a spherical wave is truncated by a circular aperture with radius a = 12 mm;

at the plane where the aperture is located the spherical phase has a radius of

curvature of R = 6 mm or, in other words, the distance from the point source

to the plane of the aperture is 6 mm. Then, a Zernike phase plate places directly

behind the aperture mask. In what follows, we shall detect and compare the

Fourier transform of the field with different Zernike aberrations obtaining by

this system.
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Table 8: Simulation parameters of the aberrant phase for the example in Section 3.2.3.

No. name & type expression (Zernike) value

Fig. 13 (c) trefoil x Z3
3 =

√
8r3 cos 3θ c3

3 = 300λ

Fig. 13 (d) coma x Z1
3 =

√
8
(
3r3 − 2r

)
cos θ c1

3 = 100λ

Fig. 13 (f) tetrafoil y Z−4
4 =

√
10r4 sin 4θ c−4

4 = 150λ

Fig. 13 (g) tertiary astigmatism y Z−2
6 =

(
15r6 − 20r4 + 6r2) sin 2θ c−2

2 = 40λ

Fig. 13 (i) pentafoil x Z5
5 =

√
12r5 cos 5θ c5

5 = 150λ

Fig. 13 (j) tertiary spherical Z0
8 =

√
9
(
70r8 − 140r6 + 90r4 − 20r2 + 1

)
c0

8 = 30λ

The amplitude of the field directly behind the mask is presented in Fig. 13 (a).

The numerical aperture can be computed by the formula NA = an√
a2+R2 = 0.3, a

value for which the HFT proves sufficiently accurate. The Fourier transform of

the initial field – i.e. with only spherical phase – is given in Fig. 13 (b) which, in

accordance with what we already know about the behavior of fields for which

the HFT is an accurate choice, exhibits a very similar distribution to the original

pattern of the field in the space domain. This case will serve as a reference for

the following tests, where we will add different Zernike terms onto the initial

spherical phase and observe their influence on the Fourier transform. We have

selected six types of complex aberrant phases, so that one or a combination of

several of them can be added to the starting-point case of a purely spherical

phase.

We organize further experiments as follow: we have added the selected six

types of complex aberrant phases, respectively and in isolation, to the purely

spherical phase. The Fourier-transform results for the cases where a single higher-

order Zernike phase term has been added to the initial field, are presented at

the second and third columns in Fig. 13.

Afterward, we added the combination of two kinds of aberrations to the initial

field. The fourth column corresponds to the Fourier transform of the same initial

field, but this time the superimposed aberration term is a combination of the

higher-order terms employed in the same row in columns two and three, so that

the effect of both can be observed at the same time and in a combined manner.

The specific simulation parameters can be consulted in Table 8. Fig. 13 illustrates
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Figure 13: Homeomorphic Fourier tranform (FFT results are not shown, since deviation

between HFT and FFT just 0.2 %) of a field with a general bijective wavefront

phase. Panel (a) should the amplitude distribution of the Ex component in

the space domain, common starting point to all results. A spherical wave-

front with different aberrations is then superimposed on this amplitude, and

the Fourier transform computed. The remaining panels present the Ẽx com-

ponent (i.e. the result of said Fourier-transform operation) for (b) a purely

spherical phase, (c) spherical phase and trefoil x, (d) spherical phase and

coma x, (e) spherical phase, trefoil x and coma x, (f) spherical phase and

tetrafoil y, (g) spherical phase and tertiary astigmatism y, (h) spherical phase,

tetrafoil y and tertiary astigmatism y, (i) spherical phase and pentafoil x, (j)

spherical phase and tertiary spherical, and (k) spherical phase, pentafoil x

and tertiary spherical. The corresponding Zernike terms are indicated under

each panel.
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how the inclusion of different aberration terms and combinations thereof modify

and reshape the pattern and amplitude distribution of the spectrum.

It is important to note that for all the examples presented in this set of exper-

iments the result of performing the Fourier transform with the homeomorphic

operation was always compared against that obtained with the rigorous FFT al-

gorithm. The deviation remained bounded throughout at under 0.2 %. A direct

implication of this is that the homeomorphic Fourier transform algorithm can be

applied to fields with any wavefront phase, as long as it sustains the bijectivity

condition. In other words, there is no additional restriction on the type or shape

of the wavefront phase, apart from the requirement for a bijective mapping.

3.2.4 Fourier transform of a field with a non-bijective wavefront phase

Up to this point, we have only discussed those cases where the wavefront phase

of the test field produced a bijective mapping when subjected to the algorithm

of the HFT. Last but not least, we would like to delve into the pragmatically

quite interesting case of how to extend the application of the HFT to situations

in which the given wavefront phase violates the bijectivity condition. The basic

workflow of how to go about this task numerically was already outlined in Sec-

tion 3.1.4. Here let us focus on two specific, tangible instances of its application.

We take as the starting point for the first experiment, a field linearly polarized

along Ex with a slowly varying amplitude, as shown in Fig. 14 (a). Its smooth

wavefront phase is shown, numerically sampled, in Fig. 15 (a). In this example,

we employ the hybrid sampling strategy, and we assume there is no extra phase

information besides the smooth wavefront phase.

The next step, rather than straight away attempting to apply the HFT, is to

examine whether the homeomorphism condition is fulfilled by the wavefront

phase of the field in question. The mathematical criterion to establish or disprove

this conformity rests on the sign of the second derivatives of the wavefront in

the entire definition domain of the field: if the sign does not change, then the

condition holds, the mapping relation can be obtained, and the HFT computed.

If, on the other hand, the sign changes from positive to negative (or vice versa)
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Table 9: Simulation parameters of the aberrant phase for the first example in Sec-

tion 3.2.4.

name & type fitting expression coefficients ψmap(ρ)

spherical phase ψsph = sign(R) k0ň
√

ρ2 + R2 R = 9.1 mm �

piston Z0
0 = 1 c0

0 = 0.88λ �

tilt y Z−1
1 = 2r sin θ c−1

1 = −2.52λ �

tilt x Z1
1 = 2r cos θ c1

1 = −1.17λ �

defocus Z0
2 =

√
3
(
2ρ2 − 1

)
c0

2 = −1.97λ �

astigmatism x Z2
2 =

√
6r2 cos 2θ c2

2 = 27.6λ �

trefoil y Z−3
3 =

√
8r3 sin 3θ c−3

3 = 6.14λ �

coma y Z−1
3 =

√
8
(
3r3 − 2r

)
sin θ c−1

3 = 4.5λ �

coma x Z1
3 =

√
8
(
3r3 − 2r

)
cos θ c1

3 = 6λ �

trefoil x Z3
3 =

√
8r3 cos 3θ c3

3 = 3.84λ �

tetrafoil y Z−4
4 =

√
10r4 sin 4θ c−4

4 = −3.53λ �

spherical aberration Z0
4 =

√
5
(
6r4 − 6r2 + 1

)
c0

4 = 0.001λ �

secondary astigmatism x Z2
4 =

√
10
(
4r4 − 4r2) cos 2θ c2

4 = 0.15λ �

at any point in the definition domain, the homeomorphism condition is violated,

and further measures need to be taken before the HFT algorithm can be applied.

This takes us to the practicalities of calculating, numerically, the point-wise

second derivatives of the wavefront. There are several methods to attain this

end, which can depend on the initial parametrization of the three-dimensional

surface in question. For instance, a spline interpolation can provide the local gra-

dient information. In this example, however, we choose to follow the proposed

method of first performing a fitting for the linear phase, spherical phase, and any

additional Zernike terms, in that order, starting from the initial numerical phase

data. We consequently obtain an analytical expression, ψfit(ρ), for the phase. For

the specific case at hand, the result of this fit (expression and coefficients for the

different terms) is presented in Table 9.

An analysis of the quality of the fit can be extracted from Fig. 15 (b), where

we show the subtraction of the smooth, analytic function produced by the fit,
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Figure 14: Fourier transform of a field with a non-bijective wavefront phase. Panel (a)

shows the amplitude of the Ex component in the space domain, panel (b)

shows the result of the Fourier transform as obtained via the rigorous Fast

Fourier Transform, and pancel (c) shows the result of the Fourier transform

as per the approximation provided by the homeomorphic Fourier transform

with bijective regularization of the mapping relation.

.

ψfit(ρ), from the initial, discretely sampled phase ψ(ρ). Direct comparison of

the scale used here (∼ 3 × 10−6 rad) and that used for the initial phase in panel

(a), ∼ 970 rad, confirms the accuracy of the fit. Let us now calculate the second

derivatives of ψfit(ρ) in a point-wise manner; the sign of the result is graphically

shown, color-coded, in Fig. 15 (e): while over most of the definition domain

the second derivatives exhibit a positive sign, a small area in the bottom right

is negative-valued. The homeomorphism condition is thus infringed, and the

wavefront phase must be regularized before moving on with the computation

of the homeomorphic Fourier transform.

We follow the elementary optimization approach presented in Section 3.1.4,

whereby the highest Zernike term present in the fit will be successively removed

from the wavefront part of the phase and the homeomorphism condition re-

examined until it is fulfilled. In the specific example studied here, only one

iteration is necessary, and it suffices to remove the secondary astigmatism in
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Figure 15: Analysis of the wavefront phase for the simulation task: Homeomorphic

Fourier transform of a field with a non-bijective wavefront phase. Panel (a)

shows the initial smooth phase, panel (b) the residual phase after perform-

ing the fitting, panel (c) the phase from which the bijective mapping will be

obtained, panel (e) serves to examine the homeomorphism condition for the

fitted phase (the violation of the condition is evident from the change in sign

of the second derivatives) and panel (f), analogously to (e), serves to examine

how the same condition is fulfilled in the case of the final regularized phase

employed to compute the bijective mapping.

x, leaving us with the final expression for the wavefront to be employed in the

computation of the HFT, ψmap, which fulfills the homeomorphism condition, as

shown in panels (c) and (f) of Fig. 15.

We are finally in a situation to compute the now bijective mapping relation

ρ → κmap from the regularized wavefront phase ψmap, according to Eq. (47).

Please note that the remainder of the phase after the part which can provide

us with a bijective mapping has been extracted is not lost in the calculation of

the HFT: the expression of the total field V�(ρ) will be reorganized, according

to Eq. (44), so that this remainder of the phase will be henceforth included in
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FT?

divergent beam

planar surface with a local defect

20 μm

2
m

m

air (n1 ≈ 1) fused silica (n2 ≈ 1.46)

Figure 16: Sketch of the simulation setup: divergent beam incidents a surface with some

local defect. There is a local defect in the central area of a planar surface. The

local defect distributes smoothly and has a Gaussian profile. The local plane

interface approximation (LPIA) is applied to deal with the light field going

through the curved surface. Then, the HFT and regular FFT are respectively

used to calculate the spectrum for the field behind the surface.

.

the U(ρ) term. The only effect of this regularization of the wavefront phase is

on the mapping relation. Once the mapping is obtained, we can finally perform

the HFT operation on the test field. Panels (b) and (c) of Fig. 14 show the re-

sults of performing the FFT and HFT respectively on said test field. Visually,

the similarity between them is evident, with some small differences appearing

in the bottom right (tellingly, the same area where the violation of the homeo-

morphism condition arose). The deviation of the HFT with respect to the FFT

reference is about 1 %.

In the first experiment, we correctly use the proposed elementary optimiza-

tion strategy to distinguish the bijective mapping phase and the higher-order
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Zernike aberration phases. The simulation result reveals the vast potential of this

approximated pointwise operation. However, we must admit that the first exam-

ple is an extraordinary case that the aberration phase with a very low weight co-

efficient precisely causes non-homeomorphism. In practice, more general situa-

tions are that some local defects on the wavefront conduct non-homeomorphism.

Therefore, we prepare another experiment to present the application of this ro-

bust algorithm to a more practical optical setup.
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Figure 17: Fourier transform of a field with a non-bijective wavefront phase. The left

picture shows the result of the Fourier transform as obtained via the rigorous

Fast Fourier Transform. The middle picture is the amplitude of the trans-

mitted field directly behind the interface. And, the right picture shows the

result of the Fourier transform as per the approximation provided by the

homeomorphic Fourier transform with bijective regularization of the map-

ping relation.

.

As depicted in Fig. 16, we build up the simulation setup for the second ex-

periment. The incident field used in the simulation is a linearly Ex polarized

divergent beam in the standard air, with a wavelength of 532 nm. Importantly,

its wavefront phase is purely quadratic phases. In front of the interface, we

measured the beam parameter and wavefront phase parameter for the incident

field. Consequently, we know the diameter of the field in front of the surface

is (20 mm × 20 mm), and the wavefront phase at this position consists of the

defocus phase and astigmatism y, shown in Table 17. The transmission medium
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Table 10: Wavefront phase parameters of the incident field in front of the interface for

the second example in Section 3.2.4.

name & type expression value

defocus Z0
2 =

√
3
(
2ρ2 − 1

)
c0

2 = 150λ

astigmatism x Z−2
2 =

√
6r2 sin 2θ c−2

2 = −120λ

behind the interface is fused silica, whose refractive index is n2 ≈ 1.46. The in-

terface between two mediums is a planar surface with some local defects in the

central area. In Fig. 16, by zooming in the local defect region, we can see that

the defect has a Gaussian profile with a size of (2 mm × 2 mm), which is much

smaller than the beam size of the incident field.

We perform the local plane interface approximation (LPIA) to carry out the

light field passing through the curved surface. The amplitude distribution of

the transmitted field is shown in Fig. 17. It should be noted that the planar in-

terface won’t change the homeomorphism condition of the wavefront phase. As

we mentioned, the incident wavefront phase is simply in the form of quadratic

polynomials. The resulting wavefront phase behind the planar interface must

still be quadratic and bijective. The elementary optimization strategy can pre-

cisely found this bijective transmitted wavefront phase, presented in Fig. 17. On

the other hand, due to the introduction of the local defect, the transmitted wave-

front phase is modulated in the defect region and becomes non-bijective. The

real transmitted wavefront phase and the corresponding 1D cut are shown in

Fig. 17.

As can be seen in Fig. 17, the PFT with regularized bijective phase and the

regular FFT are respectively applied to calculate the Fourier transform of the

transmitted field, and the simulation results are displayed on the same scale.

First of all, we investigate the accuracy of the proposed PFT approach compared

to the FFT reference. The deviation between the two methods is under 3%. This

number looks not a significant difference. However, in the central area, we can

observe a noticeable difference in the resulting pattern. When we zoom in the

central area of the FFT spectrum pattern, we can see evident interference fringes.

Meanwhile, HFT presents a sufficiently uniform distribution in the same area.

Last but not least, we would like to note that besides the local defect region, the
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resulting fields by both approaches are the same. This fact is different from the

first example. It is because that the Zernike phases are global polynomials and

having an effect on the full definition domain.

The closer look at the area of interest which is also presented in the figure re-

veals that the differences between the PFT and the FFT results stem from what

could be described as a “diffraction-like” pattern in the FFT which is absent in

the HFT case. This observation in the purely mathematical perspective we have

maintained throughout this work could be obviated; however, when looking to

apply the mathematical tool that is the HFT in an optics context this detail will

prove immensely relevant: one of the main effects (if not the main effect) of em-

ploying the HFT in the simulation of an optical system is that it will neglect any

diffraction effects which might be relevant at the plane where it is performed.





4
A P P L I C AT I O N I N T H E F R E E S PA C E P R O PA G AT I O N

The physical-optics modeling means the ability to solve Maxwell’s equations

on the system level. Instead of employing a universal Maxwell solver for the

whole system, we follow the concept of field tracing, i.e., to decompose the sys-

tem into regions and apply various regional Maxwell solvers. The field solvers

can be evaluated in either a rigorous manner or with certain mathematical ap-

proximations. And, they may work in different domains, e.g., the spatial (x) or

the spatial frequency (k) domain [61, 98, 99]. Then, by matching the boundary

values amongst regions, these regional solvers can be connected to complete

the system. As we mentioned, to use different field solvers in connection, so

as to enable the modeling of sophisticated systems, the Fourier transform is

a crucial technology and frequently used. In the previous two chapters, we

proposed two advanced Fourier transform techniques, i.e., the semi-analytical

Fourier transform and the homeomorphic Fourier transform. Counting also the

fast Fourier transform, we have three numerical tools in total to carry out the

transforming between the x-domain and the k-domain. Motivated by both fun-

damental aspects and practical applications [100, 101], we would demonstrate

how to achieve fast physical optics modeling and design with the help of the

proposed innovative Fourier transform techniques. Instead of some complicated

systems, as the starting point of the investigation, we are concentrating on the

most fundamental but indispensable problem in optical modeling, i.e., the light

field propagation within a homogeneous and isotropic media.

For the free space propagation, rigorous Maxwell’s solutions have been found

both in the spatial domain (x-domain) and the spatial-frequency domain (k-

domain), namely the Rayleigh-Sommerfeld diffraction integral and the method

of angular-spectrum-of-plane-waves (SPW). However, due to the complexity of

the integral operation, both rigorous approaches suffer from severe numerical is-

sues. Various approximate propagation methods are providing to overcome the

drawback of the rigorous techniques. For example, in 1909, Debye published his

65
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work to demonstrate the general features of a diffracted field near its focus [66,

102]. When comparing the Debye and the rigorous Rayleigh-Sommerfeld inte-

grals, we can see how the Debye approximation reduces a double integral to

a single one. Furthermore, In the numerical implementation of this single in-

tegral, the required sampling points are far fewer. Although the approximate

approaches can provide a considerable reduction in the computational effort,

the limited applicable scopes much restrict their usage in practical simulation.

In short, it is urgent and vital to find a unified free space propagation operator,

which has the advantages of both rigorous and approximate approaches.

4.1 unified free space propagation operator via the k-domain

In physical optical modeling and design, the propagation of light fields from

the source plane to the target plane in free space (where, by “free space”, we

understand any isotropic and homogeneous medium) is either a fundamental

or essential scenario. The corresponding techniques can be used in various ap-

plications, e.g., lens system, holographic microscopy and diffractive optics [103–

105]. Thus, we would like to consider an arbitrary harmonic field defined in a

plane and demonstrate how to propagate this field in free space. First of all, let

us build up a Cartesian coordinate system X − Y − Z and assume the principal

propagation direction and the optical axis along the +z-axis. Here, z = z0 is the

axis position of the plane where we investigate the input light field. At this plane,

the input field is known at the given transversal position vector ρ = r⊥ = (x, y),

with V�(ρ, z0). Then, the output field at the target plane z = z′ = z0 + Δz can be

formulated by

V�

(
ρ′, z′

)
= PV�(ρ, z0) (67)

where P indicates the free space propagation operator and ρ′ = (x′, y′) repre-

sents the transversal position vector on the target plane.

As we mentioned, one well-known rigorous free space propagation opera-

tor is the Rayleigh-Sommerfeld diffraction (RSD), which is a two-dimensional

complex-valued integral in the spatial domain. Since, in most practical situa-

tions, there is no analytical solution for this integral operation, it presents a nu-

merical complexity of O(N2) for a function with N samples. With the help of the
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Fourier transform integral, Eamon Lalor proposed another rigorous approach in

the k-domain, namely the method of angular-spectrum-of-plane-waves (SPW).

He demonstrated the equivalence of SPW operator and RSD integral theoreti-

cally. From the implementation point of view, the computational effort of the

SPW operator can be reduced from O(N2) to O(N log N) by the fast Fourier

transform (FFT). But, in the case of an intensive wavefrontphase, the required

sampling points N are massive to resolving the“2π-modulo” phase. In what

follows, by employing the novel Fourier transform techniques as well as the ex-

tension for the propagation to inclined planes, we present the derivation and

fundamental strategies of the unified free space propagation operator.

4.1.1 Propagation operator between parallel planes

It is well known that general fields can be described as a superposition of plane

waves presenting different propagation directions. By performing the Fourier

transformation, we can achieve the shift from the spatial domain to the spatial

frequency domain and vice versa. In the k-domain, each spatial frequency indi-

cates an ideal plane wave whose physical response of the propagation follows

the plane wave ansatz. We can refer to this response as the k-domain propaga-

tion operator and denote it by P̃ . Using the knowledge we have of ideal plane

waves, the propagation kernel (between two parallel planes) in the k-domain is

simply a pointwise operation, i.e., multiplying an exponential phase term

P̃ := exp
[
iǩz(κ)Δz

]
= exp

(
i
√

k2
0ň2 − k2

x − k2
yΔz

)
, (68)

where Δz = z′ − z0 is the propagating distance, ň is the complex refractive

index of the embedding medium and k0 = 2π
λ denotes the wavenumber of the

harmonic field.

Combining forward and backward Fourier transform integrals, we can write

down the compact mathematical expression of the angular-spectrum-of-plane-

waves (SPW) operator,

V�

(
ρ′, z′

)
= F−1

κ

{
F κ[V�(ρ, z0)]× exp

[
iǩz(κ)Δz

]}
. (69)

where F κ and F−1
κ denote the (inverse) Fourier transform integral operations.
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The SPW formula reveals that the universal propagation operator via the k-

domain is merely a sequence of two Fourier transform integrals together with a

pointwise operation in the k-domain. Generally, employing the FFT and the IFFT

in the numerical implementation enables a fast evaluation of the SPW operator

that reduces the computational effort to O(N log N) where N = Nx × Ny is

the number of required sampling points for a given complex function. However,

because of the periodic nature of the complex exponential function, i.e., the need

to sample the exponential phase term exp[iψ(ρ)] = cos [iψ(ρ)] + i sin [iψ(ρ)],

the ”2π-wrapped“ phase becomes jaggedly discontinuous. Furthermore, due

to the phase modulation exp
[
iǩz(κ)Δz

]
in the k-domain, the forward FFT and

backward IFFT usually are confronted with precisely different sampling issues.

To sum up, as a matter of numerical difficulty, the SPW operator using only FFT

cannot be a general solution to the problem of free space propagation.

Besides, the formula, expressed in Eq. (69), only holds in the problem of prop-

agation between two parallel planes. However, propagating the light field to

an inclined plane is of importance in optical modeling and design and also a

fantastic subject of interest. In the coming two sections, we would demonstrate

how to overcome the numerical issue in the Fourier transforms and enable the

calculation of light propagation between non-parallel planes.

4.1.2 Extension to the arbitrarily oriented planes

A rigorous physical-optics approach to solve the problem of field propagation

between non-parallel planes has been presented by Zhang et al. [65]. The only

difference in the derivation is the replacement of the propagation step in the

k-domain, which is now denoted by P̃ as shown in Fig. 18. This step can be

completely described in a pointwise manner. Without showing all derivations in

detail, the connection between input and output field values can be summarized

as

Ṽout
⊥
(
κout, zout) = P̃[κout(κ)

]
Ṽ⊥(κ, z0) , (70)
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with
P̃ [κout(κ)] = ã[κout(κ)] B̃ [κout(κ)]M̃ [κout(κ)]

=

⎡
⎣ ã 0

0 ã

⎤
⎦
⎡
⎣ B̃ 0

0 B̃

⎤
⎦
⎡
⎣ M̃kxkx M̃kxky

M̃kykx M̃kyky

⎤
⎦ , (71)

where κout(κ) denotes the mapping relation between the input and output spa-

tial frequency vectors because of the tilted plane, ã(κout) is the Jacobian deter-

minant of this mapping, B̃(κout) is the propagation kernel, M̃(κout) is the field-

components projection matrix, and Ṽ⊥ =
(
Ex, Ey

)
indicates the transversal com-

ponents of the electric field.

V⊥(ρ, z0)

Ṽ⊥(κ, z0) P̃ [
κout(κ)

]
Ṽout
⊥
(
κout, zout

)

Vout
⊥
(
ρout, zout

)

Δz = z′ − z0

F κ F−1
κout

(ρ, ω)

(κ, ω)

x̂

ŷ ẑ

x̂out

ŷout
ẑout

Figure 18: Propagation of a light field to a tilted plane in the free sapce, and the cor-

responding field-tracing diagram illustrating the same propagation process

according to a spectrum-of-plane-wave (SPW) analysis. There we have two

Cartesian coordinate systems, Γin and Γout, in which the input field V⊥(ρ, z0)

and the output field Vout
⊥ (ρout, zout) are respectively defined. The propagation

distance Δz = z′ − z0 is given in the coordinate system Γin. P̃ indicates the

propagating operator in the spatial frequency domain.
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Based on all the considerations above, the complete mathematical expression

of the free space propagation operator between non-parallel planes can be ex-

plicitly written as

Vout
⊥ (ρout, zout) = F−1

κout

{P̃[κout(κ)
]F κ[V⊥(ρ, z0)]

}
. (72)

In comparison to the situation of parallel planes, the numerical issues in the im-

plementation of Eq. (72) is mainly focused on the usage of FFT techniques. Due

to the non-linear mapping of spatial frequency vectors κout(κ), the uniformly

sampled input coordinate grid results in a non-uniform output coordinate grid

in the k-domain. As a consequence, it is impossible to directly perform the IFFT

to this non-uniform grid on the target plane. To enable the FFT techniques, we

must interpolate the gridless sampled output spectrum. The corresponding dif-

fculty and solution have been well-sovled in [65]. In the present work, apart

from the FFT technique, we have another two powerful advanced Fourier trans-

form techniques. Certainly, the semi-analytical Fourier transform also requires

the equidistant sampling. However, in the homeomorphic Fourier transform,

there is no constraint on the format of the input field/spectrum. That means

when HFT is allowed to use, the extension to non-parallel planes does not re-

quire significantly more computation time, since it entails just another pointwise

operation which is based, together with the homeomorphic Fourier transform,

on the gridless data concept in combination with mapping operations. Because

of the tilt and the change of the coordinate system for the electric field vector

Eq. (72) is in vectorial form. The other four field components can be calculated

from (Ex, Ey) on demand.

4.1.3 Automatic selection of the Fourier transform techniques

As we have shown in the previous two subsections, the k-domain propagation

operator consists of a pair of Fourier transform integral operation and the point-

wise propagation kernel. Generally, FFT techniques are used in its numerical

implementation. However, due to the 2π-modulo phase, FFT techniques also

suffer from severe computational effort. A straightforward idea to overcome

these numerical issues, is to employ the advanced Fourier transform techniques

as long as the new technique is more efficient than the FFT and accurate enough.
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Based on the field tracing diagram of the propagation between non-parallel

planes, we added the further strategy about the usage of the Fourier transform

techniques in Fig. 19. We can see that the only difference from the classic algo-

rithms is on the freedom of Fourier transform operations. For both forward and

backward Fourier transform, there are three choices of the advanced techniques.

The validity condition and the critical threshold of the accuracy have been in-

vestigated for both the SFT and the HFT. Relative conclusions and formulas are

respectively presented in Section. 2.1.5 and Section. 3.1.3. With the help of these
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Figure 19: The field-tracing diagram of the free space propagation between two arbitrar-

ily oriented planes. F and F−1 indiate the automatic selection of the most

appropriate Fourier transform techniques in terms of the application scenes.

numerical criteria, we can precisely achieve the automatic selection for the most

appropriate Fourier transform techniques in different situations. In the next sec-

tions, we generalize and interpret several well-known and influential diffraction

integrals. Though entirely mathematical derivation, we prove these diffraction

integral or propagation operators are the individual cases of the proposed k-

domain propagation operator. Consequently, we concluded that the unified free

space propagation operator, for different propagation scenes, would combine

the most appropriate Fourier transform techniques and deliver the most numer-

ically efficient solutions.

At last but not least, we would like to briefly introduce how to select the

Fourier transform technique in the practical simulation. It is remarkable that the

proposed strategy is not only applicable for the propagation operator but also

other Maxwell’s solvers as well.
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1. HFT/IHFT: The pointwise operation has the highest priority. Firstly, we

should perform the 1D-tests or the criteria given in Section. 3.1.3 to verify

its validity.

2. SFT/ISFT: When the HFT is not allowed, we need to examine whether

SFT/ISFT is more efficient than the FFT. the corresponding numerical cri-

terion is given in Section. 2.1.5.

3. FFT/IFFT: In case both HFT and SFT are not suitable to select, we use the

rigorous FFT/IFFT.

4.2 generalization of two diffraction integrals

In the first section, we proposed the unified free space propagation operator via

the k-domain analysis alongside the advanced Fourier transform techniques. As

we learned during the derivation process, for different propagation scenes, the

unified propagation operator would select the most appropriate Fourier trans-

form pair automatically and result in the minimization of the computational ef-

fort. Analogous to some well-known diffraction integrals, at the corresponding

situation, the proposed unified operator exhibits the same numerical characteris-

tics. In the following section, we review and generalize two essential diffraction

integrals from the aspect of the unified free space propagation operator.

4.2.1 Generalized Debye integral

In 1909, Debye published his work to demonstrate the general features of a

diffracted field near its focus. The Debye integral is commonly used to efficiently

tackle the problem of focusing light in lens design. However, this approximate

method is only valid for systems that are well designed and with high enough

Fresnel numbers [62, 106]. Beyond this assumption, the integral formula fails to

provide accurate results. In this section, we generalize the Debye integral to over-

come some of its limitations [107]. Let us consider a convergent incident light

field which is propagating in the positive z direction towards the target plane

z = z′ located in the focal region of the light field. The situation is illustrated in
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V�(ρ, z0)

Ṽ�(κ, z0) × exp
[
iǩz(κ)Δz

]
Ṽ�(κ, z′)

V�(ρ
′, z′)

Δz = z′ − z0

F κ F−1
κ

(ρ, ω)

(κ, ω)

Figure 20: Schematic illustration of a convergent wave in free space (Debye integral),

and the corresponding field-tracing diagram illustrating the same propaga-

tion process according to the k-domain analysis. The incident beam is propa-

gated from the input plane located at z = z0 to the target plane, with propa-

gating distance Δz = z′ − z0.

Fig. 20. In lens design, z = z0 might be the position of the exit pupil and Δz = f

the back focal length. As any electromagnetic field component will, in general,

be complex-valued, we can write the field at z = z0, V�(ρ, z0), in terms of its

amplitude and phase,

V�(ρ, z0) = |V�(ρ, z0)| exp {i arg [V�(ρ, z0)]} . (73)

In general, the field at z0 possesses a smooth wavefront which is common

to all field components. For instance, in an aberration-free focusing system, the

wavefront phase should be ideal spherical without any additional residual phase.

Thus, we can reformulate Eq. (73) to yield

V�(ρ, z0) = U�(ρ) exp
[
iψin(ρ)

]
, (74)

where we have extracted the smooth wavefront phase ψin(ρ) and grouped the

residual of the phase alongside the amplitude |V�(ρ, z0)| into U�(ρ). It should



74 application in the free space propagation

be noted that the choice of function ψin(ρ) is arbitrary and Eq. (74) entails no

approximation. It merely constitutes an alternative way of expressing V�(ρ, z0).

Next, let us consider a general wavefront phase ψin(ρ). Although there is no

analytical expression of the given wavefront function, its gradient formula can

be formulated implicitly as

∇⊥ψin(ρ) = κ(ρ). (75)

Using the mapping from Eq. (75) allows us to reformulate the Fourier integral

as a pointwise operation, i.e, homeomorphic Fourier transform. The resulting

spectrum read as

Ṽ�(κ, z0) ≈ a[ρ(κ)]U�[ρ(κ)] exp
{

iψin[ρ(κ)]− iκ · ρ(κ)
}

= Ã�(κ) exp
[
iψ̃in(κ)

] . (76)

The amplitude scaling factor a(ρ) is provided by the Jacobian determinant of

the mapping from Eq. (75) so that, using the definition ψxixj
def
= ∂ψ

∂xi∂xj
:

a(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
√

i
ψin

xx(ρ)

√
− iψin

xx(ρ)

[ψin
xy(ρ)]

2−ψin
xx(ρ)ψin

yy(ρ)
, ψin

xx(ρ) �= 0

1
|ψin

xy(ρ)| , ψin
xx(ρ) = 0

. (77)

In practice, the mapping ρ = ρ(κ) is known only numerically, and although

this requires handling some gridless data in the algorithm, it should not pose

a problem when performing the HFT in practice. By introducing appropriate

error estimations within the algorithm, we can control the level of accuracy of

replacing the FFT by the HFT. This is part of the mathematical concept of the

HFT and does not rely on decisions of the physical model. To finalize the deriva-

tion of the generalized Debye integral, plugging Eq. (76) into Eq. (69) leads to

the formula

V�(ρ
′, z′) = F−1

κ

{
Ṽ�(κ, z0) exp

[
iǩz(κ)Δz

]}
= F−1

κ

{
Ã(κ) exp

[
iψ̃in(κ) + iǩz(κ)Δz

]}
= F−1

κ

(
a[ρ(κ)]U�[ρ(κ)] exp

{
iψin[ρ(κ)]− iκ · ρ(κ) + iǩz(κ)Δz

})
,

(78)

where F−1
κ indicates the inverse Fourier-transform operation from κ to ρ′ at

the target plane. Eq. (78) constitutes the major result of this work and expresses
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the generalized Debye integral with the use of the Fourier integral operator F
for the sake of compactness. As mentioned before, the mapping relation ρ(κ)

is in general available only numerically. Hence, it is not possible to resolve the

integral analytically.

Different from the SPW formula of Eq. (69), in the generalized Debye integral,

two FT integrals are reduced to one FT operation. More importantly, accord-

ing to the homeomorphic Fourier transform, the wavefront phase ψ̃in(κ) can

be treated in an isolated manner during the process. This means that up un-

til the last inverse Fourier-transform operation, it is possible to use different

approaches to sample the wavefront phase ψ̃in(κ), instead of in the form of a

“2π-modulo” phase. In the end, since the high-frequency phase component of

ψ̃in(κ) would be partly compensated by the propagating kernel kz(κ)Δz, we can

select the inverse FFT technique to carry out the inverse Fourier transform with

low sampling effort.

Standard Debye integral as a special case

For a convergent spherical wavefront phase ψin with radius of curvature R, i.e.

ψin(ρ) = ψsph(ρ) = sign (R) k0n
√

ρ2 + R2, (79)

the mapping in Eq. (75) and the factor a(ρ(κ)) of Eq. (77) can be evaluated ana-

lytically. Here, n is the real part of the refractive index. And, in the considered

cases, ψin is a convergent spherical phase, so the radius of curvature is negative,

i.e., R < 0. From Eq. (75) follow for the ψsph of Eq. (79) the mapping equations⎧⎪⎪⎨
⎪⎪⎩

κ(ρ) = −k0n
ρ√

ρ2 + R2

ρ(κ) = R
κ

kz(κ)

(80)

in explicit form. Here, kz(κ) is defined as kz(κ) =
√

k2
0n2 − κ2. The Jacobian

determinant can be evaluated for this mapping and we obtain the scaling factor

asph(ρ(κ)
)
= i

k0nR
k2

z(κ)
(81)

in a compact and analytical form. The expression ψin(ρ(κ)
)− κ · ρ(κ) + ǩz(κ)Δz

in Eq. (78) reduces to ǩz(κ)Δz + kz(κ)R for the spherical wavefront phase by



76 application in the free space propagation

using the mapping relations of Eq. (80). Inserting these results into Eq. (78)

provides

V�(ρ, z) = iF−1
κ

{
k0nR
k2

z(κ)
U� [ρ(κ)] exp

[
iǩz(κ)Δz + kz(κ) R

]}
, (82)

with ρ(κ) from Eq. (80). This integral formula constitutes the special case of

Eq. (78) which emerges when we select a spherical wavefront phase. The com-

plex amplitude U� comprises magnitude and phase variations, including aberra-

tions.

To recognize that Eq. (82) is identical with the standard Debye integral, we

express U as the magnitude of a spherical wave component:

U�(ρ) =
T�(ρ)

r
, (83)

with r =
√

ρ2 + R2. The magnitude |T�(ρ)| expresses apodization and vignetting

effects in lens design, whereas arg[T�(ρ)] comprises the aberrations. With the

mapping from Eq. (80), r =
√

ρ2 + f 2 can be reformulated to yield 1/r =

kz/(|R|k0n). Inserting U�(ρ) of Eq. (83) into (82) results in

V�(ρ, z) = −iF−1
κ

{
T�

(
ρ(κ)

)
kz(κ)

exp
[
iǩz(κ)Δz + kz(κ)R

]}
, (84)

which takes us to the standard Debye integral formula in a compact notation

with the Fourier integral operator. In the case of a diffraction-limited field in

the exit pupil the wavefront phase is purely spherical, and the extended and the

standard Debye integral would therefore provide the same result. The difference

between the two becomes obvious when aberrations are present. The standard

Debye integral deals with them in arg[T�(ρ)], whereas in the generalized for-

mula of Eq. (78) the aberrations are included in ψin, a term which has direct

influence on the mapping and which consequently provides more accurate re-

sults without incurring higher numerical effort.

4.2.2 Generalized far-field integral

The diffraction pattern of a light field in the far-field zone is always a subject

of interest [108–110]. The far-field integral is widely acknowledged to deal with
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the propagation problem from the focal region to the far-field area. Convention-

ally, based on the far-field assumption, the Rayleigh-Sommerfeld integral of the

first kind can be approximated and deduced to the far-field integral [26, 70, 111].

Analogous to the generalized Debye integral, we would generalize and inter-

pret the far-field integral via the k-domain analysis, instead of the traditional

x-domain approach. To illustrate the physical process, we present a sketch as

well as the field tracing diagram in Fig. 21.

V�(ρ, z0)

Ṽ�(κ, z0) × exp
[
iǩz(κ)Δz

]
Ṽ�(κ, z′)

V�(ρ
′, z′)

Δz = z′ − z0

F κ F−1
κ

(ρ, ω)

(κ, ω)

Figure 21: Schematic illustration of a divergent wave in free space (far-field integral),

and the corresponding field-tracing diagram illustrating the same propaga-

tion process according to the k-domain analysis. The incident beam is propa-

gated from the input plane located at z = z0 to the target plane, with propa-

gating distance Δz = z′ − z0.

First of all, let us have a look at the forward Fourier transform operation at

the input plane. As the input plane located in the focal region, the incident

field doesn’t contain an intense wavefront phase. Therefore, the homeomorphic
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Fourier transform is not allowed, and we must select the rigorous FFT. The

resulting spectrum can be written in terms of its amplitude and phase,

Ṽ�(κ, z0) = F κ[V�(ρ, z0)] =
∣∣Ṽ�(κ, z0)

∣∣ exp
{

i arg
[
Ṽ�(κ, z0)

]}
. (85)

Without loss of generality, reformulating Eq. (85) yields

Ṽ�(κ, z0) = Ã�(κ) exp
[
iψ̃in(κ)

]
, (86)

where we have extracted the smooth wavefront phase ψ̃in(κ) and grouped the

residual of the phase with the amplitude
∣∣Ṽ�(κ, z0)

∣∣ into Ã�(κ). For a typical

system with some aberrations, the extracted wavefront phase corresponds to the

mapped aberration phase in the k-domain. Thus, considering the propagation

kernel phase term of Eq. (68), the output wavefront phase in the k-domain can

be written as

ψ̃out(κ) = Δψ̃in(κ) + ǩz(κ)Δz . (87)

In the case of large propagation distance, ǩz(κ)Δz dominates the output wave-

front phase, and Δψ̃in(κ) is regarded as the correction term for the abrerration

phases. Then, inserting Eq. (86-87) into Eq. (69) provides

V�(ρ
′, z′) = F−1

κ

{
F κ[V�(ρ, z0)]× exp

[
iǩz(κ)Δz

]}
≈ Fh,−1

κ

{
Ã�(κ, z0) exp[iψ̃out(κ)]

}
.

(88)

To this point, we can directly utilize the conclusion of the inverse homeomorphic

Fourier transform,

V�

(
ρ′, z′

)
= ã

[
κ
(
ρ′)] Ã�

[
κ
(
ρ′) , z0

]
exp

{
iψ̃out[κ(ρ′)]+ iρ′ · κ

(
ρ′)} , (89)

with Jacobian determinant factor

ã(κ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
i

ψ̃out
kxkx

(κ)

√
− iψ̃out

kxkx
(κ)[

ψ̃out
kxky

(κ)
]2−ψ̃out

kxkx
(κ) ψ̃out

kyky
(κ)

, ψ̃out
kxkx

(κ) �= 0

1
|ψ̃out

kxkx
(κ)| , ψ̃out

kxkx
(κ) = 0

. (90)

Substituting Eq. (86-87) into Eq. (89), we can write the generalized far-field inte-

gral in a compact form,

V�

(
ρ′, z′

)
= ã

[
κ
(
ρ′)] exp

{
iǩz
[
κ
(
ρ′)]Δz + iρ′ · κ

(
ρ′)}F κ[V�(ρ, z0)]κ→ρ′ , (91)
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where the backward mapping κ = κ(ρ′) is provided by the gradient of the

output wavefront phase

∇̃⊥ψ̃out(κ) = −ρ′. (92)

Like the mapping in the generalized Debye integral, there is no analytical ex-

pression for the pointwise mapping relation κ = κ(ρ′). Eq. (91-92) must be

handled entirely in a numerical manner. Fortunately, this should not pose an

issue since all related problem has been fully solved in the implementation of

the homeomorphic Fourier transform. From a numerical point of view, the gen-

eralized far-field integral simplifies the inverse FFT of substantial computational

effort into a pointwise operation. It leads to a significant reduction of the sam-

pling points and outstanding improvement of the performance. From a physical

point of view, the only approximation used in the generalized far-field integral

is on the inverse HFT. The inclusion of the aberrant phase Δψ̃in(κ) dramatically

extends the application scope of the proposed approach. The inclusion of the

aberrant phase Δψ̃in(κ) in Eq. (87) dramatically extends its application scope,

that the generalized far-field integral is not strictly restricted to the far-field re-

gion. Consequently, the generalized far-field integral enables the propagation

task for the field with intensive aberrations and of a medium propagating dis-

tance. Also, in practice, by examining the level of accuracy of the inverse HFT,

we can decide whether to employ the proposed algorithm.

Standard far-field integral as a special case

As we mentioned in above content, the mapping relation κ → ρ′ is available only

numerically. For resolving the diffraction integral analytically, we must simplify

the experimental model and introduce more approximations. Therefore, we omit

the aberration phase term and assume the wavefront phase of the output spec-

trum in the k-domain is fully contributed by the propagation kernel. Thus, the

Eq. (87) becomes

ψ̃out(κ) = ψ̃far(κ) = ǩz(κ)Δz . (93)

Plugging Eq. (93) into Eq. (69) leads

V�

(
ρ′, z′

) ≈ Fh,−1
κ

{
Ṽ�(κ, z0) exp

[
iψ̃far (κ)

]}
. (94)
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Following Eq. (92), the bijective mapping relation of the ψ̃′(κ) can be written in

an explicit form

κ
(
ρ′) = k0ň

ρ′

R(ρ′)
(95)

where R(ρ′) =
√||ρ′||2 + Δz2. For this mapping, the scaling factor (Jacobian

determinant) can be evaluated by

ã
[
κ
(
ρ′)] = −i

k0ňΔz
R2(ρ′)

, (96)

and the phase modulation term can be derived

ψ̃far[κ (ρ′)]+ κ
(
ρ′) · ρ′ = k0ňR

(
ρ′) . (97)

According to the inverse homeomorphic Fourier transform formula, we obtain

V�(ρ
′, z′) ≈ ã [κ (ρ′)] Ṽ�[κ (ρ′) , z0] exp

{
iψ̃far [κ (ρ′)] + iκ (ρ′) · ρ′}

= −ik0ň Δz
R(ρ′)

exp[ik0ňR(ρ′)]
R(ρ′) F κ[V�(ρ, z0)]

κ=−k0ň ρ′
R(ρ′)

.
(98)

Eq. (98) reveals that any light field component in the far-field zone turns into

a spherical wave function. This spherical wave function is modulated by the

Fourier transform of the input field. The modulation scales are not linear to the

transversal coordinates but obey the mapping relation of Eq. (96). In contrast to

the generlized far-field integral of Eq. (91), the far-field integral makes more ap-

proximation on Fourier transform that we assume the mapping of inverse HFT

follows a spherical phase function. So, in the case of an aberration-free system,

both approaches would provide precisely the same result. But, for the system

presenting aberrations, the inclusion of the aberration phase of Eq. (87) has a

direct influence on the mapping and would significantly improve the accuracy

of the inverse homeomorphic Fourier transform. To distinguish the application

scope of the far-field integral and the generalized approach, we would like to

introduce two new notions in terms of the usage of the homeomorphic Fourier

transform:

• Homeomorphic field zone (HFZ): in which the field presents a general

homeomorphic wavefront phase. HFT is allowed and can provide an accu-

rate result as the rigorous FFT.
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• Far-field zone (FFZ): in which the field presents a purely spherical wave-

front phase. Restricted HFT (mapping provided by only the spherical phase

function) can provide the accurate result.

With this, the far-field zone indicates the application scope of the far-field inte-

gral, and the homeomorphic field zone corresponds to the generalized far-field

integral. It is no doubt that any field would present a spherical wavefront at an

infinite distance from the source. Thus, the far-field zone must be a subset of the

homeomorphic field zone.

4.3 interpretation of two fast propagation operators

Besides the Debye integral and far-field integral, there are also various approx-

imate propagation operators. For instance, benefits from its computational ad-

vantage, the ray-tracing algorithm is the most widely used propagation scenario

in modern optical modeling and design, especially for the lens system [3, 112].

In this section, using the same logic as before, we would discuss two essential

propagation operators.

4.3.1 Pointwise operator: ray tracing algorithm

In the ray tracing, the light field is described by discrete idealized narrow beams,

and the propagation problem is entirely solved by the conventional geometric

optics, i.e., Fermat’s principle and Snell’s law. Different from the other integral

operator, the ray tracing algorithm thoroughly performs a pointwise operation

that exhibits the impressive computational characteristic. Its numerical complex-

ity is linearly proportional to the number of sampling points, i.e., O(N).

Turning our attention back to the unified free space propagation operator, the

intuition tells us there must be an internal connection between the ray tracing

operator and the unified approach. We have learned that the homeomorphic

Fourier transform and its inverse transform are both pointwise operations. Be-

sides, we know that the propagation kernel in the k-domain is also in the manner

of pointwise. Therefore, let us assume both the input field and the output field

are in the homeomorphic field zone. Substituting the pointwise Fourier trans-
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form techniques for the rigorous Fourier transform integrals in Eq. (69), the

resulting expression reads

V�

(
ρ′, z′

) ≈ Fh,−1
κ

{
Fh

κ [V�(ρ, z0)]× exp
[
iǩz(κ)Δz

]}
. (99)

Under our assumption of the homeomorphic field zone, the input field at z = z0

possesses a smooth wavefront which is common to all field components. So, we

can write the input field V�(ρ, z0) as

V�(ρ, z0) = |V�(ρ, z0)| exp {i arg [V�(ρ, z0)]}
= U�(ρ, z0) exp

[
iψin(ρ)

]
,

(100)

where ψin(ρ) is the extracted smooth wavefront phase at the input plane. Please

note that Eq. (100) is merely an alternative way to express the field component

without any approximation. In homeomorphic Fourier transform, the pointwise

bijective mapping ρ ↔ κ is governed by

∇⊥ψin(ρ) = κ(ρ). (101)

By employing homeomorphic Fourier transform, we obtain the spectrum at the

input plane

Ṽ�(κ, z0) ≈ Fh
κ [V�(ρ, z0)]

= ain[ρ (κ)]U[ρ(κ) , z0] exp
{

iψin[ρ(κ)]− iκ · ρ(κ)
}

.
(102)

Here, the amplitude scaling factor ain(ρ) is provided by the Jacobian determi-

nant of the mapping from Eq. (101), and it is defined as

ain(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
√

i
ψin

xx(ρ)

√
− iψin

xx(ρ)

[ψin
xy(ρ)]

2−ψin
xx(ρ)ψin

yy(ρ)
, ψin

xx(ρ) �= 0

1
|ψin

xy(ρ)| , ψin
xx(ρ) = 0

(103)

where ψxixj
def
= ∂ψ

∂xi∂xj
.

Plugging Eq. (102) into Eq. (99), we have

V�(ρ
′, z′) ≈ Fh,−1

κ

{
ain[ρ (κ)]U[ρ(κ) , z0] exp

(
iψin[ρ(κ)]− iκ · ρ(κ) + iǩz(κ)Δz

)}
= Fh,−1

κ

{
ain[ρ (κ)]U[ρ(κ) , z0] exp [iψ̃out(κ)]

}
.

(104)
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Again, let us formulate the expression of the output spectrum,

Ṽ�(κ, z′) = ain[ρ (κ)]U[ρ(κ) , z0] exp [iψ̃out(κ)]

= Ã(κ, z′) exp [iψ̃out(κ)]
(105)

where ψ̃out(κ) is the extracted smooth wavefront phase of the output spectrum

in the k-domain. The backward mapping from κ to ρ′ is provided by

∇̃⊥ψ̃out(κ) = ρ′(κ). (106)

where ρ′ = (x′, y′) spans the transverse plane at z′ = z + z0. Following an anal-

ogous process, the inverse homeomorphic Fourier transform can be achieved

V�(ρ
′, z′) ≈ Fh,−1

κ

[
Ṽ�(κ, z′)

]
= ãout[κ (ρ′)] Ã[κ(ρ′) , z′] exp {iψ̃out[κ(ρ′)] + iρ′ · κ(ρ′)}

(107)

with

ãout(κ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
i

ψ̃out
kxkx

(κ)

√
− iψ̃out

kxkx
(κ)[

ψ̃out
kxky

(κ)
]2−ψ̃out

kxkx
(κ) ψ̃out

kyky
(κ)

, ψ̃out
kxkx

(κ) �= 0

1∣∣∣ψ̃out
kxky

(κ)
∣∣∣ , ψ̃out

kxkx
(κ) = 0

(108)

where ψ̃kikj

def
= ∂ψ̃

∂ki∂kj
.

At this point, we should emphasize that since the forward mapping in Eq. (101)

and the backward mapping in Eq. (106) are both bijective. So, we have a com-

pletely interconnected mapping relation ρ ↔ κ ↔ ρ′. Therefore, it is flexible to

use any one of these three variables to describe the expression. Then, let us turn

our attention on the phase term in Eq. (107), and reformulate it with the variable

κ,

ψ̃out(κ) + ρ′(κ) · κ = ψin[ρ(κ)] + [ρ′(κ)− ρ(κ)] · κ + ǩz(κ)Δz

= ψin[ρ(κ)] + kxΔx + kyΔy + ǩzΔz

= ψin[ρ(κ)] + ψOPL[ρ(κ)] ,

(109)

where ρ′ − ρ = (Δx, Δy) is the transverse displacement in the spatial domain.

Eq. (101) and Eq. (106) reveals that κ is the local gradient of the wavefront phase.

And, in terms of the property of Fourier transform, κ also corresponds to the
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propagation direction of the decomposed plane wave. Considering the bijective

mapping feature and geometric relation, we deduced that ψOPL[ρ(κ)] indicates

the phase term corresponding to the optical path length.

Last but not least, by inserting Eq. (102) and Eq. (109) into Eq. (107), we con-

cluded the compact expression for the pointwise propagation operator,

V�(ρ
′, z′) ≈ ain[ρ (ρ′)] ãout[κ (ρ′)]U[ρ(ρ′) , z0] exp

{
iψin[ρ(ρ′)] + iψOPL[ρ(ρ′)]

}
= ain[ρ (ρ′)] ãout[κ (ρ′)]V�[ρ(ρ

′) , z0] exp
{

iψOPL[ρ(ρ′)]
}

.
(110)

This expression constitutes an elegant physical-optics outcome that the geomet-

ric polarization ray tracing operator can be entirely derived from the unified

free space propagation operator. The approximation used in this process can be

mathematically demonstrated and numerically examined by the Fourier trans-

formation. At the end, a short physical interpretation for different terms in the

Eq. (110) is given:

• ain[ρ (ρ′)] ãout[κ (ρ′)]: scaling factor, Jacobian determinant of coordinate

transformation.

• V�[ρ(ρ
′) , z0]: pointwise mapping of the initial field.

• ψOPL[ρ(ρ′)]: phase modulation, corresponding to the optical path length.

The meaning of the pointwise propagation operator resides in the fact that the

structure of the formula pleasingly reveals the anatomy of the propagation. It

lays bare the different physical phenomena that are the sole preserve of a rig-

orous physical-optics approach, such as, perhaps most poignantly, the Gouy

phase [113].

4.3.2 Paraxial domain operator: Fresnel integral

If we assume a paraxial input field in z = z0, the beam consists of plane waves

with only small inclinations with respect to the optical axis. From that follows

the Taylor expansion at the origin κ = 0 in the spatial-frequency domain as

ǩz(κ) =
√

k2
0ň2 − κ2

= k0ň − 1
2

κ2

k0ň + δ(κ) ,
(111)
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where δ(κ) indicates the remaining part of the Taylor expansion, which would

be neglected in the paraxial approximation [68, 114]. Remarkably, the parax-

ial approximation implies that the bandwidth of the given spectrum is narrow

enough so that we can omit the remaining term. Here, we don’t make any ap-

proximation. Then, substituting Eq. (111) into Eq. (69) provides

V�

(
ρ′, z′

)
= exp(ik0ňΔz)F−1

κ

{
Ṽ�(κ, z0) exp[iδ(κ)Δz] exp

(
−i

Δz
2k0ň

κ2
)}

.

(112)

We can define the modified spectrum in the spatial frequency domain as

Ṽm
� (κ, z0) = Ṽ�(κ, z0) exp[iδ(κ)Δz] . (113)

Afterward, the inverse SFT can be used to replace the regular Fourier transfrom

of the spectrum Ṽm
� (κ, z0) exp

(
−i Δz

2k0ň κ2
)

. Expanding the inverse semi-analytical

Fourier transform equation, we concluded the mathematical expression of the

quasi-paraxial domain propagation operator:

V�(ρ
′, z′) = exp(ik0ňΔz)F−1,semi

κ

[
Ṽm
� (κ, z0) exp

(
−i Δz

2k0ň κ2
)]

= − ik0ň
Δz exp

[
ik0ňΔz + i k0ň

2Δz (ρ
′)2
]
F β̃

{
F−1

κ

[
Ṽm
� (κ, z0)

]
exp

(
i k0ň

2Δz ρ2
)}

(114)

with

β̃ =
k0ň
Δz

ρ′ . (115)

Here, F β̃ denotes the Fourier transform operation. Since we don’t make any ap-

proximation during the derivation process, the quasi-paraxial domain operator

is as rigorous as the SPW operator. Comparing Eq. (114) with the SPW formula,

we can see that the quadratic phases of the propagating kernel are extracted

and excluded from the Fourier operations. Because of the analytical handling of

the quadratic phases, in some suitable situations, the required sampling points

for the residual field is much fewer than the original field. Especially in parax-

ial cases, the remaining phase exp[iδ(κ)Δz] almost be zero that the numerical

effort of three FFT operations are not problem. Then, in the case of a medium di-

vergent beam, the remaining phase cannot be neglected but should still require

less sampling than the original propagating phase kernel exp
[
iǩz(κ)Δz

]
. In that

situation, the quasi-paraxial domain operator can also ensure the improvement

of the computational performance while maintains the level of accuracy. At the
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end, when the input field is non-paraxial, since the remaining phase becomes

huge and leads to massive sampling and computational effort, the prorposed

approach cannot bring any improvement.

Standard Fresnel integral as a special case

Let us consider the dispersion relation of Eq. (111) and employ the paraxial

approximation. The resulting equation can be written as

ǩz(κ) =
√

k2
0ň2 − κ2

≈ k0ň − 1
2

κ2

k0ň .
(116)

Next, inserting Eq. (116) into the SPW formula of Eq. (69) yields

V�

(
ρ′, z′

) ≈ exp(ik0ňΔz)F−1
κ

[
Ṽ�(κ, z0) exp

(
−i

Δz
2k0ň

κ2
)]

. (117)

To solve our problem, we need to perform an inverse Fourier transform, whose

object becomes the sum of the input spectrum and an additional quadratic phase

term. Here, we can directly utilize the conclusion of the semi-analytical Fourier

transform. According to Eq. (21), the free space propagation formalism can be

simplified as

V�(ρ
′, z′) ≈ exp(ik0ňΔz)F−1,semi

κ

[
Ṽ�(κ, z0) exp

(
−i Δz

2k0ň κ2
)]

= − ik0ň
Δz exp

[
ik0ňΔz + i k0ň

2Δz (ρ
′)2
]
F β̃

[
V�(ρ, z0) exp

(
i k0ň

2Δz ρ2
)]

(118)

with

β̃ =
k0ň
Δz

ρ′ . (119)

The propagation operator of Eq. (118) is referred to as Fresnel diffraction inte-

gral. It involves only one Fourier integral and the resulting expression becomes

more compact. It is of great value in optical modeling because of some numerical

advantages compared to the rigorous SPW and the Rayleigh-Sommerfeld inte-

gral. However, to obtain the Fresnel integral, we made the assumption, i.e., the

paraxial approximation of Eq. (116). In contrast to the Fresnel integral, the quasi-

paraxial domain propagation operator is rigorous and enables fast evaluation of

the propagation problem in both paraxial and medium divegent situations.
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Table 11: Physical interpretation of different propagation operators: selection and com-

bination of the Fourier transform techniques

Propagation integral Fourier transform Inverse Fourier transform

SPW operator FFT IFFT

Fresnel integral FFT ISFT

Far-field integral FFT IHFT of ψ̃far (κ)

Debye integral HFT of ψsph (ρ) IFFT

generalized Far-field integral FFT IHFT

generalized Debye integral HFT IFFT

pointwise propagation operator HFT IHFT

Finally, in Table 11, we summarized the characteristics of all presented prop-

agation operators in terms of the combination of the Fourier transform tech-

niques.

4.4 numerical examples

The numerical implementation for the unified free space propagation operator

and some other diffraction integrals has been done in the physical-optics model-

ing and design software VirtualLab Fusion. In what follows, we present several

examples to demonstrate the accuracy and performance of the proposed unified

propagation approach.

To have a clear-cut discussion, we would like to emphasize that, for each sim-

ulation example, we compare the results of the unified free space propagation

operator with the standard diffraction integral. For instance, in the case of the

focusing system, we investigate the difference between standard Debye integral

and the proposed unified propagation operator. The following expression pro-

vides the deviation between the reference and the testing approach:

σ :=
∑x,y

∣∣Vref(ρ)− Vtest(ρ)
∣∣2

∑x,y
∣∣Vref(ρ)

∣∣2 , (120)
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Table 12: Simulation parameters of the aberrant phase for the example presented in

Section 4.4.1.

Name & Type Mathematical Expression Scaling Factor

Coma X Z1
3(r, θ) =

√
8
(
3r3 − 2r

)
cos θ c1

3 = 0 ∼ 5λ

Secondary Astigmatism Y Z−2
4 (r, θ) =

√
10
(
4r4 − 3r2) sin 2θ c−2

4 = 0 ∼ 5λ

Secondary Trefoil X Z4
6(r, θ) =

√
14
(
6r6 − 5r4) cos 4θ c4

6 = 0 ∼ 5λ

where the reference Vref(ρ) is typically provided by the rigorous SPW technique

and Vtest(ρ) denotes the result obtained by the unified free space propagation

operator or standard diffraction integral, respectively.

4.4.1 Focusing of an aberrant field

The initial field used in the first example is linearly Ex-polarized, with a wave-

length of 532 nm. The amplitude is distributed uniformly and truncated by an

aperture with a circular shape and a diameter of 6 mm. A convergent spherical

phase with a radius of curvature R = −100 mm, is superimposed on this field.

We can calculate the corresponding numerical aperture (NA) according to these

parameters; NA = n sin θ ≈ 0.03. Based on the initial configuration, we continue

by superimposing different types of Zernike aberrant phases on it. The variable

being tested would be the type of Zernike aberration and its weighting factor.

We selected three types of aberrant phase, which are described in the form of

Zernike polynomials,

ψZer(ρ) = k
M

∑
m=0

N

∑
n=0

cm
n Zm

n (r, θ) , (121)

where r = |ρ|
|ρmax| and θ = arctan

( y
x
)
; cm

n denotes the coefficients of the corre-

sponding Zernike term. In Table 12, we present the mathematical expression of

different Zernike aberrant phases and the range of their scaling factor.

For the following results we have tested the accuracy of the unified free space

propagation operator by comparing it with the SPW solution. In all cases we

found values of σ < 0.02 %, which demonstrates the high accuracy of the pro-

posed approach. In the subsequent part of Section 4.4.1 we compare the standard
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Debye integral and the unified free space propagation operator via σ as defined

in Eq. (120).

In Fig. 22, simulation results for secondary trefoil X with the scaling factor

c−2
4 = 5λ are shown. Comparing, via a naked-eye observation, the obtained am-

plitude distributions of the Ex component in sub-figures (a) and (d), it is not

possible to detect the difference, with a mathematical calculation revealing a

standard deviation lower than 0.05 %. However, when we turn our attention to
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(d) |Ex(ρ)| (e) �[Ex(ρ)] (f)
∣∣Ẽx(κ)

∣∣

unified free space propagation operator

standard Debye integral

Figure 22: Comparison of accuracy between the unified free space propagation operator

and the standard Debye integral for the focusing of a convergent field with

a secondary trefoil X aberrant phase (SPW results are not shown, since the

deviation between the unified propagation operator result and the rigorous

SPW technique is just 0.02 %). Simulation results for both approaches are

respectively shown in the upper and lower rows. Panels (a) and (d) present

the amplitude distribution of the Ex component at the focal plane; panels (b)

and (e) present the real part of the Ex component; panels (c) and (f) show the

amplitude distribution of the Ẽx component at the focal plane (i.e. the Fourier

transform of the output field).
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the full complex amplitude (including phase), the standard deviation ascends to

25 %. The differences in this case, we must conclude, are mainly located in the

phase. This effect can be observed by the comparison of the real part of the Ex

component. As shown in Fig. 22 (b) and (e), where the same scaling is used, the

unified free space propagation operator result exhibits a higher contrast. The
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Figure 23: Comparison of accuracy between the unified free space propagation opera-

tor and the standard Debye integral for the simulation task of calculating

the focal field for a convergent field with different single types of aberrant

phase. The abscissa records the scaling factor – i.e., the factor Cm
n in Tab. 12

– of the corresponding Zernike term, while the ordinate marks the deviation

between the two approaches, with the unified free space propagation oper-

ator as reference. It should be noted that in this experiment, the deviation

between the unified free space propagation operator result and the rigorous

SPW technique is just 0.02 %.

high accuracy of the unified propagation operator can be explained by some-

thing we already covered when we presented the two approaches used here: the
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unified free space propagation operator uses a more general extracted wavefront

phase than the standard one. In Fig. 22 (c) and (f), the Fourier transform of the

output field on the focal plane for both approaches is given. In contrast to the

unified free space propagation operator, the resulting spectrum of the standard

Debye integral presents a uniform amplitude distribution. This is due to the fact

that, considering we are dealing with a relatively low-NA situation, the point-

wise mapping relation generated by the primary spherical phase employed in

the standard Debye integral, in Eq. (80), approximately becomes a linear map-

ping. The experimental results coincide well with our theoretical expectations.

In a further investigation we did a full series of comparisons with different

aberrant phases. The curves corresponding to the standard deviation between

the two approaches are presented in Fig. 23. Three types of aberrant phase are su-

perimposed, individually and in turns, onto the given input field. Even though

the variation rate of the standard deviation error is different depending on the

type of aberrant phase, the resulting curves reveal the same tendency. At the

weak-aberration end of the scale or, in other words, for the ideal focusing sys-

tem, both approaches provide an identical result. Then, as the scaling factor of

the aberrant phase increases, the deviation between the two approaches grows

fast. That is, when the aberration of the focusing system is too strong to be

neglected, the standard Debye integral cannot predict a correct result at the fo-

cal plane. On the other hand, the high accuracy and the validity of the unified

free space propagation operator was tested in advance, as mentioned before

(σ < 0.02 %).

4.4.2 Propagation of an aberrant divergent wave

Besides the light focusing system, another essential propagation scenario is to

propagate the divergent field from its focal region to the far-field region. First

of all, let us briefly introduce the specification of the experimental setup. The

electromagnetic field, with a wavelength of 532 nm, is initialized at a distance

of z = −40 mm away from the input plane. It is linearly polarized in Ex and its
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Figure 24: Illustration of the simulation task: propagation of an aberrant divergent beam,

from the focal region to an arbitrarily oriented target plane. The testing field

is initialized on the plane z = −40 mm. The bottom left panel shows the am-

plitude distribution of Ex component on the initial plane. The phase on this

plane consists of two parts, the fixed spherical phase ψsph(ρ) of a spherical

radius R = −40 mm and the varying aberration phase ψzer(ρ).

amplitude distribution |V� (ρ, z−)| is modulated as a photo of Carl Zeiss. The

phase distribution is specified by

arg
[
V�

(
ρ, z−

)]
= ψsph (ρ) + ψzer (ρ) . (122)

In our configuration, the divergent spherical phase ψsph (ρ) = −k0ň
√

ρ2 + R2 is

fixed with a constant spherical radius of R = −40 mm while we set the aberra-

tion phase ψzer(ρ) as one controlled variable. By modifying the type and weight-

ing coefficients of the Zernike phase, we can adjust the aberration in this system.

The complete light field should be numerically sampled on the initial xy-plane.

By performing the rigorous SPW operator, we obtain the input field on the plane

z = 0 mm. Before we investigate the propagation from the focal region to the

target plane, we need to set another two controlled parameters, the propagation

distance Δz and the orientation of the target plane (θ, φ).



4.4 numerical examples 93

Table 13: Simulation parameters of the aberrant phase ψzer(ρ) for the first example pre-

sented in Section. 4.4.2.

Name & Type Mathematical Expression Value

Spherical aberration Z0
4(r, θ) =

√
5
(
6r4 − 6r2 + 1

)
c0

4 = 0 ∼ 10λ

Tertiary astigmatism y Z−2
6 =

√
14
(
15r6 − 20r4 + 6r2) sin 2θ c−2

2 = 0 ∼ 10λ

Coma X Z1
3 =

√
8
(
3r3 − 2r

)
cos θ c1

3 = 0 ∼ 10λ

Accuracy vs. the single aberrant phase

In the first example, we would like to investigate the influence of the aberration

phase on the level of accuracy for both the unified free space propagation op-

erator and the standard far-field integral. Firstly, let us clarify the configuration

of the experimental setup for this simulation task: (1) only consider the prop-

agation between parallel planes, i.e., setting the orientation of the target plane

to (θ, ϕ) = (0◦, 0◦); (2) fix the propagation distance as Δz = 60 mm (the target

plane doesn’t locate in the far-field region); (3) select some single Zernike phase

and employ the comparison.

We selected three types of single Zernike aberrant phase and individually su-

perimposed them into the light field. The corresponding mathematical expres-

sion and scaling coefficients are described in Table. 13. In the following tests,

we fristly compared the unified free space propagation operator result with the

rigorous SPW solution. For all cases, the deviation between them is smaller than

0.01%. The fact proves that when the target plane located in the so-called home-

omorphic field zone, the HFT is accurate enough to replace the rigorous FFT.

Next, in the subsequent part, we would concentrate on the deviation between

the unified free space propagation operator and the standard far-field integral.

In Fig. 25, the curves of the standard deviation between two approaches vary-

ing with the scaling coefficients of the aberrant phase are presented. We can

see that all three types of aberrant phases reveal the same tendency: (1) For the

aberration-free or tiny aberration cases, the standard far-field integral can also

provide accurate result. (2) As the scaling factor of the aberration phase grows,

the deviation between the two approaches increases rapidly. These experimen-

tal behaviors reflect sufficiently the influence of the approximation used in the
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Figure 25: Comparison of accuracy between the unified free space propagation oper-

ator and the standard far-field integral for the first example presented in

Section. 4.4.2. The abscissa records the scaling factor of the aberrant phase

ψzer(ρ), while the ordinate marks the deviation between the two approaches,

with the generalized far-field integral as reference. It should be noted that

in this experiment, the deviation between the generalized far-field integral

result and the rigorous SPW technique is lower than 0.01%.

derivation of two approaches. In the unified propagation operator, not only the

primary spherical phase but also all aberration phases are taken into account in

the mapping of the inverse homeomorphic Fourier transform. But, the standard

far-field integral consider just the primary spherical phase so that the inverse

homeomorphic Fourier transform fails fast in the situation of a strong aberrant

phase.
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Accuracy vs. the propagation distance

In the first example, we have investigated the influence of three single Zernike

phase to the level of accuracy. While, in the second set of experiments, we would
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Figure 26: Comparison of the accuracy of the unified free space propagation opera-

tor and the standard far-field integral for second exmaple presented in Sec-

tion 4.4.2. The abscissa records the propagation distance along the z-axis,

while the ordinate marks the deviation of two methods, with the unified free

space propagation operator as reference.

like to turn our attention to another parameter, the propagation distance. Simi-

larly, let us clarify the configuration of the experimental setup for this simulation

task: (1) only consider the propagation between parallel planes, i.e., setting the

orientation of the target plane to (θ, ϕ) = (0◦, 0◦); (2) specify the aberrant phase

ψzer(ρ) and set it to be constant; (3) customize the value of propagation distance

Δz.
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Table 14: Simulation parameters of the primary spherical phase and the aberrant phase

for the second example presented in Section. 4.4.2.

Name & Type Mathematical Expression Value

Spherical phase ψsph (ρ) = −k0ň
√

ρ2 + R2 R = −40 mm

Tilt X Z1
1(r, θ) = 2r sin θ c1

1 = 3λ

Astigmatism Y Z−2
2 (r, θ) =

√
6r2 sin 2θ c−2

2 = 5λ

Spherical aberration Z0
4(r, θ) =

√
5
(
6r4 − 6r2 + 1

)
c0

4 = −6λ

Trefoil Y Z−3
3 (r, θ) =

√
8r3 sin 3θ c−3

3 = 8λ

Tetrafoil X Z4
4(r, θ) =

√
10r4 sin 4θ c4

4 = −8λ

Tertiary Coma X Z1
7(r, θ) = 4

(
35r7 − 60r5 + 30r3 − 4r

)
cos θ c1

7 = 10λ

Simulation parameters for the phase of the light field arg|V�(ρ, z−)| on the ini-

tial plane z = −40 mm are presented in Table 14. And, the propagation distance

is set in the range of [100 mm, 1 m]. As same as the first experiment, for all prop-

agation distances in the definition domain, the unified free space propagation

operator can predict exactly the same result as the reference SPW operator. In

contrast, the standard far-field integral results, more or less, are distinct from

the reference. To compare the accuracy of the unified propagation approach

and the standard far-field integral, we calculated the deviation between them of

different propagation distances. And, the curve of deviation varying with the

propagation distance is presented in Fig. 26. The experimental result coincides

very well with our expectation that the deviation drops as the propagation dis-

tance increases. It means that the standard far-field integral performs well for

the propagation of the aberrant field in the far-field region. From the physical

point of view, it is because the propagation kernel will attenuate the weight of

the wavefront phase ψ̃ (κ) in Eq. (87) as propagation distance becomes larger

and larger. Even though the aberrant phase becomes less critical in the case of

a considerable distance, we cannot neglect its influence on the homeomorphic

Fourier transform. Thus, there is still a 1% difference in the situation of Δ = 1 m.
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4.4.3 Propagation of the light field to the inclinded planes

In Section 4.1.2, we discussed how to extend the free space propagation operator

deal with the situation of arbitrarily oriented target planes. Afterward, in Sec-
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Figure 27: Field distribution computed by the unified free space propagation operator at

three different z positions and for different inclination angles of the plane of

observation. The corresponding field tracing diagram indicates the automatic

selection of Fourier transform techniques in different field zones.

tion 4.1.3, we explained the automatic selection rules of the Fourier transform

techniques. For the demonstration, we use the same input field presented in the

last example and place the screen at three different distances as well as differ-

ent inclination angles along the optical axis. Simulation results by the unified

free space propagation operator are presented in Fig. 27. In addition, the corre-

sponding inverse Fourier transform techniques at different field regions are also

denoted in the field tracing diagram. In all cases, we verified the accuracy of the

proposed unified propagation operator by comparing it with the rigorous SPW

method from Eq. (120 ) and found σ ≈ 0.02 %.





5
S U M M A RY A N D O U T L O O K

The Fourier transform operation lays the foundation for the fast physical-optics

modeling of sophisticated systems. By performing a Fourier transform, we can

move between the spatial (x) and the spatial frequency (k) domain. The per-

formance of its implementation determines the efficiency of the simulation for

the whole system. In this work, we proposed two advanced Fourier transform

techniques: the semi-analytical Fourier transform (SFT) and the homeomorphic

Fourier transform (HFT).

Both the SFT and the HFT allow us to carry out the Fourier transform effi-

ciently. The SFT is a rigorous approach without approximation. The idea of this

method is to extract the quadratic phase from the input field/spectrum with

the help of a numerical evaluation technique, e.g., the Levenberg-Marquardt

method. Then, the semi-analytical Fourier transform can be used to replace the

regular FFT of the fully sampled field by two FFTs of complex functions that

require significantly fewer sampling points. The sampling issue is entirely de-

pendent on the residual field so that, in comparison to the regular FFT, the

numerical effort is reduced dramatically.

On the other hand, the HFT is a fast, pointwise, but approximated Fourier

transform operation to deal with field components presenting strong wavefront

phases. This approximate approach is inspired by the method of stationary

phase, but formulated in purely mathematical form. In regard to the implemen-

tation, we use a hybrid sampling strategy to deal separately with the smooth

wavefront phase ψ(ρ) and the remnant of the field, U�(ρ). Since we avoid sam-

pling the wrapped phase exp[iψ(ρ)], the decline in computational effort is signif-

icant, N(U) � N(V). We present the full theoretical derivation and the validity

conditions that would support the application of this method to more pragmatic

scenarios. Furthermore, to develop a robust algorithm for more practical tasks,

we extend the HFT to cover fields with a non-bijective wavefront phase. How-

ever, the regularization of the mapping relation results in a dislocation in the
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spectrum position and leads to an inevitable error. So far, we have investigated

the error numerically and compared it against a given accuracy threshold. But

there is no alternative approach to deal with the Fourier transform of a field

with a strong non-bijective wavefront phase efficiently. As a next step, we would

like to pursue not only efficient but also rigorous solutions for that specific case.

In total, three advanced Fourier transform algorithms (FFT, SFT, and HFT) are

available. To demonstrate their vast potential in physical-optics modeling, we

apply them to an essential modeling scenario, namely free space propagation,

and investigate how to realize improvements in performance, with the help of

the aforementioned tools. As a result, we concluded a unified free space prop-

agation operator. The derivation follows the angular-spectrum-of-plane-waves

(SPW) approach, includes the propagation between inclined planes, and adopts

an automatic selection strategy of the Fourier transform techniques. Specifically,

the propagation kernel (including the handling of the non-parallel planes) in

the k domain is always a pointwise operation. Thus, in different propagation

scenes, by selecting the most efficient and accurate Fourier transform techniques

to carry out the transformation between the two domains, we can ensure the nu-

merical effort is minimized. For the sake of in-depth understanding, from the

point of view of the selected and combined Fourier transform pairs, we gener-

alize and re-interpret several well-known diffraction integrals and propagation

operators. For instance, in the case of a focusing system, we can deduce the

generalized Debye integral from the unified propagation operator, while the

standard Debye integral can be understood as a particular case of the general-

ized Debye integral formula. Remarkably, the analysis method and strategy of

the unified operator are not confined to the problem of light propagation. It is

totally justified to employ the same logic to solve other modeling scenarios.



A
A P P E N D I X

a.1 homeomorphism condition for the smooth phase function

Let us consider two subsets X ⊆ R2 and K ⊆ R2. A mapping function between

two such subsets can mathematically described as f : ρ ∈ X ⇒ f (ρ) = κ ∈ K,

where ρ = (x, y) and κ =
(
kx, ky

)
. One such mapping function is precisely

the vector mapping relation effected by the homeomorphic Fourier transform,

which establishes a link between the two domains via the gradient of the wave-

front phase function,

κ = f (ρ) = ∇ψ(ρ) . (A–123)

It is made evident in the body of the work above that to identify whether this

vector mapping constitutes a homeomorphism or not is key when it comes to

applying the homeomorphic Fourier transform. In this section of the appendix

we shall analyze this condition in a more in-depth manner from the strictly

mathematical point of view, with a view to ascertaining a valid, easy-to-check

criterion.

Let us then begin from the topological definition of a homeomorphism: a

continuous bijection whose inverse is also continuous. A bijection describes

a function which pairs each element contained in the domain X with exactly

one element in the domain K and which leaves no element unpaired. For one-

dimensional cases, it has been proved by Kenneth George that a strictly mono-

tone real function is bijective [115]. Mathematically, the strict monotonicity of a

one-dimensional function entails its first derivatives being all non-negative or

non-positive.
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Working from the one-dimensional result, we investigate the extrapolation

of the criteria to the two-dimensional case. First, let us reformulate the vector

mapping functions in Eq. A–123 in terms of their scalar components, thus:

κ =
(
kx, ky

)
:=

⎧⎨
⎩ kx = ∂

∂x ψ(ρ) = ψx(ρ) ,

ky = ∂
∂y ψ(ρ) = ψy(ρ) .

(A–124)

x

y

z

x

y
z

x

y

z

ψ (ρ) =
√
x2 + y2 + 1 (a) ψx (ρ) = x√

x2+y2+1
(b) ψy (ρ) = y√

x2+y2+1

Figure 28: Spherical phase function ψ(ρ) and its partial derivative functions.

In what follows the derivation process is demonstrated for the example of

a spherical function. As shown in Fig. 28, each of the two components of the

mapping vector
(
kx, ky

)
corresponds, respectively, to a parametric surface. It is

evident that, in order to prove the bijection, we must ensure that for two differ-

ent positions ρ1 �= ρ2 in the definition domain X, the corresponding mapping

vectors are also different, κ(ρ1) �= κ(ρ2).

Let us then pick out a random, arbitrary position ρi from the domain X. The

corresponding mapping vector κi =
(
kxi, kyi

)
can be obtained from the applica-

tion of Eq. A–124. Next, fixing the kx component so that henceforth it remains

constant, we obtain a 3D parametric curve which corresponds to the intersection

of ψx(ρ) and the plane ψx(ρ) = kxi. As can be seen in Fig. 29, it is possible to

introduce a new variable tmin < t < tmax to describe this parametric curve in the

form ρ(t) = [x(t) , y(t)] = ψ−1
x (kxi) where ρ(tmin) and ρ(tmax) are the two end

points of the curve.

The curve ρ(t) is obviously a subset of the definition domain X, whose map-

ping vectors all have the same kx component. Therefore, if we are to have a

bijection, it is inescapable that the ky component corresponding to the points of

this curve be all different from each other, that is, that along the path ρ(t) =
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[x(t) , y(t)] no two ky = ψy[ρ(t)] have the same value. Or, in other words, the

one-dimensional function ψy[ρ(t)] is strictly monotonic. This same test can then

be applied to all the dense set of ρ paths which arise from considering all pos-

sible different fixed kxi. If the condition holds for all points in X, then it can be

concluded that the mapping in question is indeed a homeomorphism.

x

y
z

x

y

z

(a) [x (t) , y (t) , ψx (ρ (t))] (b)
[
x (t) , y (t) , ψy (ρ (t))

]

ψx (ρ) = kxi

ρ (t) = (x (t) , y (t)) = ψ−1
x (kxi)

Figure 29: First derivatives of the spherical phase function: (a) The blue curve corre-

sponds to the intersection of the first derivative of the spherical phase func-

tion ψx(ρ) with the constant plane given by ψx(ρ) = kxi. (b) Along the path

ρ(t) = [v(t) , y(t)], we can find another parametric curve on the surface

ψy(ρ).

Before we move on to the rigorous demonstration, let us list some important

arguments and summarize the most fundamental concepts discussed up to this

point:

(i) A one-dimensional function is bijective if it is strictly monotonic, and that

is true if and only iff the first derivatives are all non-negative or non-

positive.

(ii) We say that ψ(ρ) is a smooth function when the derivatives (of all orders)

are continuous and differentiable, i.e. when ψ(ρ) ∈ C∞.

(iii) The condition ψ2
xy(ρ)−ψxx(ρ)ψyy(ρ) �= 0 implies that ψxy(ρ) and ψxx(ρ)ψyy(ρ)

cannot be 0 simultaneously.

(iv) The mapping from the scalar variable t to the vector ρ, t → ρ(t), is bijec-

tive.
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The ψx component is a constant along the intersection parametric curve. There-

fore, we have
dψx[x(t) , y(t)]

dt
= ψxx

dx
dt

+ ψxy
dy
dt

= 0 . (A–125)

Additionally, we can write

dψy[x(t) , y(t)]
dt

= ψxy
dx
dt

+ ψyy
dy
dt

, (A–126)

so that we can substitute Eq. A–125 into Eq. A–126, thus:

dψy[x(t) , y(t)]
dt

=

⎧⎨
⎩

ψ2
xy−ψxxψyy
−ψxx

dy
dt , ψxx �= 0

ψxy
dx
dt , ψxx = 0

(A–127)

As already established, bijection requires that d
dt ψy be non-negative or non-

positive throughout. To investigate how this condition applies to Eq. A–127, we

consider three types of cases:

① ② ③ ④

t

ψxx = 0

ψxy = 0
P1 P2

P3

“-”

“-”

“+”

“+”

Figure 30: Example of the third kind of smooth function phase. At P1, P2 and P3 the

second derivative of ψ(ρ) is equal to zero. Based on these three points, the

definition domain is divided into four segments. Comparing the variation

of the derivatives between two neighboring segments, we can analyze the

continuity of the zero position.

1. ψxx = ∀ρ(t)

• From Eq. A–125, we get dy
dt = 0. From this we can conclude that

y(t) = constant.
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• Considering condition (iv), the mapping t → x(t) is bijective.

• From condition (i), is non-negative or non-positive in its entirety.

• If ψxy is negative or positive throughout, then d
dt ψy is non-negative or

non-positive throughtout.

2. ψxx �= 0 and ψxy �= 0∀ρ(t)

• From condition (ii), ψxx and ψxy are each either positive or negative

throughout.

• From Eq. A–125 we deduce that dy
dt = dx

dt = 0 or that dy
dt and dx

dt are

positive or negative throughout.

• Condition (iv) preempts the possibility of dy
dt = dx

dt = 0.

• dy
dt is positive or negative throughout ρ(t).

• If ψ2
xy − ψxxψyy is either negative or positive throughout, d

dt ψy is neg-

ative or positive throughout.

3. At some singular points ψxx = 0 or ψxy = 0, e.g. curves in Fig. 30

• From condition (iii), we conclude that ψxy(ρ) and ψxx(ρ) cannot be

zero simultaneously.

• We can divide the curve ρ(t) into a series of fragments separated by

the zero-valued points.

• For each fragment, the situation is analogous to that analyzed in the

second kind (point 2. above), so each fragment can be analyzed inde-

pendently according to those criteria.

• Because of the continuity – condition (i) – we can connect the result

of any two neighboring fragments. We find that the term 1
ψxx

dy
dt is

non-negative or non-positive throughout.

• If ψ2
xy − ψxxψyy is either negative or positive throughout, then d

dt ψy is

either non-negative or non-positive throughout.

From the above analysis we can conclude that, for all three different kinds of

situations, the homeomorphism condition is contained in the requirement that

ψ2
xy − ψxxψyy be either negative or positive throughout.
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