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Abstract

Many applications of ultrashort laser pulses require the manipulation and control of

the pulse parameters by using pulse shaping systems. The design and simulation

of such optical systems usually require pulse propagation methods which take the

combined effects of dispersion, diffraction, and system aberrations into account. In the

conventional pulse propagation methods based on the spectrum of plane wave (using the

Fourier transform), usually large number of sampling points are needed for the correct

Fourier transform operations due to the fast oscillating phase of the complex pulse field.

In this work, I have developed an alternative pulse propagation method, based on the

Gaussian pulsed beam decomposition, as an extension of the monochromatic Gaussian

beam propagation method. Systematic methods for the decomposition of an input

pulse, with arbitrary spatial and temporal (spectral) profiles, into a set of elementary

Gaussian pulsed beams are proposed. Algorithms for computing the spatio-temporal

and spatio-spectral profiles of the propagated pulse as the phase correct superposition of

individual Gaussian pulsed beams are developed. The proposed decomposition method

allows the elementary Gaussian pulsed beams to have different parameters depending

on the local spatial and spectral phase of the given input pulse which reduces the

number of Gaussian pulsed beams required to decompose an input pulsed beam with

a given accuracy.

Accurate modeling of sharp edge diffraction of the field after hard aperture is not pos-

sible with the conventional Gaussian beam decomposition method. To overcome this

limitation, a new kind of beam called the truncated Gaussian beam, is introduced and

systematically combined with the conventional Gaussian beam decomposition method.

The analytical propagation equation of the truncated Gaussian beam through any

paraxial optical system is derived. Similarly, for an accurate decomposition and prop-

agation of pulse fields after hard apertures, a new kind of pulsed beam called the

spatially truncated Gaussian pulsed beam is defined and combined with the Gaussian

pulsed beam decomposition method. Additionally, the application of the Gaussian

beam decomposition method is extended to handle the propagation of vectorial fields

through optical systems by combining with the three-dimensional polarization ray-

tracing calculus. Several example calculations are presented to validate the proposed

methods and show their application in propagating fields through optical systems which

are rather complicated to model using the conventional methods.
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Zusammenfassung

Viele Anwendungen von ultrakurzen Laserpulsen erfordern die Manipulation und Steue-

rung der Pulsparameter unter Verwendung von Pulsformungssystemen. Der Entwurf

und die Simulation solcher optischer Systeme erfordern üblicherweise Propagations-

methoden für Pulse, die die kombinierten Effekte von Dispersion, Beugung und Sys-

temaberrationen berücksichtigen. Bei den herkömmlichen Ausbreitungsverfahren für

Pulse, die auf dem Spektrum der ebenen Welle basieren (unter Verwendung der Fourier-

Transformation), wird aufgrund der schnell oszillierenden Phase des komplexen Impuls-

feldes normalerweise eine große Anzahl von Abtastpunkten für die korrekten Fourier-

Transformationsoperationen benötigt. In dieser Arbeit wird eine alternative Pulsaus-

breitungsmethode entwickelt, die auf der gepulsten Gaußstrahlzerlegung basiert, als

Erweiterung der monochromatischen Gaußstrahlpropagationsmethode. Es werden sys-

tematische Verfahren zur Zerlegung eines Eingangspulses mit beliebigen räumlichen

und zeitlichen (spektralen) Profilen mit einem Satz elementarer gepulster Gaußstrahlen

vorgestellt. Es werden Algorithmen zur Berechnung der räumlich-zeitlichen und räumlich-

spektralen Profile des ausgebreiteten Impulses als phasenkorrekte Überlagerung einzel-

ner gepulster Gaußstrahlen entwickelt. Das vorgeschlagene Zerlegungsverfahren ermögl-

icht es den elementaren gepulsten Gaußstrahlen, abhängig von der lokalen räumlichen

und spektralen Phase des gegebenen Eingangsimpulses unterschiedliche Parameter zu

haben, wodurch die erforderliche Anzahl der gepulsten Gaußstrahlen verringert wird,

um ein Eingangsimpulsfeld mit einer gegebenen Genauigkeit zu zerlegen.

Eine genaue Modellierung der scharfen Kantenbeugung des Feldes nach einer harten

Apertur ist mit der herkömmlichen Gaußstrahlzerlegungsmethode nicht möglich. Um

diese Einschränkung zu überwinden, wird eine neue Art von Strahl eingeführt, der

als abgeschnittener Gaußstrahl bezeichnet wird. Dieser wird systematisch mit der

herkömmlichen Gaußstrahlzerlegungsmethode kombiniert. Die analytische Ausbre-

itungsgleichung des abgeschnittenen Gaußstrahls durch ein beliebiges paraxiales op-

tisches System wird hergeleitet. In ähnlicher Weise wird für eine genaue Zerlegung und

Ausbreitung von Impulsfeldern nach harten Aperturen eine neue Art von gepulsten

Strahlen definiert, die als räumlich abgeschnittene gepulste Gaußstrahlen bezeichnet

werden, und mit dem gepulsten Zerlegungsverfahren kombiniert. Zusätzlich wird die

Anwendung des Gaußstrahlzerlegungsverfahrens durch Kombination mit der dreidi-

mensionalen Rechnung für polarisierte Strahlen erweitert, um die Propagation von
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Vektorfeldern durch optische Systeme zu ermöglichen. Es werden mehrere Beispiel-

berechnungen vorgestellt, um die vorgeschlagenen Methoden zu validieren und deren

Anwendung bei der Ausbreitung von Feldern durch optische Systeme, deren Model-

lierung mit herkömmlichen Methoden kompliziert ist, zu zeigen.
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1. Motivation

The history of studying the nature and applications of light by humans, which laid the

foundation for modern optics, goes back to the era of Greeks in 5th B.C. to 3rd B.C

based on the natural light sources [1]. Since then numerous artificial light sources, in-

cluding the electrical ones in the beginning of 19th century [2], have been invented and

their control mechanisms and application areas have been diversified. The development

of Laser in the 20th century marked a decisive breakthrough in the field of optics and has

led to the development of systems and mechanisms of using light for several scientific

and industrial applications such as imaging, material processing, metrology and optical

communication just to mention a few [3]. Nowadays there are commercially available

ultrafast laser sources that produce ultrashort pulses having a duration in the ranges

of femtosecond (10−15sec) to picoseconds (10−12sec) and hence have broad-frequency

bandwidth. The extremely short duration of ultrashort pulse makes it very crucial

for experiments that require high time resolution such as excitation and measurement

of ultrafast processes in chemical and biological materials [4, 5]. The high-bandwidth

feature of the ultrashort pulse makes it attractive in the areas of optical communica-

tions for high fiber-optic transmission rates, in the order of terabit/sec (1012bit/sec),

and wavelength-division-multiplexing (WDM) systems [4]. With further amplification

and focusing, the ultrashort pulses can be used to obtain ultrahigh peak power, up

to the order of petawatt (1015W ) and hence ultrahigh peak intensities up to the or-

der of 1030W/cm2 at moderate energy levels. These extremely powerful and intense

light bullets, which also have short interaction times, are used in high-quality material

processing such as cutting and drilling in industrial applications [4, 6].

Different scientific and industrial applications of ultrashort laser pulses usually involve

manipulation and control of the pulse properties by propagating through different op-

tical components [6, 7]. The effect of a real optical system on the ultrashort pulse

is usually complicated due to the combined effects of dispersion, diffraction, spatio-

temporal distortions, and the system aberrations [8]. The design and simulation of such

optical systems generally require numerical modeling tools, beyond the simple analyt-

ical formulas, which enable simulation of the propagation of a given ultrashort pulse

through a real non-paraxial optical systems taking the effects of dispersion, diffraction,

spatio-temporal distortion and the system aberrations into account.

3
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Most previous studies in the numerical simulations of the wave optical propagation

of ultrashort pulses through optical systems are based on the conventional concept of

representing an optical pulse as a weighted superposition of its spectral components us-

ing the temporal Fourier transform (FT). Each spectral component is then propagated

independently through the optical system to the target plane where an inverse Fourier

transform (IFT) is used to get the temporal profile of the propagated pulse [8–11]. One

of the main challenges for the practical application of this approach is the number of

spectral components required for appropriate sampling of the ultrashort pulse [12]. For

the correct computation of the temporal FT and its inverse, the number of spectral

components used must be sufficient to sample the spectral amplitudes and phases both

in the initial and final planes [13]. The spectral amplitude profile is usually a smooth

function of frequency however, the spectral phase is a fast oscillating function as it is

numerically stored in 2π modulo [9, 13]. Therefore, a huge number of spectral sam-

ples are required if the input pulse has a strongly curved spectral phase or the optical

system through which it propagates has large dispersion or spatio-temporal distortion.

For the wave optical propagation of each monochromatic spectral component through

the given optical systems, a hybrid diffraction modeling is usually used [8,10,14]. In the

hybrid diffraction modeling, ray tracing is used to compute the spectral complex fields

at the exit pupil and a diffraction integral is used to propagate to the focal plane of an

optical system [8]. However, the application of such a simple hybrid diffraction method

is used to compute the final field only in the close vicinity of the focal plane and requires

a well-defined exit pupil, negligible diffraction until the exit pupil and small phase aber-

ration [8, 15]. The more general approach is to propagate the field through different

components of the system using different techniques, such as the angular spectrum

method for homogeneous medium and geometrical ray tracing for real curved optical

surfaces [9,10]. However, this requires frequent switching between geometrical rays and

the complex electric fields which is computationally intensive for systems with multi-

ple components. In addition to that, a large number of sampling points are required

for the spatial FT used in the angular spectrum method for propagating intermediate

fields with large aberration. As most ultrashort pulse shaping systems have generally

tilted and decentered components, the computation of the fields on the tilted planes is

usually unavoidable which adds up on the computational complexity [16–18]. Hence,

with the angular spectrum of plane-wave methods, the propagation of even the indi-

vidual monochromatic component of the pulse becomes very challenging and numerical
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intensive for systems with large aberration and systems containing components such

as axicons, tilted prisms and gratings.

As an alternative method of the system diffraction calculation, the Gaussian beam

decomposition (GBD) method has been proposed for the wave optical propagation

of monochromatic fields through real optical systems [19, 20]. In the GBD method,

Gaussian beams (GBs) are used as the elementary field for the decomposition instead

of the plane waves in the angular spectrum method. Each elementary GB is propa-

gated along its central ray parabasally using the analytical propagation methods. The

combination of multiple spatially distributed and partially overlapping GBs allows

modeling of the propagation of an electric field through non-paraxial optical systems

with aberration [20,21]. Unlike the angular spectrum of plane wave-based methods, the

GBD method allows diffraction propagation through both homogenous medium and

real curved interfaces, in an end-to-end manner, without switching to other methods.

It also allows for the direct computation of the final complex field in any arbitrary

point, including tilted and even curved analysis surfaces, throughout the system by

superposition of individual GB contributions. Although the GBD method has been

incorporated as the diffraction propagation method in some commercial optical system

design computer programs [22–24], there are only a few published researches regarding

the method. This has left room for several possible extensions of the conventional GBD

method.

The first extension point is regarding the decomposition of the initial field with an

arbitrarily curved wavefront. In the literature, the Gabor expansion method is widely

used to decomposes the complex field in a given plane into a set of shifted and rotated

GBs with flat wavefronts [25–27]. For the decomposition of a field with a curved

wavefront, a large number of GBs are required in the Gabor expansion method to

decompose the fast oscillating wrapped phase of the complex field in the initial plane.

However, for the GBD method, it is not necessary to perform the decomposition on a

single plane [19,20]. The decomposition can be done directly on the curved wavefront

surface without going to the complex field and hence avoiding the sampling of the fast

oscillating wrapped phase. Although this possibility has been briefly mentioned in [20],

the detailed methodology has not been worked out and published to the best of my

knowledge. Secondly, although the spatial GBD appears in the literature, its temporal

analog, the Gaussian pulse decomposition (GPD), is surprisingly rarely discussed [28,

29]. Even those few published studies use a set of elementary wave groups with no
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initial chirp to propagate plane wave pulses in a homogeneous medium only in the

spectral domain. Hence, they cannot be used to perform the complete spatio-temporal

propagation of arbitrary pulsed beams through general optical systems. To the best

of my knowledge, the comprehensive extension of the GBD method for the spatio-

temporal propagation of arbitrary ultrashort pulse through optical systems has not

been published previously. Thirdly, the conventional GBD method cannot be used to

accurately model the sharp edge diffraction for fields after a hard aperture [19–21].

This is because, in the GBD method, the sharp edges of the field after hard aperture

are usually replaced by a rather smooth Gaussian edges during the decomposition [20].

The approximative methods proposed in the literature to increase the steepness of the

amplitude profile near the aperture edge can not be used for the accurate modeling of

the sharp edge diffraction [19–21]. Finally, the conventional GBD methods are usually

discussed based on the scalar theory of diffraction. However, the scalar theory of

diffraction is not valid for systems that significantly change the polarization states of

the field such as the high numerical aperture focusing. To the best of my knowledge, the

full vectorial extension of the GBD method based on the three-dimensional polarization

ray-tracing calculus has not been addressed in the literature.

In this work I have developed several methods to extend the conventional GBD method

and contribute to filling the scientific research gaps discussed above. The dissertation

is organized as follows. In chapter 2, the theory of ultrashort pulse properties and

the state of the art methods for its propagation through linear optical systems are

presented. The conventional GBD method is discussed in more detail as it is the basis

for the new extension methods developed in this work. In chapter 3, the new methods

developed to extend the GBD method are discussed. First a method of decomposing

an arbitrarily curved but smooth wavefront into a set of GBs with different initial cur-

vatures and directions is discussed. Then the extension of the GBD method, known as

the Gaussian pulsed beam decomposition (GPBD) method, to handle the propagation

ultrashort pulses through optical systems is presented. Furthermore, a novel approach

of extending the GBD and GPBD methods for an accurate modeling of the sharp

edge diffraction of fields after a hard aperture is discussed. Lastly, the full vectorial

extension of the GBD method by combining with the three-dimensional polarization

ray-tracing calculus is presented. In chapter 4, several example calculations are given

to validate and show the applications of the new proposed methods. Finally, in chapter

5 concluding remarks are given together with the future outlook of the project.



2. Theory and State of the Art Methods

2.1 Ultrashort pulse

Ultrashort pulse is a short electromagnetic wave packet with temporal duration in the

range of picoseconds (10−12s) or femtoseconds (10−15s) or even attoseconds (10−18s).

The extremely short temporal duration of the ultrashort pulse leads to its spread over

a wide range of frequencies. This can be understood from the property of the FT,

which states that the shorter it is in the time domain the broader it will be in the

frequency domain and vice versa [30, 31]. Mathematically, ultrashort pulses are fully

described by the space and time-dependent vectorial electric fields. However, for the

sake of simplicity let?s begin with the temporal description only ignoring the space and

polarization dependence. The temporal dependence of the real pulse field, in scalar

approximation, is given by [30,32]

ERe(t) = Re{E(t)} = Re{ψ(t) exp {iω0t}}, (2.1.1)

where t is the time coordinate, ω0 is the carrier angular frequency, E(t) is the complex

pulse field, Re{.} is the real value operator and ψ(t) is the complex amplitude envelope

function which is given by

ψ(t) =
√
I(t) exp{−iφ(t)}, (2.1.2)

with I(t) and φ(t) being the temporal intensity and phase of the pulse respectively.

Hence, the pulse shape in the temporal domain is given by the magnitude of the

complex envelope function ψ(t). As realistic pulses have complicated shapes, simple

standard waveforms such as Gaussian and squared hyperbolic secant envelopes are

usually used in the literature to discuss pulse characteristics [30]. Graphically, the

temporal amplitude, intensity and phase profiles of a simple Gaussian pulse (GP)

with quadratic phase is shown in Fig. 2.1 An ultrashort pulse can be represented by

specifying the temporal profile of the pulse (its shape, amplitude and width) and phase.

The commonly used method for specifying the pulse width are the intensity full width

half maximum (FWHM) and the full width at 1/e2 intensity (2σt) as shown in Fig.

2.1b. They give the distance between two diametrically opposite points at which the

intensity profile |(E(t))|2 reaches half or the 1/e2 of the maximum value, respectively.

7
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Figure 2.1: a) The amplitude envelope, the oscillating real field, and the phase profile of a
Gaussian pulse with quadratic phase. b) The corresponding intensity profile.

The pulse field in the frequency domain is obtained by performing the temporal FT of

the temporal field E(t) as

E(ω) = F{E(t)} =
1

2π

∫ ∞
−∞

E(t) exp{−iωt}dt, (2.1.3)

where ω is the angular frequency. The temporal IFT gives back the pulse field in

temporal domain as

E(t) = F−1{E(ω)} =

∫ ∞
−∞

E(ω) exp{iωt}dω (2.1.4)

The physical interpretation of Eq. (2.1.4) is that the pulse field can be considered as

a coherent superposition of plane waves with different frequencies. The pulse field in

Fourier (spectral) domain can be expressed by

E(ω) =
√
S(ω) exp{−iφ(ω)} (2.1.5)

where S(ω) is the spectral intensity and φ(ω) is the spectral phase. An ultrashort pulse

can also be represented by specifying the spectrum of frequencies present in the pulse

and the spectral phase [33].

Now let’s consider the propagation of a pulse-field through a homogenous medium. The

response of a dispersive medium to an electric field propagating through it, which is

given the permittivity or the refractive index of the medium, depends on the frequency

of the field. Hence, the wave number is also related to the frequency of the field by the

relation known as the dispersion relation. The Taylor series expansion of the dispersion
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relation is given by

k(ω) = k0 +
dk

dω

∣∣∣∣
ω0

(ω − ω0) +
1

2

d2k

dω2

∣∣∣∣
ω0

(ω − ω0)2 +
1

6

d3k

dω3

∣∣∣∣
ω0

(ω − ω0)3 + ... (2.1.6)

where k(ω) is the frequency dependant wave number, ω0 is the central angular frequency

and k0 = k(ω0). The first few terms of the dispersion relation in Eq.( 2.1.6) have

important physical meanings in the characteristics of electric field propagating through

the material. The 1st term (k0)is proportional to inverse of the phase velocity (Vph) of

the field inside the medium which is given by

Vph =
c

n(ω0)
=

ω0

k(ω0)
∝ 1

k0

, (2.1.7)

where c is the speed of light in vacuum and n(ω0) is the refractive index of the medium

for the given central frequency ω0. The group velocity (Vg) of the pulse envelope center

is obtained from the inverse of the 2nd term in Eq. (2.1.6) by

Vg =

(
∂k

∂ω

∣∣∣∣
ω0

)−1

= c

(
n(ω0) + ω0

∂n(ω)

∂ω

∣∣∣∣
ω0

)−1

=
c

ng(ω0)
(2.1.8)

where ng(ω0) is the group index of the medium for the given central frequency ω0. In

terms of wavelength, the group index of the medium is given by

ng =

(
n(ω0) + ω0

∂n(ω)

∂ω

∣∣∣∣
ω0

)
=

(
n(λ0)− λ0

∂n(λ)

∂λ

∣∣∣∣
λ0

)
(2.1.9)

For materials with normal dispersion,

∂n

∂ω
> 0 =⇒ ∂n

∂λ
< 0 =⇒ ng > n and Vg < Vph, (2.1.10)

and for those with anomalous dispersion,

∂n

∂ω
< 0 =⇒ ∂n

∂λ
> 0 =⇒ ng < n and Vg > Vph. (2.1.11)

The 3rd term in the Taylor expansion of the dispersion relation in Eq. (2.1.6) gives

the variation of the group velocity over frequency and hence called the group velocity



2. Theory and State of the Art Methods 10

dispersion (GVD) of the medium which is given by

GVD =
∂2k

∂ω2

∣∣∣∣
ω0

=
∂

∂ω

1

Vg
=

∂2

∂ω2

(ωn
c

)
=

λ3

2πc2

∂2n

∂λ2
. (2.1.12)

For a pulse propagating through a medium with non-zero GVD, different spectral

components will travel with different velocities and hence came out of the medium at

different times. This results in the temporal dispersion (chirp) of the pulse. Depending

on the sign of the material GVD, pulse through a given medium could be unchirped

(GVD = 0), up-chirped (GVD > 0) or down-chirped (GVD < 0) pulse [30,31].

2.2 Pulsed beam

Until this point the spatial property of the wave has been omitted. This is valid if

the spatial profile is assumed to be an infinitely extended plane wave. However, in

reality any wave exists in the form of a beam which has a finite spatial extension. As

any beam can be decomposed into infinite number of plane waves each propagating

in different directions, the methods discussed in section 2.1 are fully applicable for

individual components after such decomposition. A pulsed beam is an electric field

with finite extension in both spatial and temporal domains. If the temporal property

is independent of the spatial coordinate of the pulsed beam, then the spatial and

temporal components are separable. In such cases the pulsed beam is said to have no

spatio-temporal coupling (STC) and its complete scalar electric field is a given by

E(x, t) = Ex(x)Et(t), (2.2.1)

where Ex(x) is the spatial profile of the pulsed beam which does not vary with time,

described in single spatial coordinate for simplicity, and Et(t) is the temporal profile

which is the same for all spatial coordinates. Applying the FTs (or inverses) with

respect to appropriate variables, the electric field of pulsed beam in (x, t) domain can

be represented in other three domains by

E(x, ω) = Ft{E(x, t)} =
1

2π

∫ ∞
−∞

E(x, t) exp{−iωt}dt,

E(k, ω) = Fx{E(x, ω)} =
1

2π

∫ ∞
−∞

E(x, ω) exp{−ikx}dx,

E(k, t) = F−1t {E(k, ω)} =

∫ ∞
−∞

E(k, ω) exp{iωt}dω.

(2.2.2)
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In the absence of STC, the pulsed beam field is separable in all four domains. However,

propagation of such pulsed beam through optical systems usually results in coupling of

the spatial (angular) and the temporal (spectral) components of the pulsed beam [34].

For instance, consider propagation of pulsed beam through prism pair followed by

dispersive medium as shown in Fig. 2.2. After the first dispersive prism, different

Figure 2.2: Demonstration of angular dispersion, spatial chirp and pulse front tilts of a
pulse propagating through prism pair followed by dispersive medium.

frequency components leave the prism at different directions, resulting in the angular

dispersion of the pulsed beam. If the second prism is used to remove the angular

dispersion, then the resulting pulsed beam would have spatial chirp, where different

spectral components are separated spatially. Propagating the spatially chirped pulsed

beam through a dispersive medium results in a tilted pulse front as shown in Fig. 2.2

due to the spatial variation of the group velocity and hence the arrival time of the

pulse. Although there are in total eight STCs, corresponding to the intensity and

phase coupling in all of the four possible domains, only two of them are independent

and all the others can be computed from the relations derived from the FT equations

given in Eq.(2.2.2) [34–38]. The STCs are also known as spatio-temporal distortions.

2.3 Methods of propagating scalar pulse fields

Simulation of pulsed beam propagation through optical systems requires tools that take

the dispersion and spatio-temporal distortion of the pulse into account in addition to

the diffraction and system aberration of the individual spectral component of the pulse.

In this work, only linear optical systems are assumed and the nonlinear propagation of

ultrashort pulses is beyond its scope. The propagation of the electric field through linear

optical systems is usually based on the principle of superposition. First the given pulsed

beam field is decomposed into a set of monochromatic beams with different frequencies,
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and each monochromatic beam is then propagated independently through the system.

After the optical system, the final pulsed beam is computed by the superposition of

the final fields of all monochromatic fields after the propagation. In this section, the

current state of the art methods which are used for the propagation of ultrashort pulsed

beams through linear optical systems are briefly discussed.

2.3.1 Ray tracing

Ray tracing is an extensively used tool for propagating light through optical systems

based on the geometrical optics. In the geometrical optics, the Maxwell equations are

reduced to the eikonal equation by assuming that the wavelength of light is negligibly

small (λ→ 0), which allows the representation of light with a pencil of rays [1]. Each

ray is represented by a position in space and the unit vector pointing in the direction

of its propagation. In the homogenous medium the rays travel in a straight line and at

the interface between two different mediums they change their direction according to

the geometric law of refraction/reflection [1,39]. These basic laws of ray tracing can all

be concluded from Fermat’s principle which states that light rays travel along the path

of least time [1]. The wavefront of a monochromatic beam after a given optical system,

including the effects of aberration, can be computed by tracing several real rays through

the system and taking the locus of points along each ray with equal total optical path

length. The ray directions are perpendicular to the wavefront surface computed, which

is also called the Malus-Dupin principle of the ray-wavefront equivalence [40,41]. The

validity of the ray-wavefront equivalence requires that the rays do not cross with each

other [4, 42]. The intensity distribution of the output beam can be taken into account

by considering the change in the ray density or the change in the area of the ray tube

constructed from three or more neighboring rays [10].

For ultrashort pulses propagation, the geometrical ray tracing is widely used in com-

puting the dispersion of the optical system by tracing rays with different wavelengths

and computing the derivatives of the spectral phases with respect to the angular fre-

quencies. In addition to that, by analyzing the positions and directions of rays with

different wavelength, the spatio-spectral dispersions such as the spatial chirp and the

angular dispersion of the system can be computed. Although the ray tracing is widely

used in the design and simulation of optical systems, it cannot be used to model the

diffraction effects. This is because in the geometrical optics the wavelength is assumed

to be negligibly small and hence the wave nature of light is partly lost. In addition
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to that, in the region where the rays cross with each other, for instance near the focal

region of a lens with aberration, it is not possible to get a unique wavefront surface

which is perpendicular to all rays. Therefore, to properly model the diffraction effects

of light, for instance in the focal region of focusing system and after hard apertures,

the physical optics based wave optical propagation methods should be used.

2.3.2 Generalized paraxial wave propagation

Most laser light sources produce light which has small divergence, as it has to travel

back and forth several times between the oscillator mirrors without leaving the cavity

[3]. The propagation of such low divergence beams in homogenous, isotropic medium

can be computed by using the generalized paraxial wave equation or the generalized

Huygens diffraction integral which are defined in the spatio-temporal domain [3, 5].

Generalized paraxial spatio-temporal wave equation

The generalized paraxial spatio-temporal wave equation is a differential equation which

governs the propagation of paraxial pulsed beams through a homogenous, isotropic

medium in the paraxial, the quadratic dispersion and the slowly varying envelope

approximations [3, 5]. It can be derived from the angular spectrum of plane wave

method by applying the corresponding approximations as detailed in Appendix A.

The final generalized paraxial wave equation in the spatio-temporal domain is given

by

i
∂ψ(x, y, t̄; z)

∂z
+

(
1

2k(ω0)
∆(2) − D0

2

∂2

∂t̄2

)
ψ(x, y, t̄; z) = 0. (2.3.1)

where ψ(x, y, t̄; z) is the complex amplitude of the slowly varying envelope, t̄ = t − t0
is the time coordinate in the co-moving reference frame which travels with the group

velocity of the pulse, t0 is the arrival time of the pulse group to given transversal plane,

k(ω0) is the wave number in the medium at the central frequency ω0, D0 =
∂2k

∂ω2

∣∣∣∣
ω0

is the

GVD of the medium and ∆(2) =

(
∂2

∂x2
+

∂2

∂y2

)
. For the special cases of monochromatic

beam (temporally invariant) and pulsed plane waves (spatially invariant), Eq. (2.3.1)

reduces to the usual paraxial wave equation in Eq. (2.3.2) and the parabolic equation

in Eq. (2.3.3), respectively [3, 5, 43]:

i
∂ψ(x, y; z)

∂z
+

1

2k(ω0)
∆(2)ψ(x, y; z) = 0. (2.3.2)

i
∂ψ(t̄; z)

∂z
− D0

2

∂2

∂t̄2
ψ(t̄; z) = 0. (2.3.3)
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Mathematically, it can be shown that a monochromatic fundamental Gaussian beam

(GB) is one of the solutions of the time independent paraxial wave equation given in

Eq. (2.3.2) [44, 45]. The electric field of a generalized non-rotationally symmetric GB

in homogenous medium is given by

ERe(r; z) = Re{ψ(r; z) exp {−ink0z}}, (2.3.4)

with ψ(r; z) is the Gaussian complex envelope given by 1

ψ(r; z) = ψ0 exp

[
−ik0

2
rTQ−1r

]
, (2.3.5)

where ψ0 is the on-axis complex amplitude, k0 is the propagation constant in free space,

r = (x, y) is the spatial coordinate on the transversal plane located at z and Q−1 is

the 2× 2 complex curvature matrix,

Q−1 =

(
q−1
xx q−1

xy

q−1
yx q−1

yy

)
, (2.3.6)

defining the beam parameters [44,45]. The dependence of the Gaussian complex enve-

lope on the refractive index of the medium is included in the complex curvature matrix

of the GB. For simply astigmatic GBs, the complex matrix becomes a diagonal matrix

with

q−1
xx =

1

Rx(z)
−i λ0

πnσx(z)2
, q−1

yy =
1

Ry(z)
−i λ0

πnσy(z)2
, and q−1

xy = q−1
yx = 0, (2.3.7)

where n is the refractive index of the medium, σx(z) and σy(z) are the half width (using

the 1/e amplitude width) of the GB and Rx(z) and Ry(z) are the radius of curvatures

of the GB along x- and y-axis respectively in the transversal plane. For the generally

astigmatic beam, the diagonal elements of the complex curvature matrix are non-zero

and hence the orientation of the amplitude and phase ellipse are different [19].

Similarly, it can be shown that one possible solution of the quadratic equation in Eq.

1Unlike the expression in [44] and many other literature, here the normalization factor of 1/
√
|Q−1|

is not used for the complex envelope. This avoids the dependence of the peak amplitude of the initial
GBs on the GB parameters which is helpful for the decomposition later in this work.
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(2.3.3) is a Gaussian pulse (GP) which is given by [43]

ERe(t; z) = Re

[
exp

(
iω0

p−1
t t̄2

2

)
exp {i(ω0t− nk0z)}

]
, (2.3.8)

with p−1
t being the temporal complex GP parameter which is defined by 2

p−1
t =

1

ω0

(
S + i

2

σt(z)2

)
, (2.3.9)

where ω0 is the central angular frequency, S = ∆ω/∆t̄ is the frequency sweep rate

(equivalent to the linear chirp) and σt being the temporal 1/e amplitude half width.

Combining Eq. (2.3.8) and Eq. (2.3.4), a Gaussian pulsed beam (GPB) is obtained

which is given by

ERe(r̃; z) = Re{ψ(r̃; z) exp {−ink0z}}, (2.3.10)

with ψ(r̃; z) is the GPB complex envelope given by

ψ(r̃; z) = ψ0 exp

[
−ik0

2
r̃T Q̃

−1
r̃

]
, (2.3.11)

where ψ0 is the on-axis complex amplitude, k0 is the propagation constant in free space,

r̃T = (x, y, ct̄) is the spatio-temporal coordinate on the transversal plane located at z

and Q̃
−1

r̃ is the 3× 3 complex spatio-temporal curvature matrix given by [44]

Q̃
−1

=


q−1
xx q−1

xy q−1
xt

q−1
yx q−1

yy q−1
yt

q−1
tx q−1

ty q−1
tt

 . (2.3.12)

In Eq. (2.3.12), the terms q−1
xx , q

−1
xy , q

−1
yx and q−1

yy are the elements of the usual matrix

of spatial complex curvatures including the x-y coupling terms, whereas q−1
ττ is the

longitudinal(temporal) complex curvature given by

q−1
tt =

p−1
t

c
=

1

cω0

(
S + i

2

σt(z)2

)
. (2.3.13)

The remaining elements , (q−1
xτ , q

−1
yτ , q

−1
τx and q−1

τy ), give the spatio-temporal coupling

in the GPB [44]. The GPB is one possible solution of the generalized wave equation

2Since the 1/e width of the amplitude profile is used here instead of the intensity profile, which
was used in the original paper [43], the equation given here is slightly different from that in [43].
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given in Eq. (2.3.1) and has Gaussian amplitude profiles and quadratic phases in both

spatial and temporal domains. The GPB is usually propagated through paraxial optical

systems by using the paraxial spatio-temporal matrix method as discussed below.

Paraxial spatio-temporal matrix

The spatio-temporal matrix is an extension of the usual spatial ABCD matrix to in-

clude the first order temporal and spectral effects of the optical system. In 1990,

Kostenbauder has reported one of the first comprehensive extension of the 2×2 spatial

ABCD matrix to 4 × 4 spatio-temporal matrix [46]. That enabled the propagation

of ultrashort pulses in paraxial approximation through rotationally symmetric or or-

thogonal and dispersive optical systems. The non-rotationally symmetric extension of

the 4 × 4 Kostenbauder matrix to a 6 × 6 one was later reported by Lin [44] 3 and

Marcus [47]. In this work I have selected the matrix formalism described by Lin [44] to

propagate paraxial pulsed beams. This is because Lin has overcome the bad numerical

conditioning of the matrix, due to extremely small temporal and extremely large fre-

quency quantities, by scaling and normalizing the time and frequency coordinates [44].

In addition to that, it makes the derivation of the propagation equations for GPBs

completely analogous with that of the spatial GBs [48,49].

The first step in computing the Lin matrix of a system is to fix the reference optical

axis from the initial to the final plane along the path of a transform limited GPB

propagating through the system as shown in Fig. 2.3. The central ray of the GPB

which propagates with the group velocity through the optical system is referred to

as the pulsed ray. At each point along the reference pulsed ray, transversal planes

are erected perpendicular to the ray direction. The frequency f0, the arrival time t0

and the intersection points of the pulsed ray at each transversal plane are used as the

reference frequency, the origin of the local temporal and the local spatial coordinate

for the pulsed beam, respectively. Any other transform limited paraxial pulsed beam

is represented by a ray pulse vector which is given by

P =
(
x y ct̄ nθx nθy −f̄/f0

)T
(2.3.14)

where c is the speed of light in vacuum, n is the refractive index of the medium, [x, y]

and [θx, θy] are the positions and the slopes of the pulsed ray in the local coordinate

3In [44] the extended 6 × 6 method was published under arguably a ”misleading” title and hence
has got low attention in the scientific community.
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Figure 2.3: Schematic diagram showing the ray pulse parameters of a given optical system.

system on the transversal reference plane, respectively. The parameters t̄ = t− t0 and

f̄ = f −f0 are the changes in the arrival time and carrier frequency of the given pulsed

ray with respect to the reference pulsed ray, respectively. As the ray pulse vector

elements are calculated with respect to the central ray on a transversal plane, the tilt

and decenter effects are already included by the real ray tracing of the central ray.

In the first order approximation, the parameters of the ray pulse vector at the output

of a paraxial dispersive optical system are linearly related to that at the input by(
r̃2

ν̃2

)
=

(
Ã B̃

C̃ D̃

)
︸ ︷︷ ︸

L̃

(
r̃1

ν̃1

)
(2.3.15)

where r̃ =
(
x y ct̄

)T
, ν̃ =

(
nθx nθy −f̄/f0

)T
and L̃ is the Lin matrix of the

system 4. All elements of vectors r̃ have the units of length and that of vector ν̃ are

dimensionless [44]. Each of the four elements of the Lin matrix are by themselves

3× 3 matrices which are defined by the first order partial derivatives of the ray pulse

parameter vectors as

Ã =
∂r̃2
∂r̃1

, B̃ =
∂r̃2
∂ν̃1

, C̃ =
∂ν̃2
∂r̃1

and D̃ =
∂ν̃2
∂ν̃1

. (2.3.16)

Expanding the vectors in Eq. (2.3.16) interms of the individual elements of the ray

4Note that the tilde symbol is added over all parameters to indicate that the spatio-temporal and
distinguish from the conventional spatial matrix method.
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pulse vector, and combining the four matrices, the complete 6×6 Lin matrix becomes

L̃ =



∂x2

∂x1

∂x2

∂y1

1

c

∂x2

∂t1

1

n1

∂x2

∂θx1

1

n1

∂x2

∂θy1

−f0
∂x2

∂f1

∂y2

∂x1

∂y2

∂y1

1

c

∂y2

∂t1

1

n1

∂y2

∂θx1

1

n1

∂y2

∂θy1

−f0
∂y2

∂f1

∂t2
∂x1

∂t2
∂y1

∂t2
∂t1

c

n1

∂t2
∂θx1

c

n1

∂t2
∂θy1

−cf0
∂t2
∂f1

n2
∂θx2

∂x1

n2
∂θx2

∂y1

n2

c

∂θx2

∂t1

n2

n1

∂θx2

∂θx1

n2

n1

∂θx2

∂θy1

−n2f0
∂θx2

∂f1

n2
∂θy2

∂x1

n2
∂θy2

∂y1

n2

c

∂θy2

∂t1

n2

n1

∂θy2

∂θx1

n2

n1

∂θy2

∂θy1

−n2f0
∂θy2

∂f1

− 1

f0

∂f2

∂x1

− 1

f0

∂f2

∂y1

− c

f0

∂f2

∂t1
− 1

f0

c

n1

∂f2

∂θx1

− 1

f0

c

n1

∂f2

∂θy1

∂f2

∂f1


(2.3.17)

As in the case of conventional ABCD matrix algorithm, the total Lin matrix for a

general sequence of surfaces or optical components is computed by multiplying that of

each surfaces/component of the sequence in reverse order [30,44,50] as

L̃Total = L̃NL̃N−1L̃N−2...L̃1, (2.3.18)

where L̃Total is the total Lin matrix for sequence of components, L̃1, L̃2, ...L̃N are the

Lin matrices for individual components indexed 1,2,...,N.

The analytical formulas for the Lin matrices for simple optical components such as

homogenous dispersive slab, ideal lens/mirror, grating, and the spherical surface can

be obtained from the literature [44,46]. However, the derivation of analytical formulae

for the refraction/reflection from a general tilted and decentered optical components

and general non-spherical surfaces is not trivial. Therefore, for the general case I

have used a method based on the numerical differential ray tracing to compute the

partial derivatives in the elements of the Lin matrix of the complete system. For a

given central ray, local coordinate systems are setup before and after a given optical

system as shown in Fig. 2.3. Then five parabasal rays, each with a slightly different

position (in x and y), slope (in x and y), and frequency from the central ray, are

defined on the input transversal plane. By tracing the parabasal rays through the

system, the ray pulse parameters are computed at the output transversal plane. Finally

the partial differentials in the Lin matrix are computed by taking the ratios of the
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output ray pulse parameters to the input ray pulse parameters. As the frequency

remains unchanged through the system fout = fin, the first-order spatial chirp, first-

order angular dispersion, and the group delay dispersions can be obtained from the

last column of the Lin matrix [44,46].

Generalized spatio-temporal Huygens diffraction integral

The generalized paraxial wave equations in Eq. (2.3.1) can be used to propagate

paraxial pulsed beams in a homogenous, isotropic medium. However, it is not suitable

for the propagation through optical systems containing different components, where

an alternative approach, called the generalized spatio-temporal Huygens diffraction

integral is usually used [3,5]. Like the monochromatic Huygens diffraction integral, the

generalized spatio-temporal Huygens diffraction integral is derived from the Kirchhoff

integral equation by applying the Fresnel approximation as detailed in Appendix B.

The final expression for the generalized spatio-temporal Huygens integral in paraxial

approximation for optical system with linear chirp is given by

ψ2(r2, t2) =ζ
y

ψ1(r1, t1) exp

−i k0

2

(
n2θ

T
2 r2 − n1θ

T
1 r1 −

f̄2

f0

ct̄2 +
f̄1

f0

ct̄1

)
︸ ︷︷ ︸

Φ

 dr1dt1,

(2.3.19)

where ζ is a constant, ψi(r2, t2) is the reduced complex amplitudes of the field, ni are

the refractive indices, ( θi = (θxi , θyi),ri = (xi, yi), f̄i/f0 and ct̄i) are the elements of

the ray-pulse vector on the initial and final transversal planes for i = 1 and i = 2

respectively. The spatio-temporal Huygens integral is fully equivalent and represent

the same mathematical and physical approximations as the generalized paraxial wave

equation.

Paraxial wave optical propagation using Lin matrix

From the ray pulse vector transformation using the Lin matrix given in Eq. (2.3.15),

the input and output spatio-temporal frequencies are related to the input and output

spatio-temporal coordinates by [49](
ν̃1

ν̃2

)
=

(
n1B̃

−1
Ã −n1B̃

−1

n2(C̃ − D̃B̃−1
Ã) n2D̃B̃

−1

)
︸ ︷︷ ︸

R̃

(
r̃1

r̃2

)
(2.3.20)
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where all parameters are as defined in Eq. (2.3.15). Using Eq. (2.3.20), the spatio-

temporal phase term in the exponential of Eq. (2.3.19) can be written in terms of the

Lin matrix elements as [49]

Φ =− k0

2

(
r̃1

r̃2

)T

R̃

(
r̃1

r̃2

)
, (2.3.21)

where R̃ is the 6×6 matrix defined in Eq. (2.3.20). Since the phase is a scalar quantity,

the matrix R̃ must have the property of transposition symmetry,

R̃ = R̃
T
. (2.3.22)

From this transposition symmetry and the definition of R̃ in Eq. (2.3.20), the following

relations between matrix elements can be derived:

Ã
T
D̃ − C̃T

D̃ = I, Ã
T
C̃ = C̃

T
Ã and B̃

T
D̃ = D̃

T
B̃ (2.3.23)

Inserting Eq. (2.3.21) into Eq. (2.3.19) and using the relations in Eq. (2.3.23), the

spatio-temporal Huygens integral is written interms of the Lin matrix elements as

ψ2(r̃2) =ζ
y

ψ1(r̃1) exp

[
−ik0

2

(
r̃1

T B̃
−1
Ãr̃1 − 2r̃1

T B̃
−1
r̃2 + r̃2

TD̃B̃
−1
r̃2

)]
dr̃1.

(2.3.24)

By imposing the energy conservation condition,

y
|ψ2(r̃2)|2dr̃2 =

y
|ψ1(r̃1)|2dr̃1, (2.3.25)

the constant amplitude factor ζ in Eq. (2.3.24) is computed to be

ζ =

(
i

λ0

)3/2

[det(B̃)]−1/2. (2.3.26)

The equation given in Eq. (2.3.24) allows for the wave optical propagation of any

paraxial pulsed beams through non-rotationally symmetric and dispersive optical sys-

tems with a given Lin matrix by numerical integration. However, for GPB input, the

integral can be solved analytically giving simple propagation equations. Using the GPB

in Eq. (3.2.17) as an input field to the generalized Huygens diffraction integral, it can
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be shown (see Appendix B) that the field after propagation is also another GPB with

the reduced complex field given by [44]

ψ2(r̃2) =
ψ0√

det
(
Ã+ B̃Q̃1

−1
) exp

(
−ik0

2
r̃2

T Q̃2
−1
r̃2

)
, (2.3.27)

where Q̃−1
2 =

(
C̃ + D̃Q̃−1

1

)(
Ã+ B̃Q̃−1

1

)−1

is the 3 × 3 complex spatio-temporal

curvature matrix of the final GPB.

The spatio-temporal Huygen integral given in Eq. (2.3.21) is completely analogous

with the generalized Collins integral in spatial domain, which is given by

ψ2(r2) =ζr
x

ψ1(r1) exp

[
−ik0

2

(
r1

TB−1Ar1 − 2r1
TB−1r2 + r2

TDB−1r2
)]
dr1.

(2.3.28)

with ζr =
(

i
λ0

)
[det(B)]−1/2 obtained from the energy conservation condition and

A,B,C and D are the 2× 2 matrices components of the 4× 4 spatial ABCD matrix.

Similarly, the GPB propagation equation given in Eq. (2.3.27) above is completely

analogous to that of the monochromatic GBs [48,49],

ψ2(r2) =
ψ0√

det
(
A+BQ1

−1
) exp

(
−ik0

2
r2

TQ2
−1r2

)
, (2.3.29)

where Q−1
2 =

(
C +DQ−1

1

) (
A+BQ−1

1

)−1
is the 2 × 2 complex spatial curvature

matrix of the final GB.

Although the analytical formula for propagation of GPBs using the Lin matrix method

is fast, its application is limited to only to the propagation of GPBs through paraxial

optical systems with no aberration and has only quadratic dispersion. However, real

optical systems usually have combined effects of system aberrations, higher order dis-

persions and spatio-spectral distortions. In addition to that, the input pulsed beam

can have amplitude profiles which are not necessarily Gaussian shaped and phase pro-

files which are more complicated than the simple quadratic ones. For such general

cases, the ultrashort pulse propagation methods based on the temporal FT are usually

employed.
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2.3.3 Temporal Fourier transform based methods

Consider the propagation of an initial pulsed beam whose complex analytic electric

field is given by [5]

E(x, y, t; 0) = Er(x, y; 0)Et(t)exp{iω0t} (2.3.30)

where Er(x, y; z = 0) is the spatial profile of the pulse and Et(t) is the temporal profile

(pulse envelope) at the initial plane z = 0. The pulse in the spectral domain is usually

obtained by taking the temporal FT of the given analytic field as

E(x, y, ω; 0) = F{E(x, y, t; 0)}, (2.3.31)

where F{.} is the temporal FT operation defined in Eq. (2.1.3). For numerical propa-

gation of the pulse, the analytic spectral field is sampled into Nω equidistant spectral

components. The spatio-temporal profile of the initial pulse can be obtained by per-

forming the IFT of the spectral components. For the numerical IFT

Once the input pulse is represented by properly sampled spectral equivalent, each spec-

tral component is propagated through the given linear optical systems independently.

This results in the spectral equivalent of the pulse at the output plane. The final

spatio-temporal pulse profile is obtained by applying the IFT operation on the output

pulse field as

E(x, y, t; zf ) = F−1{E(x, y, ω; zf )}. (2.3.32)

This operation requires that the number of spectral samples used should be large

enough to ensure the proper sampling of the spectral phase and amplitude in the

output plane as well.

As the linear spectral phase simply delays the pulse without affecting its profile, it is

usually removed from the complex field before the Fourier transformation operations.

This drastically reduces the number of spectral samples required and hence reducing

the computer memory and computational time needed [13]. The remaining higher-

order spectral and spatio-spectral phases terms increase the time window of the pulse

which in turn requires a higher initial frequency sampling [9]. To propagate the com-

plex field of each spectral component from the input to the output plane, appropraite

linear propagation operators are used. For a homogenous medium, the spectrum of

plane wave or the Fresnel propagation integral can be used [5]. However, for real non-
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paraxial optical systems with multiple components, the propagation is done by the

hybrid diffraction propagation method or the GBD method which are discussed below.

Hybrid diffraction propagation

In the hybrid diffraction propagation method, an input field is propagated using the

combination of the geometrical ray tracing, for propagation through real curved sur-

faces, and the wave optical propagation method, for propagation in homogenous me-

dia [14,51]. For instance, for a focusing optical systems shown in Fig. 2.4, ray tracing

is used to compute the spectral complex fields at the exit pupil of an optical system

and a diffraction integral is used for the field propagation to the focal region. The

complex field for each spectral component at the exit pupil is defined by

Eex(px, py, λi) = Aen(px, py, λi) exp

[
−i2πWex(px, py, λi)

λi

]
, (2.3.33)

where λi is the wavelength of the spectral component, Aen(px, py, λi) is the spectral

pupil amplitude apodization, and Wex(px, py, λi) is the wavefront computed from the

optical path difference (OPD) of the rays over the exit pupil for a given spectral compo-

nent.

Figure 2.4: The schematic diagram showing the hybrid
diffraction model

Once the complex fields at the

exit pupil are computed, it is

then propagated to the final

plane of an optical system by us-

ing a wave optical method as the

geometrical optics is not valid in

the vicinity of the focus. Di-

rect numerical integration of the

Rayleigh-Sommerfeld diffraction

integral on the complex field at

the exit pupil plane is computa-

tionally intensive as a huge num-

ber of sampling points are required for sampling the spherical phase of the initial field.

Therefore, the complex pupil field is usually computed on the exit pupil sphere, which

automatically compensates for the spherical part of the phase distribution, significantly

reducing the number of sampling points required. Applying the small-angle approxi-

mation, similar to that of the Fraunhofer diffraction integral, the Rayleigh-Sommerfeld
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diffraction integral reduces to a single spatial FT [52]

E(x, y, ω; zf ) =
ω

i2πczf
exp{−ikzf} exp

[
−i k

2zf

√
x2 + y2

]
F{E ′ex(px, py, ω)}, (2.3.34)

where E ′ex(px, py, ω) is the complex spectral field in the exit pupil sphere, zf is the

distance of the focal plane from the exit pupil, k is the wavenumber, ω is the angular

frequency, and c is the speed of light in vacuum. Applying the temporal IFT, given in

Eq. (2.1.4), on the pulse spectrum at the focal plane, given in Eq. (2.3.35), yields the

space-time-distribution in the focal plane by phase correct superposition of all spectral

components [8]. For a final plane which is shifted from the focal plane by ∆z, the pulse

spectrum is computed by manipulating the field distribution in the exit pupil with an

additional spherical phase factor as

E(x, y, ω; zf + ∆z) ∝F{exp

[
−ik∆z

√
1− 1

zf

(
p2
x + p2

y

)]
E ′ex(px, py, ω)}. (2.3.35)

However, the application of such a hybrid diffraction method gives the pulse profile

near the focal plane and requires a well-defined exit pupil, negligible diffraction except

at the exit pupil and small phase aberration which may not be usually met in ultrashort

pulse shaping systems [8, 15]. A more general field propagation approach is to divide

the optical system into sub-systems and propagate the field using different techniques

suitable for each sub-system [9, 10]. However, this usually requires frequent switch-

ing between geometrical rays and the complex electric field representations which is

computationally intensive for systems with multiple components. In addition to that,

for systems with large aberrations, the number of sampling points required by the FT

can be extremely large to fulfill the sampling condition for the intermediate complex

fields. As an alternative method of system diffraction calculation, A.W. Greynolds has

proposed a wave optical propagation method that uses the fundamental GBs as the

elementary fields instead of the plane waves [19].

Gaussian beam decomposition

In the Gaussian beam decomposition (GBD) method, the given arbitrary non-paraxial

field is first decomposed into a set of GBs [20, 53, 54]. Then, each GB is propagated

through an optical system locally paraxially along its central ray. Finally, the prop-

agated field at any point in the final or any intermediate plane is computed by a

coherent superposition of the contributions of the complex field from each GBs after
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propagation. The schematic illustration of the GBD method is given in Fig. 2.5. Un-

Figure 2.5: The schematic diagram showing the GBD method

like the plane waves, the GBs are very compact and their propagation through both

homogeneous medium and a real curved interface can be easily computed, at least in

the paraxial approximation [19,21]. By using a set of multiple GBs, the GBD method

allows for the propagation of an arbitrary input field through a real and aberrated

optical systems in the scalar approximation. The impact of the aberration is taken

into account by calculating each GB central rays exact.

Consider the decomposition of an input field with plane wavefront truncated by circular

aperture using a set of uniformly distributed GBs over the input plane. To get a flat

top-hat amplitude profile with minimum ripple, the adjacent GBs should partially

overlap with each other. The overlap factor is defined by

εOF =
2ω0

∆C0

. (2.3.36)

where 2ω0 is the beam diameter (defined by using the 1/e amplitude) and ∆C0 is

the distance between the adjacent beam centers. For a rectangular grid sampling, the

number of GBs required along one dimension to fill the aperture window with a given

overlap factor εOF and beam waist width w0 is given by,

Ng = ceil

(
DεOF
2w0

)
, (2.3.37)

where D is the width of the aperture window and ceil(.) rounds the argument to the

nearest integer greater than or equal to it. Hence, the total number of GBs required

for the entire rectangular region in two dimensions becomes N2
g .

For the decomposition of a super-Gaussian profile using a set of GBs with a width, the



2. Theory and State of the Art Methods 26

overlap factor determines the number of GBs required and the amount of ripple on the

resulting amplitude profile after the decomposition. This is demonstrated in Fig. 2.6

for one dimensional case. It can be seen that, as the overlap factor increases the peak-

Figure 2.6: The effect of the overlap factor on a) the peak-valley error of the ripple on the
top-hat amplitude profile oscilation, b) the number of GB required to fill the same window.
The amplitudes of each GB together with the total superposed amplitude are shown for c)

εOF = 1.0 and d) εOF = 1.67. The width of individual GB is kept constant.

valley value of the amplitude ripple decreases and the number of GBs required increases.

For overlap factors of 1.0 and 1.667, shown in Fig. 2.6 (c and d), a set of 7 and 11

GBs are used for the decomposition with the resulting ripple peak-valley of 28.84% and

0.41% , respectively. For common amplitude profiles, an overlap factor from 1.5 to 1.75

is usually sufficient [20,21]. After the GB distribution on the input plane is determined,

the next step is to calculate the amplitude coefficients of individual GBs to give the

required amplitude profiles. For a simple top hat amplitude profile, the amplitudes

of individual GBs are simply taken to be equal. However, for general non-uniform

amplitude profile, the amplitude coefficients of the individual GBs is determined using

the least square fitting method. For a set of N GBs, the amplitude coefficients ck of

individual GBs should be determined such that the total amplitude a(xi) at a given

position xi ∈ R is given by

a(xi) =
N∑
k=1

ckgk(xi), (2.3.38)

where gk(xi) is the amplitude contribution of single GB at point xi. For a set of M
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points in space, Eq. (2.3.38) can be written in matrix vector multiplication form as
g11 g12 . . . g1N

g21 g22 . . . g2N

...
...

. . .
...

gM1 gM2 . . . gMN


︸ ︷︷ ︸

G


c1

c2

...

cN


︸ ︷︷ ︸

c

=


a1

a2

...

aM


︸ ︷︷ ︸

a

, (2.3.39)

where gij is the amplitude of jth beam at ith point, cj is the amplitude coefficient of the

jth beam and ai is the total amplitude at the ith point. For a typical decomposition

problem using multiple GBs, the size of individual GB is significantly smaller than the

given field window size. Therefore, each GB covers only certain limited points in the

aperture and has negligible contribution to other points, resulting in the sparse matrix

G in Eq. (2.3.39) which is computationally advantageous 5. If the number of GBs is

equal to the number of data points (N = M) in Eq. (2.3.39), then the solution for the

coefficient vector can be uniquely determined given that the G matrix is non-singular

and hence is invertible. However, for typical GBD problem, the number of data points

exceeds the number of GBs used (M > N). Such overdetermined problem usually has

no solution but the ”best” coefficient vector c, which minimizes the mean square error

is given by [55]

c = (GTG)−1GTa. (2.3.40)

Finally the accuracy of the approximation is assesed by computing the root mean

square error,

rms =

√∑M
i=1 ∆a2

i

M
, (2.3.41)

where ∆ai is the difference between the input amplitude and the approximated ampli-

tude after the decomposition.

Once the input field is decomposed into a set of GBs, each GB is propagated through

the optical system paraxially along its central ray. For propagating the paraxial GBs

through optical systems along skew ray paths, two methods are commonly used: the

paraxial ABCD system matrix-based method [56] and the complex ray-tracing method

[19–21]. In this work, I have selected the ABCD system matrix-based method as it is

suitable for further extension of the GBD method. The ABCD system matrix along

5Sparse matrix has most of its elements zero. In Matlab special routines are available for fast
algebraic computation involving sparse matrices without storing the zero elements.
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the central rays of each GBs is computed from the input to the output plane. Then, the

matrix elements are used to compute the output GB parameters from the input ones

using the methods discussed in section 2.3.2. After propagating all GBs to the final

plane, the total field at the given point is computed by a coherent superposition of the

complex field contributions from individual beams. For the phase correct superposition

of multiple GBs, the phase factor due to the optical path length of the central ray should

be added to the reduced complex field given in Eq. (2.3.29).

The GBD method is useful for performing an end-to-end diffraction calculation through

macroscopic optical systems without switching between ray tracing and diffraction

propagation [20, 57]. It enables the physical optics modeling of optical systems which

have strongly curved and non-spherical wavefronts such as axicon and system with

large aberration, which are complicated to model using the FT based methods [14,21].

The GBD method allows for the computation of the propagated field at any point

along the beam path through optical systems.

Although the conventional GBD has been used as an alternative method for wave

optical diffraction calculation of optical systems and is incorporated in some commercial

optical design computer programs [22–24], it has several limitations which are not

yet addressed in the literature. Firstly, there has not been a published work on the

systematic method of decomposing a field with generally curved wavefront using GBs

which have different initial positions, directions, and curvatures depending on the local

wavefront. The second and probably the main limitation of the conventional GBD

method is that, it is not possible to accurately model sharp edge diffraction of the

field after a hard aperture. This is because in GBD the sharp edge of the field is

replaced with the smooth Gaussian edge. Additionally, the conventional GBD method

is limited to propagating monochromatic fields and requires temporal FT methods

for ultrashort pulse propagation. Hence the issue with sampling of fast oscillating

spectral phase becomes critical for propagating through systems with large dispersion

and spatio-spectral distortions. Furthermore, the conventional GBD method is usually

discussed in the scalar field approximation and the propagation of vectorial fields using

the GBD method is not well addressed in the literature. In this work, I have proposed

several extension methods and developed algorithms that help in overcoming some of

the aforementioned drawbacks of the GBD method.
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2.4 Propagation of vectorial fields

The methods discussed so far are based on the scalar diffraction theory which ignores

the polarization state of light, which is significant in some systems such as high NA

focusing systems. In such cases, it is necessary to use the vectorial diffraction integral

to trace the polarization states of light instead of the scalar wave equation. In this

section the methods of propagating vectorial fields in both geometrical and physical

optics approaches are briefly discussed.

2.4.1 Three dimensional (3D) polarization ray tracing

In the geometrical optics, the polarization states of each ray is usually traced through

an optical system by using the Jones matrix method. In the Jones calculus, the polar-

ization state of each ray in the local s− p coordinate system is given by a Jones vector

and the effect of an interface or another optical component is given by 2 × 2 Jones

matrix [5]. However, for a non-paraxial ray tracing, the application of Jones calcu-

lus requires frequent transformations between the local and global coordinate systems.

This makes the implementation of the Jones calculus very complicated and error-prone.

In order to avoid such a morass, the three-dimensional polarization ray-tracing calcu-

lus is often used, which is the generalization of Jones calculus to three-by-three matrix

formalisms [58, 59]. In the 3D polarization ray-tracing calculus, the polarization state

of a given ray is specified by the three-element polarization vector given in the global

coordinate system,

V =


Vx

Vy

Vz

 =


Ax exp (−iφx)
Ay exp (−iφy)
Az exp (−iφz)

 , (2.4.1)

where Ax,y,z and φx,y,z are the amplitudes and the phases of each polarization states.

The effect of an interface or an optical component on the polarization state of the ray is

given by the 3×3 polarization ray tracing matrix. The polarization ray tracing matrix

of an optical component, such as an interface with multilayer coating, is computed

from its usual 2× 2 Jones matrix by

P = Rout
LGJ3×3R

in
GL, (2.4.2)

where Rout
LG is the local (s-p-k) to the global (x-y-z) coordinate transformation matrix

after the component, Rin
GL is the global (x-y-z) to the local (s-p-k) coordinate transfor-
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mation matrix before the component and J3×3 is the Jones matrix of the component

in the local coordinate system embedded in the left-top corner of the 3 × 3 identity

matrix as

J3×3 =


Jss Jsp 0

Jps Jpp 0

0 0 1

 . (2.4.3)

Figure 2.7: The local coordinate
systems for the ray reflected and
refracted from a plane interface.

The coordinate transformation matrices can be

obtained from the local coordinate systems which

are defined using the incoming and outgoing ray

directions at the interface as shown in Fig. 2.7.

Like in the Jones calculus, the total polarization

ray tracing matrix P tot of a sequence of optical

components is computed from the polarization ray

tracing matrices P q of individual components by

P tot = PNPN−1...P 2P 1 =
1∏

q=N,−1

P q. (2.4.4)

The output polarization vector V 2 of the electric

field after an optical system is computed from the

input polarization vector V 1 by using

V 2 = P totV 1 =⇒


Vx,2

Vy,2

Vz,2

 =


Pxx Pxy Pxz

Pyx Pyy Pyz

Pyz Pzy Pzz



Vx,1

Vy,1

Vz,1

 . (2.4.5)

The main advantage of the three-dimensional polarization ray-tracing calculus over the

Jones calculus is that the final polarization state is computed in a single step without

requiring the frequent coordinate transformations during tracing [59]. However, as the

polarization ray tracing is based on the geometrical ray tracing, it is not valid in cases

where the diffraction effects are significant such as the focal region of focusing optics.

In such cases, it is necessary to use the vectorial diffraction integral to get the electric

field components as discussed in the following section.
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2.4.2 Vectorial diffraction for high NA focusing

Consider the focusing of a polarized input field by an optical system with plane entrance

pupil and spherical exit pupil as show in in Fig. 2.8. The incident field Ei(r, φ) at

point Q1 is decomposed into the s-polarized (tangential) and the p-polarized (radial)

components. At the exit pupil of the optical system, the wave field is deflected in the

radial plane and focused towards the focal point [60]. The complex amplitudes of the

transmitted field at the corresponding point Q2 on the exit pupil sphere is given by a

three element vector which is computed by

Et(θ, φ) = tp(Ei.p1)p2 + ts(Ei.s1)s2 (2.4.6)

Figure 2.8: The geometry of a high NA focusing.

where tp(θ, φ) and ts(θ, φ) are

the complex transmission coeffi-

cients (due to accumulated phase

distortions and attenuation) of

the optical system for the p-

and s-polarization components,

respectively. The unit vectors

of the s- and p-components at

the entrance and exit pupils are

given by

s1 =


− sinφ

cosφ

0

 p1 =


cosφ

sinφ

0

 s2 = s1 and p2 =


cosφ cos θ

sinφ cos θ

sin θ

 ,

(2.4.7)

where θ and φ are angles as shown in Fig. 2.8.

In the diffraction computation according to the Debye approximation, each point of the

exit pupil is taken as the source of a plane wave with amplitude, phase and polarization

prescribed by this point. Hence, the vectorial field at any point (x, y, z) in the focal

region is obtained by integrating the propagated plane waves by [60,61]

E(x, y, z) = − if
λ0

∫ θmax

θ=0

∫ 2π

φ=0

Et(θ, φ) sin θ exp{i(kzz − kxx− kyy)}dφdθ (2.4.8)

where θmax = arcsinNA/nt with NA and nt being the numerical aperture and the
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last medium refractive index of the system, and kx, ky and kz are elements of the wave

vector kt of the transmitted field which is given by

kt(θ, φ) =
2π

λ0

nt


− cosφ sin θ

− sinφ sin θ

cos θ

 . (2.4.9)

The diffraction integral in Eq. (2.4.8) is called the vectorial Debye diffraction integral.

For fast computation, the Debye integral is usually rewritten in terms of FT by [60]

E(x, y, z) = − if

λ0k2
t

F [Et(θ, φ) exp{ikzz}/ cos θ] (2.4.10)

The FT in Eq. (2.4.10) requires the sampling condition to be fulfilled for both the field

Et(θ, φ) at the exit pupil and the propagation kernel exp{ikzz}. For an optical system

with large aberrations, the sampling of fast oscillating residual phase becomes critical.



3. New Extensions to the Gaussian Beam Decom-

position Method

In this chapter the new methods which are developed to address some of the limitations

and challenges of the conventional GBD method discussed in chapter 1 and 2 above

are presented. These newly proposed methods and developed algorithms are the main

contributions of this Ph.D. project. Most of the methods discussed in this chapter

have already been published in the peer-reviewed journals [53, 62–65]. The example

calculations for the validation of the methods and demonstrate their application is

presented separately in the next chapter (chapter 4).

3.1 Curved wavefront decomposition

For fields with strongly curved wavefronts, the fast oscillating phase of the complex

field on the initial plane makes it difficult to perform the GBD on the input plane

[25, 54]. This can be overcome by performing the GBD directly on the wavefront

surface, without going to the complex field representation on a single plane. Although

this idea has been briefly mentioned in a previous study [20], the detailed decomposition

algorithm is not discussed yet in the literature to the best of my knowledge. In this

work I propose and describe a method to decompose a smooth wavefronts into a set

of GBs that are distributed directly on the wavefront surface, have different positions,

directions, and non-zero initial phase curvatures.

The decomposition of a field with a smooth wavefront φ(x, y) and a given amplitude

profile starts by taking several overlapping GBs distributed on the XY plane using

a given sampling scheme as shown in Fig. 3.1. The Fibonacci sampling grid is used

here as it usually gives better accuracy for circular aperture in the radial basis function

fitting problems [66]. Different sampling scheme which can be used in the GBD are

briefly discussed in Appendix E. For a given total number of GBs used, the width of

individual GBs is determined in such a way that each beam overlaps partially with

its neighboring beams as shown in Fig. 3.1a. The number of GBs required and the

overlap factor used depends on the wavefront and amplitude profiles of the input field.

As discussed in subsection 2.3.3 above, for the overlap factor a typical value in the

range of 1 to 1.75 is usually used. The basic principles for estimating the number of

GBs required is given at the end of this subsection. For each sampling point (xg, yg) on

33
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Figure 3.1: a) The footprint of overlapping GBs projected on the transversal X-Y plane. b)
The directions (shown in blue arrows) of all GBs used for decomposition of a given curved

wavefront. c) The local surface patch of a single GB d) Sketch showing different parameters
of the rays representing a single GB computed by the decomposition algorithm. Here only

the YZ-cross section is shown for simplicity and the size of the GB is exaggerated.

the XY plane, a GB is placed in the corresponding point on the wavefront surface as

shown in Fig. 3.1b. Each GB is rotated in such a way that the directions of its central

rays are along the wavefront surface normal at the beam center point. Then a local

coordinate system is defined for each GB with z-axis being along the beam direction

and the x- and y- axes on the plane tangent to the wavefront at the beam center as

shown in Fig. 3.1c. In the local coordinate of a given GB, the Taylor expansion of the

given wavefront surface in the quadratic approximation results in

zq(x, y) = cxxx
2 + cxyxy + cyyy

2, (3.1.1)

where cxx,cxy and cyy are the coefficients of the expansion. The constant offset and

the linear term does not appear in Eq. (3.1.1) due to the special choice of the local

coordinate system. The local quadratic approximation of a given wavefront surface

around a given point on the wavefront can be done using two approaches. The first

approach is by using a paraboloid which has the same curvature as the local wavefront

surface curvature at the given point. This results in the quadratic approximation which

is exact at the GB center point but may have a large deviation in the neighborhood.

Alternatively, the coefficients of the local quadratic approximation in Eq. (3.1.1) can

be computed by forcing a paraboloid placed at the center point to match with the given

wavefront surface at least at three points on the edge of a finite surface patch around



3. New Extensions to Gaussian Beam Decomposition Method 35

the point. This results in the quadratic approximation which has a small deviation

not only at the center but also in the finite area around the center point. To illustrate

this, consider the parabolic approximations of the spherical wavefront in 1D using the

two approaches as shown in Fig. 3.2. From the residual error plot in Fig. 3.2b, it can

Figure 3.2: a) Parabolic approximations of a spherical wavefront, with a radius of 4mm, by
using the curvature at the center (in approx. 1) and by forcing the parabolic wavefront to

coincide with the given one at a finite width x = 3mm (in approx. 2). b) The residual error
of the two approximations shown in (a).

be seen that the second method gives better approximation (with small RMS error)

over wider area. Therefore, the second approach is employed for the computation of

the curvatures of the GBs used to decompose curved wavefronts. The size of the finite

surface patch considered around the beam center is determined by the width of the GB.

For the GB in 3D space as shown in Fig. 3.1c, the quadratic coefficients are computed

by

cxx =
zφ(wx, 0)

w2
x

, cyy =
zφ(0, wy)

w2
y

,

cxy =
zφ(wx, wy)− (cxxw

2
x + cyyw

2
y)

w2
xw

2
y

,

(3.1.2)

where wx and wy are the waist radius of the GB and zφ(x, y) is the surface sag of the

given wavefront at a given point in the local coordinate system. From the equations of

the GB given in Eq. (2.3.5 - 2.3.7), the complex curvature matrix elements of the GB

are given by

q−1
xx = −2cxx − 1i

λ0

πw2
x

, q−1
yy = −2cyy − 1i

λ0

πw2
y

,

q−1
xy = q−1

yx = −cxy.
(3.1.3)
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Once the given wavefront is well represented with the GB phase curvatures, the am-

plitudes of each GBs are computed by using the method of least square fitting method

discussed in section 2.3.3 above.

On the estimation of the number of GBs

For a given overlap factor, the minimum number of GBs required to decompose a given

input field depends on the overall size of the field, and the maximum width allowed for

the individual GBs used as given in Eq. (2.3.37). However, as the width of the individ-

ual GBs increases, the accuracy of the quadratic approximation of the local wavefront

as well as the maximum spatial frequency in the amplitude profile which can be repre-

sented by the GB decrease. Therefore, the estimation of the maximum width of the GB

to use should consider both the amplitude profile and the wavefront of the input field.

Figure 3.3: The weighted RMS values of the
residual wavefront error for the quadratic
approximation of spherical wavefront with

different radius of curvature R using a single GB
with different 1/e beam width w0. The logarithm
value of the calculated result is shown in the plot.

For instance, for a spherical wave-

front, the residual error of the

quadratic approximation of the wave-

front using GBs depends on the ra-

dius of curvature of the wavefront R

and the GB width w0. Figure 3.3

shows the RMS value of the inten-

sity weighted residual wavefront er-

ror of the quadratic approximation

as function of R and w0 for wave-

length of λ = 0.5µm. For a given tar-

get residual error, the maximum GB

width allowed to represent a spher-

ical wavefront with a specific radius

of curvature can be directly obtained

from the plot. In addition to the wavefront approximation, the width of the elemen-

tary GBs determines the maximum spatial frequency in the amplitude profile which

can be represented by the GBD. For a given field with oscillating amplitude profiles,

GBs with small width should be used to represent the large spatial frequencies. The

spatial frequency content of a given amplitude profile can be obtained by performing

the FT.

The GBD method discussed in this section allows the decomposition of a monochro-

matic field with a curved wavefront and an arbitrary amplitude profile. As the de-
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composition is done directly on the wavefront surface without going to the complex

field in a single plane, the method does not suffer from the sampling problem of the

fast oscillating phase. In addition to that, this method utilizes the initial direction

and curvature parameters of the GBs to best fit the local wavefront which reduces the

number of GBs required for the decomposition with a given accuracy.

3.2 Extension to ultrashort pulse propagation

For a linear optical system, the Gaussian beam decomposition (GBD) method allows

for the propagation of a monochromatic field with arbitrary spatial amplitude and

wavefront profile through an optical system. Analogously, it is reasonable to think

that a Gaussian pulse decomposition (GPD) method can be used to propagate an input

pulse with arbitrary spectral amplitude and phase through dispersive optical systems.

However, such an approach for ultrashort pulse propagation has not yet been addressed

in the literature. In this section, I propose a method of decomposing an ultrashort pulse

with arbitrary spectral amplitude and phase profiles into a finite number of delayed

and chirped Gaussian pulses with different central frequencies. Then, by combining

the GBD with the GPD methods, a new alternative method for the spatio-temporal

propagation ultrashort pulsed beams through real optical systems is developed.

3.2.1 Decomposition of arbitrary spectral profile

Consider the decomposition of a general spectral profile of an ultrashort pulse with an

arbitrary spectral amplitude and phase profiles into a set of GPs with different central

frequencies, peak amplitudes and having overlapping spectral profiles as shown in Fig.

3.4. The first step in the spectral GPD is the determination of the spectral range over

which the spectral amplitude has non-negligible values. Then, Nω uniformly sampled

points are taken over the resulting frequency range and used as the central frequencies

of the GPs used for the decomposition. The spectral profiles of the adjacent GPs are

generated to overlap with a given spectral overlap factor εωOF which is defined by

εωOF =
2σω
∆ω0

, (3.2.1)

where σω is the spectral width of the pulse (defined by using the 1/e amplitude) and

∆ω0 is the spectral separation between the adjacent pulse centers. Like in the case of

the spatial GBD, the spectral overlap factor determines the smoothness of the total

amplitude profile after the decomposition and for most cases the typical values between
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Figure 3.4: The schematic diagram showing the spectral decomposition of an ultrashort
pulse with an arbitrary spectral amplitude and phase profile into set of Gaussian pulses.

1.5 and 1.75 give good results. For a uniform sampling scheme, the spectral width of

each GP is given by

σω =
1

2

(Ωmax − Ωmin)

Nω

(εωOF ), (3.2.2)

where Ωmax and Ωmin are the maximum and minimum angular frequency with non-

negligible input amplitude, respectively.

Once the GP distributions are fixed, the next step is the computation of the delay and

chirp parameter of individual GPs from the given spectral phase. The parameters are

determined in such a way that the individual GP properly represents the given spectral

phase up to the quadratic order locally. To this end, the second order Taylor expansion

is applied on the given spectral phase about the central angular frequency ω0 of each

GP as

φ(ω)

∣∣∣∣
ω0

≈ φ0 + φ1(ω − ω0) + φ2(ω − ω0)2, (3.2.3)

where the Taylor expansion coefficients are given by φ0 = φ(ω0), φ1 = φ′(ω0) and

φ2 = 0.5φ′′(ω0). The constant term (φ0) and the linear coefficient (φ1) in the Taylor

expansion give the constant phase offset and the group delay of the GP. Whereas, the

quadratic coefficient (φ2) corresponds to the temporal chirp of the GP which determines

its temporal complex curvature.

From the temporal FT of the GPB given in Eq. (2.3.10), the spectral profile at the
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center of the GPB is given by

E(r = 0, ω̄) ∝ exp

(
i

1

2k0c2q−1
ττ

ω̄2

)
, (3.2.4)

where ω̄ = ω − ω0. Separating the real and imaginary parts, the term inside the

exponent in Eq. (3.2.4) can be written in terms of the spectral width σω and the

quadratic spectral phase coefficient φ2 as

i
1

2k0c2q−1
ττ

ω̄2 = − ω̄
2

σ2
ω

+ iφ2ω̄
2. (3.2.5)

From Eq. (3.2.5), the complex curvature parameter of the GP is computed from the

quadratic coefficient (φ2) of the local spectral phase by using

q−1
ττ = i

[
2k0c

2

(
− 1

σ2
ω

+ iφ2

)]−1

. (3.2.6)

The GPD in the spectral domain allows for the ultra-wide spectral bandwidth of the

given ultrashort pulse to be represented with a set of GPs with much narrower band-

width which can be propagated using the parabolic wave equation discussed in 2.3.2.

Finally, like in the case of monochromatic GBD, the least square fitting method is used

to compute the peak amplitudes of each GPs so that their total superposition results

in the given spectral amplitude.

The number of GPs required for the decomposition depends on the complexity of the

given spectral amplitude and/or phase profiles and the spectral bandwidth of the given

pulse. If the spectral amplitude and/or phase profile is not very smooth and/or its

spectral bandwidth is very wide, then a large number of GPs are required. In addition

to that, the spectral width of each GP used should be small enough for the validity of

slowly varying approximation and the parabolic wave equation, which is used during

the propagation of individual GPs.

3.2.2 Gaussian pulsed beam decomposition

The Gaussian pulsed beam decomposition (GPBD) method is an extension of the

monochromatic GBD method to handle linear propagation of ultrashort pulsed beams

through general dispersive non-paraxial optical systems. Like the conventional GBD

method, the GPBD method also involves three steps: first decomposition of the given
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ultrashort pulse into a set of GPBs, then propagation of individual GPBs, and fi-

nally superposition of the complex amplitudes to get the propagated pulse-field at any

spatiotemporal target point.

As the decomposition of ultrashort pulses with spatio-temporal coupling is too com-

plicated, here it is assumed that there is no spatio-temporal coupling in the input

ultrashort pulse. Hence, the spatial and the spectral (temporal) components of the

input pulse are initially separable. With this assumption, the spatial and spectral

components of the input pulsed beam are decomposed independently into a set of

Gaussian beams (GBs) and Gaussian pulses (GPs) respectively using the methods dis-

cussed in sections 3.1 and 3.2.1. It is important to note that, the assumption of no

spatio-temporal coupling is required only for the initial pulse field. The spatio-temporal

coupling due to the propagation through optical systems is fully taken into account by

the GPB propagation method.

Once the input spatial and spectral profiles are decomposed into a set of GBs and GPs

respectively, the complete GPB set representing the input ultrashort pulse is obtained

by combining the two sets. For instance, using Nr GBs for the spatial decomposition

and Nω GPs for the spectral decomposition, a total of Nr ×Nω GPBs are used for the

decomposition. The individual GPBs are then propagated through the optical systems

independently using the Lin matrix method discussed in section 2.3.2. The linearity of

the scalar wave diffraction integrals implies that if the initial pulsed beam is properly

represented with a set of GPBs, then the propagated field should also be accurate in

the superposition [67].

The reduced complex field of the propagated GPB given in Eq. (2.3.27) is computed

in the local temporal coordinate which is measured in the co-moving reference frame

which travels together with the pulse peak. Hence, it is very important to determine

the location of the peak of the GPB at any given global flight time. This is usually done

by computing the group delay from the numerical derivative of the optical path length

with respect to the angular frequency near the carrier frequency [9, 68]. However, in

the following subsection the concept of group path length is introduced, which allows

the exact analytical calculation of the group delay for each ray directly during the ray

tracing. For a single GPB propagation, the absolute phase of the outgoing pulsed beam

is not usually required. However, as multiple GPBs are used in the GPBD method,

the total absolute phase and the total group delays of the individual GPBs should
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be correctly computed and traced for the phase correct superposition in the detector

plane.

3.2.3 The concept of group path length

It is well known that the time taken for a monochromatic wavefront to travel a geomet-

rical distance ∆z through a medium with refractive index of n (at the given wavelength)

is given by

tphase =
n∆z

c
, (3.2.7)

where c is the speed of light in vacuum. The product of the geometrical path length and

the refractive index of the medium, also known as the optical path length (∆OPL), is a

very important parameter to determine the phase of monochromatic beams propagating

through optical systems.

For pulsed beams, the time taken for the pulse group maxima is different from that of

the carrier wavelength due to the difference in the group and phase velocities (in other

words the refractive index and the group indices) inside dispersive media. The time

taken for the pulse group to travel a geometric distance of ∆z through a medium with

group index ng is given by

tgroup =
ng∆z

c
. (3.2.8)

Here I define the product of the geometrical path length and the group index of the

medium as a group path length (∆GPL) which is given by

∆GPL = ng∆z. (3.2.9)

Like the optical path length, the group path length can be computed for each GPBs

propagating through real dispersive optical systems during ray tracing of the central

rays by adding the group path lengths of the individual sub-paths in the system.

The analytical formulae for the group indices of glasses can be derived directly from

the derivatives of the dispersion equations of the medium using Eq. (2.1.9) [3, 4].

This allows the exact analytical calculation of the total group delay of each pulsed

ray without using the finite difference approximation. When a ray is refracted or

reflected from an optical interface between two media, just like the optical path length,

the group path length also remains unchanged. However for the diffraction grating,

which is commonly used in the pulse shaping systems, the change in the optical path

length and hence the group path length requires additional correction terms which are
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discussed in the following section.

3.2.4 Modeling of ideal diffraction grating

Diffraction gratings are one of the commonly used components in the ultrashort pulse

shaping optical systems such as pulse stretchers and compressors. Therefore, modeling

the effects of a diffraction grating on an ultrashort pulse is very crucial for modeling of

a complex ultrashort-pulse optical systems. A diffraction grating diffracts an incoming

electric field into several directions with different diffraction efficiencies depending on

the grating period, the diffraction orders used and the wavelength of the field. As the

diffraction efficiency of a real grating depends on the shape and nature of the grating

structure within a single period, its rigorous analysis usually requires computationally

intensive FT based methods [69–71]. In the GPBD method the diffraction efficiencies

of each diffraction order cannot be computed rigorously. Nevertheless, the GPBD

method can be used to model the diffraction and angular dispersion of an idealized

diffraction grating, with a diffraction efficiency of 100% or any other value obtained

from an independent calculation for a given diffraction order.

For a GPB incident on a linear diffraction grating, the direction of the transmitted or

reflected light is determined by performing the real ray tracing of its central ray using

the generalized diffraction grating equation [39,72, 73]. The application of the grating

equation requires that the groove width of the grating should be smaller, at least by a

factor of 5, than the beam footprint diameter but large enough for the mathematical

validity of the grating equation [73]. Although this condition is usually fulfilled for

pulse shaping systems, it has to be checked for all GPBs during the propagation. The

effect of the diffraction grating on the spatio-temporal complex curvature matrix of the

GPB is computed from the Lin matrix of the grating [44].

Unlike other simple interfaces, the absolute phase of light reflected from or transmitted

through a diffraction grating cannot be simply obtained from the usual optical path

length calculation using the grating equation [74]. An additional correction term should

be added to the total phase and group delay of the individual GPBs for an appropriate

mix of geometrical and physical optics [72, 74,75].

Consider a ray pulse from a point A impinging at point P on an ideal diffraction

grating in air with grating period of d and rulings parallel to the x-axis as shown in

Fig. 3.5. The direction of the reflected ray can be computed by using the general-
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ized 3D ray tracing procedure [39, 72]. Taking a point A′ in the reflected ray path

Figure 3.5: Schematic diagram of a ray reflected from
a grating.

for a given diffraction order m,

the total optical path length ac-

cumulated by the wavefront as

it travels from point A to A′ is

given by

∆OPL = AP + PA′ + ∆a
OPL,

(3.2.10)

where AP and PA′ are the ge-

ometrical path lengths, and the

third term

∆a
OPL =

mλy

d
, (3.2.11)

gives the additional effect of the diffraction grating on the incoming wavefront [72,74].

For the detailed discussions and interpretations of this additional optical path length

correction term, the reader is referred to the literature [72, 74–76].

Because of the optical path length correction, it is reasonable to think that one also

needs some correction on the group path length of the ray pulse reflected from the

ideal grating. This group path length correction is computed by taking the spectral

derivative of the additional phase shift due to diffraction grating. The total phase shift

of the ray from A to A′ is given by the sum of the phase shift due to the propagation

distances and an additional linear phase due to the grating which is given by

φa =
2π

λ
(∆a

OPL) =
2πmy

d
. (3.2.12)

The additional phase in Eq. (3.2.12) is independent of the wavelength and hence the

associated additional group path length becomes

∆a
GPL = c

∂φa
∂ω

= 0, (3.2.13)

where c is the speed of light in vacuum.

Therefore, for a ray pulse reflected from or transmitted through a diffraction grat-

ing, the total group delay is the same as that computed from the geometrical path

lengths without any additional correction. In addition to enabling the phase correct
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superposition in the GPBD method, this result can be applied to perform geometrical

dispersion analysis of complicated optical systems with multiple diffraction grating in

a general 3D orientation in space. For a simple well-aligned grating pair compressor,

the independence of the total group delay on the phase correction term has been re-

ported in the literature using geometrical construction followed by a long analytical

derivation [74–76]. For a single GPB reflected from an ideal diffraction grating, the

additional linear phase across its local spatial cross-section is already incorporated in

the new direction of the beam. However, since multiple GPBs are used in the GPBD

method, it is necessary to consider the relative additional phase of individual GPBs

for a phase-correct superposition. Using the method discussed in this section, it is

possible to propagate an ultrashort pulse (with arbitrary spatial and spectral profiles)

through complicated phase shaping systems containing diffraction grating using the

GPBD method.

3.2.5 Spatio-temporal coupling in free space propagation

The spatial and the temporal properties of a GPB get coupled and the pulse front

gets distorted even during free-space propagation. This is due to the fact that in

free space, where the group velocity is the same as the phase velocity, the pulse front

travels together with the phase front which gets curved due to the diffraction of the

field. This results in a curved pulse front with different arrival times of the pulse for

different off-axis points [77–79]. However, in the previous studies dealing with the

matrix method for pulsed beam propagation [35,44,46,47], this off-axis delay is usually

not considered. This can only be justified for short propagation distances (compared

to the Rayleigh length) or for temporally long and slowly diverging pulsed beams.

Figure 3.6: Schematic diagram showing the curved
pulse front due to the spatio-temporal coupling in

free space.

However, in the GPBD method, it is

important to consider the off-axis de-

lay time for the phase correct super-

position of many GPBs. For a ro-

tationally symmetric GPB, the pulse

front for off-axis points is delayed by

∆t which is given by [77]

∆t(y) =
y2

2cR(z)
, (3.2.14)

where y is the transversal coordinate of the off-axis point, c is the speed of light in
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vacuum and R(z) is the radius of curvature of the wavefront for the central frequency.

This is illustrated by schematic plot shown in Fig. 3.6. As a result of this spatio-

temporal coupling, the GPB propagating in free space does not remain Gaussian.

By generalizing this off axis delay to any GPB, which is defined by the complex cur-

vature parameter in Eq. (3.2.17) propagating in dispersive media, the generalized off

axis delay becomes

∆t(r̃0) =
ngz(r̃0)

c
, (3.2.15)

where ng is the group index of the medium and z(r̃0) = 0.5Re
(
r̃0

T Q̃
−1
r̃
)

is the

wavefront sag for the central frequency for spatio-temporal coordinate r̃0 = [x, y, 0]T .

If the temporal width of the GPB is very large compared to the off-axis delay, the

effect of the off-axis delay can be neglected. For instance, for a GPB with temporal

width of 100fs and spatial waist radius of 1mm and wavelength λ = 800nm, the off-

axis delay is below 2% of the pulse temporal width for a propagation distance of 5zR,

with zR = 3.927m is the Rayleigh length at the central wavelength. Therefore, by

decomposing an ultrashort pulse into set of longer pulses in the spectral domain, it is

possible to get the curved pulse front without explicitly considering the off-axis delay

of individual GPBs.

3.2.6 Spatio-temporal and spatio-spectral detectors

The final step in the GPBD method is the computation of the total complex field of

the propagated pulse from the phase correct superposition of the contribution of the

individual GPB after the propagation. To this end I have defined two detectors, the

spatio-temporal and spatio-spectral, which are discussed below.

Spatio-temporal detector

The spatio-temporal detector allows for the computation of the total electric field of

the final pulse at a given spatial location (r, z) and at a given time t. Consider a

GPB propagating along a skew ray direction as shown in Fig. 3.7. The complex

spatio-temporal amplitude of the GPB at a target spatial position P (XP , YP , ZP ) in

the global coordinate system and at a given global flight time t is computed by using

the following procedure:

1. Propagate the GPB to the transversal plane which is perpendicular to the prop-

agation direction and passing through the required point of interest P .

2. Transform the point P (XP , YP , ZP ) from the global (X, Y, Z) to the local (x, y, z)
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Figure 3.7: A simple 2D geometric construction for computation of the complex amplitude
of the GPB on a given target pixel P at a given flight time.

coordinate of the GPB. The x− y coordinates give the transversal location r of

the target point in the local coordinate system.

3. Compute the arrival time of the pulse group to the transversal plane containing

the required point P using t0 =
∆GPL

c
, where the ∆GPL is the total group path

length of the GPB and c is the speed of light in vacuum.

4. Compute the local temporal coordinate t̄0, time in the co-moving reference frame,

for the on-axis point from the given global flight time vector and the group arrival

time by t̄0 = t− t0.

5. Since P is an off-axis point, compute the additional delay time ∆tr using Eq.

(3.2.15) and determine the corresponding corrected local temporal coordinate

t̄r = t̄0 −∆tr for the point of interest P .

6. Finally compute the complex amplitude of the GPB at spatial position P (r, z)

computed at specific time t is given by [44]

E(r, z, t) = Re [U(r, t̄; z) exp{i(ω0t− k0∆OPL)}] , (3.2.16)

where k0 is the propagation constant in free space, ω0 is the central angular

frequency, ∆OPL is the total optical path length and U(r, t̄(r); z) is the reduced
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complex amplitude of GPB defined in the co-moving time frame given by

U(r, t̄; z) = U0 exp

{
−ik0

2

(
rT , ct̄r

)(
Q̃
−1
)( r

ct̄r

)}
, (3.2.17)

where c is the speed of light in vacuum, k0 is the wave number for the central

wavelength in free space, Q̃
−1

is the 3 × 3 spatio-temporal complex curvature

matrix specifying the GPB parameters.

The spatial profile of the propagated pulse whose flight is paused in time can be ob-

tained by directly computing the spatio-temporal profile on a set of spatial points in a

2D plane or 3D space at a given fixed flight time. Similarly, the temporal profile of the

pulse at a given spatial point can be computed by performing steps (1-3) once for the

given point and then performing steps (4-6) for each temporal coordinates. Hence, the

time required for computing the temporal profile of the pulse for N number of time

coordinates at a given point is less than that required for computing the spatial profile

of the pulse for N spatial points at a given time.

Spatio-spectral detector

The spatio-spectral detector computes the complex amplitudes of the final pulse at a

given spatial point (r, z) for different spectral component ω. In the spatio-temporal do-

main it is usually difficult to analyze the phase coupling due to the fast oscillation phase

profiles of the complex field computed. In such cases, it is advantageous to analyze

the pulse in the spatio-spectral domain instead. This is because, the phase coupling in

the spatio-temporal domain manifests as the intensity coupling in the spatio-spectral

domain which can easily be analyzed from the intensity profile [35]. For instance, the

spatial chirp is manifested as the wavefront rotation in the spatio-temporal domain but

in the spatio-spectral domain it is directly observed from the tilted pulse front [80].

In principle, the spatio-spectral profiles of a pulse can be computed from the spatio-

temporal profiles by performing the temporal FT numerically. However, for ultrashort

pulses with large dispersion and large spatio-spectral distortion, the number of temporal

sampling points required to correctly sample the fast oscillating temporal phase for the

FT becomes too large and hence computationally intensive. In the GPBD method,

the total spatio-spectral profile of the pulse is obtained by computing and superposing

the spatio-spectral amplitudes of individual GPB after the propagation. The spatio-

spectral profiles E(r, ω; z) of each GPB can be computed analytically by performing
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the FT of its spatio-temporal amplitude E (r, t; z) as [35]

E(r, ω; z) =
1

2π

∫
E(r, t; z) exp (−iωt)dt. (3.2.18)

Now inserting Eq. (3.2.16) into Eq.( 3.2.18), the spatio-spectral profiles becomes

E(r, ω; z) =
1

2π

∫
U(r, t̄; z)ei(ω0t−nk0z)e(−iωt)dt, (3.2.19)

where r = [x, y], t0 is the arrival time of the reference pulse at a given plane and ω0 is

the central angular frequency. Now replacing t = t̄ + t0, ω = ω̄ + ω0 and then taking

the constant terms out of the integral, Eq. (??) becomes

E(r, ω; z) = e−i(ω̄t0+nk0z)U(r, ω̄; z) (3.2.20)

where U(r, ω̄; z) is the FT of the reduced complex amplitude of GPB which is given

by

U(r, ω̄; z) =
1

2π

∫
U(r, t̄; z)e−iω̄t̄dt̄, (3.2.21)

with t̄ (the time in the co-moving frame) and ω̄ (the relative angular frequency) being

the Fourier conjugate variables. Inserting Eqs. (3.2.16) and (3.2.17) into Eq.(3.2.21)

and performing long but straight forward integration, the spatio-spectral profiles finally

becomes

E(r, ω; z) =
exp{−i(ω̄t0 + k0∆OPL)}

c
√
i2πk0Q̃−1

ττ

exp

[
−ik0

2

(
rT , ω̄

)
G̃
−1

(
r

ω̄

)]
, (3.2.22)

where G̃
−1

is the complex curvature matrix in the spatio-spectral domain which is

given by

G̃
−1

=

(
G−1
rr G−1

rω

G−1
ωr G−1

ωω

)
, G−1

rr = Q−1
rr −

(
Q−1
rτ +Q−1T

τr

) (
Q−1T
rτ +Q−1

τr

)
4Q−1

ττ

,

G−1
ωω =− 1

k2
0c

2Q−1
ττ

, G−1
rω = − Q−1

rτ

k0cQ−1
ττ

, G−1
ωr = − Q−1

τr

k0cQ−1
ττ

,

(3.2.23)

with Q−1
rr ,Q−1

rτ ,Q−1
τr and Q−1

ττ being the elements of the spatio-temporal complex cur-

vature matrix Q̃
−1

. The results in Eq. (3.2.22) and (3.2.23) are applicable to general

case of rotationally non-symmetric GPBs. For the case of rotationally symmetric GPB,
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the above equations simplify to those reported in Eq. (12-13) of [35] except for the

on-axis complex amplitude factor.

3.3 Propagation of field after hard aperture

As mentioned in section 2.3.3, one of the main limitations of the conventional GBD

method is that it is not able to accurately model the sharp edge diffraction field after

a hard aperture. In this section a novel approach that enables the GBD method to

accurately model propagation of field after hard aperture is described. First a new kind

of paraxial beam, called the truncated GB, is defined and its propagation equation is

derived. Then a method of using the truncated GB in the GBD method to propagate

fields after a hard aperture is proposed. Finally the approach is extended for modeling

the sharp edge diffraction of an ultrashort pulse truncated by hard aperture.

3.3.1 Truncated Gaussian beams

A truncated GB is defined as a monochromatic beam that is obtained by blocking a

part of the fundamental GB with a semi-infinite hard aperture bounded by a straight

sharp edge as shown in Fig. 3.8. Mathematically, the reduced complex Gaussian

Figure 3.8: Schematic sketch
showing the spatial profile of a
truncated GB with truncation

parameter cx.

amplitude (without the fast oscillating central

phase factor) of the truncated GB shown in Fig.

3.8a is given by

Ut(r) = Uf (r)θx(r, cx), (3.3.1)

where Uf (r) is the reduced complex amplitude of

the full GPB given in Eq. (3.3.1) and θx(r, cx) is

the shifted Heaviside step function given by

θx(r, cx) = θx(x, y; cx) =

1 x ≥ cx

0 x < cx

, (3.3.2)

with cx being the truncation parameter.

For the truncation parameter cx = 0, the truncated GB becomes a half GB as shown

in Fig. 3.9. The truncated GB has a sharp edge on one side and smooth Gaussian

distribution on the other side of its spatial profile. This makes it very suitable for
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Figure 3.9: The amplitude profile of a symmetrical half GB
shown in a) one and b) two-dimensional space.

representing fields with sharp

edges after hard apertures.

However, the propagation

equation used for the GB

cannot be directly used for

the truncated GBs. There-

fore, I have derived the ana-

lytical propagation equation

for the truncated GB from the general Collins integral as discussed below.

Propagation of truncated Gaussian beams

The propagation of any beam through a general non-rotationally symmetrical paraxial

optical system is given by the Collins integral [81]. By using the truncated GB given

in Eq. 3.3.1 as the initial field in the Collins integral, I have derived the analytical

equation for its propagation through a non-rotationally symmetrical paraxial optical

system. The complete derivation is given in Appendix D.1. The final reduced complex

amplitude of the truncated GB after the propagation is given by

ψ2,t(r2) =
1

2
erfc

(
bx + axcx√

ax

)
ψ2(r2), (3.3.3)

where ψ2(r2) is the reduced field of the full GB after propagation, erfc(.) is the compli-

mentary error function, cx is the truncation parameter, and the other parameters are

given by

ax = −(gxx − h2gyy), bx = −1
2
(gx − hgy), h = gxy

2gyy

gxx = − ik
2
P xx, gyy = − ik

2
P yy, gxy = − ik

2
(P xy + P yx),

P = Q−1
1 +B−1A, gx = ik(B−1

xxx2 +B−1
xy y2), gy = ik(B−1

yx x2 +B−1
yy y2),

(3.3.4)

where A,B,C and D are the 2× 2 sub-matrix elements of the system ABCD matrix.

From Eq. (3.3.3) it can be seen that the diffraction of a truncated GB is obtained

by multiplying the full GB after propagation by a complementary error function with

complex parameters. Therefore, an accurate computation of the complementary error

function is crucial in determining the sharp edge diffraction of the truncated GB. As the

built in complementary error function in Matlab does not support the complex number

arguments, an open source Faddeeva package written by Steven G. Johnson [82] has

been used for computing the erfc(.).
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In the literature, the error functions have been used for the free space diffraction of

GBs truncated by circular apertures [83,84]. However, the truncated GBs propagation

equations derived in this work considers a semi-infinite hard aperture and can be used

for propagation through any paraxial optical systems. In addition to that, the trun-

cated GBs can be combined with the GBD method to enable calculating the diffraction

of a given arbitrary monochromatic field from any arbitrarily shaped hard aperture as

discussed in the following section.

3.3.2 Decomposition of a field after hard aperture

When a given field passes through a hard aperture, the outgoing field will have a sharp

edge which is difficult to decompose with the conventional GBD method. To tackle this

problem, the sharp edge part of the field is first extracted by using a set of truncated

GBs that are placed near the aperture edge and oriented in such a way that their

sharp edge side aligns with the sharp edge of the outgoing field. This extracted field

with a sharp edge is referred to as the outer subfield in the following section. Usually

truncated GBs with truncation parameter of cx = 0, also called the half GBs, are used.

By subtracting the outer subfield from the given field after the aperture, an inner

subfield that has smooth edges is obtained which can be readily decomposed using the

conventional GBD method. By propagating the full and truncated GBs through an

optical system, the sharp edge diffraction of the field after a hard aperture is computed.

Figure 3.10: a) Extraction of the sharp edges from
rectangular amplitude profile in 1D using half GBs. b)
The GBD result of the rectangular amplitude without
sharp edge extraction. The residual amplitude error
for GBD of c) the smooth central amplitude after

sharp edge extraction, and d) the rectangular
amplitude without sharp edge extraction.

To demonstrate the sharp edge

extraction, let us consider a rect-

angular amplitude profile in one

dimension as shown in Fig. 3.10.

To represent the sharp edges,

two half GBs are placed one

at each end of the aperture as

shown in Fig. 3.10a. The peak

amplitudes of the half GBs are

set to the amplitude values of the

input field at the edge. By sub-

tracting the two truncated GBs

from the rectangular amplitude

profile, the central part with a

smooth profile is obtained.
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The remaining central field has smooth edges which makes it more comfortable for

the application of the conventional GBD. In Fig. 3.10c, the residual amplitude error

after performing the GBD of the central smooth amplitude using 30 GBs is plotted.

It can be seen that the residual error is in the order of 10−3. However, decomposing

the rectangular amplitude directly without extracting the sharp edge using the same

number of GBs, a large residual error is observed near the sharp edge as shown in Fig.

3.10(b and d).

Figure 3.11: a) A single half GB
with shifted and rotated local axis.
The footprint diagrams of a set of

(b)10 non-astigmatic (c) 25
non-astigmatic and (d) 25

astigmatic half GBs used to
represent a circular aperture.

In the two dimensional case, the sharp edge part

of the field is extracted by using a set of shifted,

rotated, and partially overlapping half GBs which

are placed around the aperture edge as shown in

Fig. 3.11. The truncated GBs are distributed uni-

formly around the aperture edge and are oriented

in such a way that, their sharp edges coincide with

a line tangent to the local aperture curve at that

point. For apertures with curved edges, such as

circular apertures, the straight edges of the half

GB do not fit very well with the curved aper-

tures for a small number of half GBs as shown

in Fig. 3.11b. Therefore, a relatively large num-

ber of truncated GBs with a smaller waist radius

are required to improve the accuracy of the curved

aperture edge representation. However, reducing the waist radius of the half GB used

increases the slope near the edge of the remaining central subfield after the sharp edge

extraction. This makes it difficult to apply the GBD for the central subfield. Therefore,

in such cases, it is advantageous to use astigmatic truncated GBs, which have smaller

waist radius along the axis aligned with the sharp edge and larger waist radius in the

other axis as shown in 3.11d.

The amplitude coefficients of the truncated GBs are computed, in the general case, by

the least square fitting method using the given amplitude on the aperture edge as the

target [53,55]. The coherent superposition of all truncated GBs gives the outer subfield

with a sharp edge. The outer subfield with the sharp edge is then subtracted from the

total field to get the inner sub-field which has smooth edges. The conventional GBD

is then applied to the smooth inner subfield.
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3.3.3 Spatially truncated Gaussian pulsed beams

In this section, the application of the truncated GBs from the sharp edge diffraction of

the monochromatic field is extended to the spatio-temporal propagation of ultrashort

pulse after hard apertures. Like in the monochromatic field case, a spatially truncated

GPB is first defined as a pulsed beam which is obtained by truncating a GPB by a

semi-infinite hard aperture as shown in Fig. 3.8. Mathematically, the reduced complex

amplitude (without the fast oscillating central phase factor) of the spatially truncated

GPB is given by

Ut(r̃) = Uf (r̃)θx(r̃, cx), (3.3.5)

where r̃ is the spatio-temporal coordinate, Uf (r̃) is the reduced complex amplitude of

the full GPB given in Eq. 3.3.5, cx is the truncation parameter and θx(r̃, cx) is the

shifted Heaviside step function given in Eq. (3.3.2).

The spatially truncated GPB has a sharp edge along the x-axis but has smooth Gaus-

sian distributions along the y-axis and the temporal coordinate. This makes it very

suitable for representing ultrashort pulse fields with sharp edges after hard apertures.

The spatial profile of the input pulse is decomposed by following a method similar to

that discussed in section 3.3.2 for the monochromatic case. However, due to the addi-

tional temporal coordinate, the propagation equations derived for the monochromatic

truncated GB cannot be used directly for the spatially truncated GPBs. The analyti-

cal equation for the propagation of spatially truncated GPB are derived by using the

reduced complex field given in Eq. (3.3.5) as an input field to the generalized Huygens

diffraction integral given in Eq. (2.3.19). As the spatial profile of the truncated GPB

is truncated along x-axis, the x-component is treated differently from the y and τ com-

ponents in the Huygens diffraction integral. Hence, the 3×1 vector r̃ is separated into

its x and y − τ components as

r̃ = [x, y, τ ]T = [x,w]T , (3.3.6)

where w = [y, τ ]. Similarly, the 3× 3 spatio-temporal complex curvature matrix Q̃
−1

is separated into x and w components as

Q̃
−1

=

(
Q̃
−1

xx Q̃xw
−1

Q̃wx
−1

Q̃ww
−1

)
, (3.3.7)
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where Q̃xw
−1

= [Q̃
−1

xy , Q̃
−1

xτ ], Q̃wx
−1

= [Q̃
−1

yx , Q̃
−1

τx ]T and Q̃ww
−1

=

(
Q̃
−1

yy Q̃
−1

yτ

Q̃
−1

τy Q̃
−1

ττ

)
. All

3× 3 spatio-temporal system matrix elements (Ã,B̃,C̃ and D̃) are also separated into

x and w components using expressions similar to Eq. (3.3.7). Solving the resulting

modified integral by following the long mathematical derivation given in Appendix D.2,

the complex amplitude of the propagated field is finally given by

U2,t(r̃2) =
1

2
erfc

(
bx + axcx√

ax

)
U2,f (r̃2), (3.3.8)

where U2,f (r̃2) is the complex field of the full (non-truncated) GPB after propagation,

erfc(.) is the complimentary error function, cx is the truncation parameter and ax and

bx are the complex scalar numbers given by

ax = −
(
gxx − hTgwwh

)
, bx = −1

2

(
gx − gTwh

)
, (3.3.9)

with

gxx = −ik0

2
P̃ xx, gww = −ik0

2
P̃ww, P̃ = Q̃

1

1 + B̃
−1
Ã,

h = −gxw
(
gww + gTww

)−1
, gxw = −ik0

2
(P̃ xw + P̃wx),

gx = ik0

(
B̃
−1

xxx2 + B̃
−1

xww2

)
, gw = ik0

(
B̃
−1

wxx2 + B̃
−1

www2

)
,

(3.3.10)

where Ã, B̃, C̃ and D̃ are the 3 × 3 sub-matrix elements of the spatio-temporal Lin

matrix.

As can be seen from Eq. (3.3.8), the diffraction of a spatially truncated GPB is obtained

by multiplying the full GPB after propagation with the complementary error function

with complex parameters. This is analogous with the propagation of the truncated

monochromatic GB given in section 3.3.1. Using Eq. (3.3.8 - 3.3.10), spatially trun-

cated GPB can be propagated through a non-rotationally symmetric and dispersive

optical system in paraxial approximation.

Spatio-temporal coupling in spatially truncated Gaussian pulsed beams

As discussed in section 3.2.5, for ultrashort pulses the spatiotemporal coupling occurs

during the propagation through even the simplest optical system, a non-dispersive free

space. For full GPBs, the spatio-temporal coupling is taken into account by comput-

ing the group delay correction for the off-axis points from the smooth wavefront of
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the carrier frequency. However, for spatially truncated GPBs it is not easy to com-

pute the smooth wavefront (unwrapped phase) after propagation. Therefore, spectral

decomposition is performed to represent the spatially truncated GPB with a set of

temporally longer elementary pulsed beams for which the effects of the off-axis delay

can be neglected compared to the temporal width of the elementary GP. The first order

spatio-temporal coupling during propagation through optical systems is already taken

into account by the propagation equation given above for each spatially truncated

GPB.

3.4 Extension to vectorial field propagation

The GPBD is an end-to-end wave optical method for propagating ultrashort pulses

through real, dispersive, and non-paraxial optical systems in scalar approximation.

However, for optical systems significantly affecting the polarization state of the input

field such as high numerical aperture focusing systems and system containing polariza-

tion filters, the scalar treatment is not sufficient to correctly describe the propagation

of the electromagnetic fields. To model the vectorial effects, the GBD method has

to be extended to include the polarization state of light. In this section I propose a

method to accomplish this by combining the GBD with the three-dimensional polar-

ization ray-tracing method [59]. This combined method is referred to as the polarized

GBD method in the following discussions. Although the discussion here is given for

the GBD method, there is no reason which limits its application to the GPBD method

as well.

In the polarized GBD method, the vectorial input field is decomposed into a set of

polarized GBs each with polarization states corresponding to the local polarization of

the input field at the GPB center. The polarization of an input field is usually given

as Jones vector in the input transversal plane. But, as the GBD is done using a set

of GBs which are placed directly on the curved wavefront surface, the polarization

states of each GB is determined from the input Jones vectors by using the ray bending

argument as follows [85]:


Vx

Vy

Vz

 =
1√
Sz


S2
xSz+S2

y

S2
x+S2

y

−SxSy(1−Sz)

S2
x+S2

y

−SxSy(1−Sz)

S2
x+S2

y

S2
ySz+S2

x

S2
x+S2

y

−Sx −Sy


(
Jx

Jy

)
, (3.4.1)
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where Jx and Jy are the components of the Jones vector of the input field on the

transversal plane, (Sx, Sy, Sz) is the unit vector in the direction of the GB. To account

for the conservation of power during the ray bending, the amplitude of each component

is multiplied with factor of 1√
Sz

[86]. This enables the decomposition of general vectorial

field with spatially varying polarization states provided that the polarization state

change smoothly so that interpolation is valid in the points in between the GB centers.

During the propagation, the total three dimensional polarization matrix of the central

ray is traced, using the method discussed in section 2.4.1, in addition to the paraxial

spatio-temporal Lin matrix, the total optical and group path length for each GPBs. In

the final analysis point, the reduced vectorial field contributions of each GPB is given

by 
U2,x(r̃2)

U2,y(r̃2)

U2,z(r̃2)

 = U2(r̃2)


V2,x(r̃2)

V2,y(r̃2)

V2,z(r̃2)

 , (3.4.2)

where U2(r̃2) is the complex amplitude of scalar field computed using Eq. (2.3.27),

V2,x, V2,y and V2,z are the components of the final polarization vector computed us-

ing Eq. (2.4.5). The total vectorial field of the propagated ultrashort field in the

target analysis point is computed by phase correct superposition of each polarization

components separately.



4. Validations and Application Examples

In this chapter several example calculations are presented for validating the methods

proposed in chapter 3 and show their application in modeling the wave optical propa-

gation of both monochromatic and pulsed beams through optical systems.

4.1 Monochromatic beam propagation

In this subsection the analytical propagation equation of the truncated GB is first

validated and then examples are presented to show its application in modeling the

sharp edge diffraction of the field after hard apertures both in Fresnel and the far-

field region. Following that examples are given to demonstrate the application of the

modified GBD method in the propagation of fields with strongly curved wavefronts.

Finally, the polarized GBD method is validated by calculating the vectorial field in

the focal plane of an ideal high numerical aperture focusing system. Most of the

results presented in this subsection have already been published in the peer-reviewed

journals [53,62,65].

4.1.1 Propagation of single truncated Gaussian beam

Considered the propagation of two truncated GBs shown in Fig. 4.1(a and b), which are

formed by splitting a single GB with plane wavefront, waist width of wx = wy = 5mm

and wavelength of λ = 0.5µm at line x = 4mm. The truncated GBs are propagated in

free space using the analytical propagation formula presented in section 3.3.1. Figure

4.1 shows the final amplitude profiles of the truncated GBs after propagating in free

space by a distance of z = 0.1ZR, where ZR = 157.08mm is the Rayleigh length of the

GB.

The amplitude profiles of the propagated subfields shown in Fig. 4.1(c and d) have

the typical oscillations coming from the sharp edge diffraction. Especially, from Fig.

4.1c, it can be seen that the maximum value of the amplitude is shifted from the

edge of the geometrical shadow towards the illuminated region. This is the typical

diffraction pattern of Fresnel diffraction at a semi-infinite plane bounded by straight

sharp edge [1]. To verify the propagation results, the results in Fig. 4.1d have been

compared with that obtained by propagating the truncated GBs using the spectrum

of plane wave (SPW) method using 1024× 1024 sampling points as shown in Fig. 4.2.

57
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Figure 4.1: (a-b) A single GB divided into two asymmetrical half GBs with sharp edges.
(c-d) The amplitude profiles after the propagation of the half GBs shown in a and b

respectively by a distance of z = 0.1ZR.

Figure 4.2: a) The cross-sectional amplitude of the propagated field in Fig. 4.1d together
with that computed using the SPW method, b) The difference in the final amplitude

propagated using the two methods.

As can be seen from Fig. 4.2, the root mean square value of the difference in the

final amplitude using the analytical truncated GB propagation and the SPW method

is below 0.5%.

To see the effect of increasing the propagation distance, I have performed the propaga-

tion to different distances in the range of 0.1ZR to 3ZR. As the propagation distance

increases, the amplitude profiles of the truncated GB become wider with reduced peak

value and reduced oscillations due to sharp edge diffraction as shown in Fig. 4.3. As
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Figure 4.3: The x-cross-sectional plots of the amplitude profiles of the subfields shown in
Fig. 4.1 (a and b) respectively for different propagation distances.

the two truncated GBs are initially part of a single GB, the coherent superposition

of the two truncated GBs after the propagation also gives back the smooth GB. To

demonstrate this, the x-cross-sectional plots of the resulting GB after propagation dis-

tances of z = 0.5ZR and z = 3ZR have been plotted in Fig. 4.4. I have also shown

the amplitude profiles obtained by the direct analytical propagation of the full GB to

further verify the results. The RMS value of the residual error computed for both cases

Figure 4.4: The comparison of the x-cross-section of the amplitude profile of the final
propagated GB obtained as a coherent superposition of the two asymmetrical half GBs

after propagation with the analytical result for propagation distances of a) z = 0.5ZR and
b) z = 3ZR.

in Fig. 4.4 is in the order of 10−16 which is nothing but numerical error. This shows

that the analytical propagation formula of the truncated GB derived in this work is

both accurate and self-consistent. As discussed in section 3.3.2, the truncated GBs

can be used to extend the application of the conventional GBD method to modeling

sharp edge diffraction of a general non-Gaussian input field after hard aperture. This

is demonstrated in the following example.

4.1.2 Fresnel diffraction of the field after a hard aperture

In this example, I apply the modified GBD method to model the propagation of a plane

wave with λ = 0.5µm truncated by a hard aperture which is composed of a semi-circle
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with a radius of a = 5mm and a half square with side length of 2a = 16mm as shown

in Fig. 4.5a. The outer sharp edge is first extracted using 70 partially overlapping

Figure 4.5: Sharp edge extraction using truncated GBs
in 2D. a) The input uniform amplitude after the hard
aperture, b) the footprint of the truncated GBs, c) the

extracted sharp edge amplitude profile, and d) the
remaining central amplitude profile with smooth edges.
The red line plots over the amplitude profiles show the

x-cross-sectional view.

half GBs distributed uniformly

around the hard aperture edge

as shown in Fig. 4.5b. In addi-

tion to the half GBs, two quar-

ter GBs (see Appendix D.1) in-

dicated in Fig. 4.5b with blue

color have also been used for bet-

ter accuracy at the two right-

angled sharp corners. The use

of quarter GB makes sense only

if the aperture has a right an-

gle edge as shown in this section.

The superposition of the trun-

cated GBs gives the sharp edge

part of the given amplitude pro-

file after the aperture as shown in

Fig. 4.5c. Subtracting the outer

subfield from the given amplitude after aperture, the inner subfield which is shown

in Fig. 4.5d has been obtained. The inner subfield, which has smooth edges, is then

decomposed into 25× 25 GBs using the conventional GBD method.

Once the field after hard aperture is divided into the two subfields shown in Fig. 4.5

(c and d), they are propagated independently through the system and coherently su-

perposed in the final plane. I have calculated the diffraction pattern on the target

plane which is located at a distance of z = 10m from the hard aperture. The result-

ing Fresnel number of the diffraction setup is given by NF = a2/(λz) = 12.8. This

indicates that the amplitude profile of the propagated field will have a small number

of oscillations which in turn makes the graphical comparison of the results easier. On

the target plane, the final propagated amplitudes profiles shown in Fig. 4.6 have been

obtained for the two subfields. From the results shown in Fig. 4.6, it can be seen that

after the propagation the sharp edge part has an oscillating amplitude due to the sharp

edge diffraction, whereas the central smooth part is not significantly changed during

the propagation. The total propagated field shown in Fig. 4.7a is obtained by the
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Figure 4.6: The amplitude profiles of the a) outer sharp edge subfield b) the inner smooth
subfield after propagating a distance of z = 10m in free space.

coherent superposition of the two subfields. From Fig. 4.7a it can be seen that, the

Figure 4.7: The amplitude profiles of the final propagated field using a) the modified GBD
method b) the angular spectrum method. c) The y-cross-sectional view of the final

propagated amplitude profiles.

amplitude profile of the propagated field is not symmetrical along the y-cross-section

due to the fact that the aperture is not rotationally symmetric. In order to validate

the results, I have performed the free space propagation of the same input field by the

same distance using the angular spectrum method using 1024× 1024 sampling points.

The resulting amplitude profile on the final plane is shown in Fig. 4.7b respectively.

From the comparison of the y-cross-sectional amplitude shown in Fig. 4.7c, it can be

seen that the result computed using the proposed method agrees with that obtained

from the angular spectrum method. The root mean square of the residual amplitude
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error is about 1.2%. The reasons for the observed slight disagreement are twofold:

firstly, the angular spectrum method requires an extremely large number of sampling

points to accurately model the diffraction from such sharp edges, which are handled by

the analytical formula in the GBD method. Secondly, there is always a residual error

during the GBD of the central subfield.

The application of the modified GBD method is not limited to the propagation of the

field with initial plane wavefronts. In the following example its application for initial

fields with curved wavefronts is demonstrated.

4.1.3 Converging spherical wavefront after circular aperture

In this example, I calculate the ideal point spread function by propagating a converging

spherical wavefront after circular aperture to the focal plane using the modified GBD

method. For the calculation, a converging wavefront with a radius of curvature R =

30mm, wavelength λ = 0.5µm, and uniform amplitude truncated by a circular aperture

with a semidiameter a = 18mm has been considered.

As discussed in chapter 3, a set of GBs with non-zero initial curvatures together with

truncated GBs are used for the decomposition of a given field with a curved wavefront

after a hard aperture. To investigate the effect of the number of GBs and the overlap

factor used on the residual errors of the GBD, I have decomposed the input field

discussed in this subsection using a different number of GBs and different overlap

factors. The RMS value of the resulting residual amplitude error and the residual

phase are shown in Fig. 4.8. In all cases, the GBs used were allowed to have a non-

zero initial curvature. It can be seen that, as the number of GBs used increase the

Figure 4.8: The dependance of a) the residual amplitude error and b) the residual phase on
the number of GBs and the beam overalp factor used for the decomposition.

residual errors decrease in both amplitude and phase. However, for the overlap factor,

the minimum amplitude error is obtained by using a value between 1.5 and 2. Whereas,
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the residual phase error increases with the overlap factor. This is because as the overlap

factor increases for a given number of GBs, the width of individual GB becomes large

and hence the accuracy of the local quadratic approximation reduces. For the following

analysis, we have used a grid of 45× 45 GBs and an overlap factor of 1.6.

To demonstrate the advantage of the decomposition method proposed in chapter 3, I

have also performed the GBD of the given field using three differnet approaches. In

the first and second approachs, a set of 45 × 45 GBs with zero and non-zero initial

curvatures, respectively, are used with out emplying the truncated GBs for the sharp

edge modeling. In the third approach, a set of 45 × 45 GBs with non-zero initial

curvatures and 70 truncated GBs are used to decompose the field with sharp edge

after the aperture. In all cases the initial GBs are distributed directly on the wavefront

surface and with directions computed from the local wavefront surface normal. The

results of the three different decomposition approaches are shown in Fig. 4.9.

As it can be seen from Fig. 4.9 (a-c), the decomposition without using initial curvature

of the GBs gives very lausy result and the decomposition has residual large error. This

is because GBs with zero curvature cannot accurately represent the curved wavefront

of the given field. Although, the decomposition accuracy is improved by using GBs

with non-zero initial curvatures, as shown in Fig. 4.9 (d-f), there still exists significant

residual error near the sharp edge of the amplitude profile. By additionally using a set

of truncated GBs for handling the field near the sharp edge, the decomposition accuracy

has been significantly improved with the rms value of about 1.48% and 0.015λ for the

amplitude error and the residual phase, respectively, as shown in Fig. 4.9 (g-i).

After the initial decomposition, the complex amplitude of the focal field is obtained

by propagating the GBs individually and performing the coherent superposition at the

focal plane. The point spread function is then computed as the square of the complex

field amplitude. Since the Fresnel number is very large (NF = a2/(λz) = 5400 � 1),

the focal shift is negligible and the real focus of the converging field occurs on the

geometrical focal plane [87]. Hence, the ideal point spread function computed using

the analytical Airy pattern formula can be used for comparison of the results. In Fig.

4.10, I have plotted the cross-sectional view of the point spread function computed

using the analytical Airy pattern formula, the FT based scalar far-field propagator

(with a sampling grid size of [2048 × 2048]), the conventional GBD method (the first

approach in Fig. 4.9) and the modified GBD method using the truncated GBs (the
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Figure 4.9: The recomposed amplitudes and the corresponding residual amplitude and
phase errors after the decomposition of spherical wavefront with radius of curvature
R = 30mm after circular aperture with a semidiameter a = 18mm using three

decomposition approaches. The results shown in (a)-(c) are obtained by using a set of GBs
with zero initial curvatures; those shown in (d)-(f) are obtained by using a set of GBs with
non-zero initial curvatures; and for the results shown in (g)-(i), truncated GBs are used to

handle the sharp edge of the field after the hard aperture.

third approach in Fig. 4.9). From Fig. 4.10 it can be seen that the results using all

the methods agree in the first few rings. However, they start to deviate as one goes

further from the center peak. Since the conventional GBD method cannot accurately

model the sharp edge of the field after the hard aperture, its result departs largely

and quickly from the analytical solution. The intensity of the focal field obtained from

the FT based scalar far-field propagator also gradually departs from the analytical

reference result. This is due to the fact that with finite sampling grid size limits the

maximum spatial frequency propagated from the sharp edge diffraction. However, the

result obtained using the modified GBD method strongly agrees with the analytical

result for more than 100 rings as shown in Fig. 4.10 with the residual RMS error of

1.2× 10−4. The main reason for such high accuracy is that the sharp edge diffractions

are accurately handled with the analytical propagation formulas of the truncated GBs
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Figure 4.10: Point spread function comparison for a perfect lens with a circular clipping
aperture (Airy pattern)

presented in this work.

For focusing setup with a very low Fresnel number, the diffraction of the outgoing

converging spherical waves from circular aperture results in the significant shift of the

point of maximum intensity from the geometrical focus [87, 88]. The modified GBD

method can be directly applied to calculate the diffraction of the spherical wave in

focusing setups with very low Fresnel number as long as the scalar diffraction approx-

imation holds. To observe the focal shift phenomena, I have computed the on-axis

amplitude for a converging spherical wave with a wavelength of 0.5µm after a circular

aperture of 0.1mm for different Fresnel numbers, achieved by changing the radius of

curvature R (hence the numerical aperture). For a focusing setup with Fresnel number

NF = 1, obtained by using R = f = 20mm, the focal shift ∆f becomes as large as 40%

of the focal length f as it can be seen from Fig. 4.11a which shows the on-axis intensity

profile near the focal plane. As the Fresnel number of the focusing setup increases, the

resulting relative focal shift reduces as shown in Fig. 4.11b. The results obtained using

the modified GBD method are similar to those reported in the literature previously

using other classical diffraction calculation methods [87–89].

4.1.4 Propagation of field with non-spherical wavefronts

One of the main application area of the modified GBD method is in the propagation of

electric field with strongly curved and non-spherical wavefronts. In the conventional FT

based methods, the propagation of such kind of fields is computationally intensive due
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Figure 4.11: a) The on-axis intensity of converging spherical wave with Fresnel number of
NF = 1. b) The relative focal shift of a converging spherical wave using focusing setups

with different small Fresnel numbers.

to the huge number of sample points required for sampling the fast oscillating spatial

phase in the initial plane. In this section, the power of the modified GBD method is

demonstrated by propagating converging wavefront with large spherical aberration and

a cone shaped wavefront which is usually obtained after axicon components.

Field with large spherical aberrations

Consider the propagation of a field with a non-spherical wavefront which is given by

φ(x, y) =
(1/R)(x2 + y2)

1 +
√

1− (1/R)2(x2 + y2)
+ c9

(
1− 6(x2

n + y2
n) + 6(x2

n + y2
n)2
)
, (4.1.1)

where R is the radius of curvature of the spherical part, c9 is the coefficient of the 9th

term of the Zernike fringe polynomial (primary spherical aberration with defocus) and

(xn, yn) = (x/rn, y/rn) are the normalized (x, y) coordinates with the normalization

radius rn. For the wavefront parameter, the radius of curvature R = 40mm and

Zernike fringe coefficient of c9 = 100λ with normalization radius rn = 10mm have

been used. The amplitude profile of the field is defined by a super Gaussian profile

with diameter of 9mm and super Gaussian order of 50 for smooth edges. The given

Figure 4.12: a) The amplitude profile on the wavefront surface, and b) the wavefront profile
of the input field. The cross sectional plots along the black dotted lines are shown using the

red line with the values indicated in the right axis. c) The amplitude error and, d) the
residual phase error after the GBD.
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amplitude and wavefront profiles are shown in Fig. 4.12 (a and b). The given input

field has been decomposed into a set of a uniformly distributed 50× 50 GBs using the

method discussed in section 3.1. The residual errors after the decomposition are shown

in Fig. 4.12 (c and d). As it can be seen from Fig. 4.12(b and c), the root mean square

values of the residual amplitude and phase error after the decomposition are 1.51%

and 0.045λ respectively. The residual errors are concentrated around the steep edge of

the given amplitude profile.

By propagating the decomposed field in free space, the field in the focal region is

obtained whose cross-sectional intensity distribution is shown in Fig. 4.13. From the

Figure 4.13: (a) The YZ-cross section of the intensity profile computed in the focal region of
the converging wavefront with spherical aberration c9 = 100λ, (b) the geometric rays traced

from the wavefront to the focal region.

result in Fig.4.13(a) it can be seen that the width of the central lobe increases as one

goes from the left side, marginal focus, to the right, paraxial focus, along the z-axis.

This is due to the fact that the deflection angle of the rays decreases, hence decreasing

the numerical aperture, as one goes from the marginal to the paraxial focal point.
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Field with cone shaped wavefront

As a second example to demonstrate the application of the modified GBD method,

the propagation of a cone shaped wavefront, which are usually created by axicon, is

considered. The cone-shaped wavefront results in a line focus (Bessel beam) in the

focal region where the rays intersect with each other. Consider an input field with a

Figure 4.14: The same as Fig. 4.12 but now for the case of the input field with a cone
shaped wavefront.

cone-shaped wavefront with a half cone angle of 60 deg and a uniform amplitude profile

defined in a circular ring with an inner and outer radius of 2mm and 5mm, respectively

with smooth super-Gaussian edge (with order of 50) as shown in Fig. 4.14 (a and b).

The ring-shaped amplitude profile makes sure that there is finite working distance from

the wavefront and the region where the rays start to cross forming the line focus, which

is often desired in practical applications. The ring-shaped input amplitude is also an

advantage for the GBD method as it avoids the decomposition of the wavefront near

the apex of the cone where the curvature is extremely large which requires a large

number of GBs for the correct decomposition.

The given ring shaped field has been decomposed into a set of about 65 × 65 beams

inside circular aperture of radius 5mm distributed in a Hexapolar pattern using the

method discussed in section 3.1. The residual errors of the amplitude profile computed

on the wavefront surface after the decomposition are shown in Fig. 4.14 (c and d). As

it can be seen from Fig. 4.14 (c and d), the root mean square value of the amplitude

error after the decomposition is around 5.4% and that of the residual phase is about

0.0067λ with largest contributions coming from the inner edges.

Finally by performing the free space propagation of the decomposed field, a line focus

field is obtained whose YZ-cross sectional intensity profile is shown in Fig. 4.15. From

Fig. 4.15 (a and b) it can be seen that the line focus beam created extends from about

z = 4.3mm to z = 11.8mm along the axis. The peak intensity on the axial intensity

profile is on the right end due to the uniform illumination of the ring aperture. By
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using a Gaussian-shaped illumination it is possible to shift the peak to the center of

the axial intensity profile.

Figure 4.15: The normalized intensity plots calculated by propagating the cone shaped
wavefront with uniform ring illumination using the GBD method in free space : a) The YZ
cross section, b) the axial profile for x = y = 0 and c) the transversal profile at z = 8mm.

4.1.5 Vectorial field propagation in a high NA focusing

In this section the application of polarized GBD method for the propagation of a vecto-

rial field in a high NA focusing system like the one shown in Fig. 2.8 is demonstrated.

Consider focusing of an x-polarized input field with a wavelength of 830nm and having

a uniform amplitude truncated by a circular aperture with a radius of 2mm by an

ideal focusing system with f = 2.2mm in air (numerical aperture, (NA) = 0.9091).

At the exit pupil, the system has a perfect converging spherical wave with the radius

of curvature R = f = 2.2mm. To propagate the polarized field into the focal region,

Figure 4.16: The vectorial field components
at the focal plane computed by the polarized

GBD method.

the GBD of the initial spatial profile

is performed directly on the wavefront

sphere at the exit pupil using 30× 30 full

and 70 truncated GBs as discussed in sec-

tion 3.3.2 above. The truncated GBs are

used to represent the sharp edge part af-

ter the circular aperture. Since the polar-

ization state of the input field is given on

the entrance pupil plane of the system,

the polarization vectors of each GBs on

the exit pupil sphere are computed from

the input Jones vector by using the re-

lation given in Eq. (3.4.1). Finally, by

propagating the individual GBs to the fo-

cal plane and performing the coherent superposition of each vectorial component, the
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focal plane vectorial field shown in Fig. 4.16 is obtained.

As can be seen from Fig. 4.16, although the input field is purely x-polarized, the field

in the focal plane has significant z-polarization and small y-polarization component in

addition to the x-polarization component due to high bending of rays. This also results

in the non-rotationally symmetric total intensity point spread function as shown in Fig.

4.16d.

Figure 4.17: The vectorial field components
at the focal plane computed by the vectorial

Debye integral.

To validate the result, the vectorial fo-

cal plane field has been computed by us-

ing the vectorial Debye diffraction inte-

gral. The resulting vectorial focal fields

are shown in Fig. 4.17. Comparing the

result in Fig. 4.16 and Fig. 4.17, it

can be seen that the result obtained us-

ing the polarized GBD agrees with that

computed using the vectorial Debye inte-

gral. For more quantitative comparison

the cross sectional view of the total in-

tensity profiles obtained by both methods

are plotted in Fig. 4.18. From the result

in Fig. 4.18 it can be seen that the root

mean square error of the results obtained by the polarized GBD method is below 0.5%

which can further be reduced by increasing the number of GBs used for the decompo-

sition.

4.2 Ultrashort pulse propagation

In this subsection, the calculation results for validating and demonstrating the appli-

cation of the GPBD method for the propagation of ultrashort pulses through optical

systems are presented. First, the methods of computing the free space spatio-temporal

coupling of a single GPB in free space and the analytical propagation equation of the

spatially truncated GPBs are validated. Then the systematic method of decomposing

an arbitrary spectral profile into a set of chirped Gaussian pulses is demonstrated.

Finally, several examples are presented to demonstrate the applications of the GPBD

method in modeling the sharp edge diffraction of ultrashort pulses after a hard aper-

ture and the pulse propagation through different optical systems. The results given in
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Figure 4.18: (a) The y- and (b) the x- cross-sectional plots of the total intensities shown in
Fig. 4.16d and Fig. 4.17d in logarithmic scale. (c,d) The difference between the intensity

values computed using the polarized GBD method and the vectorial Debye integral method
for the corresponding cross-sections.

this subsection have already been published in the peer-reviewed journals [63, 64,90].

4.2.1 Spatio-temporal coupling of Gaussian pulsed beam in

free space

In this example I validate the method proposed in section 3.2.5, for including the

spatio-temporal coupling in free space into the Lin matrix-based propagation of the

single GPB. Consider a single GPB with spatial and temporal width of σr = 100µm

and σt = 50fs, respectively and central wavelength of λ0 = 800nm. Propagating

the GPB in free space to final transversal planes which are located at distances of

z = 0, 5ZR, 50ZR (ZR = 39.27mm is the Rayleigh length for the central wavelength)

from the initial plane, the final spatio-temporal profiles obtained are shown in Fig. 4.19.

As can be seen from the y − t amplitude profiles shown in Fig. 4.19, the pulse front

Figure 4.19: The spatio-temporal amplitude profiles of an ultrashort pulse propagating
different distances in free space.
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gets distorted (curved) even in the free space propagation which becomes significant

for longer propagation distances. This curved pulse front is due to the fact that for a

given transversal plane the pulse arrives at the on-axis points earlier than the off-axis

ones. Since there is no dispersion during free-space propagation, the on-axis temporal

profile remains unchanged.

For the numerical validation, the spatio-temporal profile of the pulse after the propaga-

tion distance of z = 50ZR has been computed using the conventional pulse propagation

method based on the FT [8,9]. The resulting final amplitude profile of the propagated

pulse together with the residual error is shown in Fig. 4.20. The residual error of

Figure 4.20: a) The same as in Fig. 4.19c but now computed using the conventional FT
based method, b) The numerical difference between the amplitude profiles in (a) and in Fig.

4.19c.

the final spatio-temporal amplitude profile computed with the proposed method com-

pared to the temporal FT based method is in the order of 10−4. The main reason for

the residual error is that the higher-order dependence of the off-axis pulse delay on

the transversal coordinates, beyond the second-order, are not taken into account for

a single GPB in the proposed method. However, such higher-order spatio-temporal

coupling can be taken into account by performing the GPD of the given pulsed beam

in the spectral domain.

4.2.2 Propagation of spatially truncated Gaussian pulsed beam

Now consider a single truncated GPB with a central wavelength of 800nm, the temporal

width of 50fs, spatial waist radius of 100µm, and truncation parameter cx = 0 in the

x-dimension propagating through fused silica. To model the spatio-temporal coupling,

the input spectral profile is decomposed into a set of 15 GPs with different central

frequencies distributed uniformly in the input spectral range. This decomposition

results in temporally wider GPs for which the off-axis delay can be neglected compared
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to their temporal duration. Employing a single truncated GB for the spatial profile,

a total of 15 spatially truncated GPBs is obtained to represent the given truncated

pulsed beam. By propagating each spatially truncated GPB through the fused silica

and performing the phase correct superposition, the spatio-temporal amplitude profiles

of the final pulse are computed for different propagation distances as shown in Fig.

4.21. For the short propagation distance as shown in Fig. 4.21b, the truncated GPB

Figure 4.21: The x cross-section (y = 0) spatio-temporal amplitude profile of spatially
truncated GPB propagated by a distance of a) 0, b) 0.5ZR and c) 4ZR through fused silica
with ZR = 39.27mm being the Rayleigh length computed using the central frequency. The

vertical axis and color bar scales of the three plots are not the same whereas that of the
horizontal axis are the same.

starts to diverge spatially quickly and has the typical oscillations and asymmetry in

the amplitude profile due to the diffraction from the sharp edge of the semi-infinite

aperture. Additionally, the temporal width of the pulsed beam increases, and the

pulse front gets curved due to the dispersion of the medium and the spatio-temporal

coupling respectively during the propagation. As the propagation distance increases,

the temporal width of the pulse increases significantly due to the large amount of

dispersion but the asymmetry and the oscillation in the amplitude profile due to the

truncation reduces as shown in Fig. 4.21c.

To validate the results quantitatively, the given spatially truncated GPB has been

propagated to a distance of z = 0.5ZR by using the conventional pulse propagation

method based on the temporal FT [8, 9]. The cross sectional amplitude profiles along

the dotted lines in Fig. 4.21b together with the corresponding amplitude profile com-

puted using the FT based method with 128 spectral components are shown in Fig.

4.22. From Fig. 4.22 it can be seen that the results obtained using the propagation

methods proposed in section 3.3.3 agrees with that computed using the temporal FT

based method with the residual error in the order of 10−3 or less.
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Figure 4.22: The cross sectional view of the spatio-temporal amplitude profile in Fig. 4.21b
along a) t = 0 and b)x = 0 together with the corresponding result obtained using the

conventional ultrashort pulse propagation method based on the temporal FT. The
numerical error ∆

∣∣E(x, t)
∣∣ =

∣∣E(x, t)
∣∣
GPBD

−
∣∣E(x, t)

∣∣
FFT

for the amplitude profiles shown
in (a) and (b) are plotted in (c) and (d) respectively.

4.2.3 Gaussian pulse decomposition of spectral profile with a

large TOD

In this section, the application of the Gaussian pulse decomposition method discussed

in section 3.2.1 is demonstrated with an example. Consider the decomposition of an

input pulse with central wavelength of λ0 = 800nm, a Gaussian spectral amplitude

profile with bandwidth of ∆λ ≈ 68nm (corresponding to pulse duration of σt ≈ 10fs

in transform limited case) and third order dispersion coefficient of TOD = 1000fs3

as shown in Fig. 4.23a. The input spectral profile is decomposed using 10 uniformly

distributed GPBs. The initial temporal delays φ′(ω0) and the group delay dispersions

GDD = φ′′(ω0) of each GPs are shown in Fig. 4.23b. As the input spectral phase is a

third order function of the angular frequency, the group delay has quadratic distribu-

tions in the spectral range as shown in Fig. 4.23b. It can also be seen that depending

on the local curvature of the given spectral phase, the GPs have both positive and

negative group delay dispersions. From Fig. 4.23a, it can be seen that the quadratic

spectral phase of the GPs fit with the given spectral phase around the central frequency

of the GP. After the peak amplitudes of individual GPs is computed, the decomposition
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Figure 4.23: a)The spectral phase of the given pulse together with the quadratic spectral
phases (shown for only two sampling points , at 2(1/fs) and 2.7(1/fs) , for clarity), b)the
group delays and the group delay dispersion of the GPs used for the decomposition. Every

black dot corresponds to the center of one GP used.

result has been validated by comparing the given spectral profile with that obtained by

the summation of the complex amplitudes of all GPs after the decomposition. From

the decomposition result shown in Fig. 4.24, it can be seen that even with such a

few number of GPs, the proposed decomposition method gives accurate results. The

residual root mean square error is below 0.1% for both amplitude and phase profiles.

Figure 4.24: The spectral a) amplitude and b) phase profiles of the given pulse together
with that obtained by superposition of the elementary GPs each with different delay and

chirp parameters. The residual error of the spectral c) amplitude and d) phase after GPD.

By performing the superposition of the GPs in the temporal domain, the temporal

profile of the input pulse which is shown in Fig. 4.25 is computed. The asymmetrical

oscillation in the amplitude profile in Fig. 4.25 clearly shows the typical temporal

shape of a GP with large third order dispersion. For the purpose of comparison, the

same spectral profile has been decomposed with the same number of GPs but with
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Figure 4.25: The temporal amplitude profile of the given pulse with large TOD computed
by superposition of the elementary GPs.

zero initial chirp and no group delays for individual pulses. The resulting accuracy of

the decomposition reduces as shown in Fig. 4.26, which shows the significance of using

initially delayed and chirped GPs in the decomposition.

Figure 4.26: The same as in Fig. 4.24 but now computed using zero initial delay and chirp
parameters of the individual GPs.

4.2.4 Propagation of ultrashort pulse after circular aperture

In this example I demonstrate the application of the spatially truncated GPBs for

modeling the diffraction of pulse field after a hard aperture. Consider an ultrashort

pulse with central wavelength of λ0 = 800nm, Gaussian temporal profile of σt = 10fs
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and uniform spatial amplitude with flat phase truncated by a circular aperture of

radius a = 2mm. To propagate the pulse after aperture using the GPBD method, the

spatial and spectral profiles of the pulse just after the aperture are decomposed into

a set of 30 × 30 full GPBs (30 × 30 GBs for spatial and 1 GP for spectral) and 1050

spatially truncated GPBs (70 truncated GBs for spatial and 15 GPs for spectral). The

truncated GPBs are distributed around the edge of the aperture to represent the sharp

edged in the amplitude profile. Since the spatio-temporal coupling of full GPBs in free

space are taken into account by computing the off-axis pulse delay from the smooth

quadratic phase as explained in section 3.2.5, only a single GP is sufficient to represent

the Gaussian spectral profile. However, the spectral profiles of the truncated GPBs is

decomposed into 15 temporally wider GPs to account for the spatio-temporal coupling

during the propagation as discussed in section 3.3.3. The propagated pulse profiles

are computed by performing the phase correct superposition the full and the spatially

truncated GPBs after propagation. In Fig. 4.27, the spatio-temporal profile of the

propagated ultrashort pulse after by the circular aperture at flight time t = 600ps are

plotted. The time at which the incoming pulse arrives at the aperture plane is assumed

to be t = 0. Due to the diffraction from the hard aperture edges, the spatio-temporal

Figure 4.27: The spatial amplitude profile of a) the outer sub-field with sharp edge, b) the
inner sub-field and c) the total field for plane wave pulse truncated by circular aperture

with radius r = a after propagating for t = 600ps.

profiles in Fig. 4.27 has two types of interference patterns. The first interference

pattern, which is shown by red arrow in both Fig. 4.27 (a and c), comes from the

interference of the boundary diffraction wavelets and hence is called the boundary

wave pulse [8,91,92]. The second one which is shown by the dark arrows in Fig. 4.27c

as the oscillations on the main pulse comes from the interference of the main pulse

with the boundary pulse [91].

If the spatial profile of the input pulse is changed from plane to a converging spherical
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wave with radius of R = 50mm, the propagated pulse after the aperture has different

spatial profiles before and after the focal planes as shown in Fig. 4.28. In this case,

for the time coordinate it is assumed that the incoming pulse reaches the edge of the

aperture at t = −R/c and passes through the focus at t = 0. As it can be seen from

Figure 4.28: The spatial amplitude profile of the converging wave pulse truncated by
circular aperture at time a) t = −30fs, b) t = 0fs and c) t = 30fs. The arrival time of the

pulse peak at the focal plane is taken as t = 0.

Fig. 4.28a, the diffraction from the hard aperture results in the boundary wave pulse

which lags behind the main pulse. However, as one passes through the focal plane, the

boundary wave pulse catches up and then starts to lead main pulse and hence becomes

the conventional forerunner pulse [8,92] as shown in Fig. 4.28(b and c). For the pulse

away from the focal plane, the additional oscillation on the main pulse is also observed

which is due to the interference of the main pulse with the boundary wave pulse like

in the case of the plane wave pulse.

The boundary wave pulse has the shape of the letter X which is similar to that of

the Bessel-X pulse generated for example after an axicon (see section 4.2.6). However,

unlike the Bessel-X pulse, which is a non-diffracting wave, the boundary wave pulse

changes its shape as it propagates. This can be clearly seen by observing the boundary

wave pulse closely as the pulse propagates in the focal region as shown in Fig. 4.29.

From Fig. 4.29 it can be seen that the size and shape of the boundary wave pulse

changed during propagation.

4.2.5 Pulse focusing using an aspheric lens

In this example the GPBD method is applied to analyse the focusing of ultrashort

pulse using the Geltech aspheric lens from Thorlabs (354240 A) with focal length

f = 8.00mm and numerical aperture NA = 0.5 shown in Fig. 4.30a [93]. An input

pulse with central wavelength λ0 = 800nm, Gaussian temporal profile with width

of 24fs, a super-Gaussian spatial amplitude profile with 8mm diameter and super



4. Validations and Application Examples 79

Figure 4.29: The same as in Fig. Fig. 4.28 but showing the central part between the dotted
lines in zoomed version by using equal scaling for both axis to clearly show the change in

the shape of the boundary wave pulse as it propagates.

Gaussian order of m = 20 has been considered. Additionally, the spectral and spatial

phases of the input pulse are assumed to be flat. As the spherical aberration is corrected

by the aspherical surface, the dominant remaining aberration of the system is the

chromatic aberration [8]. Since the group path length is greater than the refractive

index for the dispersive glass, the pulse front after the lens lags behind the phase front.

In addition to that, due to the variable glass thickness encountered, the delay of the

Figure 4.30: a) The 2D system layout, and b) the geometric pulse and phase front in the
focal region of the Geltech Aspheric Lens used for focusing ultrashort pulse.

pulse decreases as one goes from the center of the lens towards the edge. This can be

seen from Fig. 4.30b, which shows the geometrical pulse front and the phase front in

the focal region computed by using the real ray tracing at the central wavelength. The

time is chosen in such a way that t = 0 refers to the pulse group along the axis reaches

the focal plane.

For the wave optical modeling, including the diffraction effects in the focal region, the

super-Gaussian spatial profile of the input pulse has been decomposed into a set of
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30× 30 GBs and a single GP is used for the Gaussian spectral profile. Combining the

GP with the GBs, we get a total of 30×30 GPBs to represent the input pulse. Applying

the GPBD method, the pulse field in the focal region has been computed at different

flight times and their y − z cross-sectional intensities are as shown in Fig. 4.31. From

Figure 4.31: The y − z cross-sectional view of the spatial intensity profile of the ultrashort
pulse near the focal plane of the aspheric lens for different times. The time is chosen in such

a way that t = 0 refers to the pulse intensity maximum reaches at the focus.

the result in Fig. 4.31 it can be seen that due to the chromatic aberration of the lens,

pulse front is distorted to the typical horseshoe shape [8]. In the region outside the close

vicinity of the focal plane, the pulse front computed using the wave optical method

looks similar to that obtained from the geometrical ray-tracing calculations shown in

Fig. 4.30b. To validate the results quantitatively, the pulse profile at the focal plane

has been computed using the conventional pulse propagation method based on FTs and

compared with the result from the GPBD method. In Fig. 4.32 the y-cross-section

of the intensity profile of the pulse at the focal plane along the dotted white line in

Fig. 4.31 is plotted together with the corresponding intensity profile computed using

the conventional method [8,9]. From Fig. 4.32 it can be seen that the GPBD method

gives focal plane pulse intensities with residual error below 1%. The spatial profiles of

the pulse in the focal region obtained using the proposed method also agrees with that

computed using the conventional FT based method and reported in Fig. 4b of [8].

However, since a super-Gaussian amplitude profile is used for the input pulse, the

front runner pulse, which is the result of sharp edge diffraction of the pulse, does not

appear in Fig. 4.31. By changing the spatial amplitude of the input pulse to a uniform

amplitude truncated by a hard circular aperture of radius r = 4mm and computing



4. Validations and Application Examples 81

Figure 4.32: a) The y cross-section of the pulse intensity profile at the focal plane computed
using the GPBD and the FT based methods. b) the difference in the pulse intensities

obtained using the two methods.

the propagated pulse at time t = −200fs using the modified GPBD method, the final

spatial profile shown in Fig. 4.33a is obtained. From Fig. 4.33 it can be seen that

Figure 4.33: The spatial profile of the
pulse in the focal region of the lens at
t = −200fs for an input plane wave

pulse truncated by a circular aperture.

the diffraction from the hard aperture results

in the boundary wave pulse along the axis in

addition to the main pulse. The boundary

wave pulse has already taken over the main

pulse before the focal plane of the lens. This

is because the pulse front close to the opti-

cal axis is delayed compared to that coming

from the edge due to the different glass thick-

ness encountered. This shifts the point where

the boundary wave takes over the main pulse

closer to the lens unlike the ideal focusing case

where the takeover occurs at the focal plane

(see section 4.2.4).

4.2.6 Bessel-X pulse after an axicon

Propagation of an ultrashort pulse through an axicon results in a Bessel-X pulse

which maintains its strong lateral and longitudinal localization for large propaga-

tion distances. In this example, the formation of a Bessel-X pulse is demonstrated

by propagating an ultrashort pulse after an axicon from Thorlabs (AX252-2.0◦) us-

ing the GPBD method. The axicon is made of fused silica and has a central thick-

ness of 5.44mm. The front and rear surfaces of the axicon are an odd asphere with

z(x, y) = −0.0349
√
x2 + y2 and a plane surface, respectively. This results in axicon

with an apex angle of 176◦ [94]. The ray-tracing result of the axicon is shown in Fig.
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4.34. For the input pulse, a Gaussian temporal amplitude profile with a width of 50fs,

Figure 4.34: The 2D layout of an axicon used to generate a Bessel-X pulse (different scales
are used for z and y-axis to make the rays more visible). The dotted lines indicate the

locations of the transversal planes where the pulse intensities are computed.

central wavelength of λ0 = 800nm, a ring-shaped spatial amplitude profile with an

inner and outer radius of 0.5mm and 3mm, respectively are used. The spatial and

spectral phase profiles of the input pulse are assumed to be flat. First, the input pulse

is decomposed into 30 × 30 GPBs (30 × 30 GBs for the spatial and single GP for the

spectral profiles). By propagating the decomposed GPBs through the axicon and per-

forming the phase correct superposition, the spatio-temporal amplitude profiles shown

in Fig. 4.35 are obtained for the propagated pulses at three different transversal planes

after the axicon. For the time coordinates shown in the plots, the arrival time of an

on-axis reference pulse propagating along the z-axis with the speed of light to each

transversal plane is used as the origin (t = 0). The results in Fig. 4.35 shows that

after the axicon, the typical Bessel-X pulse is obtained whose spatial amplitude profile

is strongly localized and maintained for such large propagation distance of 80mm. The

temporal profiles of the Bessel-X pulse are also not changed as it is propagating in the

free space which has no dispersion. However, in the case of a dispersive medium, the

axial intensity distribution changes during propagation [95].

For the validation of the result, the comparison of the cross section of the result shown

in Fig. 4.35b with that computed using the analytical propagation equations of the

Bessel X-pulse [96] is shown in Fig. 4.36. As it can be seen from Fig. 4.36b, the

residual error of the result obtained using the GPBD method is below 0.15%.

The temporal cross-sections of the amplitude profiles of the Bessel-X pulse for the

three transversal planes, shown in Fig. 4.37, indicates that the temporal profile re-
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Figure 4.35: The y − t cross-section of the amplitude profile of the Bessel-X pulse on the
transversal planes which are located at a) 55mm, b) 95mm and c) 135mm from the axicon.
The white dotted lines indicate the location of t = 0 and the red dotted lines indicate the

location of the pulse peak.

Figure 4.36: a) The 1D cross section of the Bessel X-pulse on the transversal plane located
at z = 95mm from the axicon computed by using the GPBD method together with that

obtained using the analytical propagation formula. b) The numerical difference of the
magnitudes of the amplitude profiles shown in (a).

mains Gaussian. However, the arrival time of the pulse peak is different for different

propagation distances and is always negative which means earlier in time relative to

the reference pulse. This is because the peak of the Bessel-X pulse travels at superlu-

minal group velocity which is greater than the speed of light and hence arrives on each

transversal plane before the reference on-axis pulse. The superluminal velocity of the

pulse peak is not in contradiction of the Einstein’s theory of relativity as the Bessel-X

pulses do not transmit information superluminally [97]. This property of the Bessel-X

pulse has been studied experimentally in the previous studies [8, 97,98].

The superluminal velocity along the z-axis of Bessel-X pulse is theoretically com-

puted from the deflection angle α which the outgoing ray from the axicon makes

with the t-axis by vg = c/ cosα [8]. For the example axicon under consideration,
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Figure 4.37: The temporal cross-sections of
the amplitude profiles shown in Fig . 4.35 for

the on-axis point.

the deflection angle α = 0.9238◦, and

hence the expected speed of the inten-

sity peak becomes 1.00013c. From Fig.

4.37, it can be seen that over the prop-

agation distance of 80mm, the Bessel-X

pulse leads the reference pulse by 35.2fs.

From this the group velocity of the Bessel-

X pulse peak is computed to be vg =

1.0001319c. This group speed is very

close to the theoretically expected value.

Similar results have been obtained from

the experimental measurements and inde-

pendent simulations reported previously

[97].

4.2.7 Ultrashort pulse shaping using diffraction gratings

In this section the applications of the GPBD method for the wave optical propagation of

pulses through pulse shaping systems containing diffraction gratings are demonstrated.

Single diffraction grating

Consider propagation of an ultrashort pulsed beam after a single diffraction grating

with groove density of 1.2lines/µm and diffraction order of m = −1 as shown in

Fig. 4.38. The input pulse considered has a Gaussian temporal profile with temporal

amplitude width of 50fs , a super-Gaussian spatial profile with diameter of 5mm and

an order of 20 and central wavelength of 800nm. In the setup, the tilt angles of the

Figure 4.38: System layout and geometrical ray tracing through a single grating system.
(Note that the coordinate origin is not at the center of the grating.)

first mirror and the diffraction grating are adjusted so that the diffraction angle at the
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grating becomes θD = 45◦ and both the incoming and the outgoing beams are along

the z-axis for the central wavelength. First the spatial profile of the input pulse is

Figure 4.39: The spatial profile of the pulse
at the moment when its peak arrives a

transversal plane located at a) z = 60mm and
c) z = 110mm. The spatio-spectral profiles
on the y-cross section of the two transversal
planes are shown in (b) and (d) respectively.

decomposed into a set of 30×30 GBs and

the spectral profile is decomposed into

a set of 25 GPs. Combining the GBs

with the GPs, a total of 22, 500 GPBs are

used for the decomposition of the input

pulse. By using the GPBD method, the

final spatial and spatio-spectral profiles of

the propagated pulse after the diffraction

grating have been computed. The spatial

profiles of the propagated pulse computed

at the moment in time when the cen-

tral pulse group arrives at the transver-

sal planes located at z = 60mm and

z = 110mm, are shown in Fig. 4.39 (a

and c), respectively. The spatio-spectral

profiles, shown in Fig. 4.39 (b and d), are

computed for the points along the y-axis (with x = 0) on the corresponding transversal

planes.

From Fig. 4.39a, it can be seen that the pulse front is strongly tilted due to the

angular diffraction of the diffraction grating. The expected tilt angle of the outgoing

pulse, computed using the analytical formula given in Eq. (4.55) in [4], is γ = 53.63◦

which is very close to that obtained from the simulation result in Fig. 4.39a. The

slight disagreement comes from the manual computation of the tilt angle by taking

two points on the dotted line in the spatial profile in Fig. 4.39a As it can be seen from

the spatio-spectral profile in Fig. 4.39b, different spectral components have separated

spatially along the y-axis resulting in large spatial chirp and hence tilted pulse front in

the spatio-spectral profile.

For the longer propagation distance from the diffraction grating, the separation between

different spectral components and the overall spatial size of the pulse increases due to

the angular dispersion of the grating as shown in Fig. 4.39 (c and d). Since the spatial

chirp increases, the tilt in the spatio-spectral profile also increases. However, the pulse

front tilt in the spatial profile remains unchanged which is also expected as the pulse
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front tilt given in Eq. (4.55) in [4] is independent of the propagation distance.

Treacy grating pair compressor

One of the common pulse shaping system which employs the diffraction grating is the

Treacy grating pair which is used to generate large anomalous dispersion and hence used

as pulse compressor [76]. In the Treacy compressor a pair of diffraction gratings are

arranged in tandem with their faces and rulings parallel to each other as shown in Fig.

4.40 [75,76]. The first diffraction grating adds a large angular dispersion to the incoming

Figure 4.40: The schematic diagram of a Treacy compressor.

pulse so that different spectral components are reflected at different angles and hence

follow different paths. This results in a large anomalous dispersion which depends

on the propagation distance after the diffraction grating [4]. The second grating re-

collimates the rays by removing the angular dispersion. At the end of the single pass

of the Treacy grating pair, different spectral components of the pulse separate spatially

resulting in large spatial chirp. This spatial chirp is usually removed by using the setup

in double-pass mode by placing a mirror after the 2nd grating.

Consider a Treacy compressor that is constructed using diffraction grating with a groove

density of 1.2lines/µm with rulings parallel to the x-axis and used in the first diffraction

order. The gratings are tilted in the yz plane so that the diffracted angle at the first

grating becomes θD = 45◦ for the central wavelength and the distance from the 1st

grating to the 2nd one along the central ray is set to d = 500mm. For double pass

usage, a mirror is placed after the 2nd grating perpendicular to the outgoing rays.

Using the analytical formula given in Table 1 in [99], the group delay dispersion (GDD)

and the third-order dispersion (TOD) of the Treacy compressor become 1.306×106fs2

and −3.923 × 106fs3, respectively, for a wavelength of 800nm. Hence, the Treacy

compressor generates very large anomalous dispersion (negative GDD) in the order of

106fs2. However, the sign of the TOD of Treacy compressor is the same as that of

normal dispersive materials [99]. Therefore, the compressor increases the TOD of the
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pulse after a dispersive medium. This results in the compressed pulse with residual

higher-order dispersion, which is mainly dominated by the TOD.

To model the GDD compensation and the residual TOD effects of the Treacy com-

pressor, an initially chirped input pulse has been assumed with the following parame-

ters: central wavelength of 800nm, Gaussian spatial amplitude profile with a width of

2mm, Gaussian spectral amplitude profile with a width of 13.59nm (corresponding to

the transform-limited temporal amplitude width of 50fs) and quadratic spectral phase

with initial GDD which is equal in magnitude but opposite in sign to that of the Treacy

compressor (i.e. for single and double-pass mode, the initial GDD of 1.306 × 106fs2

and 2.612 × 106fs2, respectively, are used). Here an initially chirped-pulse has been

used to demonstrate the application of the GPBD method in the propagation of such

non-transform limited input pulse with large spectral phase coefficients and model

dispersion compensation of the Treacy compressor.

First the input chirped pulse is decomposed into a set of 80 GPBs each with differ-

ent central frequencies, group delays, and GDD corresponding to the slope and the

quadratic factor of the local spectral phase respectively. From the comparison of the

input spectral profile and that after the GPBD, shown in Fig. 4.41, it can be seen that

the given input pulse is correctly represented by the GPBs with residual error below

0.1% in both spectral amplitude and phase.

Figure 4.41: The spectral a) amplitude and b) phase of the chirped input pulse together
with that obtained after the GPBD. The residual error of the spectral c) amplitude and d)
phase of the decomposition. For results in (b) and (d) only small frequency range near the

central frequency is shown for clear comparison.
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Propagating the individual GPBs independently through the Treacy compressor, and

performing phase correct superposition in the final plane, the spatio-temporal profile

shown in Fig. 4.42 has been obtained for the output pulse after a single pass mode.

From Fig. 4.42 it can be seen that, the output pulse has large pulse front curvature in

Figure 4.42: The spatio-temporal amplitude profile of a) the chirped input pulse b) the
y-cross section and c) the x-cross section of the output pulse after a single pass through the

Treacy compressor. The temporal amplitude profile at the center (x = y = 0) of d) the
input and e) the output pulse.

the yz plane which is due to the combination of the large spatial chirp and the residual

TOD. The quadratic spectral phase factor due to the residual TOD is manifested in

the output pulse by the curved pulse front as the spectral components are separated

spatially along the y-axis due to the spatial chirp. Comparing the results in Fig. 4.42

(d and e), it can further be seen that the local temporal width of the output pulse at

the center of the spatio-temporal profile is significantly reduced from initially chirped

input pulse due to the GDD compensation. However, due to the large spatial chirp

and residual TOD, the final on-axis temporal width is still very large compared to the

transform-limited temporal width of the input pulse.

For Treacy compressor used in double-pass mode, the spatio-temporal profile of the

output pulse is shown in Fig. 4.43. As can be seen from Fig. 4.43, the output pulse is

mainly dominated by TOD which results in large and asymmetrical oscillation in the

pulse amplitude profile. Since there is no spatial chirp, all spectral components overlap

spatially and the TOD does not result in the curved pulse front as in the case of single-

pass mode. The GPBD methods allow for the wave optical modeling of the system with
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Figure 4.43: The same as in Fig. 4.42 but now computed for double pass usage of the
Treacy compressor

.

such large residual dispersion using a fairly practical number of GPBs. This makes the

GPBD method suitable for wave optical modeling of Treacy compressor systems to

study for instance misalignment sensitivities.

A pulse stretcher-compressor setup

Now the wave optical modeling of a stretcher-compressor setups used in the chirped

pulse amplification (CPA) system, which is the most commonly used technique of am-

plifying a given ultrashort pulse to high power level [100], is performed. In the CPA

system the input pulse is first stretched by using a pulse stretcher before being ampli-

fied. Since the stretched pulse has reduced peak intensity, the pulse can be efficiently

amplified to very large power without resulting in significant optical damage and non-

linear effects during the amplification [100]. Finally, the amplified pulse is compressed

by using a compressor, which is carefully designed with parameters matching to that

of the stretcher to compensate dispersion introduced by the stretcher, to get the ultra-

short pulse with extremely high peak intensity. The perfect dispersion compensation of

the stretcher and compressor are very important for the quality of the amplified pulse.

In practice Martinez stretcher and Treacy compressor are commonly used to construct

such dispersion balanced systems.

A Martinez stretcher consists of a pair of anti-parallel diffraction gratings, which are

tilted by the same angle but in the opposite direction, with two internal lenses arranged
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in 4f setup as shown in Fig. 4.44. [4,42,101]. Unlike the Treacy grating pair, the Mar-

Figure 4.44: The schematic diagram of the Martinez stretcher.

tinez grating pair setup can be used to generate both normal and anomalous dispersion.

If the first and the second diffraction gratings are placed exactly at the front and back

focal planes of the first and second lens respectively, the system becomes dispersion-

free. However, by moving the second grating towards or away from the focal plane of

the second lens, the system can generate normal or anomalous dispersion, respectively.

Like in the case of the Treacy compressors, a mirror is usually used in the Martinez

stretcher in a double pass mode and removes the spatial chirp after the single pass.

Assuming an ideal telescope system, it is possible to make the Martinez grating pair to

produce exactly equal dispersion of all orders but with opposite sign to that produced

by the Treacy compressor. This requires matching of the incidence angles at the first

gratings of the two systems and making the distance l2 equal to the distance measured

along the ray direction between the two gratings in the Treacy compressor [4, 101].

Now consider the propagation of an ultrashort pulse which has a Gaussian temporal

profile with a temporal width of 50fs and a central wavelength of 800nm through

a pulse stretcher-compressor setup shown in Fig. 4.45. The system is built from a

Martinez stretcher followed by a Treacy compressor, both used in the double-pass

mode. As the study of the amplification process after the stretcher is beyond the scope

of this study, any additional spectral phase and amplitude distortions coming from the

amplification process in the real CPA system are ignored. The diffraction gratings used

in both compressor and stretchers have a groove density of 1.2lines/µm with rulings

parallel to the x-axis and are used in the first diffraction order. The gratings are tilted

in the yz plane so that the diffracted angle at the first grating becomes θD = 45◦ for

the central wavelength. For the Treacy compressor, the distance from the 1st grating

to the 2nd one along the central ray is set to d = 500mm. The ideal telescope used

in the Martinez stretcher is constructed from two ideal cylindrical lenses with a focal

length of 700mm in the y-cross-sections. The 2nd grating in the Martinez stretcher is
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Figure 4.45: The system layout of the stretcher-compressor setup. The roof mirror
reflectors are used to reflect the pulse back in a different path to enable separation of the

input and output beams. Labels: G (grating), L (lens), M (plane mirror).

placed at l2 = 500mm from the focal point of the 2nd lens. By applying the concept of

group path length discussed in section 3.2.3 and 3.2.4, for the diffraction grating during

the ray tracing and using the finite difference method to compute the derivatives, it

is possible to compute all dispersion coefficients of the compressor and stretcher. In

Fig. 4.46 and 4.47 the group delay dispersion (GDD) and the third-order dispersion

(TOD) of the double pass Treacy grating pair and the Martinez stretcher are plotted,

respectively. For comparison, the GDD and TOD computed using the geometric ray

tracing are shown together with that computed using the analytical formulas given

in the literature [4, 99]. For the Treacy stretcher, the dispersion computed using ray

Figure 4.46: a) The GDD and b) the TOD of the Treacy compressor computed using
geometrical ray tracing together with the result computed using analytical formula [4, 99].

The numerical difference between the two results is shown in (c) and (d) respectively.
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tracing strongly agrees with the analytical result. However, for the Martinez stretcher

the residual error is slightly larger for wavelengths different from the central wavelength

due to the fact that the analytical formula assumes the ray direction is horizontal after

the first grating which is only satisfied for the central wavelength. By comparing

Figure 4.47: The same as in Fig. 4.46 but now computed for the Martinez grating pair with
internal dispersion less telescope.

Fig. 4.47 and Fig. 4.46, it can be seen that the dispersion coefficients of the Treacy

compressor are compensated by that of the Martinez stretcher for all wavelengths.

To study the first-order wave optical spatio-temporal property of the pulse stretcher-

compressor setup, a single pilot GPB with a central wavelength of 800nm, spatial

width 2mm, and temporal width of 50fs has been propagated. The spatio-temporal

profile of the input GPB together with that of the pulsed beam after the double pass

of the stretcher and at the end of the complete setup is shown in Fig. 4.48. From Fig.

4.48, it can be seen that, the Martinez stretcher has stretched the GP from 50fs to

98752.88fs which reduces the peak amplitude to about 2% of the initial value. Hence

the peak intensity is reduced by four orders of magnitude which allows an amplification

to a high power without significant phase distortion and non-linearity effects in the

amplifier medium. During the propagation of the stretched pulse through the Treacy

compressor, all the dispersion effects of the Martinez stretcher are reversed and the

pulse is compressed back to the original transform-limited temporal width of 50fs as

shown in Fig. 4.48d.

In real CPA systems, the dispersions in the stretcher-compressor pairs are not perfectly

compensated due to the dispersion from a real telescope systems and misalignments of
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Figure 4.48: The spatio-temporal profile of the ultrashort pulse a) at the input plane, b)
after the double pass through the stretcher and c) after the complete stretcher-compressor

setup. The temporal amplitude profiles at the center (x=y=0) at d) the input and the
output planes and e) the intermediate plane after double pass through the stretcher.

different components. In this section the effect of using a real lens for the telescope in

Martinez stretcher is studied by performing wave optical propagation using the GPBD

method. The dispersion due to propagation through the glass disturbs the dispersion

balance of the ideal stretcher-compressor setup. In addition to that, the aberrations on

the focusing optics may also introduce phase errors since the spectral components are

separated inside the stretcher [4]. For the refractive lens, a plano-convex cylindrical

lens with R1x = R1y =∞, R2x =∞ and R2y = −357.54mm, glass of BK7 with central

thickness of 10mm (resulting in focal length of f = 700mm for central wavelength)

has been used. After the real lenses are inserted, the thickness l2 from the second lens

to the second grating of the stretcher has been readjusted so that the GDD (lower-

order dispersion) of the stretcher is canceled by that of the compressor for the central

wavelength. The resulting stretcher-compressor setup has no residual GDD for the

central wavelength but has significant higher-order dispersions for all wavelengths and

also residual GDD for wavelengths different from the central wavelength as shown in

Fig. 4.49.

Now consider the propagation of an ultrashort pulsed beam which has a uniform spatial

amplitude truncated by a circular aperture of radius 2mm at the input plane and has a

Gaussian temporal profile with the temporal width of 50fs and the central wavelength
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Figure 4.49: a) The GDD and b) the TOD of the complete CPA setup with real refractive
lenses.

of 800nm through a real stretcher-compressor pair. First the input pulse is decomposed

into a set of 9000 GPBs (with 20 × 20 full GBs and 50 truncated GBs in the spatial

and 20 GPs in the spectral domain). By propagating all GPBs through the complete

Figure 4.50: The spatio-temporal amplitude profiles of a) the input pulse b) the
y-cross-section and c) the x-cross-section of the output pulse after the complete CPA setup
with real lens. The comparison of d) the spatial and d) the temporal cross-sections of the

input and output pulse amplitude profiles.

optical system independently and performing the phase correct superposition at the

final output plane, the spatio-temporal profile of the output pulse whose crossectional

plots are shown in Fig. 4.50 has been obtained. Due to the residual higher-order

dispersion, the output pulse has a non-Gaussian temporal profile with a pulse width

of about 63.5fs which is greater than the transform-limited width. The asymmetrical

temporal cross-section in Fig. 4.50c indicates that the output pulse is dominated by

the residual TOD of the CPA system coming from the refractive lenses.
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From Fig. 4.50 it can also be seen that the spatial amplitude profile of the input

pulse has also been significantly altered due to the diffraction during the long-distance

propagation of through the complete CPA system. The final spatial cross-section re-

sembles the far-field diffraction of circular aperture. The slight difference in the x- and

y-cross-section of the spatial amplitude profile, shown in Fig. 4.50d, comes from the

fact that the lenses are used in the Martinez compressor are cylindrical which affect

the two cross-sections differently. As the GPBD method uses real ray tracing for the

propagation of individual GPBs, it can be used to model the effects of the misalignment

(tilt and decenter in 3D) and mismatches in the stretcher and compressor components

on the output pulse by the wave optical propagation.

4.3 Further discussions

Computation time of the GBD/GPBD methods

As the electric field values for the final field are computed independently for each

analysis point by adding the individual contributions from all GBs/GPBs used, the

speed of the overall algorithm is determined by the number of GBs/GPBs used and the

number of spatial or temporal points used for the analysis. To improve the computation

speed by full utilization of all available CPU cores in parallel, specialized Mex functions

[102] for the GB/GPB superposition have been written using the C language with the

OpenMP library [103] for the parallel computing in the Matlab implementation of the

algorithms. Furthermore, by computing the distances of the analysis points from the

corresponding GB/GPB center, the unnecessary computations for analysis points that

are very far from the centers and hence have very negligible amplitudes are avoided.

Table (4.1) shows the total computation time (for decomposition, propagation, and

superposition) of the GBD and GPBD methods for some selected example results

given in the previous subsections using a computer with an Intel Core-i7 CPU at 2.9

GHz and 16 GB RAM.

Example results No. of GBs/GPBs Analysis points Time taken
Fig. 4.10 45× 45 GBs 2048 in 1D 3.8 sec
Fig. 4.13a 50× 50 GBs 101× 101 57.1 sec
Fig. 4.50b/c 9000 GPBs 101× 101 17.9 sec

Table 4.1: Computation time of the GBD and GPBD method for few selected examples.

As discussed in subsection (3.2.6), the time taken for computing the temporal profile

is less than that required for computing the spatial profiles of a pulse for equal number
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of ananlysis points and GPBs. This is the reason for the short computation time of

the spatio-temporal (y-t) pulse profile in Fig. 4.50b/c even using 9000 GPBs.

Pros and cons of the GBD and GPBD methods

Compared to the conventional field propagation methods based on the FTs, the GBD

and GPBD methods have several advantages which make them attractive to different

wave optical modeling problems. Some of these advantages include their abilities to :

• decompose and hence propagate initial fields with large aberration and large

spectral phases. In the FTs based propagation methods, the number of sam-

ples required to fulfill the Nyquist sampling criteria for such initial fields is too

large due to the fast oscillating wrapped phase in the complex field [12, 13, 104].

In addition to that, zero padding is usually applied to the initial field to get

the finer sampling of the propagated field which further increases the number of

samples required. Assuming that two sampling points are taken within a single

period of the fast oscillating wrapped phase, which is the minimum requirement

for the proper sampling, the minimum number of sampling points required for

propagating the converging wavefront with the spherical aberration of 100λ (dis-

cussed in subsection (4.1.3)) is 28952×28952. A similar argument applies for the

decomposition of ultrashort pulses with large initial spectral phases [12,13].

• perform the wave optical modeling of optical systems with large aberration, dis-

persions, and spatio-temporal distortions. Due to the strict sampling require-

ment, the FT based propagation methods are usually applicable for modeling

optical systems with small phase distortions (both spatial and temporal).

• calculate the propagated field at analysis points on any arbitrarily tilted and

curved surface without an additional effort. In the FT based methods, the com-

putation of field values on a set of analysis points that are not in the same

transversal plane, in general, require the computation of the entire 2D field on

the transversal planes containing each analysis points. Although there is a quasi-

fast FT based algorithm for propagating fields to tilted planes [16], the calculation

of a field on generally curved surfaces is usually computationally intensive.

• perform accurate analytical modeling of the sharp edge diffraction of fields after a

hard aperture. In the FT based field propagation methods, an accurate modeling

of the sharp edge diffraction after a hard aperture, theoretically, requires an

infinite number of sampling points to capture the infinite spatial frequency at the
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sharp edge. Hence, using a finite number of sampling points limits the maximum

spatial frequency that can be represented. However, in the GBD and GPBD

methods, the field after hard aperture is represented with the spatially truncated

GBs(GPBs) and the sharp edge diffraction is computed accurately using the

analytical propagation equations.

Although the GBD and GPBD methods have advantages listed above, they has also

certain drawbacks and limitations which restrict their application. The main drawbacks

and limitations are discussed below.

• The decomposition of an input field into a set of GBs (GPBs) is not unique and

there is no well-defined sampling rule equivalent to the Nyquist sampling theorem

of the FT. This makes it difficult to determine the exact number of GBs (GPBs)

required and sufficient for the wave optical modeling of a given system.

• The GBD and GPBD methods assume that the local parabasal and quadratic

approximation is valid for each GB (GPB) as it propagates through the optical

system. That is when the aberration seen by the individual GB and/or the

spectral phase seen by the individual GPB is too large to be represented with

quadratic approximation, then the standard propagation equations used for each

GB (GPB) are no longer valid and hence, the results obtained from the GBD

and GPBD methods become inaccurate.

• For optical systems with multiple apertures or when the elementary GBs/GPBs

become non-paraxial during the propagation, the intermediate field has tobe

recomposed into a new set of full and truncated paraxial GBs/GPBs. This re-

composition usually requires a large number of GBs/GPBs to be used due to the

complicated amplitude and phase profiles of the intermediate fields.

• For simple wave optical modeling problems such as the propagation of input

fields with non-curved phase profiles through optical systems with small phase

distortion (both spatial and spectral) or the propagation of a spherical wavefront

with small aberration to the focal plane, the field propagation methods based on

the FTs are computationally faster than the GBD and GPBD methods.



5. Conclusion and Outlook

In this work several extensions of the conventional Gaussian beam decomposition meth-

ods are accomplished. First, an algorithm for decomposing an arbitrary field with a

smooth wavefront into a set of Gaussian beams with different positions, directions, and

non-zero initial curvatures is presented. In the proposed method, the Gaussian beam

decomposition is performed directly on the wavefront surface unlike other conventional

methods that decompose the complex field on a single plane. This avoids the prob-

lem associated with the fast oscillating phase in the complex field for strongly curved

wavefronts. The different directions and the non-zero initial curvature of the Gaus-

sian beam enable the quadratic approximation of the local wavefront which in turn

reduces the number of Gaussian beams required for the decomposition. The decompo-

sition algorithm directly gives the complex curvature matrix element of the Gaussian

beams which can be used directly for the propagation of the Gaussian beams in both

free space and through optical systems. Then a natural extension of the monochro-

matic Gaussian beam decomposition method to handle the propagation of ultrashort

pulses through a general optical system is proposed. In the extended method, an input

ultra-short pulse is propagated through an optical system by decomposing it into a

set of Gaussian pulsed beams with different positions, directions, initial curvatures,

group delays, and temporal chirps. The method of determining the initial Gaussian

pulsed beam parameters from the given arbitrary spatial and spectral amplitude and

phase profiles is described. Each Gaussian pulsed beam represents the local spatial and

spectral phase of the input pulse in the quadratic approximation. Finally, methods of

computing the spatio-temporal and spatio-spectral profiles of the propagated pulses

from the phase correct superposition of the spatio-temporal and spatio-spectral of the

individual Gaussian pulsed beams are discussed.

Furthermore, in this work a method to overcome one of the main limitations of the

Gaussian beam decomposition method, its inability to accurately model sharp edge

diffraction of field after hard apertures, is proposed. To this end a special kind of

elementary beam, known as the truncated Gaussian beam which represents a Gaussian

beam truncated by a semi-infinite hard aperture, is introduced. The analytical propa-

gation equation for its propagation through a non-orthogonal paraxial optical system

is derived from the Collin’s integral. Using the truncated Gaussian beams, the con-

ventional Gaussian beam decomposition method is extended to accurately model the

98
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diffraction of monochromatic fields after hard apertures. Similarly, for pulsed beams,

a spatially truncated Gaussian pulsed beam is introduced and its analytical propaga-

tion equation through a dispersive paraxial optical system is derived. With the help

of the spatially truncated Gaussian pulsed beams, the application of the conventional

Gaussian pulsed beam decomposition method is then extended to the modeling of the

diffraction of an arbitrary ultrashort pulse after a hard aperture. Finally, the three-

dimensional polarization ray-tracing calculus is combined with the Gaussian beam de-

composition method to enable propagation of vectorial fields through optical systems,

such as high numerical aperture focusing, which affect the polarization state of the

light.

The validity and accuracy of the proposed methods are assessed by performing example

diffraction calculations and comparing the results with that obtained from the inde-

pendent calculation by using other field propagation methods and previously published

results. The applications of the proposed algorithms are demonstrated by performing

propagation of fields through optical systems which are rather complicated to handle

with the conventional Fourier transform-based propagation methods. Some of the ex-

ample calculations presented above employ the combination of two or more extension

methods developed in this work. The following table summarizes the methods used for

different examples presented.

Subsections where the examples are given

(4.1.4)
(4.1.2) &
(4.1.3)

(4.1.5)
(4.2.4) &
(4.2.5)

(4.2.3) &
(4.2.6)

GBD method (modified) × × × - -
Truncated GB - × × - -
GPBD method - - - × ×
Truncated GPB - - - - ×
Vectorial extension - - × - -

Table 5.1: Summary of extended methods used in different example calculations presented
in this work. The methods used for the example calculations are indicated with a cross sign.

Several extensions of the Gaussian beam decomposition and the Gaussian pulsed beam

decomposition methods are possible. One extension would be to improve the decom-

position algorithms of the spatial and spectral profiles by using adaptive sampling

methods for generating a non-uniformly distributed Gaussian beams and Gaussian

pulses depending on the complexity of the local field profile. This helps in reducing the
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number of Gaussian beams and pulses required for decomposing a given input field.

Another would be to define a spectrally truncated Gaussian pulsed beam for which the

spectral profile is truncated instead of the spatial profile, which has been presented in

this work. This enables the Gaussian pulsed beam decomposition method to model the

propagation of ultrashort pulses with spectral hard edges. Finally, the application of

the GBD and GPBD methods can be extended to optical systems containing diffractive

optical elements (DOE) with variable groove densities and diffraction efficiencies. In

this work, for simplicity, the groove width and the diffraction efficiency of the grating

have been assumed to be constant across the whole grating surface. However, in princi-

ple, one can use different groove widths and diffraction efficiencies for the propagation

of each GB or GPB depending on their intersection point with the given diffraction

grating.
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[95] H. Sõnajalg and P. Saari, “Suppression of temporal spread of ultrashort pulses

in dispersive media by Bessel beam generators,” Optics letters, vol. 21, no. 15,

pp. 1162–1164, 1996.



Bibliography 109
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Appendix A: Derivation of the generalized paraxial

wave equation

Here the derivation of the generalized paraxial wave equation given in Eq. (2.3.1) which

governs the propagation of a pulsed beam in the spatio-temporal domain is shown.

Consider the propagation of a given initial scalar field E0(x, y, t) in a homogenous,

isotropic medium using the angular spectrum method. The initial spectrum of the

given electric field is computed by using the FT as

E0(kx, ky, ω) =
1

(2π)3

y
E0(x, y, t) exp [i (kxx+ kyy − ωt)]dxdydt, (A.1)

where kx, ky are the wave vector components along x and y axis. The propagation of

the initial spectrum through a homogenous medium is given by

E(kx, ky, ω; z) = E0(kx, ky, ω) exp [−ikz (kx, ky, ω) z] (A.2)

where kz (kx, ky, ω) =
√
k2(ω)− k2

x − k2
y is the component of the propagation constant

along the propagation direction. Taking the first two terms in the Taylor expansion

of the propagation factor for paraxial beam with small transversal component of the

wavevector (k2(ω)� k2
x + k2

y) is approximated by

kz (kx, ky, ω) ≈ k(ω)−
k2
x + k2

y

2k(ω)
. (A.3)

Inserting Eq. (A.3) into Eq. (A.2), the propagated field in the spectral domain becomes

E(kx, ky, ω; z) ≈ E0(kx, ky, ω) exp [−ik(ω)z] exp

[
i
k2
x + k2

y

2k(ω)
z

]
. (A.4)

The Taylor expansion of the wavenumber k(ω) about the central frequency ω0 of the

input field is given by

k(ω) ≈ k(ω0) +
∂k

∂ω

∣∣∣∣
ω0

(ω − ω0) +
1

2

∂2k

∂ω2

∣∣∣∣
ω0

(ω − ω0)2 + ..., (A.5)
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where k(ω0) is the mean wavenumber,
∂k

∂ω

∣∣∣∣
ω0

is the inverse of the group velocity vg,

and
∂2k

∂ω2

∣∣∣∣
ω0

is the group velocity dispersion D0 of the propagating field in the medium.

For an input field whose spectral bandwidth is very narrow, (ω − ω0) << ω0, the first

three terms of the Taylor expansion in Eq. (A.5) can be used to approximate the

wavenumber in Eq. (A.4). However, since the second exponent term in Eq. (A.4) is

already small due to the paraxiality condition assumed above, just the constant term

for wavenumber is used. With these approximations and replacing ω̄ = ω − ω0, Eq.

(A.4) becomes

E(kx, ky, ω; z) ≈ E0(kx, ky, ω) exp [−ik(ω0)z] exp

[
−i 1

vg
ω̄z

]
H̃FP (kx, ky, ω̄; z), (A.6)

with H̃FP (kx, ky, ω̄; z) = exp

[
−iz

(
1

2
D0ω̄

2 − 1

2

1

k(ω0)
(k2
x + k2

y)

)]
. Now let’s assume

that the temporal envelope of the pulse is large compared to the optical cycle so

that several optical cycles are enclosed inside an envelope. Hence, the slowly varying

envelope approximation can be applied and the input field can be written as

E0(x, y, t) = ψ0(x, y, t) exp (iω0t). (A.7)

From the properties of the FT, it can be seen that the spectrum of the slowly varying

envelope is related to the total initial spectrum by

E0(kx, ky, ω) = ψ0(kx, ky, ω̄). (A.8)

Inserting Eq. (A.8) into Eq. (A.6) and then taking the IFTs, both spatial and temporal,

of Eq. (A.6), the propagated field in time domain is given by

E(x, y, t; z) = exp [−ik(ω0)z]
y

ψ0(kx, ky, ω̄)H̃FP (kx, ky, ω̄; z) exp

[
−i z
vg
ω̄

]
× exp [−i (kxx+ kyy − ωt)]dkxdkydω

= exp [−i(k(ω0)z − ω0t)]
y

ψ0(kx, ky, ω̄)H̃FP (kx, ky, ω̄; z)

× exp [−i (kxx+ kyy − ω̄t̄)]dkxdkydω̄

= exp [−i(k(ω0)z − ω0t)]× F−1{ψ(kx, ky, ω̄, z)}

(A.9)
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where t̄ = t− z

vg
is the time in the reference frame which is co-moving with the wave

group, F−1{.} is the triple IFT operation with (kx, ky, ω̄) and (x, y, t̄) being its conjugate

variables, and ψ(kx, ky, ω̄, z) = ψ0(kx, ky, ω̄)H̃FP (kx, ky, ω̄; z) is the final propagated

spectrum of the slowly varying envelope. Inserting the expression for the propagation

kernel H̃FP (kx, ky, ω̄; z) from Eq. (A.6), the propagation of the slowly varying envelope

in the spectral domain is given by

ψ(kx, ky, ω̄; z) = ψ0(kx, ky, ω̄) exp

[
−iz

2

(
D0ω̄

2 − 1

k(ω0)

(
k2
x + k2

y

))]
. (A.10)

By taking the derivative of both sides of Eq. (A.10) with respect to z, the wave

equation for the propagation of the slowly varying envelope in the co-moving frame is

then obtained as

i
∂ψ(kx, ky, ω̄; z)

∂z
= −1

2

(
D0ω̄

2 − 1

k(ω0)

(
k2
x + k2

y

))
ψ(kx, ky, ω̄; z). (A.11)

Finally, performing the three dimensional IFT, the wave equation in position-time

domain is given by

i
∂ψ(x, y, t̄; z)

∂z
+

(
1

2k(ω0)
∆(2) − D0

2

∂2

∂t̄2

)
ψ(x, y, t̄; z) = 0. (A.12)



Appendix B: Derivation of the generalized spatio-

temporal Huygens integral

Here the derivation of the generalized spatio-temporal Huygens integral given in Eq.

(2.3.19) which governs the propagation of a pulsed beam in the spatio-temporal do-

main is shown in detail. From the Kirchhoff integral equation, the pulsed beam field

component with given frequency ω at the output plane, ψ2(r2, ω), is related to that at

the input plane, ψ1(r1, ω), by [1, 44]

ψ2(r2, ω) =ζ ′
x

ψ1(r1, ω) exp{iΦ(r1, r2, ω)}dr1, (B.1)

where ζ ′ is a constant, r1 and r2 are the transversal coordinate vectors in the input and

output planes respectively and Φ(r1, r2, ω) is an eikonal between the input plane and

output plane for the field component with frequency ω. Taking the inverse temporal

FT of Eq. (B.1) and replacing the ψ1(r1, ω) with the FT (using Eq. (2.1.3)) of its

temporal field ψ1(r2, t1), the output pulsed field in the temporal domain can be written

as

ψ2(r2, t2) =ζ
y

ψ1(r1, t1) exp{iΦ(r1, r2, t1, t2)}dr1dt1, (B.2)

where ζ exp{iΦ(r1, r2, t1, t2)} = ζ′

2π

∫
exp{iΦ(r1, r2, ω)} exp{iω(t2 − t1)}dω,

with Φ(r1, r2, t1, t2) being the spatio-temporal eikonal function for the pulsed beam. In

the paraxial approximation, the spatial eikonal function for paraxial beam propagation

is obtained from the spatial or lateral phase delay which is given by [1, 3, 81]

Φr =− k0

2
[n2 (x2θx2 + y2θy2)− [n1 (x1θx1 + y1θy1)]

=− k0

2

(
n2θ

T
2 r2 − n1θ

T
1 r1

)
,

(B.3)

where k0 is the propagation constant of the reference ray at central frequency ω0.

Analogously, the temporal (longitudinal) eikonal can be obtained from the longitudinal

phase delay which is given by

Φt =∆φ2 −∆φ1, (B.4)
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where ∆φ1 and ∆φ2 are the temporal phase differences between the reference ray with

the central frequency ω0 and that with slightly shifted frequency ωc in the input and

output planes respectively. For a linear chirped pulse, the instantaneous frequency ωc

is a linear function of the time t,

ωc − ω0 = S(t− t0), (B.5)

where S is the frequency sweep rate and t0 is the arrival time of the reference ray with

frequency ω0. Hence, the temporal phase differences are given by

∆φ1 =

∫
(ωc1 − ω0)d(t1 − t0) =

1

2
S(t1 − t0)2 =

1

2
ω̄1t̄1,

∆φ2 =

∫
(ωc2 − ω0)d(t2 − t0) =

1

2
S(t2 − t0)2 =

1

2
ω̄2t̄2.

(B.6)

with ω̄1 = (ωc1 − ω0), ω̄2 = (ωc2 − ω0),t̄1 = (t1 − t0) and t̄2 = (t2 − t0). Inserting Eq.

(B.6) into Eq. (B.6), and using the equation ω0 = ck0, the longitudinal phase delay

becomes

Φt =
k0

2

(
ω̄2

ω0

ct̄2 −
ω̄1

ω0

ct̄1

)
. (B.7)

The whole phase delay corresponding to the spatio-temporal eikonal function is com-

puted by adding the spatial (lateral) and the temporal (longitudinal) phase delays

given in Eq. (B.3) and Eq. (B.7) respectively as

Φ(r1, r2, t1, t2) =Φr + Φt = −k0

2

(
n2θ

T
2 r2 − n1θ

T
1 r1 −

f̄2

f0

ct̄2 +
f̄1

f0

ct̄1

)
, (B.8)

where the ratio of herzian frequencies f̄1
f0

and f̄2
f0

are used which are equivalent to the

ratios of the corresponding angular frequencies. Inserting Eq. (B.8) into Eq. (B.2),

the generalized spatio-temporal Huygens integral in paraxial approximation in optical

system with linear chirp becomes

ψ2(r2, t2) =ζ
y

ψ1(r1, t1) exp

[
−ik0

2

(
n2θ

T
2 r2 − n1θ

T
1 r1 −

f̄2

f0

ct̄2 +
f̄1

f0

ct̄1

)]
dr1dt1.

(B.9)



Appendix C: Propagation equations for full Gaus-

sian (pulsed) beam

In this Appendix the detailed derivation of the propagation equations for the monochro-

matic GB and the GPB through a paraxial optical system using the matrix method

is given. Although the derivations of these equations can also be found in the litera-

ture [44, 49], they are given here as they serve as the basis for the further derivations

developed in this work for truncated Gaussian (pulsed) beams which will be presented

in Appendix A.5.

C.1 Derivation of propagation formula for a monochro-
matic Gaussian beam

The analytical propagation equation, given in Eq. (2.3.29), for a monochromatic GB

is derived by solving the Collins integral with a GB input field. Substituting the

general astigmatic monochromatic GB in Eq. (2.3.4) into the general Collins integral

in Eq. (2.3.28) and performing simple algebraic manipulations the reduced field of the

propagated GB becomes

ψ2(r2) =
i

λ|B|1/2
x

exp

[
−ik0

2

(
r1

TPr1 − 2r1
TB−1r2 + r2

TDB−1r2
)]
dr1,

(C.1.1)

where P = Q−1
1 +B−1A. The expression inside the exponential function in Eq. (C.1.1)

can be written as

r1
TPr1 − 2r1

TB−1r2 + r2
TDB−1r2

=
∣∣∣P 1/2r1 − P−1/2B−1r2

∣∣∣2 + r2
T
(
DB−1 −B−1TP−1B−1

)
r2

(C.1.2)

Using the properties of the paraxial system matrices [49], −B−1T = C−DB−1A, the

second term of Eq. (C.1.2) is simplified by

DB−1 −B−1TP−1B−1 = (C +DQ−1
1 )(A+BQ−1

1 )−1

= Q−1
2

(C.1.3)
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Substituting Eq. (C.1.3) into Eq. (C.1.2) and then back into Eq. (C.1.1) and taking

out terms which are independent of r1 to the right side of the double integral, the

reduced field of output GB becomes

ψ2(r2) =
i

λ|B|1/2
exp

[
−ik0

2

(
r2

TQ−1
2 r2

)]x
exp

[
−ik0

2

(
|P 1/2r1 − P−1/2B−1r2|2

)]
dr1.

(C.1.4)

To simplify the remaining double integral in Eq.(C.1.4), an auxilary vector Γ =

P 1/2r1 − P−1/2B−1r2 is introduced as the integration variable. Using the following

vectorial integration formula

x
exp

[
−ar2

]
dr =

∫ ∞
−∞

∫ ∞
−∞

exp−a(x2 + y2) dx dy

=
π

a
,

(C.1.5)

and performing the algebraic manipulation, Eq. (C.1.4) is finally simplified to

ψ2(r2) =
ψ0√∣∣∣A+BQ1

−1
∣∣∣ exp

(
−ik0

2
r2

TQ2
−1r2

)
,

(C.1.6)

which is the well known equation for the propagation of an astigmatic GB through a

paraxial optical system [48,49,105].

C.2 Derivation of the propagation formula of a Gaus-
sian pulsed beam

The analytical propagation equation, given in Eq. (2.3.27), for a GPB is derived by

solving the generalized spatio-temporal Huygen’s integral with a GPB input pulse field.

The derivation procedure is completely analogous with that of the monochromatic GB

discussed in Appendix C.1. Here the important differences in the derivation are simply

highlighted. The main difference is that for GPB case, the 3 × 1 spatio-temporal

coordinate vectors, (r̃1 and r̃2) are used instead of their spatial counterparts r1 and

r2, which are 2 × 1. Similarly, the 3 × 3 spatio-temporal sub-matrices (Ã,B̃,C̃ and

D̃), of the 6 × 6 Lin matrix are used instead of the 2 × 2 sub-matrices (A,B,C and

D), of the 4× 4 spatial ABCD matrix.

The derivation is started by substituting the Gaussian puled beam in Eq. (2.3.10) as
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an input field to the spatio-temporal Huygens integral in Eq. (2.3.24). Performing

algebric manipulations similar to that discussed in Appendix C.1 and using triple

vectorial integral identity

y
exp

[
−ar̃2

]
dr̃ =

(π
a

)3/2

, (C.2.1)

finally the complex envelope of the propagated GPB is obtianed to be

ψ2(r̃2) =
ψ0√∣∣∣Ã+ B̃Q̃

−1

1

∣∣∣ exp

(
−ik0

2
r̃T2 Q̃

−1

2 r̃2

)
,

(C.2.2)

where Q̃−1
2 =

(
C̃ + D̃Q̃−1

1

)(
Ã+ B̃Q̃−1

1

)−1

is the 3 × 3 complex spatio-temporal

curvature matrix of the final GPB.



Appendix D: Propagation equations for the trun-

cated Gaussian (pulsed) beam

In this section the detailed derivation of the analytical formulae for the propagation

of truncated GB and spatially truncated GPB is presented. The derivations are the

original contributions of this work and have also been published in peer reviewed jour-

nals [64, 65].

D.1 Derivation of the propagation formula of a trun-
cated Gaussian beam

To derive propagation formula for generally non-symmetric truncated GB, the trun-

cated GB in Eq. (3.3.1) is first inserted into the Collins integral in Eq. (2.3.28). This

gives an expression similar to Eq. (C.1.1) but with the integration limit in the x-

changed from [−∞,∞] to [cx,∞]. The resulting vector integral written in terms of x-

and y becomes

ψ2,t(r2) =
i

λ|B|1/2

∫ ∞
cx

∫ ∞
−∞

exp

[
−ik0

2

(
r1

TPr1 − 2r1
TB−1r2 + r2

TDB−1r2
)]

dy1 dx1,

(D.1.1)

where P = Q−1
1 + B−1A, r1 = [x1, y1]T , r2 = [x2, y2]T , Q−1

1 is the 2 × 2 complex

curvature matrix of the input GB and A,B,C,D are the 2 × 2 submatrices of the

paraxial system matrix.

By taking the constant terms out of the double integrals and expanding the vectors

inside the exponential function, Eq. (D.1.1) can be written as

ψ2,t(r2) = G

∫ ∞
cx

∫ ∞
−∞

exp
[
gyyy

2
1 + gxyx1y1 + gxxx

2
1 + gxx1 + gyy1

]
dy1 dx1, (D.1.2)

where

G =
i

λ|B|1/2
exp

(
−ik0

2
r2

TDB−1r2

)
, gxx = −ik0

2
Pxx, gyy = −ik0

2
Pyy,

gxy = −ik0

2
(Pxy + Pyx), gx = ik0(B−1

xx x2 +B−1
xy y2), gy = ik0(B−1

yx x2 +B−1
yy y2)

(D.1.3)

119



Appendix D: Propagation equations for the truncated Gaussian (pulsed) beam 120

To systematically solve the double integral in Eq. (D.1.2), it is rewriten as

ψ2,t(r2) = G

∫ ∞
cx

∫ ∞
−∞

exp
[
gyy(y1 + hx1)2 + gyy1 + (gxx − h2gyy)x

2
1 + gxx1

]
dy1 dx1,

(D.1.4)

where h = gxy
2gyy

is chosen so that the term x1y1 is included in the (y1 +hx1)2 expression.

Moving all terms independent of y1 to the left side of the inner integral, Eq. (D.1.4)

becomes

ψ2,t(r2) = G

∫ ∞
cx

{
exp

[
(gxx − h2gyy)x

2
1 + gxx1

] ∫ ∞
−∞

exp
[
gyy(y1 + hx1)2 + gyy1

]
dy1

}
dx1,

(D.1.5)

By substituting u = y1 +hx1 for the inner integral of Eq. (D.1.5), it can be shown that∫ ∞
−∞

exp
[
gyy(y1 + hx1)2 + gyy1

]
dy1 = exp [−gyhx1]

∫ ∞
−∞

exp
[
gyyy

2
1 + gyy1

]
dy1,

(D.1.6)

Substituting Eq. (D.1.6) into Eq. (D.1.5), it can be written as a product of two

separate integrals as

ψ2,t(r2) =G

∫ ∞
cx

exp
[
(gxx − h2gyy)x

2
1 + (gx − hgy)x1

]
dx1

×
∫ ∞
−∞

exp
[
gyy(y1 + hx1)2 + gyy1

]
dy1,

(D.1.7)

Using the following integration formula∫ ∞
c

exp
(
−ax2 − 2bx

)
dx =

1

2

√
π

a
exp

(
b2

a

)
erfc

(
b+ ac√

a

)
=

1

2
erfc

(
b+ ac√

a

)∫ ∞
−∞

exp
(
−ax2 − 2bx

)
dx,

(D.1.8)

Eq. (D.1.7)can be written as

ψ2,t(r2) =
1

2
erfc

(
bx + axcx√

a

)
G

∫ ∞
−∞

exp
[
(gxx − h2gyy)x

2
1 + (gx − hgy)x1

]
dx1

×
∫ ∞
−∞

exp
[
gyy(y1 + hx1)2 + gyy1

]
dy1,

(D.1.9)
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where

ax = −(gxx − h2gyy), bx = −1

2
(gx − hgy). (D.1.10)

The last two expressions in Eq. (D.1.9) are equivalent to the expression the propagation

of a full GB given in Eq. (C.1.6). Hence, the propagation of the truncated GB is written

as

ψ2,t(r2) =
1

2
erfc

(
bx + axcx√

ax

)
ψ2(r2), (D.1.11)

where ψ2(r2) is the reduced field of the full GB after the propagation.

For the special case of a symmetrical truncated half GB (cx = 0) propagation through

an orthogonal optical system with the final coordinate system rotated so that the

matrix P = Q−1
1 +B−1A becomes pure diagonal, the parameters of the erfc function

become

ax =
ik0

2

(
Q−1
xx +B−1

xxAxx
)
, bx = −ik0

2
B−1
xx x2, cx = 0, (D.1.12)

and hence Eq. (D.1.11) simplifies to

E2,h(r2) =
1

2
erfc

(
−
√

ik0

2Bxx(Axx +BxxQ
−1
1,xx)

x2

)
E2(r2). (D.1.13)

Figure D.1: A GB truncated in
both x- and y- dimensions.

For such special case, it is possible to derive the prop-

agation equation for a truncated GB, shown in Fig.

D.1, where the GB is truncated along both x- and y-

axis. In such case the integration limits of both x and

y in Eq. (D.1.1) are changed to [cx,∞] and [cy,∞]

respectively. Since it has been assumed that P is a

diagonal matrix, in this case, Pxy = Pyx = 0 and the

expression in Eq. D.1.2 simplifies to

E2,q(r2) = G

∫ ∞
cx

∫ ∞
cy

exp
[
gyyy

2
1 + gxxx

2
1+

gxx1 + gyy1] dy1 dx1,

(D.1.14)
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where G,gx, gy, gxx and gyy are as given in Eq. D.1.3.

Separating the integration variables in Eq. D.1.14 and using integration formulas given

in Eq. D.1.8, the propagation of quarter GB through an orthogonal optical system

becomes

E2,q(r2) =
1

4
erfc

(
bx + axcx√

ax

)
erfc

(
by + aycy√

ay

)
E2(r2), (D.1.15)

where ax, bx, ay and by are given by expressions in Eq. D.1.12 for the corresponding

components. For special case of simple quarter GB with cx = cy = 0, the propagation

equation in Eq. D.1.15 simplifies to

E2,q(r2) =
1

4
erfc

(
−
√

ik0

2Bxx(Axx +BxxQ
−1
1,xx)

x2

)

erfc

(
−
√

ik0

2Byy(Ayy +ByyQ
−1
1,yy)

y2

)
E2(r2).

(D.1.16)

D.2 Derivation of the propagation formula of a spa-
tially truncated Gaussian pulsed beam

To derive the propagation formula for a spatially truncated GPB, the complex ampli-

tude of the spatially truncated GPB in Eq. (3.3.5) is first insterted into the generalized

spatio-temporal Huygens diffraction integral given in Eq. (2.3.19). Due to the Heav-

iside function in Eq. (3.3.5), the integration limits for the x-axis is changed from

[−∞,∞] to [cx,∞] and the resulting diffraction integral becomes

U2,t(r̃2) =

(
i

λ0

)3/2
1√

det(B̃)

∫ ∞
cx

∫ ∞
−∞

∫ ∞
−∞

dx1dy1dτ1

exp

[
−ik0

2

(
r̃1

T P̃ r̃1 − 2r̃1
T B̃

−1
r̃2 + r̃2

TD̃B̃
−1
r̃2

)]
,

(D.2.1)

where P̃ = Q̃
1

1 + B̃
−1
Ã.

Due to the different integration limit, the x-components are treated differently than

the y and τ components in the integral. In order to facilitate the following derivation,

the 3× 1 vectors (r̃1 and r̃2) and the 3× 3 matrices are separated into the x and y− τ
or w components using expressions similar to that given in Eq. (3.3.6) and (3.3.7).
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Taking the constant terms out of the integrals and expanding the vectors inside the

exponential function in Eq. (D.2.1) into x and w components the diffraction integral

becomes

U2,t(r̃2) = G

∫ ∞
cx

∫ ∞
−∞

exp
[
gwww

2
1 + gxwx1w1 + gxxx

2
1+

gxx1 + gTww1

]
dw1 dx1,

(D.2.2)

where

G =

(
i

λ0

)3/2
1√

det(B̃)
exp

(
−ik0

2
r̃2

TD̃B̃
−1
r̃2

)
,

gxx = −ik0

2
P̃ xx, gww = −ik0

2
P̃ww, gxw = −ik0

2
(P̃ xw + P̃wx),

gx = ik0(B̃
−1

xxx2 + B̃
−1

xww2), gw = ik0(B̃
−1

wxx2 + B̃
−1

www2).

(D.2.3)

In order to systematically solve the integrals in Eq. (D.2.2), it is rewriten as

U2,t(r̃2) = G

∫ ∞
cx

∫ ∞
−∞

exp
[
(w1 + hx1)T gww (w1 + hx1)

+ gTww1 +
(
gxx − hTgwwh

)
x2

1 + gxx1

]
dw1 dx1,

(D.2.4)

where h = gxw
(
gww + gTww

)−1
is 2 × 1 complex vector. The value of h is chosen to

make sure that the gxwx1w1 term is included in the matrix product (w1 + hx1)T gww (w1 + hx1)

in Eq. (D.2.4).

Moving all terms independent of w1 to the left side of the inner integral, Eq. (D.2.4)

becomes

U2,t(r̃2) = G

∫ ∞
cx

{
exp

[(
gxx − hTgwwh

)
x2

1 + gxx1

]
∫ ∞
−∞

exp
[
(w1 + hx1)T gww (w1 + hx1) + gTww1

]
dw1

}
dx1,

(D.2.5)

Substituting u = w1 + hx1 for the inner integral of Eq. (D.2.5), and performing

straight forward vector integration, it can be seen that∫ ∞
−∞

exp
[
(w1 + hx1)T gww (w1 + hx1) + gTww1

]
dw1

= exp
[
−gTwhx1

] ∫ ∞
−∞

exp
[
wT

1 gwww1 + gTww1

]
dw1,

(D.2.6)



Appendix D: Propagation equations for the truncated Gaussian (pulsed) beam 124

Inserting Eq. (D.2.6) back into Eq. (D.2.5), the expression inside the double integral

can be separated into x and w dependant terms as

U2,t(r̃2) = G

∫ ∞
cx

exp
[(
gxx − hTgwwh

)
x2

1 +
(
gx − gTwh

)
x1

]
dx1

×
∫ ∞
−∞

exp
[
wT

1 gwww1 + gTww1

]
dw1,

(D.2.7)

Using the following integration formula [106]∫ ∞
c

exp
(
−ax2 − 2bx

)
dx =

1

2
erfc

(
b+ ac√

a

)∫ ∞
−∞

exp
(
−ax2 − 2bx

)
dx, (D.2.8)

Eq. (D.2.7) is rewriten in terms of integrals with the same integration limits of [−∞,∞]

as

U2,t(r̃2) =
1

2
erfc

(
bx + axcx√

ax

)∫ ∞
−∞

exp
[
wT

1 gwww1 + gTww1

]
dw1

×G
∫ ∞
−∞

exp
[(
gxx − hTgwwh

)
x2

1 +
(
gx − gTwh

)
x1

]
dx1,

(D.2.9)

where ax = −
(
gxx − hTgwwh

)
and bx = −1

2

(
gx − gTwh

)
.

Going backward with the new integration limit, it can be easily seen that the last two

terms in Eq. (D.2.9) are equivalent to the propagation of the full GPB. Hence, the

electric field of spatially truncated GPB after propagation is given by

U2,t(r̃2) =
1

2
erfc

(
bx + axcx√

ax

)
U2,f (r̃2), (D.2.10)

where U2,f (r̃2) is the reduced complex amplitude of the full GPB after propagation.

For the special case of propagating of a symmetrically truncated (cx = 0) orthogonal

GPB (purely diagonal Q̃−1
1 ) through a homogeneous medium, Eq. (D.2.10) simplifies

to

U2,t(r̃2) =
1

2
erfc

−√√√√ ik0

2
(
Q̃−1

1,xx + B̃−1
xx

)B̃−1
xx x2

U2,f (r̃2), (D.2.11)

where Q̃−1
1,xx is the complex curvature of the initial GPB in the x-direction, B̃−1

xx = n/L,

n is the refractive index of the medium and L is the propagation distance.



Appendix E: Sampling schemes for the Gaussian beam

centers

The centers of GBs which are used to decompose a given field are distributed in the in-

put transversal plane using a given sampling scheme. Among a lot of different sampling

schemes found in the literature [107,108], the three schemes shown in Fig. E.1 are used

for the GBD method described in this work. The cartesian sampling, shown in Fig.

Figure E.1: The dot diagram of 200 sampling points inside a unit circle distributed using a)
the cartesian, b) the hexapolar, and c) the Fibonacci sampling scheme.

E.1a, is the simplest distribution which is generated by taking a 2-D grid coordinates

formed from uniformly sampled points along the x- and the y-axis. However, for field

with circular-shaped amplitude profiles, the cartesian sampling usually results in large

residual error, especially near the boundary. In such cases, the hexapolar sampling

scheme, shown in Fig. E.1b, gives better decomposition result. The hexapolar grid is

generated by taking the center point together with additional points distributed in sev-

eral rings around the center. In the first ring, 6 points which are uniformly distributed

in azimuthal direction are taken and for each subsequent rings the number of sampling

points taken increases by 6. As the hexapolar sampling is more suitable for amplitude

profiles with rotational symmetry, for the case of a general amplitude profile shape

the Fibonacci sampling scheme, shown in Fig. E.1c, is used. For a total of N points

distributed within a unit circle in a Fibonacci spiral pattern, the polar coordinates of

each point is obtained by using [108]:

θk =
4π

1 +
√

5
k and rk =

√
k

N
, (E.0.1)

where k = 1, 2, 3, ... is the index of the sampling point.
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