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Glossary

Abbreviation. Explanation

AD Anno Domini

aDNA ancient desoxyribonucleic acid
AIDS acquired immunodeficiency syndrome
BI Bayesian Inference

BCE before Common Era

bp base pairs

BP before present

ca. circa

cal. calibrated

capture targeted enrichment of genomic regions of interest using molecular probes
CcT Computed Tomography

cytb cytochrome b

°C degree Celsius

DKMS Deutsche Knochenmarkspenderdatei
df degrees of freedom
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fig. figure

Gy Gray (SI-unit)

h hours

HIV Human Immunodeficiency Virus
HLA Human Leukocyte Antigen

HTS High Throughput Sequencing

ibid. ibidem (lat.) - at the same place
i.e. id est (lat.) - that is

I1IGV Integrative Genomics Viewer

kb kilo bases

kg kilogram

IT



Abbreviation.
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Summary

Recent advances in technology and laboratory methods have revolutionized the research
field of ancient DNA (aDNA) and significantly extended the boundaries of genetic inves-
tigations into the past. Particularly, Next Generation Sequencing (NGS) and targeted
DNA enrichment methods allowed ancient DNA to become an inevitable source of fun-
damental research. Here, I present three studies which comprise diverse objectives of
aDNA research by making use of target DNA enrichment and NGS.

In my first study I bioinformatically reconstruct the complete mitochondrial genome of
the extinct giant deer after the capture of its mitochondrial DNA (mt capture). Using
the reconstructed mitochondrial genome I then apply different methods of phylogenetic
analysis which allow to resolve the giant deer’s placement within the cervid family tree
and reaffirm the fallow deer being its closest extant relative. Mt capture also provides the
basis for another study, in which I investigate the effects of X-rays on aDNA. Here, dif-
ferent radiation settings are explored including those ones commonly used in computed
tomography (CT) scans of anthropological and palaeontological specimens in order to
study potential effects of CT scanning on aDNA preservation. The results allow to define
a threshold of 200 Gray (Gy) of maximum absorbed radiation dose wherein no X-ray
caused effect can be observed on aDNA, and to specify simple guidelines to avoid im-
pairment of aDNA studies through CT-scans. In my third study I have developed and
evaluated a hybridization-capture approach for the enrichment of around 500 human
immune system genes, and apply it to compare the immunogenetic makeup of 16" cen-
tury plague victims from Ellwangen, South Germany, to their contemporary successors.
Applying bioinformatic tools allows me to assess kinship within both populations, deter-
mine genetic continuity between past and present, and reconstruct the Human Leukocyte
Antigen (HLA) allelic profiles of both populations. Comparing frequency distributions
of HLA alleles does not show significant differences between both populations, although
single HLLA-alleles show clearly distinct frequencies, potentially indicative of selective
pressure exerted through plague. In summary, specific target enrichment in combina-

tion with NGS and the application of particular bioinformatic methods has provided

IV



me with tools to address research questions related to evolutionary biology and aDNA

preservation.



Zusammenfassung

Technologischer Fortschritt sowie die Weiterentwicklung von Labormethoden haben das
Forschungsfeld der alten DNA (aDNA) revolutioniert. Die aDNA-Forschung ist Dank der
Einfithrung von Next Generation Sequenzier-Technologien (NGS) und Methoden geziel-
ter DNA-Anreicherung zum bedeutenden Bestandteil der Grundlagenforschung gewor-
den. In dieser Arbeit prisentiere ich drei Studien, die unterschiedliche Fragestellungen
mithilfe von DNA-Anreicherungsmethoden und NGS zu beantworten suchen.

In meiner ersten Studie gelingt es mir das mitochondriale Genom des Riesenhirschs
bioinformatisch zu rekonstruieren, nachdem seine mitochondriale DNA (mtDNA) an-
gereichert werden konnte. Ich verwende anschliefend verschiedene Methoden der phy-
logenetischen Rekonstruktion, um die Positionierung des Riesenhirschs im Stammbaum
der Hirsche eindeutig zu identifizieren. Durch diese Analysen kann der Dambhirsch als
der letzte lebende Verwandte des Riesenhirschs verifiziert werden. Anreicherung von
mtDNA ist zugleich die Grundlage fiir eine weitere Studie, in der ich den Effekt von
Rontgenstrahlung auf aDNA untersuche. In dieser Studie werden verschiedene Rontgen-
Einstellungen getestet, darunter auch diejenigen, die fiir die computertomographische
(CT) Erfassung von anthropologischen und paldontologischen Befunden verwendet wer-
den. Die Ergebnisse ermdglichen es eine Obergrenze fiir absorbierte Rontgenstrahlung
festzulegen, im Rahmen derer kein Effekt auf aDNA beobachtet werden kann. Diese
Obergrenze betrigt 200 Gray (Gy). Weiterhin lassen sich einfache Grundregeln bes-
timmen, die eine mogliche Beeintrachtigung von aDNA Studien durch vorangegangene
CT-Scans verhindern sollen. In meiner dritten Studie habe ich einen Ansatz zur Anre-
icherung von knapp 500 menschlichen Immunsystem-Genen entwickelt und ausgewertet,
den ich anschliefsend anwende, um die immunogenetische Veranlagung von Pesttoten aus
dem 16. Jahrhundert aus Ellwangen, Siiddeutschland, mit ihren heutigen Nachfahren
zu vergleichen. Durch Anwendung bioinformatischer Programme gelingt es mir Ver-
wandtschaftsverhéltnisse innerhalb beider Populationen, sowie die genetische Kontinu-
itdt zwischen damals und heute festzustellen, als auch die Allelfrequenzen des humanen

Leukozytenantigen-Systems (HLA) beider Populationen zu rekonstruieren. Der Vergle-
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ich der Haufigkeitsverteilungen von HLA-Allelen zeigt keine signifikanten Unterschiede,
obwohl einzelne HLA-Allele in deutlich unterschiedlichen Haufigkeiten auftreten. Diese
Unterschiede kénnten auf selektiven Evolutionsdruck hinweisen, der durch die Pest aus-
geiibt wurde.

Zusammenfassend war es mir durch gezielte DNA-Anreicherung in Kombination mit
NGS und der Anwendung spezieller bioinformatischer Programme moglich Antworten

auf diverse Fragen der aDNA Forschung zu finden.
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1 ancient DNA research - History
and Methods

1.1 A Short History of aDNA Research

Since the first successful retrieval of aDNA (ancient desoxyribonucleic acid) molecules
from the extinct South African quagga (Higuchi et al., 1984) as well as from ancient
Egyptian mummies in the 1980’s (P&ébo, 1985), ancient DNA research has experienced
a significant progress. While these first studies used bacterial cloning to amplify small
fragments of DNA mainly consisting of molecules with a high copy number, e.g. mito-
chondrial DNA (mtDNA) with the later Polymerase Chain Reaction (PCR) it became
possible to amplify even single copy DNA molecules to a high extent (Paibo, 1989,
Pidbo et al., 1989). However, results of the PCR studies conducted in the early 1990’s
claiming to present DNA from organisms of the Mesozoic Era and the Miocene, appeared
to be modern contaminants (Golenberg et al., 1990, Cano et al., 1993, Woodward et al.,
1994).

Apart from contamination, working with aDNA brings along several other challenges.
The extracted aDNA constitutes a mixture of endogenous organismic and exogenous
environmental DNA such as from bacteria and fungi (Shapiro and Hofreiter, 2014),
meaning that the obtainable endogenous DNA is present only in minute amounts. Since
no DNA repair takes place in dead organisms, DNA begins to accumulate different forms
of damage. Oxidative stress leads to the cleavage of the phosphodiester backbone or the
sugar backbone of DNA resulting in strand breaks (Rizzi et al., 2012). Moreover, ox-
idative damage can lead to depurination resulting in an abasic (base-less) site. Besides
oxygen, factors such as environmental salt and pH, water, radiation and above all tem-
perature play an important role in the preservation of aDNA molecules (Lindahl, 1993).
Maillard reaction triggered by higher temperatures and alkylation can cause DNA-strand
crosslinks and thus prevent the amplification of endogenous DNA in PCR (Rizzi et al.,

2012). Therefore, samples preserved in cold conditions such as permafrost soils (Shapiro



et al., 2004) are more likely to provide amplifiable DNA than samples preserved at warm
temperatures (Smith et al., 2001).

Nucleases from environmental microorganisms keep degrading the endogenous DNA
through strand breaks leading to short DNA fragments with an average fragment length
of 50 base pairs (bp) (Green et al., 2008). And last but not least, damage through hydrol-
ysis results in the deamination of cytosine to uracil, which will be misread as a thymine
by DNA polymerases during amplification and result in the incorporation of a wrong
base (Hofreiter et al., 2001). PCR-based studies were prone to contamination and false
positive results. Therefore it became necessary to implement quality control standards
in order to provide reliability of the results from upcoming PCR studies. The criteria
that need to be fulfilled in order to provide reliable aDNA work involve a physically iso-
lated work area where no sequencing or amplification takes place, positive and negative
control reactions, reproducibility of the results and independent replication in different
laboratories, as well as quantitative assessment of the target DNA copy number (Cooper
and Poinar, 2000). Meanwhile, PCR-based methods of aDNA analysis have been largely
replaced by the Next Generation Sequencing (NGS) methods, which imply new criteria
of quality control. These criteria include the presence of taphonomic markers in aDNA
such ad hydrolytic deamination of cytosines to thymines (Briggs et al., 2007); a high
number of unique molecules in an aDNA extract, a high percent of sequencing reads
matching to a reference organism’s DNA sequence, an even read distribution and a low
edit distance towards the reference DNA sequence, and last but not least positive and

negative sequencing controls (Key et al., 2017).

1.2 aDNA Retrieval from Old Bone

The preservation of DNA mainly depends on the feasibility of its surrounding material
to withstand environmental stress. Since soft organic tissue decays unless being mum-
mified, teeth and bones constitute a natural reservoir to preserve DNA to a much higher
extent than soil. While teeth consist of dentin that is surrounded by enamel and pro-
tects the dental pulp, bones are mainly composed of a bony matrix that consists of an
inorganic and an organic part. Both, teeth and bones contain two major components -
hydroxyapatite and collagen.

DNA was shown to have a high binding affinity to hydroxyapatite (Lindahl, 1993) be-
cause it forms a complex with it (Brundin et al., 2013), and so, higher DNA fractions

could be recovered from hydroxyapatite than from collagen (Schwarz et al., 2009, Cam-



pos et al., 2012). On the other hand DNA can bind to collagen and provide a matrix
for the aggregation of collagen molecules into fibrils which induces the fibrillogenesis of
collagen (Kitamura et al., 1997). Therefore, aDNA extraction protocols for teeth and
bones must address both - the mineral part and the organic part. EDTA (ethylendi-
aminetetraacetic acid) is usually used for the demineralization of bones and teeth since
it sequesters calcium and iron ions (Auld, 1995). Proteinase K can be used to digest
proteins and cleave crosslinks between DNA and peptides (Rohland and Hofreiter, 2007).
Adding phenol-chloroform followed by centrifugation will provide two distinct phases - a
solid phase with proteins, lipids as well as other tissues and an aquatic phase containing
nucleic acids and salts (Leonard et al., 2000). However, DNA can be separated even more
efficiently from other solved components by binding to a silica membrane. Chaotropic
salts such as guaninidine thiocynate (Rohland and Hofreiter, 2007) or guanidine hy-
drochloride (Dabney et al., 2013) destabilize hydrogen bonds and Van-der-Waal forces
and allow positively charged ions to form a salt bridge between a negatively charged
silica membrane (e.g. in MinFElute spin columns, Qiagen) and the negatively charged
backbone of DNA. Bound DNA can be precipitated and purified from salts, proteins
and other components using alcohol such as ethanol or isopropanol, and finally released
from the silica membrane by water or elution buffers such as Tris-EDTA-Tween (TET)
(Dabney et al., 2013).

The best outgoing material for aDNA extraction from bones and teeth is fine powder pro-
duced by grinding (Rohland and Hofreiter, 2007). Before sampling, it is recommended
to decontaminate the surface of the bone (or tooth, resp.) from contaminating envi-
ronmental and human DNA. This can be achieved by either applying bleach (sodium
hypochlorite - NaOCl) to the surface, which will destroy DNA-molecules (Kemp and
Smith, 2005) or by using UV-irradiation to crosslink superficial DNA-molecules, which
will produce thymine dimers that inhibit polymerases and prevent DNA from amplifi-

cation and sequencing (Champlot et al., 2010).

1.3 DNA Libraries

After extraction and purification aDNA has to be prepared for sequencing. A proof
reading polymerase is used to repair the overhanging 5- and 3’-ends of the double
stranded DNA molecules by either filling in a 5’-overhang or by removing a 3’-overhang
(Briggs et al., 2010). After this blunt end repair two sequencing adapter molecules
P7 and P5 are ligated to the ends of the DNA molecules and nicks in DNA strands are



repaired in a fill-in reaction using a polymerase with strand-displacement activity (Meyer
and Kircher, 2010). Finally, two DNA molecules with known nucleotide sequences are
added by amplification to the adapters. The combination of these nucleotides is unique
for every individual sample allowing to pool (multiplex) all samples and separate them
bioinformatically at a later stage (Kircher et al., 2012). Optionally, before blunt end
repair, terminal deamination damage can be removed completely (Briggs et al., 2010)
or partially (Rohland et al., 2015) using uracil-DNA-glycosylase (UDG), an enzyme
that removes uracil residues leaving abasic DNA sites which then can be cleaved by
endonuclease VIII activity. Instead of double stranded sequencing libraries it is also
possible to produce single stranded libraries, which have been demonstrated to provide
higher DNA complexity (Gansauge and Meyer, 2013) and access to shorter molecules
(Gutaker et al., 2017) compared to double-stranded DNA libraries.

1.4 Next Generation Sequencing

DNA-Sequencing is the determination of the sequence of nucleotides in a DNA molecule.
The first sequencing methods were based on chemical modification of DNA and cleavage
at specific sites (Maxam and Gilbert, 1977) or incorporation of modified nucleotides
leading to termination of strand synthesis (Sanger et al., 1977), followed by separation
of the resulting DNA molecules through gel electrophoresis. These methods could gen-
erate only a few thousands of sequences, so called reads, in a week and required a lot
of manual work. Next Generation Sequencing (NGS) denominates technologies such as
pyrosequencing (Margulies et al., 2005), sequencing by synthesis (Bennett et al., 2005),
sequencing by ligation (Pandey et al., 2008), sequencing by hybridization, and ion semi-
conductor sequencing (Rusk, 2011). These technologies can generate up to billions of
reads in a week and therefore are also referred to as High Throughput Sequencing (HTS).
In this work sequencing shall hereafter refer to Illumina sequencing by synthesis using
the sequencing platforms HiSeq 2500, NextSeq 500", HiSeq 3000 and HiSeq 4000".
These methods are based on the detection of base-specific light signals that are emitted
after a fluorophore-labeled nucleotide becomes incorporated during the synthesis of a
complementary DNA-molecule, and provide large amounts of high quality reads at rel-
atively low sequencing costs (Illumina, 2016).

The rapid development of HTS technologies in the recent years has allowed to reach an
unprecedented resolution in aDNA research. A significant role in this development was

played by the sequencing costs. In coherence with Moore’s law, which is an observation



on computer hardware made by Gordon Moore in 1965 describing the doubling of com-
putational power every two years (Moore, 1965), the sequencing costs per mega base
of DNA sequence had been linearly decreasing until the takeover of Next Generation
Sequencing (NGS) methods in 2005 (Wetterstrand, 2016). Since then sequencing costs
per (human) genome decrease by an order of magnitude every year, and nowadays whole
genome sequencing (WGS) costs 1000 US $ on average (NIH, 2019).



2 Applications of aDNA Capture

2.1 Current Methods for Target DNA Enrichment

While decreasing sequencing costs being a positive trend, another approach has become
very popular: targeted DNA capture is a cost-efficient way to obtain a high sequence
coverage (i.e. high representation by sequencing reads) of genetic regions of interest,
such as specific markers or single nucleotide polymorphisms (SNPs). This is of special
interest to aDNA research, since aDNA molecules are often badly preserved and present
in minimal amounts, which makes shotgun sequencing (i.e. untargeted sequencing of
the whole genome eventually including environmental DNA) very cost-intensive, if a
sufficient genomic coverage has to be reached.

Capture by hybridization is based on the principle of the complementarity of DNA. In
contrast to Polymerase Chain Reaction (PCR), which uses specific primers to amplify
the region of interest, it makes use of nucleic acid sequences (probes) complementary to
the genomic regions of interest, which hybridize to these probes and become sequenced,
while fragments that did not hybridize are discarded (Penalba et al., 2014). To date, two
approaches are common for the enrichment of regions of interest (target regions): solid
capture and in-solution capture. Solid capture is based on microarrays with clusters of
nucleic acid probes attached to their surfaces (Hodges et al., 2009), while these probes
can also be in solution (Gnirke et al., 2009, Maricic et al., 2010, Mason et al., 2011, Li
et al., 2013). Capture by hybridization has proven itself efficient in target enrichment of
modern and archaic human mitochondrial DNA (mtDNA) (Maricic et al., 2010, Krause
et al., 2010, Briggs et al., 2009) and nuclear DNA (ntDNA) (Bi et al., 2012, Haak et al.,
2015, Fu et al., 2016), as well as in enrichment of late Pleistocene megafaunal mtDNA
(Dabney et al., 2013, Enk et al., 2016, Soubrier et al., 2016).



2.2 Study 1: Capture of Giant Deer Mitochondrial
DNA

As a frequent case of targeted enrichment, mitochondrial DNA (mtDNA) capture has be-
come a widely used approach in the last eight years. Mitochondria are cell organelles that
are involved into cellular energy supply, cell cycle, cell growth, signalling and cell death
(McBride et al., 2006), and contain their own DNA. The mtDNA is circular and present
in 102 to 10* copies per cell (Furtwaengler et al., 2018), whereas nuclear DNA (ntDNA)
is only present in two copies in somatic cells. The higher abundance of mtDNA over
ntDNA makes it attractive for genetic analyses especially in aDNA research. Compared
to ntDNA capture, mtDNA capture is a relatively economical and simple approach.
Following the protocol after Maricic et al. 2010, a long-range PCR is used to gener-
ate two long-range PCR products that encompass the complete mitochondrial genome.
These products are sheared into 150-850 base pair (bp) fragments, that then get biotiny-
lated and purified, before being bound to streptavidin-coated magnetic beads (such as
SPRIselect) (Maricic et al., 2010). The so generated bait are being pooled together with
aDNA-sequencing libraries for hybridization of complementary DNA molecules to the
bait. Molecules, that have not hybridized after 48 hours (h) of incubation, are washed
away, thereby allowing for an enriched concentration of target molecules for sequencing.
Using mitochondrial DNA capture we were able to capture and reconstruct two almost
complete mitochondrial genomes of the extinct giant deer Megaloceros giganteus (also
erroneously misnamed the "Irish EIk", (Gould, 1977)) from 12.500 years old (12.5 kyo)
skeletal remains. The giant deer was believed to have gone extinct after the Last Glacial
Maximum (LGM, ca. 20.000 - 12.500 years ago (kya)) in Central and Western Europe,
although the last members of its populations survived to around 7.7 kya in Western
Siberia (Stuart et al., 2004). Furthermore, a debated question concerned the phyloge-
netic placement of the giant deer - a closer relatedness to the red deer Cervus elaphus was
proposed based on post-cranial skeletal elements (Pfeiffer, 2002), whereas large palmate
antlers suggested a closer genetic affinity to the fallow deer Dama dama (Freudenberg,
1914, Lister, 1984). Earlier analyses of cytochrome b and regions of the mitochondrial
D-loop provided evidence for a closer genetic relatedness to the fallow deer although the
statistical support was rather low (Lister et al., 2005, Hughes et al., 2006). However,
complete mitochondrial giant deer genomes were missing, which would have provided
enough information to finally resolve the giant deer’s positioning in the cervid family

tree.



2.2.1 Archaeological Material

When bone fragments from large cervids were discovered in the Swabian Alb dur-
ing an excavation at the Hohlenstein Stadel site (ST) and the Hohlefels site (HF) in
Baden-Wuerttemberg (Southwestern Germany) in 2008, they were assumed to belong to
Eurasian elk (Alces alces). Among the skeletal remains a piece of an atlas, two fragments
from a scapula, two pelvic fragments, two ribs, a molar, a skull fragment, a fragmented
tibia and a metatarsus fragment were discovered (fig. 2.1 A). However, some morpho-
logical traits appeared not completely consistent with elk, but the limited resolution
provided by the morphology of the sparse and fragmented bone material did not allow
an unequivocal identification of the species (fig. 2.1 B - E). Therefore, the tibia and the

metatarsus fragments were used for a palaeogenetic analysis.

2.2.2 Extraction of Giant Deer DNA and Library Preparation

After the palaeontological material had been obtained, DNA had to be extracted, purified
and prepared for sequencing. DNA extraction was performed with 50 mg bone powder
per sample as described in section 1.2 using a guanidinium-silica based method (Rohland
and Hofreiter, 2007). DNA libraries were prepared and indexed following published
protocols (Meyer and Kircher, 2010, Kircher et al., 2012) as described in section 1.3. All
extractions and pre-amplification steps of the library preparations were performed in a
clean room and negative controls were used for each reaction. Indexed libraries were

amplified, purified and quantified outside the clean room.

2.2.3 Bait Preparation and Capture

In parallel, bait had to be prepared for mitochondrial DNA capture (mt capture). For
bait preparation DNA from a related species has to be used. DNA was extracted from
a roe deer’s (Capreolus capreolus) blood sample. To amplify a sequence of DNA, DNA
polymerases require a 3’ hydroxyl group (OH) as a starting point. Oligonucleotides that
provide this 3 OH group can be generated and ordered as a set of a forward and a reverse
primers that will specifically anneal to the target DNA sequence. Following the protocol
after Meyer and Kircher 2010, 20 nt long primers were designed using the Primer3Plus
online software (Untergasser et al., 2007) and used to produce two long-range PCR
products that encompass the complete 16.6 kilo bases (kb) long roe deer mtDNA. The
PCR products were sheared, biotinylated and immortalized on streptavidin-coated mag-

netic beads followed by capture through hybridization as described above (sec. 2.2) and



Figure 2.1: Skeletal remains of Megaloceros giganteus. A Megaloceros giganteus skeleton
(template obtained from http://imgl3.deviantart.net/2f6c/i/2010/065/1/
9/megaloceros_skeleton_by_cynothic.jpg). Highlighted skeletal fragments
were discovered during the excavation and fragments highlighted in green were
used for palaeogenetic analyses. B Tibia fragments (top) compared to a giant
deer tibia (middle) and a tibia of an elk (bottom). C M. giganteus skull fragment
(on the left) compared to an elk skull. D M. giganteus molar compared to the
mandible of a giant deer museum specimen. E Fragment of a M. giganteus atlas
compared to a complete giant deer atlas.

sequencing on the Illumina Hiseq 2500 platform (fig. 2.2).

2.2.4 Sequence Processing and Assembly

Although partial giant deer mtDNA sequences consisting of cytochrome b (cytb) were
published previously (Lister et al., 2005, Hughes et al., 2006), so far whole mitochondrial
genomes had not been reconstructed. Sequence reads were assigned to each sample based
on their combination of index molecules. Forward and reverse reads were merged into
single sequences if they overlapped by at least 11 bp (Kircher et al., 2011) and filtered
for a length of at least 30 bp. The quality filtered reads were aligned to the complete
mitochondrial reference sequence of a roe deer ( Capreolus capreolus, NC_020684.1) using
a custom mapping iterative assembler (MIA) (Green et al., 2008). This program was
initially designed to reconstruct the mitochondrial genome sequence of the Neandertal
and accounts for aDNA deamination damage and short reads (Green et al., 2008). It
aligns reads to the reference sequence and generates a consensus sequence by collapsing
all reads covering a certain region and calling a consensus base based on the majority
of basecalls in the reads at each position. The consensus sequence is used as a new

reference sequence and the process is iterated until the consensus sequences converge.
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Figure 2.2: Mitochondrial DNA capture of the giant deer’s mtDNA. Total DNA is extracted

from a metatarsal fragment of a giant deer (Megaloceros giganteus) and turned
into sequencing libraries. To generate bait for mtDNA capture, two long-range
PCR products are produced from related mtDNA of a roe deer (Capreolus capre-
olus) and fragmented into shorter molecules which are biotinylated and ligated
to streptavidin-coated magnetic beads. Sequencing libraries are made single-
stranded and pooled together with the bait made from roe deer mtDNA. Giant
deer mtDNA molecules bind to the roe deer mtDNA bait because of sequence
complementarity, get eluted and can be used for amplification and sequencing,
whereas unbound environmental DNA is washed away.

A consensus base was called only if the coverage at this position was at least 5-fold.

In addition, aDNA damage patterns were called using a script from the MIA package

T
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- L] \%
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Figure 2.3: Bioinformatic analysis of sequencing data. Reads are merged, quality filtered

and aligned to a reference sequence to generate a consensus sequence. A multi-
ple sequence alignment is performed including the generated consensus sequence.
Based on the alignment, different methods can be used to construct a phyloge-
netic tree. In addition, deamination damage patterns can be visualized and used
for authentication of aDNA.
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2.2.5 Multiple Sequence Alignment

Multiple sequence alignments (MSA) are among the most widely used bioinformatic anal-
yses. Multiple sequence alignment programs such as ClustalW and ClustalX make use
of dynamic programming algorithms such as Neighbor-Joining, which cluster sequences
after computing all pairwise sequence distances and storing them into a distance matrix
(Larkin et al., 2007). Sequences with the lowest distance are put together into a single
cluster and the distance matrix is recalculated, followed by joining the sequence with
the lowest distance to the cluster. Using the program MEGAG6 (Tamura et al., 2013)
the reconstructed mtDNA consensus sequences of both giant deer specimens were run
together in a multiple sequence alignment with 44 cervid mtDNA consensus sequences
available on GenBank (Benson et al., 2014) using the ClustalW algorithm, followed by
a phylogenetic analysis (results are presented in the publication below: page 5, fig. 3.)

Apart from the reconstruction and the phylogenetic analysis of the two ancient mito-
chondrial genome sequences, it had to be shown that the reconstructed sequences origi-
nate from M. giganteus. The only comparable data published so far were a cytochrome
b (cytb) sequence from a M. giganteus specimen from western Siberia (Lister et al.,
2005) and another one from Ireland (Hughes et al., 2006). Therefore, for our giant deer
specimens, cyth sequences were reconstructed using the cytb reference sequence of a roe
deer (Capreolus capreolus, Y14951.1) instead of its complete mitochondrial reference se-
quence (NC_020684.1). Cytb sequences presented in (Lister et al., 2005; AMO072744.1)
and (Hughes et al., 2006; AM182645.1) were obtained from GenBank together with
cytb sequences of roe deer (Y14951.1), fallow deer (AJ000022.1, AM072742.1), hog deer
(AY035874.1), Wapiti (AF423199.1), Sika deer (B021095.1), red deer (AF423195.1),
Eld’s deer (AY157735.1), Axis deer (AMO072743.1) and a cytb sequence of Eurasian elk
(KC337273). The sequences were supplemented with the reconstructed cytb sequences
of both giant deer specimens from Hohlenstein-Stadel and Hohlefels to perform a MSA
using the ClustalW algorithm in MEGA6. Small deer Muntiacus muntjak (FJ556562)

cytb sequence was also included as an outgroup.

2.2.6 Phylogenetic Analyses

Phylogenetic reconstruction aims at a graphical representation of the inferred evolutio-
nary history of operational taxonomic units (OTU) such as DNA or protein sequences
or even species. This can be in the form of a tree diagram or a phylogenetic network.

Different algorithms have been developed for this type of analysis. In the following, the
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application of three popular phylogenetic reconstruction concepts shall be illustrated
using the example of the M. giganteus cytb: Maximum Parsimony (MP), Maximum
Likelihood (ML) and Bayesian Inference (BI).

Following Ockham’s razor principle MP assumes that the best evolutionary scenario is
the one that explains the evolutionary history of an OTU in the most parsimonious
way, i.e. assuming the lowest amount of phylogenetic changes (Baum and Smith, 2013).
Given a data set, such as a MSA, the MP method tries to identify the largest subset of
common positions among the OTUs, while keeping the amount of mutations to a mini-
mum. The tree with the shortest length, i.e. the least amount of changes, is chosen as
the best tree. Algorithmically MP minimizes the number of mutations in a phylogenetic
tree by assigning character states to interior tree nodes without taking branch lengths
into account. This can cause attraction between long branches which will for example
erroneously show the taxa on their terminal nodes (leafs) as closely related despite a
shorter genetic distance between those taxa and taxa at the ends of shorter branches
(Bergesten, 2005). This algorithmic artifact is known as long branch attraction and is
especially problematic in case of convergent evolution: shared, but independently de-
rived traits will be grouped together assuming a common ancestor. Compared to other
methods MP gives the most simple explanation for given data.

ML is a parameter-oriented approach for the reconstruction of a phylogeny. Given a
MSA and parameters such as the evolutionary substitution model, it calculates all pos-
sible phylogenetic trees and computes the likelihood for every tree based on the given
parameters. The tree with the highest likelihood for the given parameters is chosen as
the ML tree. Initially, a starting tree is generated and the overall tree-topology likeli-
hood is computed from all single site likelihoods based on the parameters. Then, the
tree topology gets changed and the likelihood is recalculated. This is repeated until
the topology with the ML is found (Schmidt and Haeseler, 2009). ML considers branch
lengths and nucleotide substitution rates, and therefore offers a more realistic evolution-
ary scenario than MP.

A phylogenetic tree is called fully resolved if each of its inner nodes has exactly two
descendant lineages. The branching is called dichotomous and the tree is called binary
(Baum and Smith, 2013). This does not have to be always the case, since the actual
evolutionary scenario might have produced more than two descendant lineages in a radi-
ation event, a so called polytomy (fig. 2.4). In phylogenetic trees, polytomies more often
indicate a branching uncertainty. The bootstrap method was developed in order to test

the reliability of phylogenetic trees. It re-samples the original data set by replacement of
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data points to create a set of pseudo-replicates of the same size as the original data, each
of which is analyzed in the same way as the original data set. The bootstrap method
then calculates the variation among the resulting phylogenetic estimates in order to de-
termine the error in making phylogenetic estimates from the original data (Felsenstein,
1985). The lower the error, the higher is the statistical bootstrap support. A high
bootstrap support for a clade is indicated by a number of > 0.8 at the branching node,
meaning that if e.g. 1000 bootstrap replicates were generated, at least 800 replicates
would show that particular clade (Baum and Smith, 2013).

BI is based on the posterior probability of a phylogenetic tree. Similar to ML it requires
parameters and uses a likelihood function to calculate the probability of a phylogenetic
tree. Using Bayes’ Theorem (Lopez Puga et al., 2015) BI infers the conditional "poste-
rior" probability of a phylogenetic tree under "prior" parameters depending on the given
data. BI became significantly efficient in combination with the Marcov Chain Monte
Carlo (MCMC) algorithm: After choosing a random starting tree from a set of possible
phylogenies and random parameters, a new tree and new parameters are chosen. The
chosen tree and the parameters represent a state. The conditional probability for the
new state depending on the given data is calculated. If the probability is higher com-
pared to the previous state, the new state is chosen. This process is run millions of
times. The algorithm visits different trees and calculates posterior probabilities until
reaching an equilibrium distribution (Yang and Rannala, 2012). The tree with the high-
est posterior probability is chosen to best represent the data assuming that the given
priors are correct.

Inferring phylogeny with BI requires prior selection of an appropriate evolutionary model.
Different assumptions of nucleotide substitution frequencies and rates have been imple-
mented into various models for the correction of unseen or multiple substitutions. For
example, Jukes & Cantor (JC69) is the simplest correction model which predicts that
all nucleotide substitutions happen at the same rate (Jukes and Cantor, 1969). Higher

A B C D E

polytomy

dichotomy

Figure 2.4: Dichotomy and polytomy. An example phylogenetic tree indicating a dichoto-
mous split at the node comprising taxon B and C,D,E, and a polytomous split
at the node including taxa C,D,E.
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substitution rates are proposed for transitions than for transversions in Kimura’s K80
model (Kimura, 1980) assuming that substitutions happen at the same frequency in
both directions (fig. 2.5). On the contrary, the HKY model after Hasegawa, Kishino and
Yano weights substitution directions differently assuming that pyrimidines (cytosine and
thymine) appear more frequently than purines (adenine and guanine) and assigns the
highest substitution rate between thymines and cytosines (Hasegawa et al., 1985). Mo-
dels that are based on a strict molecular clock assume that the nucleotide substitution
rate is constant among different species and at all sites, whereas models with a relaxed
molecular clock account for a variable rate of substitutions at different sites and between
different species, and therefore represent the evolutionary history in a more realistic way
(Drummond et al., 2006). Moreover, programs such as jModelTest (Darriba et al., 2012)
are availabe for testing which substitution model fits best the given data.

Using the program jModelTest 2.1.4 the HKY model was identified as the best-fit nu-
cleotide substitution model for reconstructing a phylogeny from the multiple cervid cytb
sequence alignment described above. BI was conducted in MrBayes3 (Ronquist and
Huelsenbeck, 2003) using the HKY nucleotide substitution model and a tree search
based on a random starting tree. In three independent runs four Marcov chains were
run for 5 000 000 times, with tree sampling every 100 times. The first 25 % of the
generated trees were used as a training set and therefore not regarded for inference of
the phylogeny.

In parallel ML and MP phylogenies were generated in MEGAG6 based on the cytb MSA.
After removing all gaps caused by missing data or deletions (resp. insertions) phylo-
genies were reconstructed from a common sequence length of 640 informative positions
using a bootstrap support of 5000 data set replicates. Reconstructions of phylogenetic

relationships under maximum likelihood and maximum parsimony resulted in exactly

Jce9 K80 HKY85
o—0 0—0 00

R R d

Figure 2.5: Nucleotide substitution models after Yang and Rannala, 2012. Nucleotide fre-
quencies are represented by the size of the circle assuming that the substitution
process is in equilibrium. The thicker the arrow, the higher is the substitution
rate among the four nucleotides (T, C, A and G). While JC69 and K80 predict
equal proportions of the four nucleotides, HKY85 predicts different proportions.
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the same tree topology (fig. 2.6 B). Both methods provided a bootstrap support of 100 %
for the specimens from the Swabian Alb (ST, HF) forming a common clade with the
giant deer specimens from Siberia (Lister et al., 2005) and Ireland (Hughes et al., 2006)
which reaffirms the authenticity of the Swabian Alb specimens being of Megaloceros gi-
ganteus origin. The phylogenetic position of the giant deer specimens was independently
confirmed by the Bayesian method. Interestingly, BI showed both specimens from the
Swabian Alb and the specimen provided by Lister et al., 2005 as a result of polytomy
(fig. 2.6 A). Although the posterior probability at this node being low (51 %), which
suggests an unresolved phylogeny, the Irish specimen forms a sister clade to this node
supported by a posterior probability of 100 %. Consistent with the results from full
mtDNA sequences presented in the publication attached below (page 5, fig. 3) all three
different cytb-based phylogenetic reconstruction approaches independently support gi-
ant deer being closer related to fallow deer and clearly isolated from other cervids, such

as red deer, Eurasian elk and roe deer.

A Fallow Deer ) B Fallow Deer )
/ Mesopotamian Fallow Deer 5342 Megaloceros Hughes etal Fallow Deer (Dama darma)
/ Fallow Deer (Dama dama)
100

Megaloceros Lister et al.
. Fegaloceros Lister et al. w
51 % ‘
Megaloceros ST 40/42 egaloceros HF
\ Giant Deer (Megaloceros giganteus)
100 P
Megaloceros HE T\ ciant eer tregaioceros giganteus) Megaloceros ST

I Megaloceros Hughes et al 19/15 ; Mesopotamian Fallow Deer

Figure 2.6: Inferred phylogeny of giant deer using 3 different methods. A BI tree obtained
using the HKY evolution model and 3 independent runs for 5 x 10° generations.
Node numbers indicate posterior probability values. B ML/MP tree based on
640 informative positions supported by 5000 bootstrap replicates. Node numbers
indicate bootstrap values for ML /MP. Swabian Alb specimens fall together with
giant deer from Ireland and Siberia confirming their giant deer origin.
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The giant deer Megaloceros giganteus is among the most fascinating Late Pleistocene Eurasian
megafauna that became extinct at the end of the last ice age. Important questions persist regarding
its phylogenetic relationship to contemporary taxa and the reasons for its extinction. We analyzed
two large ancient cervid bone fragments recovered from cave sites in the Swabian Jura (Baden-
Wiirttemberg, Germany) dated to 12,000 years ago. Using hybridization capture in combination with

. next generation sequencing, we were able to reconstruct nearly complete mitochondrial genomes

© from both specimens. Both mtDNAs cluster phylogenetically with fallow deer and show high

: similarity to previously studied partial Megaloceros giganteus DNA from Kamyshlov in western Siberia
and Killavullen in Ireland. The unexpected presence of Megaloceros giganteus in Southern Germany
after the Ice Age suggests a later survival in Central Europe than previously proposed. The complete
mtDNAs provide strong phylogenetic support for a Dama-Megaloceros clade. Furthermore, isotope
analyses support an increasing competition between giant deer, red deer, and reindeer after the Last
Glacial Maximum, which might have contributed to the extinction of Megaloceros in Central Europe.

The extinct giant deer Megaloceros giganteus (also Irish Elk), first described by Blumenbach in 1799',
stands out amongst the Pleistocene megafauna not only due to its sheer body size, but also because of
its immense antlers, which spanned up to 4m in diameter and weighted up to 45kg?. Appearing in the
fossil record around 400,000 years ago (ya)?, its populations are thought to have ranged from Ireland to
Lake Baikal’. Many theories have been proposed to account for its pattern of distribution across Eurasia
in the Late Pleistocene and its extinction in the early Holocene. One unresolved question concerns the
reason for the absence of giant deer during the Last Glacial Maximum (LGM, 20,000 - 12,500 ya) in
Western and Central Europe, implying that these species had completely withdrawn from the region®.
Before its purported extinction ca. 6,900 ya in western Siberia, Megaloceros recolonized northwestern
Europe in the Late Glacial Interstadial’; however, no evidence has thus far been found for the presence
of giant deer in Southern- and Central Europe.

The phylogenetic position of Megaloceros within the family Cervidae is still debated. The presence
of large palmate antlers in extant fallow deer (Dama dama) and Megaloceros giganteus suggests a close
relationship between the two species®’, whereas postcranial skeletal characters place Megaloceros into
a group comprising red deer (Cervus elaphus), cheetal (Axis), and bush antlered deer (Eucladoceros)®.
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Figure 1. Ancient large cervid remains. (a) A tibia fragment (ST/213/203/144) from the Hohlenstein Stadel
cave and (b) a metatarsus fragment (HF/65/100) from the Hohle Fels cave site.

Roe_Deer_mtl_ AAGCAAGGCACTGAAAATGC
forward

Roe_Deer_mtl_ TTGGTACAGGATAGGGTCTCC
reverse

Roe_Deer_mt2_ AACCGCACATGCATTTGTAA
forward

Roe_Deer_mt2_ GGTTGTTTGCAGTGACGAGA
reverse

Roe_Deer_mt3_ CATCATGACCACAAGCTCCG
forward

Roe_Deer_mt3_ CGTGTGCTTGATACCAGCTC
reverse

Table 1. Forward and reverse primer pairs used to generate bait from roe deer mtDNA for targeted mtDNA
enrichment.

Previous genetic studies on short regions of mitochondrial DNA (mtDNA) provide evidence for a closer
relationship to fallow deer®'%; however, the statistical support for the Dama - Megaloceros clade is low,
likely due to the partial mtDNA regions studied and the limited availability of modern cervid mtDNA
for comparison''2. Here we present two reconstructed nearly complete mitochondrial genomes of large
cervid bone fragments found in two cave sites in Southern Germany dating to the late glacial period
(ca. 12,000 ya). Phylogenetic analyses reveal that both specimens derive from Megaloceros giganteus.
Comparison against mtDNAs from 44 extant deer species provides furthermore strong support for a
Dama - Megaloceros mtDNA clade.

Results and Discussion

Morphological Analyses and Dating. During an excavation at the Hohlenstein Stadel cave at the
Lone Valley (Baden-Wiirttemberg, Southwestern Germany), an accumulation of large cervid bones
was discovered including an almost complete atlas, two scapulae and two pelvic fragments, two ribs,
a tooth (M3) and six fragments of a tibia. Apart from these finds, a metatarsus shaft fragment from a
large cervid was obtained from the Hohle Fels cave at Schelklingen (Baden-Wiirttemberg, Southwestern
Germany). We genetically analyzed one of the six tibia fragments (ST/213/203/144, Fig. 1a) recovered
from Hohlenstein Stadel cave, dated to 12,175+ 50 uncal ya (ETH-41223), and the metatarsus fragment
(HF/65/100, Fig. 1b) from Hohle Fels cave, which was dated to 12,370 4 30 uncal ya (MAMS-16557).
Radiocarbon ages were calibrated based on IntCall3 curve and calculated using the Calib 7.0 program.

mtDNA assembly. In order to reconstruct the mitochondrial genomes of our ancient cervid
specimens, we isolated the total DNA, turned it into DNA sequencing libraries and enriched for mtDNA
using bait generated from modern roe deer with specific primers (table 1). Illumina sequencing on a
HiSeq2500 produced 944,648 and 6,123,389 merged reads, for Hohlenstein Stadel and Hohle Fels, respec-
tively. These reads were mapped to the mitochondrial reference sequence of a roe deer (NC_020684.1)
and a fallow deer (JN632629.1). Consensus sequences were generated for each sample based on at least
3-fold coverage. Both ancient samples produced identical consensus sequences for overlapping regions,
demonstrating mitochondrial similarity. However, using fallow deer'® as a mapping reference, created an
almost complete mtDNA sequence (91.52% for Hohlenstein Stadel and 99.99% for Hohle Fels), with 7634
unique mapping fragments for the Hohlenstein Stadel sample and 1,009,775 unique mapping fragments
for Hohle Fels (table 2). The consensus sequence generated from positions with at least 3-fold coverage
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Unique Unique Average
Total Merged | mapped Average Read %C->T
Sample 1C cal BP 2 sigma | Reads Reads Coverage Length substitutions
Hohlenstein Stadel 13904 — 14215 944,648 7,634 28x 60 27
Hohle Fels 14153 — 14681 6,123,389 1,009,775 5296x 85 49
Hohlenstein Stadel EB 13904 — 14215 422,344 193 1.3x 109 0
Hohlenstein Stadel LB 13904 — 14215 320,132 264 1.8x 109 0
Hohle Fels EB 14153 — 14681 50,832 48 0.2x 76 0
Hohle Fels LB 14153 — 14681 337,962 25 0.17x 108 0

Table 2. Mapping results for the Hohlenstein Stadel sample (ST/213/203/144) and the Hohle Fels sample
(HF/65/100). EB: Extraction blank, LB: library blank. Columns from left to right: Sample, calibrated
radiocarbon date, number of merged reads, number of unique mapped reads to the fallow deer mtDNA
sequence, average mitochondrial genome coverage, average read length, and frequency of C to T
substitutions at 5" end.

from the high-coverage Hohle Fels sample was subsequently used as reference sequence to re-align the
Hohlenstein Stadel fragments. Remapping to this consensus sequence provided 7782 mapped fragments
after duplicate removal for the Hohlenstein Stadel sample.

DNA damage patterns. To authenticate the sequenced fragments as ancient, the frequency of termi-
nal substitutions was analyzed. It has been suggested that C to T substitutions at the 5" end and G to A
substitutions at the 3’ end are likely caused by deamination of cytosine causing miscoding lesions; these
accumulate over time, and hence are characteristic of ancient DNA'. DNA fragments with frequencies
of at least 20% for both types of substitutions at the 5" and 3’ end can be regarded as authentic ancient
DNA". We observed a substitution frequency of 27% for C to T changes at the 5’ ends and a substitution
frequency of 25% of G to A at the 3’ ends of sequence reads in the Hohlenstein Stadel sample (Fig. 2a).
In the Hohle Fels sample 49% of the sequence reads showed a C to T substitution at the 5 ends and
48% a G to A substitution at the 3’ ends (Fig. 2b). These values almost reach the theoretical maximum
of 50% deamination at single stranded overhangs with a double strand library preparation protocol and
indicate authentic ancient mtDNA in both faunal remains.

Phylogenetic Analysis. The reconstructed mtDNAs from both ancient cervid bones were aligned
with 44 publicly available full mitochondrial genomes of extant cervids. The hypervariable D-loop region
was excluded from the cervid mtDNA alignment due to its fast evolutionary rate that may decrease
the phylogenetic resolution. We used MEGA 6.0.6 to construct both a maximum-likelihood (ML) tree
(Fig. 3a) and a maximum-parsimony (MP) tree (Fig. 3b) and robustness of both methods was tested
with 1000 bootstrap replicates. The best-fit substitution model for ML was identified with MEGA 6.0.6
to be the General Time Reversible (GTR+G+1I) model (BIC score=215112.733). A discrete Gamma
distribution was used to model evolutionary rate differences among sites (5 categories (4+G, parame-
ter=10.3366)). The rate variation model allowed for sites to be evolutionarily invariable ([+I]). Both
tree reconstructions were based on a total of 14,147 positions. Alpine musk deer (Moschus chrysogaster,
KC425457.1) was chosen as an outgroup. Both ML and MP topologies place the mtDNA sequences
reconstructed from our two ancient cervid bones (Hohlenstein Stadel and Hohle Fels) in a completely
resolved clade with both extant fallow deer subspecies (Dama dama and Dama mesopotamica), and
exclude them from the group comprising Pere David’s Deer (Elaphurus davidianus), Rusa sp. and red
deer (Cervus elaphus sp). The other large cervid present in Europe during the Pleistocene, the European
elk, Alces alces, can also be excluded as the source of our ancient cervid bones.

The relationship of our ancient cervids to both Dama species within the Dama clade is, however, not
completely resolved. As Dama was only introduced to Europe in the Medieval period!® and is absent in
the palaeontological record of Western Eurasia, and since both ancient cervid bones derive morphologi-
cally from a large cervid, which is not elk (Alces alces) based on phylogenetic evidence, we conclude that
both specimens originate from Megaloceros giganteus. To test this hypothesis we further compared our
reconstructed ancient cervid mtDNAs to cytochrome b (cytb) regions of Megaloceros mtDNA previously
published (table 3). We observe 1 nucleotide difference (mismatch) for the Hohlenstein Stadel sample
compared to the previously published cytb sequence from a complete M. giganteus skeleton from the
Kamyshlov site in western Siberia® and no nucleotide differences compared to the cytb sequence obtained
from a M. giganteus astralagus from Killavullen in Ireland'®. However, 7 bases in the Hohlenstein Stadel
cytb sequence could not be resolved because the coverage was too low at those positions. We find only
1 mismatch between the Hohle Fels sample and each of the previously published M. giganteus cytb
sequences. For the same region we find 89 mismatches between the Hohlenstein Stadel sample and fallow
deer’ and 87 mismatches compared to red deer'’, whereas for the Hohle Fels sample we observe 104
mismatches compared to fallow deer and 97 mismatches to red deer, respectively.
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Figure 2. Substitution pattern at the 5" and 3’ ends of the aligned sequence reads from the Hohlenstein
Stadel sample (a) and the Hohle Fels sample (b). The misincorporation plots were generated using a custom
software extension package (Krause J. et al. A complete mtDNA Genome of an Early Modern Human from
Kostenki, Russia. Curr. Biol. 20, 231-236 (2010)).

The small nucleotide distance of our ancient large cervids and both previously determined giant deer
cytb sequences confirm the attribution of our samples to Megaloceros giganteus. The close genetic rela-
tionship between the large cervid bone from Hohle Fels and the giant deer skeleton from Kamyshlov in
western Siberia (AM072744.1)° and the giant deer astragalus from Killavullen in Ireland (AM182645.1)',
respectively, suggests furthermore a close maternal relationship and low genetic diversity between
Nothwestern European, Eastern and Central European giant deer populations.

Stable Isotopes. To evaluate the stable isotope signature of our ancient cervids from the Hohle Fels
and Hohlenstein Stadel cave sites, stable isotopes from collagen carbon (**C) and nitrogen (**N) were
measured and compared to large cervids present in Central Europe during the Pleistocene such as red
deer, reindeer, and giant deer'®%. Pre-LGM (ca. 35,000 uncal ya) Megaloceros samples from Southern
France and Belgium typically show isotopic signatures of collagen comparable to those of red deer
(Cervus elaphus), while reindeer (Rangifer tarandus) provides systematically higher §3C,; values likely
due to the consumption of lichen® (Fig. 4a). During the Late Glacial period (13,000 - 12,000 uncal ya),
the'®C-based distinction among larger cervids from the Swabian, French, and Swiss Jura decreases. Stable
isotope signatures of our both ancient cervid bones from the Hohle Fels cave and the Holenstein Stadel
cave fall inside the red deer-reindeer cluster reflecting a potential overlap in diet and habitat (Fig. 4b).

Discussion

We obtained nearly complete mtDNA sequences from two ancient cervid bones from the Swabian Alb
dated to 12,1754 50 uncal ya (13,904 - 14,215 cal ya) and 12,3704 30 uncal ya (14,153 - 14,681 cal ya),
respectively. Both sequences are distinct from 44 mtDNAs of extant cervids. The phylogenetic analyses
suggest that the reconstructed mtDNAs are maternally closely related to fallow deer (Dama). Based on
the phylogenetic position of our reconstructed ancient mtDNAs, their close genetic relationship to the
previously determined partial cyth sequence from a complete giant deer skeleton from western Siberia®
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Figure 3. Phylogenetic trees of full mtDNA sequences from 44 extant cervid species and two ancient
mtDNA sequences from two ancient cervid bones likely representing Megaloceros giganteus. Each tree is
based on 14,147 positions. Bootstraping was performed with 1000 bootstrap replicates. Only bootstrap
values different from 100 are indicated at inner nodes. (a) Maximum-likelihood tree based on the General
Time Reversible (GTR+G+1) model®. (b) Maximum-parsimony tree. Branch-numbers in the Parsimony
tree indicate the accumulated steps of genetic change (base substitutions) for each species after the
divergence from its most recent common ancestor. Both topologies place Megaloceros giganteus together with
fallow deer (Dama sp.) into a destinct clade from red deer (Cervus elaphus). Both trees were rooted with
musk deer (Moschus chrysogaster) as outgroup. The deer drawings were kindly prepared and provided by
Kerttu Majander.

Hohlenstein
Stadel cytb 1 0 8 87
Hohle Fels cytb 1 1 104 97

Table 3. Number of nucleotide differences between the reconstructed and previously published cervid cytb
sequences.

and to the complete cytb sequence from a giant deer astralagus from Ireland'® and due to the absence of
fallow deer in Europe in the Pleistocene as well as due to the size of the bones, we conclude that both
specimens derive from Megaloceros giganteus. We find strong support for a close maternal relationship
to both Dama species. The maternal relationship within the Megaloceros-Dama clade however could not
be resolved in our phylogeny suggesting an almost equal genetic distance of the two fallow deer species
and giant deer. Our results disagree with the morphological conclusions that Megaloceros is closer related
with a group comprising Cervus, Axis, and Eucladoceros®?!, and that the occurrence of palmate antlers in
Megaloceros and Dama must be the result of homoplasy. Our results also disagree with the conclusions
derived from short mtDNA sequences such as partial cytb reported by Kuehn and colleagues? which
suggested a Cervus-Megaloceros clade and attributed the palmate antlers in Megaloceros and Dama to
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Figure 4. (a) Stable isotope values of reindeer (Rangifer), red deer (Cervus) and Megaloceros before the
LGM in SW France and Belgium and (b) after the LGM in the Swabian, Swiss and French Jura indicate a
decrease in the distinction between the isotope signatures of the three cervid species after the LGM, which
might be due to overlapping diet and habitat. The deer drawings were kindly prepared and provided by
Kerttu Majander.

homoplasy. Instead, our results support the hypothesis of a Megaloceros-Dama clade suggested by previ-
ous studies based on morphological features and phylogenetic analyses from cytb>>>'°,

Megaloceros is traditionally considered a species adapted to open-areas that could have suffered
from the development of forest in the early Holocene, most likely because the huge antlers would have
restricted the movement of males in dense woodland®. However, anatomy and distribution suggest that
Megaloceros was a mixed feeder®, and carbon-13 results on enamel of Megaloceros of previous interglacial
periods support the possibility of a boreal habitat®. Isotope signatures of our two Megaloceros samples
reveal that the diversity in habitat and diet decreased after the LGM between Megaloceros, red deer, and
reindeer, probably resulting in an increased competition among the deer species in Central Europe. The
overlapping niches and thus the increased competition with other deer species could explain, at least in
part, the local extinction of Megaloceros in Southern Germany.

In conclusion, we generated two almost complete mitochondrial genomes from large cervid bones
from the Hohle Fels and Hohlenstein Stadel caves in Southwestern Germany that date back to 12,000
uncal ya. Phylogenetic comparisons to contemporary deer mtDNA and previously determined ancient
cytb DNA suggest that both mtDNA genomes derive from Megaloceros giganteus, which demonstrates its
presence in Central Europe after the LGM. The close maternal relationship with the two fallow deer species
resulting in a near polytomy in the Dama-Megaloceros clade questions the morphology-based grouping
of giant deer and fallow deer in two separate genera. To date there has been no evidence that Megaloceros
recolonized Central Europe after the LGM?>; our findings provide support that Megaloceros returned to
central parts of Europe even if the presence of humans might have hindered the re-colonization. In addi-
tion stable isotopes from our ancient cervid bones suggest a direct competition with other cervid species
at the onset of the Holocene, potentially due to the lack of niche partitioning. Thus enviromental factors
may have played an important role in the final extinction of the giant deer.

Material and Methods

Extraction of ancient DNA. Bone samples were exposed to UV-light overnight to remove surface
contamination. A sample of 50mg was removed from the inside of the longbone of each bone using a
dentistry drill. DNA extraction was carried out using a guanidinium-silica based method®*. For each
sample a DNA library was prepared according to published protocols®. Sample-specific indexes were
added to both library adapters to allow differentiation between individual samples after pooling and
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multiplex sequencing®. Indexed libraries were amplified in 100pl reactions followed by purification
over Qiagen MinElute spin columns (Quiagen, Hilden, Germany) and quantification using Agilent 2100
Bioanalyzer DNA 1000 chip. Target enrichment of mitochondrial DNA was performed by capture of the
pooled libraries using bait generated from modern roe deer (Capreolus capreolus) mitochondrial DNA?.
The bait was generated by use of three primer sets (table 1) designed with the Primer3Plus software
package. All extractions and pre-amplification steps of the library preparation were performed in clean
room facilities and one negative control was included for each reaction.

Sequence Processing, Assembly, Duplicate Removal. Library pools were sequenced on the
Mlumina Hiseq 2500 platform using two index reads (2¥100+ 7 + 7 cycles) following the manufacturer’s
protocol. De-indexing was performed by sorting all sequences corresponding to their p7 and p5 com-
binations using the CASAVA software version 1.8. Forward and reverse reads were merged into single
sequences if they overlapped by at least 11bp®. Unmerged reads were discarded and merged reads were
filtered for a length of at least 30 bp. Mapping of the length-filtered reads and removal of duplicate reads
was performed using a custom mapping iterative assembler (MIA) which was developed to take into
account sequence errors which commonly occur from ancient DNA damage?®. Reads were mapped to a
full mitochondrial genome reference sequence of the roe deer, Capreolus capreolus (NC_020684.1). To
achieve a higher resolution in the topology, in a second round sequence reads were mapped to a full
mitochondrial genome of the fallow deer Dama dama (JN632629.1), and in a third round to the con-
sensus sequence of our ancient putative Megaloceros giganteus sample HF/65/100, which was generated
by mapping to the Dama dama mitochondrial reference sequence as described.

Analysis of ancient DNA damage patterns. Cto T and G to A substitution patterns were obtained
from the sequences using a custom software developed as an extension package to handle the output
format of the mapping iterative assembler®.

Multiple Sequence Alignment and Molecular Phylogenetic Analyses. A multiple sequence
alignment was generated from 44 full mitochondrial genome Genbank®® sequences of extant cervid taxa
together with the assembled mitochondrial genome sequences of our putative Megaloceros samples using
ClustalW (Larkin, M.A. et al. ClustalW and ClustalX version 2. Bioinformatics 23: 2947-2948 (2007).
Alignments and phylogeny constructions were conducted in MEGA 6.0.6. The mitochondrial D-Loop
region was excluded using the BioEdit sequence alignment editor (Hall, T.A. BioEdit: a user-friendly
biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids
Symp. Ser. 41:95-98 (1999)) and phylogenies were constructed from a total of 14,147 positions. Both
maximum-likelihood and maximum-parsimony topologies were generated for all positions for which
coverage was at least three-fold in each of the ancient sequences. Alignment columns with gaps or miss-
ing data were eliminated. Bootstrap support values were obtained over 1000 replicate data sets, using
alpine musk deer as an outgroup (Moschus chrysogaster, KC425457.1). The phylogenetic trees were edited
in FigTree version 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree).

Pairwise Comparison of Cytochrome b Sequence Differences. To identify cytochrome b (cytb)
coordinates within our reconstructed mitochondrial sequences, these were aligned to previously pub-
lished cytb sequences of Megaloceros giganteus (AM072744.1, AM182645.1), fallow deer (AJ000022.1),
and red deer (AB924664.1) using MEGA 6.0.6 and sequences outside of the aligned regions were dis-
carded. Nucleotide sequence differences were then calculated by pairwise alignment between each of our
ancient cytb sequences and each of the previously published cytb sequences using BLAST.

Stable Isotope Analyses. To study the habitat pattern revealed by stable isotopes, collagen was
extracted from both bone fragments and carbon (**C) and nitrogen (**N) were measured. The results
were combined with stable isotope data obtained from ancient reindeer (Rangifer tarandus) and red deer
(Cervus elaphus) remains of the Swabian, French, and Swiss Jura dating 13,000 to 12,000 uncal year ago,
which corresponds roughly to the GI-1e interstadial®?°. The results were compared to stable isotopes
from morphologically defined deer specimens including giant deer (Megaloceros giganteus) dating to the
pre-LGM from southwestern France (SW France) and Belgium!$.,

Isotopic analysis (6"3C.y;, 8°N,y) was conducted at the Department of Geosciences of Tiibingen
University using a Thermo Quest Delta+XL mass spectrometer coupled to a NC2500 CHN-elemental
analyzer, which provides elemental analysis (C.y, N.y). The international standards used include
marine carbonate (V-PDB) for §'°C and atmospheric nitrogen (AIR) for §'°N. Analytical error, based
on within-run replicate measurement of laboratory standards (albumen, modern collagen, USGS 24,
IAEA 305A), was = 0.1%o for §*C values and =+ 0.2%o for '°N values. Reliability of carbon and nitrogen
isotopic values was established by measuring the chemical composition, with C/N,; atomic ratio within
the range of 2.9 to 3.6%%
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2.3 Study 2: Effect of X-rays on ancient DNA

2.3.1 Background and Previous Work

Computed tomography (CT) allows high resolution insights into archaeological remains
without destructive sampling. On the other hand CT makes use of X-rays, a form of ion-
izing radiation, that has been shown to cause mutations, DNA strand breaks and other
molecular structural modifications of DNA (Muller, 1927, Wolff, 1967, Grosovsky et al.,
1988, Liber et al., 1986). This happens either by directly affecting the DNA molecules
through X-ray photons or by producing radicals which damage the DNA (Roots and
Okada, 1975, Lindahl, 1993). These mechanisms were observed in contemporaneous
DNA and questioned the non-destructiveness of CT applied to precious archaeologi-
cal material, such as Neandertal bones, often leading to a conflict of interests between
(archaeo—)geneticists and anthropologists. Since aDNA is already fragmented, chemi-
cally modified and usually present in minute amounts, it is likely that the X-ray effect
on aDNA can exacerbate its condition. Temporary darkening of CT-scanned teeth from
palaeontological remains was observed suggesting potential molecular damage under the
surface (Richards et al., 2012).

Previous studies have tried to simulate the effect of X-rays on aDNA by using modern
pig bones and preserved bird skins from museum specimens as a proxy for archaeolog-
ical material (Goetherstrom et al., 1995, Grieshaber et al., 2008, Paredes et al., 2012).
However, their results were contradictory: while Goetherstrom stated that DNA gets
degraded when the pig bones are scanned, Grieshaber could not find any observable
effect after exposing the sample to X-radiation, and Paredes observed no significant dif-
ference between exposed and unexposed tissue. These studies used PCR or capillary
gel-electrophoresis to assess the DNA fragmentation caused by CT-emitted X-rays, thus
no sequencing has been done on aDNA exposed to X-radiation so far. The goal of my
second study was therefore to find out if effects of X-radiation can be detected on aDNA
after CT-scans and to determine a threshold of a maximum absorbed radiation dose

hazard-free to aDNA integrity.
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2.3.2 Investigating X-ray effects on aDNA after Mitochondrial
DNA Capture

We performed mitochondrial capture (Maricic et al., 2010) on DNA extracted from
CT-scanned teeth and bones of Late Pleistocene megafaunal specimens including cave
bear, steppe bison, giant deer and roe deer, and produced NGS data that allowed to
assess the effect of X-rays on aDNA at higher resolution than it was previously pos-
sible. The analysis focused on aDNA quantity, fragment length and damage patterns.
The aDNA quantity was measured in a quantitative PCR (qPCR) after extraction and
before mt capture, while fragment length and damage patterns were assessed after mt
capture and sequencing. The dose of absorbed ionizing radiation is defined as Gray
(Gy), where 1 Gy=1 k—‘{q (Joule per kilogram) describes the energy load absorbed per
mass unit. We found that a high X-radiation dose of 170 kGy detrimentally affects the
amount of aDNA. For comparison, the absorbed energy after a CT chest scan is 7 mGy,
which is 24x10°® times lower than the energy dose applied in the first experiment of our
study. In a serial scan the absorbed radiation dose was increased from 93 Gy to 93 kGy.
Since X-radiation induces strand breaks, the fragment length and the total amount of
aDNA molecules decreased with accumulating radiation dose. Interestingly, X-radiation
decreased the aDNA-characteristic cytosine to thymine (C to T) substitution patterns.
This can be explained by the artificial introduction of new molecules without terminal
substitution patterns through X-ray-induced strand breaks: while the original substi-
tution patterns stay unchanged, X-rays split the molecules by inducing double strand
breaks (Bradley and Kohn, 1979) which results in several shorter molecules whereof only
one contains the original terminal C to T substitution (publication below, page 5, fig. 4
a).

To simulate the effect of a conventional CT-scan, crushed cave bear bone material was
scanned together with cave bear mandibles. The total absorbed energy was 720 Gy.
Also here, changes in aDNA amounts, fragment lengths and substitution frequencies
were observed. Based on the observations from the performed experiments we defined
200 Gy as an upper bound for the absorbed energy dose to not cause any detectable
effects on aDNA molecules. This dose is ca. 8000 times higher than the highest absorbed
dose for a medical scan, and is therefore far beyond any radiation dose that would have
been produced by current CT-settings. Moreover the dose of 200 Gy exceeds by 20x 10°
times the dose which is absorbed from airport luggage scans. We therefore state that

luggage scans of archaeological samples do not harm aDNA.
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Sub-fossilised remains may still contain highly degraded ancient DNA (aDNA) useful for palaeogenetic
investigations. Whether X-ray computed [micro-] tomography ([1]CT) imaging of these fossils may
further damage aDNA remains debated. Although the effect of X-ray on DNA in living organisms is
well documented, its impact on aDNA molecules is unexplored. Here we investigate the effects of
synchrotron X-ray irradiation on aDNA from Pleistocene bones. A clear correlation appears between
decreasing aDNA quantities and accumulating X-ray dose-levels above 2000 Gray (Gy). We further

find that strong X-ray irradiation reduces the amount of nucleotide misincorporations at the aDNA
molecule ends. No representative effect can be detected for doses below 200 Gy. Dosimetry shows that
conventional uCT usually does not reach the risky dose level, while classical synchrotron imaging can
degrade aDNA significantly. Optimised synchrotron protocols and simple rules introduced here are
sufficient to ensure that fossils can be scanned without impairing future aDNA studies.

Since its discovery, X-ray imaging has found a broad range of applications in medical, anthropological and
palaeontological studies. X-ray computed [micro-] tomography ([1]CT) scans are routinely used to generate
three-dimensional (3D) models of fossil remains, to explore internal structures, which can essentially help to
distinguish between specimens, as well as to provide virtual replicas of the fossils that can be shared for analysis
with other institutions. Furthermore, CT scanning of fossil and mummified remains prior to analysis requiring
invasive/destructive sampling has been recommended and is routinely performed, in order to preserve valu-
able internal morphological information'. Until now, about half of the sub-fossil Pleistocene human remains
used for aDNA analysis, including Neandertal and Denisovan, were scanned before sampling (Supplementary
Table 1). However, recent concerns have been raised regarding the potential deleterious effect of X-rays on the
retrieval of aDNA?, especially in the case of pCT performed using synchrotron sources. These concerns arose
originally after the observation of transitory darkening of translucent or white enamel when submitted to high
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Experiment 1: Experiment 2: Experiment 3:
Conditions Extreme Irradiation Exposure Time Series | classical synchrotron scan
Average Energy 75.85keV 74.69keV 126.85keV
Filters AlG ““/{;‘()Ocl‘r‘rfg)l mm). | (o.f\;l(nl{f %“(‘3 Ly | AL@3mm), Cu S mm)
Dose Rate 83.41 Gy/s 93.72Gyls 1.61Gy/s
Total exposure time 2040s From 1s to 1000s 447 s
Total Delivered Dose 170.15kGy 93.72 Gy - 93.72kGy 720Gy

Table 1. Overview of the used conditions during the three conducted experiments.

resolution synchrotron scans (typically sub-pm voxel size), that are used to investigate dental microstructures>.
This darkening can be easily removed by using low power, low energy UV (375 nm, ideally from LED), as already
demonstrated on hundreds of teeth imaged at the European Synchrotron Radiation Facility (ESRF). Nevertheless
it indeed indicates a significant effect of the X-rays on the specimen, mostly due to electronic excitation, but also
partially to ionisation*°. One of the most relevant applications of synchrotron nCT, but also the most controver-
sial in regards to the risks for aDNA, is for non-destructive investigations of dental structures and microstructures
in palaeoanthropology, using virtual palaeohistology approaches>*-%.

Numerous studies describe the effects of X-ray irradiation on DNA molecules in biological conditions, par-
ticularly in medical contexts. Mutations, DNA strand breaks, chemical modifications of bases, and structural
changes such as gene order rearrangements have been identified**-'. Creation and diffusion of radicals dur-
ing X-ray exposure have been linked to molecular structural modifications'>!?, since X-ray photons are known
to contribute to strand breaks'. In living organisms, repair mechanisms exist to withstand moderate levels of
radiation-induced damage'®. In the absence of repair mechanisms, the damages would accumulate with increas-
ing X-ray dose (each new scan adding to the effects of the previous ones). When compounded with additional
DNA modifications such as oxidative and hydrolytic damage as a result of natural decay and taphonomic pro-
cesses'®!7, downstream genetic analyses may be affected in cases of significant levels of X-ray dose accumula-
tion. Particularly the hydrolytic conditions seem to play a critical role: as demonstrated in a recent study on
simulated effects of X-radiation on fragmented DNA in dry, wet and frozen states, the highest probability of
radiation-induced DNA damage occurs in a wet state’®.

Earlier studies have used modern pig (Sus scrofa) bones as proxies for archaeological samples, where molecular
damage was determined based on the success of Polymerase Chain Reaction (PCR) amplification!>?. Preserved
bird skins from museum specimens were evaluated via capillary electrophoresis-based DNA quantification to
infer the level of fragmentation induced by X-ray exposure®'. The results of these investigations, however, were
not consistent, potentially owing to inappropriate or non-homogenous samples, the use of low sensitivity meas-
ures to evaluate DNA concentrations, or insufficient control of X-ray dose. To date, no single investigation has
reliably assessed the effects of X-ray irradiation on authentic aDNA molecules. A robust investigation of the
effects of accumulation of X-ray dose on ancient DNA integrity was, therefore, urgently needed.

In this study we evaluate the effects of X-ray radiation on aDNA from Late Pleistocene megafaunal teeth and
bones. In order to assess the effects of a large range of X-ray dose deposition, we used powerful polychromatic
X-rays instead of a conventional X-ray source. Homogenised aliquots of crushed bone and dental tissues were
exposed to increasing synchrotron X-ray doses using different exposure times at the ESRE The dose rate and inte-
grated dose were quantified as water equivalent surface dose for each experimental setup. After exposure, we used
both quantitative PCR and next generation sequencing to evaluate the effects of synchrotron irradiation on: (1)
aDNA quantity, (2) aDNA fragment length and (3) aDNA-characteristic nucleotide misincorporation patterns.

Our results reliably demonstrate a clear relationship between increasing X-ray dose deposition and level of
aDNA damage, likely through increased strand breakage. We observe that strong X-ray exposure can significantly
degrade aDNA (surface dose above 10 000 Gray (10kGy)); however, no effect can be demonstrated for a dose
below 200 Gy.

Dosimetry on classical synchrotron configurations, as well as on new configurations optimised for low dose
imaging used at the ESRF on the beamline ID19 for palaeoanthropology, and finally on two conventional pCT
scanners (a BIR ACTIS 225/300 and a Skyscan 1173), demonstrate that in the vast majority of cases conventional
microtomographs are well below the detection limit of any defect on aDNA.

Results

Crushed material from 38 Late Pleistocene animal bones and teeth consisting of bison from the Ukraine, cave
bear, and giant deer from the Swabian Jura, and roe deer from the French Jura were exposed to various configu-
rations of polychromatic synchrotron beam on the beamline BMO05 at the ESRF (Table 1). In the first experiment,
aliquots were exposed to an extremely high level of X-ray radiation. For the second experiment, aliquots were
irradiated with increasing exposure time. In the third experiment, we exposed aliquots to irradiation applicable
in conventional high quality imaging pCT.

Effect of extreme irradiation on aDNA quantity. In the first experiment, aliquots from 11 well pre-
served Late Pleistocene bones were exposed for 34 minutes to an extreme dose of X-ray radiation of 170kGy
(water equivalent surface dose). Subsequent processing of each sample was performed alongside a non-scanned
control, a negative extraction control, and a negative library-preparation control. The amount of aDNA that could
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Figure 1. aDNA quantitation of 11 ancient samples after exposure to a radiation dose of 170 kGy. Each
column represents a mean copy number obtained from aliquots of two independent DNA-libraries made for
each sample. “scan”: scanned aliquot, “no scan’: non-scanned control, “EB”: extraction blank, “LB”: library
blank. Copy numbers were normalised by the amount of extract included in each library and mean copy
numbers were calculated from both libraries. Values and standard deviation are shown on a logarithmic scale.

105
0,95
0,85
075
0,65
0,55
045
035
0,25
0,15

normalised
DNA Quantity

L] ‘ ° ‘
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Radiation Dose (Gy)

Figure 2. qPCR-based DNA quantitation after irradiation from 0 to 93.72 kGy. Normalised mean aDNA
amounts are plotted against cumulative radiation dose received after 0s (0 Gy), 2.2s (~206 Gy), 10s (~937 Gy),
2155 (~2.02kGy), 46.4s (~4.35kGy), 100 (~9.37kGy), 215.4s (~20.2kGy), 464.2 s (~43.5kGy) and 1000's
(~93.72kGy). The non-scanned control is represented as a grey circle, the scans as blue circles. Values were
normalised by the amount of extracted material and the corresponding non-scanned controls. Mean copy
numbers were then obtained per exposure time group consisting of two aliquots from independent DNA-
libraries.

be quantified via QPCR decreased substantially in the scanned aliquots compared to the non-scanned controls,
indicating a highly damaging effect of this high X-ray radiation dose (Fig. 1). No sequencing data were produced
for these exposed samples, as the amplifiable aDNA quantities after scanning were too low, being comparable to
the negative controls.

Effect of increasing X-ray dose on aDNA quantity. To investigate a possible correlation between an
increasing radiation dose and its effect on aDNA, and to define what level of irradiation could be considered
harmful for future aDNA analyses aliquots from different bones were exposed to increasing dose levels, from 0 to
93.2kGy, by changing exposure time from 0 to 1000s. The estimated number of total library molecules from each
sample was normalised by the amount of extracted material and the corresponding non-scanned aliquot. Mean
values were then calculated for each exposure time group. Our results indicate a negative correlation (R>=0.52)
between increasing radiation dose and the number of amplifiable aDNA molecules (Fig. 2).

Effect of increasing X-ray dose on aDNA molecule length. In living organisms X-ray radiation is
known to induce double strand breaks (DSBs)?2. Average DNA molecule length is thus assumed to become
shorter after radiation exposure. To test if the same effect applies to ancient molecules, we performed mitochon-
drial capture? and sequenced all enriched libraries from samples that were previously exposed to dose from 0 to
43.5kGy. No DNA could be sequenced from the 1000s (93.72kGy) sample. Sequence data were pre-processed,
filtered, and mapped to the mitochondrial reference sequences of the corresponding organisms. Between
4,208,541 and 2,425 fragments mapped to the mitochondrial DNA (mtDNA) reference sequences of the corre-
sponding organism. Mean fragment lengths were determined for mapped (endogenous) and overall (including
non-mapped) fragments, and samples were again normalised as described above. The calculated fragment length
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Figure 3. aDNA fragment lengths determined after irradiation from 0 to 43.5 kGy. Normalised mean
fragment lengths are plotted against cumulative radiation dose received after 0s (0 Gy), 2.2s (~206 Gy), 10s
(~937 Gy), 21.55 (~2.02kGy), 46.4 s (~4.35kGy), 100s (~9.37kGy), 215.4 s (~20.2kGy) and 464.2 s (~43.5kGy).
The non-scanned control is represented as a grey circle, the scans as blue circles. (a) Mean fragment lengths

are calculated for endogenous aDNA fragments only, as determined by mtDNA mapping. (b) Mean fragment
lengths are calculated for total DNA including those fragments that did not map to the corresponding
mitochondrial reference sequence. Values were normalised using the means of the corresponding non-scanned
control aliquots, and averaged per exposure time group consisting of two aliquots from independent DNA-
libraries.

values were plotted against radiation dose. We observe a strong correlation indicating an almost linear decrease
of endogenous (R?=0.85; Fig. 3a) and overall DNA (R*=0.66; Fig. 3b) fragment length with increased radiation
dose.

Since the observable fragment length can be biased through extraction, library preparation, capture and
sequencing of the DNA, the decay constant ) from the exponential fragment length decline model by Allentoft et al.**
was utilized to compute the unbiased average fragment length?. Although the computed unbiased average frag-
ment length is shorter than the mean fragment length, in both cases the general trend shows a decreasing frag-
ment length towards a higher accumulated radiation dose (Supplementary Data 4).

Increasing X-ray dose and aDNA misincorporation patterns. Since DNA repair mechanisms are
absent in dead organisms, chemical modifications of DNA will accumulate. The most common type of such DNA
damage is the deamination of cytosines into uracils that causes a nucleotide misincorporation during amplifica-
tion evident as a C to T substitution most prominently at the 5’ terminus of sequenced aDNA molecules?. It has
been suggested that the amount of C to T substitutions at the 5’ terminus accumulates over time, and that this can
be used to authenticate ancient DNA?7*, When DNA molecules get exposed to radiation strong enough to induce
strand breaks, the proportion of molecules with terminal substitutions should theoretically decrease, contributing
to an associated decrease in the overall C to T substitution frequency (Fig. 4a). A destructive effect of X-ray radi-
ation can thus be inferred by reduced terminal substitution frequencies.

To measure the effect of different X-ray doses on nucleotide misincorporation patterns, C to T substitution
frequencies were measured for the first position from the 5" end from the DNA sequence of the exposed aliquots.
Data were normalised by the corresponding non-scanned control aliquots and plotted against radiation dose
(Fig. 4b). Predictably, substitution frequencies correlate negatively with exposure time, suggesting that a higher
X-ray dose lowers the amount of C to T nucleotide misincorporations. This is best explained by DNA strand
breaks induced by radiation that introduce new 5 ends, thus lowering the overall proportion of molecules with
terminal C to T substitutions.

Effect of synchrotron high quality imaging on aDNA. The results of the first two experiments show
no representative effect below 200 Gy, and nearly no effect up to 2kGy. In order to better assess effects in this dose
range, we included three aliquots from cave bear specimens in a series of real pCT scans performed with a classi-
cal high quality synchrotron setup. The total water equivalent surface dose delivered during this scan was 720 Gy,
but with an average energy higher than for the previous experiments (127 keV instead of 75keV). Compared to
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Figure 4. X-ray-induced effects on aDNA nucleotide misincorporation patterns for the first 25 positions
from both ends of the molecule. (a) The misincorporation frequencies of the non-scanned controls are shown
as a green line. Lower frequencies (red line) of C to T substitutions at the 5’ ends and G to A substitutions at the
3’ ends can be observed after irradiation at 43.5 kGy, since the fraction of aDNA fragments without terminal
nucleotide misincorporations increases through exposure. (b) Normalised C to T substitution frequencies of the
1% position from 5’ end of endogenous DNA molecules are plotted against cumulative radiation dose received
after 0s (0Gy), 2.2s (~206 Gy), 10s (~937 Gy), 21.5s (~2.02kGy), 46.4 s (~4.35kGy), 100s (~9.37kGy), 215.4 s
(~20.2kGy) and 464.2 s (~43.5kGy). The non-scanned control is represented as a grey circle, the scans as blue
circles. Substitution frequencies were normalised by the corresponding non-scanned controls, and averaged per
exposure time group consisting of two aliquots from independent DNA-libraries.

their non-scanned controls, two out of three libraries showed an increase in the number of amplifiable library
molecules after X-ray exposure (Fig. 5a).

Libraries from all three samples were captured for mtDNA, sequenced, and mapped to the cave bear mito-
chondrial reference. Since sample 21 remained with only 127 reads after the mapping step, it was not consid-
ered further as a threshold of at least 1000 reads was required for further analysis. No consistent trend could be
detected for changes in mean fragment length between scanned and non-scanned fractions of samples 20 and
22 (Fig. 5¢). We therefore applied the decay constant A** to calculate the unbiased average fragment length?’,
which did not differ significantly between scanned and non-scanned aliquots. In contrast, all samples showed a
decrease in mean fragment length as a result of scanning when total reads were considered, applying the same
filtering criteria for fragment length and sequence quality (Fig. 5b). Except for sample 21 this behaviour was also
represented by the A\ —based calculated fragment length. The obtained mean, median and lambda-based fragment
length values are shown in Supplementary Data 4. We also find that samples 20 and 22 have lowered C to T mis-
incorporation frequencies for the 5° terminal nucleotide positions after scanning (Fig. 5d).
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Figure 5. aDNA quantitation, fragment length and misincorporation pattern analyses after high quality
imaging synchrotron scan. (a) aDNA quantitation after exposure to 720 Gy during a real synchrotron

pCT scan. “scan”: number of aDNA molecules after scanning the aliquot with 720 Gy, “no scan”: non-scanned
control. Values were normalised by the amount of extracted material. (b) aDNA fragment lengths after exposure
to 720 Gy (“scan”) and non-scanned controls (“no scan”). For each aliquot boxplots were generated from
fragment lengths of the total DNA content including those fragments that did not map to the target organism’s
(here: cave bear) mtDNA. P-values were obtained for each pair of scanned and non-scanned aliquots using
Student’s t-test to assess significant differences in mean fragment lengths. The median fragment length is shown
in the upper quartile and the computed A-based average fragment length?*? is shown in the lower quartile of
the boxplot. (c) Boxplots were generated only from endogenous (mapped) aDNA molecule fragment lengths.
The median fragment length is shown in the upper quartile and the computed A-based average fragment length
is shown in the lower quartile. Sample 21 was discarded because of a low number of mapped reads (<1000).

(d) Cto T substitution frequencies of the 1** position from the 5’ end of endogenous aDNA molecules mapped
against cave bear mtDNA after X-ray exposure to 720 Gy. The values were normalised by their corresponding
non-scanned controls.

surface dose aDNA quantity ratio fragment length ratio fragment length ratio C/T misincorporation general effect of X-ray
(Gy) endogenous DNA total DNA ratio irradiation on aDNA
0 ~1 ~1 ~1 ~1
no detectable effect
200 | -1 | -1 [ -1 i -1
negligible damages
2000 \ 085 [ -1 [ ~1 [ 097
acceptable damages
100000 | 08 [ ~1 \ 0,98 [ 0,93
significant damages
200000 | 035 [ 0,95 [ 0,95 [ 0,85
serious d
45000 | 03 [ 0,88 [ 092 [ 067
strong damages
170000 0,1 NA. N.A. N.A.

Figure 6. Summary of effects of X-ray dose on aDNA quantity, molecule length and C to T misincorporation
frequencies. Coloured lines represent the evaluated risk for the interval between two dose levels. Shown

are normalised values corresponding to each applied X-ray surface dose. Normalisation was done by the
corresponding non-scanned aliquot. A lower value indicates a more deleterious effect. No effect for dose below
200 Gy could be detected.

Evaluation of X-ray dose dependent aDNA degradation. Among those samples tested for different
exposure times, we cannot observe any effect for doses below 200 Gy. The observed effects for doses between 200
and 2000 Gy are either not detectable or negligible. Above this dose level, we observe significant effects. Above
that dose level, we observe more severe effects with a rapid decrease in amplifiable DNA, and dramatic effects for
doses above 100 kGy that would make aDNA analysis likely impossible (Fig. 6).

Risk assessment for X-ray imaging and future aDNA analyses. We performed dosimetry of the most
relevant configurations used for nCT on sub-fossils with both conventional and synchrotron sources. Dosimetry
on imaging systems was performed in three different steps: classical synchrotron experiments, low dose synchro-
tron experiments and conventional microtomographs.

All measurements and synthesis of results can be found in Supplementary Data 1 and Supplementary Data 2.
By compiling all the measurements obtained for the conventional microtomographs, we propose a water equiva-
lent surface dose estimator relevant for most of the conventional X-ray imaging systems used to image sub-fossils
(Supplementary Data 3).
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Figure 7. Synchrotron X-ray dose and associated aDNA damages. Typical water surface equivalent
X-ray dose per scan and associated damages to aDNA depending on voxel size for synchrotron tomography
configurations at the ESRE. Thanks to strong efforts to reduce dose since 2013, the average dose level was
reduced by factor 30 in 2014, a factor 62 in 2015, and has reached a factor 125 in early 2016.

By combining the results from aDNA analysis and X-ray imaging devices dosimetry, it is possible to eval-
uate the risk level for future aDNA analyses for both synchrotron scanning and conventional pCT scanning
(Supplementary Data 2). From our results it is clear that classical synchrotron configurations can indeed reach
dangerous levels for aDNA, especially when working at voxel sizes below 10 um (Fig. 7). Nevertheless, the new
systems developed on the ID19-beamline at the ESRF since 2013 put all the configurations used for palacoan-
thropology below the detection limit of any defect on aDNA, except the sub-pum resolution setup used for enamel
microstructure (Supplementary Information, Note 1, Supplementary Figure 2).

Dosimetry experiments on the two conventional microtomographs at the Max Planck Institute for Evolutionary
Anthropology (MPI-EVA) allowed for the assessment of corresponding dose levels for typical scans and to infer the
potential risks of aDNA degradation (Fig. 8).

A bibliographic survey (Supplementary Table 1) as well as estimation of delivered doses for several specimens
scanned at the MPI-EVA before aDNA sampling (Supplementary Information, Supplementary Table 2) show
that in most cases the delivered doses are well below the detection limit of any defect on aDNA, and that samples
that were scanned before aDNA sampling do not seem to be different in aDNA-retrieval success rate compared
to non-scanned samples.

Discussion

X-ray-induced damage to aDNA is not yet well understood. Two mechanisms have been suggested. Oxidative
damage, either directly caused by ionising radiation or mediated through water radicals, may lead to strand frag-
mentation or nucleotide modifications including hydantoins, which block DNA polymerases and hence prevent
molecules from being amplified*>!%*0, Alternatively, X-ray-induced creation of free radicals such as hydroxide
may lead to single and/or double strand breaks that may reduce DNA into smaller fragments'*!2>?°_In the event
of strand fragmentation, an apparent loss of DNA is expected as smaller fragments are assumed to be lost dur-
ing the purification steps in the DNA extraction. Previous studies have attempted to assess the mechanisms of
radiation-induced damage through PCR and electrophoresis-based analyses, and have generated contradictory
results in terms of effects on DNA fragmentation'®-?!. The samples used for these investigations, modern bones
and preserved museum soft tissue such as skin specimens, may not be ideal proxies for evaluating the effect
of radiation to aDNA in ancient bones, and although effects of X-radiation on aDNA were recently calculated
in-silico'®, the simulations were lacking support from real data obtained from authentic aDNA.

Here we used skeletal remains of late Pleistocene megafauna such as cave bear, giant deer and bison, as well
as roe deer to further investigate X-ray-induced effects on authentic aDNA. In order to better control all the
parameters of the beam and have results relevant for both synchrotron and conventional X-ray sources, we used
a polychromatic synchrotron beam covering a large range of dose level and energy relevant for both kinds of
source (Supplementary Information, Note 2, Supplementary Figures 3-5). We observed an almost complete loss
of amplifiable aDNA in sample aliquots exposed to a high X-ray dose of 170kGy compared to non-scanned con-
trols. Furthermore, from our second experiment, we observed a decline in aDNA quantity as inferred from qPCR
data that correlated with an accumulation in X-ray dose. An almost linear trend was observed in a decrease of
mean aDNA fragment length with an increasing radiation dose for endogenous as well as for total DNA mole-
cules. We also found a linear decrease in C to T substitution frequencies at the 5’ end of the DNA fragments with
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Figure 8. Conventional pCT X-ray dose and associated aDNA damages. Typical water surface equivalent
X-ray dose and associated degradation level of aDNA for conventional pCT experiments depending on source
parameters, filters, voxel size and scan duration. Plain curves represent typical scanning settings at the MPI-
EVA and the ESRE. The dashed curve for ESRF ID19-beamline is calculated based on dose measurements to
show the effect of using no filter or thin filter. Only scans without filters, especially repetitions of such scans,
can lead to substantial degradation of aDNA. The dose profile of ESRF current configurations is given for
comparative purpose.

increasing radiation dose. This is best explained by strand fragmentation, where new 5’ ends created by radiation
will have a lower frequency of the characteristic damage observed at the ends of ancient DNA fragments. Since
this type of nucleotide misincorporation pattern is frequently used to authenticate aDNA molecules®, this trend
is deserving of special attention, especially with regard to fossils that underwent a high level of irradiation during
their scanning history. The observed damage seems to be proportional to a cumulative X-ray dose, an effect that
was previously suggested for modern DNA32,

A large amount of DNA defects induced by X-rays in biological conditions are due to the production of
extremely reactive free radicals mostly coming from water molecules. Without water, secondary chemical reac-
tions due to free radicals should not take place when scanning dry fossils. Most likely, only direct interactions
between X-rays and aDNA molecules (e.g. from direct beam and scattering effects) would have a significant
impact. In their analysis of desiccated ancient soft tissues, Paredes et al. did not observe any damaging effects of
CT scanning on DNA?!, whereas Goetherstrom et al. and Grieshaber et al. purported to have seen X-ray-induced
DNA-damage in fresh modern pig bones'>. Based on these data, the amount of water molecules most proba-
bly plays a significant role where a higher number of OH-radicals generated in non-desiccated material would
ultimately contribute to an increased level of X-ray-induced DNA fragmentation®. Strong support for this
assumption is given through simulations provided by Wanek and Riihli who calculated a higher probability for
radiation-induced aDNA damage to wet objects based on a higher radical yield, whereas radiation effects on dry
objects were non-significant's.

In the case of three samples irradiated during a real tomography experiment (Experiment 3), we observed
an apparent increase in aDNA molecules after X-ray exposure with a dose of 720 Gy at high energy in two out
of three samples. This may be best explained by double strand breaks introduced by radiation that increase
the number of molecules in our library that can be measured via qPCR post ligation of adapters. Even though
the same amount of fluorescence signal should theoretically be detected if a molecule was split into multiple
fragments, addition of the 132bp of adapter to each molecule during library preparation will almost double
the number of base pairs for a typical aDNA fragment that would be detected by SYBR Green dye intercalation,
thus leading to a higher fluorescence signal. The increase in aDNA molecule number is further supported by an
observed consistent decrease of mean fragment length for total DNA molecules. One of our samples, Sample
20, however, showed a decrease in aDNA quantity by about 60%. Since this sample derived from a different
environmental context (different physicochemical factors) than the other two samples subjected to this test,
preservation state of the sample, especially with regard to the level of mineralisation and the amount of water
exposure, may influence the proportion of aDNA molecules that could be fragmented via the exposure to radia-
tion. An initially higher level of fragmentation for this sample is suggested by its shorter mean read length in the
non-scanned aliquot compared to Samples 21 and 22 (Fig. 5b). Further fragmentation due to radiation exposure
could have shortened fragments to the point where they would be lost during the purification steps performed
during aDNA extraction.
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Despite this decrease in mean fragment length for total DNA, no consistent decline in mean length for endog-
enous captured cave bear mtDNA molecules could be detected. Furthermore, the A-based average fragment
length did not show any significant differences between scanned and non-scanned aliquots, and the aDNA spe-
cific C to T substitutions were only slightly lower in the scanned aliquots. Our lab protocols, implying purification
steps and the application of mitochondrial capture prior to sequencing, as well as additional stringent filter-
ing criteria applied to the sequences to retain only endogenous molecules, such as mapping to a reference and
applying a minimum mapping-quality-filter, may have ultimately reduced the total number of DNA molecules
and reads subject to analysis, with the shorter or heavily damaged fragments having been completely removed.
Another possibility is that DNA stemming from ancient bone is better protected from ionising radiation than sur-
face contaminants since endogenous DNA will have a higher binding affinity to hydroxyapatite and collagen!®*.
Hydroxyapatite forms a complex with DNA molecules®®, and components of the bony matrix might potentially
absorb penetrating radiation, leading to a partial shielding. Higher fractions of DNA have been recovered from
hydroxyapatite than from collagen emphasizing the importance of the mineral fraction of bone for the preser-
vation of aDNA3**’. Finally, endogenous aDNA is more protected from water than contaminating DNA, and
therefore less affected by secondary damages due to free water-radicals.

The results for this configuration obtained during a high quality imaging synchrotron scan indicate that for
surface doses below 2000 Gy, the effects on aDNA would not lead to substantial degradation and would not com-
promise palaeogenetic investigations.

Scans that are performed on sub-fossils with conventional machines are well below the detection limit of any
defects on aDNA. The detection limit of 200 Gy for aDNA is 8 000 times higher than the highest dose for a med-
ical scan and 20 million times higher than the dose exerted during luggage scans in airports. A comparison of
X-ray dose levels achieved by various X-ray technologies is presented in Supplementary Table 3. Indeed, and for
the sake of comparison, with the current X-ray devices in most airports, the total dose delivered during luggage
scan is around 10 Gy (Supplementary Information, Note 3). Thus, only very long or repeated scans without any
metallic filter with voxel sizes lower than 20 pm can endanger aDNA integrity. High surface doses obtained for
scans without any filters are due mostly to low energy X-rays. Since the lowest energies of the X-ray spectrum
would enhance the beam hardening effect (stronger absorption of the lowest energies in the X-ray spectrum by
the sample, leading to higher average energy of the X-rays behind the sample than before it, resulting into arte-
facts in the reconstructed data, see Supplementary Information, Note 1, Supplementary Figure 1), a filter of at
least 0.1 mm of copper or brass should be used by default for any scan of sub-fossils, thereby providing a higher
data quality, while avoiding aDNA-degradation even in case of multiple scans.

It should be noted that dose values used for dosimetry and risk assessment presented in this study were meas-
ured for the ESRF configurations on the ID19-beamline, where much optimisation has been performed during
the last 15 years to image fossils. Furthermore, additional optimisation has since been performed to reduce X-ray
dose for sub-fossil imaging. These optimisations do not reflect what is available at other synchrotron light sources.
Careful dosimetry, setup and spectrum optimisation should therefore be performed on other beamlines before
scanning sub-fossil remains that could be potentially subject to aDNA studies.

Conclusion

In summary, our results confirm that X-ray irradiation of sub-fossils can have a detrimental effect on aDNA integ-
rity when the total water equivalent surface dose exceeds 200 Gy; the degradation increase being roughly linear
with the dose accumulation. While the effect is very limited up to 2kGy, the degradation can reach dramatic
levels for doses exceeding 100kGy. Based on the results presented above, we have defined the detection limit at
200 Gy due to the limited number of samples irradiated in the 200-720 Gy dose range. Nevertheless additional
experiments would be necessary to define this limit more precisely. In order to ensure safe scanning, we therefore
suggest the following guidelines for the scanning of sub-fossil remains:

Recommendation for conventional pCT of sub-fossils.

o Never perform scans without a metallic filter. Always use filters to remove lowest energies of the spectrum.
We recommend a systematic use of at least 0.1 mm of copper or brass filter for scanning of sub-fossils. Such a
filter will ensure safe scanning while increasing data quality by reducing the beam hardening.

Recommendations for synchrotron scanning of sub-fossils.

o Assynchrotron scanning can clearly lead to aDNA degradation, careful dosimetry has to be performed before
any real experiment on a synchrotron beamline involving scanning of sub-fossils. Only high optimisation
effort can put synchrotron setup in the safe dose region.

« Perform dose estimation/measurements before doing the actual scan. Take into account overlap of scans.

o Phase contrast being up to 1000 times more sensitive than absorption one, always use it to optimise results
while keeping the dose as low as possible.

«  Always perform a precise collimation of the beam (beam size fitting to the field of view) to ensure that a dose
as low as possible is delivered to non-imaged areas.

o For sub-pm resolution scans, orientate the samples carefully to minimise the amount of material crossing the
beam path.
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Recommendations for sub-fossil scanning in general.

o Never perform pCT imaging on wet specimens, such as frozen samples, and samples that were recently
cleaned with water.

o Do not put sub-fossil samples into water (e.g. to reduce beam hardening) when performing a pCT scan.

o Do not perform scans at higher resolution than necessary, as the dose increases roughly at the square power
of the increase of resolution.

« Dose is cumulative: do not perform multiple scans when similar data already exist. Data sharing (under
responsibility of the curators) and public repository databases play an important role on this.

o Record precise information about all scanning parameters and scanning geometry and provide them to cura-
tors in order to track the whole scanning history for a given specimen.

o Before any new scanning of a specimen, take into account its scanning history to estimate the total dose accu-
mulation (especially in the case of synchrotron experiments).

These simple recommendations can ensure that both conventional and synchrotron X-ray scanning of
sub-fossils will not hinder future aDNA investigations and still allow studying the morphological or microstruc-
tural information by X-ray imaging before destructive sampling.

Material and Methods

Samples. Since sub-fossilised human remains were too rare to be used for this study, we collected animal
samples considered old enough to be representative of ancient human bones, such as Neandertals. In total, a
maximum of 38 samples from ancient faunal remains could be obtained. The selected species represent cave
bear (Ursus spelaeus), giant deer (Megaloceros giganteus), roe deer (Capreolus capreolus) and steppe bison (Bison
priscus) which were obtained from the Swabian Jura, the French Jura and from the Ukraine. The samples were
UV-irradiated overnight to remove surface contamination, crushed into 0.5-2.0 mm? fragments and subdivided
into 200 mg aliquots. To ensure non-biased results, a double-blind approach was used: no information about
aliquot origin and preservation state was given to the persons in charge of the synchrotron scanning. As well, no
information concerning the scanning settings and the organisation of scanned aliquots and control aliquots was
available for the persons in charge of the aDNA extraction and quantitation.

X-ray exposure experiments and dosimetry. Synchrotron (ESRF). All X-ray exposure experiments
were conducted on the BM05 beamline at the European Synchrotron Radiation Facility (ESRF) in Grenoble,
France. The dose rate for the various setups was measured using a PTW Unidos E (T10021) dosimeter equipped
with a TM31010 semiflex ionisation chamber. Measurements were conducted as surface water-equivalent dose,
the ionisation chamber sensitive part being completely covered by the X-ray beam. The total integrated dose for a
complete scan was then calculated as the total exposure time multiplied by the dose rate (see Table 1).

In a first experiment, aliquots from 11 different samples were irradiated every 45 degrees over 360 degrees
using a polychromatic beam (50 x 5 mm?) with the following settings: BM05 bending magnet white beam filtered
with 3 mm of aluminium, 0.1 mm of copper and 0.1 mm of tungsten leading to an average energy of 75.85keV
(Supplementary Information, Note 2, Supplementary Figure 3); 200 mA in the storage ring, sample at 50 m from
the source; 17 min/scan; each part of sample scanned twice. The measured dose rate was 83.41 Gy/s, yielding a
total delivered dose at every position in the samples of 170.15kGy.

In a second experiment, aliquots were scanned using a polychromatic beam (45 x 3.1 mm?) with the same
settings as described above (except 1.5 mm of aluminium instead of 3 mm, Supplementary Information, Note
2, Supplementary Figure 4), but at different exposure times (0s, 1s, 2.2, 4.6, 105, 21.55, 46.4 5, 10055, 215.4 s,
464.2s, and 10005s) and a measured dose rate of 93.72 Gy/s which yielded a maximum delivered X-ray dose of
93.72kGy. For each different time of exposure, the delivered dose is as follows: 0 Gy, 93.72 Gy, 206 Gy, 431.11 Gy,
937 Gy, 2.02kGy, 4.35kGy, 9.37kGy, 20.19kGy, 43.5kGy and 93.7kGy. A fast shutter was used to ensure that the
total exposure time was equally distributed over 360 degrees every 45 degrees.

In a third experiment, aliquots were placed in a plastic tube together with cave bear (Ursus spelaeus) man-
dibles that underwent high quality scanning for other research purposes. Each sample was scanned twice (50%
overlap between consecutive vertical scans). Scanning parameters involved a polychromatic beam at an average
energy of 127 keV, obtained by filtering the bending magnet beam by 23 mm of aluminium and 6 mm of copper
(Supplementary Information, Note 2, Supplementary Figure 5). We used a propagation distance for phase con-
trast of 2.4m, and a pixel size of 29.88 um. The total exposure time for each part of the samples was 447 s, with a
measured dose rate of 1.61 Gy/s (dosimeter in the plastic tube), leading to a total delivered X-ray dose of 720 Gy.

Conventional pCT scanners (MPI-EVA). The dosimetry characterisation for conventional pCT-scanners was
performed at the Max Planck Institute for Evolutionary Anthropology (MPI-EVA, Leipzig, Germany) on the two
portable industrial pCT-scanners: a BIR ACTIS 225/300 and a Skyscan 1173. The dose rate was measured using
the same model of dosimeter as for the synchrotron measurements (PTW: UNIDOS Webline T10021, Ionisation
chamber TM31010), with the same calibration protocol using a %0Co radioactive source. For both scanners, the
dose rate was measured in different conditions of irradiation, involving variation in power, voltage, absence or
presence of metallic filter of various thickness and material. Ranges of parameters explained below include con-
ditions where the dose rate was not measurable in some cases, but this clearly appears in Supplementary Data 1.
For the BIR, three sessions of measuring were run. Firstly, the dosimeter was fixed on the sample stage at
250 mm from the X-ray source, initially with no metallic filter and then with various filters (0.25 mm brass,
0.5mm brass, 1 mm brass, 1 mm aluminium), the operators were then able to measure the dose rate for power
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Primer Sequence

Roe_Deer_mtl_forward AAGCAAGGCACTGAAAATGC
Roe_Deer_mtl_reverse TTGGTACAGGATAGGGTCTCC
Roe_Deer_mt2_forward AACCGCACATGCATTTGTAA
Roe_Deer_mt2_reverse GGTTGTTTGCAGTGACGAGA
Roe_Deer_mt3_forward CATCATGACCACAAGCTCCG
Roe_Deer_mt3_reverse CGTGTGCTTGATACCAGCTC
Brown_Bear_mt1_forward AGGTCTCGTCGCAGTCAAAT
Brown_Bear_mtl_reverse AGTCCCTGCACCTGCTTCTA
Brown_Bear_mt2_forward TAGAAGCAGGTGCAGGGACT
Brown_Bear_mt2_reverse TGATGTTGAGGTCGGTGTGT
Brown_Bear_mt3_forward CAGTAGCCCTGTTCGTCACA
Brown_Bear_mt3_reverse CAGATCGCTTTAGGGTCCAA
Bison_mt1_forward ACCGCGGTCATACGATTAAC
Bison_mtl_reverse AATTGCGAAGTGGATTTTGG
Bison_mt2_forward ATGAGCCAAAATCCACTTCG
Bison_mt2_reverse TGTATTTGCGTCTGCTCGTC
Bison_mt3_forward CGAATCCACAGCCGAACTAT
Bison_mt3_reverse TATAAAGCACCGCCAAGTCC

Table 2. Forward and reverse primer pairs used to generate bait for targeted mtDNA enrichment.

ranging from 5 to 150 W and voltage from 50 to 200kV. Secondly, for each filtering condition mentioned above,
the dose rate was measured at 50kV, 130kV and 200kV and placing the dosimeter at an increasing distance from
the dosimeter from 20 mm to 500 mm. Last, the influence of distance to beam axis was tested at 130kV, 50 W,
250 mm from the X-ray source, and with 0.5 mm of brass. This involved combinations of variations in altitude
(z ranging from 0 to 100 mm) and in translation (from 0 to 100 mm). It has to be noted that 130kV is the most
commonly used voltage when scanning at MPI-EVA.

For the Skyscan 1173, the dosimeter was set at the centre of the rotation stage, first at 125 mm from the X-ray
source (< 17.2pum, commonly used distances for scans at MPI-EVA), and measures were taken twice during
irradiations without filter, with 1 mm aluminium, 0.25 mm brass, with a power ranging from 2W to 8 W, and a
voltage from 50kV to 130kV. Second, with the same range of power, the sample stage was moved from 50 mm to
250 mm to the X-ray source without filter (at 50kV and 80kV), 1 mm aluminium and 100kV, and with 0.25mm
brass and 130kV. Last, the dose rate was measured at 130kV, with 0.25 mm brass, at 125 mm from the source, with

« _»

a power 2-8 W, and with a translation in “z” from 0 to 60 mm.

aDNA Extraction and Preparation of Sequencing Libraries (University of Tibingen). Prior to
extraction samples were UV-irradiated overnight. DNA extraction was carried out using 50 mg as starting mate-
rial based on a guanidinium-silica based extraction method®. For each sample a DNA library was prepared
according to published protocols®***® using 20 pul of extract. Sample-specific indexes were added to both library
adapters to allow differentiation between individual samples after pooling and multiplex sequencing. Indexed
libraries were amplified in 100 pl reactions in a variable number of 9 to 14 cycles to reach the amplification pla-
teau, followed by purification over Qiagen MinElute spin columns (Quiagen, Hilden, Germany).

Quantitation of aDNA Amount. qPCR quantification of the libraries was carried out on a Roche
LightCycler 480 using the DyNAmo HS SYBR Green qPCR kit by Thermo Scientific. qPCR primers and stand-
ards are described in Meyer and Kircher 2010*. All DNA quantities were numbered as a number of copies - i.e.
anumber of fragments with an adapter on each end - per pl of library. As there is no amplification during library
preparation, variation in the number of copies between libraries is assumed to reflect the variation in the DNA
quantity between extracts. The number of copies for each library was normalised by the amount of extracted
material in order to prevent a bias due to sampling. Results were analysed using the Roche Lightcycler’s 480
integrated software, Microsoft Excel and the R statistical software*!. The obtained values were normalised by
division through the corresponding value of the non-scanned control aliquot. Except for the last experiment,
mean values were calculated per scan group consisting of two aliquots from independent sequencing libraries.
See Supplementary Data 4 for normalised DNA quantitations in figures 1, 2 and 5a.

Enrichment of aDNA. Target enrichment of mtDNA was performed by capture of the pooled libraries using
bait generated from roe deer (Capreolus capreolus), brown bear (Ursus arctos) and bison (Bison bison) mtDNAZ.
The bait was generated by use of three primer sets (Table 2) designed with the Primer3Plus software package*?.
All extractions and pre-amplification steps of the library preparation were performed in clean room facilities
and negative controls were included for each reaction. Globally, all criteria established for ancient DNA studies
authenticity were respected.

Sequencing and Preprocessing of Raw Sequences. Indexed library pools were sequenced on the
Ilumina Hiseq 2500 platform with 2*100 + 7 + 7 cycles®. Demultiplexing was performed by sorting all the
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sequences corresponding to their p7 and p5 index combinations. Forward and reverse reads were merged into
single sequences if they overlapped by at least 11 bp*>. Unmerged reads were discarded and merged reads were
filtered for a length of at least 30 bp.

Mapping. The preprocessed sequences were mapped to one of the corresponding complete mitochondrial
genome reference sequences: Capreolus capreolus (NC_020684.1), Bison bison (NC_012346.1) or Ursus spelaeus
(FM177760.1). Mapping was performed using BWA** with seeding turned off and a reduced mapping strin-
gency parameter “-n 5” to account for up to five mismatches in ancient DNA reads*. Duplicate removal was
performed on those reads that showed identical start and end coordinates only by using a custom software now
integrated into the EAGER-pipeline?. The produced BAM files were filtered for sequences with a mapping
quality of at least 20. We set a threshold of at least 1000 mapped reads for an aliquot to be considered in further
analyses.

Fragment Length Distribution Analysis. Read lengths were obtained from quality filtered BAM files
using SAMtools*’. Read length means and boxplots were obtained using the R statistical software?!. Significance
testing was assessed using the unpaired Student’s t-test in R. Normalisation of the data was achieved by divid-
ing the obtained mean values by the mean fragment length of the corresponding non-scanned control aliquots.
Scatter plots for regression analysis were generated in Microsoft Excel. See Supplementary Data 4 for normalised
mean fragment length values in figures 3a and 3b, as well as Supplementary Data 4 and Supplementary Data 5 for
fragment length distributions in figures 5b and 5c.

Recalculating Fragment Length based on \.  Read length distributions obtained by SAMtools*” were
plotted and the decay constant A was determined from fitting the declining part of the plot into power regression.
The unbiased average fragment length was calculated by dividing 1/A**?. See Supplementary Data 4 for plotted
normalised lambda fragment length values corresponding to figures 3a and 3b, and lambda fragment length
values utilised in figures 5b and 5c.

Analysis of aDNA C to T Substitution Frequencies. C to T misincorporation frequencies typical of
aDNA were obtained using mapDamage 2.0 4. Data was normalised by division through the corresponding value
of the non-scanned control for each position from 5’ end. Scatter plots and bar plots were generated in Microsoft
Excel. For the exposure time experiment, mean values were calculated per scan group consisting of two aliquots
from independent sequencing libraries. See Supplementary Data 4 for the substitution frequencies in figures 4a,
4b and 5d.
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Supplementary Note 1 — X-ray imaging and dose deposition

The first critical aspect to assess X-ray dose is linked to the voxel size of the scan (often presented as resolution, even if
this term is not really adapted). Synchrotron pCT is using parallel beam geometry; hence the resolution and
magnification are obtained thanks to the X-ray detector. In most of the cases, it is an indirect detector based on a
scintillator screen (mostly single crystals for high quality phase contrast imaging) coupled to a CCD or CMOS camera
through an optical device (e.g. microscope, photographic objectives, optical taper). For a constant X-ray spectrum, the
X-ray dose necessary to perform a scan with a given voxel size depends mostly on the detector properties. By
opposition, in conventional sources, the magnification effect is obtained only thanks to the conical geometry of the X-

ray source, by displacing the sample along the X-ray cone. In this case, for constant X-ray spectrum, the dose necessary



for a scan of a given voxel size depends on the distance between the source and the detector. This major difference
between synchrotron and conventional X-ray source makes possible to derive X-ray dose relatively easily for
conventional sources from calibration points by geometric calculation, whereas it is necessary to test all the different

detectors combinations (scintillator/optic/sensor) for the synchrotron configurations.

The second critical aspect for X-ray dose is linked to the X-ray spectrum. Low energy X-rays are more easily absorbed
by the samples than high energy X-rays. Nevertheless, low energy X-rays can also bring higher contrast level than high
energy ones. Tomography requires that a sufficient amount of X-rays goes through the sample (typically the lowest
transmission has to be above 10%, but often results are better for minimum transmission above 20%). In case of broad
X-ray spectrum, the low energies can be completely absorbed by the sample when higher energies can go through
(Supplementary Fig. 1). This very well-known effect is called beam hardening, which is leading to typical artifacts
when scanning with such broad spectrum. Nowadays, very efficient algorithms can correct most of these artifacts’, but
it remains that the low energy photons are depositing a large part of the dose as they can be totally absorbed. Adapted
filtering of the source spectrum using adapted metallic filter allows removing the lowest energies in order that the X-

rays used to scan the specimen are really useful to obtain the data.

20 keV 30 keV

60 keV 80 keV 100 keV 150 keV
low dose high dose
[ 3 ] 8mm__

Supplementary Figure 1. 3D simulation of dose deposition pattern in a fossil molar depending on the photons
energy (lower first molar of the Engis 2 Neandertal child from Belgium, scan was originally published in Smith
et al. 2010, data deposited on the ESRF public database http:/paleo.esrf.eu). Calculations are based on a
constant amount of photons for the different energies, i.e. not for constant surface dose. Low energies are
completely stopped in the superficial layers of the sample and will then deposit high dose level in surface and

subsurface, when high energies go through the sample in a more uniform way.

When performing X-ray tomography, it is then important to balance all these effects to find the optimal configurations
allowing the narrower X-ray spectrum, with energy high enough to reach sufficient transmission through the sample
without going to too high energy that would tend to reduce contrast.

Synchrotrons are well known to allow imaging using monochromatic beam, that remove de facto the beam hardening
effect®. Nevertheless, narrow polychromatic beam can bring results very close, without visible beam hardening, while

allowing less ring artifacts (better beam profile and stability), and faster scans.



Since 2011, all the fossil specimens scanned on the beamline ID19 at the ESRF are imaged using these high quality
direct “pink” (meaning narrow spectrum polychromatic) beams*®. It has to be noted that the use of high quality pink
beam or of monochromatic beam does not really have an impact on the delivered dose as in both cases the average
energy is similar as well as the dynamic level on the detector.

Imaging of fossils with synchrotrons also implies in nearly all the cases the use of propagation phase contrast. This
technique can be up to 1000 times more sensitive to small density differences than X-ray absorption used in
conventional systems, and is often giving better results with energies higher than those used for absorption. Phase
contrast is nowadays the most important reason why using synchrotron sources to image fossils, especially for
observation of small structures such as incremental lines in teeth or bones microstructures. It is also the key to reduce
the X-ray dose for recent fossils by using as much as possible the high sensitivity given by this approach. All the results
presented in the present paper for low dose synchrotron imaging are then based on propagation phase contrast, and

would not be relevant for pure absorption imaging.

Classical sub-pm resolution configurations could even reach the level of total destruction of aDNA, but these
configurations are restricted to small irradiated volumes (Supplementary Fig. 2) thanks to the precise beam collimation

of synchrotron sources, i.e. the possibility to adapt the beam size to the field of view using absorbing slits systems.

Supplementary Figure 2. Typical 3D dose deposition pattern of a sub-pm resolution scan for enamel
microstructure as performed at the ESRF (3D simulation performed on the same lower first molar of the Engis 2
Neandertal child than in Supplementary Fig. 1). Only the central yellow part can reach the high dose level
reported in the present paper, the dose rapidly decreases for all the other parts crossed by the beam during the
scan depending on the distance to the imaged part. Beam scattering (not simulated here) will also contribute to
general dose level, but high resolution dosimetry experiments shows that it remains far less important than the
dose deposition due to the direct beam, and its contribution decreases very rapidly with the distance to the direct

beam (negligible after typically 200 pm in the geometry presented here).

Low resolution scans (voxel size larger than 20 pm, implying full irradiation of the specimens) were typically in the
safe zone even with classical configurations, but the new configurations are well below the detection limit. The most
detrimental configurations with the classical synchrotron scans were in the 5 pm range, where large areas were scanned
while having substantial level of dose (typically complete teeth for dental development), but these scans would not have

really endangered aDNA studies, except in case of multiple scans. The highest efforts for dose reduction were then



applied in this resolution range, as it was potentially the most dangerous one, and as it is a critical one for virtual dental
and bones palaeohistology. The new configurations implemented on ID19 are now well below the detection limit.
Nowadays, only the sub-pm resolution scans typically used to observe enamel microstructures can still reach dose level
that could have limited consequences on aDNA, but due to the small beam size, the concerned areas are very limited
(typically small cylinders of 4*2 mm), and concern mostly enamel, where no sampling for aDNA would be done
anyway. All in all, the complete set of configurations available at the ESRF for scanning of recent fossils can be
considered as safe for future aDNA studies, as long as good care is taken to perform the experiments (especially
avoiding multiple scans whenever they are not necessary). Further efforts are ongoing to decrease dose for the sub-pm

setup by further factor 2 to 3, and setups for voxel sizes larger than 10 pm by factor 2 to 10.

In the case of conventional scanner imaging, it has to be noted that the high surface dose obtained for scans without any
filters are due mostly to low energy X-rays. This effect was especially visible with the skyscan1273 scanner for which
dose rates without filters were really higher than expected after the experiment on the BIR scanner. Even if the cause of
this higher dose is not really clear, it appears to be due to low energy part of the spectrum as even a thin aluminium
filter can completely remove it. Hence, it could lead to substantial aDNA degradation in sub-surface of a specimen, but

not in depth as the specimen itself would act as a filter and stop these low energy X-rays.

Supplementary Note 2 — X-ray spectrums used for irradiation and imaging experiments

Experiment 1, extreme irradiation
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Supplementary Figure 3. X-ray spectrum used for the extreme irradiation experiment on the beamline BMO05 using the
white beam produced by the 0.85 tesla bending magnet filtered with 3mm of aluminium, 0.1 mm of copper and 0.1 mm
of tungsten. Sample at 50 m from the source. Dose rate of 83.41 Gy/s.



Experiment 2, exposure time series
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Supplementary Figure 4. X-ray spectrum used for the time series irradiation experiments on the beamline BMO05 using
the white beam produced by the 0.85 tesla bending magnet filtered with 1.5 mm of aluminium, 0.1 mm of copper and
0.1 mm of tungsten. Sample at 50 m from the source. Dose rate of 93.72 Gy/s.

Experiment 3, high quality classical synchrotron tomography
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Supplementary Figure 5. X-ray spectrum used for the high quality classical synchrotron tomography experiment on
the beamline BMO5 using the white beam produced by the 0.85 tesla bending magnet filtered with 23 mm of aluminium
and 6 mm of copper. Sample at 50 m from the source. Dose rate of 1.61 Gy/s.
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. ‘Was unlikely X-rayed or CT-scanned Inventory number (whole skeleton ID): 4 R
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13 Denisova 3 Denisovan ;4 HP5D 15/12/2009 at MPI (01/07/2015, 7,8,9,10 1 1
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09/09/2015)
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Neand.

Was unlikely X-rayed or CT-scanned
before aDNA sampling (Musée de
I’Homme, Paris, 05/05/2015)

Was unlikely X-rayed or CT-scanned
before aDNA sampling (Musée de
I’Homme, Paris, 05/05/2015)

Was unlikely X-rayed or CT-scanned
before aDNA sampling (Musée de
I’'Homme, Paris, 05/05/2015)

none (C. Beauval, 14/04/2015)

None, (CT scan of the skull on
16/06/2009 whereas URM1 had already

been taken out; D. Delsate & F. Lebrun,
02/07/2015)

likely X-rayed

none (L. Golovanova, 16/05/2015)
May-June 2003: Medical CT-scan of the

Mezmaiskaya 1 skeleton, St. Petersburg
(L. Golovanova, 16/05/2015)

May-June 2006: Second CT-scanning of
the Mezmaiskaya 1 skeleton MPI-EVA
portable micro-CT scanner, St.
Petersburg (L. Golovanova, 16/05/2015)

May-June 2006: First CT-scanning of
the Mezmaiskaya 2 skull; MPI-EVA
portable micro-CT scanner, St.
Petersburg (L. Golovanova. 16/05/2015)

None (G. Barbujani, 30/06/2015)

None (D. Caramelli, 06/05/2015)

None (D. Caramelli, 06/05/2015)

None (F. Hallgren, 02/07/2015)

No record? (D. Caramelli, 26/05/2015)

No record? (D. Caramelli, 26/05/2015)

Medical CT scan in 2003 (S. Constantin,
07/07/2015)

none (B. Viola, 14/04/2015)

none (B. Viola, 14/04/2015)

09/12/2005 (B. Viola, 14/04/2015)

none (M. Rasmussen, 29/06/2015)

none (M. Toussaint, 13/04/2015)
none (M. Toussaint, 13/04/2015)

micro-CT scanned at MPI on
29/11/2006 (MPI scanning records), and
at Antwerp University (date not recorded)

CT-scanned prior to aDNA sampling (M.
Meyer and J.-L. Arsuaga, 04/07/2015)

none (J. Krause, 01/07/2015)

> 2 classical radiographs, 2 CT scans in
Inssbruck, one in Bolzano in 2005 (A.
Zink, 16/12/2015)

Was X-rayed many times (as early as
1949). (B. Viola 14/04/2015)

15/05/2012 (MPI), was medical CT-

scanned before coming to MPI as well.
(B. Viola)

24/04/1998, Madrid, medical CT scan of
the mandible (R. Quam, 08/05/2015)

none (G. Barbujani, 30/06/2015)

No record (J. Mauch Lenardi¢,
07/05/2015)

No record (J. Mauch Lenardic,
07/05/2015)

25/07/2007 at MPI-EVA

22/06/2006 and on 26/02/2007 at MPI-
EVA (before aDNA sampling).

Highly likely that no scan before aBDNA
sampling (T. Marici¢, 17/06/2015)

Highly likely that no scan before aBDNA
sampling (T. Marici¢, 17/06/2015)

Left distal hand phalanx ? (Musée de
I’Homme, Paris, 05/05/2015)

post-cranial element ? but no further record
(Musée de ’'Homme, Paris, 29/04/2015)

Left and right humeri? but no further record
(Musée de ’'Homme, Paris, 29/04/2015)

RdV 1: fragment of left femur diaphysis.

“Tooth 16’: URM1 from a male skeleton

Right humerus

Two small fragments of a rib (L.
Golovanova, 16/05/2015)

A small rib fragment of Mezmaiskaya 1 (L.
Golovanova, 16/05/2015)

A small rib fragment of )

2002 (Musée de 'Homme,
Paris, 04/05/2015)

2002 (Musée de 'Homme,
Paris, 04/05/2015)

2002 (Musée de 'Homme,
Paris, 04/05/2015)

2004 or 2005

10/06/2009 (D. Delsate,
02/07/2015)

1998-1999 (L. Golovanova,
16/05/2015)

Brought in January 2006 to
MPI-EVA (L. Golovanova,
16/05/2015): Extractions on
23/11/2006 and June 2008 (S.
Sawyer, 13/04/2015)

Brought in 2009 to MPI-EVA

jiskaya 1 (L.
Golovanova, 16/05/2015)

An unidentified skull fragment of Mez. 2 (L.

Golovanova, 26/05/2015)

tooth/bone

Skull fragment

Mezzena Jaw

Mandibular bone and M2 (F. Hallgren,
02/07/2015)

Rib

Femur

Mandible
Subadult humerus shaft

Subadult femur

Adult humerus (distal half).

Four permafrost-preserved human hair tufts
from individual Qt 86 85/261: 12

Scla 4A-4: URM1 buccal root

Scla-4A-13: LRdm2

Scla 4A-4: URM1

Right femur (sampling in the breaks of the 3
pieces)

“Tooth 47°: LRM2 of a female skeleton
(LBK380)

Left ilium

Left femur

Left femur

LLM1 (was in situ in the mandible).

tooth/bone

No record (J. Mauch Lenardi¢, 07/05/2015)

No record (J. Mauch Lenardi¢, 07/05/2015)

Shaft splinter (femur?)

Fragment of tibia

Elongated shaft splinter, morphology not
diagnostic. (C. Verna, Feb. 2007)

Long shaft splinter compatible with the

latero-posterior face of a human femur (C.
Verna, Feb. 2007)

(L. Gol , 26/05/2015):
extraction on 30/03/2011 (S.
Sawyer, 13/04/2015).

Brought in January 2006 to
MPI-EVA (L. Golovanova,
26/05/2015)

no record.

2006 (D. Caramelli,

06/05/2015)

2013 (D. Caramelli,

06/05/2015)

November 2010 (F. Hallgren,

02/07/2015)

14 more samples from 13

specimens sampled in the same

conditions.

2002 (D. Caramelli,

26/05/2015)

2002 (D. Caramelli,

26/05/2015)

29/09/2009 at MPI-EVA (M.

Hajdinjak, 24/06/2015).

late 2005 or early 2006 at MPI-

EVA.

late 2005 or early 2006 at MPI-
/A.

2010

Early 2009 (M. Rasmussen,
29/06/2015)

1993 (Miinich; (M. Toussaint,
13/04/2015)

Feb. 2001 (M. Toussaint,
14/04/2015)

2007 (MPI-EVA, M. Toussaint,
14/04/2015

30/11/2012 (M. Meyer,
04/07/2015)

18/10/2012 (A. Mittnik,
07/08/2015)

Oct. 2009 (A. Zink,
16/12/2015)

2003 or 2004 (J. Krause,
04/05/2015) at MPI-EVA.

after 15/05/2012 (B. Viola) at
MPI-EVA.

22/05/2006 (L. Dalén,
07/05/2015; R. Quam,
08/05/2015)

no record.

no record.

no record.

1st extraction on
25/07/2007 at MPI-EVA.

no record.

09 and 17/01/2007, 26/03/2008,
17 and 25/06/2009 at MPI-EVA
(T. Marici¢, 17/06/2015).

10/01/2007, 18/02/2008,
17/06/2009 at MPI-EVA (T.
Maricié¢, 17/06/2015)

1
1
1
26 1
27 1
28 1
29 1
14,22

1
12,30 1
14,30 1
4
31 1
32 1
27 1
B8}
BB
34 1
30,35 1
35 1
- no aDNA recovered
(taphonomy: shallow 1
deposit)
36 1
-no aDNA
(taphonomy?)
37 1
-no aDNA
(taphonomy?)
38 1
27 1
39,40 1
B85 1
41 il
42 1
4
43
1
10 1
1,14,22,44,45
14,22 1
14

1
TOTAL 31 31

77



Supplementary Table 1:
A bibliographic survey showing publications with record of CT-scanned and non scanned sub-fossil remains from 1949 to 2016.

Shown is the specimen, the taxon, the scanning date prior to aDNA sampling (if applies), the scanned anatomical element, sampling
date for aDNA extraction, and the corresponding publication. Entries showing specimens that were scanned before aDNA sampling
(31 in total) are shown in green, the unscanned Sub-fossils (also 31 in total) are shown in purple. In 7 cases it was unlikely that a scan
was performed before aDNA sampling (indicated in beige), and in 8 cases no record exists (shown in grey). 50 % of all sub-fossil
remains listed here were scanned prior to aDNA sampling.

Acknowledgements of curators and researchers that helped gathering this information:

Michel Toussaint, Viviane Slon, Aurélie Fort, Alain Froment, Antoine Balzeau, Mario Cech, Philippe Mennecier, André Langaney,
Antonio Rosas, Almudena Estalrrich Albo, Antonio Garcia Tabernero, Liubov Golovanova, Vladimir Doronichev, Tomislav Maricic,
Christine Verna, Philip Nigst, Marta Mirazon Lahr, Vyacheslav Moiseyev, Eske Willerslev, Morten Rasmussen, Kelly Graf, Jean-
Jacques Cleyet-Merle, Love Dalén, David Caramelli, Mateja Hajdinjak, Ralf Schmitz, Jadranka Mauch Lenardi¢, Susanna Sawyer,
Cédric Beauval, Annamaria Ronchitelli, Rolf Quam, Maria Eulalia Subira i de Galdacano, Thomas Higham, Beth Shapiro, Chris
Stringer, Michael Fagan, Stefano Benazzi, Francesco Mallegni, Carles Lalueza-Fox, Juan Luis Arsuaga, Manuel Antonio Garcia
Garrido, Matthias Meyer, Albert Zink, Iosif Lazaridis, David Reich, Guido Barbujani, Fredrik Hallgren, Dominique Delsate, Silviu
Constantin, Matthias Meyer, Julio Manuel Vidal Encinas, Maria Encina Prada Marcos, Vyacheslav Moiseyev, Sarah Anzick.

number of aDNA publications

35 Scanned / iradiated be-
fore aDNA sampling
30
No scan/ irradiation be-
25 fore aDNA sampling
20 Unlikely scanned/ ira-
diated before aDNA
15 sampling
10 No record
5
0

1. Serre, D. et al. No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol 2, 313-317  (2004).

. Rasmussen, M. et al. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia. Science 334, 94-98 (2011).
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(2014).
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(2010).
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Supplementary Data 2

Synchrotron Dosimetry

synchrotron configurations
classical high classical low 2014 2015 2016
surface
voxel size  dose voxel size surface | voxel size  surface | voxelsize surface | voxelsize  surface
(um) (Gy) (um) dose (Gy) (um) dose (Gy) (um) dose (Gy) (um) dose (Gy)
59 120.0 59.0 32.5 50.74 6 50.74 5 50.74 2.5
29.5 720 29.5 195 25.37 36 25.37 30 25.37 15
4.9 4400 4.9 1500 6.34 90 6.34 40 6.34 20
0.7 300000 0.7 100000 3.4 350 3.4 100 3.4 50
0.7 8000 0.7 5000 0.7 2500
fragment length . . general effect of X-
di::?é?/) aDNA quantity ratio| ratio endogenous f::gr::ttalleglglt\h cr m|5|r:;:1¢::;;poratlon ray irradiation on
DNA aDNA
0 ~1 ~1 ~1 ~1
no detectable effect
200 [ ~1 ~1 ~1 ~1
negligible damages
2000 ] 0.85 ~1 ~1 0.97
acceptable damages
10000 | 0.8 ~1 0.98 0.93
significant damages
20000 | 0.35 0.95 0.95 0.85
serious damages
45000 | 0.3 0.88 0.92 0.67
strong damages
170000 | 0.1 N.A. N.A. N.A.

no usable DNA left

X-ray dose for a typical scan (Gray)

100.000

10.000

1.000

X-ray dose for typical scan (Gy)

o
o

15 20 25

30 35 40
voxel size (microns)

no usable DNA left

strong damages

serious damages

significant damages

acceptable damages

negligible damages

no detectable effect

e synchrotron classical high

e synchrotron classical low

e synchrotron 2014
synchrotron 2015

@ @ synchrotron 2016




Risk color coding (used to define the color regions on the graphs)

0 detectable effec] step negligible damages step [acceptable damages step significant damages step serious damages step strong damages step no usable DNA Teft step
-50 180.0 1.09 -50 1980.0 1.025 -50 9980.0 1.017 -50 19500.0 1.008 -50 44500.0 | 1.009 -50 165000.0 | 1.014 -50 [1000000.0| 1.02
200 180.0 min 200 1980.0 min 200 9980.0 min 200 19500.0 min 200 44500.0 min 200 165000.0 min 200 [1000000.0| min
200 180.0 0.1 200 1980.0 210 200 9879.1 2060 200 19500.0 10020 200 44500.0 | 20020 200 165000.0 | 45500 200  [1000000.0| 175000
-50 180.0 max -50 1980.0 max -50 9713.9 max -50 19500.0 max -50 44500.0 max -50 163494.5 max -50 [1000000.0| max
-50 180.0 180 -50 1980.0 1980 -50 9551.6 9980 -50 19500.0 19500 -50 44500.0 | 44500 -50 161237.2 | 165000 -50  [1000000.0| 1000000
200 180.0 200 1938.1 200 9391.9 200 19500.0 200 44500.0 200 159011.1 200 [1000000.0
200 180.0 200 1890.8 200 9234.9 200 19500.0 200 44440.4 200 156815.6 200 [1000000.0
-50 180.0 -50 1844.7 -50 9080.5 -50 19500.0 -50 44044.0 -50 154650.5 -50 999662.0
-50 180.0 -50 1799.7 -50 8928.7 -50 19500.0 -50 43651.1 -50 1525153 -50  [980060.7
200 165.5 200 1755.8 200 8779.5 200 19500.0 200 43261.8 200 150409.6 200 960843.9
200 151.8 200 1713.0 200 8632.7 200 19500.0 200 42875.9 200 148332.9 200 942003.8
-50 139.3 -50 1671.2 -50 8488.4 -50 19500.0 -50 42493.5 -50 146284.9 -50 923533.1
-50 127.8 -50 1630.4 -50 8346.5 -50 19413.0 -50 42114.4 -50 144265.2 -50 905424.6
200 117.2 200 1590.7 200 8207.0 200 19258.9 200 41738.8 200 142273.4 200 887671.2
200 107.5 200 1551.9 200 8069.8 200 19106.0 200 41366.5 200 140309.1 200 870265.9
-50 98.7 -50 1514.0 -50 7934.9 -50 18954.4 -50 40997.5 -50 138371.9 -50 853201.9
-50 90.5 -50 14771 -50 7802.3 -50 18804.0 -50 40631.8 -50 136461.4 -50 836472.4
200 83.0 200 1441.1 200 7671.9 200 18654.7 200 40269.4 200 134577.3 200 820071.0
200 76.2 200 1405.9 200 7543.6 200 18506.7 200 39910.2 200 132719.3 200 803991.2
-50 69.9 -50 13716 -50 74175 -50 18359.8 -50 39554.2 -50 130886.8 -50 788226.6
-50 64.1 -50 1338.2 -50 72935 -50 18214.1 -50 39201.4 -50 129079.7 -50 772771.2
200 58.8 200 1305.5 200 7171.6 200 18069.5 200 38851.7 200 127297.6 200 757618.8
200 54.0 200 12737 200 7051.7 200 17926.1 200 38505.2 200 125540.0 200 742763.6
-50 49.5 -50 1242.6 -50 6933.9 -50 17783.9 -50 38161.7 -50 123806.7 -50 728199.6
-50 45.4 -50 1212.3 -50 6818.0 -50 17642.7 -50 37821.3 -50 122097.3 -50 713921.1
200 41.7 200 1182.7 200 6704.0 200 17502.7 200 37484.0 200 120411.6 200 699922.7
200 38.2 200 1153.9 200 6591.9 200 17363.8 200 37149.6 200 118749.1 200 686198.7
-50 35.1 -50 1125.8 -50 6481.7 -50 17226.0 -50 36818.3 -50 117109.6 -50 672743.8
-50 32.2 -50 1098.3 -50 6373.4 -50 17089.3 -50 36489.9 -50 115492.7 -50 659552.8
200 29.5 200 10715 200 6266.9 200 16953.6 200 36164.4 200 113898.1 200 646620.4
200 27.1 200 1045.4 200 6162.1 200 16819.1 200 35841.8 200 112325.5 200 633941.5
-50 24.8 -50 1019.9 -50 6059.1 -50 16685.6 -50 35522.1 -50 110774.7 -50 621511.3
-50 22.8 -50 995.0 -50 5957.8 -50 16553.2 -50 35205.3 -50 109245.2 -50 609324.8
200 20.9 200 970.7 200 5858.2 200 16421.8 200 34891.2 200 107736.9 200 597377.3
200 19.2 200 947.1 200 5760.3 200 16291.5 200 34580.0 200 106249.4 200 585664.0
-50 17.6 -50 924.0 -50 5664.0 -50 16162.2 -50 342716 -50 1047825 -50 [574180.4
-50 16.1 -50 901.4 -50 5569.3 -50 16033.9 -50 33965.9 -50 103335.8 -50 562921.9
200 14.8 200 879.4 200 5476.2 200 15906.6 200 33662.9 200 101909.1 200 551884.3
200 13.6 200 858.0 200 5384.7 200 15780.4 200 33362.7 200 100502.0 200 541063.0
-50 12.5 -50 837.1 -50 5294.7 -50 15655.2 -50 33065.1 -50 99114.4 -50 530453.9
-50 114 -50 816.6 -50 5206.2 -50 15530.9 -50 32770.1 -50 97746.0 -50 520052.9
200 10.5 200 796.7 200 5119.2 200 15407.7 200 32477.8 200 96396.4 200 509855.8
200 9.6 200 7773 200 5033.6 200 15285.4 200 32188.1 200 95065.5 200 499858.6
-50 8.8 -50 758.3 -50 4949.4 -50 15164.1 -50 31901.0 -50 93753.0 -50 490057.4
-50 8.1 -50 739.8 -50 4866.7 -50 15043.7 -50 31616.5 -50 92458.6 -50 480448.5
200 7.4 200 721.8 200 4785.4 200 14924.3 200 313345 200 91182.0 200 471027.9
200 6.8 200 704.2 200 4705.4 200 14805.9 200 31055.0 200 89923.1 200 [4617921
-50 6.3 -50 687.0 -50 4626.7 -50 14688.4 -50 30778.0 -50 88681.5 -50 452737.3
-50 5.7 -50 670.3 -50 4549.4 -50 14571.8 -50 30503.4 -50 87457.1 -50 443860.1
200 5.3 200 653.9 200 4473.3 200 14456.1 200 30231.4 200 86249.6 200 435157.0
200 4.8 200 638.0 200 4398.6 200 14341.4 200 29961.7 200 85058.8 200 [ 4266245
-50 4.4 -50 622.4 -50 4325.0 -50 14227.6 -50 29694.5 -50 83884.4 -50 418259.3
-50 4.1 -50 607.2 -50 4252.7 -50 14114.7 -50 29429.6 -50 82726.3 -50 410058.1
200 37 200 592.4 200 4181.6 200 14002.6 200 29167.1 200 81584.1 200 402017.8
200 3.4 200 578.0 200 4111.7 200 13891.5 200 28906.9 200 80457.7 200 394135.1
-50 3.1 -50 563.9 -50 4043.0 -50 13781.3 -50 28649.1 -50 79346.8 -50 386406.9
-50 2.9 -50 550.1 -50 3975.4 -50 13671.9 -50 28393.5 -50 78251.3 -50 378830.3
200 2.6 200 536.7 200 3909.0 200 13563.4 200 28140.3 200 77170.9 200 371402.3
200 2.4 200 523.6 200 3843.6 200 13455.7 200 27889.3 200 76105.4 200 364119.9
-50 2.2 -50 510.8 -50 37794 -50 13348.9 -50 27640.5 -50 75054.7 -50 356980.3
-50 2.0 -50 498.4 -50 3716.2 -50 13243.0 -50 27394.0 -50 74018.4 -50 349980.7
200 1.9 200 486.2 200 3654.1 200 13137.9 200 27149.6 200 72996.5 200 343118.3
200 1.7 200 474.4 200 3593.0 200 13033.6 200 26907.5 200 71988.6 200 336390.5
-50 1.6 -50 462.8 -50 3533.0 -50 12930.2 -50 26667.4 -50 70994.7 -50 329794.6
-50 14 -50 451.5 -50 34739 -50 12827.6 -50 26429.6 -50 70014.5 -50 323328.0
200 13 200 440.5 200 3415.8 200 12725.8 200 26193.8 200 69047.8 200 316988.3
200 1.2 200 429.7 200 3358.7 200 12624.8 200 25960.2 200 68094.5 200 310772.8
-50 11 -50 419.3 -50 3302.6 -50 12524.6 -50 25728.6 -50 67154.3 -50 304679.2
-50 1.0 -50 409.0 -50 3247.4 -50 12425.2 -50 25499.1 -50 66227.2 -50 298705.1
200 09 200 399.1 200 31931 200 12326.6 200 25271.7 200 65312.8 200 [292848.2
200 0.9 200 389.3 200 3139.7 200 12228.7 200 25046.3 200 64411.0 200 287106.0
-50 0.8 -50 379.8 -50 3087.2 -50 12131.7 -50 24822.9 -50 63521.7 -50 281476.5
-50 0.7 -50 370.6 -50 3035.6 -50 12035.4 -50 24601.5 -50 62644.7 -50 275957.4
200 0.7 200 361.5 200 29849 200 11939.9 200 24382.0 200 61779.8 200 [ 270546.4
200 0.6 200 352.7 200 2935.0 200 11845.1 200 24164.5 200 60926.8 200 265241.6
-50 0.6 -50 344.1 -50 2885.9 -50 11751.1 -50 23949.0 -50 60085.6 -50 260040.8
-50 0.5 -50 335.7 -50 2837.7 -50 11657.8 -50 23735.4 -50 59256.0 -50 254942.0
200 0.5 200 327.5 200 2790.3 200 11565.3 200 23523.7 200 58437.9 200 249943.1
200 0.4 200 319.5 200 2743.6 200 11473.5 200 23313.8 200 57631.1 200 245042.2
-50 0.4 -50 311.7 -50 2697.8 -50 11382.5 -50 23105.9 -50 56835.4 -50 240237.5
-50 0.4 -50 304.1 -50 2652.7 -50 11292.1 -50 22899.8 -50 56050.7 -50 235527.0
200 0.3 200 296.7 200 2608.3 200 11202.5 200 22695.5 200 55276.8 200 230908.8
200 0.3 200 289.5 200 2564.7 200 11113.6 200 22493.1 200 54513.6 200 226381.2
-50 0.3 -50 282.4 -50 2521.8 -50 11025.4 -50 22292.5 -50 53760.9 -50 2219423
-50 0.3 -50 275.5 -50 2479.7 -50 10937.9 -50 22093.6 -50 53018.7 -50 217590.5
200 0.2 200 268.8 200 2438.2 200 10851.1 200 21896.6 200 52286.7 200 213324.0
200 0.2 200 262.3 200 2397.5 200 10765.0 200 21701.2 200 51564.8 200 209141.2
-50 0.2 -50 255.9 -50 2357.4 -50 10679.5 -50 21507.7 -50 50852.8 -50 205040.4
-50 0.2 -50 249.6 -50 2318.0 -50 10594.8 -50 21315.8 -50 50150.7 -50 201020.0
200 0.2 200 2435 200 2279.3 200 10510.7 200 21125.7 200 49458.3 200 197078.4
200 0.2 200 237.6 200 2241.2 200 10427.3 200 20937.3 200 48775.4 200 193214.1
-50 0.1 -50 231.8 -50 2203.7 -50 10344.5 -50 20750.5 -50 48102.0 -50 189425.6
-50 0.1 -50 226.1 -50 2166.9 -50 10262.4 -50 20565.4 -50 474379 -50 1857114
200 0.1 200 220.6 200 2130.6 200 10181.0 200 20382.0 200 46782.9 200 182070.0




Supplementary Data 2

Conventional Scanner Dosimetry

surface dose (Gy) for MPI-EVA BIR scanner at 100 kV / 10W
voxel size (um) no filter 2h 0.1 mm brass 2h 0.25 mm brass 2h 0.1mm brass 20 h
100 0.7 0.3 0.2 2.5
50 2.7 1 0.6 10
30 7.6 2.6 1.6 26
25 10.9 3.8 2.2 38
20 17.1 6 3.5 60
15 30.5 10.6 6.2 106
10 67.9 23.6 13.9 236
5 271.4 94.4 55.5 944
surface dose (Gy) for MPI-EVA skyscan scanner at 50 kV / 8W
voxel size (um) no filter 2h no filter 20 h
100 6.3 63.3
50 25.3 253
30 70.2 702
25 101.2 1012
20 158.4 1584
15 282.3 2823
10 629.3 6293
5 2517 25170
MPI typical scans dose estimations
voxel size estimated dose
91.2 0.3
63.7 0.9
54.6 0.4
30.1 5.4
25.1 8.3
20.0 1.5
17.4 9.7
15.5 9.9
11.8 18.7
10.0 25.8
6.8 15.2
X-ray surface dose for conventional microtomographs
serious damages
significant damages
10.000 acceptable damages
negligible damages
= no detectable effect
O eI T T TSI T T T T T T T T T I T T T T T T T T I T T T T T T T T T T Tl mcccmcm e e a2
g e skyscan 1173 50kV/8W no filter 20 hours
8 skyscan 1173 50kV/8W no filter 2 hours
= @ B|R 100 kV/10W 0.1mm Brass 20 hours
2 BIR 100 kV/10W no filter 2 hours
o
B" BIR 100 kV/10W 0.1 mm Brass 2 hours
‘6 BIR 100 kV/10W 0.25 mm Brass 2 hours
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Supplementary Data 4

DNA Quantitation and C ~ T Substitution Frequencies after Synchrotron High Quality Imaging X-ray Exposure at 720 Gy
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DNA Quantitation (Figure 5 a.) C - T Substitution Frequencies for the 1% Position from 5' End (Figure 5 d.)
scan no scan pos NSC normal normalized

Sample 20 8.47E+07  1.55E+08 Sample 20 1 0.28 0.2380038388 0.8500137099

Sample 21 2.61E+08  1.47E+08 Sample 22 1 0.3518123026 0.3426464882 0.9739468621

Sample 22 1.13E+08  2.50E+07

Supplementary Data 5

Sample20_no_scan_ Sample20_no_scan_ Sample20_scan_ Sample20_scan_ Sample21 no_scan_Sample21_scan_ Sample22_no_scan_ Sample22_no_scan_ Sample22_scan_ Sample22_scan_

Endogenous_DNA Total_DNA Endogenous_DNA Total_DNA Total DNA Total DNA Endogenous DNA  Total_DNA Endogenous_DNA Total_DNA
103 30 72 30 30 30 65 30 93
85 30 35 30 30 30 109 30 154
63 30 59 30 30 30 90 30 155
65 30 125 30 30 30 154 30 75
76 30 75 30 30 30 76 30 91
68 30 76 30 30 30 67 30 71
62 30 72 30 30 30 36 30 62
48 30 71 30 30 30 81 30 61
53 30 114 30 30 30 69 30 63
48 30 67 30 30 30 78 30 83
67 30 66 30 30 30 7 30 84
42 30 46 30 30 30 71 30 112
117 30 55 30 30 30 119 30 120
118 30 52 30 30 30 118 30 90
108 30 46 30 30 30 79 30 73
53 30 51 30 30 30 70 30 84
72 30 61 30 30 30 55 30 88
85 30 62 30 30 30 114 30 68
46 30 62 30 30 30 140 30 122
40 30 109 30 30 30 71 30 82
118 30 119 30 30 30 93 30 83
97 30 43 30 30 30 61 30 68
101 30 65 30 30 30 59 30 71
96 30 63 30 30 31 110 30 44
97 30 67 30 30 31 57 30 74
46 30 50 30 30 31 58 30 115
38 30 104 30 30 31 74 30 89
138 30 54 30 30 31 91 30 41
87 30 49 30 30 31 90 30 102
145 30 61 30 30 31 62 30 135
105 30 52 30 30 31 64 30 59
78 30 71 30 30 31 76 30 68
95 30 43 30 30 31 88 30 59
49 30 71 30 30 31 136 30 44
63 30 34 30 30 31 139 30 128
74 30 v 30 30 31 71 30 81
81 30 53 30 30 31 113 30 66
55 30 55 30 30 31 121 30 41
47 30 34 30 30 31 52 30 62
49 30 104 30 30 31 114 30 7
42 30 69 30 30 31 137 30 188
36 30 83 30 30 31 175 30 44
62 30 111 30 30 31 92 30 41
58 30 70 30 30 31 83 30 83
57 30 58 30 30 31 94 30 71
71 30 67 30 30 31 88 30 47
72 30 58 30 30 31 91 30 70
46 30 55 30 30 31 55 30 63
41 30 88 30 30 31 74 30 62
38 30 87 30 30 31 75 30 56
64 30 48 30 30 31 56 30 138
65 30 69 30 30 31 113 30 43
58 30 50 30 30 31 137 30 62
33 30 66 30 30 31 110 30 53
39 30 61 30 30 31 89 30 141
66 30 57 30 30 31 78 30 49
74 30 7 30 30 31 7 30 62
75 30 80 30 30 31 81 30 78
47 30 36 30 30 31 73 30 7
48 30 100 30 30 31 137 30 46
48 30 61 30 30 31 72 30 82
47 30 108 30 30 31 73 30 46
43 30 97 30 30 31 163 30 47
55 30 89 30 30 32 68 30 58
45 30 90 30 30 32 67 30 59
69 30 58 30 30 32 114 30 83
73 30 44 30 30 32 162 30 173
92 30 73 30 30 32 75 30 49
57 30 37 30 30 32 81 30 147
55 30 68 30 30 32 76 30 45
52 30 67 30 30 32 71 30 68
45 30 52 30 30 32 121 30 66
131 30 73 30 30 32 104 30 67
131 30 64 30 30 32 174 30 66
132 30 60 30 30 32 97 30 118
54 30 63 30 30 32 98 30 60
56 30 55 30 30 32 126 30 60

58 30 81 30 30 32 66 30 59

30
30



2.4 Study 3: Immunity Capture

2.4.1 Background: Plague, HLA and other Immunity Genes
The plague pathogen Yersinia pestis

The goal of my third study was to capture human immune system genes from medieval
victims of plague caused by the gram-negative bacterium Yersinia pestis, the etiological
agent of the Black Death (Benedictow, 2004, Bos et al., 2011). Y. pestis DNA was
previously detected in those plague victims allowing to reconstruct a complete Y. pestis
genome (Spyrou et al., 2016).

Y. pestis is endemic in rodent populations and invades the human host through the
bite of an infected rodent flea Xenopsylla cheopis (Bitam et al., 2010). In flea guts it is
able to form biofilm (Hinnebusch and Erickson, 2008), whereas in the human host the
pathogen is transported via the bloodstream into the lymph nodes, where it proliferates
and produces toxins causing severe inflammation which results in swollen and painful
lymph nodes, the characteristic "buboes" (Comer et al., 2010). This, the so called
bubonic plague, is the most common form of plague. It has an incubation period of up
to seven days and a mortality rate ranging from 30 - 60 % (WHO, 2019). Advanced
bubonic plague can spread into the lungs and be transmitted via droplet infections from
human to human, causing pneumonic plague (Butler, 1983). The pneumonic plague is
the most virulent form of Y. pestis infection, which is almost always fatal if untreated,
and characterized by symptoms such as severe pneumonia, high fever, cough, chills and
other symptoms after a short incubation time of as short as 24 h (WHO, 2019). The
third and rarest known form of plague is the septicemic plague. It is characterized by
febrility, gastro-intestinal disturbances, chills and headache after a blood infection by Y.
pestis (Perry and Fetherston, 1997).

In the recent years many studies have investigated the evolution of the plague pathogen
(Achtman et al., 1999, Bos et al., 2011, Cui et al., 2013, Wagner et al., 2014, Rasmussen
et al., 2015, Bos et al., 2016, Feldman et al., 2016, Andrades Valtuena et al., 2017,
Spyrou et al., 2016, Spyrou et al., 2018, Keller et al., 2019). Y. pestis was shown to have
been infecting humans since at least the Late Neolithic (Andrades Valtuena et al., 2017,
Rascovan et al., 2019). The genetic changes that contributed to the increased virulence
of Y. pestis include the upraise of the ymt gene, allowing the pathogen to survive in the
flea gut and use the flea as a vector for transmission (Hinnebusch et al., 2002), a mutation

in the pla gene allowing deep penetration into lung tissue and therefore essential only
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for the pneumonic form of plague (Zimbler et al., 2015), as well as the loss of function
of the flhD gene regulating the expression of flagellin (Minnich and Rohde, 2007), which
triggers the mammalian innate immune system (Hayashi et al., 2001). Historical records
indicate that the Black Death killed up to half of the European population from 1346
to 1353 (Benedictow, 2004) and plague still emerges nowadays, especially in developing
countries.

Most of the genetic changes that modern day Y. pestis strains acquired after diverging
from the Black Death strains do not contribute to an increased virulence of the plague
bacillus (Bos et al., 2011). Thus, apart from the introduction of antibiotics, improved
hygiene conditions or climatic changes and different vector dynamics, the host immunity
may have adapted to the effect of Y. pestis. This scenario implies a plague driven positive
selection on particular immunity related genes owned by plague victims, and further
suggests that advantageous genes or alleles responsible for plague resistance should be

present at increased frequencies in places previously affected by plague.

HLA and other immunity genes

With a current number of 25,756 alleles (hla.alleles.org, 2020) the Human Leukocyte
Antigen (HLA) complex is the most polymorphic gene complex in the human genome
(Albert and Baur, 1984). The HLA is the human version of the vertebrate Major His-
tocompatibility Locus (MHC) located on the short arm of the human chromosome 6
(Erlich et al., 2001). Balancing selection exerted through pathogens was proposed as a
driving mechanism for maintaining the high allelic diversity of the HLA locus (Trows-
dale, 2011). HLA genes encode cell-surface glycoproteins which present intracellular
and extracellular peptides to the innate immune system and therefore play a major role
for the immune system as well as for tissue compatibility after organ and bone marrow
transplantations (Mahdi, 2013).

The HLA class T consists of the major genes A, B, C and the minor genes E, F, G,
which encode cell surface proteins that present cell-own and viral peptides to CD8+
cytotoxic T-cells (Pamer and Cresswell, 1998). The HLA class II consists of the classical
genes DP, DQ, DR and the non-classical genes DM and DO. HLA-DP, DQ and DR
encode cell surface proteins that present extracellular antigens, e.g. bacterial peptides,
to CD4+ helper T-cells (Watts, 1997). The non-classical HLA-IT genes DM and DO
encode non-binding proteins that regulate the loading of peptides from self and foreign
antigens (Mellins and Stern, 2014).

The leading question here was whether plague victims carried disadvantageous alleles
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for the presentation of Y. pestis-derived peptides while plague survivors had advanta-
geous alleles that they would have inherited to following generations. In short, whether
a contemporary population has significantly different HLA-allele frequencies compared
to plague victims who existed in the same geographic region.

Other immunity-related genes important for the immune response to pathogens such as
Y. pestis comprise pattern recognition receptors (PRRs) involved into the direct recog-
nition of bacterial Pathogen-Associated Molecular Patterns (PAMPs) and signalling
molecules. Main PRR gene families include Toll-like Receptors (TLRs) (Hayashi et al.,
2001, Lu et al., 2008), Interleukins (IL) and Interleukin Receptors (ILRs) (Goritzka
et al., 2015), Killer-Cell-Immunoglobulin-like Receptors (KIRs) (Augusto and Petzl-
Erler, 2015), inflammasome-involved Nucleotide-binding Domain and Leucine-rich Re-
peat containing Receptors (NLRs) (Man and Kanneganti, 2015), signal transducing
Leukocyte Immunoglobulin-like Receptors (LILRBs) (Kang et al., 2016), as well as
other cell-surface glycoproteins from the large Cluster of Differentiation (CD) gene fam-
ily (Nymo et al., 2016). More than that, proteasome (PSM) genes are involved in the
degradation of infected cells and the regulation of the NF-xB pathway (Sun et al., 2016)
which plays an important role in immune responses. Cytokines such as Chemokine Lig-
ands (CCLs) (Bardina et al., 2015) and their Chemokine Receptors (CCRs) (Fricker,
2015), Tumor Necrosis Factors (TNFs) and Interleukins (ILs) (Nymo et al., 2016), In-
terferons (IFNs) (Wang et al., 2016), as well as transcription factors such as NF-xB
(Kopitar-Jerala, 2015) are involved into signal-transduction and induce inflammatory

responses to pathogens.

Interaction between Y. pestis and the Human Immune System

After having penetrated through the human skin barrier Y. pestis is recognized by the
Toll-like receptor 4 (TLR4) which senses lipopolysaccharides (LPS) that constitute a
major part of the cell wall in gram-negative bacteria (Takahashi and Kawai, 2007).
TLRA4 recruits downstream signal transduction adaptor proteins which then induce the
expression of proinflammatory cytokine genes and transcription factors such as AP-1
and NF-kB (Lu et al., 2008). However, Y. pestis can evade recognition by altering the
fatty acid chains of the LPS Lipid A from hexa-acylated to tetra-acylated after the tem-
perature transition from flea (26 °C) to human (37 °C) (Li and Yang, 2008). Moreover,
when Y. pestis is phagocytosed by macrophages at an early stage of infection, it can pro-
liferate in the macrophages, where it is protected from other components of the human

immune system (Li and Yang, 2008), and produces virulence factors such as Yersinia
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outer proteins (Yops), F1 antigen and LerV antigen (Perry and Fetherston, 1997). The
F1 antigen forms a capsule around the bacterium protecting it from engulfment through
macrophages. In macrophages Y. pestis produces type III secretion system (T3SS) sur-
face proteins (Cornelis, 2002) that allow the bacterium to inject Yops virulence factors
into host cells such as macrophages, neutrophils and dendritic cells after the release from
macrophages and disable host immune responses. E.g. YopM can deplete Natural Killer
cells (NK), whereas YopH, YopE, YopT and YopO inhibit phagocytosis by macrophages
and neutrophils (Li and Yang, 2008). YopP inhibits TNF-a and IL-8 release from in-
fected cells, which suppresses the activation of NK cells (Boland and Cornelis, 1998).
Moreover, the Y. pestis LerV antigen that is involved into the T3SS formation has been
shown to also suppress proinflammatory TNF-a and IFN-v cytokines (Sing et al., 2002)
and to inhibit the chemotaxis of neutrophils to the inflammation site (Welkos et al.,
1998).

Host dendritic cells (DCs) sense invading pathogens and trigger the release of PRRs to
activate T-cells, while disintegrating the pathogen within their phagosome and present-
ing microbial peptides with their HLA class II molecules co CD4+ T-cells (Anderson
et al., 2017). Y. pestis paralyses DCs by diminishing their cytoskeleton rearrangement
(Velan et al., 2006). More than that, the YopH effector protein depletes T-cells by
inducing their apoptosis (Bruckner et al., 2005).

2.4.2 Initial Array Design for Immunity Capture

Microarrays for target enrichment of nucleic acids can be purchased commercially. They
are available for various purposes (e.g. gene expression analysis, (micro-) RNA and
DNA capture) in various layouts, depending on the amount of desired probes (ranging
from 244 000 to 1 million (mio) features, e.g. Roche NimbleGen Sequence Capture,
Agilent eArray). Using an online user interface (e.g. Agilent SureDesign) customers
can upload their target sequences which will be printed as nucleotide sequences on the
surface of the microarray. After DNA extraction and purification, and the construction
of DNA sequencing libraries, the indexed double stranded libraries are being denatured
into single strands and applied to the surface of the microarray. The hybridization
between target molecules and bait on the solid surface of the microarray happens at
a temperature of 65 °C during an incubation period of 48-65 h (Hodges et al., 2009).
After the hybridization, non-binding (non-target) DNA molecules are washed away, and
the target DNA is eluted and purified. The target molecules are amplified using PCR,

quantified and become ready for sequencing. Optionally, a second round of capture can
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be applied to the captured target DNA using a new array.

In a first approach genes involved in the innate immune system were selected including
a set of different Pattern Recognition Receptors (PRR) and a panel of 11179 worldwide
alleles of the Human Leukocyte Antigen (HLA) gene complex (Supplementary File 1).
To encompass the whole present allelic diversity of the HLA and KIR genes a dataset
was compound from the Immuno Polymorphism Database (Robinson et al., 2013). The
locations of the genes in Supplementary File 1 and their exonic and intronic regions were
obtained from the Ensembl Genome browser (Aken et al., 2017) with reference to the
human genome assembly hgl9 (Lander et al., 2001). Based on the chromosomal coor-
dinates, exonic nucleotide sequences were extracted from the hgl9 nucleotide sequence
for all the target genes. For the HLA genes, the KIR genes, the MIC (MHC class I
chain related, (Collins, 2004)), and the TAP genes (transporter associated with antigen
processing, (McCluskey et al., 2004)) also the intronic regions were obtained. According
to Agilent a probe length of 60 nucleotides provides the optimal balance between sen-
sitivity and specificity. 60 bp long probes were designed from the previously extracted
target sequences based on a 3 bp overlap (tiling). The target regions were extended to
include 60 bp into the flanking regions. All duplicate probe sequences were filtered out
yielding 762833 unique probes with the fraction of HLA probes constituting 37 % of all
probes. The probeset was uploaded onto the Agilent SureDesign server and a 1 mio.

feature microarray was ordered (fig. 2.7).

Figure 2.7: Simplified illustration of an Agilent capture array with up to one million clus-
ters of molecular 60 bp long probes on its surface, designed to target human
immunity-related genes.

To evaluate the target enrichment performance of the immunity capture array, human
DNA samples with known HLA-genotypes were used as positive controls. These samples
were previously HLA-genotyped and provided by Paul J. Norman (Stanford University).
The modern human DNA was sheared to match the average fragment length expected

from ancient DNA and turned into sequencing libraries as described in section 1.3. Cap-
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ture was performed as described above before sequencing.

HLA genotypes were assessed in OptiType. OptiType is an in-silico prediction software
for 4-digit HLA typing. It identifies a combination of HLA class I alleles as the cor-
rect genotype, if this combination maximizes the number of aligned reads (Szolek et al.,
2014). OptiType uses reads with a length of 37 bp to 101 bp and can work with as
little as a 12 fold coverage on the HLA loci, which makes it suitable for aDNA analyses.
OptiType was able to identify the correct genotypes for the Stanford reference samples,
which verified the reliability of the immunity capture array.

After mapping to hgl9 the sequencing data was visually inspected in the Integrative
Genomics Viewer (IGV) (Robinson et al., 2011): an over-representation of sequences
mapping to HLA genes could be observed yielding high coverage of the captured HLA
regions, but only shallow coverage of other immunity-related genetic regions of inter-
est. This was due to the high proportion of HLA probe sequences determined by the
exceptionally high polymorphism of the HLA region that was completely encompassed
during the initial array design. This not only left little room for probes of other target
genes, but also caused an uneven distribution of probes: the most polymorphic regions
had significantly more probes than less polymorphic regions. Moreover, repetitive in-
tronic regions had not been masked thus their probes would hybridize to sequences from

multiple regions in the human genome causing peaks of high coverage.

2.4.3 Improved Array Design

In order to solve the problem of the capture bias towards the HLA-genes, in the next ap-
proach the number of probes for the HLA locus was reduced to a selection of "sensitive"
probes: using a greedy algorithm a subset of full-length alleles was selected whose tiling
can encompass most of the previously designed 60 bp probes with up to six mismatches.
This set included probes that mainly originated from large HLA allele families (such as
A*24:02, B*39:01 or C*16:01) allowing a probe to target multiple HLA alleles within the
same allele family at the same time. Since a probe of 60 bp length allows to hybridize
a complementary molecule with a tolerance of up to 6 nucleotide mismatches, with the
new probeset 95 % of all possible HLA polymorphisms could be covered. On top, a set
of unique probes was selected to target the remaining 5 %, but using 160-mers instead of
full alleles. Moreover, repetitive intronic regions were excluded, the tiling was changed
to 5 bp overlap (fig. 2.8) and duplicate probe sequences were removed, thus, reducing
the total proportion of HLA probes to 15 %.

In addition, a more stringent filtering was applied to the new probeset: the probe se-
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CACGTTTCTTGGAGCAGGTTAAACATGAGTGTCATTTCTTCAACGGGACGGAGCGGGTGCGGTTCCTGGA
CACGTTTCTTGGAGCAGGTT
TTCTTGGAGCAGGTTAAACA
GGAGCAGGTTAAACATGAGT
AGGTTAAACATGAGTGTCAT
AAACATGAGTGTCATTTCTT
TGAGTGTCATTTCTTCAACG
GTCATTTCTTCAACGGGACG
TTCTTCAACGGGACGGAGCG
CAACGGGACGGAGCGGGTGC
GGACGGAGCGGGTGCGGTTC
GAGCGGGTGCGGTTCCTGGA

Figure 2.8: Tiling. An example target sequence covered by 20 bp long probes with a 5 bp
tiling.

quences that remained after duplicate removal were aligned to the human reference
sequence hgl9 with the sensitive mapper RazerS3 (Weese et al., 2012) using an identity
threshold of at least 95 % between the probe and the reference sequence. Using the
program Samtools (Li et al., 2009) the individual number of alignments to hgl9 was
counted for each probe. Probe sequences that aligned more often than 20 times were
regarded as unspecific and were removed from the probeset. The remaining probes were
re-aligned to hgl9 to ascertain that no probe mapped more frequently than 20 times.
The final probeset contained 229604 unique probes and was ordered using the Agilent
SureDesign service. After capture and sequencing of the Stanford reference samples,
their HLA alleles were correctly called in OptiType and reaffirmed the accuracy of the
improved array design. Moreover, evaluation of the re-designed immunity array demon-
strated that the coverage of the non-HLA genes now was comparable to the coverage of
the HLA genes (fig. 2.9).

2.4.4 In-Solution Capture

In the third approach probes were re-designed to meet the specifications of in-solution
capture in order to standardize the immunity capture approach and save costs (Gnirke
et al., 2009). In-solution capture has been widely used in aDNA studies e.g. to investi-
gate population genetics, human migrations and selection by targeting different panels
of polymorphic sites (Fu et al., 2013, Haak et al., 2015, Mathieson et al., 2015).

In contrast to solid capture, the bait is not bound to a solid surface of a microarray but
free in buffer solution. As a first step, however, the bait is ordered on an Agilent mi-
croarray and cleaved from its surface. Since it is modified to contain a primer sequence,
bait can be re-amplified using PCR, followed by biotinylation in a second round of PCR
(Fu et al., 2013). Biotinylated bait is then pooled together with the sequencing libraries
so that complementary target DNA molecules can hybridize to the bait. Because of

biotin-streptavidin interaction, the addition of streptavidin-coated magnetic beads (e.g.
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Figure 2.9: An example of coverage comparison based on the coverage of the captured genes
HLA-A, CCR5 and KIR2DL1 using the same sample for the initial and the
improved capture array. The average sequence coverage for the respective genes
(indicated by the green line) is generally higher after capture with the improved
array design compared to the first array design. Plots were generated in R
statistical language (R Development Core Team, 2008).

AMPure XP SPRIselect) allows to select the target fraction of the DNA. Unbound DNA
is washed away while bound target DNA is eluted from the bait, purified, amplified and
sequenced.

Probes from the improved array design were modified by replacement of the last 8 bp

from the 3’ end of each probe by a specific primer sequence, that allows to re-amplify
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the probe molecules in a PCR after cleaving them off from the surface of the micro-array
(Fu et al., 2013). Trimming off the last 8 terminal bases was performed by use of the
FASTX toolkit (HannonLab, 2009) followed by replacing them with the actual primer
sequence, removal of duplicate sequences, alignment to the human reference sequence
hgl9 and filtering for probe sequences that aligned more than 20 times as described
above (sec. 2.4.3).

2.4.5 Evaluation of the In-Solution Capture Efficiency

Evaluation of the target enrichment was conducted using the HLA-genotyped positive
controls as described in section 2.4.2 and OptiType was able to identify the correct
genotypes for the human control samples consolidating the accuracy of the in-solution
immunity capture. In addition, the sequencing libraries were shotgun sequenced without
prior enrichment. After sequencing, the total number of reads after adapter removal, the
number of reads that aligned (mapped) to the human genome reference sequence hgl9
and the percentage of reads mapping to the hgl9 human reference sequence (endogenous
DNA) were assessed within the EAGER-pipeline (Peltzer et al., 2016), while the average
read length and the number of reads in target were obtained using a custom program.
The enrichment factor was then calculated as follows: for both - the captured and the
shotgun libraries - the number of reads in target regions was normalized by the number of
reads that mapped to hgl9. The normalized number of reads in target after capture was
divided by the normalized number of reads in target after shotgun sequencing (tab. 2.1).
On average, this number was 640 times higher after in-solution capture indicating a high

enrichment efficiency.

2.4.6 Application of the Immunity Capture to 16" Cent. Plague
Victims
Archaeological Material

The novel in-solution immunity capture was applied to DNA obtained from human skele-
tal material of plague victims of a historically documented plague outbreak in Ellwangen
(Baden-Wuerttemberg, South Germany). 44 individuals were obtained from three mass
graves (archaeological records 549, 559, 706) during an excavation led by the ministry for
the preservation of monuments (Landesamt fiir Denkmalpflege), Baden-Wuerttemberg
in 2014 and 2015 (fig. 2.10). Radiocarbon dating was performed on 12 of those indi-
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Table 2.1: EAGER results and capture efficiency for 10 human DNA positive control samples
with previously established HLA-genotypes. Capture indicates libraries after the
in-solution immunity capture, Shotgun indicates the libraries without previous
enrichment. Endogenous DNA (%): percentage of total reads mapping to hgl9.
Reads in Target: Number of reads falling into the target regions of the in-solution

. . . normalized reads in target after capture
Immuno capture. Enrichment Factor: normalized reads in target after shotgun

Sample Total Reads | Mapped Endogenous Average Reads in | Enrichment
after Adapter | Reads (hgl9) | DNA (%) Read Target Factor
Removal Length

COX_ Capture 5 329 525 5 028 640 94.4 5.4 1864 643 | 668.9
COX_Shotgun | 10 617 305 9 748 356 91.8 72.1 5 404

GBL_ Capture | 7 346 822 7 046 816 95.9 75.6 2584 206 | 639.6
GBL_Shotgun | 9 844 279 9 268 587 94.2 72.3 5 314

MOU_ Capture | 5 899 988 5 668 114 96.1 75.5 2024 780 | 632.3
MOU_Shotgun | 9 275 108 8 756 612 94.4 72.5 4947

PBB_ Capture 6 074 598 5 803 782 95.5 75.5 2011 848 | 631.9
PBB_ Shotgun | 10 141 481 9 489 475 93.6 72.5 5 206
PGF_Capture | 4 379 895 4197 934 95.8 75.6 1553 686 | 628.3
PGF_Shotgun | 8 361 144 7845 175 93.8 724 4621

RSH_ Capture 5 408 967 5170 051 95.6 75.6 1951 595 | 659.7
RSH_ Shotgun 7600 117 7112 366 93.6 72.8 4070

SPL_ Capture 4053 284 3 864 052 95.3 75.6 1419911 | 640.9
SPL_ Shotgun 9 058 986 8 494 267 93.8 72.6 4 870

SSTO_ Capture | 8 164 540 7718 107 94.5 75.6 2396 694 | 596.2
SSTO_ Shotgun | 8 017 032 7 361 621 91.8 71.9 3834
T7526_Capture | 3 215 111 3064 910 95.3 75.6 1106 450 | 623.9
T7256_Shotgun | 8 336 150 7 787 939 93.4 2.7 4 506
WT49_Capture | 6 538 212 6 253 695 95.6 75.6 23259838 | 673.4
WT49_Shotgun | 10 635 275 9 955 516 93.6 724 5 499

viduals. One individual (Ellwangen 2) had too little collagen and could not be dated.
One individual (Ellwangen 7) was dated to the 13™ - 14®™ century AD, while the re-
maining 10 samples showed ages falling into the 15™ - 17" century AD (tab. 2.2).

Modern DNA for Reference

Saliva samples for DNA extraction were obtained from 51 modern day inhabitants of
Ellwangen in September 2014 and April 2015 using Whatman Omniswab cheek swabs.
Only individuals whose families have been resident since at least four generations in
Ellwangen were asked to contribute their saliva samples, in order to avoid a potential
bias that might have been caused through admixture because of migration. Consent
was obtained from the contributing persons and their samples were made anonymous

disallowing a re-identification of the donor.
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Figure 2.10: Mass graves discovered at the market place in Ellwangen, Baden-Wuerttemberg
during an excavation in 2014/2015 led by the ministry for the preservation
of monuments (Landesamt fiir Denkmalpflege), Baden-Wuerttemberg. Images
were kindly provided by Prof. Dr. Joachim Wahl.

Sampling and DNA Extraction

Former studies have shown that the petrous portion of the temporal bone in the (human)
skull provides five times more endogenous human DNA compared to teeth (Gamba
et al., 2014, Pinhasi et al., 2015). Therefore petrous bones from the plague victims
were obtained for sampling. Following Pinhasi et al. 2015, petrous pyramids were cut
longitudinally in order to enable access to the bony labyrinth (fig. 2.11), which is the
densest part of the mammalian body (Frisch et al., 1998). After cleaning the surface
on one side of the bony labyrinth with a drill bit, bone powdering was performed along
the semi-circular canal, which yielded 80-120 mg bone powder. DNA extraction was
carried out using up all the bone powder following a guanidinium-silica based extraction
method (Rohland and Hofreiter, 2007).

Isolation of genomic DNA from saliva was performed using the QIAamp DNA Blood
Mini Kit following the Quiagen protocol. Isolated modern DNA was sheared to an
average fragment length of 300 bp using the Covaris M220 Focused-ultrasonicator.

Preparation of DNA Libraries and In-Solution Capture

DNA libraries from modern and ancient samples were prepared using 20 ul of extract
following published protocols (Kircher et al., 2012, Meyer and Kircher, 2010). For
the ancient samples partial uracil-DNA-glycosylase (UDG-half) treatment was applied
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Table 2.2: Radiocarbon dates of 11 out of 44 Ellwangen mass grave samples. Cal 1 sigma:
sigma 1 statistical estimation of the calibrated date falling between the intercepts
at a 68 % probability. Cal 2 sigma: sigma 2 statistical estimation of the calibrated
date falling between the intercepts at a 95 % probability.

Sample

Cal 1 sigma

Cal 2 sigma

Ellwangen 1
Ellwangen 3
Ellwangen 4
Ellwangen 5
Ellwangen 6
Ellwangen 7
Ellwangen 8
Ellwangen 9
Ellwangen 10
Ellwangen 11
Ellwangen 12

cal AD 1468-1619
cal AD 1493-1630
cal AD 1473-1622
cal AD 1484-1626
cal AD 1459-1616
cal AD 1290-1385
cal AD 1449-1607
cal AD 1471-1620
cal AD 1485-1627
cal AD 1495-1632
cal AD 1425-1441

cal AD 1454-1631
cal AD 1473-1634
cal AD 1455-1633
cal AD 1460-1633
cal AD 1450-1630
cal AD 1284-1390
cal AD 1443-1618
cal AD 1455-1632
cal AD 1462-1633
cal AD 1481-1638
cal AD 1415-1447

Figure 2.11: Sampling the petrous bone. I. and II. Right petrous bone from an individual
obtained from the mass grave 549. III. Longitudinal cut through the petrous
bone; IV. Medial view of a longitudinal cut through the petrous bone exposing
the densest part of the bone and the semi-circular canal, where drilling was
performed to produce bone powder.

(Rohland et al., 2015). Sample-specific index combinations were added to the sequencing
libraries in order to allow differentiation between the individual samples after pooling and
multiplex sequencing (Kircher et al., 2012). Indexed libraries were amplified in 100 gl
reactions in a variable number of 1 to 7 cycles to reach the required concentration for

enrichment, followed by purification over Quiagen MinElute columns. Indexed library
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pools were single-end shotgun-sequenced on the [llumina Hiseq 4000 with 7548 cycles
providing around 10-11 million sequencing reads per sample. Finally, using the latest
design of probes for in-solution capture, target enrichment was performed on the same
libraries. The indexed, captured library pools were then single-end sequenced on the

[Nllumina Hiseq 4000 with 7548 cycles providing around 11 million reads per sample.

Processing the Raw Sequences

Sequences were sorted by their index combinations and Illumina sequencing adapters
were removed. An initial analysis of the sequence data was performed using the EA-
GER pipeline (Peltzer et al., 2016). Pre-processed sequences were mapped to the human
reference sequence hgl9 (Lander et al., 2001) using BWA 0.7.12 (Li and Durbin, 2010)
with a default seed length of 32, mapping quality of 30 and a reduced mapping strin-
gency "-n 0.01" to account for mismatches in ancient DNA from the medieval plague
material. C to T misincorporation frequencies typical of aDNA were obtained using
mapDamage 2.0 (Jonsson et al., 2013) in order to assess the authenticity of the ancient
DNA fragments (Briggs et al., 2007). After the validation of terminal damage, the posi-
tions with substitutions at both ends of the reads were trimmed off in order to remove
terminal damage. Mapping the saliva DNA sequence reads to hgl9 was performed with
the same parameters as for aDNA reads to assure comparability. Mapping results are

shown in Supplementary File 2, Part 1, and Supplementary File 3, Part 1, respectively.

Evaluation of the Enrichment Efficiency on aDNA

The enrichment efficiency of the in-solution immuno capture was evaluated as described
in sec. 2.4.5, but using the ancient DNA samples instead of the modern DNA control
samples. The normalized amount of reads in target was on average 370 times higher

after capture (fig. 2.12).

Combination of Capture and Shotgun Sequences

Both sequence data sets - the sequenced capture and shotgun libraries - were combined
into a single dataset in order to maximally increase the number of various SNPs suit-
able for sex determination, contamination estimation, kinship inference and population

genetic analyses, such as PCA and admixture.
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Figure 2.12: Target DNA enrichment after in-solution capture ("capture", red) and uncap-
tured libraries ("shotgun", blue). The number of reads in target is normalized
by the total number of reads after adapter clipping and shown on a logarith-
mic scale. "EXB" = extraction blanks, "LIB" = library blanks. The enrich-
ment factor (oraized reade i laraeL afler Srnc) i uowm on top of cach pai

of samples. On average, 370 times more reads end up in target after in-solution

capture compared to sheer shotgun sequencing.

Sex Determination

Sex determination was assessed on shotgun-sequencing data of ancient and modern DNA
samples based on the ratio of sequences aligning to their X and Y chromosomes (Skoglund
et al.,, 2013). In males the ratio between the coverage on the X chromosome and the
average coverage of the autosomes should be around 0.5, since males have only one
copy of the X chromosome, whereas in females it should be around 1. In analogy, the
coverage on the Y chromosome should be around half the average coverage of autosomes
in males, and it should be zero in females. 26 out of 44 individuals in the ancient
Ellwangen population and 30 out of 53 individuals in the modern population were found
to be males (Supplementary File 2, Part 1 and Supplementary File 3, Part 1), while the
number of female individuals in each population was 18. In five cases of the modern
Ellwangen population the genetic sex could not be determined due to low sequence

coverage of the sex chromosomes.
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Contamination Estimation

Since aDNA is present in only minute amounts, contamination from contemporary hu-
man DNA constitutes a major problem especially for the work with ancient human
genetic material. Contaminated samples must be excluded from the analysis. A way to
investigate whether a sample is contaminated is by detection of 5’ terminal cytosine to
thymine (C—T) substitutions caused through deamination of cytosine (Hofreiter et al.,
2001) and, accordingly, 3’ terminal substitutions of guanine by adenine. These substitu-
tions accumulate over time and can be used to authenticate ancient DNA (Briggs et al.,
2007, Krause et al., 2010, Sawyer et al., 2012). A low amount of terminal substitu-
tions in an ancient sample can indicate contamination through modern DNA molecules.
The 5" and 3’ terminal substitution patterns were assessed in mapDamage 2.0 (Jonsson
et al., 2013). The 5 C to T substitution frequencies of 16-30% in non UDG-treated
aDNA from tooth samples, but also 5-9% in partially UDG-treated aDNA from bone
samples were consistent with the deamination frequency expected in authentic aDNA
(fig. 2.13; Supplementary File 2, Part 1). Partial UDG-treatment removes uracils within
the ancient molecules in the same way as full UDG-treatment, but preserves a small
fraction of the terminal uracil substitutions, so that population genetic analyses can be
performed while the signal of authenticity of aDNA is retained (Rohland et al., 2015).
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Figure 2.13: Example of 5’ terminal C—T and 3’ terminal G—A nucleotide substitutions
observed in the human DNA of two Ellwangen plague victims. Above: a tooth
sample that has not been treated with UDG (non UDG) and therefore contains
the full substitution patterns. Below: a petrous bone sample partially treated
with UDG (UDG-half) showing only partial terminal substitutions.

Terminal substitution patterns can be used to automatically estimate contamination in

mitochondrial data. Schmutzi is a software that provides contamination estimates based
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on deamination patterns and fragment length distributions of human mitochondrial se-
quences, and by utilizing a sequence database of present day human mitochondrial DNA
which can be a potential source of contamination (Renaud et al., 2015). Shotgun se-
quencing data of the Ellwangen plague samples was mapped to the human mitochondrial
reference sequence (revised Cambridge Reference Sequence, rCRS) and Schmutzi was run
in order to obtain mitochondrial contamination estimates. Because of low sequence cov-
erage, contamination estimation on the mitochondrial level could be retrieved only for
23 out of 44 samples. However, for these 23 samples, the mitochondrial contamination
estimates suggested a low contamination level of 1-3% (Supplementary File 2, Part 1).
In addition, in males, contamination can be detected by observing heterogeneity on the
X-chromosome. Since males have only one copy of the X-chromosome, homogeneity is
expected. Therefore, contamination on the X-chromosome in males can be estimated
from the level of heterogeneity of the X-chromosomal sequences. Male X-chromosomal
contamination was assessed in ANGSD (Korneliussen et al., 2014). Also here, contami-
nation was generally low (Supplementary File 2, Part 1). However, in the tooth sample
JK1519 the X-contamination estimate reached 32%, indicating that this sample was

heavily contaminated. JK1519 was excluded from further analyses.

Testing for Population Continuity

In order to assess whether the modern and the ancient populations are comparable on
the immunogenetic level, the genetic continuity between both populations was assessed
in Principal Component Analysis (PCA) and Admixture analysis. The PCA is a sta-
tistical method that makes use of linear combinations to reduce variance of data to the
most crucial components, the so called principal components (Pearson, 1901). Given a
set of n samples the PCA can be used to project them into a two-dimensional space,
representing data redundancy as correlation. The first component thereby contains
the highest proportion of the variation within the data and the second component the
second highest proportion. Applied to population genetic studies, ancestry differences
between samples can be modeled along continuous axes of variation, where a closer ge-
netic affinity can be assumed between samples that fall closer together. In order to
run a PCA, the sequence data was transformed into the EIGENSTRAT format (Price
et al., 2006) and merged with 29 West Eurasian populations on a set of 1.233.013 genetic
markers (Haak et al., 2015, Mathieson et al., 2015). A PCA was performed using the
FEIGENSOFT program smartpca (Patterson et al., 2006) to calculate a basemap defined

by the principal components of the 29 selected populations and to project the ancient
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(plague) and modern Ellwangen individuals onto this map (fig. 2.14). Both populations
fell on top of each other indicating genetic continuity. Since the dataset did not contain
German individuals, the Ellwangen samples were merged with the Affymetric Human
Origins dataset, which contains 203 modern human populations genotyped at 594.924
SNPs (Lazaridis et al., 2014), including Germans. A PCA was performed using 67 se-
lected West Eurasian populations (Lazaridis et al., 2016). Both Ellwangen populations
overlapped and fell next to German individuals as expected (fig. 2.15). However, the
reduced amount of SNPs caused a strong scattering within the ancient Ellwangen sam-
ples. Especially, the tooth samples JK1510, JK1519 and JK1542 had too little SNPs
and fell outside the rest of the ancient Ellwangen population (fig. 2.16). Consequently,
a threshold of at least 10.000 SNPs pulled down from the 1.233.013 or 594.924 SNPs

genetic markers, resp., was defined for every sample to be included into further analyses.
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Figure 2.14: Principal component analysis of both the ancient and the modern Ellwangen
individuals projected onto a basemap of 29 West Eurasian populations. The
overlap between the ancient and modern Ellwangen population indicates genetic
continuity.

Another approach to investigate the genetic continuity is by investigating the propor-
tion of genetic ancestry between individuals. The software ADMIXTURFE uses max-

imum likelihood estimates of the underlying admixture coefficients for a model-based
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Figure 2.15: Principal component analysis of both Ellwangen populations projected onto a

basemap of 67 West Eurasian populations. Except for outliers mainly caused
by too little SNPs, samples from both populations cluster in close proximity
to Germans and on top each other indicating genetic continuity between both
populations.

estimation of ancestry in unrelated individuals (Alexander et al., 2009). ADMIXTURE
can be used with different numbers of ancestral components (K) to operate a model
of ancestral admixture proportions. Cross-validation is performed for every model and
the model with the highest accuracy is determined by the lowest cross-validation error.
The ancestral component composition of the model with the lowest cross-validation er-
ror (K=4) showed similar proportions of the ancestral components in the modern and
ancient Ellwangen populations (fig. 2.17). The similarity in the ancestral genetic compo-
nents observed in the admixture analysis and the coherent positioning of samples from
both Ellwangen populations demonstrated by the PCA analysis confirmed genetic conti-
nuity between both populations, despite potential admixture that might have happened
in the last 400 years and particularly since Ellwangen was occupied during the Thirty
Years’” War by the Swedish in 1632 (Ellwangen, 1886).
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Figure 2.16: Principal component analysis of the same populations as in fig. 2.15. Modern
Ellwangen individuals (EL_modern) are highlighted in purple. Plague victims
are accentuated by different colors and symbols.

Kinship Analysis

Directly related individuals share common (HLA-) genotypes which can bias the al-
lelic frequency distributions in a population. Therefore relatedness needs to be assessed
in order to exclude directly related individuals from subsequent analyses. Relatedness
was assessed using the software packages READ (Monroy et al., 2017) and leMLkin
(Lipatov et al., 2015) which were designed for low coverage sequence data as it is of-
ten given by aDNA. READ (Relationship Estimation from Ancient DNA) can infer
first degree relatives (parent-child, siblings) and second degree relatives (nephew /niece-
uncle/aunt, grandparent-grandchild or half-siblings) based on the proportion of shared
alleles. lcMLkin (low coverage Maximum Likelihood estimation of kinship) calculates
genotype likelihoods from the data in order to infer relatedness between a pair of in-
dividuals down to the fifth degree. In addition, outgroup f3 statistics were applied as
a third independent measure of kinship. Qutgroup f3 statistics measure the amount of

shared genetic drift between two populations from a common ancestor (Patterson et al.,
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Figure 2.17: Admixture analysis of 69 West Eurasian populations including both Ellwangen
populations (EL_modern, ELW plague) with K=4 ancestral components. The
proportion of ancestral genetic components appears to be similar in the modern
and the ancient Ellwangen populations indicating genetic continuity.

2012) and can also be applied to infer the degree of relatedness between two individuals.
For READ, lcMLkin and outgroup f3 statistics a minimal number of 10.000 SNPs was
set as a threshold for any sample to be regarded for kinship analyses, so that the tooth
samples JK1510, JK1519 and JK1542 had to be excluded due to insufficient SNP counts.
All three programs independently supported a first degree relatedness for the following
pairs of individuals: ELWO015 and ELW037, ELW016 and ELWO017, and ELW036 and
ELWO039 (fig. 2.18; Supplementary File 2, Part 2). A second degree relatedness was
observed by lcMLkin and f3 statistics between ELW021 and ELW030 and a higher de-
gree relatedness between ELW030 and ELW034. Moreover, a second degree relatedness
between ELW007 and ELW039 was supported by READ and outgroup f3 statistics. Fur-
thermore, second and higher degree relatedness estimates were observed between nine
other pairs of individuals. Since the latter kinship estimates were supported by only one
program, they were regarded as unreliable. In the modern Ellwangen population only
one pair of individuals - EL1 and EL57 were found to be related (first degree; Supple-
mentary File 3, Part 2).

For the subsequent HLA analysis, the individuals EL57, ELW017, ELW030, ELW037
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and ELWO039 were excluded, because they either had been constituting major "linking
nodes" in the genealogy, or contained less SNPs than their counterpart (e.g. ELW015
and ELW037; EL57 and EL1).
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Figure 2.18: Kinship estimates of the Ellwangen plague victims. Kinship was assessed using
three different software packages. Male individuals are shown in blue, female
individuals in red. The number of lines indicates the number of programs
supporting the kinship observations between a pair of individuals. For three
pairs a first degree kinship was observed independently by all programs. Only
individuals found to be related are shown.

2.4.7 HLA Typing and Allele Frequency Comparisons

After reaffirming continuity between the plague and the modern Ellwangen populations,
HLA alleles were called with OptiType (Szolek et al., 2014), using a reference set of
11179 present day allele sequences and a sequence identity of at least 97 % for every
alignment to be taken into account. The number of possible best matches was set to
infinity. The allele calls are presented in Supplementary File 2, Part 3 and Supplementary
File 3, Part 3, respectively. A visual inspection was conducted on the coverage of the
HLA regions for each sample. The tooth samples JK1491, JK1510, JK1519 and JK1542
showed shallow and fragmentary coverage for all alleles and were therefore excluded from

further analysis.
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Statistical Power and Effect Size Estimation

Limited sample size is a typical problem of aDNA studies, hence, because after excluding
contaminated, directly related and shallow covered samples, a total sample size of 86
(36 ancient and 50 contemporary) individuals was left, statistical power and the size
of the observable effects had to be estimated prior to any statistical testing. While
statistical power is the probability of correctly choosing the alternative hypothesis, the
effect size here refers to the observed shift in allelic frequencies. An effect size of 0.5 can
be regarded as a large effect, 0.3 corresponds to a medium effect and 0.1 can be seen as
a small effect using Cohen’s w as a measure of the effect size (Cohen, 1988). Power and
effect size analysis were conducted in G*Power (Faul et al., 2009). Since the number of
degrees of freedom (df) corresponds to the number of observed different alleles and this
number was unknown before the subsequent HLA allele frequency analysis, df was set
to 1. With a current sample size of 36 and 50 individuals only large to medium effects
(w = 0.45 - 0.4) can be identified at an error probability a=0.05 and a power of 0.8
(fig. 2.19). The more frequent an allele (e.g. 15 % frequency in a population), the more
likely it is to observe a significant frequency shift, while in order to detect significant
frequency shifts in rare alleles (e.g. appearing at 1 % frequency), it is recommended to
increase the sample size to 500 (personal communication, Jill Hollenbach, UCSF), which
was not possible for this aDNA study. Thus, the given sample size allowed to identify

effects only in very common but not in rare alleles.
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Figure 2.19: Achieved effect size as a function of sample size at a statistical power of 0.9 (blue
line) and 0.8 (red line). With the current sample size of 36 and 51 individuals
only large effects (effect size (w) = 0.4 - 0.45) are likely to be observed at a«=0.05
and a power of 0.8 in common (frequent) alleles. The plot was generated using
G*Power 3.1.9.2.



HLA Allele Frequency Analyses

After exclusion of contaminated samples, directly related individuals and individuals
with insufficient HLA coverage, HLA allele frequencies were calculated for both pop-
ulations and compared using a Chi-squared test, which investigates whether the allele
frequency distributions vary significantly between two populations. The Chi-squared
test was only performed on alleles that were present in both populations. Assuming a
type-I error probability of 5 % for erroneously rejecting a true Null hypothesis that the
allele frequency distributions are similar in both populations, no significant difference
between the HLA frequency distributions was found (Supplementary fig. S1). For count-
ing the HLA-class II alleles, the HLA-DPA and HLA-DPB, HLA-DQA and HLA-DQB
as well as the HLA-DRB1, DRB3, DRB4 and DRB5 alleles, were treated together, re-
spectively. No significant frequency differences were found by the Chi-squared test for
the distribution of class II alleles, either.

In addition, frequencies were obtained for the 30 most frequent HLA-A, -B, -C and
DRBI1 allele occurrences from all over Germany using a sample of 8862 German stem
cell donors from DKMS (Deutsche Knochenmarkspenderdatei - German Bone Marrow
Donor Register, (Schmidt et al., 2009)). This dataset also contained allele frequen-
cies for 1811 donors from Ellwangen, 581 donors from Heidelberg, 233 donors from
Lauchheim, as well as 1918 donors from Liibeck. The Ellwangen HLA allele frequencies
were grouped together with the corresponding DKMS allele frequencies (Supplementary
fig. S2) and their distributions were cross evaluated using a Chi-squared test as described
above. Again, no significant differences could be observed. However, after performing a
two-proportion z-test to assess pairwise allele frequency differences between the popula-
tions for all common alleles, HLA-B*51:01 showed significant differences in all five cases
(tab. 2.3).

2.4.8 CCRb5-A32 Mutation in Plague Victims and Contemporary

Ellwangen

One of the captured human immunity genes involved into Human Immunodeficiency
Virus (HIV) infection is the chemokine receptor CCR5 (Deng et al., 1996). A known
32 bp deletion disrupts the coding region of CCR5 causing a loss-of-function receptor
that does not allow HIV to enter cells such as macrophages or monocytes (Dean et al.,
1996). A32-homozygous individuals were shown to resist HIV-1 despite repeated expo-

sure, and A32-heterozygotes could slow down the infection for 2-3 years until the onset
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Table 2.3: Significant differences in pairwise HLA-allele frequencies between the ancient Ell-
wangen population compared to each of the DKMS populations. A two-proportion
z-test was assessed under the null hypothesis that a pair of allele frequencies does
not differ significantly. Only alleles are shown where significant frequency differ-
ences (p <= 0.05, after Benjamini-Hochberg correction) between at least one pair
of populations were observed. plague = Ellwangen plague population, GER =
Germany DKMS, ELW = Ellwangen DKMS, HEI = Heidelberg DKMS, LAU =
Lauchheim DKMS, LUE = Liibeck DKMS.

plague vs | plague vs | plague vs | plague vs | plague vs
GER ELW HEI LAU LUE
A*23:01 0.0289
A*24:02 0.0051 0.0141 0.0077
B*50:01 0.0288 0.0410
B*51:01 0.0054 8.47E-007 0.0007 0.0002 0.0002

of the acquired immunodeficiency syndrome (AIDS) compared to individuals lacking the
mutation (Dean et al., 1996). A CCR5-A32 north-to-south gradient was observed with
the highest CCR5-A32 frequencies in the Swedish followed by the Russians and the low-
est frequencies, resp. complete absence in Near Easterners and Chinese (Stephens et al.,
1998). The origin of the CCR5-A32 mutation has been estimated to around 700 years
ago (ya) making the occurrence of the mutation a recent event (Reich and Goldstein,
1998). The recent origin of the mutation and moreover, a high level of non-synonymous
mutations in the CCR5 gene as well as its prevalence in high frequencies in Caucasian
populations suggest that the CCR5-A32 was caused by strong selective pressure poten-
tially exerted through a pathogen in recent historic times. Apart from viruses such as
smallpox and influenza, bacterial agents such as Mycobacterium tuberculosis, Shigella,
Treponema pallidum and Salmonella have been proposed as causative agents (Stephens
et al., 1998). More prominent, the plague agent Yersinia pestis that caused the Black
Death in the 14'" century, which approximately coincides with the estimated origin and
rise in frequencies of the CCR5-A32 allele, is debated as the driving agent for the onset
of the mutation (Lenski, 1988).

To investigate whether Y. pestis exerted selective pressure on the CCR5 gene, e.g. by
infecting host macrophages through their CCR5 receptors, the frequencies of the CCR5-
A32 alleles between the Ellwangen plague victims and the contemporary Ellwangen
individuals were compared. The sequencing data had been remapped to the human
reference sequence hgl9 using a gap-sensitive split-read mapper (BWA-mem) and the
CCR5-A32 region (chr3:46414947-46414978) was visually inspected in IGV for every
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sample (fig. 2.20). No filtering for mapping quality was applied. In addition, the number
of reads with positions absent in comparison to the reference (deletions and soft-clipped
positions) was obtained. Two samples showed a clear gap and six samples exposed a par-
tial coverage, whereas the remaining samples were completely covered at the CCR5-A32
region. Moreover, these eight samples had above 20 % of mapped reads in the CCR5-
A32 region containing either deletions or having been soft-clipped, whereas the rest of
the samples had below 10 % of soft-clipped reads and reads with a deletion. Based on
these observations two ancient Ellwangen individuals (4.8 %) were found to be homozy-
gous for the CCR5-A32 mutation, whereas six (23.8 %) were found to be heterozygous.
Using the same criteria, 11 modern day Ellwangen individuals (21.6 %) were found to
be heterozygous for the mutation (tab. 2.4; Supplementary File 2, Part 3 and Supple-
mentary File 3, Part 3). In contrast to the ancient Ellwangen samples, no complete
lack of coverage could be detected in the CCR5-A32 region for any of the modern day
Ellwangen inhabitants. The CCR5-A32 allele appears at a frequency of 16.6 % among
the plague victims and is present at 10.8 % in the contemporary population (tab. 2.4).

Table 2.4: Genotype frequencies (GF) of CCR5-wildtype homozygous (wt/wt), heterozygous
(wt/A32) and CCR5-A32 homozygous individuals (A32/A32), and allele frequen-
cies (AF) among the Ellwangen plague victims (Ellwangen plague) and contem-
porary Ellwangeners (Ellwangen modern).

GF wt/wt wt/A32 A32/A32 AF wt A32
Ellwangen 714 23.8 4.8 Ellwangen 834 16.6
plague plague

Ellwangen 78.4 21.6 0 Ellwangen 89.2 10.8
modern modern
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ELW001

ELW008

ELWO12

Figure 2.20: Coverage of the CCR5-A32 region in 3 example Ellwangen plague victims
(ELW001, ELW008, ELW012) and 2 contemporary Ellwangen individuals (EL1,
EL21). ELWO001 and EL1 (wt/wt) show no deletion. ELW008 (A32/A32)
shows a consistent gap indicating the presence of the CCR5-A32 deletion.
ELWO012 and EL21 (het) show a clear drop in the coverage consistent with
partial coverage due to heterozygosity. Visualization was performed in IGV
(Robinson et al., 2011).
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3 Discussion

Although sequencing whole (ancient) genomes has become more affordable compared
to a decade ago, DNA capture allows to circumvent high sequencing costs, that would
inevitably accumulate if ancient DNA was genome-wide sequenced to an extent that
provides the required high coverage of particular genetic regions of interest. Here I have
presented three studies involving successful aDNA capture (Immel et al., 2015, Immel
et al., 2016, Immel et al., 2020).

3.1 Giant Deer and Megafauna

A decade ago target amplification through PCR with multiple primers (multiplex am-
plification) allowed to reconstruct and study mitochondrial genomes of several extinct
megafaunal species such as the woolly mammoth (Krause et al., 2006, Rogaev et al.,
2006), mastodon (Rohland et al., 2007) and cave bear (Krause et al., 2008). With the
appearance of capture through hybridization techniques it became possible to recon-
struct the mitochondrial genomes of a 300 kyo cave bear from Spain (Dabney et al.,
2013), 67 Late Pleistocene mammoth specimens (Enk et al., 2016) and 13 ancient bison
and an ancient wisent mitochondrial genomes (Soubrier et al., 2016). In my first study
I was able to reconstruct two almost complete mitochondrial genome sequences of the
extinct giant deer M. giganteus after capture of its mtDNA obtained from megafaunal
bone remains that were excavated in the Swabian Alb. This not only added another
extinct animal to the list of published mitochondrial genomes: with two complete mt
genomes the resolution was high enough to resolve the phylogenetic position of the gi-
ant deer, confirming its previously suggested closer relatedness to the fallow deer Dama
dama (Freudenberg, 1914, Lister, 1984, Lister et al., 2005), in contrast to a previously
assumed closer affinity to the red deer Cervus elaphus, which had been proposed based
on post-cranial skeletal morphology (Pfeiffer, 1999, Pfeiffer, 2002). The authenticity of
the sequences originating from Megaloceros giganteus and its phylogenetic placement as

a sister clade to the fallow deer were reaffirmed by using previously published M. gigan-
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teus cytb sequences together with our new reconstructed cytb sequences and published
cytb sequences of other cervids such as red deer, fallow deer and roe deer. Three different
methods of phylogenetic reconstruction - Maximum Likelihood, Maximum Parsimony
and Bayesian Inference independently confirmed the placement of all giant deer cytb
sequences together as one clade next to the fallow deer clade comprising Dama dama
and Dama mesopotomica.

Constructing phylogenies based on whole genome data might provide a different point of
view into the evolutionary scenario of the giant deer. Experience has shown that mito-
chondrial and nuclear DNA lineages do not necessarily tell the same evolutionary story:
ntDNA showed that the European Bison or wisent (Bison bonasus) is closer related to
the American bison (Bison bison), while its mtDNA indicated a closer genetic affinity
to modern cattle (Soubrier et al., 2016). In case of the Middle Pleistocene hominins
from Sima de los Huesos (Spain) the mtDNA suggested a closer genetic affinity to the
Denisovan individual (Meyer et al., 2014) while on ntDNA level they were closer related
to the Neandertals (Meyer et al., 2016).

Moreover, morphological classification is not unequivocal and therefore many faunal re-
mains stored in museums might have been misinterpreted - such as giant deer bones
erroneously being ascribed to elk. Thus, genetic investigation of dubious faunal remains

may shed new light on the previous assumptions of megafaunal dispersals and evolution.

3.2 X-rays and aDNA

The preservation of morphology plays a key role in palaeontological, archaeozoologi-
cal and anthropological work. 3D-imaging techniques such as computed tomography
(CT) are therefore routinely applied to precious remains prior to destructive sampling
for aDNA, stable isotope analyses, or radiocarbon dating. However, it has been highly
questionable that CT does not affect aDNA, since X-rays can have a detrimental effect
on modern DNA.

In my second study I investigated the effect of X-rays on ancient mtDNA previously
extracted and captured from Late Pleistocene megafaunal specimens, such as cave bear,
bison, giant deer as well as roe deer. While previous studies used either bones from
recently butchered pigs (Goetherstrom et al., 1995, Grieshaber et al., 2008) or dried
bird skins (Paredes et al., 2012), our study was the first to use aDNA extracted from
ancient megafaunal bone material in order to assess the impact of X-rays. Combining

the results of our three experiments, we could define 200 Gy as the upper limit absorbed
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radiation dose that can be reached without any detectable effects on aDNA molecules.
This dose exceeds the dosage of a medical CT scan of e.g. abdomen and pelvis (20 mGy)
by factor 10.000. Although this dose can be reached by a classical C'T scan especially
when working with voxel sizes below 5 pm, current CT settings make use of metallic fil-
ters that filter out low energy X-rays which would be absorbed by the sample and cause
ions accumulating subsurface, detrimental for aDNA molecules. Moreover, the hydra-
tion and the mineralization state of the sample might play a key role in the outgoing of a
CT scan (Schwarz et al., 2009, Campos et al., 2012). Therefore it is likely, that through
mineralization endogenous ancient DNA can be better protected from penetrating X-ray
radiation and secondary chemical reactions, e.g. caused by water radicals.

A later study assessed the effect of X-rays on shotgun sequenced aDNA from prehis-
toric and historic humans and did not find any significant correlation between ionizing
radiation and the recovery and amplification of DNA (Fehren-Schmitz et al., 2016).
Interestingly, Fehren-Schmitz et al. do not define the exact absorbed radiation dose,
but refer to "T1 = clinical /low irradiation dosage" and "T2 = high irradiation dosage"
which corresponds to 20 times T1. Supposed that T1 corresponds to the average ab-
sorbed X-ray dose after an abdomen or pelvis scan (20 mGy), T2 would correspond to
400 mGy, which is 500 times lower than our detection limit for any X-ray induced effects
on aDNA. It is therefore not surprising, that Fehren-Schmitz et al. do not observe any

significant effects.

3.3 In-Solution Immunity Capture

Tracing back the evolutionary history of host-pathogen interactions has become possible
through the combination of target enrichment and HTS. In 2015, using hybridization
capture, 394 577 (390K) target SNPs could be enriched from 69 ancient Eurasian in-
dividuals who lived 8 kya to 3 kya, while reducing the amount of sequencing required
to obtain genome-wide coverage by at least 45 times (Haak et al., 2015). In the same
year a larger set including 1 233 013 (1240K) target SNPs for capture was applied to 230
ancient West Eurasians, who lived 6.5 kya to 300 BCE, using the same in-solution target
enrichment strategy in combination with petrous bones (Mathieson et al., 2015). So far,
however, enrichment of immunity-related genes directly involved into host-pathogen in-
teraction has not been conducted in aDNA research. Target enrichment in combination

with DNA extraction from petrous bones has allowed me to conduct an immunogenetic
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investigation of plague victims from the 16" century and their modern descendants on
particular genes of interest, while reducing the amount of sequencing by 370 times on
average.

In comparison to the 1240K capture and both versions of the Illumina ImmunoChip
the novel in-solution immunity capture described here allows to simultaneously capture
whole alleles and call diagnostic markers for almost 500 immunity-relevant genes. While
the Illumina HumanImmuno v1.0 BeadChip contains 196 806 markers whereof the ma-
jority are intergenic and the Illumina ImmunoArray24 v2.0 BeadChip contains 253 702
markers with a strong focus on autoimmune disorders, alleles required to predict hap-
lotypes for important gene families such as HLA and KIR need to be imputed from
SNP data (Cortes and Brown, 2011). Our in-solution immunity capture allows to re-
construct complete allelic haplotypes of exonic and intronic regions without imputations
and therefore has been used to successfully reconstruct HLA alleles and to detect the
CCRA5-A32 deletion using ancient as well as modern DNA.

3.4 Stability of the CCR5-A32 Mutation

In contrast to the assumption that bubonic plague has elevated CCR5-A32 frequencies
in European populations (Stephens et al., 1998) the allele frequency in Ellwangen seems
to have decreased since the plague outbreak in the 16" century. Evidence exists, that
CCR5-A32 allele frequencies have been stable in Central Europe since the Middle Ages
(Bouwman et al., 2017). The CCR5-A32 allele frequency of 16.6 % in the Ellwangen
plague victims corresponds to a frequency of 14.2 % in Black Death victims from Liibeck,
previously discovered using PCR (Hummel et al., 2005), despite that here the only

"well-documented medieval plague mass grave' since no

evidence of plague refers to a
Y. pestis DNA could be detected there. Moreover, 16.6 % is in accordance with what
is expected in modern northern European populations (Galvani and Novembre, 2005).
So far the given data does not allow to infer selective pressure acting on CCR5 through
Y. pestis. Evidence exists that not the Y. pestis-caused Black Death could have caused
sufficient selection pressure to drive the CCR5-A32 allele to a current frequency of
10 % in Europeans, but the variola virus causing smallpox (Galvani and Novembre,
2005). Smallpox and HIV both are viruses that infect lymphocytes by use of Chemokine
receptors (Lalani et al., 1999). Indeed, a relatively strong selection coefficient (s =
0.17) was found to be consistent with selection on CCR5-A32 exerted through smallpox

(Galvani and Novembre, 2005).
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3.5 Frequency Shifts in particular HLA alleles

Although the all-over distribution of alleles between the plague victims and the modern
day Ellwangen population did not differ significantly, a significant frequency shift could
be detected in the HLA-B*51:01 allele. While HLLA-B*51:01 is associated with papillary
thyroid carcinoma (Shuxian et al., 2014) and, more generally, HLA-B*51 is associated
with Behcets Disease (Wallace, 2014), it is not associated with plague susceptibility and
not known to be in linkage with any HLA-class II allele involved into the presentation of
peptides of gram-negative bacteria such as Y. pestis. However, HLA-B*51:01 provides
anti-viral immunity (Kawashima et al., 2010) and co-evolves with the natural killer (NK)
cell receptor KIR3DL1 (Norman et al., 2013). A possible tendency to mount innate im-
mune responses against virus infections via cell-destruction through NK cells may have
released intracellular Y. pestis into the bloodstream causing lethal septisemic plague.
This could have caused strong negative selection on carriers of the HLA-B*51:01 allele.
HLA-DQB1*06:03, HLA-DRB1*11:04, DRB1*13:01, DRB1*13:02 and DRB1*16:01 were
found to be at least twice as frequent in the contemporary population compared to the
plague victims. Among them, DRB1*13:01 and DRB1*13:02 differ in only one base
from each other, thus summarizing them into one field (two digit) resolution yields a fre-
quency shift from 5.8% in the ancient population to 16% in the modern one, which might
suggest a protective feature associated with this allele family. Indeed, HLA-DRB1*13
has been shown in association with resistance to Mycobacterium tuberculosis in a Polish
population (Dubaniewicz et al., 2000). M. tuberculosis, similar to Y. pestis, can invade
and survive within macrophages (Pieters, 2008). It is therefore likely that the same
signalling pathway triggered by HLA-DRB1*13, that provides resistance to M. tubercu-
losis, may also provide resistance to Y. pestis. In general, however, no evidence of strong
selection through Y.pestis on human immunity genes could be observed. The sample
size of 36 ancient and 50 modern samples might be too small to detect significant shifts
in frequencies of less common HLA alleles, which was already indicated by the effect size
calculations suggesting only medium to large detectable effects with our given sample
size. Nevertheless, Lindo et al. could detect significant allele and SNP frequency changes
in the HLA-DQA1 gene based on only 25 ancient and 25 modern exomes from ancient
and modern Native Americans, that they attributed to negative selection likely caused
by smallpox (Lindo et al., 2016).

The alternative scenario is that plague caused by Y. pestis in the 16" century was not

novel and therefore not strong enough to leave any signals of selection on HLA genes of
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the Ellwangen plague victims. Plague has been shown to prevail in human populations
since the Late Neolithic (Rascovan et al., 2019, Andrades Valtuena et al., 2017) and
probably came into Europe during the expansion of Yamnaya steppe pastoralists (An-
drades Valtuena et al., 2017). Therefore, the plague outbreak in Ellwangen may have
not been strong enough to leave any signs of selection on this European sub-population,
whose immunogenetic makeup may had been already shaped by pathogens such as Y.

pestis even long before the Black Death in the 14" century.

Y. pestis, such as any biological causative agent of disease, becomes especially efficient if
the immune system is weakened. The pandemics caused by plague, such as the Justinian
Plague or the infamous Black Death that supposedly eradicated two thirds of medieval
Europe, were predated by other catastrophes, such as wars or famines: tree ring analy-
sis has shown an extended period of cold between 536 and 545 AD followed by drought
that could have caused crop failures and famine and also could have driven rats inside
homes (Keys, 1999), before the outbreak of the Justinian Plague in the 6"} century AD.
Moreover, a multiyear period of severe rainfalls made food production nearly impossible
and led to the Great Famine of 1315-1317, as well as subsequent famines, such as of
1330-1334 (Ruiz, 2001, Cook et al., 2015). Malnutrition then weakened the European
population and promoted its susceptibility to infectious diseases (Ruiz, 2001). Thus, it
is possible that also the late medieval Ellwangen population had a weakened immune
system facilitating the plague outbreak, which had then predominantly affected children
(ca. 60 % of all individuals) and affected juveniles and adults to the same extent (ca.
20 %) (Wahl, 2014).
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4 Conclusion

In this work I have demonstrated the application of different capture methods to ancient
DNA in combination with Next-Generation-Sequencing and bioinformatic analyses. Be-
ginning with the mitochondrial DNA capture applied to aDNA extracted from giant
deer remains excavated in Southern Germany, it was possible to reconstruct the giant
deer’s complete mitochondrial genome and resolve its questionable phylogenetic posi-
tion within the deer clade. Moreover, the results indicate that the giant deer recolonized
parts of Central Europe after the Last Glacial Maximum.

Mitochondrial DNA capture was applied to aDNA extracted from Pleistocene Megafau-
nal skeletal material that was exposed to different Computed Tomography scanning
experiments. Since previous studies provided contradictory results, it was questionable
whether CT is really a non-invasive method that does not affect the contained ancient
DNA. Our combined results allowed for the first time to investigate the effects of X-rays
on aDNA extracted from Pleistocene bones, and to define an absorbed-radiation-limit
dose of 200 Gy, up to which no destructive effects on aDNA could be observed. However,
current CT methods rarely reach this dose. Nevertheless, simple precautionary measures
should be followed thus CT scans can be performed without affecting the integrity of
aDNA in sub-fossilized archaeological or palaeontological findings.

The main focus of my dissertation was the development of a specific immunity capture
that allows to track selection on large immunity-relevant candidate gene families, such
as the Human Leukocyte Antigen, in ancient and modern populations. Using this novel
in-solution immunity capture it was possible to capture complete HLA alleles and the
CCR5-A32 allele from aDNA of 16" century plague victims and a contemporary refer-
ence population. Applying bioinformatic analyses to the captured DNA data revealed
potential signals of selection through plague on particular HLA genes, even though the

general evidence of selection was rather marginal.
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Supplementary File 1

488 Genes involved in the Design of the Immunity Capture
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CLECBA
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COL3A
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CR1
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CXCR4
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HIF1A
HLA-A
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