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Zusammenfassung

Im Zuge neuer EU-Direktiven wurde die Verwendung von Cr(VI)-Verbindungen stark
reglementiert. In der Oberflachentechnik wurde daraufhin sechswertiges Chrom durch
sicherere und gleichzeitig effektive Passivierungen auf Cr(I1I)-Basis ersetzt. Der Kor-
rosionsschutz von Cr(VI)-Beschichtungen ohne Warmebehandlung ist im Allgemeinen
besser. In bisher durchgefiithrten Untersuchungen zeigte sich, dass durch Zusatz
von Ubergangsmetallionen der Korrosionsschutz der Cr(III)-Passivierungsschicht
verbessert werden kann. In dieser Arbeit wird der Einfluss der Zusammensetzung
von Cr(III)-Passivierung mit Kobaltanteil auf die Bildung und die Struktur von
Konversionsschichten auf verzinkten Substraten untersucht. Auf den verzinkten Stahl
wurden Modelllosungen mit zwei verschiedenen Komplexbildnern, nédmlich Fluorid
und Oxalat, mit und ohne Kobalt aufgetragen. Rasterelektronenmikroskopie (REM)
und Rasterkraftmikroskopie zeigten Oberflichenmorphologien mit mikrostrukturellen
Defekten. In Anwesenheit von Kobalt wurden die Schichten gleichméfBiger. Die
elementare Zusammensetzung der Schichten wurde mit der Augerelektronenspek-
troskopie (AES) untersucht. Die Mengen an Cr und Co in den Beschichtungen
wurden mithilfe der optischen Plasma-Emissionsspektroskopie (ICP-OES) bestimmt.
Sowohl AES als auch ICP-OES zeigten Co-Gehalte in den Schichten. Mithilfe eines
thermodynamischen Modells wurde die Konzentration von Cr(III)-, Zn(II)- und
Co(II)-Spezies in der Behandlungslosung im pH-Bereich von 0,0 bis 14,0 und auch
der minimale pH-Wert fir die Abscheidung der Metallionen in der entsprechenden
Losung berechnet. Die Ergebnisse der Korrosionstests (Polarisationsmessung und
elektrochemische Impedanzspektroskopie) legen nahe, dass die Bildung einer dichten
Schicht fiir eine gute Korrosionsbestandigkeit entscheidend ist. Auflerdem wurde der
Bildungsmechanismus von Cr(VI) in den Schichten untersucht. Die Anwesenheit

von Cr(VI) wurde mittels Spektrophotometrie nachgewiesen. Die Morphologie und



Zusammenftassung

Struktur der Filme wurden per REM beobachtet. Die Gesamtwassermenge in den
Schichten wurde mittels Karl-Fischer-Titration gemessen. Es zeigte sich, dass die
Morphologie des fluoridhaltigen Films mit einer hohen Dichte an Mikroporen die
Wahrscheinlichkeit eines Wassereinschlusses erhoht. Dies fithrte zu einer Oxida-
tion von Cr(III) zu Cr(VI) durch Sauerstoff in Gegenwart von Wasser bei erhohten

Temperaturen.
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Abstract

Since hexavalent chromium has been recognized as toxic and carcinogenic, its usage
has been restricted. Thereafter, Cr(VI) was substituted by a safer, yet effective,
trivalent chromium-based treatment solution. The addition of transition metal ions
into the Cr(III)-based treatment solution was proposed to improve the corrosion
resistance of the produced passivation film. The present study intends to elucidate
the effect of treatment solution composition on the formation and structure of Cr(I1I)-
based conversion coatings containing cobalt. Model solutions with two different
complexing agents, viz. fluoride and oxalate, with and without cobalt were applied
to the zinc-plated steel. The scanning electron microscopy (SEM) and atomic
force microscopy images revealed a morphology with microstructural defects that
can be improved to a more uniform and adherent structure by adding cobalt to
the passivating bath. The elemental composition of the layer was investigated by
Auger electron spectroscopy (AES). Furthermore, the amounts of Cr and Co in the
coatings were measured with the aid of inductively coupled plasma optical emission
spectroscopy (ICP-OES). AES and ICP-OES both detected cobalt in the layers.
Using a thermodynamic model, the concentration of Cr(III), Zn(II), and Co(II)
species in the pH ranges of 0.0 to 14.0 and the minimum pH for the deposition
of each metal ion species in the relevant treatment solution were calculated. The
results of accelerated corrosion tests (polarization measurement and electrochemical
impedance spectroscopy) suggested that the formation of a dense layer is crucial for
good corrosion resistance of the coating. Furthermore, the formation mechanism of
Cr(VI) in the layers formed in Cr(III)-based treatment solutions containing Co, was
also studied. The presence of Cr(VI) was detected by means of spectrophotometry.
The morphology and structure of the films were observed with SEM. Besides, Karl

Fischer titration was used to measure the total amount of water in the layers. It
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Abstract

was shown that the morphology of the fluoride-containing film with a high density
of micropores increased the probability of water entrapment. This resulted in
the oxidation of Cr(III) to Cr(VI) by oxygen in the presence of water at elevated

temperatures.
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1 Introduction

1.1 Motivation and problem definition

Chromate conversion coating (CCC)s have long been used to enhance the corrosion
protection of zinc-plated steel [1, 2] and aluminium alloys [3, 4]. Based on the process
parameters and composition of the CCC treatment solution, a variety of colours
with a good corrosion protection layer can be achieved [5, 6]. The CCC process is
considered as relatively easy to set up and maintain [7]. Immersion of the base metal
into a chromic acid bath at ambient temperature produces a thin film consisting of a

complex mixture of Cr(III) and Cr(VI) compounds [5].

Chromate has strong oxidation properties. Chromate conversion coatings contain
residual hexavalent chromium that provide a self-healing effect to the defects in
layers [8]. This means that Cr(VI) ions migrate to fill in areas where the coating
is damaged and form a protective layer [9]. Unfortunately, Cr(VI) is dangerous to
the environment, despite presenting superior corrosion protection [10]. Hexavalent
chromium indirectly reacts with human DNA, through a reduction to Cr(V), which
eventually causes DNA damage [11]. Numerous epidemiological studies have reported
a high incidence of lung cancer and other toxicological effects among people exposed

to Cr(VI) by inhalation, ingestion, and skin contact [12].

Due to the fact that hexavalent chromium compounds were recognized as toxic and
carcinogenic [13, 14], the End-of-live-vehicle (ELV) directive allowed a maximum of
2 g Cr(VI) per vehicle after July 2003 [15, 16]. The industrial usage of Trivalent

chromium conversion (TCC) coatings has been put into practice by European
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directives [17-19] since prohibiting hexavalent chromium from being used in surface

finishing industries [20].

Moreover, CCCs fail to maintain corrosion protection after annealing above 60°C. In
contrast, TCC coatings resist high temperatures up to 150°C and yet maintain until

80% of their corrosion protection [21].

Although the TCC layer acts as a barrier, without heat treatment, the corrosion
protection of CCC is generally better [15]. However, studies showed that transition
metal ions such as Co(II), Ni(Il), and Fe(II) incorporated into TCC treatment
solutions induce better corrosion protection [22, 23]. Not only is the corrosion
resistance of the coating improved in the presence of cobalt ions [24-27], but also,
the layer formed in the cobalt-containing treatment solution has the advantage of

better surface appearance [28].

According to some studies [25, 29], cobalt was not detected in the layer formed in the
cobalt-containing TCC treatment solution. Furthermore, it is reported that adding
a cobalt salt to the TCC treatment solution did not affect the microstructure of the
formed layer significantly [24]. Nonetheless, the role of cobalt in the TCC treatment
solution has not been understood yet [24, 29].

Cr(III) octahedral complexes are generally very slow to the exchange of water
molecules with other ligands [30]. The kinetic inertness results from the type of
orbital charge distribution with the electron configuration of 3d3 450, Cr(III) has a
large range of stability and a very slow ligand displacement and substitution reactions,
which allow separation, persistence, and/or isolation of thermodynamically unstable
Cr(III) species [31].

To prepare TCC treatment solutions, apart from a Cr(III) salt and additional
transition metal ions to increase the corrosion resistance, another component to
form a complex with Cr(III), which is kinetically less inert than [Cr(H20)6]3+,
is needed [24]. In a hexavalent chromium conversion process, the Cr(VI) ion acts
as an oxidizing agent, while in the TCC process the role of the oxidation agent
is mainly carried out by nitrate [24]. A very limited number of papers dealt with

complexants in TCC treatment solutions. Overall, fundamental studies of the TCC
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formation mechanism plus the physical and chemical structure of the coating and its
correlation with corrosion protection behaviour of the layer are rarely carried out.
Besides, the composition of the substrate was shown to influence the mechanism of
the film growth [32-34]. Most studies [35—44] investigated proprietary products as
the treatment solution on an aluminium substrate, whereas, zinc substrates have

been rarely studied and yet are very important for the automotive industry.

Due to the toxicity of Cr(VI), the oxidation process of chromium from the trivalent
state to the hexavalent state is a crucial environmental issue. Although the TCC
process is generally recognized as an environmentally preferential alternative, some
studies reported traces of hexavalent chromium in TCC coatings [45-47]. Furthermore,
some investigations suggested that trivalent chromium is oxidized to hexavalent
chromium following corrosion tests in a salt spray chamber [48], despite the apparent
absence of strong oxidizing agents [46]. The generation of Cr(VI) was attributed to
the presence of atmospheric oxygen in the cabinet. Another work [40] reported no
presence of Cr(VI) in trivalent conversion coatings, either as deposited or corroded
(kept in corrosion environment for 24 h), except in the case that hexavalent chromium
was formed as an intermediate or in undetectable amounts. Likewise, another research
[42] also considered the transient formation of Cr(VI) in TCC coatings. Whereby, it
is suggested that the reduction of oxygen at copper-rich intermetallic sites generates
hydrogen peroxide that can oxidize trivalent chromium species. Chromate ions are,
however, mainly in the form of mobile CrO427 and are strong oxidizing agents
under acidic conditions. They eventually diffuse to corroding sites and get reduced
to generate Cr(OH)3. Additionally, some investigations proposed that the presence
of cobalt in the coating promotes the formation of Cr(VI) species in the layer [45,
47].

Due to the fact that the soluble Cr(VI) in a scratched or abraded films forms a new
passivate film with water and zinc [21], hexavalent chromium in the layer provides
self-healing effect, as long as the Cr(VI) content in the film is not dehydrated by
exposure to temperatures above 50 to 60°C for an extended period of time. Hence, it
was suggested that the existence of Cr(VI) species in the cobalt-containing passivation

offers better corrosion protection. Therefore, the oxidation of Cr(III) to Cr(VI) in
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TCC films causes a dispute in the surface finishing industry to consider these coatings

as being compatible with the European directives.

1.2 Research aims and objectives

Despite growing interest in the conversion coatings which meet the health and
environmental requirements of the European directives [17-19], published articles
on Cr(III)-based conversion coating are mostly done on proprietary products. This
work aims at studying the formation and composition of coatings formed in the TCC

treatment model solution on the Zn-plated steel.

The objectives of this work can be summarized as follows;

e To elucidate the role of the chemical composition in TCC treatment solutions
on the Zn-electroplated steel, the following steps will be followed: Initially, the
work concentrates on the physical structure and the chemical composition of
TCC layers formed in model solutions with two different complexing agents,
viz. fluoride and oxalate. Then, to better understand the role of cobalt in
the coating structure, the physical and chemical characterization of the layers

formed in the TCC treatment solution with and without cobalt are compared.

e Furthermore, the influence of the TCC bath composition, i.e. type of complex-
ing agent and the addition of Co, on the corrosion properties of the formed

layer is investigated.

e Some studies outlined the presence of Cr(VI) species in layers formed in
Cr(III)-based treatment solutions, especially the TCC solutions containing
cobalt. Therefore, at the end of this work, investigations are carried out (a) to
detect the presence of hexavalent chromium in conversion coatings prepared
from trivalent chromium solutions with different variables (e.g. composition
and heat treatment) either as-prepared or corroded (after being kept in salt

spray chamber for 24 h); (b) to explain the probable formation mechanism
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of hexavalent chromium-based on influencing factors such as the presence of

cobalt or type of complexing agents inside treatment solutions.

1.3 Structure of the thesis

This thesis is divided into eight chapters. An introduction to the work is presented
in chapter one. After outlining the problems, the research aim and structure of the

work are indicated.

Chapter two reviews the important aspects of TCC coatings. In the beginning, a
short summary is given about the zinc plating process. The corrosion performance
of the conversion coatings based on Cr(III) is compared with that of Cr(VI). The
methods employed to study the coating properties (e.g. composition, morphology, and
corrosion resistance) are discussed. Furthermore, the impact of process parameters
(e.g. pH, temperature, and immersion time), and passivating bath composition
are explained by reviewing published investigations. This chapter is carried out
employing a manual search of 68 peer-reviewed articles. With the aid of published
papers related to the trivalent chromium conversion coating, five main research
questions are answered. In the end, the potential remaining questions about Cr(III)-

based treatment solution to be studied in the future are summarized.

In chapter three, the author set outs the experimental approach and processes; the

sample preparation; and the used methods and devices of this dissertation.

The experimental part of the work encompasses three main areas: (1) morphological
and compositional characterization of TCC layers, (2) evaluating the corrosion
protection properties of TCC coatings, and (3) the feasibility of the hexavalent

chromium formation in TCC films.

Chapter four deals with the physical characteristics of the Zn substrate. The Zn
layer morphology, the substrate of a TCC film, is observed using Scanning electron

microscopy (SEM) and Atomic force microscopy (AFM).
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In chapter five, the structure of TCC layers formed in different treatment solutions on
the Zn-plated surface is studied by Focused ion beam scanning electron microscope
(FIB-SEM) and AFM means. Different immersion times and temperatures are
applied to study the formation of the TCC film. In particular, the influence of Co in
the treatment solution on the formation of the layer is investigated. The chemical
composition of the TCC coating is studied using Auger electron spectroscopy (AES)
and Inductively coupled plasma optical emission spectroscopy (ICP-OES).

The corrosion behaviour of the TCC layers, after deposition and also when samples
are heat-treated, is investigated by salt spray tests, polarization measurements, and

electrochemical impedance spectroscopy analysis, which is presented in chapter six.

Finally, the formation of hexavalent chromium in the TCC layers is studied. The

results are discussed in chapter seven.

A summary and conclusion are given in chapter eight, where the ideas for future

work are suggested.
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2.1 Introduction

Various types of steel as a family of iron-based materials have been put into a
broad variety of applications, including infrastructure, industry, transportation,
construction, consumer goods, etc. [49]. Steel is highly prone to rust in a wide
variety of situations, and over time this phenomenon causes this part to lose efficacy
[50]. This degradation process is called corrosion and is defined as a chemical or
electrochemical reaction between a material and its surrounding environments that
produces a deterioration of the material and its properties [51, 52]. In the neutral
condition, the corrosion of steel occurs as the coupled reaction of anodic oxidation
(dissolution) of iron and cathodic reduction of oxygen [53]. Furthermore, in the

presence of the chemical species the corrosion can be accelerated [53].

Thus, a variety of methods were sought to protect steel against corrosion and give
the part a satisfactory service life, (e.g. paint, hot dip galvanized or aluminized,
electroplated, thermally sprayed, and clad with a more corrosion resistant material).
The type of surface treatment is restricted by size, weight, and handling problems.
Moreover, the type of surface treatment is specified by a further requirement for
wear resistance, thin-film coating, etc. [54]. Furthermore, time and temperature
are also factors that play a role in the selection of a coating. A metallic coating
can protect steel against atmospheric corrosion by means of numerous processes
including; electroplating, electroless plating, immersion into the liquid metal, physical
or chemical vapour deposition, and thermal spraying [55]. Electroplating is defined as
the application of a metal coating or other conducting surface using an electrochemical

process [56]. Throughout this process, the metal to be coated plays the role of the



2 State of Art

cathode in an aqueous electrolyte from which the coating is deposited. Besides,
providing corrosion protection, these coatings can also be decorative. A considerable
diversity of coatings can be implemented by electroplating, such as zinc, cadmium,
chromium, copper, gold, nickel, tin, and silver; as well as alloys, like tin-zinc, zinc-
nickel, brass, bronze, gold alloys, and nickel alloys [57]. In zinc electroplating, a
layer of zinc is electrolytically deposited on a cleaned steel surface using a zinc salt
solution [58]. Zinc has a standard potential that is more negative than that of iron
(Zn/Zn2+ -0.73 V/SHE and Fe/Fe2+ -0.44V/SHE). Thus, it is used for sacrificial
cathodic protection of steel against corrosion [31], especially when protection from
either atmospheric or indoor corrosion is the main goal [59]. Functional components
in the automotive industry are mostly zinc-plated to be protected against corrosion.
The zinc plating process is accomplished using a distinctively different type of plating
bath. The three most common types of commercial zinc baths include cyanide baths,

alkaline non-cyanide baths, and acid chloride baths [31].

2.1.1 Zinc cyanide baths

These types of baths are made of a highly alkaline solution including cyanide ions.
Zinc is present in this bath as complexed to cyanide and/or hydroxyl anions (i.e.
Zn(CN)427, Zn(OH)427, Zn(OH)2(CN)2). In these baths, sodium is usually the
cation. The composition of a bright cyanide zinc bath may vary depending on
cyanide content. These types of baths can be classified into four categories: regular
cyanide zinc bath, mid-cyanide baths, low-cyanide baths, and micro-cyanide baths
[31]. The operating temperature range is 20-40°C, the average current density is 0.6
A dm™? with the cell voltage of 12-25 V for barrel plating; and 2-5 A dm™ with the
cell voltage of 3-6 V for rack plating [31]. The cyanide bath composition is stable,
resulting in a good (macro) throwing power ! and covering power 2. Although these

types of baths are easy to control, the necessity to destruct the extremely toxic

I Throwing power is the ability to deposit a plating of uniform depth on a surface of irregular
shape [60].

2Covering power is the extent to which an electrodeposition electrolyte can cover the entire
surface of an object being plated and to deposit metal on the surfaces of recesses or deep holes.
This term suggests an ability to cover, but not necessarily to build up a uniform coating [61].
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cyanide in waste-water treatment processes convinced many plating companies to

use different types of plating bath [62].

2.1.2 Alkaline non-cyanide baths

These types of baths were developed in an effort to produce a non-toxic cyanide-free
zinc electrolyte. The composition of these baths is mainly zinc, sodium hydroxide,
and proprietary additives. The composition characteristics of alkaline non-cyanide
zinc baths pertain to two different concentration limits, so-called low chemistry (LC)
and high chemistry (HC). Accordingly, for the chosen type of constituent, LC and
HC, the zinc and hydroxide concentrations are increased at the same time. The
operating temperature ranges from 15-45°C, the cathode current density is 2-4 A
dm™? with the cell voltage of 12-18 V for barrel plating, and 0.6 A dm™? with the cell
voltage of 3-6 V for rack plating [31]. These types of baths have a limited range of
optimum operating zinc concentrations and thus are difficult to control. Burning or
pitting, intermittent deposit blistering, zinc anode passivation are the main problems
that need to be dealt with.

2.1.3 Acid chloride baths

Since the 1970s, these types of baths have been used in 50% of all zinc baths for the
rack and barrel plating in most developed nations [31]. A typical acid chloride bath
consists of zinc chloride and organic additives which are mostly proprietary products,
i.e. primary brighteners, and carriers (acting as wetting agents to solubilize the
primary brighteners) [31, 62]. The operating temperature of these baths ranges from
15-55°C, the pH values are 5-6. The cathodic current density is 0.3-1 A dm™ with
the cell voltage of 4-12 V for barrel plating, and 2-5 A dm™, with the cell voltage of
1-5 V for rack plating [31]. Acid baths have very good brightness and levelling ability
(micro-throwing power). They save energy due to the high conductivity of the baths.
In comparison with cyanide or alkaline processes, zinc acid baths have 95-98% higher
current efficiencies that result in hydrogen embrittlement [59]. However, the high

corrosiveness of the acid bath requires special tank materials [62].
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2.2 Conversion coatings

The zinc-plated parts usually require further surface treatments to improve corrosion
resistance. Conversion coatings have been extensively used to enhance corrosion
protection; to activate a surface for a better paint receptivity; and to increase surface
hardness and abrasion resistance of the substrate, to which they are applied [61].
Conversion coatings are based on the adsorption of protective metal oxide into the
existing oxide film, which, however, may include non-metals in some cases [63]. By
removing and replacing the oxide layer of the metallic substrate and via a chemical
or an electrochemical process, conversion coatings supply an insulating barrier of low
solubility to the substrate [31]. This method slows down the corrosion reactions which
might take place on the substrate with the formation of a diffusion-controlled passive
layer [63], or release of corrosion inhibiting species [33]. The inhibiting substances in
the layer may include metal oxides, corrosion products, organic adsorbents, etc. [63].
Chromate- [14], phosphate- [64], and oxalate- [65] conversion coatings are typical

candidates.

CCCs have been widely produced on various metals and their alloys since World
War II; notably, on aluminium [66-69], and zinc [6, 61] substrates. These coatings are
achieved by immersing the metal component (e.g. Zn-plated steel, Zn, Mg, and Al)
into a chromic acid bath and via chemical/electrochemical reactions (Reaction 2.1).
Consequently, a passivation film consisting of a complex mixture of the substrate
metal (e.g. Zn or Al), Cr(III) and Cr(VI) oxides and hydroxides is formed at the

metal surface [5].

2HCrO4™ +14H" + (6/n)M — 2Cr*T + (6/n)M" +8H2 O (2.1)
(M can be Mg, Zn: n=2, Al: n=3) [9]

Despite excellent corrosion protection, chromate compounds were recognized as
restricted items due to being toxic and carcinogenic by the ELV [17], Removal of
hazardous substances (RoHS) [18], and Waste electrical and electronic equipment
(WEEE) [19]. The U.S. department of Occupational safety and health administration

10
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(OSHA) has also issued a compliance directive for occupational exposure to Cr(VI)
[70].

Thereafter, because of environmental legislation, much interest has been dedicated
to the development of the formulation and application of alternative conversion
coatings. Amongst suggested substitute treatment solutions that were investigated,
the TCC has been considered a suitable candidate to date. The TCC coatings
were first introduced in 1951 [71]; however, their industrial usage has been put into
practice, since hexavalent chromium was restricted from being used in the surface
finishing industries [17-20]. Since then, there have been many papers published on
TCC coatings on different substrates. The following summary intends to review the
published results on the corrosion properties, formulation, and properties of the TCC

coatings that were applied to the Zn and Al substrates.

2.3 Method of literature review

With the aid of five specific research questions, this section was aimed at searching
exhaustively and comprehensively on the literature focused on the TCC coatings.
This section sought to systematically search for identifying major works on the
characterization, formulation, and development of Cr(III)-based passivating bath;

moreover, to identify gaps, issues, and opportunities for further study and research.

2.4 Research questions

The research questions addressed by this study are:

RQ1: To what extent can the corrosion protection of the conversion coating produced
in Cr(III)-based bath be compared with that of Cr(VI)?

RQ2: How do substrates affect the TCC coating formation?

RQ3: What is a TCC treatment solution composed of?

11
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RQ4: How do the process parameters of a TCC treatment solution influence the

formation of the coating?

RQ5: Which analytical methods have been used to investigate the layers?

2.5 Search process of literature review

To establish a time span, with respect to the ELV directive [17], the starting point
was established in the year 2000. This work mostly focuses on the published research
papers; patents and proceedings were barely included, since these reports cannot

fully answer most of the above-mentioned questions.

2.6 Discussion

In this section, the answers to the research questions are discussed.

RQ1: To what extent can the corrosion protection of the conversion coat-
ing produced in a Cr(Ill)-based bath be compared with that of
Cr(VI)?

As mention earlier, CCCs are formed on different kinds of metals and are not thicker
than a few microns [72]. The CCC process involves chemical or electrochemical
reactions with mixtures of chromic acid and certain other compounds [5]. The
thickness of CCCs varies depending on the chemistry and process parameters of the

treatment solution.

CCCs promote good adhesion between the metallic substrate and the post-treatment,
such as sealing or painting, and also protect defects and cut edges of the metal to
some extent [6, 72]. When corrosion occurs at the surface of a chromated part,
soluble Cr(VI) species in the layer migrate toward the defective structures (scratched
or abraded), and reduce to protective a3t compounds (Cr(OH)3). Gharbi et al.
[73] defined the self-healing effect as the process in which the chromate ion (CrO427)

leaches into the electrolyte, so-called “active sites”, and a protective chromium oxide

12
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(Cr203) film is produced through a cathodic reduction reaction (coupled to anodic
metal dissolution). Consequently, a new passivating film (red layer in Figure 2.1)
which aids in the protection of defects is generated that diminishes the corrosion
propagation [21, 27]. This outcome, which has been seen in CCCs, is known as the
self-healing effect [6, 13, 72].

I
Cro, Cro, c 7 Cro, Cr0, \hl Sl

Metal Substrate Metal Substrate

(a) (b)

Figure 2.1 Schematic illustrations of the corrosion inhibition associated with Cr(VI)
compounds in a CCC (a) when morphological defects (e.g. scratches) occur,
(b) when the self-healing properties occur and the barrier film forms, red
colour indicate a thin barrier layer, and yellow colour shows the undamaged
part of the layer

However, the reduction process of Cr(VI) to Cr(III) causes the dehydration (Re-
action 2.2) of the TCC layer which makes the Cr(VI) species immobile [74] and/or
insoluble [75]. That is why the supply of 0t species decreases with time and

consequently, the self-healing effect is restrained [27].

Cro07%" (aq)+14HT +6e~ == 2Cr* " (aq) + 7H20(]) E°= +1.33V (2.2)

Electrochemical impedance spectroscopy (EIS) was used by Grasso et al. to
compare the corrosion protection of a CCC and a TCC coating [76]. It was found
that the CCC had a better corrosion resistance in chloride solution for short immersion
periods, while the TCC coating was more persistent for longer exposure times. This
was attributed to the fact that the remaining soluble 0t species which might have

3+

been reduced to Cr®" compounds were gradually decreased, and consequently, the

self-healing effect of CCC was terminated.

The CCC is a gelatinous film composed of hydrated compounds. This layer

stabilizes and becomes hydrophobic when exposed to temperatures less than 60°C [21,

13
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77]. However, after heat treatment or prolonged exposure to elevated temperatures,
Cr9 jons in the layer are reduced to Cr3 jons due to the total dehydration [21,

77, 78] (Reaction 2.2 and 2.3).

20r04%" (aq)+ 10H +6e~ = 2Cr(OH)3| +2H20(1) (2.3)

Figure 2.2 shows SEM images at 10,000 times magnification. This figure clearly
indicates the effect of heat treatment on the TCC and the CCC coatings. The micro-
cracked structure in the CCC became wider after heating at 150°C. As Figure 2.2
shows, the heat treatment (so-called thermal shock in this paper) causes widening and
deepening of the cracks and fissures in CCCs and results in early corrosion initiation
and propagation of the zinc substrate [15]. Therefore, self-healing properties function
as long as water and soluble Cr0t jons are present in the layer. In comparison with
CCCs which fail to maintain corrosion protection after annealing, TCC coatings resist
high temperatures up to 200°C or more for a prolonged period and still maintain up

to 70% of their original protective properties [15, 78].

A study also confirms that the TCC coatings perform well despite not exhibiting
self-healing properties [78]. The reason is that the films produced in TCC solutions
show more homogenous, much less and smaller cracks. Stable Cr(III) compounds in
the layer keep the structure relatively intact even after heat treatment [78]. The TCC
layers also act as a barrier [15]. Studies [22, 23] show that adding transition metal
ions such as Co(II), Ni(II), and Fe(II) into the treatment solution can improve the
corrosion protection of the TCC coatings. It was shown that applying an adequate
sealant to the TCC coatings enhanced the corrosion resistance up to the point which
was higher than that of unsealed CCCs [25, 80]. A combination of a TCC coating
plus a suitable sealant composition results in a more durable resistant film, due to
the formation of a thicker protecting barrier layer with corrosion-inhibiting effect.
The sealing treatment may contain phosphate, silicon, silanes, silicate, and transition
metals in an organic or inorganic matrix, which is applied to TCC coatings at room or
elevated temperatures [15, 80]. In a study [81], five commercial treatment solutions,
containing Cr(VI) and its substitutes, including and excluding Cr(III), were applied

to zinc-plated steel substrates, and their corrosion behaviour was studied using
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(1) Hexavalent before (3) Trivalent before
thermal shock thermal shock

(2) Hexavalent after (4) Trivalent after
thermal shock thermal shock

g

Figure 2.2 SEM images (magnification X10000) of CCC and TCC coatings before and
after heat treatment (for 1 hour at 150°C) (1) The CCC with micro-cracked
structure, (2) The CCC after heat treatment, it shows that the cracks present
in the CCC layer became wider after heat treatment, (3) The TCC coating
with less micro-cracked structure compared with CCC, (4) The TCC coating
after heat treatment, it is obvious that the TCC coating structure did not
change significantly after heat treatment [79]
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accelerated corrosion tests (Neutral salt spray (NSS) and humid chamber test) along
with electrochemical measurements (cathodic polarization curves and EIS analysis).
It was concluded that the Cr(III)-based treatment solution was the best alternative
to Cr(VI).

EIS and polarization measurements of the samples treated with a solution contain-
ing Cr3 T and Co2t showed a higher corrosion resistance compared to the samples
treated with a Cr%F solution [27]. The results were attributed to the stability of
Cr203 and the inhibitive action of the CozjL ions, besides the barrier structure that
slows down the oxygen transport to the zinc layer. It was suggested that the TCC
coatings with a more uniform structure presented a lower corrosion rate and may

still support applications in a wide variety of applications [82].

Using an artificial scratch technique, Guo et al. [38] studied active corrosion
inhibition® of an Al alloy (AA2024-T3) by TCC coatings. To assess the self-healing
properties of the TCC coating, a cell containing a corrosive electrolyte was assembled
with two parallel Al alloy (AA2024-T3) specimens (one TCC-treated and the other
untreated) separated by an O-ring. Even though the TCC-treated and untreated
samples were not in contact, Cr species were found on the adjoining untreated
specimen. This dissolution and transport of Cr were ascribed to the transient
formation of Cr(VI). Furthermore, the polarization resistance of the untreated
surface adjacent to the TCC-treated was twice the untreated control sample. This
implies that the TCC film supplies active corrosion inhibition to a neighbouring
untreated surface. Furthermore, EIS analysis of the artificial scratch cell indicated
an excellent corrosion protection for the TCC treated sample due to the barrier

protection provided by the dense Zr/Cr oxide structure.

With the aid of polarization measurements carried out in 0.5 mol/L. Na2SO4, the
corrosion resistance of an Al alloy surface was compared with its surface when it was
passivated in a TCC treatment solution. The results showed that both the anodic
and cathodic currents were considerably decreased for the TCC treated specimens
[41].

3 Active corrosion inhibition is the ability of a material to reduce or avoid corrosion by means of
manipulation of the corrosion process [83].
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It was suggested that TCC coatings protect the substrate as a barrier rather than
an inhibitive layer [22, 38, 46]. A variety of colours can be achieved by TCC coatings;
these layers are able to endure heat treatment and the passivating electrolyte is

simple to waste-water treatment [21].

RQ2: How do the substrates affect the TCC coating formation?

Metallic substrates, such as Al and Zn, are chemically reactive and form a hydrox-
ide/oxide layer when exposed to water or air. These layers have a detrimental effect
on the stability, adhesion, and uniformity of the further coating formation. Applying
the treatment solution to a metallic substrate, without any surface pretreatment, with
the aim of corrosion protection is not enough. An ideal coating needs to be uniform,
well adhering, and pore-free to be able to provide adequate corrosion protection.
Surface preparation has a crucial impact on the surface microstructure and thus on

the formation of a coherent protective layer [84, 85].

With the aid of SEM images and EIS measurements, Defloriana et al. [86] studied
TCC coatings applied to hot-dip galvanised coatings and electro-deposited zinc
alloy coatings. When the deposition of the TCC layer on the above-mentioned
substrates was compared, it was discovered that the films that were produced
on the electrodeposited zinc layers (pure Zn and ZnFe alloy) were more uniform.
Consequently, these films showed better corrosion protection and barrier properties.
This was attributed to the fact that the surface of the zinc coating obtained by hot
dipping was more oxidized and was less convenient for the pretreatment deposition.
This resulted in the insufficient surface preparation of the studied hot-dip samples.
Additionally, the TCC coatings applied to the electro-deposited pure Zn and ZnFe
alloys were also studied. Even though SEM images showed the same film coverage
for both types of substrates, Energy-dispersive X-ray spectroscopy (EDXS) found a
lower amount of Cr on the ZnFe surface compared to that on the pure Zn surface. A
loss of adhesion was observed for the TCC layer formed on the ZnFe substrate; while
the TCC layer produced on the pure electro-deposited Zn showed higher stability.
This was ascribed to a rather homogeneous surface of the pure Zn in comparison to
the ZnFe alloys.
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It was reported that a rough surface decreases the probability of a TCC coating
to conformally form across the surface [87]. Therefore, the physical structure of the
substrate onto which the coating is deposited determines how uniformly the coating

precipitates.

In the conversion coating process, the metal substrate provides ions that become
part of the protective coating after (electro-) chemical reactions of the substrate with
a reactive medium [84]. To improve the adhesion and uniformity of the conversion
coating, the substrate must be chemically activated. As a result, the oxide layer
formed on the surface is removed and dissolved metal ions are incorporated into the
conversion layer and at the interfacial surface. Therefore, the surface chemistry and
the substrate pre-treatment influence the mechanism of conversion coating deposition
[33]. A typical coating formation process involves cleaning, rinsing, deposition,
rinsing, and drying [85]. The cleaning process may include mechanical and chemical
treatment [33], provide a uniform grease-free surface [84], improve wetting [85],
and adherence [84, 88]. Mechanical pretreatment might include grinding and/or
polishing, abrasive finishing followed by rinsing with ethanol or acetone to remove
impurities such as oxides or dirt from the parts. The pretreatment solutions may
contain alkaline degreasing or etching, alone or combined with acid desmutting or
deoxidation, and acid cleaning or activation [33]. Deionized (DI) water might also
be used for rinsing. Proper surface cleaning influences the hydrophobic/hydrophilic
properties of the surface as well as its corrosion protection [81]. Aluminium (Al
alloys), iron (steel) and zinc (galvanized steel) are among the most investigated
substrates for CCC [89].

TCC coatings were applied to aluminium [35-44, 90, 91], and zinc-plated steel
[78, 85] substrates. Surface pretreatment may vary according to the substrate used.
In some cases, cleaning treatment solutions are industrial products [41, 87], and
sometimes they are diluted acid solutions. Prior to applying the TCC process, the
aluminium substrates were electropolished [91, 92]. Qi et al. [35] reported the surface
treatment for Al surface prior to the Cr(I1I)-based passivating as follows; I) cleaning
by acetone, ethanol and DI water, (IT) electropolishing in the mixture electrolyte of
perchloric acid and ethanol (1/4 volume) at 20 V for 4min below 10°C, (III) cleaning

by ethanol and DI water and drying in cool air, (IV) a consecutive HF etching in a
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mixture of 1.5 mL HF, 10 mL H2SO4 and 90 mL H20 for 30 seconds to generate the
network of metal ridges, (V) cleaning by DI water and drying in a cool air stream.
Table 2.1 lists some examples of pretreatment on different substrates, before applying
the TCC process.

Table 2.1 Examples of pretreatment processes applied to the different substrates, before
applying the TCC coating

Substrate Pretreatment Ref.
Degreased in a sodium silicate-based
Steel alkaline solution at room temperature, [27]

with a current density of 4 A dm™ for 3min
Electropolished for 240s in a
20 vol% perchloric acid (60 wt%)
and 80 vol% ethanol mixture below 10 °C,
Aluminum (99.99%) using a potential of 20 V applied between the [39]
specimen and an aluminum counter electrode,
followed by rinsing in DI water and drying in
a stream of cool air.
Polished with 2000 grit silicon carbide paper,
degreased with acetone, cleaned (ultrasonically)
Zinc plate in ethanol for 3min, rinsed in distilled water, [35]
activated for 2s in 3 wt% nitric acid and rinsed
in distilled water.

To study the influence of substrate structure and composition on the formation
of TCC coatings, Wanotayan et al. [93] applied a TCC solution onto the zinc-
electroplated steel produced from Zn baths with three different organic additives.
The alkaline non-cyanide zincate (Zn(OH)427) bath consisted essentially of 10 g/L of
Zn and 120 g/L of NaOH with 1 mL/L of the selective additives. The additives used
included imidazole and epichlorohydrin for the first bath, a polyquaternary amine
salt for the second one, and polyethylenimine for the last. X-ray diffraction (XRD)
was used to study the structure of the Zn layer. The corrosion protection of the
TCC coated zinc-electroplated steel was analysed with EIS, and the structure of
the layer was observed by SEM. Results indicated that the organic additives in the
Zn bath have a large effect on the structure of the Zn layer and subsequently the
formation of the TCC film. The Zn bath with polyethylenimine produced a better
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corrosion protection with the TCC layer, amongst the studied organic additives in
the polyamine group. This was attributed to the produced Zn layer structure with
these additives, which favoured the formation of a TCC film with a higher chromium

content in comparison with the others.

For the case of Al alloys, it was suggested that the TCC film does not cover over
all the Cu-rich intermetallic areas [41]. This was ascribed to the high potential
difference at Al-Cu in the Al alloy (AA204-T3), which hindered the film deposition

at the cathodic sites.

In another research that was mainly done to study the corrosion protection of a
TCC coating on an Al alloy substrate in atmospheric sulphuric acid, it was explained
that the corrosion of the Al alloy surface initiated at (intermetallic) sites where the

TCC coating or the native oxide did not cover (passivated) the surface [94].

RQ3: What is a TCC treatment solution composed of?

Bath formulation: TCC treatment solutions have been commercially available
since the early 2000s [95]. The main components of these types of treatment so-
lutions are Cr(III) compounds and oxidizing agent(s) [35, 52]. In the presence of
a primary oxidizing agent, such as dissolved oxygen, the surface can oxidize to its
higher oxidation state cations, generating hydroxides [52]. Consequently, the existing
Cr(III) ions are enabled to react with produced hydroxides to form a protective
conversion coating consisting of mixed oxides/hydroxides with the substrate ions and
Cr(I1I), i.e. Al203 (or ZnO)/Cr203 and/or AI(OH)3 (or (Zn(OH)2)/Cr(OH)3 [52].
In CCCs, Cr(VI) ions act as an oxidizing agent (Reactions 2.4 and 2.5 [96]), while
Cr(I1I) ions do not have this ability in a TCC treatment solution (Reaction 2.6 [96]).

HCrO4~ +7H" +3e~ = Cr*T +4H20(1) E°= +1.38V  (24)

Cro07%" +14H" +6e~ = 2Cr*" + 7TH20(1) E° = +1.36V (2.5)
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Cr¥T 43¢ — Cr E° = —0.74V (2.6)

Therefore, a TCC treatment solution demands an oxidant. The role of the oxidising
agent can be carried out by nitrate, persulfate, hydrogen peroxide, etc. [35]. The
chemical composition of a TCC treatment solution might vary depending on the
substrate used. Hydrogen peroxide (H202) is an oxidizing agent which is commonly

used for aluminium substrates [95]; while for zinc substrates, nitrate is used [24].

To prepare Cr(III)-based passivation solutions, apart from a Cr(III) salt and
additional transition metal ions, another component is needed to form a complex
with Cr(III), which is kinetically less inert than [Cr(HQO)6]3+ [24]. The commercial
version of the earliest TCC passivates was based on urea nitrate; a later version
was a mixture of sulfamic acid and sodium nitrate to form nitric acid in situ [47].
Cr(III)- nitrate or sulfate are among the most common Cr(III) salts which are used.
Moreover, the incorporation of transition metal or rare earth metal ions (e.g. Al, Ni,
Fe, Co, Ti, Zr, and Mo) in the form of soluble salts into the TCC treatment solution

boosts the corrosion resistance of the layer [22-24, 38].

Cr(III), with the electron configuration of 3d® 4s°, has a large range of stability,
the trivalent chromium ion has very slow reaction kinetics with regard to ligand
exchange reactions [97]. Cr(III) octahedral complexes are generally inert to the
exchange of water molecules with other ligands. However, even a small distortion
from the six-coordinate geometry by adding a compound which forms a kinetically
less inert complex with a Cr3t ion than [Cr(HQO)6]3+ , results in orbital splitting
and a more labile (less stable) metal-ligand bond. Principally, adding complexant
increases the stability of the Cr(III) in the bath over a wider pH range. It was
reported that a film formed by a treatment solution containing Cr37 ions in the form
of [Cr(H20)6]3+ was rather thick and porous with large micro-cracks. However,
when Cr3T ions were complexed with a dicarboxylic acid, the dissolution of zinc
substrate as well as Cr(III) deposition on the surface was decreased, and a thinner
TCC film with a smooth surface and a superior appearance and a better corrosion

protection was formed [24]. The first generation of TCC treatment solutions was
based on stable Cr(III) complexes. They produced a relatively thin film (20 to 30
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nm) with limited corrosion protection. The second generation of TCC treatment
solutions was elaborated to provide a thicker layer. Through this, the formed film
thickness was increased up to 300-350 nm by means of adding accelerators, modified
complexing agents, a higher concentration of compositions, and a higher operating
temperature of the passivating bath [15]. The third generation of TCC treatment
solutions relied on the incorporation of the protective Cr(III) oxides (probably also
hydroxides), inhibiting agents, such as silicon oxide (Si02), used in the form of
nano-sized particles. Auger depth profiling analysis detected Si both at the surface
and throughout the coating. It was suggested that the SiO2 particles were strongly
bound into the conversion layer [98]. The fourth generation of the TCC treatment
solutions is a combination of transition metals and nano-sized particles (as inhibiting
agents) [99].

Moreover, the Cr(III) aquo complex has three electrons in the t2g orbital of
the d-shell, resulting in substantial Ligand field stabilization energy (LFSE), thus
undergoing ligand substitution reactions more slowly [100]. As was mentioned earlier,
Cr37T jons in a Cr(III)-based passivating bath should form a kinetically less inert
complex than [Cr(HQO)6]3+. Because Cr(III) ligand exchange is slow, to prepare
the treatment solution after mixing the components, the prepared electrolyte is
heated and stirred for 2 h at 70 £ 2°C [101]. Afterwards it is cooled and stored
at room temperature before the beginning of the conversion coating [101], or only

cooled to the processing temperature.

Additional materials can also be used to boost the quality of conversion coating,
e.g. surfactants increase the wetting of zinc substrate and produce a more uniform
film [102].

The composition of a TCC treatment solution, the operating pH and temperature
of the bath, and immersion time influence the structure, thickness, and colour of the
film. The treatment solution must be sufficiently acidic to maintain the metal cations
and enable them to deposit as the conversion coating. The pH of the treatment
solution can be varied depending on the solution constituents. For the TCC processes,
the pH level of the treatment solution varies typically from 1.5-5.0, the temperature
range is 40-60°C and the processing time is 15-100s [24, 102]. However, for aluminium

substrates, the immersion time usually is longer (e.g. 15-20min) [42, 43].
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A typical TCC process on a zinc-plated steel has the following sequences; zinc or
zinc alloy plating, rinse, activate (diluted acid), immersing in the TCC treatment
solution, drag-out rinse, rinse (counter-current flow), dry, seal and/or topcoat, and
dry [15]. Prior to applying the TCC coating, the samples are activated by immersion
in a 0.25 - 0.5% HNO3 solution (pH 1) for 10s and then rinsed in DI water, which
should not exceed 40°C [82, 103-106]. The bath pH of these solutions is around
1.6-2.2 [28] and is usually adjusted with dilute nitric acid (HNO3) [107] or diluted
hydrochloric acid (HCL) [27]. Conversion coatings can be formed by simple immersion
into the passivating bath [33]. Drying is usually done in an oven at 80-90°C for
15min [105].

Bath formulation for a zinc surface: Sarli et al. [27] described a commercial

TCC treatment solution applied to the zinc surface consisted of chromium nitrate,
iron and cobalt nitrate, and organic acid. The pH was 1.8, temperature 60°C, and
60s immersion time. After the passivation, the samples were dried in an oven at 80°C
for 15min. Wen et al. [106] prepared three treatment solutions with different anions
for zinc-plated steel using Cr(I1I)-sulfate, -nitrate, and -chloride; the concentration
ratio of Cr(III) to each anion was set to be 1/3. The solution was adjusted at a pH
of 2 and applied at 60°C.

Bath formulation for an aluminium surface: One of the first formulations of
the TCC treatment solution applied to the Al surface introduced in 1994 at US

naval air systems command (NAVAIR), Patuxent River, Maryland, revealing 96

hours corrosion resistance of this conversion coating in 5 wt% NaCl salt spray test
[108, 109]. TCC coating of NAVAIR was accepted by the European directives and
Occupational safety and health administration (OSHA) and was licensed to many
manufacturers, including Henkel Surface Technologies; SurTec International GmbH;
Luster-On Products Inc.; Metalast International [110]; and Chemeon [94].

The NAVAIR group of baths contained Cr03, Na2SO4, and Na2SiFg and was
prepared one week before usage [108, 111]. A typical TCC treatment solution for the
aluminium substrate contains hexafluorozirconate (H2ZrFg or K2ZrFg), trivalent
chrome oxides (Cr203 or Cr(OH)3), chromium sulfate (Cr2(5S04)3), and a fluoride
(NaF) or fluoroborate (BF4 ) salt. The bath has a pH in the range of 3.8-4.0 and
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is adjusted with hydrofluoric (HF) or sulfuric acid (H2SO4) or sodium hydroxide
(NaOH) [36, 40, 42, 112, 113].

Munson et al. [43], using ICP-OES analysis, determined the elemental composition
of three TCC treatment solutions applied to the Al substrate, namely SurTec 650
E, V, C (Figure 2.3). The main chemical composition of all was Cr, S, Zr, and Fe.
As can be seen from Figure 2.3, the Cr amount was quite the same for all three
treatment solutions (~ 150 ppm). The nominal Zr concentration in all three baths
was higher than the Cr concentration, and the Zr/Cr ratio was approximately 2:1 for
all the three coating variants. SurTec 650 E is the first generation of the treatment
solution based on the original NAVAIR formulation with Zr(IV) and Cr(III) salts.
SurTec 650 V belongs to the second generation with the same general composition
as 650 E with some added complexing agents. Different complexing agents were used
in 650 C. SurTec 650 V, and C also contained Zn. SurTec 650 V had the highest S,
Zn, and Zr amount in comparison to the others; while its Fe content was the lowest.
SurTec 650 C, with 0.2 ppm difference, had the highest amount of Fe in comparison
to the others, and while its Zr content was comparable to that of 650 V, its Zn and
S content was around 100 ppm less than 650 V; however, in both cases higher than
650 E.

The TCC treatment solutions used for Al and Al alloys are Zr- and/or Ti-based
[33]. It was shown that a coating formed of zirconium oxide alone has poor corrosion
protection; however, adding small amounts of Cr(IIl) to its treatment solution
enhanced its corrosion resistance [110]. Therefore, when the Cr content of the
treatment solution which is used for the Al and Al alloys is compared with the one
which is used for the Zn and Zn alloys, it can be seen that the amount of Cr is higher

for Zn and Zn alloys.

Treatment solutions may also contain organic and inorganic additives. The organic
ones are primarily added to improve adhesion to the underlying substrate, and to
build an adequate base for the successive organic layers. Inorganic additives (e.g.
copper, manganese, phosphate, etc.) are used with the aim of increasing the kinetics
of the coating formation and enhancing the coating homogeneity [33]. One study [114]

suggested that only when the treatment solution contained a suitable combination of
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Concentration (ppm)
Fe Concentration (ppm)

Cr S

Zn Zr Fe
Element
Figure 2.3 Elemental analysis of the TCC treatment solutions of SurTec 650 E (red),
650 V (blue), and 650 C (green) coating baths as determined by ICP-OES

analysis. Data are presented as mean + SEM (Standard Error of the Mean)
for n > 3 [43]
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inorganic and organic substances were the morphology, homogeneity and corrosion

protection of the coating satisfactory.

Unfortunately, selecting the correct composition of a TCC treatment solution does
not guarantee a successful TCC process. An accomplished TCC coating for a selected
substrate is a combination of choosing the right constituent for the treatment solution

and selecting the suitable processing parameters.

A summary of the various TCC treatment solutions which have been described in
literature is given in Table 2.2, together with their processing parameters and the
substrate used. As can be seen most of the studies were done using proprietary prod-
ucts. Therefore, investigation using model TCC solutions promotes a fundamental

understanding of the physical and chemical properties of these coatings [103].

RQ4: How do the processing parameters of a TCC treatment solution

influence the formation of the coating?

The protective properties of a conversion coating are influenced strongly by the
treatment solution composition; the bath pH and temperature; and the processing
period. The film thickness is usually affected by the bath composition (e.g. chromium
content) and immersion time; the reaction kinetics of the process is influenced by

temperature and pH [5].

Treatment solution’s pH: The pH of the passivation bath highly influences the

uniformity of the formed film during the conversion coating process [33]. Because the
pH of the solution affects the potential difference between the anodic and cathodic
reactions which eventually influences the deposition rate. As can be seen from Table
2.2, the pH values of the processes vary depending on the substrate. A TCC solution
is applicable for the aluminium substrate within a pH range of 3.8 to 4.0, while in
the case of Zn, the bath is effective at pH values between 1.7 to 2.3. It is worth
mentioning that, lower pH value causes a pickling attack on the zinc layer which

brings about other complications.

Cho et al. [118] studied the effect of immersion time and bath pH on the micro-
structure and corrosion behaviour of TCC layers formed on the Zn surface. The

layers were formed in a treatment solution containing chromium nitrate, cobalt,
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Table 2.2 A summary of different TCC treatment solutions that were applied to the
different substrates with their processing parameters of selected literature

Process Bath
Substrate parameter composition Trade name
[ZZI;] pH 1.8 at 60°C Cr(IIT) + Co (not mentioned)
Zn Cr(IIT) Max blue
[80] - Cr(ID) (Glomax)
= —~EF
) pH 1.9at 25°C  Cr(IIT) + S O e 50
- pH 1.8 at 25°C Cr(I11)
[28, 82] H 1.6-2.1 at 60°C  Cr(III) + Co SurTec 5680
P Lb-2. b a *(LABRITS)
pH 1.6-2.0 at 22°C  Cr(III) Tridur Azul 3HPC
pH 8.0-9.0 at 25°C  Cr(III) + Si Corrosil Plus 501 N
Zn pH 1.6-2.1 at 60°C  Cr(III) 4+ Co SurTech 680
[25, 103] pH 9.0-9.5 at 25°C  Cr(III) + Si SurTech 5559
pH 7.0-8.5 at 25°C  Cr(III) + Si SurTech 662
pH 1.7-2.2 at 25°C  Cr(III) SurTech 666
219 92, 115] pH 3.9 at 40°C Cr(III) + Zr SurTec 650 chromitAL
7n 50 mL/L Cr(NO3)3(40%),
[103] pH 1.7-2.3 at 30°C 20 g/L CoCl2-6 (H20), (not mentioned)
3 mL/L H2S04
Zn + A3+ 3— - Passerite 6001
113 H30™, G, PO4™ - F (Henkel)
Al o . SurTec TCP
143, 91] pH 3.85 at 35°C (not mentioned) (650 B, V and C)
Al o 29 - 34 92 Alodine 5900RTU
[41, 42, 87, 90] pH 3.8-4.0 at 30°C  ZrFe“ ,F , Cr°™", SO4 (Henkel)
Zn o 10 g/L Cr(NO3)3-9(H20), .
[107] pH 1.8 at 60°C 2.5 g/L Co(NO3)3 (not mentioned)
Al pH 3.8 at RT ZrF627, F, Cr3+, SO427 SurTech 650
[112]
Zn Permapass Imunox 3K
[105] pH 1.8-2.0 at RT Permapass 7012
Zn Cr(NO3)3, CoCl2 each 2.5 g/L in DI water
[116] pH 1.7-2.3 at RT Cr(NO3)3, NiClg each 2.5 g/L in DI water
Al H 3.9 at 40°C Z1~F62*7 Cr3+, SO42* SurTec 650 chromitAL
[117] P plus 0.01mol /T, FeSO4-7(H20) -+ Fe(II)
élil] pH 3.9-4.0 at 40°C  ZrFg2 ™, Crdt Socosurf TCS
7 Cr(I1I)-sulfate
[1%6] pH 2.0 at 60°C Cr(III)-nitrate (not mentioned)
Cr(111)-chloride
7 0.1 mol/L Cr(III) nitrate,
[11(1)4] pH 2.0 at 60°C 0.1 mol/L oxalic acid, (not mentioned)
, and 0.007 mol/L cobalt nitrate
Zn o OKUNO Chemical
93] pH 2226 30°C — Cr(II) Industries Co. Ltd.
Al 2 34+ Bonderite T5900
[94] pH 3.5-4.0 at RT ZrFg= , Cr°™", S (Henkel)

27



2 State of Art

chloride, and sulphuric acid. The bath pH values were 1.1, 1.7 and 2.3. SEM images
showed that the surface roughness of the studied films was decreased with increasing
pH value. Moreover, the layer formed by the treatment solution with the pH 1.1
didn’t show a uniform growth, due to the high dissolution rate of Zn and the fast

deposition of the TCC coating.

Process immersion time: Three immersion times of 20, 40 and 60s in the bath
with a pH value of 1.7 were examined in the study of Cho et al. [118]. It was
suggested that the TCC coating was deposited on the Zn substrate with micro-cracks
due to internal tensile stress in the coating. The thickness and density of micro-cracks
were first increased with increasing the immersion time from 20 to 40s, and then
they were both reduced by increasing the immersion time to 60s. The TCC film
with the highest thickness showed a better corrosion protection, due to the increased

anodic pitting potential and the reduced passive current density.

Qi et al. [119] studied the dependence of the coating thickness on immersion time
for an etched, desmutted, and mechanically polished Al alloy (AA 2024-T351) treated
in the dilute SurTec 650 treatment solution at 40°C. The coating thickness was
measured by a cross-sectional analysis of the Transmission electron microscopy (TEM)
micrographs. The results suggested that the layer first reached a maximum thickness
after the commencement of the process and then was thinned at a later time. That
is attributed to the changes in pH and AT jon (substrate metal ion) content of the

treatment solution at the coating surface.

The effect of the TCC process immersion time on the electrochemical behaviour of
an Al alloy (AA 2024-T351) was studied with the aid of EIS and Potentiodynamic
polarization (PP) measurements in a 0.05 mol/L NaCl solution [115]. TCC solutions
were prepared using four different immersion times of 300, 600, 900, or 1800s, followed
by immersion in DI water (pH 5) at 40°C for 120s, drying in the cool air stream and
ageing at ambient temperature for 24 h in air. The electrochemical measurements
revealed that longer immersion time (900 and 1800s) resulted in reduced corrosion
protection performances. This was ascribed to the increased number of defects in
the structure of the coating, which were mainly formed near intermetallic particles.

Therefore, the results implied that the best corrosion resistance was achieved with
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the TCC layer produced in the solution for 300 and 600s. The coatings were thicker

at longer immersion times, although cracks were observed because of internal stress.

Process temperature: Increasing temperature is not only uneconomical but also

might make the passivating bath very unstable [120]. Considering Table 2.2, in most
of the studies, the process was carried out at room temperature (25-30°C) due to
the energy cost minimization; however, elevated temperatures like 40 and 60°C were

also studied.

Water immersion post-treatment: To study the effect of water immersion

post-treatment temperature, after a TCC treatment solution was applied to an Al
alloy (AA 2024-T351), the specimens were immersed in DI water (pH 5) at either
20 or 40°C for 120s [115]. The results of EIS and PP revealed that an immersion
post-treatment in DI water at 40°C for 120s, enhanced the corrosion protection
properties of the TCC coatings compared to 20°C [91, 115, 121]. When the samples
were not post-treated in the DI water, detachment from the metal substrate was
observed. This was attributed to the low pH value and fluorine enrichment at the
base of the film. Meanwhile, immersion of specimens in DI water at 20°C indicated
an improved adhesion of the conversion coating and subsequently, an enhanced
corrosion protection. On the other hand, the specimen that underwent immersion in
DI water at 40°C exhibited a thicker film with no sign of localized corrosion. This
was ascribed to the considerable reduction of fluorine-rich species and an increased

amount of oxide/hydroxides at the base of the coating [121].

Bath impurities: It was shown that the presence of impurities, such as Zn and Fe,

in the treatment solution applied to the Zn-plated steel degraded the quality of the
formed layer [5]. Zinc impurities decreased the zinc redox dissolution and increased
the formation of zinc hydroxide rather than chromium hydroxides in the conversion
coating. Iron impurities intervened in the precipitation of chromium hydroxides as
well [122]. Since the corrosion protection of the film is mainly supplied by Cr(I1I)
compounds (hydroxide and oxide), the lowest possible amount of Zn and Fe in the
passivating bath is preferable. Otherwise, a higher concentration of chromium in a
contaminated passivating bath is needed, to compensate for the required corrosion

protection.
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Type of anions: Wen et al. [106] studied the effect of three different anions in

TCC treatment solutions applied to Zn-plated steel. The electrolytes were prepared
using Cr(III) sulfate, nitrate, and chloride. The Cr(III) concentration was set to be
0.1 M and the concentration ratio of Cr(III) to the various anions was adjusted to
be 1/3. The TCC treatment solutions were heated and stirred at 80° for 4 hours,
the pH was adjusted to 2, and finally stored for 24 hours before usage. Open circuit
potential (OCP) measurements were employed to assess the potential change as
the immersion proceeded. The OCP curves (Figure 2.4) showed that the formation
potential (AE) of the zinc-plated steel immersed in the TCC treatment solution was
the highest for the bath prepared with nitrate, followed first by that of chloride,
and then finally that of sulfate. A layer with large voids was observed in the SEM
micrographs taken from the layer formed in the chloride-containing bath; this layer
also underwent pitting corrosion. With the aid of SEM micrographs and OCP
measurements, it was proposed that the sulfate, nitrate, and chloride ions potentially
performed as passivating, oxidizing, and pitting agents, respectively. Hence, the
morphologies and characteristics of TCC coatings are clearly influenced by the anions

in the passivating bath.

Bath additives: Corrosion performance of the TCC layers can be improved by
adding transition metal ions into the TCC treatment solution [23, 118]. With the
aid of EIS and anodic polarization measurements, it was shown that the addition of
Co(II) or Ni(II) ions into a TCC bath, applied to the zinc-coated steel, enhanced the

corrosion protection of the layers formed in these solutions [116]. The cathodic and

anodic current densities in the polarization curves of the layer formed in the TCC

NiZ T 2—i_) were reduced in comparison with

coating with transition metal ions ( or Co
the corresponding of the layer produced in a TCC bath without these ions. This was
attributed to the decrease of oxidation- (zinc substrate dissolution) and reduction-
(oxygen penetration to the zinc substrate) reactions. The results showed the effective

barrier properties of these coatings.

Tomachuk et al. [25, 28] studied three different TCC coatings on Zn-plated steel.
With the aid of EIS and polarization curve measurements, it was confirmed that
the layer formed in the TCC treatment solution containing cobalt (SurTec S680)

presented better barrier properties compared to the layers formed in the treatment
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solutions without this ion [UNiFix Zn-3-50 (LABRITS) and UniYellow 3 (LABRITS)].
This was ascribed to the efficient corrosion inhibitive influence of Co added to the

passive layer.

Co(II) was also reported as a reaction mediator in TCC treatment solutions, which
increases the oxidation rate of Cr®T to Crft [123]. Therefore, it was suggested
that the presence of cobalt in the TCC bath that results in the formation of Cr(VI)
compounds may generate an effect like self-healing [116]. This, however, causes a lot
of controversy about TCC coatings as being compatible with the European directives.
Therefore, further studies should concentrate on the formation of Cr(VI) species in
TCC coatings. Despite some discussions [46, 47], no detectable Cr(VI) was found on
the TCC treated surface on the Al alloy [40, 90, 124]. It was reported that Cr(VI)
was either formed in the TCC coatings by immersing the Al alloy in the air-saturated
TCC solutions [42] or exposing the TCC treated samples to humid air [45]. It was
suggested that when Al alloy (AA2024-T3) was immersed in an air-saturated TCC
solution, oxygen formed hydrogen peroxide (H202) which diffused to the copper
intermetallic sites. Since H209 is a strong oxidant, it should be capable of oxidizing
Cr(III) to Cr(VI) [42]. In the case of samples exposed to humid air, Cr(VI) was

mostly found near intermetallic areas [45].

The addition of a reducing agent at a pH value of 3.8 to 4.0 was suggested as a bath
modification to avoid oxidation of Cr(III) to Cr(VI) [117]. The same study showed
that adding Fe(II) species to a TCC treatment solution can prevent the formation
of Cr(VI) compounds in the TCC film on the Al alloy (AA 2024-T351). This was
ascribed to the preferential Fe(II)/Fe(III) oxidation by H202, and consequently,
less available H2O2 to oxidize Cr(III) species. Findings in another study [125],
demonstrated that the addition of copper sulfate to a TCC treatment solution can
decrease the formation of H2O2 and Cr(VI) species, as revealed by Ultraviolet-visible
spectrophotometry (UV-VIS) measurements. This was attributed to favouring the
four-electron oxygen reduction mechanism at Cu-rich regions. With the aim of
preventing Cr(VI) formation in the TCC coatings, Ely et al. [44] studied the effect
of a commercial post-treatment (so-called PACS) containing lanthanum ion applied
to the Al surface treated with a commercial TCC treatment solution (so-called

Socosurf PACS). A chemical analysis of the TCC coating disclosed the presence of
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lanthanum and the absence of Cr(VI) (below the limit of detection) (< 0.1 pgem™2).
This was attributed to the penetration of the post-treatment solution through the
microstructural defects of the TCC layer that possibly induced the accumulation of
lanthanum and restricted the formation of Cr(VI) due to the lack of Cr(III) ions

resources to react with H2O2.

The oxidation of Cr(III) to Cr(VI) in the TCC films causes a lot of controversy
surrounding these coatings as being compatible with the European directives. Espe-
cially, because the number of studies regarding the formation of Cr(VI) in the TCC
coating formed on the Zn substrate is very limited and therefore, this occurrence

can be further investigated.

Agitation during the TCC process: Generally, agitation of the treatment so-

lution during the process speeds up the reaction and provides a more uniform film

formation. However, no systematic study was found on this topic.

TCC coating colour: Tomachuk et al. [82] studied three TCC coatings with
different colours including the layer formed in UniFix Zn-3-50 (LABRITS) with
blue colour; UniYellow 3 (LABRITS) with yellow colour; and SurTec S680 with

green colour. The EIS measurements in agreement with the results of polarization

curves showed that the green-coloured TCC coating represented the best corrosion
resistance followed first by the yellow-coloured and then blue-coloured. The green-
coloured coating was also reported as a uniform layer. In this study, the coating
thickness was reported as the summation of the thickness of the Zn and TCC layer.
The thinnest film was the green-coloured (10.4 pm) which also contained Co in its
treatment solution (SurTec S680) followed by the blue-coloured (10.8 um), and the
yellow-coloured was the thickest film (11.2 pm).

Ageing of the films: CCCs have microstructural imperfections and hydrated

channels. Through the ageing process, the barrier properties of CCCs are enhanced
due to condensing the film and collapsing these channels [41]. Considering the
fact that microstructural defects were also observed in TCC coatings, the changes
in barrier properties of these films during the ageing process were studied [41].
The protection performances of a TCC layer, ageing in the atmosphere, were daily

evaluated by EIS measurements. It was reported that 3-7 days ageing improved
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the barrier properties of approximately 30% of the coated samples. In their second
relevant research, Li et al. [126] studied the effects of ageing time and temperature
on the corrosion properties of the TCC coating on an Al alloy (AA2024-T3). It was
observed that when ageing was done overnight at elevated temperature (< 100°C),
the TCC layer underwent dehydration and condensation, which induced a more
defect-free aluminium oxide layer. Moreover, the coating lost water and became much
more hydrophobic, which resulted in improved corrosion protection performances.
Finally, it was concluded that the moderate ageing period at room temperature
improved the charge transfer resistance (Ret) by a factor of four, due to the formation
of an aluminium oxide layer on the metal sites exposed to the film microstructural
defects; associated with an increased TCC coating’s hydrophobicity. On the other
hand, ageing at a higher temperature (150°C) resulted in excessive dehydration of

the TCC layer, severe cracking, and detachment from the metal substrate.

Pretreatment process: To evaluate the importance of a pretreatment process

(de-smutting ), anodic polarization test was done for an as-received control Al
alloy (AA2024-T3), a TCC coated and a de-smutted AA2024-T3 in dilute Harrison’s
solution °. The results revealed that the breakdown potential of the TCC coated
sample was 200 mV higher than the as-received control surface. Moreover, the
cathodic polarization curves revealed that the TCC coating suppressed the oxygen
reduction reaction on the Al surfaces. Besides, a non-coated sample that had been
de-smutted also showed a protective behaviour in comparison to the control surface.
This implied that de-smutting was a crucial step for enhancing corrosion protection
[39].

It was formerly mentioned that the structure of the coating and subsequently its
corrosion behaviour is influenced by the substrate chemistry. Optimized process
parameters (e.g. temperature, pH, and composition of a treatment solution) should
be specified for each system individually. However, a treatment solution that is

applicable to different surfaces might be profitable for industrial usage. Table 2.3

4Smut is a residue of the alloying elements that are not dissolved in the caustic bath and can
redeposit onto the etched surface. De-smutting is the act of removing excess alloyed metals from
the Al surface after etching. This process is mostly done using mineral inorganic acids, such as
hydrochloric, sulphuric and nitric acids [127].

SHarrison’s solution is a dilute solution of 0.05 wt% NaCl + 0.35 wt% (NH4)2S04, which is
also used for corrosion measurement [39].
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lists commercial TCC treatment solutions applied to different substrates. As can be
seen, the treatment solutions are applied to the Mg, Zn and Zn alloy, and Al and Al
alloy. When there are some TCC treatment solutions that can be applied to the Zn
and Zn alloys (e.g. Lanthane TR-175), there are also some TCC solutions that are
applied to the specific type of surface (e.g. Finidip 124 for the Zn surface).

In summary, the TCC coating properties (e.g. coating structure, thickness, compo-
sition, and corrosion resistance) are greatly influenced by the TCC bath parameters
(e.g. pH, temperature, composition), pretreatment, and post-treatment. However,
the number of studies accomplished on each of the above-mentioned parameters is

limited, especially when it comes to the TCC treatment on the Zn substrate.
RQ5: What kinds of methods have been used to study the TCC layers?

The morphology of the film has been primarily observed with SEM, TEM, and
AFM. To study the chemical composition of a TCC film, spectroscopic methods like
X-ray photoelectron spectroscopy (XPS), AES, Raman spectroscopy (RS), and Glow
discharge optical emission spectroscopy (GDOES) were used. Analytical methods
such as Inductively coupled plasma atomic emission spectroscopy (ICP-AES), Atomic
absorption (AA), ICP-OES, titration, and UV-VIS were also employed to assess the
chemical composition of the treatment solution or the leached TCC-treated specimen

in diluted acids.

Table 2.4 shows the characterization methods which were used to study the TCC
coatings. As can be seen, SEM is the method which was used the most to study the
structure of the TCC film, followed by TEM and AFM. This table also indicates that
XPS and afterwards RS were employed more often to study the chemical composition
of the TCC layers. In many studies, several approaches were carried out to assess
the physical or chemical characterization of the layer, to confirm the consistency of

the results.

Apart from the methods in Table 2.4; spectroscopic ellipsometry [112, 113],
Scanning Kelvin probe (SKP) maps [129, 130], and OCP vs immersion time were
also used to study the deposition mechanism of TCC films [36, 41]. However, OCP
was also used prior to PP or EIS measurements to reach a pseudo-equilibrium with

the test solution [87, 131]. Fourier transform infrared reflection absorption spec-
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Table 2.3 Commercial TCC coatings applicable to different substrates (The data were
taken from the vendors’ websites)

Cr(III)-based passivation

product Vendor Application Remarks
Iridite NCP, EXP, NR4-T Al
NR2-1, 14-2.
Iridite 15 MacDermid Enthone Mg, Mg alloy
Tripass
Tripass ELV (Co-free) Zn, Zn alloy
Perma Pass Passivates Zn, Zn alloy
Alodine T5900
Bonderite T'5900 Al, Ti, Mg
T5900 RTU Henkel
Alodine 871 Touch-N-Prep Al Ti, Mg
Alodine 1200S 5700
Alpmmescent Luster-On Al, Mg
Tri-blue
Tri-descent Zn, Zn alloy
Tri-black TZT
TCP-HF Chemeon * Al anodize steel *Formerly Metalast
Ecotri family Zn, Zn alloy
Tridur Zn, Zn/Ni alloy
Rodip ZnX Atotech 7n, Zn/alloy
Interlox 338 Al pretreat
ChromitAl TCP Al
(NAVAIR TCP licensee)
SurTec 650 chromitAL
SurTec 680/Chromiting SurTec Zn and Zn alloys Thick layer
SurTech 668 7n Blue
SurTech 675 Zn and Zn/Ni Co-free
SurTech 662 Zn and Zn alloys Co-free, blue
SurTech 684 Zn and Zn/Fe OV temperature,
thick layer
Finidip 124 Zn

Finidip 128

128.6 CF, 728.2 Zn-Ni (12-15%)

798 3 Coventya

Finidip 137 CF Zn

Finidip Silver Zn-Ni Zn-Ni (12-15%)
Lanthane black 760 CF 7

Si 360 CF

Lanthane TR-175 Zn, Zn alloy
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Table 2.4 Characterization methods used to study the TCC coatings (X sign shows the
employed technique in the referred article)

Structural characterization

No. Article Chemical Physical
XPS AES ICP RS GDOES EDXS SEM AFM TEM

1 [27] X X

2 [15]

3 [80] X

4 [47]

5 [28] X X

6 [39] X X

7 [118] X X

8 [106] X X

9 [35] X X X
10 [90] X X X
11 [41] X X X

12 [107] X

13 [43] X X X X X

14 [42] X X X

15 [105] X X

16 [116] X

17 [113] X X

18 [91] X X
19 [117] X X
20 [25] X X
21 [82] X
22 [128] X X
23 [38] X X
24 [86] X

25 [44] X X

26 [104] X X

27 [114] X

28 [92] X X X
29 [115] X X
30 [121] X X
31 [122] X
32 [94] X X
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troscopy (FT-IRAS) [129], Rutherford backscattering spectroscopy (RBS) [33] were
also used for compositional analysis. Time-of-flight secondary ion mass spectrome-
try (TOF-SIMS) is another surface-sensitive analytical method which was employed

to analyse the surface chemical composition of the TCC coating [36, 44].

To study the corrosion behaviour of TCC coatings, especially in scientific research,
electrochemical measurements were used first and foremost. However, in technical
reports and patents, the most common corrosion test is the NSS test per ASTM
B117 [48]. The electrochemical methods such as PP curves and EIS provide fast
information about the kinetics of corrosion reactions. Moreover, electrochemical
techniques are very practical to compare and characterize the corrosion resistance of
different conversion coatings [82]. Most of the electrochemical measurements were
performed at room temperature in naturally aerated NaCl (e.g. 0.05 mol/L), or
Na2S04 (e.g. 0.1 mol/L, 0.5 mol/L).

Table 2.5 summarizes the methods used to monitor the corrosion behaviour of the
TCC layers in different papers. As can be seen, EIS was used intensively to study
the corrosion properties of the TCC coated layer followed by PP and OCP.

Some examples of the methods which were used to investigate the physical and
chemical characterizations of TCC layers are illustrated in the following; for instance,
with the aid of EIS data, the equivalent electrical circuit model explaining the
corrosion resistance of a system containing steel, zinc, conversion layer, and 0.5
mol/L Na2SO4 solution was provided [103].

The formation of the TCC coating on a deoxidized (unpolished) Al alloy (AA2024)
was studied using OCP as a function of the TCC process immersion time [41].
In this study, the OCP during 10min of a TCC process was recorded for a sample
immersed in 100 vol% full-strength Alodine T5900 solution (100% Trivalent chromium
process (TCP) in figure 2.5); and another in a 50 vol% diluted of the same solution in
DI water (50% TCP in Figure 2.5). Figure 2.5 shows that the OCP profiles measured
for two passivation baths were similar in shape and magnitude. The cathodic shift
within the first 50-75s of the OCP from -0.50 to -0.95 V vs Ag/AgCl, indicated that
the treatment solution was aggressive towards the substrate. The dissolution was

facilitated by the fluoride ions in the solution. As was also mentioned in another
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Table 2.5 Corrosion tests used to study the TCC coatings (X sign shows the employed
technique in the referred article)

Corrosion Test
No. Paper NSS Electrochemical measurements

PP EIS OCP
1 27 X X
5[5 X
3 47 X
1 [ X X
5 [39]
6 [80] X X
7 [76] X
8 [11§] X X
9 [106] X X
10 [35] X
11 [90] X
12 [87] X X X
13 [41] X X X
14 [107] X
15 [32] X X
16 [105] X X X
17 [116] X X X
18 [103] X
19  [117] X
20 [126] X
21 [25] X X
22 [128] X X
23 [39 X
24 [36] X
25  [44] X X
26 [93] X X
27 92 X
28 [115] X X X
29 [121] X
30 [122] X X X
31 [o4] X X X
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study [36], the first step in the formation of the TCC coating was the dissolution of
the oxide film to expose bare aluminium. It was supposed that in comparison with
the 50 vol% diluted treatment solution, the 100 vol% full-strength of that produced a
thinner oxide surface due to being enriched with fluoride ions. Afterwards, the OCP
reached a minimum (-0.95 V vs Ag/AgCl) before a slight positive increase (to -0.90 V)
during 100-200s. Thereafter, the potential stabilized at this value for the remaining
immersion time. A slower cathodic shift in the OCP result was observed for the
thicker oxide surface compared to the thinner oxide. Nevertheless, the ultimate OCP

values for the thinner and thicker oxide surface were the same.

Hence, the processes that occurred in the three above-mentioned periods corre-

sponded to the surface activation, conversion, and precipitation, respectively [132,

133).

The evolution of the OCP in a Zr-based conversion bath for AA 6014, cold-rolled
steel and hot-dip galvanized steel (Figure 2.6) was shown that the decrease in potential
from the initial to the minimum value depends on the type of substrate used [133].
This can be attributed to the fact that the chemical dissolution is influenced by the
surface chemistry of the metal oxides [134] besides the thickness of the oxide layers
[133]. Therefore, depending on variations of ionic and electronic conductivities of
metal oxides with the type of substrate used, this drop (between the initial to the

minimum value) occurs at different potentials.

In another study, the OCP development of a pure Al substrate in a 20 vol% diluted
TCC solution (SurTec 650) was studied. This solution consisted of Cr sulfate plus
potassium fluorozirconate (K2ZrFg), and adjusted to pH 3.8 with KOH/DI water.
The OCP transient (Figure 2.7) decreased with time and stabilized after around
600s at approximately -1.4 V [112]. As was suggested before [36, 41], an initial
sharp decrease of the OCP was attributed to the dissolution of the oxide layer due
to the hydrofluoric acid attack. Furthermore, it is reported that the OCP transient
resulting from the formation of the TCC coating took a longer time to reach the
stable potential in comparison to the one from the CCC. Hence, the chemistry of
both the Al surface and the treatment solution throughout the TCC process were
not changed as fast as it would be for the CCC process. This was assigned to the

lack of a strong oxidizing agent, such as Cr(VI), in the TCC treatment solution.
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Figure 2.5 Transients of the OCP vs immersion time recorded during the formation of
the TCC coating on the Al alloy (AA2024). Two different strengths of the
Alodine 5900 RTU solution were used: full strength (100%) and diluted (50%).
Coatings were formed at room temperature (20-25°C) [41]
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Figure 2.6 Transients of the OCP vs immersion time recorded during the formation of
the Zr-based conversion coating for three different substrates [41]
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Figure 2.7 The OCP transient recorded for a pure Al substrate during the formation
process of 20% TCC solution (SurTec 650 with pH 3.8) [112]

Spectroscopic ellipsometry is another effective characterization technique in which
the thin film growth can be determined in real-time by employing light as a mea-

surement probe [135].

Using in situ spectroscopic ellipsometry in the spectral region of 1.3-4.3 €V in
real-time, the formation of the TCC film on the polished Al substrate was monitored
in the research carried out by Dardona et al. [136]. The results obtained from in
situ spectroscopic ellipsometry measurements evidenced three phases for the TCC
film formation. The chemical thinning of the native oxide layer was introduced as an
indispensable stage for the initiation of the TCC film growth, which lasted around
100s. This step was followed first by a linear TCC film growth at a constant rate
of 0.4 nm s ! up to around 50 nm thickness, and then a growth period to a final
thickness of 125 nm at 880s [136].

In their second relevant study, in order to optimize the coating protection char-
acteristics, Dardona et al. [112] investigated the role of applied potentials on the
TCC growth kinetics and its composition, using in situ spectroscopic ellipsometry
together with electrochemical measurements. The TCC treatment solution was 20

vol% SurTec 650 which was applied to a polished Al substrate at applied sample
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potentials in real-time. To adjust the rates of cathodic and anodic reactions (the

film formation kinetics), the electrode polarization was tested [112].

The current and the TCC film thickness development at different anodic (more
noble potential) and cathodic polarizations (more active potential) from -1.0 to -1.6
V are shown in Figure 2.8. Under anodic polarizations (-1.0 and -1.3 V), the film
formation showed three phases illustrated in Figure 2.8b. First, an initial induction
stage indicating negligible or very slow coating growth, followed by first a prompt
linear growth, and then a slower film growth. Conversely, under cathodic polarization
(-1.5 and -1.6 V) the film formation started relatively slow at the intermediate stage,
and afterwards a swift growth is observed. Therefore, it was proven that the sample
polarization affects the formation kinetics and chemical composition of the TCC
coating. In the end, it was suggested that the TCC films, which are formed using
potential control, might provide a variety of conversion coatings with improved

corrosion protection.

Neutron reflectivity (NR) is a powerful technique for studying inhomogeneities in
either composition, structure or magnetization across an interface [137]. In situ NR
was suggested as a useful tool to provide information about chemistry and structure
of the interface between the substrate and the TCC treatment solution [138].

Dong et al. [36] used NR to determine the structure and composition of the TCC
films on the Al alloy AA-2024. The treatment solution was an industrial product
(METALAST TCP-HF with pH 3.75). In this work, the Electro-assisted (EA)
deposition method was compared with conventional immersion deposition. In the
EA method, proton reduction was controlled electrochemically. In other words, the
consumption of hydrogen ions was controlled by the applied potential. Consequently,
the film deposition was controllable and sustainable over a long period and the film
thickness depended on the time under cathodic polarization. It was shown that the
EA deposition produced a denser film with a more uniform film structure compared
to the immersion deposition. Additionally, the Al substrate and additives in the

precursor solution did not contaminate the film.

In their next relevant research, Dong et al. [138] used the electrochemistry mea-

surement (OCP, PP) together with NR to monitor the corrosion process of the bare
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Figure 2.8 (a) Current development during a TCC process at applied sample potentials
for pure Al substrate in 20% TCC treatment solution (SurTec 650, pH 3.8),
(b) The corresponding TCC coating thickness as obtained from fitting of in
situ ellipsometry data [112]
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and the TCC coated Al alloy besides the morphology and structure of the TCC
films in a chloride-containing aqueous solution. To observe the NR results of the
corroding surface under potential control, a split cell that separated the anodic and
cathodic reactions was used. A split cell clutching two Si wafer electrodes and a
reference electrode was designed for this research. With the aid of this cell, two in
situ corrosion experiments were performed on two different working electrodes. The
original Al- coated wafer (ca. 1000 Angstroms of Al) was set as a control, and the
TCC-coated Al on Si wafer was used to study the passivity of the film. During the
test, the neutron beam interrogated the working electrode. A Si wafer was coated
with a thin layer of gold to be used as the counter electrode. A chloride-containing
aqueous environment was provided by injecting 1 wt% NaCl solution into the cell.
The results revealed that the bare metal layer degraded uniformly under small anodic
polarization over several hours. While the TCC-coated Al layer was stable and

resistant up to an overpotential of +200 mV.

2.7 Conclusions

TCC coatings have been mostly compliant with the existing Registration, evaluation,
authorisation, and restriction of chemicals (REACH) legislation while showing satis-
factory corrosion performances on various substrates, including Zn/Zn alloys and
Al/Al alloys. Therefore, to avoid the usage of carcinogenic chromate compounds,
TCC coatings have been implemented by many industries as the most promising

alternatives to CCCs, to date.

Not only are the TCC treatment solutions easy to apply but also they are un-
complicated in terms of wastewater treatment. The formed layer is resistant to
elevated temperatures and may be produced in a variety of colours (Section 2.6).
The TCC formation (e.g. the microstructure and composition of the formed layer)
as well as its corrosion performance are influenced by various factors including the
substrate material (Section 2.6); pretreatment processes (Section 2.6); formulation of
the treatment solution (Section 2.6); process parameters (e.g. immersion time, pH,
temperature, and agitation) (Section 2.6) as well as post-treatment (e.g. ageing at

elevated temperatures) (Section 2.6). The optimal TCC process parameters (e.g. the
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composition of the bath, immersion time, pH, temperature, and agitation) must be
defined individually for each system. Therefore, novel formulations of TCC coatings

are envisaged.
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3.1 Specimen preparation

3.1.1 Substrate preparation

Zinc plated (pre-galvanized) low carbon steel polished hull cell panels (10 x 7.5 cm?)
were supplied by Kiesow Dr. Brinkmann GmbH & Co. KG. The zinc film (that was
used to protect the steel panels) was stripped off chemically by immersion in a 10 %
diluted hydrochloric acid (HCI) solution (specific gravity 1.18 g/mL). Subsequently,
the parts were immediately rinsed with DI water, to prevent further attacks of acid

residue on the panels before commencing electroplating.

3.1.2 Zinc plating

The zinc layer was plated from a commercial alkaline zinc electrolyte, Protolux 3000
Atotech Deutschland GmbH. The panel was set up as the cathode of the cell whilst
fully immersed inside the electrolyte and steel plates served as anodes (Figure 3.1).
Direct current was applied to the cell by means of a power supply model HCS-3202
(1-36 V, 0-10 A) (Manson Engineering Industrial Ltd.). In order to deposit ~8 pm
of zinc on the steel panels, the electroplating was carried out with the current of
2 A/dm2 for 30 minutes at room temperature (Table 3.1). To reduce hydrogen
evolution on the substrate interface, the process was done with agitation via cathode
movement. Without electrolyte agitation, the deposits will be streaked due to the
marks caused by hydrogen. Once the treatment time was met the panels were

removed from the electrolyte, rinsed with DI water and dried using hot air blower.
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Evaluation of the deposition behaviour is done visually and through the distribution

of the layer thickness by the aid of Energy-dispersive X-ray fluorescence (EDXRF).

Steel
Cathode

AlkalineZn® wix o
Electrolyte "= Zn Deposition

~

~ -

“x Steel Anode #”

Figure 3.1 Schematic of the Zn electroplating bath

Table 3.1 Alkaline zinc electroplating operating parameters

Process parameters Values

Temperature 24 °C (18 to 28 °C)
Current Density 2A/ dm?

Current efficiency 60 %

Immersion time 30 min

Cathode Agitation 2 to 4 cm/s

3.1.3 Treatment solution

To apply the treatment solution, the panels were immediately rinsed after the
electroplating process and dipped in 0.3 vol% HNOj to activate the surface prior to
applying the TCC treatment solution. The zinc-plated steel sheets were passivated
in different treatment solutions at 40°C. A matrix of eight different model solutions

with two complexing agents including and excluding cobalt was prepared (Table 3.2).
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Table 3.2 The composition and processing parameters of the model TCC treatment

solutions

Z
c
8
on
g
e

Specimen

O 1 O O W N

Cr + Ox

Cr + Ox + 1/2 Co
Cr + Ox + Co
Cr+F
Cr+F+1/2Co
Cr+ F + Co
2Cr + 20x

2Cr + 20x + Co

Parameters

Cr(III) (Higher concentration is shown as 2Cr)

Concentration(mol /L)
0.08, 0.16

Co(II) (lower concentration is shown as 1/2 Co) 0.002, 0.004
Complexing agent

Oxalic acid 0.1
Ammonium bifluoride 0.15
Processing parameters

pH 1.8
Immersion time 40, 60, 80s
Working temperature 3, 18, 40°C
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The same amount of chromium nitrate was used for all the first six TCC treatment
solutions. The ratio of Cr to oxalate concentration in the electrolyte with this ion
was 1 to 1.3. To study the effect of Cr concentration on the properties of the layers
formed, a bath with double concentration of Cr and oxalate was prepared and named
as the specimens 7 and 8 in Table 3.2. The cobalt-containing TCC solutions were
prepared with two different concentrations of Co. All chemicals were reagent grade
and were obtained from Carl Roth GmbH + Co KG. The immersion time and
process temperature applied for the morphology studies, compositional analysis, and
corrosion tests were 60s and 40°C, respectively. To study the kinetics of the process,
other immersion times, 40 and 80s, as well as more passivation bath temperatures,
3°C, and 18°C were also applied. Agitation was performed by manual shaking during
immersion time. Afterwards, the samples were rinsed with DI water and dried in
an oven for 15 minutes at 80°C. The samples were then left to stabilize at room
temperature for a minimum of 24 hours in accordance with the American society for
testing and materials (ASTM) B201 standard [139]. To study the annealing effect on
the coatings, some specimens were heated in a forced convection oven (MEMMERT

oven (Memmert GmbH + Co. KG)) for 6 hours at 210°C.

3.2 Experimental techniques

3.2.1 Morphology characterization
3.2.1.1 Focused ion beam scanning electron microscope

Focused ion beam scanning electron microscopy FIB-SEM combines two beams
(electron and ion) in one single apparatus, which leads to an instrument that combines
all the capabilities of Focused ion beam (FIB) with SEM [140, 141]. This method
operates by employing a gallium (Ga) FIB column and a field emission SEM column.
Impinging low Ga™ beam current produces secondary electrons emitted from the
sample surface. To sputter or mill the sample, a higher current beam is typically

used. Moreover, the ion milling process can be observed and controlled with SEM
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during the analysis. Figure 3.2 (a) shows a typical FIB-SEM column configuration

with a vertical electron column with a 54° tilted ion column to the vertical.

Electron

Ga* lons

X-ray , Electrons

4
L4

(b)

Figure 3.2 Simplified schematic diagram of (a) a typical focused ion beam combined with
a scanning electron microscope, (b) a dual-beam FIB-SEM configuration with
energy-dispersive X-ray spectroscopy

The cross-sectional structure of the formed TCC layer was observed via cryo-
sample preparation in conjunction with FIB-SEM. The thickness of the films was also
measured using the cross-sectional micrograph. Specimens were initially immersed
in liquid nitrogen (-200°C) for 1 minute and immediately bent. This process caused
the conversion coating to crack and facilitated the observation of film thickness.
Since the coatings were not conductive, the samples were then transferred to a
Gatan 682 Precision Etching and Coating System (PECS), where the surface of the
specimens was sputtered with a ~40nm thick tungsten film to improve their surface
conductivity. Following that, the sample was transferred to the SEM device for
imaging. A Zeiss Auriga 60 (Carl Zeiss, Germany) Dual Beam FIB-scanning electron
microscope (SEM) system with a Ga ion beam at 30 kV and 50 pA current were
used to analyse the cross-sectional FIB-SEM of the specimens. Prior to ion milling,
to protect the coating from any damage caused by the ion beam, a 500 nm thick
platinum layer was deposited onto the area of interest. The cross-section milling was

performed at a tilt angle of 54° for all the samples.

Energy-dispersive X-ray spectroscopy is a chemical microanalysis technique used

in conjunction with SEM. In this method, the X-ray spectrum emitted by a solid
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sample during bombardment with a focused beam of electrons is detected (Figure
3.2 (b)) [142]. The information collected comes from the depth probed which is
dependent primarily on the energy of the electron beam, and on the material being
probed [143].

To detect the chemical composition of the Zn surface, the FIB-SEM associated
with EDXS was used. However, due to the relatively high sampling depth of EDXS
(~1 pm) to detect the elemental composition of TCC layers, other techniques such
as AES and ICP-OES were employed.

3.2.1.2 Atomic force microscopy

AFM is a technique by which the shape of a surface can be seen in three dimensional
(3D) detail down to the nanometre scale [144]. AFM does not form an image by
focusing light or electrons onto a surface, as an optical or electron microscope does.
As is shown in Figure 3.3, this method works by scanning near an atomically sharp
probe over the sample surface, employing the forces and energy dissipated between
the probe tip and the specimen surface to build up a map of the height or topography
of the surface as it goes along [145]. AFM has the advantages of being operated in
air, liquids, and at room temperature and pressure, besides being able to analyse a
wide range of materials such as conductive and non-conductive [144, 145]. In this
work, the non-conducting surface of the formed TCC layers was observed using AFM.
Surface roughness values were also obtained from the topographical data obtained
from AFM using a Dimension Icon AFM from Bruker Corporation. Mapping was
performed in PeakForce tapping mode using Bruker ScanAsyst-Air HPI probes, with
a tip radii ~2 nm, silicon nitride cantilever, and 0.25 N/m spring constant. All
images were obtained with a scan rate of 1.0 Hz. AFM images and mean roughness
values were analysed quantitatively by means of NanoScope Analysis 1.5 Software
(Bruker). Average roughness (R,) is one of the most commonly used roughness

statistics. Because it is a simple parameter to obtain, and it is defined as follows

(Equ. 3.1) [146].
1 L
Ra:Z/O \Z(z)| dx (3.1)

52



3.2 Experimental techniques

Where Z(x) is the function that describes the surface profile analyzed in terms
of height (Z) and position (x) of the sample over the evaluation length "L" (Figure
3.4). Thus, the R, is the arithmetic mean of the absolute values of the height of the
surface profile Z(x).

Cantilever
Tip atoms

Sample atoms

Figure 3.3 Simplified schematic diagram of a typical atomic force microscopy configuration

Figure 3.4 Profile of a surface (Z(x)). It represents the average roughness R,, which is
the RMS roughness based on the mean line [146]

3.2.2 Characterization and analytical techniques

3.2.2.1 Energy-dispersive X-ray fluorescence

EDXRF is used for elemental analysis applications. In this method, an X-ray
tube emits a primary X-ray to the sample (Figure 3.5), which causes all of the

elements in the sample to excite at the same time. Simultaneously, the fluorescence

radiation emitted from the specimen is collected by an energy-dispersive detector in
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combination with a multi-channel analyser. Afterwards, the detector organizes the
received photons according to energy and counts the number of photons that relate
to different energy levels. Therefore, the energy of the detected fluorescent X-ray
is used to identify the elements in the sample. The concentration of the detected

elements is reflected by the intensity of the X-ray [147].

Camera

Detector

Control
Computer

L J

circuit

X-ray tube

Filter and collimator

Figure 3.5 Simplified schematic diagram of a typical energy-dispersive X-ray fluorescence
configuration

In this work, the amount of deposited chromium in the TCC layer was measured
by EDXRF using a FISCHERSCOPE X-RAY XDV-SDD. The X-ray detector was
equipped with a large silicon drift detector with an effective detector area of 50
mm?. The micro-focus X-ray tube featured a 50 kV power supply, a tungsten target,
a beryllium window, a collimator with 1 mm diameter, and an Al 100 pm filter.
The measurements were done at different points of each sample with the aid of a

programmable XY-stage and for a measurement time of the 30 s.

3.2.2.2 Inductively coupled plasma optical emission spectroscopy
ICP-OES is a powerful technique for the determination of elements in a sample. As

is shown in Figure 3.6, with the aid of this tool, liquid samples are injected into a

radio-frequency (RF)-induced argon plasma using a nebulizer. As soon as the sample
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mist reaches the plasma, due to collisional excitation at high temperature, it is dried,
vaporized and energized. The atomic emission emerging from the plasma is collected
with a lens or mirror, observed in either an axial or radial configuration and imaged
onto the entrance slit of a wavelength selection device. Single-element measurements
can be done with a simple monochromator-photomultiplier tube combination, and
simultaneous multi-element measurements are performed for up to 70 elements with

the combination of a polychromator and an array detector [148].

Plasma

Computer |«

RF field

Nebulizer

Argon gas

l Drain

Sample

Figure 3.6 Simplified schematic diagram of a typical inductively coupled plasma optical
emission spectroscopy configuration

In this work, the amount of dissolved chromium and cobalt obtained from the
leached conversion coatings in 10 vol% HCI was evaluated employing a Spectroblue
ICP-OES model FMX 36 using SPECTRO SMART ANALYSER software. The
device is equipped with a SPECTRO UV-PLUS gas purification system. The optical
chamber was filled with argon and hermetically sealed. To ensure the availability
and stability of the gas flow, the argon atmosphere was circulated continuously
by means of a membrane pump. The status of the optical system was monitored
using SPECTRO’s Intelligent Calibration Logic (ICAL). An air-cooled Inductively
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coupled plasma (ICP)-generator was operated at 27.12 MHz ensuring the stability
of the forward power. All experimental ICP operating parameters (Table 3.3) were
controlled via software. The analytical curves were prepared separately for chromium
and cobalt with five different standard solutions (0.02, 0.05, 0.1, 0.5, 1, 5 mg/L).
The pH of the solutions was adjusted (pH 4-7) with analytical grade 1 vol% HNOs.
SRM NIST 1643e (Standard reference material National Institute of Standard and
Technology) was utilized to perform the quality control of the method by using a
100 pg/L Cr(VI) intermediate solution. A volume of 100 pg/l yttrium solution was

added to all standards, samples and blank tests as an internal standard.

Table 3.3 Instrumental and operating parameters for ICP-OES

ICP-OES parameter Type or value
Spray chamber Cyclonic
Nebulizer See Spray

RF power 1450 W

Coolant gas flow rate (Ar) 13 L/min
Auxiliary gas flow rate (Ar) 0.8 L/min
Nebulization flow rate (Ar) 0.8 L/min
Wavelength for chromium 276.716 nm

Wavelength for cobalt 228.616 nm

Plasma torch Quartz, demountable, 2.0 mm Injector tube
Sample aspiration rate 2 mL/min

Replicate read time 49s per replicate

3.2.2.3 Auger electron spectroscopy

AES is a widely used surface analytical technique by which the composition and
chemical species present on a solid surface are determined [149]. This technique
provides high sensitivity chemical analysis in the vicinity of 5 to 20 A of the surface.
The specimen is excited by an electron beam that can be focused into a fine probe.
The depth from which the AES provides chemical information is typically less than
3 nm. However, elemental depth profiles to depths of up to a few micrometers can
be measured, when the spectrometer is equipped with a source of ions with energy

in the range of a few hundred electron volts to about 5 keV [150]. Inert gases (e.g.
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Ar) are commonly used as ion sources. When the energetic ions strike the sample,
a small amount of energy which is conveyed to the atoms on the surface, causes
them to leave. In this destructive technique, the sample surface is eroded through
ion sputtering and the analysis is repeated and continued for a known time with
the interchanging of erosion and analysis until the required depth is reached. Under
monitored conditions the layer removed can be calculated. The remaining surface is
then analysed by AES which provides a depth distribution of present elements in
the sample [151]. To measure the energy distribution of electrons emitted from the
test sample surface, an electron spectrometer is required. A spectrometer includes

an electron energy analyser and an electron detector as the output.

The principle of electron energy analyser is to measure the energy of the emitted
Auger electrons. The Concentric hemispherical analyser (CHA) is one of the fun-
damental devices used for AES. A CHA contains three parts including a retarding
and focusing input lens assembly, an inner and outer hemisphere, and an electron
detector (Figure 3.7). The electrons emitted from the surface go through the input
lens, where they are focused, and their energy is retarded for a better resolution.
Afterwards, electrons enter the hemispheres through an entrance slit. The potential
difference which is applied to the hemisphere aids the electrons with a small range of
energy differences to reach the exit. In the end, electrons are analysed by an electron
detector [152].

Data
aguisition

Figure 3.7 Simplified schematic of a concentric hemispherical analyser
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AES depth profiling was performed to investigate the elemental composition profiles
of the TCC layers using a Thermo VG Scientific Microlab 350 instrument with the
Avantage processing software. The spectra were acquired at an accelerating voltage
of 10 keV and a primary electron beam current of 14.1 nA. The beam diameter
was approximately 30 nm with an incident angle of 60° with respect to the surface
normal. The surface was scanned during the measurement over an area of 20 ym?.
The measurement was carried out by a CHA and a detection angle of 0°. The energy
resolution of the detector was 0.25 %. The Auger spectra were detected with a step
width of 0.7 ¢V and a dwell time of 200ms. Sputtering was carried out using a 1 keV
Ar ion beam of approximately ~700 nA over an area of 1x1 mm? and an incident
angle of 43.4°. The base pressure in the analysis chamber was 107 mbar. The depth
profiling was discontinued at the point in which the Zn signal reached a constant

value (~100% zinc atomic concentration).

3.2.2.4 Coulometric Karl Fischer titration

Karl Fischer titration (KFT) is a well-established analytical method for the deter-
mination of water content in various types of samples [153]. The reactions, which
take place during the titration of a water-containing sample, can be summarized as
Reaction 3.2, in which RN represents a base. Iodine (I2) reacts quantitatively with
water according to this reaction and therefore, this chemical relation forms the basis

of the water determination.

H20 + 12+ [RNH]SO3CH3 + 2RN — [RNH]SO4CH3 + 2[RNH]I (3.2)

The Coulometric Karl Fischer titration (cKFT) is a version of the classical KFT
in which the iodine is generated electrochemically at the anode. This is a much more
rigorous technique for measuring water content in a specimen, which is based on a

direct relationship between the passed electric charge and the produced amount of
iodine [154].
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To determine trace amounts of water in the layer, the experimental setup comprised
of a cKFT and a vial with a septum cap, as a vaporiser (Figure 3.8). The total area
size equal to 110 cm? was prepared for each sample. Samples were cut into pieces of
(1x5 cm? ) to be fitted inside the vials that were connected from their septum cap
through a nozzle and a pipe to the device. The accuracy of the coulometric Karl
Fischer system was checked beforehand with a Hydranal water . The evaporation of
water in the samples was done at a temperature of 120°C. This temperature assures
the reproducibility of realistic drying conditions of the electrode. A dry argon gas
stream (with water fugacity (fH20) < 10 ppm) as a carrier gas moves water in
the vial (water content of the sample) to the cKFT (831 KF Coulometer, Deutsche
Metrohm GmbH & Co. KG). The transferred water was quantified using a fritless
generator electrode. The flow rate of argon gas was kept constant at 100 ml/min by
a mass flow controller. This measurement was done in two sequential steps. The
samples in the vial with a septum cap were flushed with the dry argon stream at
room temperature during the first step, and the amount of water left the samples
was monitored by the cKFT. Afterwards, in order to facilitate the evaporation of
more strongly bound water in the samples, the vial containing the samples was put in
the evaporation unit where it was heated to 120°C. The duration of the second step
was 15 min. To evaluate the raw data of the cKFT, water drift values, and blank
values need to be taken into account. The water drift comes from water diffusion
into the titrator setup and piping system. The drift value was constantly stable
below 7 pg min ! for all experiments before a measurement was started. The blank
values originate from the water contained within the empty vial with a septum cap
(sample containers). The water content of the empty glass vials was measured the
same as the one with samples. For all measurements done with KFT for solids, drift

and blank value corrections are self-evident.

3.2.2.5 Ultraviolet-visible spectrophotometry

UV-VIS is a quantitative analytical technique concerned with the absorption of near-

ultraviolet (180-390 nm) or visible (390-780 nm) radiation by chemical species in

l«“Hydranal - Water Standard 0.1” of Fluka Analytical,Fluka, lot#SZBG0290V, Standard for
Karl Fischer titration with water content 0.1 + 0.005 mg g!
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Indicator fWater vapor with argon gas stream

electrode

Molecular

sieve \

Dry argon gas stream

Generator

electrode Septum cap

Samples in vial

KF reagent
Heater

Magnetic
stirrer

cKFT Evaporation unit

Figure 3.8 Schematic of the experimental setup of the coulometric Karl Fischer titrator

solution or in the gas phase [155]. This technique relies on a sample containing species
that absorb light in the near-ultraviolet and the visible parts of the electromagnetic
spectrum, whereby, the energy that gives rise to electronic transitions is provided
[155, 156]. This technique can be developed to non-absorbing analytes by exploiting
a selective reaction of the analyte with an appropriate reagent to form an absorbing
chemical species [155]. The various colours of visible light and the complementary
colours of solutions are absorbed at particular wavelengths that are shown in the
literature [155]. When experimental conditions are controlled, the amount of radiation
absorbed is directly related to the concentration of the analyte in solution. This
relationship is known as Beer-Lambert law. According to that (Equation 3.3)
the absorbance is proportional to the concentration of the substance in solution.

Therefore, UV-VIS can also be used to measure the concentration of a sample [157].

1og(&) = log(;(qy(()))) =A=ccd (3.3)

1

where

A =log (ITO) is the absorbance, Ij is the intensity of the incident light, and I is the
intensity of the transmitted light,

T= %-100 in % is the transmittance,

€ is the molar extinction, which is constant for a particular substance at a particular
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wavelength
¢ is concentration of the sample (mol/L)
d is the path lenght (cm)

When the absorbance of a series of known concentrations of sample solutions are
measured and plotted versus their corresponding concentrations, the produced graph

of absorbance against concentration is linear if the Beer-Lambert law is obeyed.

Many ionic and covalent compounds of transition metals are coloured. As light
passes through a material, it absorbs some of the wavelengths induced by electronic
excitation [158].

In this work, the concentration of hexavalent chromium was analysed by means of a
SPEKOL 11 spectrophotometer (Carl Zeiss Jena, Germany). The method is based on
the colorimetric determination of the Cr(VI) content. Dissolved hexavalent chromium
is reacted with 1,5-diphenylcarbazide dye in acidic conditions (pH level 4-7). As
a result Cr(VI) is reduced to Cr (III), and 1,5-diphenylcarbazide (C13H14N40)
is oxidised to 1,5-diphenylcarbazone (C13H12N40) (Reaction 3.4). The obtained

complex has a magenta (reddish-purple) colour [159].

20r04>~ +3C13H14N4O +8HT — [Cr*T(C13H12N40)2] " (3.4)

According to the literature [155], when the colour observed is violet, the wavelength
is 520-550 nm, and the absorbed colour is yellow-green. The optimal wavelength to
measure this absorbance is 540 nm and the molar absorptivity is 3.14 x 104 [160].
Therefore, the absorbance of the obtained solution was measured at a wavelength of

540 nm with the blank as a reference in a cuvette with a path length of 5 cm.

3.2.2.6 X-ray diffraction

XRD is a non-destructive method capable of characterizing crystalline materials.
It gives information on structures, phases, preferred crystal orientations (texture),

and other structural parameters, such as average grain size, crystallinity, strain,
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and crystal defects [161]. In order to study the structure of the TCC coating, an
X-ray diffractometer Bruker AXS D 5000 operating with Cu-Ka radiation and Bragg
Brentano geometry was used to analyse a sample area of 1 cm?. The XRD pattern
was recorded with a step size of 0.02° for 26 ranging from 20 to 100° and a measuring

time of 1.4s per step.

3.2.3 Corrosion characterization
3.2.3.1 Neutral salt spray corrosion test

NSS is one of the most widely used accelerated tests for evaluating the corrosion
resistance of coatings on metals [162, 163]. The aim of this accelerated test is to
evaluate the relative corrosion resistance of samples in a corrosive environment that
try to mimic severely corrosive conditions. Test specimens are placed in an enclosed
chamber and exposed to a continuous indirect spray of sodium chloride-based fogs
with a pH range between 6.5 and 7.2. The spray of salt water solution falls out on
to the specimens at a rate of 1.0 to 2.0 ml/80 cmga/hour, in a chamber temperature
of +35°C. The cabinet climate is maintained under constant steady state conditions.
The test duration varies typically between 8 to 3000 hours. The test for X hours is not
an indicator of any number of years that coating will resist corrosion. This standard
corrosion test follows standardized protocols including ASTM B117 [48] and DIN
50021 [164] for conducting the test and evaluating the results. The above-mentioned
standards have been accepted by the automotive industry [165]. Thus, although
there is not enough evidence to prove that this test generates consistent reproducible

results, NSS test has been used continuously.

The NSS test was conducted in this work not only to evaluate the corrosion
resistance of TCC coating (Section 6.1), but also to determine the formation of
Cr(VI), when TCC coatings are kept in the NSS chamber for 24 hours (Section
7.3.2).
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3.2.3.2 Potentiodynamic polarization curves and electrochemical

impedance spectroscopy

The corrosion protection of TCC films was assessed by potentiodynamic polarization
and electrochemical impedance spectroscopy. The measurements were done with
a BioLogic SP-150 potentiostat, using the commercial software package EC-LAB
(version 10.32). The tests were carried out in a three-electrode corrosion flat cell kit
from Biologic with a contact surface area of 1 cm?. The potential of the working
electrode was measured against a Saturated calomel electrode (SCE) (4241 mV
vs Standard hydrogen electrode (SHE)), and a platinum mesh was used as the
auxiliary electrode. The reference electrode was fixed as near as possible (~ 5 mm)
to the working electrode to minimize the IR drop. The potentiodynamic polarization
experiments were performed in a naturally aerated 3.5 wt% NaCl aqueous solution
at a controlled temperature of (~40°C) and pH around 6 (very similar to the
environment of a NSS chamber). To allow the working electrode to reach a steady-
state, the OCP was monitored for 30 minutes (until stable) after immersion of the
working electrode in the corrosion cell and prior to the beginning of each test. The
potentiodynamic polarization with a scan rate of 0.167 mV /s was performed from a
cathodic potential of — 250 mV to 250 mV with respect to the OCP.

To perform the EIS analysis, the following procedures were performed: (i) 30
min OCP measurement; (ii) EIS measurement with a sinusoidal 10 mV voltage
perturbation with frequencies ranging from 10° to 10~2 Hz at the OCP level. The
EIS experiments as well were performed in a naturally aerated 3.5 wt% NaCl aqueous
solution at a controlled temperature of (~ 40°C) and pH around 6. Despite the fact
that for the NSS test 5 wt% NaCl is used, a lower concentrated NaCl solution was
used for electrochemical tests to reduces the degradation processes kinetics and to
better understand the electrochemical behaviour of TCC layers [68]. Impedance
spectra were modelled using an equivalent circuit analysis and complex non-linear
least-squares fitting of the data to a suitable equivalent circuit. All tests were

repeated ten times for each sample to test reproducibility.
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3.2.4 Surface characterization
3.2.4.1 Contact angle

To measure the wettability of a surface, the water contact angle technique is commonly
used. This method provides information about hydrophobicity or hydrophilicity of a
solid surface which plays a crucial role in the interaction solid surface with liquids
[166]. The contact angle between a liquid and a solid is the angle within the body of
the liquid formed at the gas-liquid-solid interface [167]. As can be seen in Figure
3.9, when the liquid spreads on the surface, a small contact angle is formed; while,
when the liquid drops on the surface, a large contact angle is formed. Wetting of
a solid surface by liquid can be quantitatively explained from the tangential angle
at liquid—solid—vapour interface liquid (droplet profile). This angle of contact (6,)
is expressed as the Young’s angle (Figure 3.9) and is obtained by a mechanical
equilibrium (Equation 3.5) among the three parameters defined as: the liquid surface

tension (Y1), the solid surface tension (T gy ), and the liquid-solid interfacial tension
(Tsr)-

Yoy =Yg+ Yrycosl, (3.5)

(a) ©<90°C (b) © =90°C (c) ®>90°C

Vapor

Figure 3.9 Schematic of a contact angle formed by the sessile liquid drops method on a
TCC c coating surface

To verify the wettability of the coating surfaces, contact angles were obtained
using a Kriiss Drop Shape Analyser (DSA 10, Kruess GmbH, Hamburg, Germany)
with analytical grade DI water and diiodomethane (>99%, Acros Organics, Geel,
Belgium). Initial drops of 3ul. were dispensed onto the solid surface and their

drop shape profiles were fitted with the "sessile drop" method in the software. A
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motor-driven syringe slowly increased the volume of the test liquid droplet to enable
the determination of the contact angle, 6,. The needle tip remained immersed within
the top half of the droplet. The shape of the droplet was monitored with a CCD
camera and contact angles were determined using the Drop Shape Analysis software
(DSA version 1.0, Kruess). The angles were fitted with the tangent method for both
left and right sides of the drop (Equation 3.6)

f(x) =a+br+cz™ +d/Inz +e/z? (3.6)

This curve is then differentiated, and the gradient at liquid—solid—vapour interfacial
point () is calculated. Ten contact angles at different positions of 3 surfaces for

each coating were measured in the open air at ambient conditions (T = 20 4+ 2°C).
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4 Characterization of Zn layer

4.1 Morphology of the Zn layer

Low magnification of a top-plane FIB-SEM micrograph of the alkaline Zn plated
steel is shown in Figure 4.1 (a). At some spots, small deposit structures coalesced
on top of the surface. The surface morphology at higher magnification (Figure 4.1

(b)) shows no visible sign of grain-like structures or boundaries.

Figure 4.1 FIB-SEM micrograph of alkaline zinc electro-deposited steel (a) low magni-
fication of as-received sample, (b) high magnification of as-received sample,
(c) low magnification of heat-treated sample, (d) high magnification of the
heat-treated sample
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To study the influence of elevated temperature on the Zn surface structure, the
FIB-SEM was carried out after the Zn plated steel was kept in an oven for 6 hr
and 210°C. The surface structure of the heated Zn layer is shown in Figure 4.1 (c)
with low magnification and Figure 4.1 (d) with high magnification. As can be seen,
the number of protrusions on the surface was increased in the heated sample in
comparison to the non-heated (deposited) sample. The images (Figure 4.1 (¢) and
(d)) indicate that a Zn surface was covered with random nodular shape after heat
treatment. The formation of such a structure also was seen in previous studies [29,
168] and is categorized as "curved whiskers" [168, 169]. Electroplated Zn coatings
have been identified to be prone to whiskers growth [170].

Zinc whiskers were observed from Zn electro-deposits following exposure to thermal
treatment (150°C for 1 h), furthermore, they were protruded out of CCC and TCC
surfaces [29]. However, elemental analysis and grain pattern investigations of the

above-mentioned study failed to discover the cause of Zn whisker initiation.

It was suggested that the temperature, zinc coating thickness, type of substrate,
and residual compressive stress (both micro-stress and macro-stress) are the primary
influencing parameters on the formation of zinc whiskers [170]. Many of the suggested
factors for the formation of Zn whiskers were interdependent, and there are not many
investigations carried out on the role of parameters. However, there is no concrete
agreement among the scientist for the growth of Zn whiskers. Therefore, there is no
generally accepted mechanism for the formation and growth of zinc whiskers [169,
170].

To observe the cross-section and thickness of the zinc electro-deposited steel, the
sample underwent the cryo-freeze fracture preparation process (Section 3.2.1.1). A
cross-sectional view of the Zn layer is indicated in Figure 4.2 (a). A region composed
of columnar grain with vertical grain boundaries can be distinguished in the Zn
coating. This structure was also observed in a previous study [171] which investigated
the Zn coating structure with Electron backscatter diffraction (EBSD). A Band
contrast (BC) image corresponding to an area by EBSD of this study is shown in
Figure 4.2 (b). This picture indicated the steel substrate at the bottom of the sample,

and two regions in the Zn coating one consisted of columnar grain with vertical grain
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boundaries and one belong to larger grains at the root of the whisker with oblique

grain boundaries [171].

Inclusion

Steel substrate  {__]

Figure 4.2 (a) SEM analysis of the Zn layer cross-section of the current study, (b)EBSD
pattern quality map depicting the grain structure of the Zn-coating on the
sample extracted at the root of a whisker of another study [171]

The morphology and structure of the TCC-treated electroplated Zn steel will be
discussed in detail in the next chapter (chapter 5). However, in the following, there
will be a short introduction of the TCC-treated morphology in the context of Zn

underneath layer.

Figure 4.3 shows the SEM images of a deposited TCC-treated (Cr + F + Co)
electroplated Zn steel at two different positions ((a) and (b)), and two positions of
the same heat-treated sample at two different positions ((c) and (d)). As can be

seen, the number of protrusion structures was increased after heat treatment.

Figure 4.4 (a) and (b) show the SEM images of another TCC-treated (Cr 4+ Ox
+ Co) electroplated Zn steel at two different positions. The SEM images of the
same heated sample at two different positions are shown in Figure 4.4 (c) and (d).
So, it can be seen that the size of the protrusion structure was increased after heat
treatment. However, these structures are not covering the whole surface of the TCC

surface.

Taking the same magnification of images in both pictures (Figure 4.3 and Figure

4.4) into account, it is obvious that the number of protrusion and its size is increased
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Figure 4.3 SEM images of the TCC-treated (Cr + F + Co) electroplated Zn steel at
two different positions of (a) and (b) as-received, (c) and (d) heat-treated
specimens

after the heat treatment in Figure 4.3 and Figure 4.4, respectively. Another study
[29] was shown that the number and size of protrusions on the Zn coating surface
which showed whiskers was increased after heat treatment. The formation of Zn
whisker is not the aim of this study. However, it is worth mentioning that these
whiskers or protrusions do not occur in all cases. Moreover, to study the TCC

coating, it was attempted to choose Zn surfaces with less of these effects.

4.2 Elemental composition of the Zn layer

To get an idea about the composition of the Zn layer, EDXS was carried out around

(Figure 4.5 (a)) and on (Figure 4.5 (b)) the protrusion structure of the Zn surface.

Table 4.1 (a) lists the composition measured by EDXS of a point around (Figure
4.5(a)) and on (Figure 4.5(b)) the protrusion of the Zn layer. As can be seen, Zn,
C, and O were identified in both cases (Table 4.1 (a) and (b)). The Zn amount

was 95 wt% and oxygen content was 3 wt% for the point around the protrusion
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Figure 4.4 (a) and (b) SEM images of an as-received TCC-treated (Cr + Ox + Co)
electroplated Zn steel at two different positions, (c¢) and (d) SEM images of a
heated TCC-treated electroplated Zn steel at two different positions
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Figure 4.5 EDXS analysis of (a) a point around the protrusion, and (b) a point on the
protrusion
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(Figure 4.5 (a)) and these values were respectively 97 and 2 wt% for the point on the
protrusion (Figure 4.5 (b)). The amount of carbon was double for the point around
the protrusion (Figure 4.5 (a)) in comparison to the point on it (Figure 4.5 (b)).
A previous study [29] also showed a similar results for the elemental composition
of the Zn whiskers over its surface. It was agreed that slight localised differences
might occur due to absorbed electroplating additives. In both cases (this study and
a previous one [29]) a Zn content of more than 90 wt% was found on and around
the whisker. However, Zinc whisker studies by Lahtinen et al. [172] indicated the
elemental composition changes with Cl and S on and around a hot-dip galvanizing
whisker over long term growth (20 years) in an active environment. These impurities
were ascribed to airborne pollutants. The experimental circumstances in this work

would preclude a similar condition.

Table 4.1 The composition measured by EDXS of (a) a point around the protrusion of
the electroplated Zn surface in Figure 4.5 (a), and (b) a point on the protrusion
of the electroplated Zn surface in Figure 4.5 (b)

Element (a) wt% (b) wt%

Zn 95 97
C 2 1
O 3 2

4.3 X-Ray Diffraction analysis of the Zn layer

Figure 4.6 shows a XRD pattern of the electroplated Zn layer. The Bragg reflections
with 26 values of 56.602° and 70.661° correspond to (110) and (110) planes that
are typical for Zn and ZnO, respectively [173]. Both diffraction peaks were indexed
according to the hexagonal lattice of Zn and ZnO. Moreover, the intensity of the
Zn peak is much higher than ZnO. Apart from these peaks, no impurities were
found, implying a good crystalline structure of the samples. It can be seen, that
this Zn layer has a strong preferred orientation (for Zn at 70.661° relating to (110)).
Therefore, only one set of specific lattice planes can be detected. XRD was also used
to characterize the TCC films. However, because these films were much thinner than

the Zn plated layer, the XRD spectra of the zinc layer was more predominant than
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the one from the TCC layer. That is why the diffraction patterns of the TCC films
were the same as the one for the Zn layer. Two examples of the XRD analysis of the

TCC films are presented in Appendix 3 in Figures A.2 and A.3.
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Figure 4.6 XRD analysis of the Zn layer

4.4 Atomic force microscope analysis for the Zn

layer

An AFM image of the electroplated Zn surface is shown in Figure 4.7. The Zn layer
seems relatively smooth, with the mean roughness of 10.6 4+ 0.4 nm (obtained from

the NanoScope Analysis 1.5 Software, mentioned in Section 3.2.1.2).
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65.0 nm

-65.0 nm

Figure 4.7 AFM micrograph of the alkaline Zn-plated steel a surface area of 10 X 10 pm?
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5 Physical and Chemical
Characterization of Trivalent
Chromium-based Conversion

Coatings

5.1 Morphology and physical characteristics

5.1.1 Focused ion beam scanning electron microscopy

Figure 5.1 depicts the FIB-assisted cross-sectional SEM micrographs corresponding
to the layers formed in different treatment solutions with the immersion time of
60s. The TCC coating shows a two-layered structure comprised of an outer thin
barrier layer plus an inner thicker layer with a porous structure. Previous work also
showed a two- [36, 90, 119] or three- [104] layered structure of the TCC coatings. The
as-prepared TCC coating on zinc-plated steel was reported [104] as being composed of
three layers; an inner layer contacting the substrate, an intermediate layer, and a thin
outer layer with a thickness of ca. 20-40 nm. The middle layer, which contributed
to approximately two-thirds of the total coating thickness, was observed as more
porous than the other two layers. As can be seen in Figure 5.1 (a) and (b) the inner
film formed in the oxalate-containing passivating bath covered the zinc substrate
with relatively uniform and less porous morphology. However, the images in Figure
5.1 (¢) and (d), represent a non-uniform structure with cavities for the conversion

coatings produced by fluoride-containing treatment solutions. After heat treatment,
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Coatings

the coating was still composed of two layers (Figure 5.1 (e)). However, both the
inner and outer layers became denser as compared to the as-prepared counterpart.
Another study [104] also showed that the size and the number of cavities in the
TCC coatings were reduced after heat treatment. The thickness of the coatings was
measured from the cross-sectional micrographs, and the average of the summation of

the inner and outer thickness of each coating is listed in Table 5.1.

The results indicate that the films formed in the fluoride-containing solution
have a higher thickness than the layers formed in oxalate-containing treatment
solutions (430 nm for Cr + F, 230 nm for Cr 4+ Ox). Additionally, layer thickness
measurements reveal that adding cobalt to the passivating solution did not affect the
coating thickness significantly (220 and 240 nm for the films with Co). Furthermore,
comparing Figures 5.1 (c¢) with (d), or (a) with (b), it is noticeable that the number
of micropores was decreased by adding cobalt to the treatment solution. The cross-
sectional analysis (Table 5.1) reveals that the layers were dehydrated by the heat
treatment and their thickness decreased (e.g. the thickness of the sample Cr +
Ox + % Co was reduced from 220 nm to 185 nm). Moreover, the layer formed in
cobalt-containing solution had undergone less thickness reduction during annealing,
compared to the film produced by the cobalt-free solution (e.g. from 430 nm to 280
nm for the sample Cr + F in comparison with 340 to 300 nm for the sample Cr + F
+ Co). This can be attributed to the high density of pores in cobalt-free samples

that shrank during heat treatment.

Table 5.1 Thickness of TCC layers, as-prepared and heated samples are presented as the
average + standard error of six measurements

Specimen Average thickness (nm)
As-prepared Heated
Cr + Ox 230 + 11 160 + 7
Cr 4+ Ox + 1/2Co 220 + 10 185 £ 8
Cr + Ox + Co 240 £+ 12 200 £ 5
Cr+ F 430 + 22 280 £ 10
Cr+ F +1/2Co 330 + 13 290 £ 9
Cr+ F + Co 340 £+ 17 300 £ 6
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Figure 5.1 FIB-SEM cross-sectional view images of as-prepared TCC coatings (a) Cr +
Ox, (b) Cr + Ox + Co, (¢) Cr + F, (d) Cr + F 4 Co, (e) Cr + Ox after heat
treatment. Indicated numbers are (1) Zinc substrate, (2) TCC inner layer, (3)

TCC outer layer, (4) W layer
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Coatings

5.1.2 Atomic force microscopy

Since the surface of the formed TCC layers was non-conductive, AFM has the
advantage of providing topographical images of the coating surface without applying
a conductive coating (e.g. tungsten sputtering for SEM images in Figure 5.1). Top
view AFM images (Figure 5.2) are shown over a 10 x 10 pm? area. Images reveal
smoother morphologies with less microstructural defects for the coatings formed in

cobalt-containing treatment solutions (Figure 5.2 (b) and (d)).

65.0 nm

65.0 nm

Figure 5.2 AFM top-view images of TCC coatings with a surface area of 10 x 10 pm? (a)
Cr+ Ox, (b) Cr+ Ox Co (¢) Cr + F ,(d) Cr + F + Co

Considering Figure 5.2 (c), at first glance, the observed shape might be mistaken
with an artefact of the AFM cantilever. Figure 5.3 (a) and (b) present the SEM
top-view images of the same sample with low and high magnification, respectively.
Figure 5.3 (a) indicates that the surface was formed of a sun-cross like structures
with different sizes, approximately in the range of 1-2 pm (Figure 5.3 (b)). These

structures conform to the surface topography seen in Figure 5.2 (c). Therefore, SEM

LA sun cross is a solar symbol consisting of an equilateral cross inside a circle. The design is
frequently found in the symbolism of prehistoric cultures [174].
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and AFM top-view images show similar structural patterns for the film formed in

the fluoride-containing solution (Cr + F).

Figure 5.3 Top-view SEM images of Cr + F surface without being sputtered (a) with
low magnification, (b) with high magnification

Average roughness values of the surface obtained from the AFM topographical
images are listed in Table 5.2 (discussed in Section 3.2.1.2). The non-passivated
zinc surface showed a relatively low roughness (10.6 nm). Regarding the passivated
samples, the results imply that cobalt addition to the treatment solutions reduced
the Rg value of the layer (e.g. from 15.3 nm for the film produced by the fluoride-
containing treatment solution (Cr + F) to 7.6 nm for the film made by the same
solution plus the addition of cobalt (Cr + F + Co)).

Table 5.2 Average roughness of TCC coatings measured over an area of 10 x 10 pm? are
presented as the average + standard error of six measurements

Specimen Ra (Average roughness) (nm)
Zinc substrate 106 £ 0.4
Cr + Ox 13.0 £ 0.6

Cr + Ox + 1/2Co 12.1 +£0.3
Cr + Ox + Co 10.3 = 0.2

Cr +F 15.3 = 0.8
Cr 4+ F 4+ 1/2Co 98 £ 0.2
Cr+F + Co 76 £04
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5.1.3 Influence of chromium amount on the formed layers

The effect of a higher amount of Cr in the TCC treatment solution on the structure
of the formed layer was also investigated. Figure 5.4 shows the SEM cross-sectional
images of the layer formed in the TCC treatment solution with double the amount
of Cr (samples 7 and 8 in Table 3.2). Figure 5.4 exhibits the structure of samples
2Cr + 20x (Figure 5.4(a)) and 2Cr + 20x + 2Co (Figure 5.4(b)). It is obvious that
the formed films consist of an inner and an outer layer (the same as in the cases
of previous samples, Figure 5.1). The two-layered structure of the film can also be
seen for the layers that were heat-treated (Figures 5.4(c) and 5.4 (d)), which is also
consistent with the previous result (Figure 5.1 (e)). Table 5.3 listed the average
thickness measured from the SEM cross-section. As can be seen, in good agreement
with the results that were shown in Table 5.1, the presence of Co in the treatment
solution does not result in a higher thickness of the film (e.g. 290 nm for the 2Cr+
20x layer in comparison with 218 nm for the 2Cr + 20x + Co layer). In the same
trend as that observed in Table 5.1, the average thickness of the layers was also
reduced following a heat treatment (e.g. 290 nm for the prepared 2Cr+ 20x layer
in comparison with 237 nm for the heated one). As expected, the thickness of the
film was increased by increasing the Cr amount in the TCC treatment solution (e.g.
290 nm for 2Cr + 20x in compared with 230 nm for Cr + Ox). However, for the
Co-containing layer, this increase was not observed (i.e. 218 nm for 2Cr + 20x +
Co, while 240 nm for Cr + Ox + Co).

Table 5.3 Thickness of TCC layers with higher Cr amount, as-prepared and heated
samples are presented as the average + standard error of six measurements

Specimen Average thickness (nm)
As-prepared Heated

2Cr + 20x 290 + 6 237+ 9

2Cr + 20x + Co 218 £ 17 173 £ 3

AFM analysis was performed to compare the surface of oxalate-containing TCC
coating with a low and high amount of Cr. Figure 5.5 shows the AFM top-view
images of these layers with a surface area of 5 X 5 pm?. In accordance with the images

observed in Figure 5.2, comparing Figures 5.5 (b) and (d) implies that adding Co to
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5.1 Morphology and physical characteristics

Figure 5.4 SEM cross-sectional view images of TCC coatings (a) 2Cr+ 20x, (b) 2Cr +
20x + Co, (c) 2Cr+ 20x (heated), (d) 2Cr + 20x + Co (heated)
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the TCC treatment solution produces a smoother surface. Besides, the roughness
value of these layers, which were obtained from AFM images, are listed in Table
5.4. The results indicate that adding cobalt to the treatment solution reduces the
roughness. The increase of Cr(III) content to the TCC solution also seems to reduce
the roughness of the film, probably through producing a more coherent film. For
example, the roughness value is ~ 12 nm for Cr + Ox and ~ 8 nm for the 2Cr +
20x. Therefore, adding Co to the treatment solution reduced the roughness of the
layer from ~ 8 nm for 2Cr + 20x to ~ 5 nm for 2Cr + 20x + co (the same as the

results shown in Section 5.1.2).

Figure 5.5 AFM top-view images of TCC coatings with a surface area of 5 X 5 pm? (a)
Cr + Ox, (b) 2Cr + 20x, (c) Cr + Ox + Co, (d) 2Cr + 20x + Co
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Table 5.4 Roughness of the oxalate-containing TCC coatings with low and high Cr
measured over an area of 5 x 10 jum? are presented as the average + standard
error of four measurements

Specimen Ra (Average roughness) (nm)
Cr 4+ Ox 12.1 £ 0.3

Cr + Ox + Co 73 £ 04

2Cr + 20x 8.3 £ 0.5

2Cr + 20x + Co 54 4+0.3

5.2 Influence of immersion time and process

temperature

To shed light on the growth kinetics of the TCC coatings, the effects of immersion
time and bath temperature on the layer thickness and the amount of deposited
chromium were investigated. Firstly, the zinc layer was subjected to the passivating
bath for three different immersion times (40, 60 and 80s at 40°C). The thickness of
the formed layers was evaluated by means of FIB-SEM and the amount of deposited
chromium was measured by EDXRF. Figure 5.6 indicates that for all cases, the
increase of immersion time from 40 to 60s, led to higher thicknesses and chromium
content. However, the immersion time of 80s did not in all cases produce a thicker
film. This implies that a part of the passivated film might have been dissolved
between 60 to 80s. Despite a correlation between thickness and Cr content, adding
cobalt to the fluoride-containing solution did not increase the thickness of the layers
formed during any immersion time, although it increased the amount of deposited

Cr in the layer.

Additionally, the influence of bath temperatures was studied by applying solution
treatment for the 60s of immersion time at three different temperatures (3, 18, and
40°C). Figure 5.7 indicates that the layers formed in treatment solutions at 3°C
with the same complexing agent, had almost the same amount of deposited Cr and
layer thickness. With increasing temperature from 3 to 40°C, the thickness of the
coating, as well as the amount of deposited Cr was increased. For example, adding

cobalt to the oxalate-containing treatment solution showed higher Cr content as well
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Figure 5.6 Effect of passivating immersion time on the formation of TCC coatings,
thickness(nm) from cross-section FIB-SEM, and Cr amount(mg/ m2) from
EDXRF coatings

as a higher thickness of the formed layers with increasing bath temperature. The
same applies to the layers formed in fluoride-containing solutions, except for the fact
that for this case the thickness did not increase with increasing the deposited Cr. In

summary, the rate of film formation was enhanced at a higher temperature.

5.3 Chemical characteristics

5.3.1 Inductively coupled plasma optical emission

spectrometry

To investigate the composition of layers, the solution from leaching the TCC coating
in 10 vol% HCI was analysed by ICP-OES (Table 5.5). The data indicate that
the amount of chromium observed in the extracted solution of the films formed
in the fluoride-containing treatment solution (e.g. 106.6, 109.4, and 110.4 mg/L)
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Figure 5.7 Effect of passivating bath temperature on the formation of TCC coating,
thickness(nm) from cross-section FIB-SEM, and Cr amount(mg/ mz) from
EDXRF coatings

was more than in the case of the oxalate-containing solution (e.g. 60.8, 64.9, and
68.2 mg/L). However, more cobalt was incorporated into the layers formed in the
oxalate-containing treatment solution (e.g. 12.1 mg/L for Cr +Ox + Co sample,
while 6.3 mg/L for Cr + F + Co sample). As expected, the amount of detected Co
in the samples produced in TCC baths without this component (i.e. Cr + Ox and
Cr +F) was less than the Limit of detection (LOD) of the device. For the treatment
solutions with either complexant, the Cr content of the layer was higher when cobalt
was also present in the passivating bath (e.g. 60.8 mg/L for Cr + Ox and 68.2 mg/L
for Cr + Ox + Co). This effect was also observed in Figure 5.7 for bath temperature
of 18 and 40°C. For both of these temperatures, and either of the complexing agents,

the amount of deposited Cr was more, when Co was also present in the TCC bath.
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Table 5.5 Total dissolved cobalt and chromium of leached TCC coatings, analysed by
ICP-OES are presented as the average + standard error of ten measurements

Measured amount of cobalt and chromium

Specimen Cr (mg/m?) Co (mg/m?)
Cr + Ox 60.8 + 0.4 <LOD

Cr 4+ Ox + 1/2Co 64.9 £ 0.2 59 4+ 0.3

Cr + Ox + Co 68.2 £ 0.3 12.1 £ 0.2
Cr+ F 106.6 + 0.3 <LOD

Cr 4+ F 4+ 1/2Co 109.4 + 0.2 29+ 0.2

Cr + F + Co 110.4 £ 04 6.3 + 04

Remark: LOD is 0.05 pgcm =2

5.3.2 Auger electron spectroscopy

Depth profiling was carried out by evaluating the Auger intensities of the major
constituent elements in the layer. The Auger parameters for the measured elements
are listed in Table 5.6. As can be seen from Table 5.6, there are two peaks allocated
to cobalt, at Col(L3M23M45) ~ 705 eV and Co2 (L3M4g5M45) ~ 772 eV. There
is another peak, F-Co at 660 eV, which is a superposition of two Auger peaks of
the F KLL Auger peak and the Co LoM23M23 Auger peak. In the case of fluoride-
containing samples, the peak reflects the F concentration because the part of Co
which contributes to this peak is negligible. AES depth profile of the passivated
samples presented Zn, O, C, and Cr as the primary coating elements. For all coatings,
the signal of zinc reached a constant value as the oxygen signals decayed to zero at
the same depth. The Auger depth profiles were quantified by using the elemental
sensitivity factors of the spectrometer software (Table 5.6). The quantitative depth
profiles were once evaluated using the Col peak and another time using the Co2
peak. The depth scale was calculated by converting the sputtering time scale into
the depth with the known thickness of each sample from FIB-SEM. The sputtering
time at which Zn atomic concentration reached 80% was specified as the conversion
coating thickness. The quantitative Auger profiles of the four samples are depicted

in Figure 5.8.
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Table 5.6 Auger parameters for the measured elements with the elemental sensitivity
factors obtained from the Avantage processing software

Element Auger transition Auge? p cak Measured range Sensitivity
position factor
C KLL ~262 eV 230 eV ... 287 eV 0.6
O KLL ~514 eV 440 eV ... 800 eV 0.96
Cr L3M45M45 ~575 eV 440 eV ... 800 eV 0.09
F KLL ~660 eV 440 eV ... 800 eV 0.38
Co L3M23M45 (Col) ~T705 eV 440 eV ... 800 eV 0.41
Co L3M45M45 (Co2) ~TT72 eV 440 eV ... 800 eV 0.52
Zn L3M45M45 ~993 eV 930 eV ... 1040 eV 0.58
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Figure 5.8 Quantitative Auger depth profiling of TCC coatings, (a) Cr + Ox, (b) Cr +
Ox + Co, (¢) Cr + F, (d) Cr + F + Co
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The oxygen content within the layer increased initially compared to the level
at the surface, then stabilized before declining at a depth corresponding to the
zinc substrate. The concentration of all elements except zinc decayed with further
depth profiling into the coating. For almost all samples, carbon was only seen
at the very surface, which might be the consequence of exposure to the ambient
atmosphere. In the case of fluoride-containing treatment solution, the results indicate
enrichment of fluorine with a comparable amount of chromium in the layer. It is
proposed that the layers consisted of a mixture of metal (Cr, Zn and perhaps Co)-
oxide, hydroxide, fluoride, and possibly oxyfluoride species. The Cr, F and Co
concentrations of the relevant samples are compared in Figure 5.9. The AES results
do not indicate a significant difference in Cr intensity between the layer formed in
fluoride and oxalate-containing baths (Figure 5.9 (a)). Besides, the layer formed in
the treatment solution including cobalt and fluoride contained clearly more fluorine
than the one prepared by the fluoride-containing solution without cobalt (Figure
5.9(b)). Large negative values of the free enthalpy of formation of CrF3 (-1088.0
kJ/mol) [175] and former XPS investigations that found CrF3 in the TCC coating
[176] suggest that a part of chromium is bonded with fluoride. Moreover, cobalt was
detected in the coatings formed in the treatment solution containing cobalt. The
Co concentration was calculated with the Col ~ 705 eV (Figure 5.9 (c)) as well as
the Co2 ~ 772 eV (Figure 5.9 (d)). In good agreement with ICP-OES results, the
cobalt-fluoride-containing sample contained significantly less cobalt compared with

the sample formed in the treatment solution containing oxalate and cobalt (Figure

5.9 (c) and (d)).

When the level of Cr in the TCC coating on Zn and on the Al are compared, it
can be seen that the level of Cr in the TCC coating was quite high (40-50 at%).
This is significantly higher than the Cr levels in the TCC coatings (ca. 10 at%)
formed on aluminium [41, 43, 44]. The underlying reason might be that the TCC
process is closely related to the dissolution of the substrate. The Ky, of Zn(OH)2
at 25°C is 3x 10717 [175] and the one for ZnO is 3.86 x 10710 [177], while, the
Kgp of AI(OH)3 is 3 x 10734 [175], and aluminium oxide is insoluble in water [178].
Consequently, the solubility of zinc coating in an aqueous solution and especially
in an acidic medium is higher than the solubility of aluminium layer. Therefore, as

discussed in Section 2.6, the formulation of a conversion coating varies depending on
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the substrate used. The TCC bath designed for the Al substrate is usually based on
zirconium (Zr) and/or titanium (Ti) [33, 38, 90, 179], which is why there is less Cr
in the resulting layer. Basically, the level of Cr in the TCC coating is proportional
to the Cr concentration in the treatment solution. However, finding the proportional
relationship between the amount of Cr in the treatment solution and that of deposited
on the substrate in the literature is not easy. The reason is that many researchers
investigated proprietary passivating baths [36, 40-44]. The drawback of the research
on commercial TCC coatings is that the exact composition and especially the amount
of Cr in the passivating bath are usually unknown. Moreover, immersion time also
has a large effect on the Cr content in the layer. As an illustration, the Cr 2p3/2
spectrum fitting for the chromate layer on the Zn substrate of a previous study
showed that the atomic percentage of Cr in the layer with a CCC processing time of
30 to 60s was increased [180].

Comparing the Cr and Co concentration in the treatment solution to the measured
atomic concentration of these elements from AES, it is visible that the ratio of Cr
concentration (0.08 mol/L) to the Co concentration (0.004 mol/L) in the treatment
solution, is comparable to the ratio of detected Cr (40-50 at%) to that of cobalt (~
5 at%) in the formed layer.

5.4 Discussion

Considering the FIB-SEM (Figure 5.1) and AFM (Figure 5.2) images, the TCC
conversion coating formed in different passivating baths showed that specifically
adding cobalt to the treatment solution reduced the density of microstructural
defects. Moreover, the film formed in the fluoride-containing solution, and without
cobalt, had the highest thickness and number of micropores. Furthermore, oxalate-
containing treatment solutions produced uniform films. ICP-OES results indicated
higher incorporation of chromium for films formed in fluoride-containing solutions
and more cobalt incorporation for the layers produced by the oxalate-containing
solutions (Table 5.5). A higher amount of Co in the layer formed in the Ox-containing
solution was also proven by AES (Figure 5.9). Thus, the ingredients of the treatment
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solution play a crucial role in the formation mechanism plus film composition and

subsequently its structure.

Formation of the TCC coatings: Previous studies have suggested that when
the zinc electroplated part is immersed in a Cr(III)-based passivation bath, the
substrate starts to dissolve, zinc oxidation (reaction 5.1), and the cathodic reduction
of hydrogen (reaction 5.2) and nitrate occur [24, 29, 102, 181, 182].

Zinc Oxidation:
Zn(s) == Zn’" (aq) +2e~ (5.1)

E=0834V, T = 40°C , E° = -0.76 vs NHE/V [96]

Hydrogen evolution:
20" (aq) +2e¢~ == H2 (g) (5.2)

E =-0.111 V, T = 40°C, E° = 0 vs NHE/V [96]

The standard potentials of the reactions involved during the cathodic reduction of
nitrate ion vs SCE in acidic solutions range from +0.775 to +1.246 V (Table 5.7)
[96, 183], which are much more noble than the reversible potential for the Hydrogen
evolution reaction (HER). Therefore, it can be deduced that nitrate is a stronger
oxidizing agent and from a thermodynamic point of view, the cathodic reduction of

nitrate would be preferred compared to hydrogen evolution in an acidic electrolyte.

However, the standard potentials of the reduction of nitrate ion vs the SCE in
alkaline solutions were reported as less noble than (Reaction 5.3) or almost the same
as (Reaction 5.4 ) the reversible potential for the HER. Nevertheless, the extent
of hydrogen evolution is also governed by the kinetics of the hydrogen reduction

reaction on the substrate [184].

2NO3 (aq)+2H20+2e~ m—= N204(g)+40H (aq) (5.3)

E° = -0.806 vs SCE/V

NO3™ (aq) + H20+2e¢~ == NO2 ™ (aq) +20H (aq) (5.4)
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E° = 40.01 vs SCE/V

Table 5.7 Standard potentials vs SCE/V for the reduction of nitrate in acid solutions

No. Possible reduction of nitrate reactions E° vs SCE/V
1 NO3 +10H" +8¢ = NH4" +3H20 +0.875
2 2NO3 +12HT +10e == N2(g)+6H20  +1.246
3 2NO3 +10HT +8e 7= N20 (g) +5H20  +1.116
4 NO3 +4HT +3e = NO(g)+ 2H20 +0.957
5 NO3 +3HT +2e¢ = HNO3 + H20 +0.94
6 NO3 +2HT +e 7= NO2(g) + H20 +0.775
7 2NO3 +4HT +2e == NO0204(g) +2H20 +0.803

All the cathodic reactions (including nitrate and hydrogen reductions) induce a
local pH increase at the surface [39, 185, 186]. A previous study [185] exhibited
2-6 units of interfacial pH rise depending on the coating system. Therefore, due
to the consumption of protons at the surface or the formation of hydroxide ions,

precipitation of metal hydroxide on the substrate is facilitated.

To shed light on the possible composition of the TCC layer formed on the Zn
substrate, the chemical speciation of the system with pH ranging from 0.0 to 14.0 was
calculated using Visual MINTEQ software (version 3.1, Stockholm, Sweden, model by
KTH, Jon Petter Gustafsson). First of all, it is worth to study the components that
are probable to deposit from the relative bath. The kinetic of deposition depends
on wetting, supersaturation, and temperature [187]. In chemical thermodynamics, a
solid phase (A,By) dissolves or precipitates according to the reaction Equation 5.5
(the law of mass action [188]).

AgBph == aA +bB (5.5)

94



5.4 Discussion

This relationship (Reaction 5.5) determines the activities at the state of equilibrium
at the given temperature. Therefore, the equilibrium constant in terms of activities

of reactants and products at equilibrium is expressed as Equation 5.6:
Kyp = {A}aeq{B}beq (5.6)

However, a real solution may not be in equilibrium. This non-equilibrium state
is described by the Ion activity product (IAP), which is the same form as the
equilibrium constant (Kgp), but involves the actual(measured) activities of species

(effective concentrations), as follows in Equation 5.7:

TAP = {A}aactual{B}bactual (57)

The ratio between the solubility products at the relevant temperature and the
activity product of ions enters the definition of the Saturation Index (SI) (Equation
5.8) [189-191].

IAP

ST =log( e
sp

) (5.8)

The SI, which also derives from the change in the Gibbs free energy (AG) during
the reaction, is used as an indicator of deposition (or corrosion) feasibility. If SI is
positive, the component is supersaturated and may deposit. When SI is equal to zero
the reaction is in equilibrium (saturated), and a negative value of SI indicates the
undersaturated condition. For the calculations of this software, the Debye-Hueckel
model was chosen to provide an approximation for the activity coefficients in solutions.
The SI distribution of Cr(III), Co(II), and Zn(II) deposition species in Cr + Ox +
Co and Cr + F + Co treatment solution for pH between 0 to 14 at temperature 40°C
is shown in Figure 5.10. As can be seen from the (SI vs pH) plots, crystalline CroO3
and amorphous Cr(OH)3 start to deposit between pH 4 to 5 in both TCC solutions.
The rest of the components seems to start to deposit in the fluoride-containing

solution slightly earlier in compared with the oxalate-containing one.
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Figure 5.10 The saturation index distribution of Cr(III), Co(II), and Zn(II) deposition
species in Cr + Ox 4+ Co, and Cr 4+ F 4 Co treatment solution for pH
between 0 to 14 and T = 40 °C using VISUAL MINTEQ software

Figure 5.11 indicates the distribution of Cr(III), Co(II), and Zn(II) species in
each TCC treatment solution for pH between 0 to 14 and at T = 40 °C that was
also calculated using Visual MINTEQ software. Figure 5.11 (a) and (b) show that
in both fluoride- and oxalate-containing solutions, Cr(OH)3 starts to form at a
pH level above 5. Cr may also be present as chromium trifluoride (CrF3) in the
fluoride-containing solution, at a pH value lower than 4 (Figure 5.11 (b)). The
plots in Figure 5.11 suggest that increasing local pH aids the formation of Cr(OH)3,
Co(OH)2, and Zn(OH)2 during the TCC conversion coating process for solutions
with both type of complexing agents (Ox and F).

Based on (XPS) results, it is proposed that the identified Cr(III) in the TCC
coating is mainly representative of an amorphous hydrated Cr(OH)3 rather than a
crystalline Cr203 [29, 180]. In brief, the chemical state of Cr(III) in the coating,
according to XPS analysis of some studies, mainly revealed as hydroxide [27, 29, 91,
119, 180, 192], oxide [27, 29, 180, 192] and fluoride [91]. In contrast to some studies
[25, 29], cobalt was detected in the layers. Given that cobalt oxalate CoC204(Ksp
= 2.9x 107Y) [175] and cobalt hydroxide (Co(OH)2)(Ksp= 5.9 x 10~1%) [175] both
have a low solubility product, the precipitation of these compounds in the layer
formed in the cobalt-containing electrolyte is foreseeable. Figure 5.11 (c) shows

that in the case of oxalate-containing solutions, cobalt oxalate and cobalt hydroxide
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Figure 5.11 The distribution of metal species in each treatment solution for pH between 0
to 14 and at T = 40 °C using VISUAL MINTEQ software (a) Cr(III) species
in Cr + Ox + Co, (b) Cr(III) species in Cr + F + Co, (c) Co(II) species in
Cr 4+ Ox + Co, (d) Co(II) species in Cr + F + Co, (e) Zn(II) species in Cr
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97



5 Physical and Chemical Characterization of Trivalent Chromium-based Conversion

Coatings

begin to form at a pH level above 1 and above 11, respectively. Figure 5.11 (e)
and (f) indicate that zinc hydroxide starts to deposit at pH values above 10 in the

oxalate-containing solution and above 8 in the fluoride-containing solution.

For nitrate reduction to happen, water in an alkaline media (Reactions 5.3 and 5.4)
and proton in acidic solutions has to be supplied (Reactions in Table 5.7) [193]. It was
shown that the potential of nitrate reduction becomes more positive in the presence
of a metal ion because it is suggested that the metal ion acts as an intermediary
for charge transfer from the electrode to the nitrate ion [194]. Liu et al. [195] by
employing the I-V curves of the ZnO films, electrodeposited from nitrate aqueous

2+ concentrations and the same NO3  concentration (1.0

2+

solution with different Zn
M), showed that the reduction of nitrate was enhanced upon increasing the Zn
concentration. Moreover, it is suggested that the rate of the nitrate reduction reaction
in an electrolyte is increased by the addition of a metal ion which can be precipitated
as hydroxide (i.e. Clr?’—i_,CoQ—i_7 and Zn2+). This was attributed to the hydrolysis
of metal ions which breaks the O-H bond in water and releases a proton [96]. The
reaction of Cr(III) hydrolysis is as follows (Reaction 5.9) [196, 197].

[Cr(H20)6)>T + H20 = Cr(H20)5 (OH)** +H30™" pKa=40  (5.9)

Ogawa et al. [193] performed alternating current (ac) polarography on nitrate
reduction in the presence of various metals and discovered a linear shift of the
reduction potential correlated to the logarithm of the stability constants for the first
hydration of the added metal cations. The results were interpreted as indicating
that hydrolysis of metal ion supplied protons to the nitrate ion throughout the
reduction process. Figure 5.10 showed that for both fluoride and oxalate solutions,
Cr precipitates on the substrate at much lower pH values (around 4) in comparison
with Co and Zn (above 8). Figure 5.12 displays the distribution of first hydration
of Cr, Zn, and Co for both Ox- and F-containing TCC solution. It appears that at
pH levels below 9 for oxalate-containing solution and below 7 for fluoride-containing
solution, the highest stability constants for the first hydration of the metal belongs

to Cr. Thus, it is suggested that in the related pH range for each treatment solution,
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the hydroxide ions which were produced by the excess nitrate reduction due to the
addition of C02+(ﬁrst hydration of Co) was used by Cr. Taking the ICP-OES results
(Table 5.5) and the deposited Cr amount from EDXRF for 18 and 40°C (Figure 5.7)
into account, that might be the reason for the higher deposition of chromium in the
films formed by the cobalt-containing treatment solution. It is suggested that the
addition of cobalt to the electrolyte provided more protons, due to the hydrolysis
of an extra metal ion (generation of H30™" the same as in Reaction 5.9), and thus
accelerated the rate of nitrate reduction (due to the more available protons (Table
5.7)). When nitrate is reduced, the interfacial pH value is increased (Reactions 5.3
and 5.4, and Table 5.7) and subsequently the precipitation of metal hydroxides is
facilitated (Figure 5.10)
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Figure 5.12 The distribution of first hydration of Cr, Zn, and Co for (a) Cr + Ox + Co
solution, (b) Cr + F + Co solution for pH between 0 to 14 and T =40°C
using VISUAL MINTEQ software

The exponential fit for the layer thicknesses that were formed during 60s of
immersion time (deposition rate) versus the reciprocal of absolute temperature
(1/T, when T is the passivating bath temperatures; 3, 18, and 40°C) for each TCC
treatment solution is shown in Figure 5.13. Employing this graph as an Arrhenius
plot and assuming Cr(OH)3 as the main component of the layer, bring about the
activation energy attributed to the formation of this compound (Reaction 5.10). As

can be seen from Table 5.8, the values indicate that the type of complexing agents
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influences the film growth by influencing the activation energy. As an illustration,
the activation energy of Cr + Ox + Co sample (21 £+ 3 kJ/mol) was higher than the
sample produced by a passivating bath with the same amount of Cr and Co, with
fluoride complexing agents (14 + 3 kJ/mol for sample Cr + F + Co). Furthermore,
adding cobalt to the oxalate-containing treatment solution did not lower the activation
energy associated with the layer formation (comparing 22 + 4 kJ/mol for Cr + Ox
to 21 £3 kJ/mol for Cr + Ox + Co), as much as it did for fluoride-containing
solution (comparing 18 + 4 to 14 + 3 kJ/mol). The lower activation energy of
fluoride-containing TCC process in comparison to the oxalate one implies the faster

growth (i.e. higher thickness) of the film during the same processing time.

Cr¥* +3(0OH)™ == Cr(OH)3 (ppt) (5.10)
Ksp = 10739, AG® = -858 kJ/mol [96]
Table 5.8 Activation energy of the film growth produced by the TCC treatment solution

is presented as the average £ standard error obtained by linear regression of
Originlab software 2017

Passivation Activation energy (kJ/mol)
Cr 4+ Ox 22 + 4
Cr 4+ Ox 4+ Co 21 + 3
Cr+F 18+ 4
Cr + F + Co 14 + 3

The presence of fluoride ions in the treatment solution is reported to activate the
surface [66, 198], besides dissolving the zinc substrate during the film formation
[66, 134, 198]. Based on the representative data (Table 5.5), the films formed in
fluoride-containing treatment agents are around 100-200 nm thicker than those
formed in the oxalate-containing solution. This effect relates to the nature of the
ligands. In a Cr(III)-based passivating bath, adding complexing agents disassembles
the stable Cr(III) aqua complex structure and increases the electrochemical activity
by forming [Cr(HQO)anLn]gfn (L, complexing agents) [199]. Thus, the lability
of the ligand with the metal ion defines the rate of Cr(III) ions precipitation on
the substrate. The order of the ligand replacement lability decreases as the ligand

field stabilization increases [30]. For a metal ion, the ligand field strength increases
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according to the spectrochemical series [200]. According to the spectrochemical series
[200] and comparing fluoride and oxalate as the complexing agent, the field strength
of the ligand which Cr(III) ion is coordinated to is weaker when fluoride is the
complexant. Therefore, at a given time, more Cr(III) ions by the fluoride-containing
solution are deposited onto the substrate. That might be the reason for the higher
incorporation of chromium and consequently higher thickness of the film produced
by the fluoride-containing bath. Moreover, the presence of fluorine in the AES depth
profiling data might imply the formation of compounds such as ZnF9 (AG® = -713
kJ/mol [96]) and CrF3 (AG® = -1088 kJ/mol [96]). Nevertheless, less cobalt was
detected by AES and ICP-OES for the fluoride-containing sample. Since ZnF9 and
CoF2 are slightly soluble in water [201], the deposited form of these compounds was
possibly dissolved from the treated surface during water rinsing and resulted in a

lower cobalt content and the formed cavities.

In general, defects (micro-voids) can be produced when evolved gases try to leave
the layer during the deposition process, resulting in tensile stress [202]. It is reported
that the formation of bubbles that cling to the surface throughout the deposition
process may result in voids [203], this process often interferes with film growth and
may lead to porous or spongy deposits [204]. It was also addressed that evolved
gases can produce a non-uniform porous layer by sticking at the surface, concealing
the underneath layer [205, 206].

The reduction of nitrate to gaseous products was reported for various materials
in the literature [207-209]. The gaseous products formed during nitrate and nitrite
reduction reactions were analysed using the gas detector tube method and gas
chromatography-mass spectrometry and found to contain NH3, NO2, and NO [207].
Additionally, it was shown that the possibility of nitrate reduction reactions strongly
depends on the pH of the solution. For instance, at pH 4, the reduction of nitrate to

N2, N20, and NO was possible while hydrogen evolution was not possible [207].

As soon as the zinc-plated part is immersed in the treatment solution, a variety
of reactions including anodic dissolution, nitrate, and HT reduction, adsorption-
desorption of metal-oxide/hydroxide reactions may take place at the interface between
the electrolyte and the substrate. While the zinc-plated part is still immersed in the

bath, different types of gases may form at the substrate surface, either as the result
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of nitrate reduction or hydrogen evolution. During the conversion process, the gas
bubbles may interfere with the film deposition, locally inhibit mass transfer, and

form pores as they are leaving the TCC layer.

It is reported that adding surfactants to the passivating bath results in better
wetting of the zinc surface and producing a more uniform film [102]. Moreover,
adding a substance to the treatment solution which acts as a surfactant, permits the
free evolution of entrapped gases [210]. It was reported that in the binary liquid
mixture of water and oxalic acid increasing the mole fraction (x; = 0.004, 0.010,
0.043, 0.128) decreased the surface tension (o = 70.3, 68.6, 66.5, 65,8 mN/m) (the
values of mole fractions (x;) and surface tensions (o) are connected respectively) [211].
This indicates that oxalic acid is enable to function as a surfactant in a water-based
solution. Oxalate ions were shown to act as a surfactant also in another study [212].
Therefore, it can be suggested that in the oxalate-containing treatment solution, the
oxalate ions acted as a surfactant which facilitates the free evolution of formed gases.
Consequently, fewer micropores and cavities were observed for the film produced
by the oxalate-containing electrolyte. Based on previous studies [39, 43], cracks,
detachment, and delamination were also observed on TCP coatings on aluminium

alloys produced by fluoride-containing proprietary treatment solution.

A schematic illustration of the layer formation process by the TCC treatment
solution is suggested in Figure 5.14. During the conversion coating process, a mixture
of the above-mentioned gases (e.g. N2 and NO2) may form in the reaction layer
between the substrate (zinc) and the bulk electrolyte (Figure 5.14 (a)). The formed
gases may hinder the smooth deposition of metal hydroxide/oxide on the substrate.
Throughout the TCC process, in the regions in which the deposition reactions are
taking place, there are forces parallel to the substrate, due to the surface tension
(vertical blue arrows); there are normal forces caused by the agitation perpendicular
to the zinc substrate (green arrows); and there is the internal pressure of the formed
bubbles (black arrows). As the bubble expands, its internal pressure decreases
[213], and the resultant forces cause the bubble to detach from the reaction layer.
After detachment of a bubble, the gas region consists of disjoint volumes. However,
the TCC process duration might not be long enough to fill the gap with metal

hydroxide/oxide depositions. As a result, microstructural defects are formed in the
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TCC layer. A previous study indicated that water was entrapped through the formed
micropores in the layer [214]. The ultimate morphology of a TCC coating exhibits a
duplex structure (Figure 5.14 (b)); a thick barrier layer with microstructural defects
(micropore and voids) is formed on the Zn substrate and a thin layer on top of that.
It is not clear why and when the second layer is formed. Considering the AES depth
profiling of the TCC coating, the outer layers (first 20-40 nm of the coating) consist
of C, Zn, F and Co for those samples which had these elements in their passivating
solution. Cr and O seem to increase as the inner TCC layer is reached. It may also
be that the top layer was formed after withdrawing the samples from the passivating
bath because of exposure to oxygen or humidity in the air. Therefore, the film
(inner layer) was reacted with ambient oxygen and humidity and as a result, a dense
continuous barrier (outer) layer was formed on top of that. Besides, the coating
morphology was clearly influenced by adding cobalt to the treatment solution, in a

way which favours the production of a smoother film.

Influence of immersion time: As the film forms, the reaction layer occludes the
zinc surface and the reaction between the zinc surface and the Cro jons continues
by diffusion of the active constituents through the film. It might be that the layer is
thickened until the substrate is protected from the oxidizing agent in the passivation
solution. In other words, during the TCC treatment process, when nitrate (oxidant)
ions in the treatment solution no longer contact the zinc/zinc oxide interface to be

able to oxidize (dissolve) it, the film thickness reaches a limiting value.

It was shown that increasing immersion time did not necessarily lead to an increased
thickness of the film. Figure 5.11 (a) and (b) also indicate that for pH values higher
than 9 in oxalate-containing solution or higher than 10 in fluoride-containing solution,
solubility increases due to the formation of a more soluble complex, [Cr(OH)4] .
Therefore, it is suggested that by increasing the immersion time from 60 to 80s, due
to an increased interfacial pH, a part of the deposited Cr(OH)3 was dissolved and
[Cr(OH)4] was formed (Reaction 5.11).

Cr(OH)3 (ppt) + OH™ (aq) 7 [Cr(OH)4] " (aq) (5.11)

104



5.4 Discussion

Bulk
freatment
solution

W
3 Metal oxide layer
14— v

T Metal hydroxide/
oxide deposition

Gas bubble

Zinc substrate

Zinc substrate

—" Distance .

Reaction layer *
Cr{iN}-based conversion coating

Figure 5.14 A schematic illustration of (a) TCC coating formation during immersion time,
the vertical blue arrows show the forces due to surface tension, acting along
the direction parallel to the interface; the horizontal green arrows indicate
the normal tension perpendicular to the zinc substrate due to the agitation
(manual shaking) throughout the immersion time; the black arrows show the
force due to the internal pressure of the formed bubbles. The reaction layer
is the area between the substrate and the bulk treatment solution, in which
during the TCC process the deposition reactions are taking place. (b) A
schematic illustration of the ultimate morphology of the formed TCC layer
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K = 10794 [96]

Gigandet et al. [215] showed that in the CCC process, the chromate film reaches a
limiting thickness at a specific immersion time attributable to the dissolution/depo-
sition mechanism of the film formation. It is suggested that as the immersion time
increases initially, the coating gets thicker until the path from the substrate through
reaching the treatment solution is closed [198]. Afterwards, the film thickening
ceases. Subsequently, the metal oxidation stops until some of the formed films are
dissolved again; therefore, the resistivity drops, and oxidation starts again. It is
also reported that for TCC coating, the zinc substrate becomes passive as the layers
are deposited, and this process retards its oxidation [199]. Hence, although various
reaction species can still access the Zn substrate via diffusion through the porous
passive layer, the passivation of the substrate decelerates the pH increase near the
surface of the growing film. Thereafter, the formed layer re-dissolves into the solution
as proton concentration along the surface is restored via diffusion from the bulk.
Therefore, it is suggested that increasing immersion time does not necessarily lead to
a thicker layer. The limiting thickness is probably influenced by the passivation bath
processing parameters, immersion time plus temperature and pH of the solution, as

well as its composition.
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6.1 Neutral salt spray test

The corrosion resistance of the coatings (samples 1 to 6 in Table 3.2) was evaluated
by NSS testing [48]. The NSS tests were discontinued when white rust covered
80% of the surface. The coating resistance duration to white rust propagation by
exposing the samples in a salt spray chamber is listed in Table 6.1. The results
indicate that the layers formed in a Co-containing Cr(III)-based treatment solution
are more durable than those formed in an electrolyte without this ion, when both
are in the same corrosive environment (e.g. ~120 hours for Cr + Ox + Co sample
in comparison with ~72 hours for Cr + Ox). This can be attributed to the smaller
number of micropores in the film. The microstructural defects might act as favourable
paths for chloride ions to penetrate the film and cause corrosion in the layer. Also,
the reduction of the layer thickness following annealing might be the reason for the
degradation of the protective layer after heating. However, it is worth mentioning
that a higher thickness of the layer does not necessarily result in better corrosion

protection.
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Table 6.1 The corrosion resistance duration, up to 80% white rust coverage for TCC
coatings in NSS chamber

Corrosion test resistance hours

Specimen As prepared Heated
Cr 4+ Ox ~T2 ~48
Cr + Ox + 1/2Co ~90 ~60
Cr + Ox + Co ~120 ~80
Cr+ F ~60 ~48
Cr + F 4+ 1/2Co ~T2 ~60
Cr+ F + Co ~90 ~T72

6.2 Potentiodynamic polarization measurements

The anodic sweep polarization curves of Zn and TCC coated Zn surfaces (samples 1
to 6 in Table 3.2) in 3.5 wt% NaCl solution are shown in Figure 6.1.
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Figure 6.1 Potentiodynamic polarization curves of zinc surface and passivated specimens
(samples 1 to 6 in Table 3.2) with 60s immersion time in 3.5 wt% NaCl solution
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Values for jcorr and Ecorr, for each TCC coating, were obtained by the Tafel line
extrapolation of the anodic j-E curve and are listed in Table 6.2. Comparing the
corrosion potential of the bare zinc surface (-1.111 V) to the TCC passivated surfaces
(e.g. -0.989 V for Cr 4+ Ox), it is obvious that the TCC coatings shifted the corrosion
potential towards less negative (less cathodic) values. Except for the case of Cr + F,
it is proposed that TCC coatings provided corrosion protection to the zinc substrate
by increasing the corrosion potential. A substantial change in corrosion potential can
be seen in the case of oxalate-containing solutions. It was observed that by addition
of Co to the Ox-containing solution, the corrosion potential of the sample Cr + Ox
was increased from -989 to -954 and -971 mV for samples Cr + Ox + 1/2Co and
Cr + Ox + Co, respectively. Among TCC layers, the Cr 4+ F sample had the least
noble potential, which can be due to the high density of pores in this sample (Figure
5.1 (c¢) and Figure 5.2 (c)) that forms a pathway for the penetration of chloride
ions. Moreover, breakdown potential (localized corrosion) was only observed in the
polarization curve of this sample (Cr + F). Despite a porous structure, even for
this sample, the corrosion current density was lower (1.66 pAcm™2) than the value
that was observed for the Zn surface (2.28 1A cm~2). The decrease in the corrosion
current density is related to the thickness of the TCC layer on the Zn surface. The
corrosion current density was decreased significantly for oxalate-containing samples;
in particular, when the layer was formed in the Co-containing solution (1.46 pAcm =2
for Cr 4+ Ox in compared with 0.14 pA cm ™2 for Cr + Ox + 1/2Co, and 0.05 pA cm ™2
for Cr + Ox + Co). The good corrosion protection properties of the coatings formed
in the oxalate- and cobalt-containing treatment solution can be ascribed to their
denser and less defective morphology (as observed in Figures 5.1 (b) and 5.2 (b)).
Also in the case of fluoride containing solution, the corrosion potentials of the surfaces
coated in cobalt-containing treatment solutions were more noble. As an illustration,
the corrosion potential of the fluoride-containing layer was increased from -1.129 V
(Cr + F) t0-0.986 V (Cr + F + Co) by adding cobalt to the treatment solution.
The corrosion current density was decreased as well from 1.66 1Acm ™2 for Cr + F
to 1.46 pAcm~2 for Cr + F + Co. This is assigned to the less porous morphology of
the Co-containing conversion coatings, plus the role of Co ions at low concentrations
in the formed layer as a corrosion inhibitor [216]. Nevertheless, the corrosion current
density of the oxalate-containing TCC coatings was less than the corresponding

for the fluoride-containing films. It was suggested that fluoride enrichment at the
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coating/substrate interface, can promote substrate dissolution around the cathodic
sites [115]. Dissolution of zinc is the reaction that takes place in the anodic branch
and oxygen and/or hydrogen ion or water reduction occurs in the cathodic branch.
The results of Table 6.2 shows a considerable reduction in corrosion current density
and an increase in corrosion potential for TCC coated samples. This might suggest
the effectiveness of TCC coatings to retard oxidation of zinc by decelerating oxygen

and chloride transfer to the zinc substrate.

Table 6.2 Corrosion potential (Ecorr(VvsSCE)) and corrosion current density (jcorr
(1A cm™2)) values of polarization tests of TCC coatings (samples 1 to 6 in Table
3.2 with 60s immersion time) in 3.5 wt% NaCl solution, data are presented as
the average + standard error of ten measurements

Specimen Ecorr(v VS SCE) jcorr (IJ.ACIH_Q)
Zn -1.111 £ 0.005 2.28 +0.43
Cr + Ox -0.989 £+ 0.009 1.46 = 0.51
Cr 4+ Ox + 1/2Co -0.954 + 0.010 0.14 £ 0.02
Cr + Ox + Co -0.971 £ 0.009 0.05 £ 0.01
Cr + F -1.129 £ 0.004 1.66 = 0.83
Cr+ F + 1/2Co  -1.015 £ 0.027 1.52 £ 0.07
Cr + F + Co -0.986 = 0.011 1.46 £ 0.55

Samples 7 and 8 in Table 3.2 were produced at different immersion times of 40, 60,
and 80 s. Afterwards, their corrosion resistance was assessed by potentiodynamic
polarization measurements in 3.5 wt% NaCl in a region of -50 mV to +25 mV of the
OCP. Figure 6.2 shows the outcome for different immersion time. As can be seen for
the TCC layers formed for any immersion time, the Co-containing samples show a
more noble Ecorr. Moreover, the j-E curves in Figure 6.2 indicate a notable reduction
of the anodic and cathodic branch for the layers formed in the cobalt-containing
treatment solution for any immersion time. That is due to the decrease of both
dissolution and reduction reactions, and is ascribed to the more homogenous film

that was formed in the treatment solution containing Co (Figures 5.4 and 5.5).

Related jecorr and Ecorr values, for the above-mentioned TCC coatings are listed
in Table 6.3. The TCC coatings with higher Cr content as well as the samples
shown in Table 6.1 shifted the corrosion potential of the Zn surface to less cathodic

values (e.g. Ecoy for the Zn surface is -1.111 V, from Table 6.2, while the one for
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2Cr + 20x + Co is -0.978 mV). Moreover, the current density of these layers also
was reduced one to two orders of magnitude compared to that of the Zn surface
(2.28 A cm~2). For instance, the current density was 0.20 1A cm~2 for the 2Cr +
20x sample with an immersion time of 40s and 0.01 pA cm™2 for the 2Cr + 20x +
Co sample with 80s of immersion time. Among the studied TCC layers shown in
Table 6.3, the sample formed in 2Cr + 20x treatment solution after 40s of immersion
time had the most cathodic corrosion potential (-1.051 mV), and the highest current
density (0.20 pAcm™2), while the layer formed in the 2Cr + 20x + Co treatment
solution with the same immersion time has more noble corrosion potential (-1.018
mV) and much lower current density (0.0611Acm™2). The results listed in Table
6.3 indicate that the films formed in cobalt-containing treatment solutions for each
immersion time had more anodic corrosion potentials. Furthermore, the corrosion
current density of the layer formed with the same immersion time was reduced when
Co was added to the treatment solution. This finding is consistent with the results
discussed in Table 6.2, regarding the effectiveness of Co presence in the corrosion
protection properties of the TCC layer. Comparing the jcorr and Ecorr values related
to sample Cr + Ox (Table 6.2) with that of 2Cr + 20x (Table 6.3), it can be seen
that although the jcorr of 2Cr + 20x is 20 mV less noble, its corrosion current
density is almost 10 times less (1.46 1A cm~2 for Cr + Ox, and 0.15 pA cm ™2 for 2Cr
+ 20x). This might be due to the higher thickness of the 2Cr + 20x film (Thickness
of 2Cr + 20x was 290 nm, while the one for Cr + Ox was 230 nm).

Table 6.3 Corrosion potential (Ecorr (VvsSCE)) and corrosion current density (jcorr
(1A cm—2)) values of polarization tests of TCC coatings (samples 7 and 8 in
Table 3.2) with different immersion times in 3.5 wt% NaCl solution, data are
presented as the average + standard error of ten measurements

Specimen Immersion time Ecorr(V vs SCE) jcorr (nAcm™2)
2Cr + 20x 40s -1.051 £ 0.008 0.20 £ 0.01
2Cr + 20x + Co 40s -1.018 £ 0.008 0.06 £ 0.02
2Cr + 20x 60s -1.009 £ 0.003 0.15 £+ 0.06
2Cr + 20x + Co 60s -0.989 £ 0.006 0.01 £ 0.01
2Cr + 20x 80s -0.991 £ 0.004 0.05 £ 0.01
2Cr + 20x + Co 80s -0.978 £ 0.006 0.01 £ 0.01
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In summary, when the corrosion current density and the corrosion potential of
the TCC layers (Tables 6.3 and 6.2) are compared with that of the Zn layer (Table
6.2), it can be clearly seen that the formed layer protects the zinc from the corrosive
environment by reducing the jcorr and shifting the Ecorr towards more anodic values.
It can be concluded that the addition of cobalt to the TCC treatment solutions

retards the oxidation of Zn and the extent of oxygen or hydrogen reduction.

Moreover, with the aid of polarization curves, the corrosion resistance of the
TCC layers with higher Cr content (samples 7 and 8 in Table 3.2) following the
heat treatment (kept in the oven for 6 hours and 210 °C) was evaluated. The
corresponding jecorr and Ecorr values are listed in Table 6.4. As can be seen, the
value of the corrosion current density was increased following the heat treatment
of the TCC layers. This effect was more pronounced for the samples formed in the
treatment solution without Co. For instance, the jcorr of the 2Cr 420x sample with
40s immersion time was increased from 0.20 pAcm~2 (Table 6.3) to 1.79 pA cm—2
(Table 6.4), after heat treatment. This can be attributed to the degradation and
thinning of the formed layers induced by elevated temperatures. However, it is
worth mentioning that the formed layers in the treatment solution containing Co
still showed a lower corrosion current density and consequently, better corrosion
protection. It can be seen as an example that the jcorr of the 2Cr +20x + Co
sample with 40s immersion time was increased from 0.01 pAcm™=2 (Table 6.3) to
0.06 1A cm =2 (Table 6.4), after heat treatment. Moreover, comparing the corrosion
current density and corrosion potential values of the heated TCC coatings and that
of Zn substrate (e.g. the Zn surface with Ecorr of -1.111 V and jeorr of 2.28 pA cm ™2
from Table 6.2 in comparison with 2Cr +20x + Co sample with 60s immersion time
and Ecorr of -0.997 V and jcorr of 0.01 pAcm—2 from Table 6.4), it can be concluded
that these layers are still protective against corrosion, even after heat treatment.
This outcome is in good agreement with the previous studies which suggests that
TCC coatings maintain up to 70% of their original protective properties even after
heat treatment [15, 78].
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Table 6.4 Corrosion potential (Ecorr(VvsSCE)) and corrosion current density (jcorr
(1A cm™2)) values of the heated TCC coatings (samples 7 and 8 in Table 3.2)
with different immersion times in 3.5 wt% NaCl solution, data are presented as
the average + standard error of ten measurements

Specimen Immersion time Ecorr(V vs SCE) jcorr (1Acm—?)
2Cr + 20x 40s -1.061 £ 0.006 1.79 + 0.02
2Cr + 20x + Co 40s -1.025+ 0.007 0.06 £+ 0.02
2Cr + 20x 60s -1.013 £ 0.005 0.96 + 0.02
2Cr + 20x + Co 60s -0.997 £ 0.014 0.01 + 0.02
2Cr + 20x 80s -1.005 £ 0.006 0.44 £ 0.01
2Cr 4+ 20x + Co 80s -1.004 £+ 0.007 0.05 £ 0.02

6.3 Electrochemical impedance spectroscopy

analysis

In order to better characterize the electrochemical behaviour of Zn-plated samples
passivated with the TCC treatment solutions, EIS measurements were done at OCP.
Nyquist plots of EIS analysis for the Zn and TCC coated Zn surfaces (samples 1 to 6
in Table 3.2) in 3.5 wt% NaCl solution, with high- and lower ranges of x- and y-axis
are depicted in Figures 6.3 and 6.4, respectively. Figure 6.4(b) shows one semicircle
(time constant) for the Zn surface. The impedance spectra of samples Cr + Ox +
Co and Cr + Ox + 1/2Co are the broadest in Figure 6.3(a) with the x-y axis ranges
up to 35 kQcm?. The Nyquist plots of samples Cr + F + Co and Cr + F + 1/2
have x-y axis range up to 5 kQcm? (Figure 6.3(b)), and that of samples Cr + Ox
and Cr + F have x-y axis ranges up to 2.5 kQ2cm? (Figure 6.4 (a)). As can be seen
for all the TCC coated samples, their spectra indicate two semicircles (i.e. two time
constants). Comparing the Nyquist plot of sample Cr 4+ Ox in Figure 6.4(a) and the
corresponding for samples Cr + Ox + 1/2Co and Cr + Ox + Co in Figure 6.3(a), it
is obvious that adding Co to the TCC treatment solution increased the Ze, (the
x-axis of Nyquist plot, which is measured by the total diameter of the semicircle) by

15 and 30 factors, respectively.

Figure 6.5 shows the evolution of the impedance and the phase angle on frequency

for the Zn surface in the non-coated condition and after TCC treatment in NaCl
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Figure 6.3 Nyquist plots of EIS data for the Zn and TCC-passivated-Zn surfaces (samples
1 to 6 in Table 3.2) with the immersion time of 60s in 3.5 wt% NaCl solution,
(a) shows impedance spectra in their highest range (up to 35 kQcm?), (b) is a
zoom-in of impedance spectra (Zyeal and Zimaginary) up to 5 kQcm?
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Figure 6.4 Nyquist plots of EIS data for the Zn and TCC-passivated-Zn surfaces (samples
1 to 6 in Table 3.2) with the immersion time of 60s in 3.5 wt% NaCl solution,
a zoom-in of impedance spectra, (Zyeal and Zimaginary), (&) up to 2.5, (b) up
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solution. In Bode plots, a lower value of impedance at low frequencies represent
a poorer coating protection [217, 218]. It can be clearly seen that TCC coatings
improve the corrosion resistance of the zinc surface (e.g. from 0.1 kQcm? for zinc
surface to almost 1 kQcm? for Cr + Ox and Cr + F samples). The Bode plots of
TCC coatings show at least two time constants at high- and low frequencies that
were attributed to the change in morphology of the layer [80, 122]. Tt is reported that
the time constant at high frequencies is related to pores and defects in the film [68,
126], and is independent of the kinetics of the Faradaic process at the electrode [219].
The low-frequency time constant is determined by the Faradaic kinetics [219] and is
ascribed to the charge transfer reaction dealing with TCC conversion coatings [41,
67, 68, 126]. Two RC elements were also interpreted as the outer and inner layers of
the conversion coating [68]. In Section 5.1.1, it was shown that TCC coatings were
composed of an outer thin barrier layer plus an inner thicker layer with a porous
structure (Figures 5.1 and 5.4). Therefore, in this study, the higher frequency time
constant in the Bode plots is attributed to the porous outer TCC layer, and the one

for lower frequencies is ascribed to the inner TCC layer.

It is reported that the phase angle in the Bode plot at high frequencies correlate
the roughness of the electrode surface, in a way that the lower phase angle in this
region suggests a higher surface roughness of the outer layer [220]. Figure 6.5(b)
shows higher (absolute) phase angles for the layers formed in the Co-containing
treatment solution (e.g. Cr + Ox + 1/2Co, Cr + F + 1/2Co, and Cr + Ox + Co),
which implies a lower roughness value for these films. This outcome is matching the

roughness values which were obtained by AFM (Section 5.1.2).

In Figure 6.5(b), all phase angles are below 90°, such behaviour suggests a deviation
from the behaviour of an ideal capacitor [122]. That is ascribed to the inhomogeneity
of the film and distributed values for diffusion coefficients [219]. Using a Constant
phase element (CPE) is suggested as considering the heterogeneities of systems
(i.e. porosity or defects of the layers and interfaces) [221]. Therefore, a CPE was
used for fitting the electrochemical impedance spectra with a non-ideal behaviour of

capacitance [222]. The impedance of a CPE is given by

(6.1)
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In Equation 6.1, Q is the CPE parameter, w is the angular frequency (rad/s), j> =
-1 is the imaginary number, and n is the intensity of deviation from an ideal system
and is the CPE exponent [223, 224].
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Figure 6.5 Bode plots of Zn and TCC passivated specimens (samples 1 to 6 in Table
3.2) with the immersion time of 60s in 3.5 wt% NaCl solution shows the
dependence of (a) impedance and (b) phase angle versus frequency

One of the main challenges in EIS data analysis is to find a suitable Electrochemical
equivalent circuit (EEC), and parameters that represent the analysed system. The
EEC has to be coherent with the morphological information. The physical model
and corresponding electrochemical equivalent circuit models that formed the basis of
this analysis are shown in Figure 6.6. In the case of a zinc surface, the characteristic
shape of the Bode diagram suggests that the corrosion of Zn-plated steel is a charge
transfer-controlled reaction (one time-constant model) [225]. Therefore, the data
for the (bare) zinc surface was fitted using a simple EEC (Figure 6.6 (a)) consisting
of ohmic resistance in the bulk solution (Re), and a parallel combination of a CPE
(Qa1), and the charge transfer resistance (Ret). Ret and Qqp illustrate the corrosion

process taking place at the metal (Zn) substrate/electrolyte interface [82, 226].

The EEC for the TCC coated specimens (Figure 6.6 (b)) included an additional
pore resistance of the coating (Reoating) and a CPE (Qcoating) that represents the
coating (outer layer)/solution interface, while the metal (Zn) substrate/coating (inner

layer) interface is represented by a parallel combination of Qg and Reg [217, 227].
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Electrical parameters obtained by fitting the experimental results of EIS analysis to
the EEC shown in Figure 6.6 are listed in Table 6.5. As can be seen, the solution
resistance, Re is almost the same for all the samples. Reoating represents the resistance
of the solution down the pores of an outer TCC layer (the corrosion protection of
the outer layer of TCC film). When the values of Reoating for samples Cr 4+ Ox and
Cr + Ox 4 1/2Co in Table 6.5 are compared, it can be seen that the addition of Co
improved the Reoating from 0.53 to 3.61 kQcm?. Besides, Rt that is ascribed to the
corrosion resistance of the inner TCC layer was increased from 1.67 (for Cr + Ox) to
26.90 (for Cr + Ox + Co) kQcm?. In addition, for all TCC coatings except for the
Cr + F, Reoating is significantly less than the corresponding values for the resistance
of the inner TCC layer (R¢t) (e.g. for Cr + F + Co, Reoating is 0.93 kQcm? and Ryt
is 3.04 kQcm?). This finding is consistent with the fact that except for the sample
Cr + F, which had a relatively porous structure of the inner and outer layer, the
inner layer of TCC coatings were thicker with fewer defects (Figures 5.1 and 5.4).
Furthermore, considering the AES depth profiling images (Figure 5.8), it can be
noticed that in the first 20-40 nm of a TCC coating, the amount of Cr is low. The
Cr content is the highest in a distance between 20-200 nm for Ox-containing samples,
and 20-300 nm for F-containing samples from the surface. In general, Cr species in a
TCC layer contribute to the corrosion protection properties of the film. Therefore,
it is obvious that the inner layer played the major role in the protective properties
of the coatings [39]. In general, for layers formed in TCC treatment solutions with
the same complexing agent, those containing Co have higher Reoating and Ret values.

This suggests fewer defects in the films formed in the Co-containing solution.

In Equation 6.1, when n<1, the system behaviour is representative of a heteroge-
neous surface [224, 228|. In this case, the CPE parameter (Q) cannot be regarded as
the capacitance. Studies showed that when the local resistivity varies noticeably over
the thickness of a film, the effective capacitance can be derived by Brug formulas
(222, 224, 228] (Equation 6.2).

RGR —n)/n
Cor = Q"™ (=)™ (6.2)
(S]

In Equation 6.2, Re is the global Ohmic resistance and Ry, Q, and n are global
properties of the (under study) time constant [224].
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Using Equation 6.2, the effective capacitance values for the low-frequency process
(Ca1), and that for the high-frequency time constant (Ccoating) Were calculated (Table
6.6). The results show that the Ccoating values of the Zn-electroplated samples
passivated in different TCC solutions are in general low, of the order of pF /cm?.
This was attributed to the presence of a thin TCC film [122, 229], here the outer
TCC layer. The values associated with the double layer capacitance (Cgq) at the
substrate/coating (inner layer) interface are of the order of mF/cm?, which was
attributed to the interfacial corrosion process [230], and the mass transport across
the porous film [229]. Tt is reported that the corrosion products increase the interface
area of the electrode, which results in larger values of Cgq; [230, 231]. Furthermore,
on heterogeneous surfaces of coated metals, water penetration, even at lower rates,
leads to the change in the electrical constant of the layer, which also causes the
increase of Cg [219]. Therefore, for samples Cr + Ox + 1/2Co and Cr + Ox + Co
with relatively packed film, and probably fewer corrosion products, the Cg; values

are smaller in comparison to the corresponding for the other TCC coatings.

Qcoating
AN

g4

Q R

Re N
— 1 — Q —
—D— Rcoating )—
Rct

Rct

(a) (b)

Figure 6.6 Electrochemical equivalent circuit used for (a) Zn surface, (b) TCC-passivated
7Zn Surface, Re (Qcoating (Rcoating (Rct Qct)) )

Taking the Ret values from EIS analysis (Table 6.5) and oy values from Tafel
extrapolation of polarization tests (Table 6.2) into account, it can be seen that
the layers that formed in oxalate- and cobalt-containing solutions have the lowest
corrosion current density (Icorr) and the highest charge transfer resistance (Ret).
Therefore, both polarization and EIS measurements suggest that these layers have
a higher barrier effect of conversion coating compared with the other TCC films.

The Stern-Geary equation (Equation 6.3) introduces the direct relationship between
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Table 6.5 Parameters of TCC coating/Zn systems obtained from fitting EIS data using a R(Q(R(QR))) equivalent circuit for
the passivation of Zn for 60s, data are presented as the average + standard error of ten measurements

Re wOomﬁsm Ret @oomﬁbm Qai Ncoating 4]
(kQem?) (uF.s"(n-1)/cm?)
7n 0.017 4+ 0.003 0.14 4+ 0.01 (4.89 £ H.QRCXHON 0.67 £+ 0.05
Cr + Ox 0.018 £ 0.002 0.53 £+ 0.01 1.67 £+ 0.04 7.50 + 0.65 (1.62 £ O.%vaHOw 0.60 £+ 0.04 0.79 £ 0.08
Cr + Ox + H\w Co 0.017 £0.002 3.61 +0.09 20.20 4+ 1.06 6.95 + 0.74 (5.30 £ D.@OVXHDH 0.68 + 0.07 0.81 £ 0.07
Cr + Ox + Co 0.016 + 0.003 1.27 +£ 0.13  26.90 £+ 0.99 4.04 + 0.73 (4.30 + 0.62)x10'  0.74 £ 0.03 0.85 £ 0.02
Cr+F 0.017 £ 0.001 0.84 £0.05 0.69+0.12 (1.20 £ O.vaXHOH (2.74 £ O.TCXHOMW 0.61 + 0.03 0.64 £ 0.04
Cr+F+1/2Co 0.016 & 0.003 2.26 £ 0.21  2.50 £ 0.19 3.82 + 0.72 (6.39 £ H.wvaHOw 0.79 £ 0.03 0.83 £ 0.11
Cr+F + Co 0.017 £ 0.002 0.93 £0.05 3.04 £0.28 (1.14 £ O.%vaHOH (2.87 £ H.%vaHOw 0.67 £ 0.05 0.78 £ 0.12
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Table 6.6 Effective capacitance calculated for the constant phase element values in Table

6.5
Ccoating Cdl
(UF fem?)
Zn (1.82 £ 0.99)x 103
Cr + Ox 2.34 +0.32  (4.08 & 1.38) x103
Cr+ Ox + 1/2 Co 254 £ 0.08 (5.16 £ 1.07) x10*
Cr 4+ Ox + Co 1.73 £0.27  (4.08 & 0.68)x 10!
Cr+F 4.044+ 1.71  (2.26 + 0.18) x10*
Cr+F+1/2Co 2244049 (1.19 £ 0.3) x103
Cr + F + Co 5.09 + 2.48  (9.27 + 3.67)x 103

the steady-state corrosion current (ILeorr) and the DC polarization resistance (Rpor),

across the interface [219].

1 Babe
pol —
2.3031 corr ﬁa + 60

(6.3)

In Equation 6.3, 3, and 3. are the Tafel coefficients for the anodic and cathodic
partial reactions. In the case of steady-state corrosion (when the rate of corrosion
does not change with time), the polarization resistance is identical to the charge-
transfer resistance [219]. Subsequently, Ico;y can be identified at the low-frequency
range of the impedance spectrum. In this study, the I.q, calculated from EIS data
at low frequencies was not the same as the I.o that were obtained from Tafel
extrapolation (Table 6.2), although the trend was the same. This might relate to
the fact that the electrochemical reaction of the low-frequency time constant was
not solely kinetically-controlled. The most common complications were reported as
followings: (1) oxidation or reduction of some other electroactive species besides the
corroding metal, (2) a change in the open-circuit or corrosion potential throughout
the time taken to perform the measurement, (3) both the anodic and cathodic

reactions are not charge transfer-controlled processes [232].
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6.4 Composition of corrosion products

Figure 6.7 shows a SEM micrograph of a TCC treated sample (Cr + Ox + Co) after
48 hours exposed in the NSS chamber with 5 wt% of NaCl. This figure indicates
the initiation of white rust on a micro-scale. The image exhibits the beginning of
corrosion with the formation of the flower-like microstructures (possibly ZnO). The
EDXS analysis was performed to identify the composition of these microstructures.
Table 6.7 lists the composition of a flower-like microstructures at two different
positions (spot 1 and spot 2 in Figure 6.7), and the composition of a point outside
of a flower-like microstructures (spot 3 in Figure 6.7). These spots are mainly
composed of Zn, Cr, O, and C. However, the amount of Zn is lower on the flower-like
microstructures, while its oxygen amount is higher in comparison to the composition

of spot 3 in Figure 6.7.

Figure 6.7 Top surface view of a TCC treated sample (Cr + Ox + Co) taken by SEM
with (a) lower and (b) higher magnification after 48 hours exposed in NSS
chamber with 5 wt% of NaCl

6.5 Contact angle

Surface wetting behaviour can conventionally be broken into two regimes based

on the value of the water contact angle. The contact angle of 10° < 6, < 90° is
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Table 6.7 EDXS analysis of (a) a flower structure on the TCC surface (spot 1 and 2
shown in Figure 6.7) and a spot outside of a flower-like structure on the TCC
surface (spot 3 shown in Figure 6.7)

Atom%
Element Spot 1 Spot 2 Spot 3
Zn 26 34 71
Cr 1 1 1
O 52 49 17
C 21 17 11

defined as hydrophilic, and 90° < 6, < 150° as the hydrophobic regimes. Increasing
surface hydrophobicity reduces the corrosion rate of the metal by restricting their
interactions with corrosive compounds like water and various ions. Hydrophobic
coatings used in many engineering applications because they retard the diffusion of

water into the coating [233].

Table 6.8 lists the contact angle values of water drop on TCC coatings formed in
different treatment solution (sample 1 to 8 in Table 3.2) after immersion time of 60
s. The same water contact angle for right and left denotes a homogenous TCC film
surface. Moreover, the results showed that the water contact angle of the samples 1
to 8 varied from 99 to 107 °. Therefore, all contact angles are 6, > 90°, implying
a hydrophobic surface. Figure 6.8 shows a side view of a water droplet on a TCC
film while fitting with the sessile drop method the contact angle which represents a

hydrophobic surface.

Corrosion protection offered by a coating depends on its composition, structure,
and thickness of the film, which principally affect oxygen and water permeability, as
well as bonds between the coating and substrate. The formation of a close-packed,
thick and hydrophobic film on a metal substrate can hinder corrosion by retarding
the transport of uncharged compounds (i.e. water and oxygen) and charged species
(ions) [234, 235].
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Table 6.8 Contact angle of water drop on films formed in different TCC treatment solution
after an immersion time of 60 s

No. Specimen Theta(M)[deg] System Theta(L)[deg] Theta(R)[deg]
1 Cr 4+ Ox 103.0 £ 0.1 Water  103.0 + 0.1 103.0 £ 0.1

2 Cr+ Ox + 1/2Co 104.7 + 0.7 Water  104.7 £ 0.7 104.7 £ 0.7

3 Cr + Ox + Co 100.3 £ 0.6 Water 100.3 £ 0.6 100.3 £ 0.6

4 Cr+ F 100.7 £ 1.2 Water  100.7 4+ 1.2 100.7 + 1.2

5 Cr+F+1/2Co 101.2 + 1.0 Water 101.2 + 1.0 101.2 £ 1.0

6 Cr+ F + Co 99.0 £ 0.2 Water 99.0 £ 0.2 99.0 £ 0.2

7 2Cr + 20x 105.1 £ 0.2 Water  105.1 + 0.2 105.1 £ 0.2

8 2Cr 4+ 20x 4+ Co 1073 £ 04 Water 107.3 + 0.4 107.3 £ 04

Figure 6.8 Side view of a drop of water on a TCC film
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7 Formation of Cr(VI) in the
Layers Produced in
Cr(III)-based Treatment
Solution Containing Cobalt

7.1 Introduction

As it was mentioned earlier, the oxidation of Cr(III) to Cr(VI) in the TCC films
causes a lot of controversy surrounding these layers as being compatible with the

European directives (Section 2.1). In this chapter, the formation of Cr(VI) in the
TCC layers will be discussed.

The potentially occurring half-reactions influencing the formation of Cr(VI) that
were suggested in the literature [45] with their standard potentials in an alkaline

environment [96] are as follows;

O2+2H20+4e” == 40H~  E°=0.401V (7.1)

CrO4*” +4H20+3e” == Cr(OH)4~ +40H~  E°=-0.13V (7.2)
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CrO4%” +4H20+3e” = Cr(OH)3 (ppt) +5OH~  E°=—0.11V  (7.3)

Obviously, the standard potential of oxygen reduction (Reaction 7.1) is higher than
the oxidation potential of Cr(III) to Cr(VI) (Reaction 7.2 and 7.3). This suggests
that Cr(III) can be oxidized to Cr(VI) in the presence of oxygen and water in alkaline

conditions.

The proposed reason [47] behind the enhancement of Cr(III) oxidation in the
presence of cobalt is that, under certain circumstances, divalent cobalt is oxidized to
the trivalent state (Reaction 7.4), at a more cathodic potential compared with the

oxygen reduction potential [96].

Co(OH)3+4+e~ = Co(OH)2 + OH™ E°=0.17V (7.4)

Besides, because Co(III) is not stable in an aqueous solution, it may take electrons
from Cr(III) and this leads to the oxidation of Cr(III) to Cr(VI). However, the
problem associated with this hypothesis is that all the reactions are assumed to
take place in an alkaline environment. It is noteworthy that the above-mentioned
arguments are only based on thermodynamics and kinetics was not considered. To
shed some light on the formation of Cr(VI) in TCC coatings, the following steps

were accomplished.

7.2 Preparation of samples

For these measurements, the model solutions 1, 3, 4, and 6 in Table 3.2 were chosen.
The zinc electroplated steel parts were immersed in these TCC treatment solutions
at 40°C for 60 seconds. Conversion coatings might be used in areas where elevated

temperatures close to 200°C are expected. Therefore, to examine the formation of
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Cr(VI) in heat-treated coatings, the as-prepared specimens were heat-treated for 6
hours at 210°C.

7.3 Experimental techniques

To be able to determine whether a TCC coating contains hexavalent chromium, it is
necessary to apply methods that are sensitive to the oxidation state of Cr(III). One
of the suggested methods (so-called boiling test) is where the piece is extracted for a
defined time in DI water at its boiling point temperature [236]. Another method is
to expose the sample in an accelerated corrosion test condition in the absence of a
strong oxidizing agent [46, 47]. Therefore, to extract the possible formed hexavalent
chromium in the TCC coatings, the boiling test (Section 7.3.1) and accelerated

corrosion test in a NSS chamber (Section 7.3.2) were performed.

7.3.1 Screening boiling test

The pieces with a surface area of (50 & 5) cm?

, were extracted in DI water at its
boiling point temperature. The sample was placed on a bed of anti-bumping granules
inside a graduated beaker filled with 100 ml water (Figure 7.1). The beaker was
covered with a watch glass, and the sample was boiled for 10 minutes. Then, the
beaker was removed from the hot plate and kept at ambient temperature to cool
down. To determine Cr(VI) in the extracted solution, the colorimetric method using
UV-VIS following DIN EN 15205 [237] was performed. Solutions were transferred
to a 100 ml volumetric flask to be prepared for the UV-VIS measurements (Section
7.3.3.1). Besides, with the same procedure for the preparation of samples, the total
chromium amount in the extracted solutions was measured using ICP-OES (Section

7.3.3.2).
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Water

Sample

Anti-bumping granules

Figure 7.1 Schematic representation of screening boiling test, the samples were placed on
anti-bumping granules and extracted for 10 minutes at the boiling point of
water

7.3.2 Corrosion test

To investigate the influence of the NSS cabinet environment on the formation of
hexavalent chromium in TCC treated samples, a NSS cabinet (according to ASTM-
B117 [48]) was used. The TCC passivated samples were placed above a funnel
mounted on a 100 ml Erlenmeyer flask and the assemblies were kept in the salt
spray cabinet (Figure 7.2) for 24 hours. The extracted solutions from the surfaces
of specimens that were collected in each Erlenmeyer flask during this time were

examined for the presence of hexavalent chromium with UV-VIS (Section 7.3.3.1).

With the same procedure for the preparation of samples, the total chromium
amount of the collected solutions was detected with ICP-OES (Section 7.3.3.2).

7.3.3 Analytical methods used for the determination of

hexavalent chromium
7.3.3.1 Ultraviolet-visible spectrophotometry

In order to determine Cr(VI) in the extracted solutions, UV-VIS was used according
to the description that was explained in Section 3.2.2.5. Diphenyl carbazide solution,
Cr(VI) standard solution, and ortho-phosphoric acid (85%) were all prepared following
DIN EN 15205 [237]. All chemicals were reagent grade and were obtained from
Carl Roth GmbH + Co KG. Calibration solutions were prepared from different
concentrations of Cr(VI) standard solution (0.02, 0.04, 0.06, 0.08, 0.1, 0.12) mg/1 in
a 100 ml volumetric flask, adding 1 ml phosphoric acid, 1 ml of diphenyl carbazide
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7.3 Experimental techniques

Figure 7.2 Schematic representation of specimen assembly inside the NSS cabinet, samples
were placed above a funnel mounted on a 100 ml Erlenmeyer flask inside the
NSS cabinet

solution, and mixed thoroughly. After 10 minutes the reaction was complete and the
values required for the absorbance-concentration calibration curve were measured.
The above-mentioned procedures also were accomplished for the test solutions, and
their Cr(VI) concentration was measured interpolating from the calibration curve.
An obtained value higher than 0.1 pgem™2 is an indication of hexavalent chromium
in the solution. As a control experiment, a non-passivated zinc layer was also boiled
in water and no hexavalent chromium was detected when its extracted solution was
tested.

7.3.3.2 Inductively coupled plasma optical emission spectroscopy

The ICP-OES (as described in Section 3.2.2.2) was used to calculate Cr amount
in the extracted solutions obtained by screening boiling (Section 7.3.1) test and

corrosion test (Section 7.3.2) for the heat-treated TCC passivated samples. The
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results presented herein are for total Cr, because this technique cannot distinguish
between the oxidation states of an analyte species (here Cr(III) and Cr(VI)) [238].

7.4 Determination of Cr(VI) species

7.4.1 Ultraviolet-visible spectrophotometry

The absorbance-concentrations calibration curve was plotted with a correlation
coefficient, RZ = 0.99940.001 (Figure A.1 in Appendix, Section 2). Next, the
hexavalent chromium concentration in solutions was determined, interpolating from
the calibration curve. Figure 7.3 shows the results of UV-VIS for extracted solutions
prepared by screening boiling test (described in Section 7.3.1) for the as-prepared
and heated TCC passivated samples. It can be seen that the Cr(VI) content in
the solution obtained from all as-prepared TCC coatings was less than 0.1 pgem™2.
This implies that Cr(VI) was not detected in these layers. This observation also
goes for the extracted solutions obtained from heat-treated samples, formed in
oxalate-containing TCC solution (Cr + Ox and Cr + Ox + Co). Nevertheless,
Cr(VI) was detected in the extracted solutions from the layers that were formed in
fluoride-containing electrolytes and were heat-treated (heated Cr + F and Cr + F +
Co in Figure 7.3, with Cr(VI) amount > 0.1pgem™2).

Figure 7.4 indicates the UV-VIS results for condensate solutions from as-prepared
and heated samples after keeping specimens in the NSS cabinet for 24 hours (prepa-
ration was described in Section 7.3.2). It is obvious that the level of hexavalent
chromium in the extracted solutions from the as-prepared and heated samples formed
in oxalate-containing TCC solution (as-prepared and heated Cr + Ox and Cr + Ox
+ Co) was less than 0.1 pgem™2. Therefore, in good agreement with results that
were seen in Figure 7.3, Cr(VI) was not found in these layers. For the obtained solu-
tions from the as-prepared samples formed in fluoride-containing TCC electrolytes
(as-prepared Cr + F and Cr + F + Co in Figure 7.4), the same result was yielded.
However, Cr(VI) was clearly observed in the obtained solution from heat-treated
TCC layers formed in the fluoride-containing treatment solution (detected Cr(VI)
amount was > 0.1pgcm™2) (heated Cr + F and Cr + F + Co in Figure 7.4). These
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results were in accordance with the results gained from the screening boiling test
(Figure 7.3).

Consequently, the sharp increases in the concentration of Cr(VI) for the TCC
layers formed in fluoride-containing treatment solutions were ascribed to the heat
treatment procedure. Whereas, the process of heat treatment seems to have no
influence on the formation of Cr(VI) in TCC layers formed in oxalate-containing

treatment solutions.

In both cases of extraction of solutions by screening boiling test (Figure 7.3) and
corrosion test (Figure 7.4), a less amount of Cr(VI) was observed when the layer was
formed in the TCC solution containing cobalt and fluoride (Cr + F + Co in Figures
7.3 and 7.4).
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Figure 7.3 Determination of Cr(VI) via UV-VIS for the extracted solutions from screening
boiling test (preparation was described in Section 7.3.1) for as-prepared and
heated TCC-treated samples

7.4.2 Inductively coupled plasma optical emission

spectroscopy analysis

Total chromium amount in the extracted solutions obtained by screening boiling

test (described in Section 7.3.1) and corrosion test (described in Section 7.3.2) was
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Figure 7.4 Determination of Cr(VI) via UV-VIS for the extracted solutions from as-
prepared and heated samples after keeping samples in the NSS cabinet after
24 hours (preparation was described in Section 7.3.2)

analysed using ICP-OES for the TCC treated samples that were heated in the forced
air convection oven (MEMMERT oven (Memmert GmbH + Co. KG)). Table 7.1
lists the total amount of Cr(III) and Cr(VI) for the extracted solutions. For either
of the extraction methods (screening boiling test and corrosion test), the total Cr
amount that was detected in obtained solutions from heat-treated layers formed in
oxalate-containing TCC solutions (Cr + Ox and Cr + ox + Co) was lower than
the limit of detection. Nevertheless, traces of chromium were found in obtained
solutions from heat-treated TCC coatings formed in fluoride-containing treatment
solutions. The outcome of ICP-OES measurements demonstrated that in both cases
of screening boiling test (Table 7.1 (a)) and corrosion test (Table 7.1 (b)), a less
amount of chromium was detected in the extracted solution from the coating that
was formed in the TCC treatment solution including cobalt (Cr + F + Co). This
result was also demonstrated by UV-VIS results (Cr + F + Co in Figures 7.3 and
7.4).
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Table 7.1 Total chromium amount in the extracted solutions obtained by (a) screening
boiling test, (b) corrosion test analysed via ICP-OES for the TCC passivated
samples that were heated in the forced convection oven

Detected Cr (pgcm™?)

Specimen (a) (b)
Cr 4+ Ox <LOD <LOD
Cr + Ox + Co <LOD <LOD
Cr+ F 0.29 0.26
Cr +F + Co 0.18 0.14

Remark: Limit of detection (LOD) is 0.05 ngcm =2

7.4.3 Influence of oxygen on the formation of Cr(VI) in
TCC coatings

The results (Section 7.4.1 and Section 7.4.2) relate the presence of hexavalent
chromium in TCC coatings to the composition of the treatment solution and the

process of heat treatment.

Referring to the Section 7.1, and comparing the standard reduction potential of
Reactions 7.1 to 7.2 and 7.3, the more positive value of E°® for the O2\H20 couple
in comparison to the reduction of Cr(VI) to Cr(III) suggests that the presence of
water and oxygen may facilitate the oxidation of Cr(III) to Cr(VI).

To assess the role of oxygen in the oxidation of Cr(III) to Cr(VI), the heat-
treatment process was carried out in the absence of oxygen using a nitrogen-purged
oven (VACUCELL MMM Group). Afterwards, the screening boiling test (Section
7.3.1) and the corrosion test (Section 7.3.2) were performed to prepare the required
solutions for the rest of the examinations. The presence of Cr(VI) in the obtained
solutions were determined using UV-VIS. Table 7.2 lists the results. As can be seen,
Cr(VI) was not detected in any of the extracted solutions from TCC layers that were
heated in a nitrogen-purged oven. This outcome clearly proved that O2 presence

influenced the oxidation of Cr(III) species.

Moreover, for the specimens passivated with fluoride-containing TCC treatment

solution, a discolouration was observed after heat treatment in the forced air convec-
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Table 7.2 Determination of Cr(VI) by UV-VIS for extracted solutions obtained by (a)
screening boiling test (b) corrosion test for the heat-treated TCC layers, when
the heat treatment was done in nitrogen-purged oven

Avg Cr (pgem™2)

Specimen (a) (b)

Cr + Ox <LOD <LOD
Cr + Ox + Co <LOD <LOD
Cr+ F <LOD <LOD
Cr+F + Co <LOD <LOD

Remark: Limit of detection (LOD) is 0.1 ugem ™2

tion oven, while no colour change was noticed when heat treatment was done in the
nitrogen-flushed oven (Figure 7.5). This suggests that oxygen as an oxidizing agent

played the role in the discolouration of the TCC film during heat treatment.

Figure 7.5 Images of TCC layers formed in Cr + F 4 Co treatment solution, (a) as-
prepared, (b) Heat-treated in N9 purge oven (c) Heat-treated in airflow oven

7.5 Water content of coatings

For oxygen reduction to take place, water is needed (Reaction 7.1). To determine
trace amounts of water in the TCC layers, cKFT analysis was used. Table 7.3
lists the water contents of the specimens. It can be observed that more amount of
water was captured in the layers formed in the fluoride-containing TCC treatment
solutions. As it is listed, Cr + F with 225 mgm™2 and Cr + F + Co with 162
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mgm ™2 had a higher water content in comparison to the one for layers formed in the
oxalate-containing TCC treatment solution (e.g. 140 mgm™2 for Cr 4+ Ox with a
higher amount of water). Additionally, for each of the complexing agents, the water
content is less when Co was also present in the TCC bath (Cr + Ox + Co and Cr +
F + Co with 117 and 162 mgm™? respectively).

Table 7.3 Water contents of the different TCC coatings

Specimen Water content(mgm~2)
Cr 4+ Ox 140
Cr + Ox + Co 117
Cr+F 225
Cr + F + Co 162

7.6 Morphology of coatings

Morphology and structure of TCC layers were discussed already in Sections 5.1.1
and 5.1.2. It was shown that the type of complexing agents as well as the presence
of cobalt in the TCC treatment solution, had a great impact on the formation of a
TCC layer (Section 5.4).

Figure 7.6 shows the FIB-SEM micrographs corresponding to the TCC layers
studied in this part (chapter 7). As can be seen, in good agreement with the previous
results (Section 5.1.1), the layers formed in the oxalate-containing treatment solutions
(Figures 7.6 (a), (b)) show a uniform and relatively pore-free structure. In contrast,
a non-uniform and porous morphology can be seen for the TCC coatings formed in

the fluoride-containing treatment solutions (Figures 7.6 (c) and (d)).

Comparing Figure 7.6 (c¢) with (d), or (a) with (b), it is obvious that a significant
improvement in the microstructure was obtained by adding cobalt to the treatment
solution (as it was also observed in Section 5.1.1). The size and number of pores in
the layers were diminished when the coating was formed in the Co-containing TCC

treatment solution.
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It is concluded that water was penetrated in the microstructural defects (micropores
and voids) and was stored there until it evaporated at elevated temperatures. That is
why, particularly for the coatings formed in TCC treatment solutions containing Co,
a smaller amount of water was observed (Table 7.3). Hence, the higher number of
microstructural defects filled with water increased the probability of oxygen reduction
and Cr(III) oxidation. Therefore, a smaller amount of Cr(VI) was detected in the
layer which was formed in the Co-containing TCC treatment solution (sample Cr +
F + Co in Figures 7.3 and 7.4). Consequently, oxygen diffusion into the micropores
filled with water promoted Cr(VI) formation. The higher number of micropores in
TCC coatings formed in fluoride-containing solutions (Cr + F and Cr + F + Co)
increased the interaction of water and oxygen in these layers that resulted in the
formation of Cr(VI).

7.7 Discussion

The above-mentioned results in this chapter provided evidence that the formation of
Cr(VI) does not depend on the presence of cobalt in the TCC treatment solution.
Seemingly, what plays the role is the coating microstructure that varies based on
the composition of the TCC treatment solution. The standard potentials of the
probable half-reaction occurring on the TCC coating at high pH were depicted in the
Reactions 7.1 to 7.3. The standard potentials of the probable half-reaction occurring
on the TCC coating at low pH are as follows [96]:

HCrO4™ +7H" +3e” = Cr*T +4H20 E°= +1.38V (7.5)

Cro07~ +14H' +6e~ = 2Cr3" +7H20 E°= +1.38V (7.6)

09 +4H' +4e” == 2H20 E°= 4123V (7.7)
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Figure 7.6 FIB-SEM images of the TCC coatings formed in the treatment solution with
(a) Cr + Ox, (b) Cr + Ox 4+ Co (c¢) Cr + F (d) Cr + F 4 Co, water traces
were most likely entrapped in the microstructural defects
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Figure 7.7 depicts the standard potential versus pH for oxygen reduction and
chromium oxidation. As can be seen, the intersection of the lines for Cr and O2
occurs around the pH value of 3. Consequently, above this pH value, the oxidation

of Cr(IIT) to Cr(VI) by oxygen is thermodynamically possible.
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Figure 7.7 Standard potentials (V) of Chrome and Oxygen versus pH

The main compositions of the TCC treatment solutions are Cr(III) and the oxidizer
which is mostly NO3 . When the zinc-plated part is immersed in the TCC treatment
solution, zinc oxidation (Reaction 5.1) and reduction of oxidizing agent (reactions
shown in Table 5.7) can take place. These cathodic reactions (including nitrate
reduction and possibly HER, as it was discussed in Section 5.4) induce a local pH
rise. Studies exhibited 2-6 units’ increase of interfacial pH depending on the coating
system [185].

In addition, the AES results proved the deposition of Cr(III) on the Zn electroplated
steel surface for all TCC treatment solutions (Figure 5.8). It was shown that a TCC
coating is formed on the zinc surface by precipitation of et and zn2t (free or
complexed) ions present in the TCC solution (Section 5.3.2). Furthermore, as it was

discussed in Section 5.4, Cr(III) ions start to deposit on the Zn surface when SI value
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exceeds zero, and that would be at a pH around 4 as it was demonstrated in Figure
5.10.

Consequently, despite the fact that the TCC treatment solution had a pH value
of 1.8 at the process commencement, a localized pH increase is expected during
the TCC formation process. Therefore, it is very likely that the pH value in the
microstructural pores of a TCC layer is above 3.1, which is the intersection point of

the standard potential versus pH for Cr and O2 lines in Figure 7.7.

In summary, taking the FIB-SEM images (Figure 7.6) into account, it is apparent
that the composition of the treatment solution influenced the morphology and
structure of the coating. During the heat-treatment process in a forced air convection
oven, oxygen penetrated into the porous layers that were formed in the fluoride-
containing TCC treatment solutions. Because these micropores were filled with

water, the oxygen reduction that occurred there, facilitated the oxidation of Cr(III)
to Cr(VI).

It can be concluded that the formation of Cr(VI) relates to the structure of the
TCC layer rather than the presence of Co ion in the TCC solution. Therefore, the
oxidation of Cr(III) to Cr(VI) in these layers seems to be independent of the presence

of Co in the treatment solution.
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8 Summary and Suggestions for
Further Work

8.1 Summary of results

This thesis was aimed at understanding the role of constituents in the trivalent
chromium-based conversion treatment solution on the formation of the film produced
on the zinc-plated steel. A matrix of eight Cr(III)-based conversion model solutions
with two different complexing agents, fluoride and oxalate, including and excluding
Co was designed and applied on the zinc electroplated steel. One of the main goals of
this work was to express the role of cobalt in the Cr(III)-based conversion treatment

solution on the produced layers.

The first contribution of this work was to give an overview regarding the state of
the art and the research that was already done surrounding Cr(III)-based conversion
coatings (Chapter 2). After describing the material and methods that were used
(Chapter 3), a short introduction was given on the structure and composition of the
Zn-electroplated layer (Chapter 4). Then, the structure of formed layers was observed
by a focused ion beam assisted with scanning electron microscope and an atomic
force microscope (Sections 5.1.1 and 5.1.2). A comparison of the morphology and
structure of the trivalent chromium-based conversion coatings formed in the treatment
solutions, including and excluding Co, was performed (Section 5.1). Results obtained
in the present study imply that the Cr(III)-based conversion coating is deposited
in a layered structure, which is thinned through heat treatment. It was shown that
the treatment solution composition (i.e. complexing agents used and the presence of

Co) influences the formation of Cr(III)-based conversion coatings (Chapter 5). The
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fluoro ligand produced a porous layer that was thicker, while oxalate made a thinner
and yet more uniform film. The type of complexing agent plays an essential role in
Cr(III) ions lability in the bath, and therefore, the deposition of this ion on the zinc
surface (Section 5.4). Furthermore, the structure and corrosion protective properties
of the film are influenced by the type of complexing agent used. Based on inductively
coupled plasma atomic emission spectroscopy measurements, when fluoride was the
complexing agent, more Cr was deposited on the zinc substrate; while, when oxalate
was the complexant, more cobalt was incorporated into the coating (Section 5.3.1).
The addition of cobalt to the Cr(III)-based treatment solution with either of the
complexing agents resulted in a smoother layer. Cobalt might affect the kinetics of

the film deposition throughout the conversion coating process (Section 5.4).

Moreover, microstructural defects in the layer formed in the fluoride-containing
treatment solution were ascribed to the formation of gas bubbles (e.g. N2O, N2),
locally interfering coating precipitation and prohibiting uniform deposition of metal
hydroxides on the substrate. In contrast, oxalate ions act as a surfactant that improves
wetting over the zinc substrate and prevents gas bubbles to adhere on the surface.
It was also found that the thickness of the trivalent chromium conversion coatings
increases with increasing immersion time to the point at which the competition
between the growth of trivalent chromium conversion coating and Zn dissolution leads
to an optimal film thickness (Section 5.4). In general, to produce a Cr(III)-based
conversion coating, a competing substrate dissolution/film formation situation has to
be established. Moreover, with the aid of a thermodynamic model, the pH at which
the Cr(III), Co(II), and Zn(II) start to deposit was calculated (Figure 5.10).

Another contribution relies on the corrosion characteristics of the TCC films, in
particular, those produced in the Co-containing TCC treatment solution, as discussed
in Chapter 6. It was observed that the thicker coating does not necessarily better
protect the film against corrosion. In general, TCC coatings protected the zinc
substrate by reducing the cathodic and anodic current density, and shifting the
corrosion potential (Ecorr) to less cathodic values. Furthermore, it was also shown
that adding Co to the TCC treatment solution resulted in the reduction of anodic
(Zn dissolution) and cathodic reactions (oxygen or hydrogen reduction) on the Zn

substrate. It is proposed that the formation of a dense layer with fewer cavities,
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which is influenced by the type of anions in the treatment solution, is crucial for the
corrosion resistance [239]. The corrosion properties of the layer was also evaluated
using EIS. The advantage of EIS compared to polarization measurements is to
obtain information about TCC layer properties, such as the presence of defects
and reactivity of the interface. EIS analysis (Section 6.3) showed change in the
morphology of a layer, which might suggest that the TCC coatings have layered
structure (i.e. inner and outer layer). The inner layer of oxalate-containing TCC
films are observed as less defective (Figure 5.1). The EIS analysis clearly indicated
the protective properties of layers that were formed in Ox- and Co-containing TCC
treatment solutions. Therefore, due to the less porous inner layer, the values of R

were higher for films formed in Ox-containing solutions.

After all, the influence of Co on the formation of Cr(VI) species in the trivalent
chromium conversion coatings was studied (Chapter 7). It was shown that the
formation of Cr(VI) in these layers was influenced by factors such as composition and
operating conditions (e.g. temperature, and pH) of the passivating bath. Nevertheless,
the stable valence state of chromium ions seemed to be independent of the cobalt
presence. The microstructure of the TCC layer played a crucial role. Correspondingly,
acquiring few microstructural defects, less porous morphology, and thinner TCC

coating decreased in the susceptibility towards hexavalent chromium formation [214].

8.2 Future works

Future work related to the TCC coatings should address a deeper analysis of film
formation mechanism and new suggestions to apply different characterization tech-
niques. The matrix of treatment solutions can be varied and further developed
to better understand the role of different constituents on the formation of TCC
layers. In this respect, their structure and corrosion properties can be evaluated.

The following ideas could be tested:

e Most of the published articles on the TCC coatings have been done on proprietary

products. Therefore, fundamental understanding of the formation and compo-
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sition of the TCC coatings on different substrates, e.g. Zn and Zn alloys or Al
and Al alloys, with the aid of model solutions is suggested.

Most of the published studies were done on the Al alloy substrate. Further
investigations on various substrates, e.g. Zn electroplated steel or Mg alloy

shall be carried out.

Model solutions with different complexing agents, oxidants, additional metal, and

nano-crystalline particles can be investigated.

The dynamics of the TCC formation process can be studied by means of in situ
analysis techniques, such as difference viewer imaging technique (DVIT) [240],
which might be useful to observe the nucleation and growth of a conversion

layer.

Advanced surface analysis of the TCC layer with the aid of methods with higher res-
olution and chemical sensitivity compared to XPS and AES, such as nanoscale
secondary ion mass spectroscopy (NanoSIMS) and ion beam analysis (IBA)

can be considered [241].

The kinetics of the TCC film formation with the aid of simulations could be
studied.

Research can be done to compare the morphology and corrosion protection of the
TCC coatings with the other type of chromium-free conversion coatings, for
example on Zn [241] or Al [68, 69] substrates.

TCC coating might be often used where the main function of the treatment is
to improve the adhesion of paints or polymer coatings [180], studies can be
done to achieve a compatible TCC formulation with polymer coatings with

synergistic effects.

The corrosion initiation and propagation in the TCC coatings can be studied with
the aid of methods such as scanning reference electrode technique (SRET)
and scanning vibrating electrode technique (SVET) [242], to map the current

density around the scratches (artificial defects).
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Appendix

1 Alkaline Zn electroplating

1.1 Zn electrolyte

Commercial alkaline zinc electrolyte: was supplied by Atotech GmbH. Namely,
Protolux 3000, is an alkaline, cyanide-free electroplating process for the deposition
of bright zinc (Table A.1).

Table A.1 Alkaline zinc electrolyte formulation

Makeup of 1 Liter g/1 or ml/1
Zinc oxide, 99.5 % ** 12.5 g/l
Sodium hydroxide 120 g/1
Protolux Modifier 30 ml/1
Protolux 3000 Additive 4 ml/l
Protolux 3000 Make up 3 ml/]

Protolux 3000 Brightener (BG) 15 ml/1

1.2 Calculations of Zn electro-deposition

Required current for Zn plating:
Total area of polished mild steel panel (half of hull cell panel and both sides):

Total area (mm?) = Length (mm) x Width (mm) x 2
7500 = 50 x 75 x 2
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Appendix

Note: The operating current density of alkaline Zn plating was ranged from 1
to 3 A dm™ in Atotech Protolux 3000 datasheet for rack plating. However, the
recommended value was 2 A dm™.

Current density (A dm™) x Total area plated (dm?) = Current (A)
2x0.75 =15

Required time for desired thickness:
i.e. desired thickness =8 pm

Volume (mm?) = Length (mm) x width (mm) x height (mm)
=50 x 75 x 0.008 = 30 (mm?)
Both sides are plated = 60 (mm?)
Mass (g) = volume (mm?) x density (g/(mm?)
= 60 x 0.00714
— 04284 ¢

Note: density of Zn is taken as 7.14 (g/cm?)

n(e)* F(C/mol)

Ti =
ime (s) Current(A)

= 6.55x 1073 x 2 x 96500 / 2
= 843.08 s
= 14 min

Note: n(e) is the number of moles of electrons and F is the Faraday constant 96,500

Cmole 1

2 Calibration curve for determination of Cr(VI)

A calibration curve was made by plotting absorbance intensity at 540 nm (A) versus
the concentration of Cr(VI). The least-square fitting gives a correlation equation, C
= 3.5171x + 0.0025 with coefficient of determination 0.99. Using this calibration
curve, the concentration of Cr(VI) in mg/l was determined.
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3 X-ray diffraction of the Cr(III)-based conversion coatings

Cr(VI1) calibration curve
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Figure A.1 A calibration curve showing the absorbance intensity at 540 nm vs Cr(VI)
concentration

3 X-ray diffraction of the Cr(III)-based
conversion coatings

Figures A.2 and A.3 show the XRD analysis of two selected TCC layers. Due to
the fact that these TCC layers were thin and the Zn layer had a strong preferred

orientation, no different XRD spectra were observed than the one from the alkaline
Zn layer.
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Figure A.3 XRD analysis of 2Cr + 20x + Co
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