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1 

1 Introduction 

1.1 The trace element selenium  

Selenium is a trace element and is regarded as essential for the expression of selenoproteins in 

all kingdoms of life (Jiang et al. 2013). It is part of the group of chalcogens and is located below 

sulfur in the periodic table of elements. Its configuration of valence electrons is similar to sulfur 

and it therefore has similar chemical properties to some degree. Both elements are good 

nucleophiles making them important for biological redox processes. Due to the bigger atomic 

radius of selenium compared to sulfur, selenium is a better nucleophile than sulfur, enabling 

it to react even faster with reactive oxygen species (ROS) in living cells. Moreover, certain 

oxygen-selenium compounds are reduced much faster than the sulfur analogs, which allows 

it to take part in redox reactions more often without being permanently oxidized (Reich and 

Hondal 2016; Steinmann et al. 2010).  

1.2 Association of selenium intake with the risk for cancer. 

Although selenium is regarded as an essential trace element, the impact of selenium on the 

risk of different medical conditions like cancer or diabetes have been discussed 

controversially. Regarding its contribution to cancer, Vinceti et al. published a systematic 

review including eleven randomized control trials (RCT) with forty-four thousand 

participants and 70 observational longitudinal studies including another 2.3 million 

participants. In the RCTs, no effect of selenium supplementation could be found regarding 

cancer risk (1.01-fold). Depending on the inclusion criteria, they reported a mild (0.81-fold) to 

no observable effect (1.02-fold) for cancer mortality upon selenium supplementation. 

Moreover, no change in risk for colorectal cancer, non-melanoma skin cancer, lung cancer, 

breast cancer, bladder cancer or prostate cancer was observed after selenium supplementation. 

These studies were ranked with 'high' or 'moderate' quality of the evidence according to the 

GRADE guidelines but consisted of 88 % male participants, which might have skewed the 

results. On the contrary, evaluating the observational longitudinal studies, they found that 

lower cancer mortality (0.76-fold) and lower cancer incidence (0.72-fold) were associated with 

the highest category of selenium exposure. They also found a decreased risk for lung cancer, 
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breast cancer, stomach cancer, colorectal and prostate cancer when participants with the 

highest selenium exposure were compared to participants with lowest selenium exposure 

(Vinceti et al. 2018a). However, all observational longitudinal studies exhibited a 'very low' 

certainty of the evidence according to the GRADE guidelines. These studies were either 

inconsistent, had a risk of bias, publication bias or precision issues. Overall, the authors 

conclude that there is no evidence of selenium supplementation or increased selenium intake 

through the diet, of having an impact on cancer in human. 

1.3 Increased selenium status is associated with increased risk for type-2 

diabetes 

High selenium intake has been associated with the risk of type 2 diabetes (T2D). However, this 

association is being discussed controversially until today. A systematic review of Vinceti et al. 

aimed to evaluate the evidence on the association between selenium and T2D. They performed 

a meta-analysis on several epidemiological studies and RCTs, including a total of around 

70,000 participants in the epidemiological studies and a total of around 10,000 participants in 

the RCTs. Analyzing epidemiological studies revealed that, regarding 45 µg/l for 

plasma/serum selenium levels or 23 µg/day for dietary intake as reference, plasma/serum 

selenium levels as well as dietary intake correlated positively with the risk ratio for T2D. A 

similar positive association was found analyzing the effect of the RCTs, in which 200 µg 

selenium/day were administered as selenized yeast or selenomethionine (Vinceti et al. 2018b).   

Steinbrenner et al. suggested that excess selenium might interfere with insulin signaling and 

glucose uptake. One proposed possibility was by selenium influencing proteins involved in 

insulin signal transduction directly or by elevating the expression of redox-active 

selenoproteins such as glutathione peroxidase 1 (GPX1), which might scavenge reactive oxygen 

species that are important for the insulin signaling cascade (Steinbrenner et al. 2010).  

Recently, Stróżyk et al. published a small systematic review aiming to get a more detailed 

understanding on the functions of selenium in glucose metabolism, more specifically T2D. 

They evaluated fasting insulin levels, fasting plasma glucose, glycated hemoglobin (HbA1c), 

insulin resistance (HOMA-IR), beta cell function (HOMA-R) and different lipid parameters in 

adults with T2D. Due to the specificity of these parameters they were only able to include 4 

RCTs with a total of 241 participants, which fit all inclusion criteria.  They reported that no 
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consistent changes were found regarding the lipid profile (total cholesterol, LDL, HDL or 

triglycerides). Moreover, glycated hemoglobin (HbA1c) and fasting plasma glucose didn't 

show any significant difference following selenium supplementation. However, they found 

that selenium supplementation reduced fasting insulin levels (8 weeks: MD -5.8 μIU/mL; 

12 weeks: MD -3.6 μIU/mL) and resulted a small decrease in insulin resistance (8 weeks: 

HOMA-IR: MD -1.0; 12 weeks: HOMA-IR: MD -1.6) and beta cell function (8 weeks: HOMA-

B: MD -13.6; 12 weeks: HOMA-B: MD -22.6) (Stróżyk et al. 2019).  

Despite the significant findings in this study its clinical value is limited due to the small sample 

size, risk of population bias (three out of four RCTs included were performed in the same 

country) and heterogeneity of the population. Although selenium supplementation slightly 

improved some parameters of T2D it reduced beta-cell function, which can be regarded as a 

negative outcome. Future analyses need to be performed to get a better understanding on the 

role of selenium in diabetes. Taken together, there is substantial evidence that selenium might 

be associated with the risk of T2D by mechanisms which have to be clarified in more detail. 

1.4 Selenium-containing proteins 

The selenoproteome – the entirety of all selenium-containing proteins – consists of proteins 

that fall into three classes. The best studied class are the selenoproteins, which carry the 21st 

proteinogenic amino acid, selenocysteine (Sec), as part of their primary structure. In 

eukaryotes, the integration of Sec into the amino acid chain follows a non-canonical process 

involving a selenocysteine insertion sequence (SECIS) element in the respective mRNA 3'-

untranslated region (UTR), at a suitable distance from an UGA stop codon that is then recoded 

to a Sec codon as follows. Upon translation of a selenoprotein, the SECIS element recruits the 

SECIS binding protein 2 (SPB2), which binds to the stem-loop-stem-loop structure of the SECIS 

element. SBP2 also binds the selenocysteine-specific elongation factor (EFSEC) which, in turn, 

binds the Sec-tRNA[Ser]Sec. This tRNA contains the UGA anticodon UCA (5'→3') and is first 

charged with serine (Ser), whose hydroxl group (OH) is then converted into a selenol group 

(SeH), creating selenocysteine. The RNA containing the SECIS elements is then folded 

backwards to the ribosome at the UGA codon. There, the eukaryotic ribosomal protein L30 (eL30) 

anchors SBP2 and EFSEC, binding the Sec-tRNA[Ser]Sec, to the large ribosomal subunit, after 

which Sec can be inserted into the amino acid sequence (Martin et al. 1996; Mix et al. 2007; 
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Vindry et al. 2018). This process is very energy demanding because of its complex nature and 

the highly regulated processes involved in the incorporation of this single amino acid (Mix et 

al. 2007). Therefore, the incorporation of selenocysteine instead of cysteine (Cys) or serine 

needs to yield certain biological advantages for the organism. 

Selenocysteine differs from Cys only by containing a selenol group instead of a thiol group at 

the β-carbon. The most important difference for biological systems might be their biochemical 

properties. The pKa value of the selenohydryl group of Sec was reported to be considerably 

lower than that of the sulfhydryl group of Cys (5.24 vs. 8.25) in a standard acid-base titration 

(Figure 1), which makes Sec a stronger nucleophile under physiological conditions. 

Additionally, the redox potential of Sec (-488 mV) was also reported to be much lower 

compared to Cys (-233 mV), measured via cyclic voltammetry. For comparison, the standard 

reduction potential of glutathione, the most abundant antioxidant in a cell is reportedly 

around -240 mV (Huber and Criddle 1967; Jacob et al. 2003; Rost and Rapoport 1964). This 

seems to be an important property for selenoproteins being able to catalyze the turnover of 

their substrates. For instance, mammalian thioredoxin reductase, in which Sec was replaced 

by Cys in the active site, was shown to have a 100-fold reduced catalytic activity to reduce 

oxidized thioredoxin compared to regular Sec containing thioredoxin (Zhong et al. 2000).  

The human selenoproteome consists of 25 selenoproteins, many catalyzing important 

reactions for cellular or organismal health. These reactions include maintenance of cellular 

redox status (thioredoxin reductases; TRXR), detoxification of intra- and extracellular peroxides 

(GPX), production of thyroid hormones (iodothyronine deiodases; DIO), homeostasis and 

transport of selenium (selenoprotein P; SELENOP), amino acid recovery (methionine sulfoxide 

reductase; MSR) and production of the precursor substance for Sec synthesis, selenophosphate 

(selenophosphate synthetase 2; SPS2) (Kasaikina et al. 2012; Papp et al. 2007).  
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The incorporation of selenomethionine (SeMet) instead of methionine (Met) into the primary 

structure of proteins yields the second class of selenium containing proteins and can affect all 

Met containing proteins, since this process appears to be random (Bierla et al. 2013). The 

substitution of methionine with SeMet does not alter the amino acid structure. It can, however, 

alter the stability of proteins, and the activity of enzymes when methionine is replaced near 

the active site (Bernard et al. 1995; Boles et al. 1991; Schrauzer 2000). In yeast and plants SeMet 

is the major organoselenium compound and also one of the major selenium stores. It is 

produced from selenocysteine as an intermediate for other methylated or volatile selenium 

compounds (Papp et al. 2007; White 2017).  

Hints of a third class of selenium containing proteins were first discovered in rodents in the 

1970s and 1980s. After injection of Se75-labled selenite into rats or mice, researchers detected 

selenium containing proteins in tissue extracts of kidney, liver and blood which were distinct 

from GPX – the only well-known selenoprotein at that time (Burk 1973; Millar 1972; Raymond 

F.Burk and Paula E.Gregory 1982). In 1989, Bansal et al. detected a 56 and 14 kDa mouse 

protein, binding Se75 and being distinct from GPX, which were termed "selenium-binding 

proteins" (Bansal et al. 1989). The cDNA sequence of the 56 kDa protein was discovered one 

year later by the same researchers and termed SLP56 (Bansal et al. 1990). The term selenium-

binding protein was retained, when later a homolog of SLP56 was identified in humans. This 

protein became later known as the selenium-binding protein 1 (SELENBP1). Evidence of a SLP56 

homolog was discovered shortly before in mouse, binding a cytochrome P450 metabolite of 

acetaminophen (Pumford et al. 1992). This protein later was termed AP56 or selenium-binding 

protein 2 (SELENBP2). However, a human homolog binding a similar metabolite, has not been 

identified until now. 

Figure 1 Comparison of L-cysteine, L-selenocysteine and L-serine. 

L-cysteine (L-Cys), L-selenocysteine (L-Sec) and L-serine (L-Ser) are shown from left to right. All share the same 

amino acid backbone but have different functional groups at the β-carbon. Changes of pKa values for the sulfhydryl 

group (green) and the selenohydryl (yellow) are depicted according to (Huber and Criddle, 1967).  
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1.5 Selenium-binding protein 1  

Until today, the biological function of SELENBP1 remains unclear. In humans, it seems to be 

ubiquitously expressed. Gene transcription was identified throughout the gastro-intestinal 

tract, in the peripheral and central nervous system, in different hematopoietic cells, in 

reproductive organs of males and females, as well as in skin, muscle, kidney, lung, heart and 

some glandular organs (Stelzer et al. 2016). Abundance of SELENBP1 protein levels were 

detected in similar organs. Antibody staining showed SELENBP1 in thyroid gland, liver, 

kidney, male and female reproductive organs, adipose tissue, bone marrow (Uhlen et al. 2015), 

red blood cells (Goodman et al. 2007; Pallotta et al. 2013; Roux-Dalvai et al. 2008), skeletal 

muscle (Gueugneau et al. 2014) and brain (Glatt et al. 2005). Arguably, this ubiquitous 

expression might indicate a general importance for normal cellular function throughout the 

human body.  

1.5.1 SELENBP1 is a methanethiol/ethanethiol oxidase 

Recently, the enzymatic activity of SELENBP1 was discovered. Studying sulfur metabolism in 

a marine environment, Eyice et al. discovered a bacterial enzyme exhibiting methanethiol oxidase 

(MTO) activity. Methanethiol is a volatile sulfur compound originating from the degradation 

of sulfur-containing amino acids amongst other sources. They demonstrated that MTO was 

able to oxidize methanethiol into formaldehyde, hydrogen sulfide and supposedly hydrogen 

peroxide in a copper-dependent manner. Ethanethiol, but not dimethylsulfide, was also found 

to be a substrate for MTO. They were able to map the 46 kDa protein to the selenium-binding 

protein superfamily with an amino acid sequence identity of 26 % to human SELENBP1. 

However, no selenium was found in the MTO isolate from bacteria, using ICP-MS. MTO 

sequence identity was shown to be high in all branches of life (archaea: 26-29 %, bacteria: 

50-79 %, eukarya: 26 %; SELENBP1). At pH 8.2, the enzyme was found in a tetrameric state. 

However at nearly physiological pH of 7.2, MTO was detected in a monomeric and tetrameric 

state (Eyice et al. 2018).  

Inspired by these findings, Pol et al. conducted a study investigating patients with extraoral 

halitosis, who accumulated methanethiol and precursor substances, such as dimethylsulfide, 

dimethylsulfoxide, and dimethylsulfone. The authors finally confirmed that the human but 

also mouse SELENBP1 exhibited MTO activity. The halitosis patients showed mutations in 
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different genetic loci of SELENBP1, had lower SELENBP1 protein levels and lower MTO 

activity in tissue lysates compared to healthy subjects. Pol et al. demonstrated that Km-values 

of human and mouse tissue, expressing SELENBP1, was 4-6 nM and hypothesized that this 

might enable fast clearance of methanethiol to keep intracellular concentrations of 

methanethiol below a certain threshold, so it can be detected nasally. Until now, MTO activity 

of SELENBP1 has not been demonstrated to be important in a biochemical context. It can be 

speculated whether the interaction of SELENBP1 with different redox active proteins (see 

below) is dependent on its hydrogen peroxide production by conversion of methanethiol (Pol 

et al. 2018). 

1.5.2 Is SELENBP1 a selenium-binding protein? 

Up to now, it remains unclear whether SELENBP1 is able to bind selenium under physiological 

conditions. As mentioned before, mammalian SELENBP was discovered in mouse liver, 

binding 75Se (Bansal et al. 1989). Later, it was demonstrated that also the bacterium 

Methanococcus vannielii (M. vannielii) expresses a selenium-binding protein which was able 

to incorporate 75Se but only effectively under reducing conditions (Patteson et al. 2005). 

However, analysis of human SELENBP1 revealed opposing characteristics. Incubation of 

recombinant SELENBP1 with 75Se showed an incorporation of selenium at low nanomolar 

concentrations (≈1 nM), visible via autoradiography, in a non-reducing SDS-PAGE. However, 

under reducing conditions, 75Se bands strongly faded and were only visible with 

supplementation of around 10 nM selenium and above (Jeong et al. 2009).  

In vitro and in silico analysis of M. vannielii SELENBP revealed that Cys59, which is located in 

a semi-flexible loop between two beta-sheets, seemed to be the motif most likely to bind 

selenium, due to its high accessibility compared to other cysteines and its local environment 

of charged and hydrophobic amino acids (Suzuki et al. 2008). After modelling human 

SELENBP1 to the homolog of Sulfolobus tokodaii (S. tokodaii; PDB: 2ECE), Raucci et al. 

predicted, that, like Cys59 in the M. vannielii protein, Cys57 was located in a loop between two 

beta sheets, suggesting that it was the most accessible cysteine residue. Furthermore, they 

reported that Cys57 was more prone to be exposed under neutral pH than under acidic 

conditions. Together with the findings of Jeong et al., this leaves room for the hypothesis, that 

the binding of selenium to SELENBP1 might be more likely under non-reducing conditions  

(Raucci et al. 2011).  
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First evidence on the importance of Cys57 was provided by Ying et al.. By mutating Cys57 to 

glycine (SELENBP1Gly) they showed that selenium-induced toxicity to cells expressing the 

mutated protein was elevated compared to cells transfected with a plasmid encoding the 

native protein. Protein half-life of SELENBP1Gly was reduced compared to normal SELENBP1 

and also failed to activate one of the SELENBP1 effector targets, p53. Unfortunately, the 

binding of selenium to SELENBP1 was not assessed during that study (Ying et al. 2015b). 

Taken together, there is still not enough evidence to conclude that SELENBP1 is able to bind 

selenium. However, there is evidence on the biological importance of the proposed selenium-

binding site Cys57 for the activation of SELENBP1 targets. Although predicted to bind 

selenium, the actual binding of selenium by Cys57 remains to be demonstrated under 

physiological conditions (Kelley et al. 2015). Judging from the 3D-model of SELENBP1 

generated by Protein Homology/analogY Recognition Engine V 2.0 (Phyre2), Cys57 does not seem 

to be the only cysteine residue exposed to the surface (Results: Figure 12). Therefore, also other 

motifs might be involved in the binding of selenium. 

SELENBP1 carries two putative thioredoxin motifs (CxxC) at amino acid position five to eight 

and at 80 to 83. This motif was shown to be a crucial part for disulfide bond reduction of 

thioredoxin or isomerization of protein-disulfide isomerase (Schultz et al. 1999). Investigating 

the functional consequences of replacing ”xx” with different amino acids in CxxC of human 

protein-disulfide isomerase, Horibe et al. showed that the  substitution of proline-histidine or 

glycine-histidine as "xx" with serine-methionine, significantly diminished its enzymatic 

activity (Horibe et al. 2004). Thioredoxin carrying proline-serine, proline-lysine, proline-

arginine or proline-histidine as "xx", protected cells best against cadmium toxicity, while cells 

with arginine-tyrosine as "xx" in thioredoxin, showed the best protection against noxious 

copper concentrations, followed by proline-serine and prolin-histidin (Quan et al. 2007). Thus, 

it seems as if a either a combination of a positively charged and an uncharged amino acid or 

the presence of a heterocyclic or aromatic amino acid within CxxC, confers a high redox 

activity. It is therefore questionable, whether the combination of two uncharged residues as 

"xx" i.e. asparagine-glycine (aa6, aa7) and serine-serine (aa81, aa82) as in SELENBP1, would 

enable the protein to show a significant thioredoxin-like activity. The CxxC motif has also been 

reported as a highly conserved metal-binding motif in proteins such as copper chaperones or 

copper-transporting P-type ATPases (Opella et al. 2002; Voskoboinik et al. 1999). 
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It was proposed that the histidine metal-binding motifs HxH and HxxH  might be an 

important feature of SELENBP1 for selenium binding (Flemetakis et al. 2002). However, 

histidines have not been described as classical sites for selenium binding, and furthermore, 

there seems to be no histidine residue on the surface in close proximity to the CxxC motif or 

any other cysteine residue (Result: Figure 12). 

1.5.3 SELENBP1 is a target of protein oxidation  

Some studies suggest SELENBP1 might be relevant in aging. In muscle of elderly (48–61 years) 

and old (76–82 years) post-menopausal women, several apparent isoforms of SELENBP1 were 

detected, two of which were more abundant in old participants and one isoform which was 

less abundant in old participants. Size and sequence of these so-called isoforms were not 

evaluated but judging from the two-dimensional gel electrophoresis (2DGE) signals all three 

spots seemed to migrate at approximately the same molecular weight but at different pH 

(Gueugneau et al. 2014).  

During the aging process proteins can lose their function, show decreased solubility and 

aggregation due to non-enzymatic protein modification. One class of modification commonly 

associated with this process is carbonylation (Tanase et al. 2016). Carbonylation has been 

classified as a major hallmark of oxidative damage. It is a rather unspecific term for 

modifications on lipids, proteins or DNA which can become oxidized by different sources of 

reactive oxygen species. Commonly used carbonyl probes like fluorescein-5-thiosemicarbazide 

(FTC), in combination with other protein detection methods like SDS-PAGE, can help to assess 

the extent of oxidation of proteins (Fedorova et al. 2014; Yan and Forster 2011). Using such a 

method, Chaudhuri et al. measured protein carbonylation in liver of young (4-6 months) and 

old (22-23 months) mice and detected a two-fold increase in total protein carbonylation in old 

mice. SELENBP1 was among the twelve proteins which had a two-fold or higher carbonyl 

content and showed an increase in carbonylation of 2.1- and 2.6-fold of two spots in the 2DGE. 

As in the study of Gueugneau et al., these spots migrated at the same molecular weight but at 

different pH. The authors reported that overall protein expression was unchanged in both 

groups of mice (Chaudhuri et al. 2006).  

Ishida et al. investigated a similar type of protein modification, so called advanced glycation 

endproducts (AGEs) in red blood cells of schizophrenic and healthy patients. AGEs are age-
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associated, non-enzymatic protein modifications which occur frequently on lysine and 

arginine residues of proteins (Henning and Glomb 2016). They looked for amino acyl 

alterations such as pentosidine (PEN), carboxyethyl lysine (CEL), carboxymethyl lysine 

(CML), argpyrimidine (ARP) and methylglyoxal-derived hydroimidazolone (MG-H1) and 

found that neither healthy nor schizophrenic participants had noticeable levels of PEN, CEL, 

CML or MG-H1. However, both groups showed a very prominent band for ARP in the 

immunoblot at roughly 56 kDa, which was identified to be SELENBP1 via LC-MS/MS. They 

also showed that schizophrenic patients had an even higher abundance of ARP modification 

on SELENBP1 than healthy controls. Unfortunately, although participants of both groups were 

claimed to be aged-matched, no detailed information on the age was provided (Ishida et al. 

2017).  

1.5.4 SELENBP1 protects cells from selenite toxicity  

There are several studies reporting a negative correlation between SELENBP1 and the 

hydrogen peroxide-scavenging selenoenzyme GPX1. In the previously mentioned study by 

Huang et al., tissue from HCC patients with and without vascular invasion were analyzed. 

Interestingly, they measured significantly lower SELENBP1 protein levels and increased GPX1 

activity levels in the participants with vascular invasion compared to tissue from participants 

with no vascular invasion (Huang et al. 2012). Likewise, comparing tissue from breast cancer 

patients with adjacent matched normal tissue, another study found SELENBP1 levels to be 

significantly higher and GPX1 significantly lower in cancerous tissue compared to healthy 

tissue (Wang et al. 2015). 

A similar association was found in the SELENBP1-negative, GPX1-positive cancer cell line 

HCT116 and the SELENBP1-positive, GPX1-negative cancer cell line MCF-7. GPX1 activity 

significantly declined after transfection of HCT116 with SELENBP1. This was also observable 

in MCF-7 stably transfected with GPX1 (MCF-7-GPX1). Additionally, GPX1 transfection 

significantly lowered SELENBP1 protein, mRNA and promotor activity levels compared to 

the un-transfected control. These authors also established a dose-response relationship 

between SELENBP1 protein levels and selenite treatment. When treating HCT116, stably 

transfected with SELENBP1, with selenite up to 250 nM, SELENBP1 levels declined. The same 

was seen in MCF-7-GPX1 but not in un-transfected MCF-7, missing GPX1 (Fang et al. 2010). 
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Therefore, selenium-induced changes in SELENBP1 expression seem to be directly related to 

GPX1. 

Wang et al. investigated this relationship further, using the same cell lines. Similar to Fang et al. 

they observed a dose dependent increase of SELENBP1 protein levels when MCF-7-GPX1 cells 

were treated with micromolar concentrations of selenite. This was not observable in GPX1 

negative MCF-7. In a selenite cell viability assay, introduction of GPX1 into MCF-7 

significantly decreased cell viability, which was directly associated with an incline of 

SELENBP1 levels. This association seemed to be at least partially GPX1-dependent, because 

treatment of GPX1-negative MCF-7 with selenbp1 shRNA also resulted in a dose-dependent 

decline of cell viability after selenite treatment. However, SELENBP1 seemed to be involved 

as well. In SELENBP1-negative HCT116 cells, neither overexpression nor depletion of GPX1 

resulted in a decline of cell viability compared to the respective control treatment. This was 

verified when SELENBP1 was introduced into HCT116 cells via transfection. Then, the 

decreased cell viability caused by selenite treatment was significantly attenuated compared to 

the un-transfected control  (Wang et al. 2015). Collectively, there is evidence suggesting that 

SELENBP1 interacts with GPX1 in a yet unknown way and that SELENBP1/GPX1 interaction 

might be important in the maintenance of cell viability against toxic selenium concentrations. 

1.5.5 Functional role of SELENBP1 in cancer 

The most striking clinical observation regarding SELENBP1 might be the reduced expression 

of SELENBP1 in many cancerous tissues compared to healthy tissues. This includes liver, 

kidney, prostate, ovaries, colon, female breast, esophagus, stomach, lung and thyroid glands. 

Additionally, reduced levels of SELENBP1 often correlated with poor clinical outcome. In fact, 

some studies proposed SELENBP1 as a possible predictive marker for certain types of cancer 

(Ansong et al. 2015; Brown et al. 2006; Chen et al. 2004; Ha et al. 2014; He et al. 2004; Huang et 

al. 2012, 2006; Jerome-Morais et al. 2012; Kim et al. 2006; Stasio et al. 2011; Zhang et al. 2013b). 

A study by Ying et al. even demonstrated that SELENBP1 expression could suppress tumor 

growth. They injected human colon cancer cells (HCT-116) carrying a doxycycline-inducible 

vector encoding the transcript of human SELENBP1 and HCT-116 cells with a control vector, 

on the right and left side of each animal, respectively. Tumors that originated from cells with 

induced levels of SELENBP1 had a lower tumor volume and tumor mass compared to tumors 

originating from injection with the control vector. They also demonstrated that induction of 
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SELENBP1 resulted in fewer lung metastases compared to animals with control-vector 

injection (Ying et al. 2015a).  

Using a very similar setup, a Pohl et al. were able to show a comparable effect of SELENBP1 

overexpression on tumor size and mass of colon cancer (Pohl et al. 2009). They further 

analyzed downstream targets of SELENBP1 using a proteomic approach and identified many 

targets associated with glucose or lipid metabolism like fatty acid-binding protein 4, 

mitochondrial aldehyde dehydrogenase, UDP-glucose 6-dehydrogenase, glyceraldehyde-3-phosphate  

dehydrogenase, beta-enolase or lysophosphatidylcholine acyltransferase 2 and proteins involved in 

redox homeostasis such as thioredoxin or glutathione peroxidase, or dickkopf-related protein 1, a 

negative regulator of the canonical Wnt-β-catenin pathway (Bao et al. 2012; Ying et al. 2015a). 

Some studies suggest that also the subcellular localization of SELENBP1 might play a role in 

cancer progression. SELENBP1 is usually localized in the cytoplasm, although nuclear 

shuttling has been shown to occur under conditions of increased oxidative stress (Chen et al. 

2004; Glatt et al. 2005; Huang et al. 2012). A study analyzing 168 case-control pairs with 

prostate cancer, reported that the ratio of nuclear to cytoplasmic localization of SELENBP1 

was inversely correlated with a measure of prostate cancer morphology, used to grade the 

aggressiveness of the malignant tissue (Gleason score): patients with a more aggressive stage 

of prostate cancer, hence with poorly differentiated prostate tissue (high Gleason score) had 

lower nuclear SELENBP1 (Ansong et al. 2015). Nuclear shuttling might indeed be an important 

function of SELENBP1 because, as Huang et al. demonstrated in the HeLa-derived cell line 

SMMC7721 (falsely used as hepatocellular cancer cell line; RRID:CVCL_0534), treatment with 

50 mmol/L hydrogen peroxide for 12 hours led to the formation of very clear nuclear 

SELENBP1 bodies while cytoplasmic expression seemed to be unchanged. Interestingly, they 

observed the same behavior for the selenoprotein GPX1. Additionally, some of the observed 

nuclear bodies of SELENBP1 and GPX1 were localized in close proximity to one another, some 

with overlapping signals (Huang et al. 2012).  

1.5.6 The role of DNA methylation in the transcriptional regulation of SELENBP1 

DNA analysis of tumor tissue of patients and adjacent healthy tissue revealed that tumors 

seemed to have a higher DNA methylation state. Analysis of different cancer cells lines 

showed a clear association between the abundance of methylation on the SELENBP1 promotor 
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and SELENBP1 protein levels, with HCT-116 having the highest degree of methylation and no 

measurable SELENBP1 expression. Treatment of  HCT-116 with the demethylating agent 

5-Aza-29-deoxycytidine significantly improved promotor activity, mRNA and protein levels 

of SELENBP1 (Pohl et al. 2009). Interestingly, a higher degree of DNA methylation of the 

highly homologous SELENBP2 was likewise associated with reduced transcriptional levels 

(Orozco et al. 2014).  

1.5.7 SELENBP1 is associated with the regulation of cell differentiation 

Recently, a positive correlation between SELENBP1 abundance and the differentiation state of 

preadipose cells to mature adipocytes was reported. During a 14-day differentiation period of 

3T3-L1 cells, strongly increasing markers for adipocyte differentiation and lipid accumulation 

(anti-peroxisomal proliferator-activated receptor gamma (PPAR-γ) and perilipin 1) were measured. 

SELENBP1 positively correlated with the differentiation stage but did not seem to take active 

part in the transcriptional regulation during differentiation because immunoblotting and 

immunostaining only showed a cytoplasmic signal for SELENBP1. Interestingly, factors such 

as rapamycin or the tumor necrosis factor-α (TNF-α), which impaired adipocyte differentiation, 

also strongly suppressed SELENBP1 levels. Unfortunately, the causal relationship of this 

scenario remained unclear (Steinbrenner et al. 2019). 

Ying et al. demonstrated how SELENBP1 might regulate cellular differentiation and 

proliferation in more detail. Tumor tissues of mice expressing human SELENBP1 or a control 

vector were analyzed regarding their protein expression profile. As mentioned before, they 

found dickkopf-related protein 1 (DKK1) to be significantly more abundant in SELENBP1 

expressing tumors. DKK1 is known to negatively regulate Wnt signaling – a central pathway 

during cell proliferation and differentiation (Bao et al. 2012; Reya and Clevers 2005). Via 

immunoblotting they were able to validate the dampening of the Wnt pathway when they 

showed that downstream targets like β-catenin and cyclin D1 were less abundant in tumors 

transfected with SELENBP1. They also discovered another set of proteins that are involved in 

cell differentiation, proliferation and apoptosis, and are linked to SELENBP, namely c-Jun N-

terminal kinases (JNK) and downstream effectors thereof. They measured increased 

phosphorylation of JNK but also of downstream targets like c-Jun and p53 and a greater 

abundance of p21 in SELENBP1 expressing tumors compared to tumors which were originally 

transfected with the control vector (Ying et al. 2015a). The phosphorylation of p53 elicited by 
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SELENBP1 expression was also demonstrated elsewhere (Ansong et al. 2015). The induction 

of JNK by SELENBP1 is difficult to interpret in terms of the hypothesis of SELENBP1 being 

involved in tumor suppression. JNK are generally recognized as a pro-apoptotic factors and 

could therefore potentially be regarded as a tumor suppressor. The role of JNK in cancer is 

still discussed controversially, though. JNK may act differently in healthy and tumor tissue. A 

recent comprehensive review suggested that the pro-survival functions of JNK outweigh their 

pro-apoptotic functions in cancer development (Weston and Davis 2007; Wu et al. 2019). 

Similarly, c-Jun is regarded as a proto-oncogene product, but some evidence suggests that c-

Jun might also elicit tumor suppressive functions (Mariani et al. 2007; Shaulian 2010). 

Arguably, despite all controversy, the strong evidence for the negative correlation of 

SELENBP1 levels and cancer progression are evidence that activation of the JNK-c-Jun 

pathway can indeed be associated with tumor suppression. Also, Wang et al. provided further 

evidence for the validity of these findings. Similar to Ying et al., they demonstrated that 

increased SELENBP1 levels were associated with increased JNK1 phosphorylation, decreased 

cyclin D1 phosphorylation and decreased β-catenin abundance in tumor cells (Wang et al. 

2015).  

Evidence of SELENBP1 taking part in cell proliferation and apoptosis was further shown in 

SMMC7721 HeLa-derived cells. Depletion of SELENBP1 via siRNA strongly increased the rate 

of cell migration using transwell- and wound healing assays. Moreover, it also resulted in 

better cell proliferation and less apoptosis under conditions of elevated oxidative stress 

(Huang et al. 2012). Experiments in HCT-116 cancer cells showed similar results. 

Overexpression of SELENBP1 resulted in diminished cell proliferation and increased 

apoptosis with H2O2 treatment as well as reduced cell migration under normal culture 

conditions (Pohl et al. 2009). 

Even in simpler organisms, SELENBP1 might be involved in tissue differentiation and 

development. In the plant Lotus japonicus, a SELENBP1 homolog is abundantly expressed and 

was found to be highest in developing tissue (Flemetakis et al. 2002). Moreover, Feng et al. 

reported a shift in spatial expression of SELENBP1 expression during embryonic development 

in zebrafish, but unfortunately did not provide further evidence on the direct contribution of 

SELENBP1 (Feng et al. 2018).  



Introduction 

 

15 

Collectively, it seems that SELENBP1 abundance in healthy tissue is associated with a higher 

degree of differentiation, whereas in cancer, low abundance of SELENBP1 suppresses markers 

of cellular differentiation, which might arguably be a mechanism for cancer cells to de-

differentiate further and to grow more invasive. 

1.5.8 SELENBP1 participates in stress response and inflammation 

An extensive study on the participation of SELENBP1 in inflammation and stress response 

was performed by Bai et al.. They first identified miRNA-122 as a negative regulator of 

SELENBP1, diminishing protein and mRNA levels compared to the control treatment and 

validated its predicted binding site to be in position 19-25 of the SELENBP1 3'UTR. They 

measured SELENBP1 luciferase activity of a mutated versus a non-mutated version of 

SELENBP1 3'UTR and showed that the predicted binding site was responsible for the 

regulation of SELENBP1 by miRNA-122. (Figure 2) (Bai et al. 2019).  

Regarding stress response, they demonstrated a strong, negative correlation of SELENBP1 

levels with markers of inflammation and oxidative stress. SELENBP1 was higher in inflamed 

intestine of patients with Crohn's disease compared to patients with no inflammation, which 

was comparable to intestine of healthy controls. In the human intestinal epithelial cell line 

HT-29, SELENBP1 protein levels were positively associated with increased ROS levels caused 

by H2O2 treatment and declining levels of manganese-dependent superoxide dismutase (SOD2). A 

similar correlation was shown between the antioxidant enzyme GPX1 and SELENBP1 (see 

1.5.4). Depletion of SELENBP1 attenuated the expression of pro-inflammatory cytokines (IL-6, 

Figure 2 Binding site of hsa-miR-122-5p micro RNAi to the genomic locus of SELENBP1  

(A) Human (hsa) miR-122-5p binds to a seven base pair sequence in the 3’UTR of SELENBP1 coding sequence (red). 

(B) Figure shows the predicted binding site of SELENBP1 and hsa-miR-122-5p using TargetScan and the effect of 

insertion of thymin (T) and guanine (G) at position six and eight of the predicted binding sequence on 3’UTR of 

SELENBP1. Figure was adapted from (Bai et al. 2019).  
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IL-8), the abundance of markers for oxidative stress (malondialdehyde, 8-

hydroxydeoxyguanosine) as well as ROS levels, caused by H2O2 treatment. They further 

showed that SELENBP1 depletion significantly dampened the activation of the nuclear factor 

'kappa-light-chain-enhancer' of activated B-cells (NF-κB) pathway caused by H2O2 treatment. 

Moreover, protein levels and phosphorylation of the NF-κB subunit p65 were strongly 

attenuated after SELENBP1 siRNA treatment and also measured elevated levels of the NF-κB 

inhibitor IκB and decreased levels of the NF-κB target gene ICAM. Pretreatment with 

miRNA-122 alone, performed very similarly and a combination of both, SELENBP1 RNAi and 

miRNA-122, amplified these effects, further validating SELENBP1 as a target of miRNA-122. 

Analogous results were obtained studying mice intestine with trinitrobenzene sulfonic acid-

induced colitis. Treatment with the miRNA-122 inhibitor, elevated SELENBP1 levels and was 

associated with a greater abundance of the same markers of inflammation and oxidative stress 

as before, as well as reduced glutathione levels (GSH).  

In another study, depletion of SELENBP1 RNAi showed a protective effect against ROS in 

HeLa cells. Untreated and hydrogen peroxide-treated cells had lower levels of oxidative stress 

if they were treated with SELENBP1 RNAi before, compared to cells treated with control 

RNAi. Moreover, SELENBP1 depleted cells showed a better survival in the presence of three 

toxic compounds (paraquat, H2O2, camptothecin), compared to control cells (Zhao et al. 2016). 

In summary, these data clearly demonstrate an important role of SELENBP1 in the production 

of reactive oxygen species, generated by different sources, and the onset of inflammation 

triggered thereby. Furthermore, this demonstrates that SELENBP1 seems to be under constant 

regulation of miRNA-122 and that these two act antagonistically in a pro-inflammatory 

context (Bai et al. 2019).  

1.5.9 Dysregulation of SELENBP1 expression in patients with schizophrenia 

Schizophrenia is a complex of symptoms affecting perception, thinking or affectivity and is 

classified as a kind of psychosis. The underlying biological mechanisms remain unclear to this 

date. A leading hypothesis in the pathophysiology is the disturbance of dopaminergic or 

glutamatergic neurotransmission involving NMDA receptors. Inflammation was recently 

discussed as being an important factor in schizophrenia as well. Type 1 cytokines, mediating 

the immune response against intracellular pathogens, have been found to be decreased in 
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schizophrenic patients (interleukin 2, interferon-gamma) whereas type 2 cytokines (interleukin 6, 

interleukin 10), involved in B cell maturation and extracellular pathogens, were measured more 

abundantly in schizophrenic patients (Brisch et al. 2014; Müller et al. 2015; Müller and Schwarz 

2006).  

As reported before, SELENBP1 was shown to be involved in inflammatory responses (Bai et 

al. 2019). Also, some studies report a dysregulation of SELENBP1 in schizophrenic patients. 

SELENBP1 gene expression was increased in peripheral blood cells and tissue from dorsal 

prefrontal cortex of schizophrenic patients compared to subjects with no psychiatric disorder. 

Being the highest regulated gene in brain tissue, antibody staining of four case-control sets 

showed an increased intra-glial and a decreased intra-neuronal staining for SELENBP1. 

However, the possible implications for brain function remain unclear (Glatt et al. 2005). 

SELENBP1 protein levels were among the highest upregulated proteins in red blood cells of 

schizophrenic patients in another study. This was associated with the modulation of other 

proteins involved in oxidative stress (PRDX-5, glutathione-S-transferase, heat-shock protein 

70). Interestingly, in liver samples from the same patients, SELENBP1 was one of the most 

down-regulated proteins together with copper-dependent superoxide dismutase and heat-

shock protein 60 kDa, possibly indicating different modes of action in brain and peripheral 

organs in schizophrenia (Prabakaran et al. 2007). Similarly Udawela et al. showed that 

SELENBP1 expression was increased in several parts of the cerebral cortex of schizophrenic 

patients (Udawela et al. 2015). 

Up to now, there is no causal relationship of SELENBP1 expression and the onset of 

schizophrenia. However, the increased expression of SELENBP1 in the brains of patients with 

schizophrenia and the dysregulation of reactive oxygen species and inflammation by 

SELENBP1 in other tissues, leave room for the hypothesis that elevated SELENBP1 levels 

might contribute to a pro-inflammatory milieu in the brain, fostering the onset of 

schizophrenia.  

1.6 The model organism Caenorhabditis elegans 

Caenorhabditis elegans (C. elegans) is an invertebrate eukaryote, classified as a nematode and 

belongs to the family of rhabditidae. It was first used as a model organism to study neuronal 

development by Sydney Brenner in 1963. It is one millimeter in length, a soil living organism 
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and mainly found on organic material, rich in microorganisms. Under laboratory conditions, 

C. elegans is usually cultivated at temperatures between 15–25 °C on the nutrient-rich agarose 

nematode growth medium (NGM) and supplied with E. coli OP50 as standard food source. At 

20 °C, it develops in a matter of three to four days from an egg to adulthood and has an average 

lifespan of approximately 20 days, once fully developed. It reproduces as hermaphrodite, each 

worm generating a progeny consisting of a total of around 300 worms, making it possible to 

investigate large populations at the same time. In its life cycle, the nematode develops through 

four different larval stages, L1–L4, before reaching adulthood. C. elegans begins its life at the 

L1 larval stage after hatching from the fertilized egg. If worms hatch in the absence of food, 

they go into L1 arrest. In this stage, no morphological or developmental changes occur, and 

worms will develop further into L2 larvae once food is available. If, during the development 

of L1 to L2 larvae, worms experience severe stress, e.g. heat, limited food or live in a very 

crowded area, worms will develop to dauer larvae through the L2d larval stage. 

Morphological changes in the cuticle occur and intracellular stress resistance rises to adapt to 

harsh conditions and worms stop to consume food. In this stage they can survive up to four 

months, about four times longer than the average lifespan of the nematodes. Once conditions 

become more favorable, worms develop further into L4 larvae, skipping the L3 larval stage 

(Altun and Hall 2006; Byerly et al. 1976; Erkut 2014; Hu 2007).   

The C. elegans embryonic cell lineage has been fully traced, meaning the origin and fate of 

every cell, from zygote to the adult worm, is known (Sulston et al. 1983). Studying this was 

Figure 3 C. elegans life cycle and period of each larval state 

(A) Life cycle of C. elegans according to (Altun and Hall, 2006). Figure adapted from (Erkut, 2014). (B) Diagram of 

the periods of the different larval stages starting from the laid egg as timepoint zero, based on data from (Byerly et 

al., 1976). 
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possible because of the transparent body wall which enabled the researchers to investigate 

each organ and even each cell individually, using live cell imaging and fluorescent probes. All 

the aforementioned features make C. elegans a versatile model for studying many aspects of 

life including aging processes, metabolism, redox homeostasis or cell differentiation and 

development.  

1.6.1 Anatomy and function of the epidermis 

The epidermis (old: hypodermis) is a multicellular epithelium which surrounds the worm and 

covers almost the entire length of the worm. In the adult worm it is mainly made up of two 

adjacent multinuclear cells (syncytia), the epidermal cell 7 (hyp7, 139 nuclei) and the seam cells 

(16 nuclei), which run along the lateral sides of the worm and are engulfed by the hyp7 

syncytium. Proximally, the epidermis is covered by a basal lamina which is bounded by the 

pseudocoelom, a fluid-filled space which fills the C. elegans body cavity and thereby also 

enables indirect contact between other organs like the intestine or the gonads (Altun and Hall 

2002). The epidermis secretes the cuticle, a flexible exoskeleton made up of different kinds of 

collagens, expressing a distal glycoprotein layer. The cuticle defines the shape of the worm, 

protects C. elegans from the environment and enables locomotion through its attachment to 

body wall muscles. The epidermis itself is important for early developmental processes, for 

guiding cell migration or for regulating cell fate and has been regarded as an important organ 

for nutrient storage. It was also reported to be involved in innate immune response and wound 

healing. It therefore seems unsurprising that, despite its function as the skin of C. elegans, 

transcriptome analysis showed that its gene expression pattern correlated better with blood 

plasma than with human skin and also well with human liver, T-cells and neutrophils 

(Kaletsky et al. 2018; Taffoni and Pujol 2015; Zhang et al. 2015).  

Epidermal cells descend from AB founder cells which also give rise to seam and neuronal cells 

(Figure 4). The close phylogenetic relationship between epidermal and neuronal cells was 

demonstrated by Labouesse el a. in a lin-26(n156) allele – lin-26 is regarded as a cell-fate 

regulator – and showed that epidermal cells of lin-26(n156) mutants, developed a neuron-like 

morphology and produced neuron-like cells after division (Altun and Hall 2002; Labouesse et 

al. 1994, 1996). There is also increasing evidence that the epidermis can affect neuronal 

function, potentially by affecting ion homeostasis or by providing yet unidentified signals 

(Chisholm and Xu 2012). Moreover, it was demonstrated that a non-canonical DBL-1/TGFβ 
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pathway is activated in the epidermis upon pathogenic infection. Strikingly, the DBL-1 ligand 

is mainly expressed in the nervous system and only at low levels in the intestine, suggesting 

that there might be a paracrine signaling pathway from the nervous system to the epidermis 

(Zugasti and Ewbank 2009).  

1.6.2 C. elegans neurons  

Three hundred two out of 959 cells in the adult worm are neurons, making it the biggest group 

of cells in the nematode. As seen in Figure 4, neurons, like epidermal cells, arise mostly from 

the AB lineage. Except for pharyngeal neurons, which have direct contact to the body muscles, 

somatic neurons are mostly bounded from the muscles by the epidermal basal membrane. 

They can be categorized into three functionally different classes. First of all, motor neurons, 

which have synaptic contact to the body wall muscles and control locomotion. Most of the 

motor neurons posterior of the pharynx are positioned longitudinally along the ventral side 

of the C. elegans body, in the ventral nerve cord and send commissures to the dorsal cord. 

Secondly, interneurons, which receive and send signals to other neurons and lastly, sensory 

neurons. With them, C. elegans is able detect several different types of stimuli. Among them 

are chemicals (taste), odors (smell), oxygen and carbon dioxide, pain (nociception), mechanical 

force, temperature and osmolarity.  

This is collectively accomplished by neurons which belong to a sensillum (sensillar) and by 

those which function separately (non-sensillar). In C. elegans, the sensillum is a sensory organ, 

Figure 4 Lineage of the AB founder cell during embryonic development of C. elegans 

The AB founder cell, which arises from the first division from the zygote, divides and differentiates to mainly to 

epidermal of epithelial (red), neuronal (yellow) and mesodermal cells (green). Modified and adapted from (Hobert, 

2010). 
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each comprised of one or more sensory neurons, which projects a ciliated dendrite to the tip 

of the mouth, with its endings surrounded by glia-like socket- and a sheath cells. The sensillar 

neurons are mainly located in the head e.g. amphid neurons (posterior to the nerve ring) or 

the tail (phasmid neurons). The socket cell is connected to the epidermis and the sheath cell 

and creates a torus-shaped pore for the cilia to reach the environment. An exception of this are 

for example the AFD sensilla. Their dendrites end in the sheath cell near the tip of the mouth 

Figure 5 AFD neurons and cilia morphology  

(A) 3D model of the head region of C. elegans showing AFD neurons in purple. AFDL (L), AFDR (R). Model adapted 

from the "OpenWorm project" (Szigeti et al. 2014) 

(B) Left picture shows epifluorescent image of the ciliated dendrite of one AFD neuron using a gcy-8::GFP reporter. 

Right picture shows schematic of AFD cilia. Pictures are based on (Ward et al., 1975) and modified from (Altun and 

Hall, 2003). 
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but do not reach the outside. Instead, they terminate in a cilium which is surrounded by many 

villi and a sheath cell (Altun and Hall 2003).  

1.6.2.1 AFD neurons 

AFD neurons are the C. elegans primary thermo-sensors. They belong to the amphid neurons 

and are located anteriorly to the nerve ring. Their axons travel to the ventral nerve cord 

through the amphid commissure to the nerve ring, where they meet each other at the dorsal 

midline (Szigeti et al. 2014) (Figure 5A). Their dendritic endings are ciliated and are covered 

in microvilli, which give it a characteristic, bush-like appearance (Figure 5B).  

Proteins for transduction of thermo-signals include AFD-specific guanylate cyclases (GCY-8, 

GCY-18, GCY-23) and cation channels (TAX-2, TAX-4), which are also present on other ciliated 

neurons. Temperature shifts are believed to activate guanylate cyclases which produce cGMP 

from GTP. This then triggers a calcium influx and cellular depolarization, mediated by the 

activation of the cGMP-gated cation channels TAX-2 or TAX-4. This is believed to activate 

post-synaptic neurons like AIY to trigger thermotaxis behavior for avoidance of noxious 

temperatures and to trigger a heat shock response in the soma (Goodman and Sengupta 2018; 

Prahlad et al. 2008). Signals in AFD neurons involving GCY-8 have been shown to trigger a 

heat shock response in the germ line and the soma, where heat shock proteins are expressed 

upon activation of the major transcription factor in heat shock response, HSF-1 (Prahlad et al. 

2008; Tatum et al. 2015; Vihervaara and Sistonen 2014).  

This may be linked to the influence of AFD neurons on C. elegans lifespan, as demonstrated by 

Lee and Kenyon. They showed that HSF-1 depletion resulted in a dramatic shortening of 

lifespan, but only at low temperatures (15 °C). At high temperatures (25 °C) or after ablation 

of AFD neurons, lifespan of C. elegans was shortened. This did not require functional 

DAF-2/DAF-16 signaling but was mediated by the cytochrome P450 DAF-9 and the nuclear 

hormone receptor DAF-12. As hypothesized by Lee and Kenyon, high temperatures decrease the 

levels of daf-9. This in turn lowers the production of dafachronic acids produced by DAF-9, 

which are considered DAF-12 ligands. Thereby the activity of DAF-12 is lowered, which 

normally promotes premature aging at high temperatures after binding of dafachronic acids 

(Jeong et al. 2012; Lee and Kenyon 2009). DAF-9 however, is not expressed in AFD neurons or 

other sensory neurons but is strongly expressed in the epidermis, and in spermatheca of 

hermaphrodites (Gerisch et al. 2001). It is believed that temperature sensing neurons send 



Introduction 

 

23 

signals to interneurons like AIY, which in turn affect DAF-9 expression in the epidermis by a 

yet unknown mechanism (Lin et al. 2017). 

1.6.2.2 BAG neurons 

BAG neurons are part of the oxygen and carbon dioxide detecting machinery. They are, 

however, not part of the amphid sensillum. They project dendrites which travel mouth-wards 

and end near the lateral lips in a bag-like structure, not reaching the outside (Figure 6B). BAG 

Figure 6 BAG neurons and cilia morphology  

(A) 3D model of the head region of C. elegans showing BAG neurons in purple. BAGL (L), BAGR (R). Model adapted 

from the "OpenWorm project" (Szigeti et al. 2014) 

(B) Left picture shows epifluorescent image of the ciliated dendrite of one BAG neuron using a gcy-33::GFP reporter. 

Right picture shows schematic of BAG cilia. Pictures are based on (Ward et al., 1975) and modified from (Altun and 

Hall, 2003). 
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neurons are located anteriorly to the nerve ring, more distally than AFD neurons (Figure 6A) 

(Szigeti et al. 2014).   

For the perception of atmospheric O2 levels, BAG neurons work closely together with URX 

neurons. At normal atmospheric oxygen levels (21 %), URX are held constantly active via the 

soluble guanylate cyclase GCY-36. At low oxygen levels (10 %) Hussey et al. demonstrated that 

activation of GCY-33 in BAG neurons was important for signal transduction, increasing the 

release of the neuropeptide NLP-17 in BAG neurons. This was reported to activate the receptor 

EGL-6 on URX neurons, which in turn repressed GCY-36 via the g-protein GPA-8 (Hussey et 

al. 2018).   

Additionally, BAG neurons are involved in carbon dioxide avoidance; however, little is known 

about the mechanism behind the process. It was suggested that other neurons such as AFD, 

ASH, AWB, ADL and possibly more, work together to help C. elegans avoid elevated 

atmospheric CO2 levels (Fenk and de Bono, 2015; Hallem and Sternberg, 2008). Among others, 

the cation channels TAX-2 and TAX-4 seem to be essential for the signal transduction. 

However, CO2 avoidance seems to be more complex, since modulations in energy status, 

insulin- or TGFβ signaling also alter the ability of C. elegans to sense changes in CO2 levels 

(Fenk and de Bono 2015; Hallem and Sternberg 2008).  

BAG neurons are also able to modulate lifespan as was demonstrated by Liu and Cai. They 

showed that ablation of BAG neurons or inhibition or the guanylate cyclases GCY-31 and 

GCY-33 prolonged lifespan, whereas ablation of URX neurons or inhibition of GCY-35 or 

GCY-36 decreased lifespan. Furthermore, inhibition of URX neurons completely abolished the 

lifespan extension of gcy-31 and gcy-33 RNAi, demonstrating the importance of the BAG/URX 

network for lifespan regulation. Moreover, oxygen lower than atmospheric levels increased 

lifespan, whereas oxygen higher than atmospheric levels decreased lifespan. The effect of 

oxygen levels on lifespan, however, seems to be independent of BAG and URX neurons, since 

the lifespan phenotype of BAG or URX inactivation was still present at different oxygen levels. 

Interestingly, as demonstrated for AFD neurons, BAG and URX neurons modulated lifespan 

independent of DAF-2/DAF-16 pathway (Liu and Cai 2013). 
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1.6.3 Regulation of lifespan and stress response in C. elegans 

Being a soil living organism, C. elegans needs to be able to protect itself against many kinds of 

environmental stressors. For this, well conserved cellular defense mechanisms are activated. 

One of the major pathways to improve resistance against environmental stress is the 

DAF-2/DAF-16 pathway. The signal transduction resembles the InsR/FoxO of mammals very 

closely, where the activation of InsR promotes a phosphorylation cascade, which at the end 

inhibits FOXO by phosphorylation and leads to its nuclear exclusion. Inactivation of InsR, 

inhibits the phosphorylation of FOXO, which leads to its nuclear accumulation and triggers 

the expression of genes which promote stress resistance and longevity (Klotz et al. 2015). 

DAF-16 is expressed in many tissues including muscle, intestine, neurons and the epidermis. 

In fact, the epidermis has been proposed to be the major site of DAF-16 activity, because 50 % 

of all DAF-16 target genes are expressed in the epidermis and 13 % are exclusively expressed 

there  (Kaletsky et al. 2018). DAF-16 mostly regulates gene expression cell-autonomously, 

meaning in the cell in which DAF-16 is expressed in. However, another important 

transcription factor for normal lifespan and lipid homeostasis, MDT-15, was hypothesized to 

provide lipid-based signals by which DAF-16 can influence downstream targets in different 

tissues (Zhang et al. 2013a). Rogers at al. hypothesized that MDT-15 might be essential for 

DAF-16 dependent lifespan extension, because mdt-15 RNAi reduced lifespan of long-lived 

IGF-1 mutants back to that of wildtype animals (Rogers et al. 2011).  

GATA transcription factors seem to play a major role in controlling C. elegans lifespan and 

development. The GATA transcription factors ELT-3 and EGL-27 were shown to have little 

impact on lifespan by themselves; lifespan and stress resistance were shown to be only slightly 

attenuated in worms depleted of EGL-3 or ELT-27. However, loss of either of those almost 

completely abolished the strong lifespan extension of long-lived daf-2 mutants. It was also 

shown, that GATA motifs are highly enriched in promotors of age-regulated genes, associated 

to lifespan modulation by the DAF-2/DAF-16 axis. Furthermore, many ‘EGL’ GATA 

transcription factors have, in one way or another, been reported to be important for embryonic 

or larval development. EGL-27 was demonstrated to control cell polarity and cell migration 

during development (Herman et al. 1999) and mutants, which had a loss of egl-27, were shown 

to exhibit temperature dependent embryonic lethality (Xu and Kim 2012). ELT-5 and ELT-6 

controlled ELT-3 expression (Budovskaya et al. 2008) and were also shown to be necessary for 
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the correct differentiation of epidermal cells (Koh and Rothman 2001). Furthermore, ELT-3 

was likewise suggested for being important in embryonic development (Gilleard et al. 1999). 

Therefore, GATA transcription factors do not only play an important role in development but 

also take a key role in some aspects of aging in the worm. 

1.6.4 Crosstalk between lipid and energy metabolism, and redox homeostasis 

The transcriptional co-regulator MDT-15 has been shown to link lipid and energy metabolism 

with redox homeostasis. In yeast-two-hybrid assays, MDT-15 was shown to bind to several 

key proteins of these processes such as NHR-49 (Taubert et al. 2006), one of the master 

regulators of lipid and energy homeostasis in C. elegans and SKN-1 (Goh et al. 2014), one of the 

master regulators of stress response, and was shown to be important for the expression of their 

target genes. Together with MDT-15, NHR-49 regulates the expression of several key enzymes 

of lipid desaturation and mitochondrial as well as peroxisomal beta-oxidation (van Gilst et al. 

2005). MDT-15 or NHR-49 depletion resulted in accumulation of saturated fatty acids (van 

Gilst et al. 2005; Taubert et al. 2006). However, different lipid staining methods showed mixed 

results regarding the accumulation of excess lipid stores (Lee et al. 2016; Taubert et al. 2006). 

Both MDT-15 and NHR-49 were shown to be modulated by activation of the energy sensor 

AMPK (AAK-2). Loss of MDT-15 or NHR-49 dampened the AAK-2-dependent increase of 

oxidative metabolism and the mobilization of lipid stores by lowering the activatability of 

AAK-2 (Moreno-Arriola et al. 2016).  

Both NHR-49 and MDT-15 were shown to be required for normal lifespan in C. elegans and 

were even able to dramatically extend normal lifespan when constitutively active (Lee et al. 

2016, 2016; Taubert et al. 2006). This might be due to their contribution in stress response. Both 

proteins have been shown to be required for normal stress response. Loss of mdt-15 greatly 

reduced the survival rate against different sources of oxidative stress (Goh et al. 2014) and loss 

of either NHR-49 or MDT-15 reduced the basal expression of the important stress response 

factor GST-4 and inhibited its activation by oxidative stress. It is believed that MDT-15, 

NHR-49 and SKN-1 together bind the promotor of GST-4 and SKN-1 to trigger and enhance 

the response to oxidative stress (Hu et al., 2018). 
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1.6.5 Biological relevance of selenium in C. elegans 

Whether selenium can be regarded as essential for the nematode C. elegans is questionable. 

Unlike humans, the C. elegans genome only encodes a single selenoprotein, TRXR-1. The 

C. elegans TRXR-2, a selenoprotein in humans, has as cysteine in place of selenocysteine, and 

the remaining mammalian thioredoxin reductase, trxr-3, C. elegans does not have. Studies 

analyzing the effects of selenium on C. elegans have tried to measure the outcome of beneficial 

and toxic concentrations. Despite that, little is known on the minimum requirement of 

selenium for the nematode. Additionally, different treatment regimens of selenium 

supplementation make it difficult to draw conclusions on the precise concentration at which 

selenium elicits its beneficial and toxic effects.  

In one study, worms were treated with sodium selenite for 12 h in liquid medium, showing 

that concentrations below one micromolar did not cause a reduction in survival, whereas 

treatment with five millimolar resulted in almost no surviving worms. The importance of the 

mode of selenium administration was demonstrated in the same study, in which worms living 

on selenium-containing agarose, containing five millimolar selenite, were still almost 

completely motile after 24 h (Morgan et al. 2010). Nevertheless, treating worms with 5 mM 

selenite Estevez et al. showed that this resulted in neuronal but not muscular damage (Estevez 

et al. 2012). In a different setup, L1 larvae were treated with selenite for 30 min followed by 48 

h recovery. Thereby, they were able to show a dose dependent decline of survival using 10 mM 

(∼30-50 % survival), 20 mM (∼10-30 % survival) and 30 mM (∼5-15 % survival) selenite. 

Paradoxically, organic selenium compounds such as selenomethionine (SeMet) and 

methylselenocysteine (MeSeCys) were taken up more readily by the worms but were far less 

toxic than selenite. The half-lethal dose of selenite (LD50) was calculated to be roughly 13 mM, 

whereas the treatment with the organic selenium compounds only resulted in a decline of 

survival of around 20 % using 50 mM SeMet or MeSeCys (Rohn et al. 2019).  

Regarding the contribution of the sole selenoprotein TRXR-1 in the toxicity of selenium, 

congruent with the results of Boehler et al., trxr-1 mutants did neither show a reduced nor an 

enhanced susceptibility to selenite when compared with wildtype worms (Rohn et al. 2018). 

In a following publication, the group around Julia Bornhorst showed that in non-treated 

animals as well as in worms which were treated with 100 µM selenite or 100 µM MeSeCys, 

much of the selenium accumulated in the non-protein fraction, which was similar in TRXR-1 
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mutants, while selenium in the protein fraction did not change noticeably. This was reflected 

by TRXR-1 levels which were not different in selenium treated worms (Rohn et al. 2019). 

However, TRXR-1 activity was shown to be modulated by treatment with organic, not 

inorganic selenium compounds (Rohn et al. 2019). 

In nanomolar to low micromolar concentrations, selenium was demonstrated to elicit positive 

effects. Pretreatment of L1 larvae with 0.01–1 µM selenite resulted in an increased survival rate 

following pathogenic infection. This was attributed to a much faster induction of genes related 

to glutathione metabolic processes such as glutathione S-transferase (gst-4) and gamma 

glutamylcysteine synthetase (gcs-1), which were much less expressed in worms without selenium 

pretreatment (Li et al. 2014a). This is supported by results of Boehler et al. which also showed 

that selenite treatment led to the modulation of glutathione-related genes such as glutathione 

S-transferases, glutathione disulfide reductase or glutaredoxin (Boehler et al. 2014). In another 

study, 0.01 µM selenite also improved health parameters. There, the time worms needed to 

develop to reach adulthood was decreased, the amount of progeny increased and the time 

until death induced by levamisole was also delayed in the 0.01 µM selenite treatment group 

(Li et al. 2011). Later, the same lab demonstrated that a similar treatment rendered worms 

more resistant to different kinds of stressors like juglone, paraquat, H2O2 or heat and that 

selenite-treated worms accumulated fewer oxidants under non-stressful conditions. They 

showed that the selenite-induced resistance against juglone was dependent on trxr-1 as well 

as the FOXO3 ortholog DAF-16. Treatment with 0.01 µM selenite led to an increased 

transcriptional activity of DAF-16, indicated by an increased nuclear accumulation and more 

abundantly expressed DAF-16 target genes (SOD-3, HSP-16.2) (Li et al. 2014b). Similarly, Rohn 

et al. showed that pretreatment with different selenium compounds (100 µM), especially 

organic selenium compounds, ameliorated the production of tert-butyl-hydroperoxide-

induced reactive oxygen and nitrogen species (as assessed using Carboxy-DCFH-DA) (Rohn 

et al. 2019). 

In summary, it seems that, depending on the time point of administration and the nature of 

the selenium compound, low nanomolar to micromolar concentrations of selenium can be 

regarded as beneficial doses for C. elegans, scavenging reactive oxygen species and stimulating 

redox signaling processes. Acutely toxic effects seem to manifest at high micromolar to low 

millimolar concentrations. However, these concentrations are unlikely to be reached in natural 
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environments with an average selenium content in soil of 0,4 mg/kg to 20 mg/kg (Floor and 

Román-Ross 2012). Furthermore, the sole selenoprotein TRXR-1 does not seem to participate 

in the protection from selenium accumulation or its toxic effects but shows an increased 

activity under moderate exposure with organic selenium compounds. 

1.7 Hydrogen sulfide production in vivo 

The recovery of cysteine from homocysteine is achieved by transsulfuration in which the thiol 

group of homocysteine is transferred to serine to yield cysteine. The first step in this reaction, 

the fusion of homocysteine and serine to cystathionine, is catalyzed by cystathionine-β-synthase 

(human: CBS). The subsequent cleavage of cystathionine to α-ketobutyrate and cysteine is 

performed by cystathionine-γ-lyase (human: CTH). Both enzymes need pyridoxal phosphate 

(PLP) as a co-factor to perform this reaction.  

These enzymes have also been recognized as major contributors to hydrogen sulfide (H2S) 

production in vivo, mainly using cysteine and homocysteine as substrates. H2S is a small sulfur-

containing molecule which is reported to be involved in cell signaling, in neuroprotection and 

exerting anti-oxidant activity, and has been shown to be able to dramatically improve the 

lifespan of C. elegans (Han et al. 2019; Miller and Roth 2007). There are some other enzymes 

Figure 7 Major contributors to hydrogen sulfide production 

The main contributors to hydrogen sulfide ( ) production in vivo are enzymes of the transsulfuration pathway, 

cystathionine-γ-lyase (human: CTH) cystathionine-β-synthase (human: CBS), needing pyridoxal phosphate ( ) as co-

factor. These enzymes are also the main contributors to H2S production and use cysteine or homocysteine as 

substrates. The cleavage of H2S from cysteine can also be catalyzed by the bifunctional L-3-cyanoalanine 

synthase/cysteine synthase enzyme (C. elegans: CYSL) using hydrogen cyanide (HCN) or non-enzymatically by Fe3+ 

and PLP. Another major contributor to endogenous H2S production is mercaptopyruvate sulfurtransferase (human: 

MPST), producing H2S from 3-mercaptopyruvate (3-MP). Adapted from (Hine et al., 2015; Yang et al., 2019). 
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contributing to H2S production; the bifunctional L-3-cyanoalanine synthase/cysteine synthase 

enzyme (C. elegans: CYSL), which also is able to produce H2S from cysteine but is not expressed 

in humans and mercaptopyruvate sulfurtransferase (human: MPST), generating H2S from 3-

mercaptopyruvate (3-MP). Moreover, a non-enzymatic reaction involving pyridoxal 

phosphate and Fe3+ was also recognized as another major source of hydrogen sulfide 

production (Figure 7) (Hine et al. 2015; Kabil and Banerjee 2014; Yang et al. 2019).  

1.8 SELENBP1 orthologs Y37A1B.5 and R11G10.2 are modulators of 

C. elegans lifespan 

Y37A1B.5 and R11G10.2 were previously shown to be negative regulators of C. elegans lifespan 

because depletion via RNAi resulted in an increase of mean and maximum lifespan, as well as 

an improved resistance to oxidative stress (Figure 8). Furthermore, using daf-16 or skn-1-

deficient strains, it was shown that the lifespan extension was still present (not shown), which 

Figure 8 The SELENBP1 homologs Y37A1B.5 and R11G10.2 regulate C. elegans lifespan and stress resistance 

(A) Y37A1B.5 RNAi increased mean and maximum lifespan of wildtype C. elegans. (B) Pretreatment of worms with 

Y37A1B.5 RNAi increased the resistance against oxidative stress induced by paraquat. (C) R11G10.2 RNAi increased 

mean and maximum lifespan of wildtype worms. (D) Pretreatment with R11G10.2 RNAi increased the resistance 

against oxidative stress induced by paraquat. Mean lifespan: 50 % survival, max lifespan: day of last living worm. 

Data are means ± SD of three to four independent experiments. Data adapted from (Köhnlein 2016, Köhnlein et al. 

2020).  
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indicated that the lifespan modulation by Y37A1B.5 and R11G10.2 might be mediated by a 

non-canonical stress response pathway (Köhnlein 2016). 

1.9 Objectives 

Selenium is associated with the onset of metabolic disorders and is controversially discussed 

as a therapeutic in the prevention of cancer. SELENBP1 has emerged as a factor possibly 

explaining these associations. The strong negative correlation between SELENBP1 abundance 

in cancer tissue and the clinical outcome of cancer patients as well as the increased progression 

of cancers with low SELENBP1 levels, have made it a target of recent studies in search for 

biomarkers of cancer disease. Aside from that, SELENBP1 seems to be involved in the onset of 

inflammation and cellular redox balance. Moreover, SELENBP1 is dysregulated in different 

tissues of schizophrenic persons, which leaves room for the hypothesis that SELENBP1 might 

be involved in the development of schizophrenia by contributing to inflammation.  

In C. elegans, SELENBP1 orthologs have been established as negative regulators of lifespan and 

oxidative stress resistance. It can be hypothesized that this displays a mechanism by which 

cancer cells render themselves more resistant to therapy and might ultimately be a hint as to 

why cancer cells often show a low abundance of SELENBP1. Therefore, the aim of this study 

was to determine the function of these proteins and analyze the underlying mechanism 

regarding the modulation of lifespan and stress resistance of SELENBP1 orthologs in 

C. elegans. The goal was (1) to define the tissue these orthologs are expressed in, (2) to analyze 

changes in expression during the aging process, (3) to assess the role in redox and selenium 

homeostasis. Moreover, the goal of this work was to (4) identify genetic regulators of 

expression as well as (5) downstream targets using transcriptome analysis. Finally (6) genetic 

null mutants were to be generated to identify the role of the two C. elegans proteins in 

development and tissue differentiation. 
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2 Materials and Methods 

Detailed information about bacterial- or C. elegans strains as well as recipes for buffers and 

media are listed in the appendix of this thesis. 

2.1 3D modelling of protein sequences 

SELENBP1 as well as Y37A1B.5 and R11G10.2 were modelled using Protein Homology/analogY 

Recognition Engine V 2.0 (Phyre2; http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) 

(Kelley et al. 2015). In short, the Phyre2 algorithm predicts a 3D model by multiple sequence 

alignment with a number of selected sequences and also predicts the secondary structure 

using PSIPRED, building a model using the results of both algorithms. This is compared and 

aligned to proteins of known structure by which the protein backbone is generated. After 

adding the amino acid side chains, different regions of the model are compared to highly 

confident existing models. From that, α-carbon distances are calculated after which the new 

protein is 'synthesized' by a virtual ribosome. The generated .pdb file was modified using 

ChimeraX (0.9.1; https://www.cgl.ucsf.edu/chimerax/download.html).  

2.2 C. elegans  

Caenorhabditis elegans (C. elegans), an invertebrate eukaryote, is classified as a nematode strain 

and belongs to the family of rhabditidae. In the following, the terms 'worm' or 'nematode' are 

used as synonyms for C. elegans. The wildtype strain N2 Bristol was obtained from the 

Caenorhabditis Genetics Center (CGC) of the University of Minnesota, USA. Y37A1B.5 and 

R11G10.2 null mutants (PHX2066, PHY2078; see appendix Table 1) were provided by 

SunyBiotech (Fuzhou, China). Transgenic GFP reporters of Y37A1B.5 (LOK158) and R11G10.2 

(LOK128) were generated by David Guerrero-Gómez and Dr. Antonio Miranda-Vizuete 

(Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del 

Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain) using plasmids generated by Dr. Pavel 

Urbánek from the Nutrigenomics lab (Prof. Klotz). All used transgenic strains were made from 

N2 Bristol. 

For cultivation, C. elegans was kept on Nematode Growth Medium (NGM Agar) and received 

an E. coli OP50 suspension as standard food source (for all bacterial strains used in this work, 
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see appendix, Table 2). When RNA interference was performed, dsRNA was delivered by the 

E. coli strain HT115(DE3) harboring a T7-inducible plasmid (L4440) (Figure 11).  

To transport the worms between NGM plates for preservation or analysis of stress resistance, 

a specially prepared platinum spatula was used, which was connected to a glass pipette. In 

technical jargon, this is often referred to as a worm pick. 

C. elegans was cultivated at a constant temperature of 20°C. To ensure sterility, all buffers and 

media used, were sterilized beforehand. The transfer of large amounts of worms by buffer 

took place in proximity to a propane gas flame. Small number of worms for example during 

lifespan analyses or stress resistance assays, were transferred manually using the worm pick. 

To ensure sterility, the platinum spatula was heated with an ethanol flame and cooled by 

placing it on a worm-free part of the NGM agar before touching the worm. 

Maintenance 

C. elegans was maintained on NGM agar (see Table 5). In order to keep one strain in culture, 

five worms of the L4 larval stage (Figure 9) were transferred from an NGM agar plate with a 

mixed population to an unpopulated agar plate with fresh bacterial lawn. According to the life 

cycle at 20 °C (see Introduction 1.6.1) worms could be maintained at intervals of four to five 

days.  

Figure 9 Time course of experiments 

At the beginning of each experiment, 5-10 larvae of the L4 larval stage were placed on an NGM plate (1). In the 

course of five days worms laid eggs, from which further worms developed. Eggs of this were then collected for 

synchronization which was performed at the beginning of each experiment. The eggs were distributed to fresh 

NGM plates. This marked day zero for life span analyses (2). Usually, treatment of the worms began 64 h after 

synchronization (3). Dashed arrow: development to, red arrow: discarded. 
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Synchronization 

In order to ensure that the population was at the same stage of development during each 

experiment, worms were synchronized. For this purpose, a worm culture five days after 

maintenance was used. First, all worms were removed from the agar plates. The remaining 

eggs were then separated from the NGM plate using an L-shaped glass pipette and collected 

in a reaction vessel. Several washing steps were performed, consisting of centrifugation 

(1300 g) and exchange of the medium. The eggs, now cleaned of bacteria, were finally spotted 

on NGM agar. 64 hours after synchronization, worms had reached the young adult larvae 

stage and were usually used for the experiments.  Ultrapure water was used for the collection 

and washing of the eggs. 

For the observation of worm morphology during different larval stages, worms were 

synchronized by inducing L1-arrest. Eggs were prepared as described before and were 

pipetted into 25 ml M9 medium in a 50 ml reaction vessel. Worms were allowed to hatch 

overnight and were distributed to NGM plates spotted with bacteria after confirming that all 

worms were at the L1 larval stage. 

Cryopreservation 

C. elegans is suitable for long-term storage at a temperature of -80 °C in a medium containing 

15 % glycerol (see Appendix Table 5). This made it possible to store different strains when not 

needed. For freezing, an NGM plate containing many L1 and L2 stage and which almost 

depleted the bacterial lawn was used. Worms were collected in a reaction vessel with S-basal 

and washed once. The supernatant was removed, leaving 3 ml of suspension and mixed with 

freezing medium containing 30 % glycerol at a ratio of 1:1. The freezing medium, containing 

the worms, was then aliquoted to 1 ml each, into cryogenic tubes. Slow freezing was ensured 

by placing the cryogenic tubes in a polystyrene box at -80 °C.  

When needed, a cryopreserved strain was thawed quickly and then washed once in S-Basal at 

20 °C. The thawed worms were transferred to NGM agar and screened for alive worms during 

a period of several days.  

Bleaching 

In order to remove any bacterial contamination during synchronization the worm suspension, 

which had been collected during synchronization, was treated with a bleaching solution (see 
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Appendix Table 5) for 30 seconds. Several washing steps were then performed to reduce the 

concentration of the bleach to a minimum, after which the eggs were transferred to NGM agar 

plates. 

Liquid transfer 

For the analysis of protein or RNA fractions, large amounts of worms were required. These 

were cultivated on multiple 90 mm NGM agar dishes. In order to avoid starvation of the 

experimental population and to remove offspring, worms were transferred to fresh plates 

daily, using S-Basal buffer. First, the worms were separated from the plates and collected in a 

15 ml reaction vessel. Several washing steps were carried out in which the smaller and lighter 

offspring were separated and discarded by gravity from the initial population. Finally, the 

buffer was removed, leaving a few hundred microliters of suspension, and the nematodes 

were distributed to fresh NGM plates, spotted with bacteria. 

Harvest 

To analyze biochemical parameters, worms were collected (harvested) at certain times during 

an experiment. The harvesting process was performed similarly to the regular liquid transfer 

but was carried out at 4 °C in order to slow down the metabolism of the nematodes and 

prevent possible changes in gene expression during the process. After removal of bacteria and 

offspring, worms were transferred to an ice-cooled 1.5 ml reaction vessel. The supernatant 

buffer was removed, and the reaction vessel was frozen in liquid nitrogen and finally stored 

at -80 °C. 

Selenite resistance assay 

To evaluate the toxicity of selenite and the effect of RNAi treatments on the susceptibility of 

nematodes towards selenite, worms were treated with RNAi for 72 h starting at the egg stage. 

For treatment of the worms, each well of a sterile, 96-well plate was filled with 100 µl of a 

“10x” suspension of heat-inactivated bacteria (see 2.3). Roughly 50 worms were transferred to 

each well manually using a worm pick. Then, 50 µl of 10x heat inactivated bacteria suspension 

containing the appropriate amount of selenite (i.e. three times higher than final concentration; 

Sigma Aldrich, #S5261) was pipetted into each well.  Worms were exposed to sodium selenite 

for 17 h while shaking at 900 rpm on an orbital shaker. Following treatment, worms were 

transferred to NGM plates without bacteria. The liquid was allowed to dry (5–10 min) and 
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worms scored directly afterwards. Each treatment, as well as each experiment, was performed 

in triplicates.  

Heat resistance assay 

Worms were pre-treated with RNAi for five days starting at young adult. On day five, a 

closable polystyrene box containing several 'hot-cold packs' and a 55 mm NGM agar plate with 

100 µl 10x heat inactivated bacteria for each treatment was pre-heated to 37 °C in a 

microbiological incubator (Heraeus B6) for several hours. About 50 worms were then 

transferred to a pre-heated plate, immediately transferred back to the polystyrene box and 

placed in back into the incubator at 37 °C for three hours. Afterwards, worms were transferred 

back to 20 °C for 40 h before being scored. 

Microscopy 

The inversion microscope (Nikon, Eclipse Ti2) together with the software NIS-Element 4.6 

(Nikon) was used to record microscopic and fluorescent images of C. elegans. Within one 

experiment, the settings for exposure time and gain were kept constant. The images were 

converted into common image formats (.tif, .png) to be displayed in this work.  

Preparation of objective slides  

In order to analyze C. elegans microscopically, the nematodes were mounted an agarose pad 

containing objective slide (Figure 10). Agarpads were made using a 3 % agarose solution 

(Thermo Scientific, #15510) in ultrapure water. Objective slides were placed between two so-

called 'spacers' – slides which were covered with a transparent adhesive strip lengthwise. One 

Figure 10 Preparation of objective slides for fluorescent microscopy 

(1) An objective slide is placed two spacers taped with adhesive strips (blue). Then a drop of liquid agarose (3 %) 

is dripped onto the slide. (2) The agarose drop is covered with another slide. (3) After a short cooling, the spacers 

are removed. (4) The upper slide is gently removed to avoid formation of air bubbles. (5) The prepared slide is 

heated so that excess water would evaporate from the agar pad. 



Materials and Methods 

 

37 

drop of hot agarose was put on the objective slide and covered by another slide. After 

removing the spacers and the cover, the prepared slide was dried at 50 °C for 1–2 min. The 

resulting agar pad had a low thickness, suitable for fluorescence imaging. 

Measurement of expression using fluorescence microscopy 

To analyze the expression of fluorescent nematodes, they were placed on a prepared 

microscope slide, anaesthetized with 10 mM sodium azide and covered by a coverslip. Pictures 

of individual worms were taken using brightfield and GFP (ex. 472±30 nm, em. 520±35 nm) 

channels.  For quantification of the GFP signal, fluorescent worms were marked as regions of 

interest (ROI) using the binary threshold of the GFP signal or manually using the overlaid 

brightfield image. The total GFP intensity (SumIntensity) and the area of each ROI was then 

measured. Afterwards, the GFP intensity was normalized to the worm area and subtracted 

from the background signal to obtain the relative GFP fluorescence intensity for each worm. 

Assessment of hydrogen sulfide production 

Hydrogen sulfide production was estimated in crude worm lysates using lead acetate-

containing agarose (lead acetate: Sigma Aldrich, #215902) and a reaction mixture containing 

10 mM L-cysteine (Carl Roth, #1693) as substrate and 1 mM pyridoxal phosphate (Sigma 

Aldrich, #P9255) as co-factor. This method was adapted from (Hine and Mitchell 2017). To 

reduce changes of the pH, cysteine was dissolved in 50 mM potassium phosphate buffer (pH 

7.4) and pyridoxal phosphate in PBS (Sigma Aldrich, #D8537). The pyridoxal phosphate stock 

solution was prepared beforehand, stored at -20 °C and thawed when needed. The L-cysteine 

solution was prepared freshly, every time. Worms were lysed by grinding in liquid nitrogen, 

using mortar and pestle, together with 50 mM potassium phosphate buffer (pH 7.4), 

containing protease inhibitors (Carl Roth, #3751). The lysates were collected in a 1.5 ml reaction 

vessel and allowed to thaw on ice. Afterwards, lysates were sonicated (Sonoplus HD 2070) on 

ice for three times (power: 50 %, 10s, 3 cycles) and centrifuged (4 °C, 20 min, 12000 rcf). The 

supernatant was collected, and the protein content was estimated via BCA assay (Thermo 

Scientific, #23227). Hydrogen sulfide production was determined in a 96-well plate on the 

same day. For this, 100 µg of protein was mixed with L-cysteine and pyridoxal phosphate to a 

final volume of 150 µl. The plate was covered with a lid containing 100 mM lead acetate in 

agarose and incubated for four hours at 37 °C. Afterwards, the amount of lead sulfide 
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precipitate, which had formed in a reaction of H2S and lead acetate, was assessed by an 

imaging system (Biorad, Chemidoc MP) using the built-in volume tool to quantify the pixel 

intensity per area. Each sample was measured in triplicates. 

HPLC analysis of GSH content  

Levels of reduced glutathione (GSH) were measured using HPLC and o-phthaldialdehyde 

(OPA) derivatization. First, worms were collected and frozen. Afterwards, the worms were 

lysed by grinding in liquid nitrogen, using mortar and pestle, together with using 0.01 N HCl, 

containing protease inhibitors (Carl Roth, #3751) and sonicated 3-times (settings: 50 % power, 

10s, 3 cycles, on ice). After centrifugation, (4 °C, 20 min, 12000 rcf) the supernatant was 

collected and the protein content was estimated using a BCA assay (Thermo Scientific, #23227). 

For GSH measurement via HPLC, 50 µl of worm lysate was used. Proteins were precipitated 

by adding 25 µl 2N HClO4 and was incubated for 10 min on ice. Afterwards 200 µl 0.5M 

sodium phosphate buffer (pH 7.0) was added for neutralization. The samples were centrifuged 

for 10 min, 18.000 rcf, 4 °C and 50 µl of that was used for OPA derivatization. 15 µl H2O and 

50 µl OPA (2 % (w/v) in 0.1 M sodium borate, pH 9) were added to the mixture. 20 µl of that 

were then injected into the HPLC machine (for details, see Table 11). GSH levels were 

normalized to the protein content of each sample. For each sample, three independent 

experiments were analyzed. The analysis of the HPLC chromatograms was performed by 

Katrin Erler from the Klotz laboratory. 

RNA isolation 

RNA isolation was performed by guanidinium thiocyanate-phenol-chloroform extraction 

using Trizol® reagent (Thermo Scientific, #15596026). Before isolation, worms (≳1000) were 

collected and frozen in S-basal (4 °C) and stored at -80 °C until lysis. 

At the beginning of the extraction, the frozen worm pellet (≅50 mg) was lysed using 1 ml 

Trizol® reagent and 0.3 g 1.0 mm zirconia beads (Biospec Products #11079110zx) in a swinging 

mill (Retsch MM 400; 3 x 1 min, 30 oscillations s-1). Between the milling steps, samples were 

stored on ice for one minute. Then, chloroform (VWR #83626320) was added, followed by 

repeated inversion of the reaction vessel and incubation for three minutes at room 

temperature. After the centrifugation, the upper clear phase, containing the RNA, was 

transferred to a new reaction vessel and mixed with 1.1x isopropanol and 0.16x 2 M sodium 
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acetate and centrifuged (12000 rcf, 20 min, 4 °C). The precipitated RNA was washed three 

times with 80 % ethanol. After the final washing step, the ethanol was removed, and the pellet 

was dried at room temperature for 5-10 min. The RNA was then dissolved in nuclease-free 

H2O (Carl-Roth, #T143) and heated to 65 °C for five minutes to dissolve RNA, put back on ice 

and was used for cDNA synthesis afterwards.  

Isolation of genomic DNA 

For isolation of genomic DNA, one plate of adult worms was collected in S-Basal and frozen. 

For DNA isolation, the worm pellet was thawed on ice and mixed with lysis buffer in a 1:10 

ratio, containing 200 mM NaCl (Carl Roth, #3957), 100 mM Tris- HCl (pH 8.0) (Carl Roth, 

#5429), 50 mM EDTA (Carl Roth, #8043), 0.5 % SDS (Carl Roth, #CN30) and 0.2 mg/ml 

proteinase K (vivantis, #7037). The mixture was incubated at 65 °C for 30 min and cooled to 

37° C. RNAse A (Thermo Fischer, #EN0531) was added to a final concentration of 0.1 mg/ml 

and the mixture was incubated for another 45 min at 37 °C. Using 

phenol:chloroform:isoamylalcohol (Carl Roth, #A156) for extraction, the DNA was isolated, 

and precipitated overnight by adding 2 volumes of 100 % ethanol at 4 °C. After multiple 

washing steps using 80 % ethanol, the DNA was dried and resuspended in 10 mM Tris-HCL 

pH 8.0.  

RNA quantification 

To assess the quantity/concentration of isolated RNA, the absorption value of 2 µl RNA at 260 

nm was determined using an LVis Plate (BMG Labtech) in a microplate reader 

(SPECTROstar® Nano, BMG Labtech) and used to determine the concentration of nucleic acid.  

cDNA synthesis 

To study mRNA levels, total RNA was first reverse transcribed into cDNA. For this, one 

microgram RNA was mixed with 25 ng Oligo(dT)18 (Thermo Scientific #SO132) and 10 ng 

Random Hexamer primers (Thermo Fischer Scientific #SO142). The mixture was then heated 

with a Mastercycler Ep gradient S (Eppendorf) for annealing of the primers to the RNA (5 

min/70 °C, 5 min/4 °C). Subsequently, nuclease-free H2O (Carl Roth #T143), Reaction Buffer 

(Thermo Fischer, #K1621), PCR Nucleotide Mix (Thermo Fischer, #R0192) and RevertAid 

Reverse Transcriptase (Thermo Fischer, #EP0441) were added to the reaction mixture. Reverse 

transcription was performed as follows: 10 min/ 25 °C, 90 min/ 42 °C, 15 min/ 70 °C. The 
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obtained cDNA was then diluted with nuclease-free H2O to 4 ng/µl of the original RNA 

concentration and stored at -20 °C.  

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

To determine relative gene expression, cDNA amplification was measured via real-time 

(quantitative) PCR (qPCR). For this, the cDNA was mixed with 200 nm primers for the 

respective gene and amplified using the program in (Table 10). The amplification of cDNA 

was followed using SsoAdvanced Universal SYBR Green Supermix (Biorad, #1725275) in a CFX 

Connect Real-Time PCR Detection System (Biorad). To calculate the relative expression 

differences, the delta-delta-Cq value was calculated (see below). To do so, the Cq value of the 

treated sample, determined by the program, was subtracted from the Cq value of the reference 

gene, resulting in the delta Cq value. The delta Cq value of the treatment was then subtracted 

from the delta Cq value of the respective control treatment to obtain the delt-delta-Cq value. 

Subsequently, this value was multiplied by -1 and powered by a factor of two to obtain the 

relative mRNA levels [fold]. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑅𝑁𝐴 𝑙𝑒𝑣𝑒𝑙 =  (((𝐶𝑞𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝐶𝑞𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒) − (𝐶𝑞𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐶𝑞𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒)) ∗ (−1))
2

 

 

Single-worm PCR 

To validate the genomic knockouts, single-worm PCR was performed. For this, one adult 

worm was placed outside the bacterial lawn to remove excess bacteria. The worm was then 

placed into a drop of worm lysis buffer containing 5mM Tris pH 8.0, 0,5 % Triton X-100 (Carl 

Roth, #3051), 0,5 % Tween 20 (Carl Roth, #9127), 0,25 mM EDTA, 1 µg/µl proteinase K 

(20 mg/ml) and was transferred to a 200 µl reaction tube together with one microliter of lysis 

buffer and spun down using a tabletop centrifuge. The reaction tube was heated to 65 °C for 

15 min to activate proteinase K for lysis, followed by an inactivation step at 85 °C for 5 min. 

For mRNA analysis, one microliter cDNA synthesis-mix (see Appendix Table 8) was added 

and cDNA synthesis was performed using the following program (25 °C for 10 min, 55 °C for 

30 min, 85 °C for 5 min). Afterwards, the cDNA was diluted to 20 µl and one microliter of that 

was used for PCR. PCR was performed according to the manufacturer’s instructions (Q5 DNA 

polymerase; NEB, #M0491) (PCR program: see Appendix Table 9).  

Calculation of relative mRNA levels from Cq values 
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Agarose gel electrophoresis 

For agarose gel electrophoresis, agarose (Invitrogen, #15510) was dissolved in 1x TAE buffer 

(recipe see appendix Table 7) using a microwave oven. The nucleic acid dye GelRed (GeneON, 

#S420) was added in a 1:50,000 dilution, afterwards.  Agarose gels were cast using and 

electrophoresis was run using a BlueMarine™ 100 Horizontal Submarine Electrophoresis Unit 

(SERVA Electrophoresis GmbH, # 5442243) with 40-70 V, at constant voltage. 

RNA sequencing 

Transcriptome analysis was performed in collaboration with Philipp Koch, Marco Groth and 

Karol Szafranski from the FLI Core-Facilities DNA Sequencing and Life Science Computing. 

Briefly, 1 µg of total RNA was prepared using the Agilent Bioanalyzer 2100 and sequenced via 

an Ilumina HiSeq2500. The acquired reads were processed and mapped to the C. elegans 

genome. The obtained raw data was further processed to test for differential expression 

between RNAi and control treatment. Philipp Koch processed the raw data, computed the 

differential expressed genes and the Venn analysis thereof. For further details see (Köhnlein 

et al. 2020).  

Gene enrichment analysis 

To identify pathways and processes involved in the respective treatment, the web platform 

WebGestalt (WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/) was used 

(Liao et al. 2019) for gene enrichment. For analysis, the list of significantly regulated genes of 

each treatment was taken and fed into the Webgestalt search algorithm. WormBase IDs were 

used as gene identifiers and fold-change as the rank of each gene. Advanced parameters were 

left unchanged for the analysis. To reduce redundancy, the built-in algorithm weighted set cover 

was used. For display of the enriched terms the total number of up- or downregulated genes 

was set to 100 % and the fraction of each gene set was calculated proportionally. The total 

number of genes in each gene set is displayed (100 %). 

Parameters for the enrichment analysis: (i) Minimum number of IDs in the category: 5 (ii) 

Maximum number of IDs in the category: 2000 (iii) Significance Level: Top 10 (iv) Number of 

permutations: 1000. 
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2.3 Bacterial culture 

Two different bacterial strains (see below) were used for culturing C. elegans, which served as 

food source or additionally to deliver dsRNA for RNA interference. The E. coli strain OP50 

served as the main food source for non-RNAi experiments. Bacteria were grown at 37 °C for 

15–16 h. After successful growth, the culture was centrifuged for 20 min at 3200 g, 4 °C and 

concentrated two- or ten-fold (e.g. 2x: 50 ml → 25 ml, 10x 50 ml → 5 ml). 

E. coli OP50 

The Escherichia coli strain OP50 is derived from E. coli B, also known as E. coli wildtype strain 

(Brooks 2004; Daegelen et al. 2009). For use as the C. elegans food source, the cryopreserved 

bacteria were first streaked on LB agar containing no antibiotics (LB agar lennox; Table 6). 

Subsequently, a single colony was inoculated in dYT medium and grown overnight. 15–16 h 

later, the bacteria were usually 2x concentrated, as described above.  

E. coli HT115(DE3) 

For the depletion of certain genes via RNA interference, C. elegans was fed E. coli HT115(DE3), 

containing the plasmid for dsRNA expression of the respective gene. HT115(DE3) is 

commonly used for the transformation with plasmids for RNA interference. Strains were 

Figure 11 Induction of dsRNA expression by IPTG in HT115(DE3) 

In the absence of IPTG or lactose, the Lac repressor binds to the LacUV5 promotor of the T7 polymerase gene (T7 

Pol.) and prevents its transcription. The lacI gene on the bacterial genome encodes the Lac repressor. In the presence 

of IPTG, the Lac repressor detaches from the Lac promotor. Then transcription and translation of the T7 polymerase 

can occur, which initiates transcription of the dsRNA by binding to the T7 promotor on each side of the gene 

(Kamath and Ahringer 2003; Studier and Moffatt 1986). Scheme is not true to scale. Adapted from Novagen pET 

expression manual. 
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positively selected using ampicillin and carbenicillin on LB agar plates, followed by 

inoculation of a single colony in LB medium containing carbenicillin. The expression of 

dsRNA was induced using 1 mM isopropyl β-d-1-thiogalactopyranoside (IPTG) containing 

NGM agar.  

For the induction of dsRNA in E. coli (DE3), strains contained a plasmid under the control of 

a T7 promotor. DE3 strains contain the lambda-DE3 lysogen which expresses the T7 RNA 

polymerase under the control of the lacUV5 promotor. They also encoded for the lacI gene in 

their genome producing a repressor of the lac promotor, suppressing the expression of the 

target dsRNA when no lactose or IPTG is present. IPGT acts as de-repressor of the lac 

promotor, causing transcription of the T7 polymerase gene. Once T7 polymerase is produced 

it can bind to each side the T7 promotor on the L4440 expression vector, flanking the dsRNA 

for the respective gene, upon which the dsRNA gets produced (Kamath and Ahringer 2003; 

Studier and Moffatt 1986) (Figure 11). 

2.4 Statistical analysis 

Data are presented as means ± SD unless otherwise stated. Calculation of relative means and 

standard deviations were performed using GraphPad Prism (GraphPad Software, San Diego, 

California, USA). Statistical analysis of lifespan data was carried out using JMP software (SAS 

Institute Inc., Cary, NC, USA) using the log rank test. Observations with a significance level of 

p<0.05 were considered statistically significant. Student’s t-test or one-way ANOVA were used 

when appropriate. When F-test indicated differences in variances using t-test, Welch’s 

correction was applied. 
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3 Results 

3.1 Structural modeling of human SELENBP1 

Several amino acids of SELENBP1 have been hypothesized to contribute to the binding of 

selenium. As proposed by Raucii et al., Cys57 seems to be the most promising residue, since it 

was predicted to be the most accessible cysteine at neutral pH. However, judging from the 3D-

Phyre2-model of SELENBP1 in Figure 12, the cysteines of the CSSC motif of SELENBP1, Cys80 

and Cys83, as well as Cys5, Cys8 and Cys141 seem to be available on the surface as well, 

whereas Cys57 appears to be difficult to access.  

Looking closer at the CSSC motif, it can be observed that only the thiol group of Cys80 sticks 

out to the surface, while the thiol group of Cys83 is pointed inwards. Arguably, this might 

indicate that these two would not form a disulfide bridge, which selenium could interact with. 

However, Cys141, visible in a pocket close to Cys80 and Cys83, has its thiol group in close 

proximity to the thiol group of Cys80. Therefore, these two might interact as well and be 

important for selenium binding. The enzymatic activity of bacterial SELENBP1 was shown to 

be copper-dependent (1.5.1). Therefore, it was important to highlight the histidine residues, 

which are often involved in binding divalent metal ions (Eom and Song 2019). Several histidine 

residues are displayed at the surface and could therefore mediate copper binding of 

SELENBP1. These include His61, His119, His128, His196, His227 and His236. However, none 

of the classical metal binding motifs (His137xxHis140; His329xAsp) seem to be present on the 

surface. His137xxHis140is located on a beta-strand whereas His329 is located on a loop, 

however both are buried in the inside of the protein. 

In order to assess whether SELENBP1 might be posttranslationally modified, SELENBP1 was 

assessed according to parameters laid out by Fichtner et al. (2020). Figure 12 shows the amino 

acids of SELENBP1 which are predicted to be modified by carbonylation. Comparing this to 

the abundance of lysine and arginine residues on the surface, which are often highly modified, 

suggests that SELENBP1 might indeed be highly prone to non-enzymatic modifications, which 

might explain the high abundance of argpyrimidine detected on SELENBP1 (see Introduction 

1.5.3).  



Results 

 

45 

 Figure 12 Structural analysis of a 3D model of human SELENBP1 

3D surface model of human SELENBP1 constructed using Protein Homology/analogY Recognition Engine V 2.0 (Phyre2; 

Kelley et al., 2015) and edited using ChimeraX Software (0.91). (A) Beginning at the top left panel, the protein was 

rotated clockwise 90 °C around the y-axis (dashed line: approx. rotation axis). Using ChimeraX, the distance between 

the two carboxyl groups of Cys80 and Cys83 was estimated to be approx. 7.4 Å. Accordingly, selenite (SeO32-) was 

drawn with the size of 2.4 Å ( ). Inset of top left panel: CSSC motif, red arrows point to sulfur groups of Cys80 

and Cys141. Inset of bottom left panel: top section of the protein showing Cys57. Yellow: cysteine (Cys), cyan: 

histidine (His).  
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(B) Left picture shows amino acid residues, predicted to be most susceptible for protein carbonylation in red, 

according to parameters laid out by Fichtner et al. (2020). Intensity of the red color correlates with the susceptibility 

for the amino acid to be carbonylated. Right picture shows the same model, with colored amino acids, historically 

known to be heavily modified non-enzymatically: yellow: cysteine, purple: lysine, green: arginine. Cys5, 8, 80 and 

83 are labeled. 

3.2 Investigation of the C. elegans SELENBP1 ortholog Y37A1B.5  

Previously generated results revealed that depletion of the SELENBP1 ortholog Y37A1B.5 via 

bacterial dsRNA lead to an increase of mean (109.6 ± 4.6 %) and maximum (112.8 ± 4.5 %) 

lifespan and an improved resistance to the oxidative stress inducing redox cycler, methyl 

viologen (paraquat) (121.6 ± 17.1 %) (see Figure 8). 

3.2.1 Y37A1B.5 is an ortholog of SELENBP1 

BLASTP alignment (Altschul et al. 1997) of human SELENBP1 (accession: CAG33133) with 

C. elegans non-redundant protein sequences revealed that Y37A1B.5 (accession:  

NP_001255777.1) shares 52 % identical amino acid residues and 69 % chemically similar amino 

acids with SELENBP1. To put this into perspective, the functional FOXO ortholog DAF-16, 

shares 65 % similar and 51 % identical amino acids with FOXO3. Thus, it seems likely that 

biological functions between SELENBP1 and Y37A1B.5 might be conserved.  

Furthermore, the cysteine residue at position 57 (Cys57) of SELENBP1, which in silico analyses 

predicted to be important for biological function, and of which in vitro experiments 

demonstrated the importance for cells to resist selenium-induced toxicity (see 1.5.2), is 

conserved in Y37A1B.5. Although seemingly hard to access in SELENBP1, the 3D structure 

shows that Cys57 is also presented on the surface of the protein, as shown for SELENBP1 

(Figure 13). Other structures such as the putative thioredoxin motif CxxC and the putative 

metal binding histidine motifs (HxD, HxxH) are also well conserved in Y37A1B.5. The CxxC 

motif appears to be structured differently than in SELENBP1. The thiol groups of Cys80 and 

Cys83 seem to be in very close proximity to one another, thus it seems plausible that these 

would be able to form a disulfide bridge. Furthermore, the equivalent of Cys141 in SELENBP1, 

Cys139, is in close proximity to Cys80 and Cys83, but buried inside the protein. As 

demonstrated for SELENBP1, the HxxH motif is not present on the surface.  
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3.2.2 Y37A1B.5 is a cytoplasmic protein expressed in the epidermis  

To address possible biological functions of Y37A1B.5, strains carrying transcriptional or 

translational reporters, were constructed. To this end, genomic fragments, 2989 bp of the 

Y37A1B.5 3’UTR region (for the transcriptional reporter, LOK157) and additionally (in the case 

of the translational reporter, LOK158; Figure 14) the open-reading frame, were cloned into a 

GFP vector by Dr. Pavel Urbánek from the Klotz laboratory and injected into C. elegans. This 

was done in collaboration with the lab of Dr. Antonio Miranda Vizuete. In accordance to the 

localization of Y37A1B.5 gene expression site as reported by McKay et al., a mainly epidermal 

signal was observed for the protein localization using the LOK158 reporter (Figure 14) (Mckay 

et al. 2003). As expected for somatic tissue, Y37A1B.5 dsRNA treatment was very effective in 

the transcriptional (not shown) and translational reporter and was comparable to mRNA 

levels measured via qRT-PCR at day three (2,10 % ± 0,93 %) or day five (34,25 % ± 10,98 %) of 

dsRNA treatment compared to control (Figure 14).  

SELENBP1 was reported to be abundant in human blood plasma (Chau et al. 2018), which 

suggests the existence of some sort of export mechanism. Thus, it seemed plausible that 

extracellular localization might also be observable for Y37A1B.5. However, analysis of LOK158 

Figure 13 3D protein model of Y37A1B.5 

3D surface model of Y37A1B.5, constructed using Protein Homology/analogY Recognition Engine V 2.0 (Phyre2; Kelley 

et al., 2015). (A) Model with cysteines (Cys, yellow) and histidines (His, cyan) highlighted. Top left segment: Model 

was rotated 90° around the x-axis to show Cys57. Bottom left Segment: Cys80 and Cys83 are focused. Red arrow 

shows approx. position of thiols groups of Cys80 and Cys83. (B) Amino acid residues easily modifiable by 

carbonylation according to (Fichtner et al., 2020) are highlighted: cysteines (Cys, yellow), lysine (purple), arginine 

(green). 
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revealed an exclusively intracellular signal. Furthermore, under non-stressed conditions, 

Y37A1B.5 localization was found primarily in the cytoplasmic region while the nuclei seemed  

to be omitted (Figure 14).  

Figure 14 Y37A1B.5 is an epidermal protein, predominantly localized in the cytoplasm. 

(A) Schematic representation of the translational reporter construct (LOK158) used in this study. A genomic 

fragment containing a 3kb region of the Y37A1B.5 5'UTR as promoter, together with the Y37A1B.5 open-reading 

frame was cloned into the GFP plasmid pPD95.77 and injected into C. elegans wildtype. (B) Localization of 

Y37A1B.5 is predominantly epidermal. Comparison to the intestinally expressed protein klo-2 (panel: left 

corner; LOK182, klo-2::GFP) shows that except for a region proximal of the pharynx (boxed white), the GFP 

pattern does not resemble intestinal expression. Y37A1B.5 is mainly localized in the cytoplasm (red box). White 

arrows show nuclei of hyp7 syncytia (for comparison see Altun and Hall 2009). (C) Effectiveness of Y37A1B.5 

RNAi in LOK158. GFP signal is strongly reduced after Y37A1B.5 RNAi for five days compared to control RNAi 

treated worms. Reduction is comparable to the effect of RNAi on mRNA levels after treatment for three or five 

days (D). (D) Relative mRNA levels of Y37A1B.5 after knockdown for three or five days. Data was normalized 

to tba-1 expression as housekeeping gene and to ctr RNAi treatment of each day. Data is presented as 

mean ± SD.*p<0,05, ****p<0.0001, t-test with Welch's correction 
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3.2.3 Cellular localization of Y37A1B.5 under stressful stimuli 

As reported before (see 1.5.6, 1.5.8), nuclear shuttling of SELENBP1 was observed under 

stressful conditions. Therefore, it was analyzed whether nuclear accumulation of the 

Y37A1B.5-GFP signal could be observed after treatment with different ROS inducing agents. 

However, analyzing LOK158 after treatment with paraquat (5 mM, 10 mM), selenite 

(0.01 µM – 1 mM) or arsenite (1 µM – 100 µM), no apparent nuclear localization could be 

observed (Figure 16, Figure 17). This seems to be evidence that Y37A1B.5 does not seem to 

function as a transcription factor.  

3.2.4 Y37A1B.5 is a pro-aging factor 

Because it was previously shown that depletion of Y37A1B.5 delayed aging in C. elegans 

(Köhnlein et al. 2020), mRNA levels of Y37A1B.5 were measured from young to aged worms 

at different time points (Figure 15). Y37A1B.5 expression declined exponentially during aging 

(R2: 0.88), further suggesting a link between Y37 expression and the aging process. Relative 

expression at day 20 of adulthood was reduced to 8.9 % ± 5.7 %, compared to the first day of 

adulthood. This is comparable to mRNA levels achieved via siRNA of Y37A1B.5 (Figure 14). 

This could either mean that Y37A1B.5 becomes dispensable after reaching adulthood, or that 

its expression is reduced as a means to defend the nematodes from accumulation of reactive 

oxygen species during age, as seen similarly after Y37A1B.5 RNAi (see: Introduction 

Figure 8B).   

Figure 15 Y37A1B.5 expression declines exponentially during aging. 

(A) mRNA levels of Y37A1B.5 in wildtype worms at day one, three, five, seven, ten and twenty after adulthood, 

measured via qRT-PCR. Data was normalized to tba-1 expression as housekeeping gene, and to the expression at 

day one to calculate the relative fold-change of Y37A1B.5 expression. **p<0.01, ***p<0.001, ****p<0.0001 compared 

to day 1; One-way ANOVA with Bonferroni correction for multiple comparisons. (B) Non-linear regression 

revealed a highly confident (R2 = 0.88) exponential decline (right). Data are presented as means ± SD, dashed line 

shows 95 % confidence interval.  
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3.2.5 The role of Y37A1B.5 in redox homeostasis  

To address the role of Y37A1B.5 in the context of reactive oxygen species, LOK158 were treated 

with two different substances which are known to generate reactive oxygen species but have 

different modes of action. First, arsenite was used, which was shown to induce the formation 

of reactive oxygen and nitrogen species (Sattar et al. 2016) and interacts with thiols, especially 

glutathione (Spuches et al. 2005). Secondly, paraquat was used, a redox cycler that causes the 

generation of superoxide anions (Bonneh-Barkay et al. 2005).  

Treatment of fully developed young adult worms with different concentrations of sodium 

arsenite revealed a dose-dependent decline of Y37A1B.5 protein abundance (Figure 16A). 

With the highest concentration of arsenite, Y37A1B.5 abundance was decreased by roughly 

40 % compared to the vehicle-treated control. The effect of depletion of Y37A1B.5 on 

glutathione levels was tested. As expected, worms after treatment with Y37A1B.5 RNAi 

showed a tendency of increased GSH levels and showed an increased expression of most of 

the C. elegans glutaredoxins (Figure 16B,C), enzymes involved in protein regeneration using 

glutathione. 

Treatment with the redox cycler paraquat, on the other hand, did not alter the abundance of 

Y37A1B.5 (Figure 16D). One hypothesis explaining this might be that paraquat does not 

directly interact with thiols and therefore does not modulate Y37A1B.5, or that Y37A1B.5 

simply is not responsive to superoxide anions. Of note, Y37A1B.5 RNAi depletion also largely 

failed to robustly upregulate the superoxide dismutase system (Figure 16E), which is 

responsible for catalyzing the reaction from superoxide to hydrogen peroxide.  
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Figure 16 Y37A1B.5 abundance is reduced in response to arsenite but not to oxidative stress in general. 

(A) LOK158 young adult worms were treated with different concentrations of sodium arsenite for 24 h. Worms 

were then mounted on objective slides for analysis of the GFP signal. Datapoints are GFP expression of individual 

worms and means ± SD. p>0.05, ***p<0.001, ANOVA with Bonferroni for multiple comparisons. Right panel shows 

exemplary pictures of worms treated with 0 µM or 100 µM arsenite. (B) GSH measurement via HPLC method of 

wildtype worms after treatment with Y37A1B.5 RNAi for five days. Data is and means ± SD (C) Gene expression 

of C. elegans glutaredoxins (glrx) from transcriptome analysis of wildtype worms treated with Y37A1B.5 RNAi for 

five days compared to control RNAi. (D) LOK158 young adult worms treated with different concentrations of 

paraquat for 24 h. Data shows GFP expression of individual worms as datapoints and means ± SD. n.s., p≥0.05; 

unpaired t-test. Right panel shows exemplary pictures of worms treated with 0 µM or 10 mM paraquat. (E) Gene 

expression of C. elegans superoxide dismutases (sod) from transcriptome analysis of wildtype worms treated with 

Y37A1B.5 RNAi for five days compared to control RNAi. Data is presented as mean ± SD. *p<0.05. Scale bars are 

250 µm 
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3.2.6 Y37A1B.5 is important for the protection against selenite  

To address the hypothesis of Y37A1B.5 being a potential selenium binding protein, worms 

were treated with a wide range of sodium selenite concentrations to evaluate if there would 

be a modulation of Y37A1B.5 abundance in response to a selenium stimulus. The range of 

selenite concentrations used spanned from hormetic and subtoxic concentrations (0.01 µM, 

1 µM) to toxic concentrations (100 µM, 1 mM) (see 1.6.5). Subtoxic concentrations did not seem 

to induce Y37A1B.5 expression. However, at 100 µM, Y37A1B.5 expression was induced 

strongly and even more so with exposure to 1 mM selenite. This points towards a mechanism, 

where Y37A1B.5, as potential selenium binding protein, is expressed more abundantly in 

response to selenite to protect C. elegans from a selenium overload. To test this, worms were 

treated with lethal concentrations of sodium selenite after pretreatment with Y37A1B.5 siRNA. 

It was shown that worms which were depleted of Y37A1B.5 before, were significantly less 

Figure 17 Y37A1B.5 protects against selenite-induced toxicity.  

(A) LOK158 young adult worms were treated with different concentrations of sodium selenite for 24 h. Worms 

were then mounted on objective slides for the GFP signal to be analyzed under a fluorescent microscope. Right 

panel shows exemplary pictures of worms treated with 0 µM or 1 mM sodium selenite. Data points are GFP 

expression of individual worms and means ± SD. ****p<0.0001, ANOVA with Bonferroni correction for multiple 

comparisons. (B) Wildtype worms were pretreated with Y37A1B.5 RNAi before being subjected to different 

concentrations of sodium selenite. Data are presented as means ± SD. **p>0.01, ***p<0.001; unpaired t-test. Scale 

bars are 250 µM. 
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resistant to selenite, from mildly, to highly lethal concentrations, compared to worms treated 

with control RNAi (Figure 17). These results confirm the hypothesis that Y37A1B.5 is 

important for the protection against selenite and strengthen the possibility that Y37A1B.5 

might be a selenium-binding protein ortholog.  

3.2.7 MDT-15 and EGL-27 are regulators of Y37A1B.5 

In search for transcriptional regulators of Y37A1B.5, MDT-15 and EGL-27 seemed to be good 

candidates. As described before, MDT-15 was shown to be involved in stress response and 

EGL-27 was also described as a transcription factor promoting stress resistance (Xu and Kim 

Figure 18 MDT-15 and EGL-27 are regulators of Y37A1B.5 

LOK158 young adult worms were treated with siRNA against either egl-27 or mdt-15 and control plasmid for five 

days and GFP intensity of single worms was measured afterwards (A) Treatment with egl-27 or control RNAi. GFP 

expression of individual worms is given as data points, as well as means ± SD. ***p<0.001, unpaired t-test with 

Welch's correction. Right panel:  exemplary pictures of worms treated with control or egl-27 RNAi. Individual 

worms are outlined in white. (B) RNAi treatment against mdt-15 compared to control. Data shows GFP expression 

of individual worms as datapoints and means ± SD. ***p<0.001, unpaired t-test with Welch's correction. Right panel: 

exemplary pictures of worms treated with control or egl-27 RNAi. Individual worms are outlined in white. Scale 

bars are 250 µM. 
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2012) regulating Hox genes, which are involved in cell differentiation processes of the 

epidermis  (Ch’ng and Kenyon 1999). 

To test if EGL-27 and MDT-15 are regulators of Y37A1B.5, LOK158 was subjected to egl-27, 

mdt-15 or control RNAi. It was observed that knockdown of egl-27 resulted in a 2.75-fold mean 

increase of Y37A1B.5 abundance. This fits very well to data showing that EGL-27 is a positive 

regulator of C. elegans lifespan and stress resistance (Xu and Kim 2012). Since it was shown 

that Y37A1B.5 is a negative regulator of lifespan (Köhnlein et al. 2020), it can be speculated 

that EGL-27 is part of a transcriptional network which targets Y37A1B.5 to promote stress 

resistance. Depletion of MDT-15, on the other hand, strongly depleted C. elegans from 

Y37A1B.5, reducing its abundance to 7.7 % compared to control RNAi-treated animals 

(Figure 18). As described before (1.6.4), loss of MDT-15 results in premature death and 

strongly attenuates resistance to different stressful stimuli. In light of that, the reduction of the 

pro-aging factor Y37A1B.5 by MDT-15 does not seem to fit. Possible hypotheses explaining 

this will be discussed in the following sections. 

3.2.8 Functional association of Y37A1B.5 with MDT-15 and EGL-27  

Loss of MDT-15 also resulted in a phenotype which was described before as a disruption of 

cellular organization and the presence of vacuoles (Taubert et al. 2006). This phenotype was 

not reversed after additional depletion of Y37A1B.5 via RNAi (Figure 19). Therefore, it appears 

that the anti-aging effects elicited by Y37A1B.5 depletion do not occur under conditions of a 

disturbed MDT-15 signaling. Thus, MDT-15 might be an important factor in the lifespan 

extension elicited by knockdown of Y37A1B.5.  

To further clarify the relationship between Y37A1B.5, MDT-15 and EGL-27 in the promotion 

of stress resistance, a heat stress assay was performed in which worms were treated with either 

Y37A1B.5 RNAi, mdt-15 RNAi, egl-27 RNAi or a double knockdown of Y37A1B.5 and egl-27 or 

mdt-15. This was hoped to reveal whether the depletion of Y37A1B.5 also promotes resistance 

to heat stress, apart from promoting resistance to oxidative stress, but also if EGL-27 or 

MDT-15 are involved in this process. For this, worms were pretreated with the respective 

RNAi for five days before being submitted to 37 °C for three hours with a subsequent recovery 

of 40 h. It was revealed that Y37A1B.5 indeed improved heat resistance by 33.1 ± 5.4 % 

compared to control RNAi. Mdt-15 RNAi strongly diminished the survival under heat stress 
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to a total of 13.5 ± 7.5 % (vs. control), whereas depletion of EGL-27 did not alter the survival 

rate (total: 113.6 ± 23.1 %) compared to the control (Figure 19). Of special interest in the case of 

mdt-15 RNAi was the fact that additional depletion of Y37A1B.5 did not show any difference 

Figure 19 Depletion of Y37A1B.5 increases survival under heat stress; role of MDT-15 

(A) Young adult wildtype worms were treated with RNAi against Y37A1B.5, mdt-15, egl-27 or a combination of the 

latter with Y37A1B.5 for five days. Worms were then subjected to heat stress (37 °C, 3h) with subsequent recovery 

for 40 h and were then scored for survival. Data are means ± SD. a vs. b: p<0.01, a vs. c: p<0.01. Groups with same 

letter significance did not statistically change to one another; unpaired t-test with Welch's correction (B) Pictures of 

worms after treatment with the respective RNAi. Worms depleted of Y37A1B.5 showed wildtype phenotype, 

organs can be distinguished from one another. Loss of MDT-15 resulted in accumulation of vacuoles and 

disorganized organ structure. Additional treatment RNAi of Y37A1B.5 did change the phenotype of mdt-15 RNAi. 

Scale bars are 250 µM. 
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compared to single RNAi of mdt-15, which indicated that MDT-15 was required for the  

improved resistance to heat stress upon Y37A1B.5 RNAi. Further experiments will reveal if 

MDT-15 is also necessary for the lifespan extending and ROS protecting effects elicited by loss 

of Y37A1B.5.  

3.2.9 Y37A1B.5 regulates targets of metabolic pathways and defense response 

To identify downstream targets which may be important for the improvements of lifespan and 

stress resistance, transcriptomes of worms undergoing Y37A1B.5 RNAi and control RNAi 

were analyzed and compared against each other. As displayed in Figure 20, gene enrichment 

analysis revealed that most of the positively associated genes after depletion of Y37A1B.5 

belonged to the KEGG term “Metabolic pathways”. The positive association with “Ribosome” 

and “Lysosome” point toward a higher protein turnover, while “Carbon metabolism” and “Fatty 

acid metabolism” suggest a higher flux of sugars and lipids. The positive association with 

metabolic pathways was also reflected by most of the upregulated biological processes i.e. 

“Organic acid metabolic process”, “Lipid metabolic process” and “Cofactor metabolic process”.  

Considering the improved stress resistance elicited by Y37A1B.5 RNAi, it is not surprising that 

the largest group of the positively enriched genes belonged to the term “Defense response”.  

Figure 20 Defense response and metabolic pathways are upregulated after Y37A1B.5 RNAi 

Differentially expressed genes obtained by transcriptome analysis of wildtype worms treated with Y37A1B.5 RNAi 

for five days were enriched for KEGG pathways (A) or biological processes (B) using WebGestalt 2019 (Liao et al. 

2019). The total number of up- or downregulated genes was set to 100 % and the fraction of each gene set was 

calculated proportionally. 
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Since Y37A1B.5 was shown to be predominantly expressed in the epidermis, an organ heavily 

involved in early development, it was unsurprising that there were a number of 

downregulated pathways suggesting an impaired development such as “Wnt signaling” or 

“MAPK signaling” or biological processes like “Cell development”, “Regulation of developmental 

processes” and “Post-embryonic development” (Figure 20). However, since knockdown of the 

samples for transcriptome analysis was performed after embryonic and larval development, 

this might be a remnant of Y37A1B.5 functions in earlier stages of C. elegans life.  

3.2.10 Is Y37A1B.5 involved in the regulation of sulfur metabolism? 

 One set of genes, too small to appear in the gene enrichment analysis but possibly important 

for explaining the long-lived phenotype of Y37A1B.5 RNAi, belongs to the transsulfuration 

pathway. These were already described above (chapter 1.7). Key enzymes for transsulfuration 

seemed to be the most important for the production of H2S, cystathionine-β-synthase (CBS) and 

cystathionine-γ-lyase (CTH) as well as the bifunctional L-3-cyanoalanine synthase/cysteine synthase 

(CYSL) and the mercaptopyruvate sulfurtransferase (MPST). Cth-1 was upregulated 3.4-fold and 

was one of the highest differentially expressed genes in the data set, while expression of cbs-1 

was reduced in comparison to control RNAi (0.8-fold). Additionally, cysl-2 and cysl-3 were 

each upregulated 1.7- and 1.2-fold while mpst-1-7 mRNA levels were not changed. H2S 

production was measured using a method described by (Hine and Mitchell 2017). In short, 

whole C. elegans extracts were supplemented with millimolar concentrations of cysteine as 

Figure 21 The capacity to produce H2S from cysteine is reduced after Y37A1B.5 RNAi 

(A) H2S production was assessed in a 96-well format using 100 µg of total protein lysate. 96-well plate was covered 

with a lid containing 100 mM lead-acetate and was incubated at 37 °C for 4 h.  Image was taken in a Biorad 

Chemidoc MP imager. Picture shows three technical replicates of experiment #3 of Ctr or Y37A1B.5 RNAi. (B) 

Quantification of three independent experiments of measurement shown in (A). Volume intensity of each black dot 

was measured using the ImageLab volume tool (Biorad). Data shows mean ± SD of fold change compared to control 

RNAi; **p<0.001 unpaired t-test with Welch's correction 
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substrate and pyridoxal phosphate as cofactor and incubated at 37° C. The gaseous H2S 

emitted from the reaction was captured in lead acetate-containing agarose, covering the 

reaction chamber. H2S production was estimated measuring the extent of blackening of the 

agar by precipitated lead sulfide. Surprisingly, the capacity to produce H2S from cysteine was 

reduced by around 30 % in Y37A1B.5-depleted worms compared to the control (Figure 21). 

Iron and pyridoxal phosphate participate in the breakdown of cysteine to generate H2S. Iron 

is stored via the protein ferritin, which is encoded twice in C. elegans, as FTN-1 and FTN-2; 

mRNAs of both were elevated after Y37A1B.5 RNAi, 1.6-fold and 1.2-fold, respectively. This 

may suggest reduced levels of free iron which could have contributed to the outcome of the of 

H2S assay. 

3.2.11 Y37A1B.5 null mutant is morphologically indistinguishable from wildtype 

To address the question if a complete loss of Y37A1B.5 would result in similar effects on 

lifespan and stress resistance, a null mutant (PHX2078, Y37A1B.5(syb2078)) was obtained, 

expressing only a small fragment of the original Y37A1B.5 mRNA. The strain was validated 

via PCR on genomic and cDNA level. Primers were designed to detect differently sized 

amplicons in wildtype and PHX2078.  

Since this strain was only received recently, no functional analysis could be performed. 

Surprisingly, phenotypical comparison of PHX2078 to wildtype animals revealed no 

morphological differences, the larval stages were reached at approximately the same time and 

animals developed normally to adulthood (Figure 22). This was very surprising because data 

from Hashimshony et al. showed a strong upregulation of Y37A1B.5 in early blastomere stages 

of the embryo of wildtype animals (Hashimshony et al. 2015), which suggested a high 

relevance of Y37A1B.5 in embryonic development. However, since no growth abnormalities 

were visible in PHX2078, Y37A1B.5 seems to be redundant during this process.  
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Figure 22 Y37A1B.5 null mutant strain, PHX2078 

Phenotypical analysis of Y37A1B.5 null mutant PHX2078. PHX2078 and wildtype N2 animals were synchronized 

via L1 arrest. Pictures of L1 animals were taken 4 hours after refeeding. L3, L4, and adult animals were 

photographed at 24-hour intervals following that. No phenotypical differences were observed in the different larval 

stages.  
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3.3    Investigation of the SELENBP1 C. elegans ortholog R11G10.2  

In a previous work, the putative selenium-binding protein R11G10.2 had been described by me 

as regulating lifespan and resistance to oxidative stress. Depletion of the gene via RNAi 

resulted in an extension of mean (110.6 ± 4.8 %) and maximum (113.5 ± 5.2 %) lifespan, 

comparable to what was described for Y37A1B.5. Also, stress resistance following R11G10.2 

RNAi was found to be comparable between the two selenium binding protein orthologs 

(122.9 ± 5.7 %, compared to control RNAi) (Köhnlein 2016). These results were surprising, 

Figure 23 Genetic validation of PHX2078 

Validation of PHX2078 via PCR (A) (left). Genomic DNA of wildtype N2 and PHX2078 mutants. Expected bands: 

N2: 5352 bp, PHX2078: 117 bp (Primer7+8). One main band at around 5000bp base pairs and several between 4000 

and 3000 bp base pairs were amplified in wildtype worms. PCR on DNA of PHX2078 showed two bands of around 

3000-4000bp base pair size and one band at the anticipated size of around 117 bp. (right) PCR amplifying cDNA 

fragments. Anticipated bands: N2 1310 bp, PHX2078 64 bp (Primer3+4). On wildtype DNA one band between 1500 

and 1000 bp was visible corresponding to the expected size of 1310 bp. Single worm PCR of PHX2078 of three 

different specimens amplified one band at the expected size of 64 bp. (C) Single-worm PCR on genomic DNA of 

worms with a wildtype Y37A1B.5 allele and PHX2078 mutants carrying the Y37A1B.5(syb2078) allele. As expected 

animals carrying the wildtype allele showed one band at 216 bp. PHX2066 appears to be homozygous for 

R11G10.2(syb2066) because only one bands for the mutant allele (312 bp) was amplified (Primer12+13+14). For each 

strain three worms were analyzed. (B+D) Schematic depiction of Y37A1B.5(syb2078) allele in PHX2078. Deletion is 

5235 bp of Y37A1B.5 CDS. (B) Primers for PCR on genomic DNA bind on the first exon and in the 3’UTR of Y37A1B.5 

CDS. (D) Primers for duplex PCR on genomic DNA resulting in a 216 bp fragment on a wildtype allele (f2+r; 

Primer12+14) and 312 bp fragment on a Y37A1B.5(syb2066) allele (f1+r; Primer13+14). DNA was loaded onto a 1 % 

(A) or 2 % (C) agarose gel for separation via electrophoresis.  
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considering the lower conservation rate of R11G10.2 compared to Y37A1B.5. Thirty five 

percent of the amino acids of R11G10.2 are identical  to the human SELENBP1 and 56 % have 

similar chemical properties according to similarity criteria used in sequence homology 

analysis programs such as BLAST (Altschul et al. 1997). Given the relatively low sequence 

similarity it was not surprising that also many of the motifs proposed to be important for the 

function of the protein or the binding of selenium, are not present in R11G10.2. Its sequence 

does not include a CxxC motif, but Cys57 of SELENBP1 aligns with Cys85 of R11G10.2 and 

seems to be accessible and on the surface. Although the HxxH and HxD motifs of SELENBP1 

are not conserved, histidines seem to present on the surface (His7, His39, His63, His92, His176, 

His222, His232, His287, His293, His 308, His 323, His 360 and His 377) more abundantly than 

shown for SELENBP1 (Figure 24).  

Analysis of R11G10.2 mRNA levels during C. elegans lifetime did not reveal a clear pattern. 

There seems to be a trend towards an increased expression with progressing age (R2 = 0,48) 

(Figure 25). However, due to the large variability of the expression between the biological 

samples, no clear statement can be made. 

Figure 24 3D protein model of R11G10.2 

3D surface model of R11G10.2 constructed using Protein Homology/analogY Recognition Engine V 2.0 (Phyre2; Kelley 

et al., 2015). (A) Model with cysteines (Cys, yellow) and histidines (His, cyan) highlighted. Top left Segment: Model 

was rotated 90° around the x-axis to show Cys57. Bottom left Segment: Cys80 and Cys83 are focused. Red arrow 

shows approx. position of thiols groups of Cys80 and Cys83. (B) Amino acid residues easily modifiable by 

carbonylation according to (Fichtner et al., 2020) are highlighted: cysteines (Cys, yellow), lysine (purple), arginine 

(green). 
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3.3.1 R11G10.2 is expressed in AFD and BAG neurons 

Strains carrying transcriptional or translational reporters, were constructed and cloned into a 

GFP vector by Dr. Pavel Urbánek from the Klotz laboratory. To this end, genomic fragments, 

3086 bp of the R11G10.2 3’UTR region (for the transcriptional reporter, LOK127) and 

additionally (in the case of the translational reporter, LOK128; Figure 26) the open-reading 

frame, were cloned into a GFP vector and injected into C. elegans. This was done in 

collaboration with the lab of Dr. Antonio Miranda Vizuete. 

Strikingly, R11G10.2 expression was exclusively found in a set of two head neurons and the 

corresponding dendrites (Figure 26). Dr. Martin Srayko, University of Alberta, Edmonton, AB, 

Canada, identified the expressing neurons as AFD and BAG neurons. The proximal set of 

neurons, identified as AFD, terminate in bush-like structures in front of the tip of the mouth, 

not reaching the outside, which is a well-described feature of AFD neurons (see 1.6.2.1). The 

more distally observed neurons end near the tip but do likewise not seem to reach the outside. 

The structure of the dendritic endings appears to be bag-like, which would indicate BAG 

neurons (see 1.6.2.2). Additionally, BAG neurons are not part of a sensillum. Because no 

overlap between the GFP signal of these neurons and dil staining, which stains amphid and 

phasmid sensilla, was observed (Dr. Martin Srayko, pers. comm.), these neurons were 

concluded to be BAG.  

Figure 25 mRNA expression of R11G10.2 is not strongly associated with aging. 

mRNA levels of R11G10.2 in wildtype worms at day one, three, five, seven, ten and twenty after adulthood 

measured via qRT-PCR. Data were normalized to tba-1 as housekeeping gene and to the expression at day one to 

calculate the fold-change. Linear regression revealed a weak trend (R2 = 0.48) of inclining R11G10.2 levels during 

aging (right). Data are presented as means ± SD, dashed line shows 95 % confidence interval. 
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RNAi was reported to be ineffective in the C. elegans nervous system (Timmons et al. 2001). 

This led to the initial hypothesis that the lifespan modulation after R11G10.2 RNAi may be 

caused by signals of R11G10.2 neurons to somatic tissues, which might have R11G10.2 

expressed at sub-detection-level, undetectable in LOK128. However, Weiye Gong from the 

Klotz laboratory demonstrated that the R11G10.2-GFP signal in the head neurons of LOK128 

was strongly diminished after R11G10.2 siRNA treatment, which appeared to be similar to the 

reduction in mRNA expression of whole worm lysates, following R11G10.2 RNAi. However, 

expression in the ciliated dendritic endings remained intact in most of the evaluated LOK128 

worms following R11G10.2 RNAi (Figure 27A). Depletion of R11G10.2 also triggered the 

elevation levels of reduced glutathione (GSH) compared to control-RNAi treated worms in 

whole-worm lysates (Figure 27C), which likely contributed to the lifespan extension and stress 

resistance elicited by R11G10.2 RNAi.  

  

Figure 26 R11G10.2 is a neuronal protein, expressed in AFD and BAG neurons. 

(A) Schematic representation of the translational reporter construct (LOK128). A genomic fragment containing a 

2,978 kb region of the R11G10.2 5'UTR as promoter, together with the R11G10.2 open-reading frame was cloned 

into the GFP plasmid pPD95.77 and injected into C. elegans wildtype (Dr. Miranda-Vizuete). (B) R11G10.2 is solely 

expressed in two head neurons and their dendrites, identified as AFD (A,a) and BAG (B,b) neurons (Dr. Martin 

Srayko). Dashed line outlines the pharynx. (C) Pictures show AFD (left; PY1322) and BAG (right; DA1290) reporter 

strains and for comparison (pictures provided by Dr. Martin Srayko). 
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3.3.1.1   R11G10.2 null mutant is morphologically indistinguishable from wildtype 

For R11G10.2 a null mutant (PHX2066, R11G10.2(syb2066)) was obtained recently. Strains were 

validated via PCR, in which wildtype and mutant alleles were distinguished by differently 

sized amplicons on genomic DNA and the respective transcripts.  Phenotypical analysis of 

both wildtype and PHX2066 mutant worms revealed no apparent growth defect. Mutants 

were morphologically indistinguishable from wildtype animals at all times and needed the 

same time to reach the different larval stages (Figure 28).  

 

 

Figure 27 R11G10.2 RNAi is effective in neurons and RNAi increases GSH levels. 

(A) R11G10.2 RNAi is effective in LOK128. Pictures kindly provided by Weiye Gong. GFP signal in neurons was 

strongly reduced after R11G10.2 RNAi treatment for five days compared to control, while the signal in the dendritic 

endings remained intact in most analyzed worms after RNAi. Scale bar: 50 µm. Reduction of GFP signal is 

comparable to the effect of RNAi on mRNA levels after treatment with R11G10.2 RNAi three or five days (B). (C) 

GSH measurement via HPLC method of wildtype worms after treatment with R11G10.2 RNAi for five days. GSH 

levels showed a trend of being increased after R11G10.2 RNAi. 
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Figure 28 R11G10.2 null mutant PHX2066 

Phenotypical analysis of R11G10.2 null mutant PHX2066. PHX2066 and wildtype N2 animals were synchronized 

via L1 arrest. Pictures of L1 animals were taken 4 hours after refeeding. L3, L4, and adult animals were 

photographed at 24-hour intervals following that (details see introduction). No phenotypical differences were 

observed in the different larval stages.  
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3.3.2 R11G10.2 regulates genes involved in nervous system development 

Enrichment of genes regulated after R11G10.2 RNAi revealed a picture similar to what was 

observed after Y37A1B.5 RNAi. The treatment mainly increased genes related to metabolic 

pathways (Ribosome, Proteasome, oxidative phosphorylation, organophosphate metabolic process) and 

“cellular defense”, while attenuating genes associated to developmental or growth-related 

processes (Wnt signaling, ErbB/EGFR signaling, animal organ development). The strong 

enrichment of downregulated genes related to “nervous system development” could arguably be 

regarded as a validation of the knockdown of a neuronal gene (Figure 30).  

Figure 29 Genetic validation of PHX2066 

Validation of PHX2066 via PCR. (A) (left) Genomic DNA of wildtype N2 and PHX2066 mutants. Expected bands: 

N2 1450 bp, PHX2066 268 bp. One main band below 1500 bp was amplified in wildtype worms. showed one band 

at the anticipated size of around 268 bp in PHX2066 (Primer5+6). (right) cDNA of wildtype and PHX2066. 

Anticipated bands: N2 959 bp, PHX2066 165 bp (Primer 1+2). In wildtype only one band between below 1000 bp 

was visible, which corresponds to the expected size of 959 bp. Single-worm PCR of three different specimens of 

PHX2066 amplified one band at the expected size of approx. 165 bp size. The faint band in worm #1 is presumably 

an unspecific amplicon because it does not appear in worms #2 and #3. (C) Single-worm PCR on genomic DNA of 

worms with a wildtype R11G10.2 allele and PHX2066 mutants carrying the R11G10.2(syb2066) allele. As expected 

animals with the wildtype allele showed one band at 268 bp. PHX2066 appears to be heterozygous for 

R11G10.2(syb2066) because two bands for the wildtype (480 bp) and the mutant allele (366 bp) were amplified 

(Primer9+10+11). For each strain three worms were analyzed. (B, D) Schematic depiction of R11G10.2(syb2066) allele 

in PHX2066. The genomic deletion is 1182 bp of the R11G10.2 CDS. (B)  Primers for PCR on genomic DNA resulting 

in a 1450 bp fragment in wildtype and 268 bp fragment in PHX2066 animals. (D) Primers for duplex PCR on 

genomic DNA resulting in a 480 bp fragment on a wildtype allele (f2+r; Primer9+11) and 366 bp fragment on a 

R11G10.2(syb2066) allele (f1+r; Primer10+11). DNA was loaded onto a 1 % (A) or 3 % (C) agarose gel for separation 

via electrophoresis.  
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3.3.3 Is R11G10.2 involved in the regulation of sulfur metabolism? 

Additionally, a similar regulation of the genes associated to H2S production, as seen after 

Y37A1B.5 RNAi, was found after R11G10.2 RNAi. Cth-1 was upregulated 2.3-fold, cbs-1 was 

downregulated 0.8-fold, cysl-2 and cysl-3 were upregulated 1.4- or 1.2-fold and most of the 

mercaptopyruvate sulfurtransferases were not regulated. With regard to the effect which was 

observed after Y37A1B.5 RNAi, it was unsurprising that the cysteine-based hydrogen sulfide 

production was diminished by around 30 % in the R11G10.2-depleted group (Figure 31, note: 

control lane is identical with control lane in Figure 21A ). As reported for Y37A1B.5, the ferritin 

homologs FTN-1 and FTN-2 were elevated after R11G10.2 RNAi, 1.9-fold and 1.2-fold, 

respectively.  

3.4 Venn analysis of RNASeq data of R11G10.2 and Y37A1B.5 RNAi 

Due to the apparent overlap of enriched pathways in worms depleted of Y37A1B.5 or 

R11G10.2, the genes which were exclusively regulated by either treatment, as well as the 

overlap of both treatments were analyzed using Webgestalt with the purpose of revealing 

functions which might be inherent to SELENBP1 and which might be organism- or tissue-

Figure 30  R11G10.2 regulates metabolic pathways and genes associated with nervous system development 

Differentially expressed genes, obtained by transcriptome analysis of wildtype worms treated with R11G10.2 

siRNA for five days, were enriched for KEGG pathways (A) or biosocial processes (B) using WebGestalt 2019 (Liao 

et al. 2019). The total number of up- or downregulated genes was set to 100 % and the fraction of each gene set was 

calculated proportionally. Total displays the number of genes in each gene set (100 %). 
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specific. Regarding the long-lived and stress-resistant phenotype of each RNAi-treated worm  

strain, it was reassuring that genes which were upregulated by both treatments were 

especially related to “defense response” but also to lipid- and energy metabolism related 

processes (lipid metabolic-, organophosphate metabolic process) (Figure 32). As reported, cth-1 and 

cbs-1 were also regulated in a similar fashion by both Y37A1B.5 and R11G10.2 RNAi. It was 

surprising that genes related to nervous system development were attenuated in both 

treatments, which did not appear before in the enrichment of the Y37A1B.5 RNAi (see 

Figure 20). 

The number of genes which were exclusively regulated by Y37A1B.5 was small (384) 

compared to the complete list of genes regulated by both treatments (4,981). Additionally, few 

of the enriched biological processes could be attributed to epidermal specific functions. 

However, one of Y37A1B.5 exclusive regulated processes was the "Regulation of immune 

system" which could be of interest, since the epidermis is regarded as an organ of innate 

immunity (Taffoni and Pujol 2015).  

Figure 31 The capacity to produce H2S from cysteine is reduced after R11G10.2 RNAi 

(A) H2S production was assessed in a 96-well format using 100 µg of total protein lysate. 96-well plate was covered 

with a lid containing 100 mM lead acetate in agarose and was incubated at 37 °C for 4 h.  Image was taken in a 

Biorad Chemidoc MP imager. Picture shows three technical replicates of one independent experiment of worms 

treated with R11G10.2 or Ctr RNAi. Note: Control lane is identical with control lane in Figure 21A. (B) 

Quantification of three independent experiments as depicted in (A). The volume intensity of each black dot was 

measured using the ImageLab volume tool (Biorad). Data shows mean ± SD. **p<0.001 unpaired t-test with Welch's 

correction, compared to control RNAi.  
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Regarding the exclusively enriched terms of R11G10.2 RNAi, the only process which seemed 

be intuitively attributable to R11G10.2 was the attenuation of genes related to "Nervous system 

development".  

Figure 32 Comparison between genes regulated by Y37A1B.5 RNAi and R11G10.2 RNAi 

(A) Venn diagram of genes regulated by Y37A1B.5 RNAi (II) and R11G10.2 RNAi (III) or regulated by both 

treatments (I). (B) Genes of each category were enriched for biological processes using Webgestalt 2019 (Liao et al. 

2019). The total number of up- or downregulated genes was set to 100 % and the fraction of each gene set was 

calculated proportionally. Total displays the number of genes in each gene set (100 %). 
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4 Discussion 

With the ongoing demographic shift in many developed countries and an ever-growing 

population with increased age (European Commission and Eurostat 2015), more research is 

beginning to focus on the mechanisms of aging and age-related diseases. Aging is one of the 

strongest risk factors of many diseases, including cancer (Smetana et al. 2016). However, to 

cure such age-related diseases, one must first understand the underlying mechanisms. 

SELENBP1 has emerged as a major possible contributor to cancer development (Yang and 

Diamond 2013), which is why this study focused on identifying basic mechanisms of 

SELENBP1 and its involvement in aging in the model Caenorhabditis elegans.  

4.1 Association of SELENBP1 orthologs with aging and redox homeostasis 

This work established the contribution to aging by the two SELENBP1 orthologs Y37A1B.5 

and R11G10.2: Depletion of SELENBP1 orthologs ameliorated the toxic effects of the redox 

cycler paraquat, which was associated with a prolonged lifespan and the improvement of 

other health parameters (Köhnlein 2016; Köhnlein et al. 2020), showing that these orthologs 

somehow contribute to oxidative stress homeostasis. This might be an evolutionarily 

conserved trait, in regard to data showing a contribution of human SELENBP1 in 

inflammation and stress response (Bai et al. 2019). It can be hypothesized that these features 

might be exploited by cancer cells to make them more resistant, which would explain why 

SELENBP1 abundance is so strongly reduced in many types of cancer and why this correlates 

negatively with clinical outcome (Elhodaky et al. 2018). It was therefore important to identify 

mechanisms that might be relevant for the stress resistance phenotype following RNAi of 

Y37A1B.5 and R11G10.2. 

Possible transcriptional regulation of Y37A1B.5 

In this work, the expression of Y37A1B.5 was demonstrated to exponentially decline during 

the aging process of the worms. This raised the question: Is this a mechanism used by aging 

cells to protect themselves against the burden of senescence or might Y37A1B.5 just be 

dispensable in later life? To answer this, future experiments will address this question using a 

system for drug-inducible gene expression of transgenes as developed by Mao et al. or 

Monsalve et al.  (Mao et al. 2018; Monsalve et al. 2019). With this, it is planned to induce 
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Y37A1B.5 expression in all stages of life to see how this will affect overall gene expression, 

lifespan or stress resistance.  

SELENBP1 expression was shown to be heavily affected by DNA methylation (Pohl et al. 

2009). C. elegans was speculated to be devoid of DNA methylation and DNA methyl 

transferases some years ago (Wenzel et al. 2011; Yi 2012). However, some studies have proven 

otherwise, showing adenine N6-methylation (6mA) in dependence of the DNA demethylase 

NMAD-1 and the DNA methyltransferase DAMT-1 (Greer et al. 2015) and also evidence of 5-

methyl-2′-deoxycytidine (5-mdC) and 5-hydroxymethyl-2'-deoxycytidine (5-hmdC) (Hu et al. 

2015). It was shown that 6mA affected fertility and 5-mdC was elevated in response to 

cadmium treatment. Additionally, it was shown that many C. elegans promotors have a high 

density of CpG, as many vertebrates have, which have been established as targets for 

methylation to regulate transcriptional gene expression. Furthermore, C. elegans expresses a 

CpG-binding protein homolog (CFP-1), an epigenetic regulator of DNA methylation, which 

leaves room for the hypothesis that, like in vertebrates, changes in DNA methylation might be 

associated with aging (Bell et al. 2019; Chen et al. 2014). Therefore, like SELENBP1, Y37A1B.5 

might also be susceptible to DNA methylation and the declining levels of Y37A1B.5 during 

the age of the worms might be due to changes in methylation of the Y37A1B.5 promotor. 

The role of Y37A1B.5 in redox homeostasis was examined, analyzing the effect of different 

substances known to induce reactive oxygen species on the abundance of Y37A1B.5. The 

hypothesis behind this was, that reactive oxygen species would trigger a reduction of 

Y37A1B.5, which would lead to an increase of stress resistance. However, the superoxide anion 

producing redox cycler paraquat (Bonneh-Barkay et al. 2005), failed to affect Y37A1B.5 

expression. One hypothesis explaining this, is that Y37A1B.5 may not be responsive to 

superoxide anions. This would explain why Y37A1B.5 RNAi also did not induce the 

expression of the superoxide dismutase system, which is responsible for catalyzing the 

reaction of superoxide to hydrogen peroxide. However, as shown in this work, Y37A1B.5 

levels were attenuated dose dependently by arsenite, which is also known to trigger the 

formation of reactive oxygen species. However, as discussed before, arsenite does also actively 

deplete thiols, especially reduced glutathione (see Results 3.2.5). One mode of action might 

therefore be, that the accumulation of arsenic-glutathione complexes not arsenite itself, trigger 

the reduction of Y37A1B.5 in order to regenerate glutathione levels. This hypothesis is backed 
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up by the trend of elevated GSH elicited by Y37A1B.5 RNAi and by the upregulation of most 

C. elegans glutaredoxins (see Results 3.2.5). The modulation of glutathione would also a 

plausible explanation to why depletion of Y37A1B.5 renders worms more stress resistant to 

oxidative stress, as shown before (Köhnlein et al. 2020). 

Transcription factors affecting Y37A1B.5 expression 

Searching for downstream transcription factors involved in the stress resistant and anti-aging 

phenotype of Y37A1B.5 RNAi, possible candidates were the transcription factors MDT-15 and 

EGL-27. Similarly to what transcriptome analysis of Y37A1B.5 RNAi suggested, MDT-15 was 

shown to be a transcriptional co-regulator and is an important component in the maintenance 

of stress response as well as energy and lipid metabolism (see Introduction 1.6.4). The GATA 

transcription factor EGL-27 is a positive regulator of lifespan (see Introduction 1.6.3). 

Regarding resistance to heat, it was demonstrated that loss of egl-27 negatively affected the 

survival against noxious temperatures (Xu and Kim 2012). 

To test the hypothesis that the expression of Y37A1B.5 target genes responsible for the elevated 

stress resistance might be dependent on MDT-15, a stress resistance assay was performed in 

which the effect of Y37A1B.5 RNAi, as well as mdt-15 RNAi on heat resistance, was analyzed. 

This was not only done to test for the contribution of MDT-15 in the Y37A1B.5 stress resistant 

phenotype, but also to see if depletion of Y37A1B.5 would confer resistance to heat.  Genes 

responsible for resistance to heat are mainly controlled by the heat shock factor HSF-1 

(Vihervaara and Sistonen 2014). An interplay of MDT-15 and HSF-1 was shown to be 

important for the maintenance of C. elegans proteostasis. Furthermore, it was shown that 

depletion of MDT-15 hyperactivated HSF-1 target genes like hsp-16.2 or hsp-4 upon heat stress. 

If this, however, was dependent on HSF 1 remained unclear in that study (Taubert et al. 2008). 

Therefore, it was hypothesized that MDT-15 might be involved in heat shock response.  

The results of the heat-stress assay shown in this work (see Results 3.2.8), mdt-15 RNAi 

strongly reduced the survival of C. elegans in response to noxious temperatures, showing that 

MDT-15 might not be as dispensable to heat-shock response, as concluded by (Taubert et al. 

2008). As demonstrated in this work, Y37A1B.5 RNAi increased the survival of C. elegans to 

heat stress by roughly 30 %, which was completely abolished in a mdt-15 RNAi background. 

It can therefore be concluded that the resistance to heat stress demonstrated for Y37A1B.5 
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RNAi is dependent on MDT-15. Future experiments will show, if MDT-15 is also involved in 

the enhancement of lifespan and resistance to oxidative stress caused by a depletion of 

Y37A1B.5.  

However, some things remained unclear. First, this work showed that mdt-15 RNAi resulted 

in a strong depletion of Y37A1B.5, which, however, was associated with an increase in lifespan 

and stress resistance. Secondly, it was demonstrated in a prior publication, that depletion of 

Y37A1B.5 did not regulate mdt-15, at least not on a transcriptional level (Köhnlein et al. 2020).  

This begs the following questions: I. How does Y37A1B.5 influence MDT-15 to regulate 

lifespan and stress resistance and II. how does the downregulation of Y37A1B.5 by mdt-15 

RNAi match up with the contrasting phenotypes of Y37A1B.5 and mdt-15 RNAi regarding 

stress resistance?  

One attempt to explain the first question, is that Y37A1B.5 might be located in a network of 

genes, which influence each other to regulate lifespan but which are tightly controlled by 

MDT-15 and shut off when MDT-15 is missing. This would answer both questions, since it 

would also explain why Y37A1B.5 RNAi did not affect mdt-15 expression directly. Based to 

this hypothesis, it would also not be surprising, why Y37A1B.5 was not able to ameliorate the 

phenotype caused by mdt-15 RNAi, which was characterized by a deterioration of the intestine 

and the germline, and an accumulation of vacuoles throughout the body in this work and but 

also by Taubert et al. (2006).  

Since it was shown in this work, that a common feature of Y37A1B.5 and R11G10.2 seems to 

be the regulation of lipid metabolic processes and genes associated with defense response, it 

can be speculated whether the lifespan extension and the stress resistance caused by  R11G10.2 

RNAi might also dependent on MDT-15, thus similar approaches as for Y37A1B.5 will be taken 

to investigate their relationship. Furthermore, the regulation of metabolic processes as well the 

regulation of stress response, might be evolutionary conserved features of SELENBP1, since it 

was reported that SELENBP1 is also involved in stress response in humans (see Introduction 

1.5.8) and was positively associated with the accumulation of lipids in adipocytes 

(Steinbrenner et al. 2019). 

Regarding the role of EGL-27 in the resistance to heat, differently from what was expected, 

depletion of egl-27 via RNAi did not modulate the survival to heat-stress. Likewise, a 
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combination of Y37A1B.5 and egl-27 RNAi failed to alter the survival compared to control. In 

regard to the enhancement of heat resistance by Y37A1B.5 RNAi, this could be interpreted, as 

EGL-27 being of relevance for the increased survival of Y37A1B.5 depletion. As to the different 

contributions of EGL-27 to heat shock in this study, compared to what was reported by Xu 

and Kim, there are some possible explanations. First, Xu and Kim used the egl-27 knock out 

mutant egl-27(we3), whereas in this thesis, egl-27 was depleted via RNAi, which likely was not 

as effective as a genetic knockout. Second, looking at the graph in the study of Xu and Kim, 

the egl-27(we3) mutant seemed to slightly diminish survival only ten to twenty hours after the 

heat stimulus. However, at around 40 to 50 hours post heat treatment, which is similar to what 

was used in this work, there seemed to be not much difference in survival compared to 

wildtype worms. Nevertheless, since egl-27 RNAi suppressed the positive effects of Y37A1B.5 

RNAi on heat resistance, it can be proposed that heat resistance elicited by Y37A1B.5 RNAi 

seems to be somehow reliant on EGL-27. This is in accordance with the idea of EGL-27 being 

a factor that delays aging and promotes stress resistance as shown by Xu and Kim. 

4.2 Potential role of SELENBP1 orthologs in selenium homeostasis 

In order to investigate the role of Y37A1B.5 in selenium homeostasis and whether it might 

behave as a selenium-binding protein, experiments were performed in which the abundance 

of Y37A1B.5 were measured in response to a wide range of selenite concentrations. As shown 

in this work, only concentrations which would be regarded as highly toxic, i.e. 100 µM and 

above, trigger the elevation of Y37A1B.5 levels, whereas mildly toxic (1 µM) or hormetic doses 

(0.01 µM) did not alter the abundance of Y37A1B.5. Certain selenium compounds are also 

known to generate reactive oxygen species (Li et al. 2007). However, as demonstrated in this 

work, Y37A1B.5 does not seem to be responsive to reactive oxygen species per se, which is 

why this effect can be attributed to the effect of selenite itself. Further experiments revealed 

that Y37A1B.5 was necessary for survival in the presence of toxic environmental selenium 

because Y37A1B.5 RNAi reduced the survival under such conditions. Therefore, it can be 

proposed that Y37A1B.5 might act as a kind of buffer for selenium which would otherwise 

elicit toxic effects. To answer this question, experiments using recombinantly expressed 

human, mouse and C. elegans SELENBP1 are currently being made to determine whether they 
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are able to bind selenium under physiological circumstances and if they share a common 

binding motif. 

This thesis also described potentially important features of the SELENBP1 protein structure as 

well as of Y37A1B.5 and R11G10.2. Y37A1B.5 seemed to be similar to human SELENBP1, 

sequence wise, but also judging from the position of amino acid residues, which were 

discussed in literature to be important for the function of SELENBP1 and for selenium binding. 

Because the functionally important cysteine residue at position 57 in SELENBP1 as well as one 

of the thioredoxin motifs (CxxC) are present in Y37A1B.5, it can be proposed that these might 

play a role in the protective function of Y37A1B.5 against selenium. Due to the lack of these 

features in R11G10.2, it seems unlikely that this SELENBP1 ortholog would also participate in 

the protection against the toxic effects of selenium. 

4.3 Regulation of sulfur metabolism by the SELENBP1 orthologs 

The volatile signaling molecule hydrogen sulfide has been shown to be involved in the 

regulation of lifespan and the resistance to heat and oxidative. It was reported that loss of 

certain hydrogen sulfide producing enzymes negatively affected lifespan and stress resistance, 

whereas supplementation with the hydrogen sulfide releasing chemical 

(p-methoxyphenyl)morpholino-phosphinodithioic acid (GYY4137) enhanced lifespan and the 

resistance to noxious heat (Miller and Roth 2007; Qabazard et al. 2014). As reported in this 

thesis, one of the enzymes majorly contributing to endogenous hydrogen sulfide production, 

cystathionine-γ-lyase (CTH), was upregulated strongly after RNAi of Y37A1B.5 or R11G10.2. 

Therefore, it was hypothesized that the lifespan extension elicited by RNAi of Y37A1B.5 or 

R11G10.2 might be due to elevated levels of hydrogen sulfide. However, with the lead-acetate-

based method used in this work, the conversion rate of cysteine by cystathionine-γ-lyase and 

cystathionine-β-synthase, the only known enzymes to produce hydrogen sulfide from cysteine, 

was diminished by around 30 % in lysates of Y37A1B.5 or R11G10.2 depleted worms. 

Assuming that Y37A1B.5 and R11G10.2 might share some biochemical properties with 

SELENBP1, this might be explainable by several mechanisms. First, SELENBP1 is an H2S 

producing enzyme itself (see Introduction 1.5.1), thus depletion of a SELENBP1 ortholog 

might already reduce the H2S production. To verify this, efforts are currently being made to 

identify if purified R11G10.2 or Y37A1B.5 exhibit MTO activity. Second, according to Singh et 
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al., the contribution to H2S production via the reaction of cysteine and homocysteine to 

cystathionine is much larger (≈95 %) than the reaction of cysteine to serine, or two cysteines to 

lanthionine (each ≈2,5 %) (Singh et al. 2009). Therefore, a reduction of homocysteine levels after 

RNAi of R11G10.2 or Y37A1B.5 would be a plausible explanation for the unexpected outcome. 

This hypothesis will be addressed by using a combination of cysteine and homocysteine as 

substrates in future analyses.  

Furthermore, iron ions, together with pyridoxal phosphate – the latter was abundantly added 

to the hydrogen sulfide reaction mix used in this work – were reported to catalyze the reaction 

from cysteine to hydrogen sulfide in a non-enzymatic manner  (Yang et al. 2019). Therefore, 

reduced levels of free iron ions would reduce the contribution of this reaction to overall 

hydrogen sulfide production. Ferritins are proteins that assemble to spherical complexes and 

are the most important storage for free iron in pro- and eukaryotes. In C. elegans, FTN-1 and 

FTN-2 are regarded as ferritin orthologs (Arosio et al. 2009). As shown before, the expression 

of FTN-1 and FTN-2 was increased after R11G10.2 or Y37A1B.5 RNAi (see Results 3.2.10, 3.3.3). 

Since iron storages are supposedly bigger but no iron was supplemented, this suggests 

reduced levels of free iron. If levels of free iron were reduced after R11G10.2 or Y37A1B.5 

RNAi, this would also reduce the contribution of the non-enzymatic production of H2S by iron 

and pyridoxal phosphate and would thereby be another possibility explaining the reduced 

hydrogen sulfide production after depletion of R11G10.2 or Y37A1B.5.   

4.4 Role of SELENBP1 orthologs in differentiation and development 

It was demonstrated before that Y37A1B.5 gene expression was found mainly in the epidermis 

and recently, Y37A1B.5 transcriptional reporters have also been used as markers for epidermal 

expression (Kaletsky et al. 2018; Mckay et al. 2003). Using a Y37A1B.5-GFP fusion probe, this 

work demonstrated that Y37A1B.5 protein levels also occur mainly in the epidermis and it 

does not seem to be exported out of the cell.  

Since C. elegans has a constant number of cells once fully developed (Sulston et al. 1983), the 

epidermis does not develop or differentiate any further once worms reach adulthood. 

Therefore, regarding the declining expression of Y37A1B.5 in aging adult worms, it seems 

plausible that Y37A1B.5 may be dispensable after reaching adulthood. To test the hypothesis 

that Y37A1B.5 might instead be important for larval or embryonic development, a Y37A1B.5 
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null mutant (PHX2078) was obtained by Suny Biotech (Fuzhou, China; see Results 3.2.11). Due 

to the involvement of the epidermis in developmental processes (Chisholm and Hsiao 2012) 

and the regulation of pathways associated with development (MAPK, Wtn) by Y37A1B.5, it 

was expected that these worms would show some form of developmental defect. However, as 

presented in this work, PHX2078 did not show any phenotypical difference compared to 

wildtype worms.  

The R11G10.2 null mutant PHX2066 also did not display any morphological deficits. This was 

likewise surprising given the downregulation of genes related to "animal organ-" and "nervous 

system development" by R11G10.2 RNAi as shown by RNASeq (see Figure 30). To reveal if 

R11G10.2 expressing neurons will be altered in their appearance, the R11G10.2 transcriptional 

reporter LOK127 reporter will be crossed with PHX2066. 

4.5 Relevance of neuronal expression of R11G10.2 

Despite its lower homology to SELENBP1, R11G10.2 was also shown to modulate lifespan and 

stress resistance to a similar extent as Y37A1B.5. However, as demonstrated, R11G10.2 was 

only expressed in a set of two head neurons, involved in thermotaxis and heat-shock response 

(AFD) as well as BAG neurons, which are involved in the detection of oxygen and carbon 

dioxide. SELENBP1 on the other hand was hypothesized to be involved in the 

pathophysiology of schizophrenia (see Introduction 1.5.9). Although there is no data verifying 

this, R11G10.2 could, in a more general sense, also be involved in the normal function of AFD 

or BAG neurons in C. elegans, by mechanisms which may hypothetically be similar to 

SELENBP1 in human brain. Therefore, future studies on R11G10.2 might help decipher the 

regulatory mechanisms of SELENBP1 in human brain. Unfortunately, little is known about the 

mechanisms of SELENBP1 in schizophrenia. However, inflammation was hypothesized to 

play a role in the onset of schizophrenia (see Introduction 1.5.9). In this regard, R11G10.2 could 

be involved in similar processes, since its depletion modulated intracellular levels of reduced 

glutathione, which likely contributed to an increase in stress resistance.  

As described before, both sets of neurons were reported to modulate lifespan independent of 

DAF-2/DAF-16 signaling. This is interesting in regard that R11G10.2 RNAi seemed to increase 

lifespan independent of DAF-16, as shown before (Köhnlein 2016). One of the current 

hypothesis is, that depletion of R11G10.2 alters the communication of AFD and BAG with 
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other neurons, which influence genes in other cells or tissues to modulate lifespan. Lifespan 

modulation by BAG neurons was reported to be mediated by the guanylate cyclase GCY-31 

and GCY-33 and was dependent on a functional network with URX neurons (Liu and Cai 

2013).  Lui and Cai also demonstrated a method for genetic ablation of individual neurons 

which will be used in future experiments to target AFD, BAG or other signaling partners to 

identify the network involved in the lifespan regulation. This system works by expressing the 

cell-death activator EGL-1 under the control of a neuron-type specific promotor. To analyze 

the contribution of R11G10.2 on neuronal function, efforts are currently being made to 

establish a thermotaxis assay in which the behavior of the worms in a temperature gradient 

will be observed. Worms with an intact thermotaxis are known to memorize and stay at the 

temperature they were cultured at, while athermotactic animals cannot feel environmental 

temperatures and will spread to different temperature regions (Goodman 2014). Using such 

an assay is hoped to reveal if R11G10.2 participates in thermotaxis via AFD neurons and will 

be used to identify functional interactions with other types of neurons.  
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5 Conclusion 

In this study, the C. elegans orthologs of SELENBP1, Y37A1B.5 and R11G10.2, were shown to 

be expressed in completely different tissues. Whereas Y37A1B.5 was demonstrated to be an 

epidermally expressed protein, R11G10.2 was exclusively found in two types of sensory 

neurons of C. elegans, known to be participate in detecting differences in ambient temperature 

(AFD) and changes in breathing gases (BAG). Despite these major differences in expression 

sites, both genes were shown to modulate similar aspects of worm life. Based on transcriptome 

analyses of worms depleted of either of the transcripts, Y37A1B.5 as well as R11G10.2 are 

suggested to be regulators of energy and lipid metabolism and to regulate genes of sulfur 

metabolism, causing the modulation of endogenous hydrogen sulfide levels. Depletion of 

either ortholog reduced the amount of hydrogen sulfide produced in vitro, to a similar extent. 

Because SELENBP1 itself is a hydrogen sulfide-generating enzyme, the depletion of an 

ortholog might be expected to decrease hydrogen sulfide production. However, whether 

Y37A1B.5 and R11G10.2 are indeed able to produce to hydrogen sulfide, and to which extent 

they modulate hydrogen sulfide metabolism, has still to be evaluated. 

Y37A1B.5 was demonstrated here to be necessary for the protection of C. elegans against toxic 

concentrations of exogenous selenium. Whether this holds true for R11G10.2 has still to be 

evaluated. However, due to the lack of important features expected to be required for selenium 

binding in the modelled three-dimensional structure, this seems unlikely. The protection 

against selenite, however, seemed to have come at a cost. Y37A1B.5 as well as R11G10.2 behave 

as of pro-aging factors, because depletion of either gene increases lifespan and the resistance 

to oxidative stress. In line with this, R11G10.2 was shown to modulate glutathione levels, 

suggesting that this could be a way of affecting both lifespan and stress resistance. The 

elevated stress resistance, resulting from the depletion of Y37A1B.5 or R11G10.2, resembles 

features reported for human SELENBP1, which is known to negatively affect stress resistance 

and inflammation.  
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Two regulators of Y37A1B.5 expression were identified in this work: MDT-15 and EGL-27, 

which are transcriptional regulators of lifespan in C. elegans and are likely to be essential for 

the stress-resistant and long-lived phenotype elicited by knockdown of Y37A1B.5. Due to the 

often similarly demonstrated effects of both orthologs, it is hypothesized that this might hold 

true for R11G10.2 as well. Figure 31 summarizes the findings of this work on the C. elegans 

orthologs of SELENBP1, R11G10.2 and Y37A1B.5. 

 

 

 

 

 

 

Figure 33 Functions of SELENBP1 orthologs in C. elegans 

Y37A1B.5 (green) is expressed in the epidermis. It is a negative regulator of lifespan, protects from selenium and 

affects hydrogen sulfide ( ) production.  It is regulated by MDT-15 and EGL-27, which are necessary for the stress 

resistance of Y37A1B.5-depleted worms. R11G10.2 (orange) is expressed in temperature- and O2 and CO2-sensitive 

neurons. It is a negative regulator of lifespan, regulates glutathione levels ( ) and, like Y37A1B.5, affects 

hydrogen sulfide production. It regulates metabolic processes, potentially together with Y37A1B.5, and, in analogy 

to Y37A1B.5, is hypothesized to protect from selenium. 

Neuron: https://svgsilh.com/image/2022398.html CC0 1.0 

Lock symbol: https://www.svgrepo.com/svg/1896/lock, CC4.0 

Fire symbol: https://www.svgrepo.com/svg/11819/firewall, CC4.0 

https://www.svgrepo.com/svg/1896/lock
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6 Summary 

The selenium-binding protein 1 (SELENBP1) contains selenium probably in the form of 

selenite. SELENBP1 is involved in the regulation of cell proliferation and differentiation, and 

it is downregulated in many types of tumors. Furthermore, SELENBP1 participates in 

inflammatory and redox-related processes is it affects the activity of NFB and of the major 

antioxidant selenoenzyme glutathione peroxidase 1 as well as cellular levels of glutathione. 

To better understand principal functions of SELENBP1 in vivo, the aim of this work was to 

investigate the role and the regulation of two putative SELENBP1 orthologs, Y37A1B.5 and 

R11G10.2, in the model organism C. elegans. Knockdown of these proteins had previously been 

shown to increase lifespan and stress resistance of C. elegans. 

In this thesis, it was demonstrated that Y37A1B.5 responds to redox-active compounds, such 

as arsenite and participates in the regulation of genes involved in cellular defense and sulfur 

metabolism. Two transcription factors, MDT-15 and EGL-27, regulated Y37A1B.5 abundance 

and influenced the stress resistance elicited by treatment with Y37A1B.5 RNAi. Y37A1B.5 

appears to protect C. elegans from high concentrations of selenium, as treatment selenite dose-

dependently increased protein levels of Y37A1B.5 and Y37A1B.5 depletion shortened the 

survival of worms exposed to toxic doses of selenite.  

In contrast to the hypodermal localization of Y37A1B.5, R11G10.2 was found exclusively in 

two head neurons, BAG and AFD, which are involved in the response to O2 and CO2,, in the 

perception of environmental temperatures as well as in lifespan regulation. It was 

demonstrated that depletion of R11G10.2 results in increased levels of reduced glutathione in 

the worms, which could contribute to the observed stress resistance upon treatment with 

R11G10.2 RNAi. The neuronal expression of R11G10.2 might indicate similarities to human 

SELENBP1, which was discussed to be important for normal brain function. 

In summary, this work identified several functions of the two SELENBP1 orthologs in the 

nematode Caenorhabditis elegans, with show similarities to the role of SELENBP1 in humans, 

and it elucidated molecular mechanisms underlying the observed increases in stress resistance 

and lifespan upon knockdown of the orthologs Y37A1B.5 and R11G10.2. 
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7 Zusammenfassung 

Das selenbindende Protein 1 (SELENBP1) enthält Selen vermutlich in Form von Selenit. 

SELENBP1 ist an der Regulation der Zellproliferation und -differenzierung beteiligt und zeigt 

im vielen Tumoren eine exprimierte Expression. Darüber hinaus ist SELENBP1 an 

Entzündungs- und Redox-Prozessen beteiligt: SELENBP1 beeinflusst die Aktivität von NFB, 

die des wichtigsten antioxidativen Selenoenzyms Glutathionperoxidase 1, sowie den 

zellulären Glutathionspiegel. 

Um die Funktion von SELENBP1 in vivo besser zu verstehen, sollte in dieser Arbeit, die Rolle 

und die Regulation der zwei mutmaßlichen SELENBP1-Orthologe, Y37A1B.5 und R11G10.2, 

im Modellorganismus C. elegans untersucht werden. Zuvor konnten wir bereits eine erhöhte 

Lebensdauer und Stressresistenz von C. elegans nach Depletion dieser Proteine belegen. 

In dieser Arbeit wurde gezeigt, dass die Expression von Y37A1B.5 durch redox-aktive 

Substanzen, wie z.B. Arsenit beeinflusst wird und an der Regulation von der zellulären 

Abwehr sowie des Schwefelstoffwechsels beteiligt ist. Zwei Transkriptionsfaktoren, MDT-15 

und EGL-27, regulierten die Expression von Y37A1B.5 und beeinflussten, die durch Y37A1B.5 

RNAi hervorgerufene Stressresistenz. Selenit steigerte dosisabhängig die Proteingehalte von 

Y37A1B.5, während die Depletion von Y37A1B.5 das Überleben von C. elegans gegenüber 

toxischen Konzentrationen von Selenit verkürzte.  

Im Gegensatz zur hypodermalen Lokalisation von Y37A1B.5, wurde R11G10.2 ausschließlich 

in zwei Kopfständigen Neuronen, BAG und AFD, gefunden, die an der Reaktion auf O2 und 

CO2, an der Wahrnehmung von Umgebungstemperaturen sowie an der Regulierung der 

Lebensdauer beteiligt sind. Die neuronale Expression könnte auf Ähnlichkeiten mit dem 

menschlichen SELENBP1 hinweisen, welches als wichtig für die normale Gehirnfunktion 

diskutiert wurde. Nach Depletion von R11G10.2 war die Konzentration des reduzierten 

Glutathions erhöht, was zu der zuvor beobachteten verbesserten Stressresistenz nach 

Behandlung mit R11G10.2 RNAi beitragen könnte. Die neuronale Expression von R11G10.2 

könnte auf Ähnlichkeiten mit dem menschlichen SELENBP1 hinweisen, welches als wichtig 

für die normale Gehirnfunktion diskutiert wurde 

Zusammengefasst wurden in dieser Arbeit Funktionen zweier Orthologe des humanen 

SELENBP1 in der Nematode Caenorhabditis elegans identifiziert, und molekulare Mechanismen 

aufgeklärt, die wahrscheinlich zur erhöhten Stressresistenz und Lebensdauer der Würmer 

nach Depletion der Orthologen Y37A1B.5 und R11G10.2 beitragen. 
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Table 1 Strains: Caenorhabditis elegans  

Name Genotype Description Source 

N2 (Bristol)  Wildtype Bristol N2 Wildtype Caenorhabditis 

Genetics Center 

PHX2066 R11G10.2(syb2066) R11G10.2(phx2066); null SunyBiotech 

PHX2078 Y37A1B.5(syb2078) Y37A1B.5(phx2078); null SunyBiotech 

LOK128 pR11G10.2::R11G10.2::gfp + 

rol-6(su1006) 

Expression of R11G10.2 

fused to GFP 

Klotz lab 

LOK158 pY37A1B.5::Y37A1B.5::gfp 

+ rol-6(su1006) 

Expression of Y37A1B.5 

fused to GFP 

Klotz lab 

LOK182 pklo-2::klo-2::gfp  

+ rol-6(su1006) 

Expression of KLO-2 

fused to GFP 

Klotz lab 

DA1290 gcy-33::GFP + lin-15(+) GFP in BAG neurons Caenorhabditis 

Genetics Center 

PY1322 gcy-8::GFP GFP in AFD neurons Caenorhabditis 

Genetics Center 

Table 2 Strains: Bacteria 

Name Description Source 

OP50 Wildtype Caenorhabditis Genetics 

Center 

L4440 HT115 (DE3) + L4440 vector Ahringer RNAi feeding library 

R11G10.2 RNAi T7 inducible R11G10.2 dsRNA Source Bioscience 

Y37A1B.5 RNAi T7 inducible Y37A1B.5 dsRNA Ahringer RNAi feeding library 

mdt-15 RNAi T7 inducible mdt-15 dsRNA Ahringer RNAi feeding library 

egl-27 RNAi T7 inducible egl-27 dsRNA Ahringer RNAi feeding library 

Table 3 Oligonucleotides for qPCR 

Name Accession # Sequence (5' → 3') 

R11G10.2 NM_073950.4 
Fwd: TGCACATGAATACACTGACCAA 

Rev: GCATTTCATCACTTTGCCAAT 

Y37A1B.5 NM_001268848.2 
Fwd: TTTTAGAATTCATCCTGTTGAGGAG 

Rev: AAGAGCCCATCCACTTACTTTTT 

tba-1 NM_001264283.2 
Fwd: TCAACACTGCCATCGCCGCC 

Rev: TCCAAGCGAGACCAGGCTTCAG 
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Table 4 Oligonucleotides for strain validation 

Name 
Forward/ 

Reverse 
Description Sequence (5' → 3') 

Primer1 Fwd R11G10.2(syb2066) mRNA CATCCTCCAAATATGCTCC 

Primer2 Rev R11G10.2(syb2066) mRNA TACAGTCAGCATTGTGAAG 

Primer3 Fwd Y37A1B.5(syb2078) mRNA CCCAAAAACCAAAATGTCC 

Primer4 Rev Y37A1B.5(syb2078) mRNA CAGATTCTGGATCAATGTTG 

Primer5 Fwd R11G10.2(syb2066) gDNA CGACACGTACTTCTTCATTT 

Primer6 Rev R11G10.2(syb2066) gDNA CAGCATCATAACTCACTTTTAG 

Primer7 Fwd Y37A1B.5(syb2078) gDNA CAAAAACCAAAATGTCCCC 

Primer8 Rev Y37A1B.5(syb2078) gDNA ACCTCCTTCAATTTTTCCA 

Primer9 Fwd R11G10.2(syb2066) duplex ACCTCGACATAATCTGATGAT 

Primer10 Fwd R11G10.2(syb2066) duplex TTCATCCTCCAAATATGCTC 

Primer11 Rev R11G10.2(syb2066) duplex CTTTTACTATCGTATGGCATTG 

Primer12 Fwd Y37A1B.5(syb2078) duplex TCGTCCGCTTAATAATTCAT 

Primer13 Fwd Y37A1B.5(syb2078) duplex TTTCTGAAGCTAAAAATGTTTG 

Primer14 Rev Y37A1B.5(syb2078) duplex ATCTCGTGAGCCAAATAG 

Table 5 Growth media and buffer for C. elegans 

NGM agar  

 17 

3 

2.5 

 

 

1000 

1000 

500 

25 

5 

g/l 

g/l 

g/l 

 

 

µl/l 

µl/l 

µl/l 

ml/l 

ml/l 

Agar-Agar 

NaCl 

Tryptone/Peptone 

 

after sterilization: 

MgSO4 [1 M] 

Cholesterol [5 mg/ml] in EtOH abs. 

CaCl2 [1 M] 

Potassium phosphate buffer [1 M] 

Nystatin [1 g/100 ml] 

NGM agar for RNAi  

  

 

 

1000 

1000 

1000 

 

 

 

µl/l 

µl/l 

µl/l 

like NGM-Agar 

 

additionally, after sterilization: 

Ampicillin 

IPTG [1 M] 

Tetracycline (lifespan starting day 10) 
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Nystatin [1 g/100 ml] 

 50 

46 

2 

2 

1 

ml/100 ml 

ml/100 ml 

ml/100 ml 

ml/100 ml 

g/100 ml 

Ammonium acetate [7,5 M] 

EtOH  

Isopropanol  

H20 (ultra-pure) 

Nystatin ∙ 2 H20 

Potassium phosphate buffer [1 M], pH 6.0 

 108.5 

35.28  

g/l 

g/l 

KH2PO4 

K2HPO4 (anhydrate)  

Magnesium phosphate (MgSO4) [ 1 M] 

 120.3 g/l MgSO4 

Calcium chloride (CaCl2) [1 M] 

 110.9 g/l CaCl2 

Cholesterol [5 mg/ml]  

 0.5 

 

g/100 ml 

 

Cholesterol  

solve in EtOH abs. 

S-Basal buffer 

 5.85 

1 

6 

g/l 

g/l 

g/l 

NaCl 

K2HPO4 (anhydrate) 

KH2PO4 

pH 6.0 with NaOH/KOH 

 

Freezing solution for C. elegans 

 

 

 

 

30 

0.1 

 

ml/100 ml 

ml/100 ml 

S-Basal 

Glycerol (30 %) 

MgSO4 (1 M) 

Bleaching solution 

 1660 

500 

840 

µl 

µl 

µl 

H20 (ultra-pure) 

NaOH [10 M] 

NaOCl (12 %) 

Ampicillin 

 100 mg/ml Ampicillin 

Tetracycline  

 12.5 mg/ml Tetracycline  

Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

 238.3 mg/ml IPTG  
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Table 6 Growth media for bacteria 

dYT medium 

 16 

10 

5 

g/l 

g/l 

g/l 

Tryptone/Peptone 

Bacto yeast extract 

NaCl 

Luria-Broth medium (LB-Lennox) 

 16 g/l LB Broth Base 

Luria-Broth agar (LB-Lennox)  

 16 

8 

g/l 

g/l 

LB Broth Base 

Agar for bacteriology 

Freezing solution for bacteria 

  

40 

 

ml/100 ml 

LB Medium 

Glycerol 

Table 7 Buffer for RNA electrophoresis 

50 x TAE buffer  

 Tris/HCl 

Acetic acid 

EDTA 

 

 2 M 

5.71 % (v/v) 

50 mM 

Solved in dH20 

pH 8.3 

1 x TAE buffer 

 50 x TAE buffer   20 ml in 1 L dH2O 
 

1 x Agarose for gel- electrophoresis 

 Agarose (Invitrogen, 

#15510)  

1% 0.5 g in 50 ml 1xTAE buffer 

 GelRed (GeneON, #S420)  1:50000 

Table 8 cDNA mix for single-worm PCR 

Component End concentration in sample 

Oligo (dT)-primer [ng/µl] 5 

Random primer [ng/µl] 5 

Reaction buffer [x] 1 

dNTP [mM] 0.5 

DNase [U/µl] 1 

RNAse inhibitor [U/µL] 1 

RevertAid reverse transcriptase [U/µl] 20 



Appendix 

 

XXV 

Table 9 PCR program, single worm 

Step Temperature Time Number of cycles 

Initial denaturing 98°C 30 s 1 

Denaturing 98°C 10 s 

30 Annealing 58–60°C 20 s 

Extension 72°C 30 s/kb 

Finale Extension 72°C 2 min 1 

Table 10 qRT-PCR program  

Step Temperature Time Number of cycles 

Initial denaturing 95°C 3 min 1 

Denaturing 95°C 10 sec 

49 Annealing 58 °C 15 sec 

Extension 72°C 15 sec 

Final Extension 72°C 5 min 

1 Denaturing 95°C 10 sec 

Annealing (Gradient) 58 °C 30 sec 

Melting curve 
65°C to 95°C in 

0,1°C steps 
5 sec each 1 

Table 11 HPLC equipment and conditions for GSH measurement 

Equipment (Jasco Labor- u. Datentechnik GmbH, Groß-Umstadt, Germany) 

Pump PU-1580 

Degasser DG-1580-53 

Ternary gradient unit: LG-1580-02 

Autosampler: AS-1555-10 

Fluorescence detector: FP-920 

Software: Chrom Nav 2.1 

Conditions  

Temperature: 6 °C (Autosampler), 25 °C (Column) 

Column: Nucleodur C18 Pyramid, 4 x 250 mm 5 μ, #760202.40 (Macherey-

Nagel) 

Flow: 0.6 mL/min 

Wavelength: Ex. 340 nm / Em. 420 nm 

Eluent A 2 % Acetonitrile/98 % 50 mM Sodium acetate buffer, pH 7.0 

Eluent B 80 % Acetonitrile/20 % 50 mM Sodium acetate buffer, pH 7.0 

Gradient Time/min  Eluent A/%  Eluent B/%  

 0.1 100 0 
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 15 50 50 

 17 50 50 

 18 0 100 

 19 0 100 

 20 100 0 
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