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Abbreviations and Notation

We employ geometrized units with c = G = M� = 1 throughout this work. In some

cases, c,G,M� are given explicitly for better understanding. We use Greek letters

like µ for four-dimensional indices running from 0 to 3 and Latin letters like i for

three-dimensional indices running from 1 to 3. We refer to most references using

numbers except for references to our own publications for which we use Arabic

numerals. The following abbreviations are used throughout the thesis, in most cases

these abbreviations are also introduced in the text at their first appearance:

BAM Bi-functional Adaptive Mesh (code name)
BBH binary-black holes
BH black hole
BNS binary neutron stars
BSSN Baumgarte-Shapiro-Shibata-Nakamura
CRV constant rotational velocity
EOB effective-one-body
EOS equation-of-state
Eq. equation
GR General Relativity
GRB gamma-ray burst
GRHD General relativistic hydrodynamics
GW gravitational-wave
HMNS hypermassive neutron star
LIGO Laser Interferometer Gravitational Wave Observatory
LORENE Langage objet pour la relativite numerique (code name)
LVC LIGO/Virgo collaboration
LSC LIGO Scientific Collaboration
NLO next to leading order
NNLO next to next to leading order
NR Numerical-relativity
NS Neutron star
ODE ordinary-differential-equation
O1 first observing run
O2 second observing run
O3 third observing run
PDE partial differential equations
PDF probability density function
PN post-Newtonian
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PSD power spectral density
PSDs power spectral densities
SNR signal-to-noise ratio
ZDHP zero-detuned high-power configuration
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Abstract

The first observation of gravitational waves from a merger of binary neutron stars

(BNS) along with measurements of electromagnetic counterpart has led the begin-

ning of multimessenger gravitational wave astronomy. In this thesis, we investigate

various gravitational waveform models. These models are employed for extracting

source properties from the gravitational wave signal from the BNS merger. We per-

form parameter estimation studies in order to deduce the systematics among these

models. We employ different injection scenarios to understand the biases that oc-

cur due to differences in the physics included in different waveform models. We

present the construction of hybrid waveforms and discuss their applications as a full

waveform, e.g., for validation of other waveform models and to check the perfor-

mance of the models by performing mismatch calculations and parameter estima-

tion studies where hybrid waveforms used as a substitute for a real signal. Based

on the systematics study, we show a few of the waveform models give biased esti-

mates of the parameters for specific injection scenarios. We improve those models

and present the results of the improved models. In the context of having an accurate

yet fast-to-evaluate waveform model, we review reduced-order-modeling techniques

and present its application for the multipolar TEOBResum model.

Furthermore, to validate and tune analytical models, and to investigate the last

few orbits near the merger and after the merger, numerical simulations are inevitable.

We evaluate the performance of an initial data generating code, called new SGRID

code for BNS systems. With the upcoming advance detectors, it is highly likely that

events with extreme source properties will get observed. Therefore, in this thesis,

we show preliminary results for numerical simulations of BNS mergers with high

spins. We vary equation-of-states (EOSs) and spins to investigate the effects of spin

and EOS on the dynamics and gravitational waves.
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Chapter 1

Introduction

When a giant star runs out of fuel, its core collapses, squeezing the electrons and

protons to form an object mostly consisting of neutrons and neutrinos. If the star is

lighter than ∼ 3M�, then the neutron pressure keeps it stable; otherwise, it collapses

to a black hole. This stable star is called a neutron star (NS). NSs are 10 - 15 km

in radii and have masses around 1 - 3 M�, thus are one of the most compact objects

in the known universe [1–3]. A merger of two such compact objects is an exotic

event, provides multi-wavelength observation (from X-ray to optical and radio), and

emits gravitational-waves (GWs). GWs can be understood as waves of distorted

space, radiated away from the source, traveling through the spacetime at the speed

of light [3–5]. GWs arise in General Relativity (GR) due to time-varying quadrupole

and higher-order multipole moments. They contain important information about

their sources as they emerge from regions of strong gravity and relativistic motion.

They interact very weakly with matter, which makes them ideal for investigating the

nature of spacetime and matter under extreme conditions of gravity, density, and

pressure.

During the first observing run (O1) of the LIGO detectors at Hanford and Liv-

ingston, the first direct detection of the GW signal from a coalescing binary-black

hole (BBH) was made [6] on 14th September 2015. In O1 and second observing run

(O2), several GW signals were detected consistent with the inspiral and merger of

BBHs. Moreover, during O2, first signal consistent with a binary neutron star (BNS)

merger was detected (GW170817) on 14th August 2017 [Collab1], along with the

observation of electromagnetic counterparts (see [7]). A short gamma-ray burst

(GRB) GRB-170817A was observed 1.7 seconds after the GW detection by Fermi

Gamma-ray Space Telescope and the International Gamma-Ray Astrophysics Labo-

ratory.

These electromagnetic observations supported the hypothesis of BNS mergers as the

progenitor of short GRBs. This spectacular event has started a new era of multi-

messenger astronomy. As predicted, the direct detection of the BNS merger has

3
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provided unique opportunities to answer long-standing questions in astrophysics.

For example, GW170817 was used to place a constraint on the behavior of matter

at supranuclear densities [8–12] and sites where heavy elements form. The detec-

tion also led to an independent measure of Hubble constant [13]. GW170817 also

ruled out a large class of modified gravity theories by placing a limit on the dif-

ference in speed of gravity and electromagnetic waves. We discuss the properties

of GW170817 in Sec. 2.4 in detail. A complete analysis of the source properties

measured from GW170817 is given in Ref. [Collab2].

To date, ten signals consistent with BBH mergers and one with BNS coalescence

have been observed in O1 and O2 [14]. We have seen and expect to see many more

detections in the third observing run (O3), which is currently ongoing (started in

April 2019). All three GW detectors, LIGO Hanford and Louisiana (in the US, [15])

and the Virgo detector in Italy [16] are operational in O3 which was not the case

for the entire duration of O1 and O21, and the sensitivity of the detectors have been

improved. Therefore, signals with extreme source properties are expected.

The detection and extraction of source properties of such signals are of great

importance for both astrophysics and nuclear physics. GWs are used to test General

Relativity (GR) in dynamical spacetime and provide insights into the nature of the

matter in the strong-field regime. The upcoming next-generation GW observatories

(3G), like the Einstein Telescope and Cosmic Explorer, will observe sources at high

redshift (z ∼ 10 − 20), i.e., 3G detectors will see mergers of black holes (BHs) and

NSs from a very early time, probably from the first stars and BHs. We hope to

see extremely bright events that might offer some hints of new physics. We expect

to observe other classes of compact objects, such as boson, axion, and gravastars

stars, which are theoretically predicted in extensions to GR or rule them out. At

the sensitivity of future detectors, the measurement of the merger and post-merger

regimes of the BNS signal is expected, which will help in constraining the cold EOS,

and with more observations, we will constrain the EOS at supranuclear densities

significantly better.

There are two categories, modeled search and unmodeled search for detecting

the signal deep buried in the detector noise. Unmodeled search is for signals such as

stochastic background, signals from rotating NSs with asymmetry, asymmetric core-

collapse supernovae, etc., for which we do not have a model to describe the signal.

Though, we sometimes do employ unmodeled search for coalescing compact binary

signals. These searches are less sensitive than modeled searches. For signals from

coalescing compact binaries, such as merging BBH, BNS, and BH-NS, we employ

modeled or semi-modeled searches. Accurate waveform templates are necessary for

the detection, as well as for inferring the properties of the source of the signals for

1Virgo joined O2 in August 2017
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CHAPTER 1. INTRODUCTION 5

modeled search. There are several waveform models (discussed in Chapter 3), also

called approximants, implemented in LSC (LIGO Scientific Collaboration)-Algorithm

Library (LAL) to facilitate the searches and estimating the parameters of the source.

It is essential to understand the systematics among the existing waveform models in

order to make meaningful statements about the source properties at the end. It is

crucial to improve these approximants such that accurate and fast waveforms can

be generated in the unexplored regions of the parameter space for the analysis of

upcoming events with extreme properties as the Advanced LIGO and VIRGO de-

tectors are at high sensitivity. In this thesis, we mainly focus on the BNS merger

as a source of GWs. For the inspiral regime, when the two compact objects are

well-separated, analytical models like post-Newtonian (PN) and analytical approx-

imations like effective-one-body (EOB) are used to generate template waveforms.

However, for information near merger, numerical simulations of the non-linear field

equation with full relativistic hydrodynamics is required. Numerical-relativity (NR)

waveforms are also required to tune and validate the analytical approximation.

We explore three different aspects of GW data analysis in this thesis, namely,

understanding the waveform models, improving the current waveform models, and

performing numerical simulations with extreme parameters to provide high-resolution

waveforms, which can be used as a testbed to extract the spin and tidal effects.

The thesis is organized as follows: In Chapter 2, we discuss the basic concepts re-

lated to GWs, sources of GWs, and Bayesian inference algorithm employed to ex-

tract the source properties. We also discuss the properties of the first BNS detection

GW170817 [Collab1, Collab2]. In Chapter 3, we discuss various waveform model

families like PN, EOB, and phenomenological waveforms and also discuss various

approximants derived from these families like TaylorF2, IMRPhenomD, TEOBResumS,

etc. However, these waveforms do not cover the full inspiral-merger-post-merger

regime. One can join together waveform for the inspiral regime and NR waveforms,

which describe merger and post-merger regime, to obtain full waveforms called hy-

brid waveforms. We discuss the construction of hybrid waveforms in Chapter 4. We

also discuss some of their applications; as an example, we show how the NRTidal

model can be evaluated using hybrid waveforms. We calculate mismatches between

the NRTidal model with several hybrid waveforms in order to test its performance.

The hybrid waveforms are publicly available on the CoRe database2, cf. [Collab3]. In

Chapter 5, we explore systematic differences among various waveform models. We

inject hybrid waveforms as a real signal in the LIGO data stream and recover their

parameters by employing different waveform approximants. We then investigate the

biases in the extracted parameters. We also study the impact of the presence of the

post-merger regime in the signal, but absent in approximants, on parameter esti-

2http://www.computational-relativity.org/
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mates [Dudi1]. We find that some of the waveforms models are giving biased results

due to approximate treatment of the physics. We improve these waveform models

and discuss the results in Chapter 6. For example, we implemented TaylorF2 at

quasi 5.5 PN waveform model in LAL and studied its improvement over TaylorF2 at

3.5 PN by comparing the results of parameter estimation and Qω relation [Dudi2].

We review the reduced-order-modeling techniques to generate compact, accurate,

and fast-to-evaluate waveforms in place of a very accurate but slow waveform model

[Dudi7].

Furthermore, to probe the last orbits around the merger, to describe the post-

merger dynamics and to tune and validate the analytical models, NR simulations are

essential. We present a preliminary numerical investigation of BNS mergers with

very high spins in Chapter 7. The initial data is constructed using a new code called

new SGRID code (developed by Tichy et al.)[Dudi5] and evolved by employing the

BAM code, followed by the eccentricity reduction procedure. We also evaluate the

performance of the new SGRID code for the BNS merger. We would like to provide

the high spinning gravitational waveforms as a testbed to extract the spin effects in

the GW phase evolution and to test other semi-analytical waveform models [Dudi6].

For additional information, we provide a derivation of quasi 5.5 PN phasing in

Appendix A, algorithms employed in the construction of the surrogate model in Ap-

pendix B, and basic framework of the new SGRID code in Appendix C.
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Chapter 2

Basics of Gravitational waves

In this chapter, we briefly illustrate the origin of GWs in GR and discuss some of

their properties. We also explore BNS, as a source of GWs and discuss the effects

of NS matter on GWs due to tidal interaction between two NSs. Then, very briefly,

we discuss Bayesian analysis which is a tool to estimate the source properties once

the GW signal gets measured. For a more detailed description of GWs, we refer the

reader to Refs. [4, 5, 17, 18]

2.1 Basics: Theory of General Relativity
The theory of general relativity states that gravitation is not a force but rather a

manifestation of the curvature (R) of spacetime, which is related to the local energy-

momentum tensor (Tµν) [4]:

Gµν ≡ Rµν −
1

2
gµνR = 8πTµν (G = 1), (2.1)

where Gµν is the Einstein tensor, Rµν is the Ricci curvature tensor and is obtained

by contracting Riemann tensor (Rα
βµν) on the first and third indices. R is the Ricci

scalar and obtained by contracting Ricci tensor, and gµν is the spacetime metric. Eq.

(2.1) known as Einstein’s field equation. The Riemann tensor is given by:

Rα
βµν = ∂µΓαβν − ∂νΓαβµ + ΓαγµΓγβν − ΓαγνΓ

γ
βµ, (2.2)

where Γγµν are the affine connection coefficients to the metric, called Christoffel

symbols and are defined as:

Γγµν =
1

2
gγβ(∂νgβµ + ∂µgβν − ∂βgµν) . (2.3)

Here ∂µ means the partial derivative ∂/∂xµ. Though gravity is strong near com-

pact and heavy objects like BHs and NSs, it is weak in most places in the universe.

The study of weak gravitational fields is important as it leads to the derivation of

7



8 2.1. BASICS: THEORY OF GENERAL RELATIVITY

gravitational radiation.

Linearised theory of gravity

Eq. (2.1) is a set of complicated non-linear second-order differential equations.

These equations can be simplified using perturbation theory in the weak field limit,

where the deviation from the exact solution is small. Linearized gravity is a suitable

approximation to GR when gravity is weak, i.e., the spacetime metric gµν can be

treated as a slight deviation from the flat Minkowski metric ηµν:

gµν = ηµν + hµν , (2.4)

where ηµν is diag(-1,1,1,1) and hµν is a small metric perturbation. We assume ‖hµν‖ �
1, which allows us to ignore higher order terms in this quantity and impose the grav-

itational field to be weak. Thus, indices are raised and lowered using the flat metric

ηµν . The Lorentz transform (Λν
µ) of the metric Eq. (2.4), shows that hµν transforms

as a rank 2 tensor (2.5), but not under general coordinate transformations. There-

fore, we can think of the metric perturbation as a tensor field propagating on the

background spacetime.

hµ̄ν̄ = Λµ
µ̄Λν

ν̄hµν . (2.5)

We now expand the Christoffel symbols in terms of hµν:

Γναβ =
1

2
ηνµ(∂βhµα + ∂αhµβ − ∂µhαβ)

=
1

2
(∂βh

ν
α + ∂αh

ν
β − ∂νhαβ)

(2.6)

In linearized theory, the Riemann tensor is then given by:

Rν
αβµ = ∂βΓναµ − ∂µΓναβ

=
1

2
(∂α∂βh

ν
µ + ∂µ∂

νhαβ − ∂β∂νhαµ − ∂µ∂αhνβ).
(2.7)

We now construct the Ricci tensor by contracting first and third indices:

Rαβ = Rµ
αµβ =

1

2
(∂µ∂βh

µ
α + ∂µ∂αhβµ −�hβα − ∂α∂βh), (2.8)

where h = hαα is the trace of metric perturbation and � = ∂µ∂
µ = ∇2 − ∂2

t is

the d’Alembertian wave operator. We now compute curvature scalar by contracting

again:

R = Rα
α = (∂µ∂

αhµα −�h) (2.9)

8



CHAPTER 2. BASICS OF GRAVITATIONAL WAVES 9

and then the Einstein tensor is given by:

Gαβ = Rαβ −
1

2
ηαβR

=
1

2
(∂µ∂βh

µ
α + ∂µ∂αhβµ −�hαβ − ∂α∂βh− ηαβ∂µ∂νhµν + ηαβ�h)

(2.10)

To clean up the above expression we change the notation. We define the ‘trace

reverse’ of hµν as h̄µν .

h̄µν = hµν − 1

2
ηαβh. (2.11)

Note that h̄αα = −h, we replace hαβ with (h̄αβ + 1
2
ηαβh) in Eq. (2.10). Then the

Einstein tensor, to first order, is:

Gαβ =
1

2
(∂µ∂

µh̄αβ + ηαβ∂
µ∂ν h̄µν − ∂µ∂βh̄αµ − ∂µ∂αh̄βµ +O(h2

αβ)). (2.12)

To simplify the above Eq. (2.12) further, we exploit the gauge freedom, i.e., choose

an appropriate coordinate system. We can write a general inifinitesimal coordinate

transformation as xα′ = xα + ξα, where ξα(xβ) is an arbitrary infinitesimal vector

field. Then the metric perturbation changes as:

h′αβ = hαβ − 2∂ ξα β , (2.13)

and the trace-reversed metric is:

h̄′αβ = h′αβ −
1

2
ηαβh

′

= h̄αβ − 2∂ ξβ α + ηαβ∂
µξµ.

(2.14)

The Lorenz gauge are suitable gauge choice, is given by the:

∂ν h̄
µν = 0. (2.15)

We can compute ξα such that the Lorenz gauge can be imposed on the metric pertur-

bation, i.e., we find a new metric h′αβ such that it satisfies the Lorenz gauge condition

Eq. (2.15):

∂αh̄′αβ = ∂αh̄αβ − ∂α∂βξα −�ξβ + ∂β∂
µξµ

= ∂αh̄αβ −�ξβ.
(2.16)

Therefore, by imposing the Lorenz gauge, we force the inifinitesimal coordinate trans-

form to satisfy:

�ξβ = ∂αh̄αβ. (2.17)

9



10 2.1. BASICS: THEORY OF GENERAL RELATIVITY

Thus, applying Eq. (2.15) to the Eq. (2.12) yields:

Gαβ = −1

2
�h̄αβ. (2.18)

Rearranging, we arrive at the final form of the weak field Einstein equations under

the Lorenz gauge condition:

�h̄µν = −16πTµν . (2.19)

Solving Einstein’s Field Equation

Let’s consider the case far from the source and in vacuum (T µν = 0), then the

field Eq. (2.19) reduces to:

�h̄µν = 0. (2.20)

The solution of the above equation is a superposition of plane waves:

h̄µν(x, t) = <
∫
d3kAµν(k)eι(k·x−ωt), (2.21)

where Aµν is the polarization tensor which contains information about the amplitude

and polarization and depends on the wavevector k. ω = |k| with kµ = (ω,k) and it

can be shown [4] that kνkν = 0, i.e, kν is a null vector. kµ the wave vector which

provides propogation direction and frequency of the wave. Imposing the Lorenz

gauge condition implies that Aµνkν = 0, i.e, Aµν is orthogonal to the direction of the

wave propogation ~k, thus the wave is a transverse plane wave. We can further im-

pose a transverse traceless (TT) gauge condition while still satisfying Lorenz gauge

condition for a globally vacuum spacetime to make the metric perturbation purely

spatial:

htt = hti = 0 (2.22)

and traceless:

h = h i
i = 0 . (2.23)

Then the Lorenz gauge condition (2.15) implies:

∂ihij = 0. (2.24)

This is called the transverse-traceless gauge. We write the metric perturbation in TT

gauge as hTTαβ . As it is traceless, therefore:

h̄TTµν = hTTµν (2.25)

Imposing TT gauge conditions fixes all the local gauge freedom, thus, hTTαβ contains

only physical information about the radiation. The fact that the gravitational waves

10



CHAPTER 2. BASICS OF GRAVITATIONAL WAVES 11

have two polarization components can also be shown in TT gauge. For example, if

we orient the coordinates such that the wave propogates in the z-direction then, a

valid solution to the wave equation �hTTij = 0 is hTTij = hTTij (t − z). Then applying

Lorenz condition implies that the only non-zero components of the metric perturba-

tion are hTTxx , hTTxy , hTTyx and hTTyy . The conditions given in Eqs. (2.22, 2.23), implies

that only two of these components are independent. Therefore, in TT gauge, the

only non-zero components of hTTij are hTTxx = −hTTyy and hTTxy = hTTyx , i.e.,

hTTµν (t, z) =


0 0 0 0

0 h+(t− z) h×(t− z) 0

0 h×(t− z) −h+(t− z) 0

0 0 0 0

 , (2.26)

where h+(t − z) and h×(t − z) are the ‘plus’ and ‘cross’ polarizations of the gravita-

tional waveform. Since we have exploited all our gauge freedom, these two polariza-

tions are physically observable phenomena. To find out how the GWs are generated

by the source, one needs to solve the Einstein equation coupled with matter (2.19)

and with the conservation equation, ∂µTµν = 0. The Green’s function associated

with the wave operator is well known. One can show that by using retarded Green’s

function, Eq. (2.19) reduces to:

h̄µν(t, x) = 4

∫
d3x′

Tµν(t− |~x− ~x′|, ~x′)
|~x− ~x′|

, (2.27)

where x is spatial coordinate of the field point at which h̄µν is determined, x′ is

spatial coordinate of a point of the source and t− |~x− ~x′| is the retarded time where

speed of light is set to unity (c = 1). It accounts for the lag between the propagation

of information from position x to x′. We only require the spatial components of

the metric perturbation as they only contain the radiative degrees of freedom. We

compute Eq. (2.27) at large distances from the source and therefore we can pull

r ≡ |~x− ~x′| out of the integral:

h̄ij(t, x) =
4

r

∫
d3x′Tij(t− r, ~x′). (2.28)

The above equation is the leading-order term in the multipolar expansion of the

radiation field. Using the stress-energy conservation ∂αTαβ = 0 and after massaging

the above equation a bit, it can be shown that:

4

r

∫
d3x′Tij =

2

r

∂2

∂t2

∫
d3x′ρx′ix′j , (2.29)

11



122.2. SOURCES OF GRAVITATIONAL WAVES: BINARY NEUTRON STARS

where ρ is the mass density T tt, in a volume element d3x at the position xi. We can

define the third moment Iij of the mass distribution as:

Iij(t) =

∫
ρ(t, x)xixjd3x. (2.30)

Combining Eq. (2.28) and (2.29) gives:

hij(t, x) =
2

r
Ïij(t− r). (2.31)

The final quadrupole formula is obtained by projecting the above equation into TT

gauge:

hTTij (t, x) =
2

r

d2Ikl(t− r)
dt2

Pik(n)Pjl(n). (2.32)

Here Pij is the projection operator and the quadrupole moment tensor Iij is obtained

by subtracting the trace from Iij:

Iij = Iij −
1

3
δijI, I = Iii. (2.33)

2.2 Sources of gravitational waves: Binary Neutron Stars
The quadrupole formula (2.32) shows that any matter that can produce time-

varying quadrupole moment can produce GWs. However, to detect the GWs from

terrestrial interferometers like LIGO/Virgo [15, 16], the amplitude of the waves need

to be large enough. Therefore, events which involve compact and heavy objects, such

as BHs and NSs, moving at relativistic speed are more detectable. Approximately,

two years after the first detection of GWs from two merging BHs, the first GW signal

consistent with a BNS merger was observed [Collab1]. GW170817 was observed

at the luminosity distance of only 40+8
−14 Mpc from Earth with a combined signal-to-

noise ratio (SNR) of 32.4 [Collab1], which makes it the closest and loudest event

yet. We focus mainly on the BNS mergers as a source of GWs in this thesis. The

emitted GWs from the coalescence of a BNS is a chirp-like signal and characterized

by increasing amplitude and frequency, similar to the case of a BBH coalescence.

The gravitational-wave spectrum from a BNS merger can be characterized into three

regimes: inspiral, merger and post-merger. Fig. 2.1 shows an NR- gravitational

waveform as well as the associated Mω22 as a function of mass rescaled retartded

time for the three regimes. The corresponding snapshots of the rest-mass density

log10ρ for three different regimes are shown in the bottom panel. We now discuss

the three regimes in detail.

(i) Inspiral phase - As the two NSs orbit and slowly inspiral, they emit GW and come

closer and closer. Each star becomes tidally deformed by the gravitational field of its

companion. This effect leads to an increase in the inspiral rate [19] and adds tidal

12
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information to the GW [20–22]. The deformability of the NS can be characterized

in terms of its Love number. Let Eij is the quadrupolar tidal field generated by the

external gravitational potential, then the induced quadrupole, to linear order,:

Qij(t) = −λEij(t), λ = constant. (2.34)

For (l = 2) the dimensionless Love number k2 is defined as

k2 =
3

2

Gλ

R5
, (2.35)

where R is the radius of a NS. The magnitude of the tidal interaction is regulated by

a set of tidal deformability coefficients

ΛA,B
` =

2kA,B`

C2`+1
A,B (2`− 1)!!

, (2.36)

where A,B label the two NSs, and kA,B` and CA,B = MA,B/RA,B denote their Love

numbers and compactnesses [22–24]. Since ΛA,B
` depend on the internal structure

of the NSs, their measurement provides constraints on the EOS of cold degenerate

matter at supranuclear densities. The tidal deformabilities of the individual stars

ΛA,B
2 are difficult to measure, but the combination

Λ̃ =
16

13

(MA + 12MB)M4
AΛA

2

(MA +MB)5
+ [A↔ B] . (2.37)

can be extracted from the detected GW signal with significantly higher precision

[25, 26]. The gravitational waveform in the frequency domain can be written as:

h̃(f) = A(f) exp−ιΨ(f), (2.38)

where A is the amplitude, f is frequency and Ψ is the phase of the GW. The tidal

interactions (for non-spinning binaries) enter the phase evolution at the 5 PN or-

der [20, 21, 27–32], then the leading-order phase correction due to tides is given

by:

∆Ψtidal
5PN =

−111

256

M2

MAMB

Λ̃
(v
c

)5

(2.39)

where M is the total mass of the binary. Λ̃ captures the entire 5 PN tidal correction;

it also enters at 6 PN order in linear combination with

δΛ̃ =

(
M2

A −
7996

1319
MAMB −

11005

1319
M2

B

)
M4

AΛA
2

(MA +MB)6

− [A↔ B] , (2.40)

13
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which, however, is unlikely to measured by Advanced LIGO/Virgo detectors [26].

The imprint of tidal interaction on the GW phase is visible at low GW frequencies

. 150 Hz, e.g. [20, 33].

(ii) Merger Phase - After a long inspiral, the two NS plunge into each other and

form a single object. We use NR to investigate the merger and post-merger dynam-

ics of a BNS coalescence. Studies of numerical simulations of BNS mergers predict

that depending on the initial masses and EOS of the two NSs; the remnant could

be either a hypermassive neutron star (HMNS), a supermassive neutron star or a

BH [34]. If the total mass of the remnant is greater than twice of the total mass of

a Tollman-Oppenheimer-Volkhov star (MTOV ), M ≥ 2MTOV , then the merger leads

to a prompt collapse to a BH. However, if M ∼ 1.5MTOV then a HMNS formation is

more likely. Hypermassive neutron stars are massive (M ∼ 2M�), and have a large

angular momentum, and are stabilized by differential rotation. They shed off the

extra angular momentum through GW emission. For the given mass, if the EOS of

the remnant, allows a stable non-rotating counterpart then it will stabilize to super-

massive neutron star; otherwise, it will lead to a delayed collapse to a BH [34].

(iii) Postmerger Phase - the spectrum of this phase depends on the remnant. In

general, the merger remnant has a characteristic GW spectrum with a small number

of broad peaks in the fGW ∼ 1.8−4 kHz frequency range. The main peak frequencies

of the post-merger GW spectrum correlate with properties of a zero-temperature

spherical equilibrium star [35, 36] following EOS-independent quasi-universal re-

lations [35–44]. While measuring the post-merger GW signal would, in principle,

allow one to determine the EOS independently of the inspiral signal.

14
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Figure 2.1: Top panel: Real part of the NR waveform Rh22/(νM) for BNS merger
of an equal mass non-spinning system with mass MA = MB = 1.35M� and EOS H4,
and associated dimensionless GW frequency Mω22 as function of total mass rescaled
retarded time t/M . Bottom: the snapshots of the logrithmic of the rest-mass density
log10ρ for the inspiral, merger and postmerger regimes. The waveform is shifted such
that merger time tmrg = 0. The plot is taken from [42].

2.3 Bayesian Inference
We extract the properties of the detected GW signal by employing the LIGO/Virgo

parameter estimation algorithm LALInference [45, 46], which is included into the

LSC algorithm library (LALSuite) package. The algorithm relies on Bayesian in-

ference that compares the observed signal against theoretical models [45, 47]. The

analysis of a GW signal is divided into two parts. The first is to constrain or measure

parameters of the source such as masses, spins, EOS of the NS, and sky location. For

a given fixed model, this is known as parameter estimation. Another is to understand

which model is more favorable among different models in the presence of the data,

which refers to as model selection. Both of these problems are tackled by Bayesian

analysis in GW astronomy.

A signal model for GWs from a compact binary is described by two sets of parame-

ters, intrinsic and extrinsic. The intrinsic parameters are those which descibe com-

ponents of the system like individual masses of the binary MA and MB, mass ratio

q = MB/MA ≤ 1 1 The best-measured parameter from a GW signal is the chirp mass

M = (MAMB)3/5/(MA + MB)1/5. It enters the phase evolution at the lowest order.
1Or Q = MA/MB ≥ 1 is also used.

15



16 2.3. BAYESIAN INFERENCE

The spin angular momenta Si, (i runs from A,B), represents six additional param-

eters. Usually, dimensionless spin parameter χi = Si/(Mi)
2 where (G = c = 1), is

employed. For BNS systems, the dimensionless tidal parameter Λi [Eq. (2.37)] and

δΛ̃i are additional instrinsic parameters whose measurement helps in constraining

EOS of the NSs. The extrinsic parameters are those which determine the localiza-

tion and orientation of the binary such as sky location (Θ,Φ), luminosity distance

(DL), polarization angle (ψ), orbital inclination of the binary (θ), time and phase of

coalescence (tc, φc), and the inclination angle cos θJN = Ĵ · N̂, where Ĵ is the unit

vector in the direction of the total angular momentum and N̂ is the unit vector in

the direction from the source towards the observer.

In this section, we provide a brief overview of the Bayesian analysis techniques in

the context of GW astronomy. For a more thorough discussion, we refer the reader

to [45, 47] and references therein. We begin with Bayes’ theorem:

p(θ|d) =
p(d|θ)p(θ)

p(d)
, (2.41)

where p(·) is the probability density and p(·|·) is the conditional probability density.

The term p(θ|d), on the left hand side (LHS), is the posterior probability density

function (PDF) (or simply posterior) for the model parameters θ given the data d.

This quantity is what we attempt to construct using Bayesian analysis. p(d|θ) is

called the likelihood which describes how well our model fits the data. p(θ) is known

as the prior PDF (or just prior) on the parameters. The denominator is known as the

evidence, given by:

p(d) =

∫
p(d|θ)p(θ)dθ. (2.42)

Likelihood is the probability of obtaining the data d given the parameter θ for a

given signal and noise model of the detector. Usually we assume detector noise to

be Gaussian, i.e., the noise values follow Gaussian distribution. Then, the time series

of detector data, d(t), can be modeled as the sum of the true GW signal and detector

noise, denoted by h(t) and n(t), respectively:

d(t) = h(t) + n(t). (2.43)

For Gaussian noise, the likelihood for a single detector is given by [48]

p(d(t)|θ) ∝ exp

[
−2

∫ ∞
0

|d̃(f)− h̃(f,θ)|2
Sdet(f)

df

]
, (2.44)

where tildes denote Fourier transforms of time series introduced so far and Sdet(f)

is the one sided power spectral density (PSD) of the detector. Under the assumption

that noise in different detectors is not correlated, this expression is readily gener-
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CHAPTER 2. BASICS OF GRAVITATIONAL WAVES 17

alized to the case of a coherent network of detectors by taking the product of the

likelihoods in each detector [49]. The prior incorporates our state of knowledge

about the parameters θ before we carry out a measurement. E.g., for a BNS event, it

is logical to choose a uniform mass prior in the range (1−3)M� as we know from the

literature and observations that a NS cannot be heavier than 3M� (Chandrasekhar

limit). If we are ignorant about a parameter then we can choose a uniform or log

uniform prior. Here in the context of GW data analysis, the model parameters θ rep-

resents the intrinsic and extrinsic parameters of the two compact objects that define

our model. At times, we are interested in only one of these parameters, therefore, for

a specific subset of source parameters in the set θ may be obtained by marginalising

the full posterior over all but those parameters:

p(θi|d) =

∫ (∏
k 6=i

dθk
)
p(θ|d). (2.45)

It can be shown that Eq. (2.44) reduces to

p(d|θ) ∝ exp

[
−1

2

(
(d, d) + (h(θ), h(θ))− 2(d, h(θ))

)]
, (2.46)

where (a, b) is the noise weighted inner product2. The optimal SNR is defined as

ρ2
opt = (h, h) = 4

∫ ∞
0

|h̃(f)|2
Sdet(f)

df. (2.47)

Let’s assume that we have two competing hypothesis (or models), one is that a GW

signal is present in the data, i.e, a signal model and the other is no signal is present,

i.e, noise model. The ratio of two probabilities of obtaining the data d given one

model versus another is called a Bayes’ factor:

B =
p(d|H1)

p(d|H0)
, (2.48)

where H1 is the hypothesis that there is signal in the data and H0 is the null hy-

pothesis. This is the ratio of Bayesian evidences. Evidence is independent of the

parameters θ and hence for a given dataset is just a constant. It can be viewed as

a completely marginalised likelihood function and used for model selection. Here,

each hypothesis is defined by a set of fixed (known) parameters. Then using Eq.

(2.46)

Λ = exp

[
−1

2

(
(h(θ), h(θ))− 2(d, h(θ)

)]
, (2.49)

2The noise weighted inner product is defined as: (a, b) = 4<
∫∞

0
ã(f)b̃∗(f)
Sdet(f) .
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18 2.4. GW170817 EVENT

where we have renamed the Bayes’ factor as the likelihood ratio Λ. Note that any

variation in Λ depends only on (d, h(θ)); therefore, it can be recognised as an optimal

statistic. Any threshold to reject the hypothesis can be translated to this quantity.

This quantity is also called matched filter as it is a noise weighted inner product of

the expected signal with the data. Model selection tells us which model is statistically

preferred by the data and by how much. When the absolute value of Λ is large we

say that the data preferred one model over other. Formally, to compare two models

(Ma and Mb), we define odds ratio Oa,b as:

Oa,b =
p(d|Ma)

p(d|Mb)

p(Ma)

p(Mb)
. (2.50)

This quantity is, in fact, the multiplication of Bayes’ factor with a quantity we call

prior odds. Prior odds incapsulates our prior belief about the models before we

carry out the measurement. Prior odds helps penalize the complicated models. To

compute posteriors or evidence, one needs to sample the N-dimensional parameter

space, which is computationally infeasible. Markov-Chain-Monte-Carlo (MCMC) [50]

and nested sampling are the two categories of sampling algorithms that are widely

used. MCMC generates samples from a target distribution via a form of random walk

jumping from one possible location to the next following a set of probabilistic rules.

This algorithm is based on the Metropolis Hasting algorithm [51, 52]. While nested

sampling is designed to calculate evidence. The generation of the posterior distribu-

tion is its by-product. It populates the parameter space with some points drawn from

the prior distribution, then the point of minimum likelihood is removed, and iterates

the algorithm until the point of higher likelihood is found. Typically, 106− 107 wave-

forms are evaluated by sampler to compute the posteriors. Both of these algorithms

are included in the LALInference package [45] as part of the LALSuite [46]. Then,

for analysis, the standard approach is to construct 1D or 2D marginalized posteriors

and compute the mean, median, and mode of the posteriors. We often compute

credible intervals which enclose desired integrated probability, say (90%, 95%).

2.4 GW170817 event

The rate and population models of the compact binaries have predicted that the

detection rate of BNS would be one to hundreds per year, when the detector network

reaches its design sensitivity [53, 54]. O1 ran for about three months and delivered

GWs from three BBH mergers. During O2, the first BNS merger was detected along

with seven BBH coalescences. So far, LIGO/Virgo collaboration (LVC) has published

detection of 10 BBH mergers and 1 BNS mergers [55].The merger rate prediction

for BNS inferred from O1-O2 data, at 90% confidence level are 110−3840 Gpc−3y−1,

9.7− 101 Gpc−3y−1 respectively [55]. The first BNS detection, GW170817, has pro-
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vided unique opportunities to not only probe/test GR in the strong field regime. A

gamma-ray burst was observed 1.7 seconds after the merger time by Fermi and IN-

TEGRAL gamma-ray telescope [7, 56]. Later, a followup localized a counterpart near

the galaxy NGC 4993, whose sky location and distance were consistent with what

was inferred from the GW data. All three detectors were operating at the time of the

event, which led to a source localization within an area of 28 deg2.

In the discovery paper [Collab1], TaylorF2Tides model was used to estimate the prop-

erties of the source. This model is described in Chapter 3. Though, there is a degen-

eracy between the inclination angle cos θJN = Ĵ · N̂ and distance measurements in

GW measurements, since the luminosity distance is known independent of the GW

data, this degeneracy can be broken. The data is found to be consistent with an anti-

aligned source: cos θJN ≤ −0.54, and the viewing angle Θ ≡ min(θJN , 180 deg−θJN)

is Θ ≤ 56 deg. cos θJN and Θ are constrained to cos θJN ≤ −0.88 and Θ ≤ 28 deg

using estimated redshift to NGC 4993 depending on the assumption for the Hubble

flow velocity [Collab1]. For GW170817, the chirp mass is M = 1.1880.004
−0.002 with

the total mass in the range [2.73 - 3.29] M�. The mass parameters in the detec-

tor frame are related to the rest-frame masses of the source by via redshift z as

mdet = m(1 + z). The uncertainity in the chirp mass meausurement in source frame

is dominated by uncertainity in the luminosity distance. Therefore, the errors in the

M in source frame are O(10) larger than in detector frameMdet = 1.1977+0.0008
−0.0003. The

chirp massM enters at the lowest order in the phase evolution, thus for a long inspi-

ral signal like GW170817, it is very well constrained. However, the measurement of

component masses are affected by the degeneracy between q and spin components

χA and χB
3. How this degeneracy could bias the measurements of q, component

masses MA and MB, and spins is studied in the parameter estimation study [Dudi1]

discussed in Chapter 4. Here, the assumption for spin prior is |χeff | ≤ 0.894 (as

for BHs |χeff | < 1). Some studies with realistic NS EOS give the limit χeff < 0.7

[57] though some EOS can exceed this bound. Therefore, an isotropic prior on the

spin direction with |χeff | ≤ 0.89 has been assumed. We recover q ∈ (0.4, 1.0) and

χeff ∈ (−0.01, 0.17). We obtain the range of component masses MA ∈ (1.36, 2.26)M�

and MB ∈ (0.86, 1.36)M�. These values are consistent with the range of known

NS masses and below those of known BHs. Given the spins of known NS, one can

advocate that the high spin prior |χ| ≤ 0.89 is not astrophysically relevent. There-

fore, a low spin prior |χ| ≤ 0.05 is also imposed, which gives q ∈ (0.7, 1.0) and

MA ∈ (1.36, 1.60)M� and MB ∈ (1.17, 1.36)M� and χeff ∈ (−0.01, 0.02). The range

of the estimated masses are consistent with the previously observed BNS system in

our galaxy. Additionally, the observation of electromagnetic counterpart indicate the

presence of matter, therefore, GW170817 could be a BNS merger event. However,

3The dimensionless spin magnitude χi = Si/M
2
i (i runs over A and B)

4χeff = MAχA+MBχB

MA+MB
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20 2.4. GW170817 EVENT

more compact objects like quark stars or NS-BH binary, cannot be completely ruled

out. With this event, the GW community had a chance to constrain the EOS of the

NS matter for the first time. Here, ΛA
` and ΛB

` are allowed to vary independently.

Meaning that the constraint that all NS should have the same EOS is not imposed.

Though, in a later publication [12] where the constraints on the radii of NSs is stud-

ied, this constraint is imposed. Assuming a uniform prior for Λ̃, with the high spin

prior, they obtained the upper limit on Λ̃ ≤ 700 and imposing low spin prior gave

Λ̃ ≤ 800. They found that the upper limits on Λ̃ ruled out those EOS that predicts

less compact stars.
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Figure 2.2: PDFs for the individual tidal deformability Λ̃A
2 (Λ1 in plot) and Λ̃B

2 (Λ2

in plot) using the high-spin (left panel) and low-spin (right panel) priors. The blue
shading is the PDF for the precessing waveform IMRPhenomPv2_NRTidal. The 50%
(dashed lines) and 90% (solid lines) credible regions are shown for the four wave-
form models. The seven black curves are the tidal parameters for the seven repre-
sentative EOS models using the masses estimated with the IMRPhenomPv2_NRTidal
model, ending at the Λ̃A = Λ̃B boundary. The plot is taken from [58].

Later, studies analyzed the GWs data in more detail [Collab2], which improved

the estimates of the binary’s properties and led to improved results: (i) Instead of

30 Hz, the GW frequency starting from 23 Hz is considered, which gives an addi-

tional 1500 cycles. (ii) The recalibrated data from Virgo detector is used. (iii) The

known source distance from the electromagnetic observations is used. Several elec-

tromagnetic signals covering the entire spectrum, ultraviolet, optical, infrared, and

gamma, were observed by multiple instruments. As already predicted, the merger

of NS produces a kilonova due to the synthesis of a large amount of heavy element

via rapid neutron capture r-process in the ejecta [59]. The electromagnetic signa-

tures are consistent with these predictions and confirm BNS mergers as the sites

where heavy elements like gold and platinum forms [13] and BNS as a progeni-

tor of the gamma-ray burst. The source properties are estimated by employing the
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Bayesian inference method, as described in Sec. 2.3. Markov-chain Monte Carlo

(MCMC) algorithm, implemented in LALInference package in LALSuite library, is

used for stochastic sampling to compute the marginalized posteriors. For the analy-

sis of the signal, multiple waveform models that are more accurate and have more

physical effects are employed. The waveform models used for parameter extraction

are TaylorF2Tides, IMRPhenomD_NRTidal, SEOBNRv4_ROM_NRTidal, and

IMRPhenomPv2_NRTidal. We discuss all these waveform models in detail in Chap-

ter 3. IMRPhenomPv2_NRTidal is the only model that incorporates tides, precession,

and as well as spin-induced quadrupole effects that enter the phasing at 2 PN or-

der. A uniform prior in detector frame masses with the constraint that 0.5M� <

Mdet
A ,Mdet

B ≤ 7.7M� and an additional constraint on chirp mass 1.184 ≤ Mdet ≤
2.168M� are employed. They convert the detector frame to source frame quantities

by estimating the redshift z using MUSE_VLT measurement of the redshift of the

NGC 4993. Again, two different spin priors on the magnitude of the dimensionless

spin, the high spin prior χeff ≤ 0.89 and low spin prior χeff ≤ 0.05 are employed.

The high spin prior is chosen to be consistent with the initial analysis [Collab1],

and to allow the possibility of an exotic binary system. The low spin prior choice

is motivated by the fact that the fastest spinning BNS capable of merging within

Hubble time will have at most χeff ≤ 0.05 when they merger. A uniform prior for

tidal deformability in the range 0 ≤ Λi
2 ≤ 5000 is employed. Tab. 2.1 shows the me-

dian value with 90% credible bounds on the binary’s parameter for both high spin

(right column) and low spin prior (middle column). These values are inferred by

employing IMRPhenomD_NRTidal model, though consistent results are obtained for

other models as well, for details see the Appendix A of Ref. [Collab2]. We show

marginalised PDFs of the individual tidal deformability ΛA and ΛB in Fig. 2.2 using

high spin prior (right column) and low spin prior (left column) for the four wave-

from models employed. Note that the bounds of all three NRTidal models are in

agreement with each other and 20-30% smaller than TaylorF2Tides. Although the

results of TaylorF2Tides model is in agreement with [Collab1] but with using lower

starting frequency and better data the bounds on ΛA,B
2 is decreased 10-20% with re-

spect to Ref. [Collab1]. This is beacuse of a degeneracy between mass, spin and tidal

parameters, thus other parameters are constrained well with longer inspiral, which

helps in improving constraints on tidal parameters. A subset of piecewise-polytropic

EOS, constructed using the mass posteriors are also shown. EOS which are more

stiff such as H4, MS1b and MS1 are ruled out. In Fig. 2.3 the PDFs for the combi-

nation of individual tidal deformability Λ̃ [Eq. (2.37)] reweighted by the priors are

shown, again for the four models and using high-spin (top panel) and low-spin prior

(bottom panel). The gray PDFs are given by the same EOS as in Fig. 2.2 and using

masses that are sampled from posteriors.
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Parameters Low-spin prior (χ ≤ 0.05) High-spin prior (χ ≤ 0.89)

θJN 146+25
−27deg

2 152+21
−27deg

2

θJN2 151+15
−11deg

2 153+15
−11deg

2

Mdet 1.1975+0.0001
−0.0001 M� 1.1976+0.0004

−0.0002 M�

M 1.186+0.001
−0.001M� 1.186+0.001

−0.001 M�

MA (1.36, 1.60) M� (1.36, 1.89) M�

MB (1.16, 1.36) M� (1.00, 1.36) M�

M 2.73+0.04
−0.01M� 2.77+0.22

−0.05 M�

q (0.73, 1.00) (0.53, 1.00)

χeff 0.0+0.02
−0.01 0.02+0.08

−0.02

χA (0.00, 0.04) (0.00, 0.50)

χB (0.00, 0.04) (0.00, 0.61)

Λ̃ 300+500
−190 (symm)/ 300+420

−230 (HPD) (0,630)

Table 2.1: We list the properties of GW170817 such as binary inclination θJN and
θJN2 using EM distance constraint, detector frame chirp massMdet , chirp massM,
primary mass MA, secondary mass MB , total mass M , mass ratio q , effective
spin χeff , primary dimensionless spin χA, secondary dimensionless spin χB and tidal
deformability Λ̃ inferred using the IMRPhenomPv2_NRTidal waveform model. All
properties are source properties except for the detector frame chirp mass Mdet =
M(1 + z). Errors quoted as x+z

−y represent the median, 5% lower limit, and 95%
upper limit. Errors quoted as (x, y) are one-sided 90% lower or upper limits, and
are used when one side is bounded by a prior. For the masses, MA is bounded from
below and MB is bounded from above by the equal mass line. The mass ratio is
bounded by q ≤ 1. For the tidal parameter Λ̃, we quote results using a constant
(flat) prior in Λ̃. In the high-spin case, we quote a 90% upper limit for Λ̃, while in
the low-spin case we report both the symmetric 90% credible interval (symm) and
the 90% highest posterior density (HPD) interval, which is the smallest interval that
contains 90% of the probability. The table is taken from [58].

The bimodal behavior of NRTidal models could be related to noise realization and

requires further investigation. In summary, these results are broadly consistent with

the initial estimates. With improvements like longer and recalibrated data, known

luminosity distance, and sophisticated waveform models, the results are more pre-

cise. The sky localization, which was 28 deg2, is improved to 16 deg2. We find better

constraints on the inclination angle by employing known luminosity distance using

electromagnetic observation. We provide tighter constraints on binary properties

than the initial analysis and found masses to be in the range expected for the BNS

system.
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Figure 2.3: PDFs of the combined tidal parameter Λ̃ for the high-spin (top
panel) and low-spin (bottom panel) priors. The PDFs have been reweighted
by dividing by the original prior. The 90% HPD credible intervals are repre-
sented by vertical lines for each of the four waveform models: TaylorF2Tides,
IMRPhenomD_NRTidal, SEOBNRv4_ROM_NRTidal, and IMRPhenomPv2_NRTidal. For the
high-spin prior, the lower limit on the credible interval is Λ̃ = 0. The seven gray PDFs
are those for the seven representative EOSs using the masses estimated with the
IMRPhenomPv2_NRTidal model. Their normalization constants have been rescaled to
fit in the figure. The plot is taken from [58].
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Chapter 3

Waveform models

There are different techniques to model the GWs signals emitted from a compact bi-

nary coalescence. These models differ in their computational complexity, the physics

they employ, and their regime of applicability. LALInference has been designed to

interface with arbitrary waveform families efficiently. Each waveform family can be

thought of as a function that takes as input a parameter vector (θ) and produces h+

and h× in time or frequency domain. In this chapter, we discuss the analytical PN

family, the EOB formalism, and phenomenological waveform models, including the

NRTidal model. For modeling the signal a few cycles before the merger, at merger

and post-merger part, NR simulations are employed, which we discuss in Chapter 7.

3.1 Post-Newtonian waveforms

It is tedious to solve Einstein’s field equation in full generality even for the two-

body problem. Thus approximate methods like PN, post-Minkowskian (non-linear

expansion in G), multipole expansion are developed, which give results in good

agreement with GR as higher orders included. These approximation methods are

valid for sources that are slow-moving (v � c, v is the typical speed of the system),

weakly self-gravitating, and weakly stressed. For the case of compact objects orbiting

each other, one can divide the spatial region into two regimes: the near zone (R �
λ, where R is the distance to the source and λ is the characteristic wavelength)

and the far zone (R � λ). The fields in the near zone can be approximated to be

instantaneous; thus, PN expansion in (1/c2 ∼ GM/c2R =⇒ v2/c2 ∼ GM/c2R)

is employed around the instantaneous time (t) whereas in the far zone the effect

of retardation needs to be included. Thus, a multipole expansion with different

moments described by PN expansion around retarded time (t − R/c) is employed.

The two expansions are matched together in the intermediate zone.

As the two objects inspiral each other, the orbit shrinks due to the emission of GWs.
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The global conservation of energy leads to the energy balance equation:

dE

dt
= −F , (3.1)

where E is the binding energy and F denotes the total gravitational-wave “lumi-

nosity” and can be calculated from the quadrupole moment, as described in [60].

E can be deduced from high-order PN equations of motion of the binary. Landau

Lifshitz representation of Einstein field equations in harmonic coordinates [60] and

ADM-Hamiltonian formalism [61] are often used to study the dynamics of the binary

system, and GWs and both methods give consistent results for the observables. The

key elements of PN theory are equations of motion, energy and angular momentum

fluxes, and gravitational waveforms. In the first-order approximation (0 PN), we

get the Newtonian field, and by schematically iterating, higher orders are obtained.

For a detailed description of the scheme of constructing equations of motion and

wave generation formalism in high PN order, we refer to [60, 62]. As we include

the higher-order terms, the non-linearity of gravity kicks in, and various effects can

be observed. Some of the critical effects associated with physical phenomena are

discussed here. Radiation-reaction force that causes the orbits to inspiral and cir-

cularizes over time through dissipation of energy enters at 2.5 PN in the dynamics

and at the leading order in phasing. The tail terms also enter at 2.5 PN at leading

order. They arise because the propagating field gets scattered off from the static

background. It contains information about the source at an earlier time than the

retarded time.

Including the spin of the two objects gives rise to two main effects, namely spin-orbit

(SO), which is linear and spin-spin (SS), which is quadratic. The leading-order SO

effect arises at the 1.5 PN, next to leading order (NLO) at 2.5 PN and next to next

to leading order (NNLO) at the 3.5 PN. The SS effect enters at leading order at 2

PN and NLO at 3 PN (it includes both the coupling between different spins and spin

squared terms) and NNLO at 4 PN (includes interaction between different spins).

The PN evolution is based on adiabatic approximation according to which the frac-

tional change in the orbital frequency ω over each orbital period is negligibly small,

i.e., ∆ω/ω � 1 and this assumption starts failing as the system approaches last sta-

ble orbit. The frequency of last stable orbit is given by fLSO = (6
3
2πM)−1. For GW,

we are interested in the evolution of the orbital phase φ(t), which is computed as a

perturbative expansion in terms of a small parameter v = (πMf)
1
3 in PN approxima-

tion, where v is the characteristic velocity of the system and f is the GW frequency.

Under the adiabatic approximation and for the restricted waveform (in which the

GW phase is twice the orbital phase), the evolution of the orbital phase is given by
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26 3.1. POST-NEWTONIAN WAVEFORMS

the following differential equations:

dΦ(t)

dt
=
v3

M
, (3.2)

dv

dt
=
−F(v)

ME ′(v)
, (3.3)

which can be recast as

t(v) = tref +M

∫ vref

v

dv
E ′(v)

F(v)
, (3.4)

Φ(v) = Φref +

∫ vref

v

dvv3E
′(v)

F(v)
, (3.5)

where F(v) is the GW luminosity and E ′(v) is the derivative of the binding energy

with respect to v. tref and Φref are the constants of integration and vref is an arbi-

trary reference velocity. As this is a perturbative expansion, we have the freedom to

treat the RHS of Eq. (3.2) with different methods, as long as we maintain the correct

order of the expansion. This gives rise to different PN approximants. For instance,

the TaylorT1 approximant is obtained by expanding the F(v) and E ′(v) individually

to a consistent PN order, pluging those into Eq. (3.2) and then solving the differen-

tial equations numerically. Alternatively, we can also expand the ratio of F(v)/E ′(v)

to a consistent PN order which gives rise to the TaylorT4 approximant. We can

also use the equivalent phasing relations (3.4) to obtain GW phasing by expanding

the ratio of F(v)/E ′(v), substituting and then integrating the equations (3.4) give

rise to transcendental equations for Φ(v) and t(v). This approximant is TaylorT2.

Before solving the transcendental equations we can also invert t(v) to get v(t) and

Φ(t) ≡ Φ(v(t)), this gives rise to the TaylorT3 approximant. TaylorEt approximant

is obtained by writing the energy E in terms of another variable (suitably adimen-

sional) and then solving the evolution of v in terms of the new variable. All these

approximants are time domain and computationally expensive to be used for data

analysis purposes though they are implemented in LALSuite. The frequency domain

PN approximants are obtained by using stationary phase approximation (SPA). The

equivalent equations to (3.2) in frequency domain are given by:

dΨ

df
= 2πt, (3.6)

dt

df
= −πM

2

3v2

E ′(f)

F(f)
. (3.7)

TaylorF2 is one of the most used PN approximant and obtained by solving the above

equations by expanding the energy and flux to a consistent order. The gravitational
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waveform (TaylorF2) in SPA approximation in frequency domain can be written as:

h̃SPA(f) = Af− 7
6 exp−iΨ(f), (3.8)

where A is the amplitude, f is GW frequency and Ψ(f) is the GW phase in the

frequency domain. The explicit formula for GW phasing at 3.5 PN order for all

mentioned approximants is given in Ref. [63]. The most used models based on

PN approximation and implemented in LALSuite are the following. TaylorF2: The

TaylorF2 model is a frequency-domain PN-based waveform model for the inspiral

of BBH systems. It uses a 3.5 PN accurate point-particle baseline [64] and includes

the spin-orbit interaction up to 3.5 PN [65] and the spin-spin interaction up to 3

PN and p to 3 PN-accurate, EOS-dependent, self-spin terms [66–70]. TaylorF2Tides:

The TaylorF2Tides uses TaylorF2 as baseline, but adds tidal effects up to 6 PN as

presented in Ref. [32]. This model was used in the analysis of GW170817 [Collab1,

Collab2].

3.2 Effective-one-body family

The PN expansion which is based on adiabatic approximation is a poorly conver-

gent series and when the two objects are very close it fails. Therefore, the merger

cannot be modeled using PN expansion. To mitigate this problem [71–74] has come

up with a resummation method for PN expansion which is non perturbative in na-

ture. The basic idea is to map the relativistic two-body problem with masses MA and

MB onto the motion of a test particle with mass µ = MAMB/M in some effective

external metric, geff
µν . This approach is called effective-one-body (EOB) theory. In

polar coordinates (r, θ, φ), the effective metric is defined as:

geff
µνdx

µdxν = −A(r; ν)c2dt2 +B(r; ν)dr2 + r2(dθ + sin2(θ)dφ2). (3.9)

The potentials A(r; ν) and B(r; ν) can be written as Taylor expansions in GM/(c2r).

The metric is constructed in such a way that it reduces to Schwarschild metric in the

ν → 0 and for the non spinning case. The key elements of the EOB approach are the

EOB Hamiltonian (HEOB), a dissipative radiation-reaction force F , and GWs. The

rescaled effective Hamiltonian (Ĥeff = Heff/µ) describes the dynamics of the system

in terms of rescaled variables for non-spinning case is given by

Ĥeff(u, pr∗ , pφ) =
√
A(u; ν)(1 + p2

φu
2 + 2ν(4− 3ν)u2p4

r∗) + p2
r∗), (3.10)

and the mapping between the effective Hamiltonian and real Hamiltonian HEOB is:

HEOB = µĤEOB = M

√
1 + 2ν(Ĥeff − 1), (3.11)
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28 3.2. EFFECTIVE-ONE-BODY FAMILY

where u ≡ 1/R ≡ GM/(rc2), pφ ≡ Pφ/Mµ is the dimensionless angular momentum

and pr∗ ≡ Pr/µ is the dimensionless radial momentum. The resulting Hamiltonian

equations of motion are

dR

dt
=

(
A

B

) 1
2 ∂ĤEOB

∂pr∗
, (3.12)

dφ

dt
= Ω =

∂ĤEOB

∂pφ
, (3.13)

dpr∗
dt

= −
(
A

B

) 1
2 ∂ĤEOB

∂R
+ F̂r∗ , (3.14)

dpφ
dt

= F̂φ, (3.15)

where (F̂r∗,φ = Fr∗,φ/µ) is the rescaled radiation reaction force. The radial compo-

nent Fr∗ is set to zero (this is called Damour-Jaranowski-Schäfer gauge) [73, 75]

though other choices can also be made, and the azimuthal component (Fφ) is given

by

Fφ = − 1

8πνΩ

`max∑
`=2

∑̀
m=1

(mΩ)2|rhlm|2, (3.16)

where hlm are the waveform (complex) multipoles. The distance rescaled multipolar

waveform strain is defined as

(h+ − ih×) =
`max∑
`=2

∑̀
m=−`

hlm −2Ylm(θ,Φ). (3.17)

−2Y (θ,Φ) are the s = −2 spin-weighted spherical harmonics and the multipoles hlm
are given by

hlm = hN,εlm Ŝ
N
eff ĥ

tail
lm flmĥ

NQC
lm , (3.18)

where hN,εlm describes the Newtonian contribution, ŜNeff is source term, ĥtail
lm tail term,

flm the residual amplitude corrections and ĥNQC
lm are the next-to-quasi-circular cor-

rection factors. For detailed description of each term we refer to [76].

There are two families of approximants based on the EOB approach, TEOBResum and

SEOBNR. The two approximants are different in the context of computing Hamilto-

nian Heff , A(u; r) and B(u; r). Both have parameters tuned to NR simulations to have

better control on the dynamics at the merger, see e.g., section VI of [77] and refer-

ences therein, for detailed comparison of the two models. The most recent avatars of

both methods implemented in LALSuite are: SEOBNRv4_ROM: This approximant is

based on an EOB description of the general-relativistic two-body problem [71, 72],

with free coefficients tuned to NR waveforms [71, 78]. It provides inspiral-merger-

ringdown waveforms for BBH coalescences. For a faster computation of individual

28



CHAPTER 3. WAVEFORM MODELS 29

waveforms reduced-order-modeling techniques are employed (indicated by the suf-

fix ROM in the name tag) [79].

TEOBResum: TEOBResum was introduced in [76] following the general formalism

outlined in [21]. The approximant incorporates an enhanced attractive tidal poten-

tial derived from resummed PN and gravitational self-force expressions of the EOB

A-potential that describes tidal interactions [21, 80]. The resummed tidal potential

of TEOBResum improves the description of tidal interactions near the merger with

respect to the next-to-next-to-leading-order tidal EOB model [24, 81] and is com-

patible within large regions of the BNS parameter space with high-resolution, multi-

orbit NR results within their uncertainties [76, 82]. We use this model to cover the

inspiral regime to construct hybrids waveforms for a few cases (described in Chapter

4). TEOBResum_ROM: Given the high computational cost of the TEOBResum ap-

proximant, we employ a reduced-order-model technique for parameter estimation

purposes [83]. There are some systematics differences between TEOBResum approx-

imant and TEOBResum_ROM, which are discussed in the results section of Ref. [83].

TEOBResumS: This is the updated version of TEOBResum, which includes spins of the

objects. For BNS, tidal effects are incorporated by computing a resummed attractive

potential such that the tidal phase includes NLO tidal contributions, gravitational

self-force description of relativistic tidal interactions, and is tuned to NR data. It

incorporates the EOS dependent self-spin effects (or quadrupole-monopole term up

to NLO). For details, we refer to [77].

3.3 Phenomenological family

For the GW data analysis, fast-to-evaluate and accurate waveform templates are

required. The primary aim of the phenomenological model is to provide efficient,

but approximate waveform models for template placement. Basically, it provides

strain h as given in Eq. (3.8) in frequency domain for (l = 2 and m = ±2 modes).

The first aligned-spin model for coalescing BBH based on this approach is known as

IMRPhenomB. It depends on 3 parameters (M, η, χeff), where amplitude is rescaled by

M = MA + MB, η = MAMB/M
2 is the symmetric mass ratio, and the single spin

parameter is χeff = (MAχA + MBχB)/M , where χi = |~Si|/M2
i is dimensionless spin

parameter and ~Si is spin angular momentum of the ith BH.

The basic idea is to make phenomenological ansatz about the amplitude (A(f))

and phase (Ψ(f)) for different regime of the waveform, e.g.,:
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30 3.3. PHENOMENOLOGICAL FAMILY

A(f) ≡ Cf
−7
6

1



(
f

f1

)−7/6

(1 +
3∑
i=2

αiv
i) if f < f1

wm

(
f

f1

)−2/3

(1 +
2∑
i=1

εiv
i)) if f1 ≤ f < f2

wrL(f, f2, σ) if f2 ≤ f < f3,

Ψ(f) ≡ 2πft0 + ϕ0 +
3

128ηv5

(
1 +

7∑
k=2

vkΨk

)
. (3.19)

where C is numerical constant that depends on sky location, orientation and masses

of the source; v ≡ (πMf)1/3, t0 is the arrival time of the signal at the detector, and ϕ

is the corresponding phase. (f1, f2) are the transition frequencies and f3 is the cuttoff

frequency. wm and wr are normalization constants and are estimated by demanding

that the amplitude and phase should be continuous throughout. L is the Lorentzian

function with width σ centered around f2. ε1,2 depends on spin and can be calcu-

lated by PN+NR waveforms. α2,3 are PN corrections to amplitude and depend on

η. (Ψk, f1, f2, f3, σ) are the phenomenological parameters which are then mapped to

the real physical parameters like (η, χ) and the mapping coefficients are calculated

by fitting to the PN+NR waveforms. For explicit formulae see, e.g., [84]. Further

development of this model led to IMRPhenomC approximant, where the transition

between the different regimes of the waveform, namely, inspiral, merger-ringdown

is smoother, which made the approximant more accurate. It’s domain of validity

is q ≤ 4, χeff ≤ 0.75 (0.85 for equal mass system). Furthermore, IMRPhenomD ap-

proximant was constructed by calibrating it to 18 hybrid waveforms constructed by

glueing together SEOB and NR waveforms with parameter span across q ≤ 18, χeff ≤
0.85 (0.98 for equal mass system). Moreover, the model comes with modularity,

i.e., one can update inspiral and merger-ringdown part independently. IMRPhenomHM

uses the dominant mode (` = m = |2|) information of a frequency domain non-

precessing BBH model; and rescaled and stretch, the amplitude and phase such that

the higher-order multipolar waveform is constructed. It employs PN and perturba-

tion theory [85]. All these approximants are implemented in LAL, some of the most

used ones are:

IMRPhenomD: IMRPhenomD is a phenomenological, frequency-domain waveform

model discussed in detail in Refs. [86, 87]. It describes non-precessing BBH coales-

cences throughout inspiral, merger, and ringdown. While the inspiral is based on

the TaylorF2 approximation, it is calibrated to EOB results, and the late inspiral,

merger, and ringdown are calibrated to NR simulations.

IMRPhenomP: describes the GW from the precessing BBH merger throughout the

inspiral, merger and ringdown [88]. It employs the fact that the multipoles gen-
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erated by non-precessing BBHs in an inertial frame can model the multipoles pro-

duced by precessing BBH in a co-precessing frame. Then, the precessing model can

be obtained by carefully rotating the non-precessing waveforms that account for the

precession of orbital plane. Effect of precession can be seen as a modulation in am-

plitude and phase of GW signal, and it is most prominent for signals with small mass-

ratios q, large spin components perpendicular to the orbital angular momentum and

system viewed close to edge-on. The intrinsic parameters which characterizes the

model are mass-ratio q, effective spin parameter χeff and effective spin-precession

parameter χp,

χp = max

(
χA⊥,

3 + 4q

4 + 3q
qχB⊥

)
(3.20)

where χi⊥ denotes the magnitude of the component of the dimensionless spin per-

pendicular to the orbital angular momentum. The latest version of this model im-

plemented in LAL is IMRPhenomPv2 [88, 89], which uses IMRPhenomD as its non-

precessing model and rotates it to deliver precessing waveforms. For effective use of

the model, one needs to specify a reference frequency at which spin related quanti-

ties such that χp and individual spin magnitude χi are extracted.

3.4 NRTidal model

This approximant provides the tidal contribution to the phase evolution which

could be augmented to any BBH model to be then used as a BNS model [89] [Dudi3].

The key features are:

(i) The phase of the GW signal from a BNS merger as a function of dimensionless

GW frequency ω̂ = M∂φ(t)/dt, can be approximated as:

φ(ω̂) ≈ φ(ω̂)PP + φ(ω̂)spins + φ(ω̂)T ides, (3.21)

where φ(ω̂)PP denotes the point-particle baseline (non-spinning BH) contribution

to the phasing. φ(ω̂)spins is the contribution due to spins of the stars and φ(ω̂)T ides

denotes the tidal contribution to the phase evolution which enters at 5 PN order, see

e.g., Sec. (2.2).

(ii) The tidal contribution to phase φ(ω̂)T ides can be parameterized by effective tidal

coupling constant κeff , which captures the leading-order EOS effects very well.

κTeff =
2

13

[(
1 + 12

XB

XA

)(
XA

CA

)5

kA2 + (A↔ B)

]
, (3.22)

where XA,B = MA,B/M , CA,B are the compactness of star A and B and kA2 is the

quadrupolar Love number (see Sec. 2.2) where A and B label the two NSs. The tidal

parameter κTeff and tidal deformability parameter Λ̃ are connected via Λ̃ = 16/3κTeff
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32 3.4. NRTIDAL MODEL

and individual tidal polarizabilities ΛA,B = 2kA,B2 /(3C5
A,B).

(iii) The NLO PN expression for the tidal contribution is fully known [21, 26, 90].

ΦT ides = −κTeff

cNewt

XAXB

x5/2(1 + c1x), (3.23)

where x(ω̂) = (ω̂/2)2/3 and cNewt = −13/8. c1 = 1817/364 for the equal mass case.

(iv) Following expression represents the tidal effects beyond the NLO:

ΦT ides = −κTeff

cNewt

XAXB

x5/2PNRTidal
Φ (ω̂). (3.24)

In the low frequency regime (ω̂) ≤ 0.0074, PNRTidal
Φ converges to the PN expression

already known for tidal phase Eq. (3.23). For ω̂ ∈ [0.0074, 0.04] P (ω̂) is determined

using EOB waveforms [76, 91]. Richardson extrapolated NR data [89] is employed

for ω̂ ∈ [0.04, 0.17]. The spin and tidal contributions are decoupled for the spin

values explored by NR data employed for fitting the coefficients, well within NR

uncertainities, which gives:

PNRTidal
Φ (ω̂) =

1 + n1x+ n3/2x
3/2 + n2x

2 + n5/2x
5/2 + n3x

3

1 + d1x+ d3/2x3/2
. (3.25)

The closed form fit for the tidal phase correction in time domain is given by:

ΦT = −κTeff

cNewt

XAXB

x5/2×

1 + n1x+ n3/2x
3/2 + n2x

2 + n5/2x
5/2 + n3x

3

1 + d1x+ d3/2x3/2
. (3.26)

To capture the tidal phasing in strong field regime the coeficients are tuned to NR

simulations of BNS mergers thus the model is called NRTidal. The fitting coefficients

are (n1, n3/2, n2, n5/2, n3) = (−17.941, 57.983,−298.876, 964.192,−936.844),

d3/2 = 43.446. For details about NR data and fitting see [89]. The frequency domain

tidal phase is obtained using the SPA:

ΨNRTidal = −κTeff

c̃Newt
XAXB

x5/2×

1 + ñ1x+ ñ3/2x
3/2 + ñ2x

2 + ñ5/2x
5/2 + ñ3x

3

1 + d̃1x+ d̃3/2x3/2
, (3.27)

where x = x(f), c̃Newt = 39/16 and d̃1 = ñ1 − 3115/1248 and (ñ1, ñ3/2, ñ2, ñ5/2) =

(−17.428, 31.867,−26.414, 62.362) and d̃3/2 = 36.089. d̃1 = (n̂1 − ĉ1) ensures that

the NLO tidal term is correctly recovered. The NRTidal model Eq. (3.27) can be
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augmented to any tidal free waveform model:

htidal = hPP · (ANRTidale−iΨ
NRTidal

), (3.28)

whereANRTidal is a function which smoothly turns off the waveform after termination

frequency, which is related to the merger frequency. hPP is the point particle baseline

GW polarization obtained from LALSimulation. The NRTidal has been added to the

following BBH models spin-aligned as well as precessing using the prescription given

by Eq. (3.28) and these models are used for the analysis of GW170817 [92].

IMRPhenomD_NRtidal: To obtain BNS waveforms, IMRPhenomD BBH approximant

is augmented with tidal phase corrections Ref. [89]. The waveform model termi-

nates at the end of the inspiral; the termination frequency is prescribed by fits to NR

simulations [see [Dudi3] for details].

SEOBNRv4_ROM_NRtidal: Similarly to the IMRPhenomD_NRTidal model, this model

augments the BBH approximant SEOBNRv4_ROM with NRtidal phase corrections [89].

IMRPhenomPv2_NRtidal: The tidal effects are added to the underlying spin-aligned

waveform model, and then the waveform is rotated to add precession effects (e.g.,

see [88]).
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Chapter 4

Hybrid waveform

All the waveform models, discussed in Chapter 3, are limited in their region of va-

lidity, e.g., PN is valid during the inspiral part, EOB and phenomenological wave-

forms cover up to merger for BNS system and NR simulations probe the late inspiral,

merger and post-merger part of the waveform. In this chapter, we discuss the con-

struction of hybrid BNS waveforms that cover all three regimes, namely, the inspiral,

merger, and post-merger, and serve as a full BNS waveform. The hybrid waveforms

have been used in the studies [Dudi1, Dudi3, Dudi4, Collab3]. We list all the hy-

brids that we produced and are publicly available on the CoRe website [Collab3] in

Tab. 4.1.

We often require to validate the waveform models against the full waveform

(inspiral-merger-post-merger) to check their accuracy or to tune the free parameters

of a model. This is done either by calculating the mismatch with the hybrid wave-

form or by injecting hybrid waveform as signals and then recover the parameters

by employing the waveform model. These are some of the applications of the hy-

brid waveforms. We discuss the applications of hybrids with an example of NRTidal

model in the last section.

We construct the full waveform by combining PN, EOB or phenomenological wave-

forms which cover the inspiral regime (left panel of Fig. 4.1) with waveforms pro-

duced by NR simulations to cover the merger and post-merger part (right panel of

Fig. 4.1), this is called a hybrid waveform. We followed the procedure described

in Ref. [Dudi1, Dudi3] to construct the hybrids. For the inspiral part of the sig-

nal, TEOBResum model (non-spinning) and TEOBResumS model (aligned-spin) [Sec.

3.3] constructed within EOB approach are employed. For late inspiral, merger and

post-merger regime, the NR simulations, performed with BAM code provided the

waveforms. These NR waveforms are already published in Ref. [Collab3] and the

data is also publicly available at1, cf. [Collab3]. More information about the NR

simulations is provided in Chapter 7.

1http://www.computational-relativity.org/
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Figure 4.1: A hybrid waveform with MA = MB = 1.35M� and employing the SLy
EOS. The hybrid (thin, cyan line) consists of a tidal EOB part (red) and an NR part
(dotted blue). The alignment interval is marked by the yellow shaded region in the
right panel. The time t = 0 denotes the start of the NR simulation. The plot is taken
from [Dudi1].

Consider the two waveforms, say EOB and NR, describing the same physical sys-

tem, but covering two different regimes of the waveform with some overlap window.

To hybridize them, we first align them by minimizing the phase difference between

the two in a time window [ti, tf ]:

I(δt, δφ) =

∫ tf

ti

dt|φNR(t)− φEOB(t+ δt) + δφ|2, (4.1)

with δφ and δt are relative constant phase and time shifts. φNR and φEOB denote

the phases of the NR and tidal EOB waveform, respectively. The time window is

chosen in such a way that it corresponds to the overlap window (yellow shaded

region in 4.1) dimensionless frequency window Mω22 = ω̂ ≈ [0.04, 0.06]. It has been

showed in some studies [76, 82, 93] that the agreement between the EOB and NR

waveform is remarkably excellent in this interval. Additionally, our particular choice

for this window allows us to average out the phase oscillations linked to the residual

eccentricity (∼ 10−2) of the NR simulations. After aligning the waveforms, they are

joined together using smooth transition function:

hHyb(t)

=


hEOB(t′)eiφ : t ≤ ti
hNR(t)H(t) + hEOB(t′)eiφ[1−H(t)] : ti ≤ t ≤ tf
hNR(t) : t ≥ tf

(4.2)

where t′ = t+ δt, and H(t) is the Hann window function

H(t) :=
1

2

[
1− cos

(
π
t− ti
tf − ti

)]
. (4.3)

For estimating the accuracy of the hybrid waveforms, we calculate the phase dif-

ference between three different hybrids for same configuration but have different

numerical resolutions and different time resolution dt for the ordinary-differential-
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equation (ODE) integrator used in the TEOBResum model (Fig. 4.2). Hyb1 (blue line

on the top panel) denotes the hybrid with highest NR resolution ∼ 128 grid points

cover the NS and dt = 0.50 for the EOB ODE integrator resolution. Hyb2 (green dash

line in top panel) is the hybrid with lower NR resolution ∼ 96 grid points but same

EOB dataset. Hyb3 denotes the hybrid with highest NR resolution 128 grid points

and dt = 0.25 for the EOB. Hyb1 is the hybrid shown in Fig. 4.1. To check the uncer-

tainity in the hybrid construction, we calculate the dephasing between these hybrids

and an error, defined as

err =
√

(φHyb1 − φHyb2)
2 + (φHyb1 − φHyb3)

2 . (4.4)

Here, φHyb1
, φHyb2

and φHyb3
are the phases of hybrids Hyb1, Hyb2, and Hyb3, re-

spectively. The error is shown in the bottom panel of Fig. 4.2. We aligned all three

hybrids in early inspiral, i.e., in the frequency interval [32, 34] Hz to calculate the

phase differences and error. We find that the difference between Hyb1 and Hyb2

is below ∼ 0.1 radian and at merger well within the NR uncertainty (olive shaded

region). The effect of the ODE integration within the EOB model is even smaller.

However, this study does not include the systematic effects of the underlying EOB

model, see Ref. [77] for further details. To further check the accuracy of the hybrids,

we performed the Fourier transform of the hybrids and checked that the phase and

amplitude vary smoothly with frequency. Fig. 4.3 shows the PSD of the same hybrid

waveform that showed in Fig. 4.1. We also checked that the phase difference in

the time domain between the EOB waveforms and the hybrids up to the merger has

acceptable values. The wide range of applications of the hybrid waveforms can be

seen in the following studies, where our hybrid waveforms are employed. (i) The

waveform systematics study [Dudi1], where hybrids were injected as a true signal

in a fiducial LIGO data stream at different SNRs and recovered using multiple wave-

form models (discussed in Sec. 4.1). (ii) To evaluate the performance of NRTidal

models [Dudi3], we also employ the hybrid waveforms, which we discuss in Sec. 4.1

in detail. (iii) For further improvement of the NRTidal model, we also employed four

hybrids starting at frequency 20 Hz with high resolution NR data (discussed in Sec.

6.2). We compared the new model NRTidalv2 model against 18 hybrids (Tab. 4.1)

to test its performance [Dudi4]. (iv) The hybrid waveforms are also used for eval-

uating and comparing the performance of TaylorF2pseudo5.5PN waveform model

with other models (discussed in Sec. 6.1).
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Figure 4.2: (Top panel): The three flavors of the hybrid discussed in the text, each
constructed with a different NR resolution and EOB integrator settings. Red and
blue dashed curves represent the same NR resolution but a different EOB integra-
tor setting. The green dashed curve has a lower NR resolution but the same EOB
integrator setting as the red curve. The hybrid in Fig. 4.1 corresponds to the blue
curve here. (Bottom panel): Phase difference between the hybrid of Fig. 4.1, and its
two other realizations. The green dashed curve represents the absolute dephasing
with the hybrid with low NR resolution, while the pink curve shows the absolute
dephasing with the hybrid using a different EOB integrator setting. The black curve
represents the absolute error defined in Eq. (4.4). The vertical lines mark the bound-
aries of the alignment window. The olive shaded region is the dephasing between
two NR resolutions used. The plot is taken from [Dudi1].
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Table 4.1: BNS hybrid configurations. Name in CoRe database (first column), EOS
(second column), primary and secondary gravitational mass of the two stars (column
3 and 4 respectively), dimensionless individual spin (column 5 and 6), compactness
(column 7 and 8), and individual tidal deformability of the two stars (column 9 and
10). Λ̃ in column 11, and tidal coupling constant κTeff in column 12 are given. Merger
frequency of each waveform is listed in the last column. The table is adopted from
Ref. [Dudi3].

Name EOS MA [M�] MB [M�] χA χB CA CB ΛA ΛB Λ̃ κTeff fmrg [Hz]
equal mass, non-spinning
CoRe:Hyb:0001 2B 1.3500 1.3500 0.000 0.000 0.205 0.205 127.5 127.5 127.5 23.9 2567
CoRe:Hyb:0002 SLy 1.3500 1.3500 0.000 0.000 0.174 0.174 392.1 392.1 392.1 73.5 2010
CoRe:Hyb:0003 H4 1.3717 1.3717 0.000 0.000 0.149 0.149 1013.4 1013.4 1013.4 190.0 1535
CoRe:Hyb:0004 MS1b 1.3500 1.3500 0.000 0.000 0.142 0.142 1536.7 1536.7 1536.7 288.1 1405
CoRe:Hyb:0005 MS1b 1.3750 1.3750 0.000 0.000 0.144 0.144 1389.4 1389.4 1389.4 260.5 1416
CoRe:Hyb:0006 SLy 1.3750 1.3750 0.000 0.000 0.178 0.178 347.3 347.3 347.3 65.1 1978
unequal mass, non-spinning
CoRe:Hyb:0007 MS1b 1.5000 1.0000 0.000 0.000 0.157 0.109 866.5 7041.6 2433.5 456.3 1113
CoRe:Hyb:0008 MS1b 1.6500 1.1000 0.000 0.000 0.171 0.118 505.2 4405.9 1490.1 279.4 1170
CoRe:Hyb:0009 MS1b 1.5278 1.2222 0.000 0.000 0.159 0.130 779.6 2583.2 1420.4 266.3 1301
CoRe:Hyb:0010 SLy 1.5000 1.0000 0.000 0.000 0.194 0.129 192.3 2315.0 720.0 135.0 1504
CoRe:Hyb:0011 SLy 1.5274 1.2222 0.000 0.000 0.198 0.157 167.5 732.2 365.6 68.6 1770
CoRe:Hyb:0012 SLy 1.6500 1.0979 0.000 0.000 0.215 0.142 93.6 1372.3 408.1 76.5 1592
equal mass, spinning
CoRe:Hyb:0013 H4 1.3726 1.3726 +0.141 +0.141 0.149 0.149 1009.1 1009.1 1009.1 189.2 1605
CoRe:Hyb:0014 MS1b 1.3504 1.3504 -0.099 -0.099 0.142 0.142 1534.5 1534.5 1534.5 287.7 1323
CoRe:Hyb:0015 MS1b 1.3504 1.3504 +0.099 +0.099 0.142 0.142 1534.5 1534.5 1534.5 287.7 1442
CoRe:Hyb:0016 MS1b 1.3509 1.3509 +0.149 +0.149 0.142 0.142 1531.8 1531.8 1531.8 287.2 1456
CoRe:Hyb:0017 SLy 1.3502 1.3502 +0.052 +0.052 0.174 0.174 392.0 392.0 392.0 73.5 2025
CoRe:Hyb:0018 SLy 1.3506 1.3506 +0.106 +0.106 0.174 0.174 391.0 391.0 391.0 73.5 2048

Figure 4.3: Fourier transform of the time domain hybrid waveform, which is shown
in Fig. 4.1, as a function of frequency. The BNS system has equal mass stars with
MA = MB = 1.35M� and EOS SLy.
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4.1 Applications
To validate the phasing model based on NRTidal prescription given by Eq. (3.28),

described in the Sec. 3.4, we compare them against the hybrid waveforms. We use

the TEOBResumS model that covers the inspiral regime upto merger (discussed in Sec.

3.2) and NR waveforms that covers the merger and postmerger regime for full BNS

waveform construction. All the hybrid waveforms listed in Tab. 4.1 are employed in

this work. Here we briefly describe the tests we performed to quantify the perfor-

mance of the NRTidal model as applications of the hybrid waveform and conclusion

inferred from them. For more details, we refer the reader to Ref. [Dudi3]. The

NRTidal model is augmented to various BBH models, which we have described in

Sec. 3.4. We compute the mismatch in frequency domain between the augmented

BBH models or also called template waveforms, and the hybrid waveforms. Addi-

tionally we also compute the mistmatch with PN based models namely, TaylorF2Tides

(here with 6.5 PN, 7 PN and 7.5 PN order tides included), TaylorT4Tides (with 5 PN

and 6 PN tides). Both models incorporate up to 3 PN-accurate EOS-dependent self-

spin terms [66–68]. The mismatch is computed as:

F̄ = 1−max
φc,tc

(h1(φc, tc)|h2)√
(h1|h1)(h2|h2)

, (4.5)

where F̄ denotes the mismatch i.e., loss in SNR (squared) when the wavefroms

are aligned in time and phase. φc, tc are an arbitrary phase and time shift between

the approximants themselves and the hybrid waveforms. The noise-weighted inner

product is defined as

(h1|h2) = 4<
∫ fmax

fmin

h̃1(f)h̃∗2(f)

Sn(f)
df . (4.6)

The waveforms in template bank are placed such that the maximum value of F̄

across the bank is 0.03. We compute mismatches for two scenarios, first when the

minimum frequency, fmin = 30 Hz, is constant and other by varying the fmin and

keeping the fmax = fmrg, (fmrg is the merger frequency), i.e., constant. We calcu-

late fmrg from NR waveforms and show them as vertical dashed line in Fig. 4.4.

Fig. 4.4 shows the mismatch between the hybrid waveforms and NRTidal templates

for fmin is constant. The solid curves are the mismatch between the hybrids with

TaylorF2Tides (green), TaylorT4Tides (orange), SEOBNRv4_ROM_NRTidal (red),

IMRPhenomD_NRTidal (blue), IMRPhenomPv2_NRTidal (cyan), and the dashed line

represents the mismatch with respective point-mass baseline model. We find that

the non-tidal models for the equal mass non-spinning case and for small tidal de-

formability have mismatches below ∼ 10−3 but with increasing the stiffness of the

EOS mismatch also increases (left to right in Fig. 4.4). Mismatch for spinning cases
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are unacceptably large (> 1%) and increases with high spin values (see the third and

fourth row in the figure). The mismatch between hybrids and TaylorF2Tides model

also increases with Λ̃ for the equal mass non-spinning system. For the spinning

case and soft EOS, mismatches are better, and we find overall acceptable mismatch

(< 1%) due to the inclusion of EOS dependent spin and tidal effects in TaylorF2Tides.

However, for unequal mass cases, TaylorF2Tides has the largest mismatch among all

tidal models. Now, validating the performance of the NRTidal among each other,

we find IMRPhenomD_NRTidal and IMRPhenomPv2_NRTidal have a smaller mismatch

than SEOBNRv4_ROM_NRTidal, but the differences are small for equal mass non-spinning

cases. However, for spinning cases IMRPhenomD_NRTidal and SEOBNRv4_ROM_NRTidal,

the mismatch exceeds the (1%) limit for a high spin. Although, IMRPhenomPv2_NRTidal,

which is essentially IMRPhenomD_NRTidal incorporated with EOS dependent self-spin

terms, the mismatches are below 10−3 for spinning and non-spinning cases. As an-

other test, we also compute the phase difference between hybrids and waveform

approximants in the frequency domain, again for two cases. First, where we align

the waveforms with hybrid waveforms from frequency 50 Hz to fmrg and another

where we align the waveforms only in range 50 to 500 Hz. We also test the perfor-

mance of the waveform models in the time domain. We compute the accumulated

error during the evolution by aligning the waveforms and hybrids in the time do-

main and comparing them. The main conclusions are: Non-tidal approximates have

high mismatches for spinning or high Λ̃, i.e., stiff EOS cases. For high spin magni-
tude χA,B ≥ 0.1, it is crucial to have EOS dependent self-spin terms in the waveform
approximate to better describe the signal. NRTidal model performs better than the PN

based models for an unequal mass case and large tidal effects cases. We also com-

pare the NRTidal model with non-hybridized TEOBResumS model upto dimensionless

GW frequency ω̂ = 0.06. This is the upper limit of the frequency interval in which we

overlap and align the two waveforms for glueing them together. We compare dimen-

sionless quantity Qω̂ (explained in Sec. 6.1) between the NRTidal and TEOBResumS

model. We find that the NRTidal model systematically overestimates the tidal ef-

fects with respect to TEOBResumS. Therefore, improvements in NRTidal models are

needed. For more details, see Sec. VI.B in Ref. [Dudi3]. This is also consistent with

our findings in [Dudi1]. In Sec. 6.2, we discuss the improved NRTidal model, called

NRTidalv2.
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Figure 4.4: Mismatches between the tidal approximants and the hybrid waveforms
based on the configurations listed in Tab. 4.1. Mismatches are computed follow-
ing Eq. 4.5, where we set fmin = 30Hz and vary the maximum frequency fmax.
A black vertical dashed line marks the frequency corresponding to the moment of
merger fmrg. A blue dot-dashed line marks the middle of the hybridization region
between the TEOBResumS and the NR data. Note that for the analysis of GW170817
in [94], a maximum frequency of 2048Hz was employed. The naming conven-
tion of the individual panels refers to the setup described in Tab. 4.1, namely:
EOS

χA|χB
MA|MB

. Regarding the waveform approximants, results for all models that do
not include tidal effects are marked as dashed lines, while solid lines refer to wave-
form models with tidal effects. The color-coding is as follows: TaylorF2Tides (green),
TaylorT4Tides (orange), SEOBNRv4_ROM_NRTidal (red), IMRPhenomD_NRTidal (blue),
IMRPhenomPv2_NRTidal (cyan). Overall we find that the IMRPhenomPv2_NRTidal
model performs best. In particular, this model is advantageous for spinning con-
figurations. The plot is taken from [Dudi3].
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Chapter 5

Waveform systematic study

The waveform models, discussed in Chapter 3, are used for parameter measurements

of GW signals. However, the fidelity of parameter measurements depends not only

on detector calibration uncertainty [95–97], the detector performance at the time of

the event (both in terms of the overall sensitivity to the signal, and of the stability of

the instrument due to the presence/absence of transient noise fluctuations [98]), but

also on systematic errors in the theoretical waveforms employed to analyze the data,

and any signal correlations between source parameters. In this chapter, we discuss

the findings of [Dudi1], which focus on the systematic differences of the approxi-

mants in the context of parameter estimation of a BNS signal. We illustrate some of

the results of the systematic study performed in Appendix B of Ref. [Collab2].

5.1 Systematics study
We investigate the errors/biases which occur due to approximate waveform mod-

els for BNS mergers. The waveform models, discussed in Chapter 3, are different

from each other in terms of their region of validity and have approximate treatment

of tidal effects; moreover, none of the waveform models have a post-merger part.

Therefore, to be confident about one’s inference of parameters in light of a true sig-

nal, it is crucial to understand the differences between different waveform models.

Therefore, we would like to investigate the following two questions in order to gain

insights into the sources of systematics [Dudi1].

(i) What kind of biases do we expect if tidal effects are neglected in the analysis of in-
spiral GW signal from a BNS merger?
As already described, the NSs get closer while orbiting each other, and they deform

each other by companion’s gravitational field, and this causes an increase in the in-

spiral rate. The inspiral rate also increases if the spins are anti-aligned with respect

to the orbital angular momentum or by a change in binary’s mass ratio. Therefore,

there is a degeneracy among the mass, spin, and tidal deformability parameter Λ̃.

As the tidal effects enter at 5 PN order, it might be possible that for small tidal de-
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formabilities or weak signals, i.e., small SNR, tidal effects can be neglected and or

may be compensated by changing the spin and mass parameter for louder signals.

We investigate these scenarios and present example in a later section.

(ii) Does the use of inspiral-only waveforms lead to a significant loss of information, or
possibly to biases in the estimation of the source properties?
Currently, waveform models used to interpret BNS observations do not include the

merger and post-merger regimes. Although NR simulations of BNS mergers have

made tremendous progress in recent years [81, 89, 99–107], we do not yet have

complete models of the inspiral, merger, and post-merger regime, as we do for BBH

systems1 [79, 88, 109, 110]. The waveform models used for current GW analyses

are either truncated prior to the merger or are BBH models through the merger and

ringdown (which we include here). While one might expect that these approxima-

tions do not impact parameter estimates, because of the signal detectable by current

ground-based detectors contain negligible power at merger frequencies, this assump-

tion must be properly validated, especially in light of the fact that the GW energy

emitted during the post-merger stage can even exceed the GW energy released dur-

ing the entire inspiral up to the merger, cf. Fig. 3 [111]. For our investigation, we

produce complete inspiral, merger and post-merger BNS waveforms by combining

state-of-the-art tidal EOB waveforms for the inspiral, and NR simulations of the late

inspiral and merger (as described in Chapter 4). We do this for two choices of the

NS EOS: a soft EOS, namely SLy [112], corresponding to relatively compressible

nuclear matter, and a stiff EOS, namely MS1b [113], corresponding to relatively

incompressible nuclear matter. These yield NSs with low and high tidal deforma-

bilities, respectively. We inject hybrid waveforms in the fiducial data stream of two

LIGO detectors, situated in Hanford and Livingston, US [15]. The event, GW170817

has put an upper bound on Λ̃ ≤ 7202 [Collab2] but this work was started well before

the detection of the event and also the extreme scenarios help us in understanding

the systematics better. The binary systems employed in this work have equal masses

of both NSs (MA = MB = 1.35M�), with chirp mass M = 1.752 and a total mass

M = 2.70M� and are non-spinning. We use Bayesian inference for parameter esti-

mation (discussed in Sec. 2.6). For sampling multidimensional parameter space to

obtain credible intervals, we employ a lalinference_mcmc algorithm included in the

LALinference package of (LALSuite). We choose uniform prior probability density

p(θ) for the individual masses of the NSs in the interval [1M�, 3M�] and also for

dimensionless aligned spins between [−1, 1]. Uniform prior for individual tidal de-

formability Λ̃A,B
2 is also chosen in the interval [0, 5000] for all the waveform models

except for TEOBResum_ROM, where uniform prior between 50 to 5000 applied. With

1Recently, Breschi et al. [108] has developed a time domain analytical model for the post-merger
signals

2Recall that Λ̃ depends on mass and so as this bound
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44 5.1. SYSTEMATICS STUDY

regards to tidal deformability, our setup makes the simplifying assumption of ignor-

ing correlations between ΛA
2 , ΛB

2 , and the mass parameters, which are known to

exist [19, 20, 25]. We employ the standard set up of GW data analysis for all other

parameters, e.g., [Collab2].

EOS Λ̃ M [M�] χeff PSD fhigh SNR

SLy 392 1.1752 0.0
O1

2048 Hz 25
2048 Hz 100

ZDHP
2048 Hz 100
8192 Hz 100

MS1b 1536 1.1752 0.0
O1

2048 Hz 25
2048 Hz 100

ZDHP
2048 Hz 100
8192 Hz 100

Table 5.1: The eight injections employed to study systematic among different wave-
form models. We consider two equal-mass, non-spinning BNS hybrid waveforms
(as described in the text) with the same chirp mass, but different EOS, and hence
different tidal polarizability Λ̃. The SNR of each injection is specified in the sev-
enth column. When assessing the impact of tidal effects on the analysis of a
GW inspiral signal, we use the first observing run’s noise PSD. In such cases,
the waveform models employed to recover the signal are IMRPhenomD_NRTidal,
SEOBNRv4_ROM_NRTidal, TaylorF2Tides, IMRPhenomD, TaylorF2, and TEOBResum_ROM.
When assessing the impact of post-merger dynamics on GW inference, instead, we
use the projected noise curve for the Advanced LIGO detectors in the ZDHP configu-
ration and IMRPhenomD_NRTidal and TaylorF2Tides waveform models for the signal
recovery. Given that the high-frequency content of the post-merger portion of the
signal reaches ∼ 4 kHz, we produce injections with sampling rates of 16384 Hz and
4096 Hz, and correspondingly use a high-frequency cutoff in our Bayesian analysis of
fhigh = 8192 Hz and fhigh = 2048 Hz. The merger frequencies are 2010 Hz, and 1405
Hz for waveforms with SLy and MS1b EOS, respectively. The table is taken from Ref.
[Dudi1].

We employ different waveform models to extract the properties of the injected

signal. Some of the models include tidal effects namely, TaylorF2Tides (3.5 PN order

point-particle baseline and 6 PN order tides), IMRPhenomD_NRTidal,

SEOBNRv4_ROM_NRTidal, TEOBResum_ROM and BBH models namely, TaylorF2 and

IMRPhenomD (discussed in chapter 3). We use a variety of waveform models so to

estimate the systematic error in the parameter estimation pipelines. We also use

TEOBResum_ROM [83] model for estimating the parameters, whereas our hybrids are

constructed using tidal EOB TEOBResum approximant. We do this in order to check

that the recovered values and injected values are consistent. Tab. 5.1 summarizes

the various injection scenarios we consider for the injections. To investigate the first
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question about the impact of neglecting the tidal effects in the analysis of GW in-

spiral, we inject the individual hybrid waveform for two EOS, SLy and MS1b and

assume the noise PSD of first observing run O1 3. We inject each hybrid with 4 dif-

ferent injection scenarios, which gives a total of 8 scenarios, as summarized in Tab.

5.1. We inject at two different SNR 25 and 100 [rows 1, 2, 5, and 6 in Tab. 5.1].

SNR 25 is moderately high and is also close to the SNR of GW170817, which was

32.4. Whereas SNR 100 allows us to investigate the impact of tidal effects have on

the recovery of BNS source properties for an extreme scenario. We also use SNR

100 for investigating the impact of the absence of post-merger dynamics on the data

analysis. As the post-merger signal has high frequency content upto ∼ 4000 Hz, we

produce injection at two different sampling rate namely, 4096 Hz and 16384 Hz which

correspond to a high-frequency cutoff in our Bayesian analysis of fhigh = 2048 Hz and

fhigh = 8192 Hz, respectively (rows 3, 4, 7, and 8 in Table 5.1). We assume the pro-

jected noise curve for the Advanced LIGO detectors in the ZDHP [115]. In all cases,

no actual noise is added to the data. This allows us to obtain posteriors that do not

depend upon a specific noise realization, therefore isolating systematic errors. All

injections start at a frequency of 30 Hz, while our Bayesian analysis uses a low cutoff

frequency flow = 32 Hz to generate template waveforms. As discussed above, we

use a number of different waveform approximants for estimating parameters. This

allows us to assess systematic errors qualitatively present in such waveform models.

As opposed to the full inspiral-merger-post–merger BNS signals we inject, the wave-

form models used for estimating parameters are limited to the inspiral regime. The

insights we gained by comparing the results of parameter estimation using different

waveform models are summarized in the following subsections.

5.1.1 Effects of tidal terms

First, we investigate what conditions bias the measurements of mass and spin,

if one uses BBH models, i.e., neglect tidal effects to analyze the signal from a BNS

coalescence. And then, qualitatively assess different tidal waveform approximants

by investigating the biases in masses, spins, and measurement of tidal deformability

for different injection scenarios. Let us recall that the chirp mass, mass ratio, spins,

and tidal effects enter the waveform phase evolution at different PN order. The

evolution is dominated by the chirp mass. χeff characterizes the spin contribution to

the phase for parameter estimation. For the binary black hole problem, it has been

shown that the effects of an increase in spins can be mimicked by a lower mass ratio

of the binary [116–120]. Tidal effects also cause the inspiral to speed up, which

could be partially compensated by changing the mass ratio and spin effects. Though

3The PSD is generated from 512 s of LIGO data measured adjacent to the coalescence time of the
first BBH detection [6, 114]. This is of comparable sensitivity to that of the LIGO detectors during
both the first and second observing runs.
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the degeneracy is not definite, it is possible that neglecting tidal effects could lead

to bias in spin and mass ratio measurements. We assess the extent of these biases

by comparing the posteriors of the recovered parameter from different waveform

model for different injection scenarios.
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Figure 5.1: The chirp massM (top panel), mass ratio q (middle panel), and effective
spin χeff (bottom panel) posterior distributions for the BNS injection with SLy EOS
(left column) and MS1b EOS (right column) at SNR 25. The vertical dashed lines
mark the 90% credible intervals, while the solid black line indicates the injected
value. The plot is taken from [Dudi1].

First we discuss the recovered parameters for the signal injection with EOS SLy

and SNR 25. Fig. 5.1 (left coloumn) shows the posteriors of the chirp massM, mass

ratio q and χeff , where the solid black line indicates the injected value. For all the

approximants the injected value lies under the 90% credible interval. The posteri-

ors obtained using TEOBResum_ROM approximant for chirp massM and mass ratio q

differ from the ones yielded from other approximants; as TEOBResum_ROM is a non-
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spinning waveform approximant thus, it explores a different parameter space than

others. Except for TEOBResum_ROM, the peak of the posteriors distribution of chirp

mass is slightly shifted towards the higher value for approximants containing tidal

effects while for BBH model, i.e., approximants which neglect the tidal effects, the

peak is slightly lower than the injected value. The effect of the degeneracy between

mass-ratio and spin is clearly visible in the posteriors obtained for TEOBResum_ROM,

which is a non-spinning model, and thus the mass-ratio is recovered with greater

accuracy whereas, for other approximants, we obtain a flat distribution for q due

to degeneracy. Though they do start to rail against the lower prior bound, this is a

small effect for parameter estimation problems. The non-tidal approximant’s peak

is again shifted to lower values from the true value for measurements of spin and

slightly towards higher value for tidal approximants. The injected value lies inside

90% credible region for all approximants again. For injection with soft EOS at low

SNR ≈ 25, neglecting tidal effects does not lead to significant bias in measurements

of masses and spins. This picture changes when we consider a stiffer EOS. The

right column of Fig. 5.1 shows the same quantities, but for the MS1b configuration

(Λ̃ = 1536) injected at SNR 25. The biases in the measurement of spins and mass-

ratio are more significant here for non-tidal approximants. For the measurement of

chirp mass, the tidal approximants are consistent with the injected value, but the

non-tidal approximants are biased: for TaylorF2, the injected value is outside the

90% credible interval and for IMRPhenomD it is very close to the edge of the credible

interval. The posteriors obtained for the measurement of mass-ratio also rail more

significantly towards the lower prior limit for non-tidal approximants. Also, we ob-

serve the peaks of spin distribution is shifted more from the injected value towards

the lower values for non-tidal approximants. Altogether, we conclude based on the

above results that for stiff EOS at this SNR, neglecting tidal terms does lead to a bias

in the measurements of the masses and spins. Assuming future observations will be

similar to GW170817 (Λ̃ < 720 [Collab2]), and that SNRs higher than 25 will be

rare; our results suggest that neglecting tidal effects will not significantly bias mea-

surements of masses and spins for typical observations. However, careful analyses

will be required once individual events are combined to extract information about

the BNS population as a whole.

We also explore how these results change for the injections with much higher SNR.

Fig. 5.2 shows again the same quantities for injection with EOS SLy at SNR 100. We

see that for the non-tidal approximants the chirp mass is biased away from the true

value, mass-ratio are railing towards the lower prior bound much more significantly

and spins estimates are also biased. For parameter estimation we have put a limit

over component masses MA,B ∈ [1, 3]M�, which impliesM∈ [0.8706, 2.6117]M�.
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Figure 5.2: Same as Fig. 5.1, but with an injected SNR of 100 for SLy EOS. We also
show the distribution of the logarithm of the likelihood in the bottom-right panel.
The plot is taken from [Dudi1].

The parameter estimation code adjusts the masses and spins to find the best

match with the data, and for those approximants that do not include tidal terms, the

search rails against the limits on the masses, as well as on the physical limit χ ≤ 1

for the spins. This is most clear in the plot of the posterior distribution for q. The

bottom-right panel of Fig. (5.2) shows the logarithm of the likelihood. It can be

seen that the non-tidal approximant, namely, TaylorF2 and IMRPhenomD model, do

not match the data as accurately as the tidal approximants as their likelihoods are

lower. Though by changing the limits on masses and spins may lead to an increase

in likelihood value for those approximants, but we do not expect it to be as high as

for the tidal approximants since the missing tidal effects are partially mimicked by

biases in masses and spins. It can also be seen that the TaylorF2Tides approximant

also has a lower likelihood as compare to NRTidal approximants, for which the tidal

terms have been tuned to the NR waveforms. Let’s now move on to comparing

different tidal approximants in the context of measuring the tidal deformability, Λ̃.

Fig. 5.3 shows the posteriors of tidal deformability; the left two panels show the

result for injection with SLy EOS (at SNRs 25 (top panel) and 100 (bottom panel)

and similarly, the right panel shows the result for MS1b configuration.
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Figure 5.3: Measurements of the tidal deformability parameter. The two panels on
the left show results for the SLy signal injected at SNR 25 (top) and 100 (bottom).
The two panels on the right show results for the MS1b signal injected at SNR 25
(top) and 100 (bottom). The plot is taken from [Dudi1].

For injection at low SNR≈ 25 which is comparable with the BNS event, GW170817,

again, which is observed at an SNR of 32.4 Ref. [Collab1], all tidal approximants

considered here agree within 90% credible interval for both soft and stiff EOS. We

found that the TaylorF2Tides approximant can be used to put an upper bound on Λ̃

measurement, which is also consistent with findings of the Ref. [Collab2] for all con-

figurations. The measurement of Λ̃ for signals at an SNR 100 is shifted towards lower

values from the true values for the NRTidal approximants. This shows that we do

not have sufficient hold on the systematics for high SNR setups. The reason for this

behavior could be the differences in the BH limit between the two approximants. An-

other possible reason could be that the tidal effects in the NRTidal model are larger

than in the TEOBResum model, as already highlighted in Fig. 10 of Ref. [Dudi3]. The

agreement of TaylorF2Tides in the bottom-left panel of Fig. 5.3 is accidental. (We be-

lieve that this is due to a compensation of two effects: TaylorF2Tides models under-

estimating tidal effects and therefore overestimating Λ̃, and systematics errors in the

point-particle description [Dudi2]. We investigate this in Sec. 6.1) We also note that

at SNR 100, the TEOBResum approximant provides a biased measurement for MS1b.

This may be surprising at first since TEOBResum was used in the construction of the

MS1b hybrid, but the approximant is used only up to the hybridization frequency,

from which point onwards the NR waveform is used. There is an SNR of ∼ 16 from
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the hybridization frequency up to the merger. As already stated, there are also sys-

tematic differences between TEOBResum and TEOBResum_ROM [83]. We found a phase

difference between our hybrid and the waveform generated using TEOBResum_ROM of

about ∼ 4 radian at the merger for the MS1b case, and ∼ 0.8 radian for the SLy case.

We suggest this to be the reason for the offset between the injected value and the

TEOBResum_ROM result at SNR = 100, cf. Fig. 5.3.

5.1.2 Effect of postmerger

We now investigate whether the lack of the post-merger part of the signal in the

models, which we use for Bayesian inference, could lead to biases in parameter mea-

surements. Previous studies of post-merger GW signals [44, 121, 122] suggest that

this portion of the signal would be detectable, and its properties measurable, only if

the SNR of the post-merger regime alone were above∼ 5. Recently, [122] found that

for soft EOSs and SNR of 3–4 might be sufficient for a detection of the post-merger

GW using the BayesWave algorithm [123]. In this article, we assume a threshold

SNR of 5 to produce more conservative estimates. Fig. 5.4a shows the accumulated

SNR of the post-merger regime for our SLy and MS1b configurations at a total signal

SNR of 100. In order to achieve a post-merger SNR of 5, we would need a total sig-

nal SNRs of approximately 185 and 250, for the MS1b and SLy EOSs, respectively.

These would correspond to source distances of 17 Mpc and 13 Mpc. If we assume an

SNR signal detection threshold of 10 and a uniform volume distribution of sources

throughout the universe, then only about 1 in every 6000 observations will have an

SNR greater than 185. This suggests that it is unlikely for Advanced LIGO and Virgo

detectors to be able to measure post-merger signals and that it is therefore extremely

unlikely that the post-merger part that is absent from our signal models will bias the

parameter recovery from the inspiral waveform. Nonetheless, our hybrid waveforms

provide the opportunity to test this expectation conclusively, and that is what we

do in this section. To quantify the impact of the post-merger portion of the signal,

we injected full, hybrid waveforms at SNR = 100 and compared results obtained

using upper cutoff frequencies fhigh = 2048 Hz and fhigh = 8192 Hz. The merger fre-

quencies fmerger are 2010 Hz and 1405 Hz for waveforms with the SLy and the MS1b

EOS, respectively, and the frequency content of the post-merger signal reaches up

to ∼ 4000 Hz, with peak frequencies at f1 ∼ 2600 Hz and f2 ∼ 3400 Hz for SLy, and

f1 ∼ 1600 Hz and f2 ∼ 2100 Hz for MS1b. We find that the results of parameter es-

timation for the two different cutoff frequencies are remarkably in agreement with

each other, suggesting that the lack of post-merger content in the models used for

parameter estimation has no impact on the recovery for this configuration.
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Fig. 5.4b shows that the recovered SNR is insensitive to the upper cutoff fre-

quency, i.e., to the presence/absence of post-merger content in the injected signal,

and to the waveform model used in the recovery, since results for IMRPhenomD_NRTidal

and TaylorF2Tides are quite close. Further, in all four cases the full injected SNR is

recovered. The ∼ 2% drop from the nominal injected SNR of 100 to SNR = 98 is

due to the fact that while the injected signal starts at 30 Hz, the filtering against the

template waveform has a minimum frequency of 32 Hz. Fig. 5.5 shows the poste-

rior distribution for Λ̃ for both choices of upper cutoff frequency, for the SLy (upper

panel) and MS1b (bottom panel) configuration injected at SNR = 100, using the

IMRPhenomD_NRTidal and TaylorF2Tides waveform models. The upper cutoff fre-

quency, or equivalently the inclusion or absence of the post-merger regime in the in-

jected signal, has a negligible effect on the results. As was the case for the SNR = 100

injections performed with the first observing run noise PSD, the NRTidal models un-

derestimate Λ̃ for all injections. For an explanation, we refer the reader to Sec. 5.1.1.

These results are consistent with our expectation that the post-merger will have a

negligible impact on our parameter recovery with the current generation of interfer-

ometric GW detectors.

In summary, we showed that neglecting tidal effects in the inspiral waveforms used

to infer the source properties does not bias measurements of masses and spin for a

canonical observation at SNR=25, as long as the NS EOS is fairly soft (Λ̃ . 400).

In the high SNR regime and/or for stiff EOSs (Λ̃ ∼ 1500), however, there will be a

significant bias in the measurements of masses and spins when inspiral waveform

models that do not include tidal effects are used (Figs. 5.1 (right panel) and 5.2).
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Comparing tidal models amongst themselves, we found TaylorF2Tides overestimates

the recovered value of Λ̃, as stated in the analysis of GW170817 [Collab2]. This

is due to TaylorF2Tides favoring larger values of Λ̃ in order to compensate for the

smaller tidal effects it includes in the phasing of the late inspiral regime when com-

pared to NRTidal models [Dudi3]. At high SNR, the impact of systematic differences

in the various waveform models is highlighted. In particular, the bottom panels of

Fig. 5.3 show that NRTidal models yield a conservative lower estimate of Λ̃. It is not

clear whether the differences between the NRTidal and TEOBResum approximants

are dominated by differences in the BH (Λ̃ → 0) limit, or in the description of tidal

effects, and this requires further study [124].

1000 1200 1400 1600 1800 2000 2200 2400
Λ̃

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

P
ro

ba
bi

lit
y

de
ns

it
y MS1b-100

100 200 300 400 500 600
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

P
ro

ba
bi

lit
y

de
ns

it
y

SLy-100

Injected value
TaylorF2Tides-2048

TaylorF2Tides-8192

IMRPhenomD NRTidal-2048

IMRPhenomD NRTidal-8192

Figure 5.5: Tidal deformability posterior distributions found when injecting the SLy
EOS (top panel) and the MS1b EOS (bottom panel) BNS hybrids at SNR 100. The re-
covery is performed the IMRPhenomD_NRTidal and TaylorF2Tides approximants with
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5.2 GW170817- systematics study
We briefly summarize some additional results that are part of the study of sys-

tematic effects presented in the Appendix B of Ref. [Collab2]. This study was a

collaborative effort and here we only present the results for which parameter es-

timations runs were carried out by the author of this thesis. The motive of this

study is twofold. First, in the presence of a true signal, it is necessary to verify the

reliability of the parameter estimation techniques and waveform models. Second,

to understand the systematic differences among different waveform models with a

focus on tidal deformability (Λ̃). In order to verify the reliability of the parame-

ter estimation techniques and employed waveform models; for the first GW detec-

tion event, GW150914, state-of-the-art numerical waveforms were injected in the

data stream, and reliable values of the parameters were recovered by the waveform

templates [114], which were also used to interpret the detected signal. Similarly,

for GW170817, we employ the time domain aligned spin SEOBNRv4T (discussed in

Sec. 3.2) model to generate the waveforms for injection. We note that these in-

jected waveforms lacked a post-merger part, and also the employed version does

not include spin induced quadrupole moment. We employ the parameter estimation

methods (discussed in Section 2.3) to infer the source properties of the signal. The

SEOBNRv4T model was injected into zero-noise data with a network SNR of 32. We

employ the noise PSD of GW170817.

Injection (MA,MB) [M�] (χA, χB) EOS (Λ1,Λ2) Λ̃

APR-0-0 (1.38, 1.37) (0, 0) APR4 (275, 309) 292
APR-1-0 (1.68, 1.13) (0, 0) APR4 (77, 973) 303
APR-0-1 (1.38, 1.37) (0.04, 0) APR4 (275, 309) 292
APR-0-5 (1.38, 1.37) (-0.4, -0.4) APR4 (275, 309) 292
H-0-0 (1.38, 1.37) (0, 0) H (1018, 1063) 1040
2H-0-0 (1.38, 1.37) (0, 0) 2H (1018, 1063) 1040
BBH-0-0 (1.38, 1.37) (0, 0) - (0, 0) 0
BBH-1-0 (1.68, 1.13) (0, 0) - (0, 0) 0
BBH-0-2 (1.38, 1.37) (-0.03, -0.03) - (0, 0) 0
BBH-1-2 (1.68, 1.13) (-0.03, -0.03) - (0, 0) 0

Table 5.2: Parameters used for the injected SEOBNRv4T waveform. The table lists the
name of the injection (column 1), masses of the two stars (column 2), dimensionless
individual spin magnitudes (column 3), employed EOS (column 4), individual and
combined tidal deformability (column 5 and 6). The chosen masses and spins are
consistent with the measured posteriors for GW170817. The tidal parameters are
calculated from the mass and chosen EOS. The bottom panel gives the parameter for
the injected BBH waveforms. The table is adopted from [Collab2].

We choose three different EOS, namely, APR4, H, and 2H, for the injections.

APR4 is chosen as it is near the peak of the Λ̃ posteriors, as shown in Fig. 2.2. H
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[125] is a stiffer EOS which is at the allowed maximum limit of Λ̃ posteriors, again

given in the Fig. 2.2. We also employ 2H, which is very stiff and outside the allowed

maximum limit of Λ̃ posteriors, as shown in Fig. 2.2. For APR4 EOS, we employ four

injection scenarios and are listed in the Tab. 5.2. (i) APR-0-0: an approximate equal

mass system with no spins. (ii) APR-1-0: unequal mass system (q = 0.67) with no

spins. (iii) APR-0-1: an approximate equal mass system with small spin (χA = 0.04)

on the primary mass. (iv) APR-0-5: an approximate equal mass system with large

anti-aligned spin (χA,B = −0.4) on both stars. Approximate equal mass systems

with no spins and with stiffer EOS, H and 2H are also injected and are given as H-

0-0 and 2H-0-0 in the Tab. 5.2. Injections with BBH waveforms that are constructed

using SEOBNRv4, are given in the bottom panel in the Tab. 5.2. They are, BBH-0-

0: approximate equal mass systems without spins and BBH-0-2: approximate equal

mass system with small spins (χA,B = −0.03); BBH-1-2: unequal mass systems with

small spins (χA,B = −0.03) and BBH-1-0: approximate equal mass system without

spins. The various injection scenarios are motivated from the measured posteriors

of GW170817.
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Figure 5.6: Posteriors of the chirp massM recovered using IMRPhenomPv2 model for
injections with approximate equal mass non-spinning system with EOS APR4, H and
2H, and BBH waveform. These scenarios are listed in Tab. 5.2 as APR-0-0, H-0-0,
2H-0-0 and BBH-0-0. The solid vertical line represents injected value.

We use high spin prior |χ ≤ 0.89| and the same PSD as used for GW170817. We

also inject the waveform at an SNR of 32. As in Ref. [Dudi1], here, we also inject the

waveforms in the zero-noise realization of the data. We employ three aligned-spin

waveform models, namely, TaylorF2Tides, IMRPhenomD_NRTidal,

SEOBNRv4_ROM_NRTidal, and one precessing BBH model IMRPhenomPv2 to infer the

properties of the injected waveforms. The main results with respect to tidal deforma-

bility Λ̃ have already been discussed in Appendix B of Ref. [Collab2], which we refer

the reader for further details. Here we present a subset of the results which were
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not presented earlier. We discuss results for all the injected scenarios as listed in

Tab. 5.2 employing the IMRPhenomPv2 model only for estimating parameters, which

is a BBH precessing model. We show posteriors of chirp massM that are recovered

by the IMRPhenomPv2 model in Fig. 5.6, for injections with the approximate equal

mass system with no spins and EOS APR4, H and 2H, as well as BBH waveform. The

black solid vertical line indicates the injected value. The injected values lie within

the 90% credible interval for all three EOS and BBH injection. However, it is to

note that the peak of the posteriors shifts towards lower value as the EOS of the

injected system gets stiffer. In Fig. 5.7, the marginalized posteriors of chirp massM
for injection with the equal mass system with spins are shown. The recovered chirp

mass for APR-0-1 injection, which is approximately equal mass system with small

aligned spin (χA = 0.04) on the primary mass, is shifted towards a smaller value,

while for injection APR-0-5, which has anti-aligned spin (χA,B = −0.4) on both stars,

the posteriors are shifted towards high value. Although for BBH injection with spin

(χA,B = −0.03), the peak of the posterior is in agreement with the injected value.

Therefore for signals like GW170817, it is crucial to employ waveform models with

tidal effects otherwise, as it is visible in Fig. 5.7, that the recovered mass parameter

might get biased.
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Figure 5.7: Posteriors of the chirp mass M recovered using IMRPhenomPv2 model
for injections with equal mass and spinning system with EOS APR4 and BBH model.
These scenarios are listed in Tab. 5.2 as APR-0-1, APR-0-5 and BBH-0-2. The solid
vertical line represents the injected value.

We show marginalized posteriors of the mass ratio q in the top panel and χeff in

the bottom panel in the Fig. 5.8 for different injected scenarios as listed in Tab. 5.2.

We compare posteriors for various cases for injections with BBH model and with

soft EOS APR4 obtained by employing the IMRPhenomPv2 model. In the left panel of

the figure, we compare posteriors obtained for injection with the approximate equal
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mass non-spinning system, namely, APR-0-0 and BBH-0-0. In the middle panel:

approximate equal mass but different spin configurations, namely APR-0-1, APR-0-

5, and BBH-0-2 injection scenario as given in Tab. 5.2. For injection with the unequal

mass non-spinning system, APR-1-0 and BBH-1-0 scenarios are compared in the right

panel. The solid vertical lines indicate the injected value for the respective case. As

already stated that there is a degeneracy among spin, mass, and tidal parameters,

it is more evident in the following results. The posteriors obtained for injections

with equal mass and non-spinning systems for BBH as well as soft EOS APR4 are

in agreement with each other and with the injected value (left panel of Fig. 5.7).

However, for injections with approximate equal mass and spins for BBH and EOS

APR4, the posteriors for spin and mass ratio are biased (middle panel of Fig. 5.7).

For low spin injections, namely, BBH-0-2 and APR4-0-1, the χeff is in agreement with

the injected value, but for high spin injection APR4-0-5, the injected value is not in

the 90% credible region, and the recovered values are biased towards small anti-

aligned values. The recovery of mass ratio, for the same injection, is also biased.

For equal mass injection, high unequal mass value has recovered, which highlights

the effect of the degeneracy between mass, spin, and tidal parameters and shows

the importance of employing tidal models even for soft EOS injection at SNR 32. For

injection with the unequal mass system with no spin, the posteriors of spin parameter

χeff are shifted towards high value for the injection with EOS APR4 while towards

a lower value for BBH injection (right panel of Fig. 5.7). The results are broadly

consistent with the earlier findings that we discussed in Sec. 5.1.
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Figure 5.8: Marginalized PDF of q in top panel and χeff in bottom panel for
IMRPhenomPv2 model using the high-spin prior |χ| ≤ 0.89. The injected parameter
shown by the solid vertical line. Left panel: Approximately equal mass and non-
spinning system, injection APR-0-0 and BBH-0-0 as listed in the Tab. 5.2 . Middle
panel: Approximately equal mass and spinning system APR-0-1, APR-05 and BBH-0-
2 injection scenarios. Right panel: Unequal mass and non-spinning system, APR-1-0
and BBH-1-0.
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Chapter 6

Improving the waveform models

In the last chapter, we discussed the systematic differences among the various wave-

form models. We found out that few of these models are giving biased results for

some particular injection scenarios due to differences in the physics included in these

models. In this chapter, we present improvements in some of these models based on

our earlier investigations. We review the findings of [Dudi2] and discuss the im-

proved point-mass baseline of the TaylorF2 model at quasi 5.5 PN order; we abbre-

viate this approximant as TaylorF2pseudo5.5PN. We analyze its accuracy by compar-

ing gauge-invariant dimensionless quantity Qω with EOB models. We also employ

this model for GW parameter estimation and compare the results with other gen-

erally used waveform models like TaylorF2Tides, IMRPhenomD_NRTidal for the same

setup. We also briefly comment upon the improved NRTidal model, NRTidalv2, in-

troduced in Ref. [Dudi4]. In the later section, we review the surrogate modeling

techniques that could be employed to construct a fast, compact, and accurate wave-

form model in the place of accurate but slow models. We present the results for the

same in the context of the multipolar TEOBResum model [Dudi7].

6.1 TaylorF2 at quasi 5.5 post Newtonian
As we have already discussed in Chapter 5 [Dudi1] and also other systematics

studies such as [26] have stressed the fact how Λ̃ estimates can be biased due to

approximate treatment of physics in different waveform models and how important

is to have more precise and fast to compute waveform models. Particularly, Favata et

al. [25] investigated that how the bias incurs in the measurement of tidal deforma-

bility due to the truncation of the PN series, neglecting spins of the NS and orbital

eccentricity. All these studies impress upon the fact that the tidal deformability,

masses, and spin measurements will be biased if the systematics are not adequately

addressed. After the NRTidal models became available, the most common practice

to generate BNS inspiral is to augment the standard point-mass model with an addi-

tional tidal phasing. Thus, one primary source of systematics in BNS inspiral wave-
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forms resides in the description of the non-tidal part, i.e., in the point-mass model

(see, e.g., [126]). Therefore, a natural step is to improve the accuracy of the BNS

inspiral the point-mass PN approximant beyond the current available. A point-mass

(non-spinning) frequency-domain TaylorF2 phasing approximant at quasi- 5.5 PN

accuracy for the GWs from coalescing compact binaries is given in Ref. [127] [Dudi2]

and also discussed in Appendix A. The new approximant, TaylorF2pseudo5.5PN, is

obtained by Taylor-expanding the EOB resummed energy and angular momentum

flux along circular orbits with all the known test-particle information up to 5.5 PN.

The -yet uncalculated- terms at 4 PN order and beyond entering both the energy flux

and the energy are taken into account as free parameters and then set to zero. It

delivers a phasing representation that improves the currently known 3.5 PN one. We

show that, in parameter estimation studies, the new phasing description allows one

to strongly reduce the biases in the recovery of the tidal parameters that are usually

present with the 3.5 PN TaylorF2 point-mass (Sec. 6.1.2).

6.1.1 Qω analysis

We investigate the performance of TaylorF2 at quasi 5.5 PN by comparing the

Qω functions with the full EOB phasing and taking the differences, similarly to what

was done in Ref. [Dudi3] for isolating the tidal part of the EOB phasing. The dimen-

sionless quantity Qω is given by:

d2Ψ

d2f̂
=
Qω(f̂)

f̂ 2
, (6.1)

where Ψ is the GW phase and f̂ ≡ Mf ≡ Ω/2π. This quantity is useful for compar-

ing models as its inverse provides a measure which tells up to what extent station-

ary phase approximation (SPA) holds and gives a good approximation to the exact

Fourier transform of the complete inspiral waveform. Moreover, it is independent of

an arbitrary shift of time and phase that affects the GW phase. In Fig. 6.1, we com-

pare point-particle (non-spinning) orbital phasing for the EOB and the PN curves for

the q = 1 case. We show the differences between the EOB and PN (QEOB
ω − QPN

ω )

at quasi 5.5 PN (red curve) and 3.5 PN (blue curve). The top panel of the figure

illustrates the full phasing acceleration evolution, up to the peak of the EOB orbital

frequency that is identified with the merger. The bottom panel is a close up on the

inspiral part. The vertical lines corresponds (from left to right) to 10 Hz, 20 Hz,

718 Hz and 1024 Hz for a fiducial equal-mass BNS system with (1.35 + 1.35)M�.

The 718 Hz line corresponds to ω̂ = 0.06, (where ω̂ is the dimensionless GW orbital

frequency) that roughly corresponds to the NR contact frequency [81].
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Figure 6.1: Figure depicts the difference between Qω quantity for EOB and PN at
quasi 5.5 PN and 3.5 PN for q = 1 case, up to (approximate) merger time. The
vertical lines mark the 10 Hz, 20 Hz, 718 Hz or 1024 Hz for a (1.35 + 1.35)M�
binary. The differences in EOB and quasi-5.5 PN curve is always much closer to the
zero than the standard 3.5 PN approximant. The plot is taken from [Dudi2].

The figure highlights that the quasi-5.5 PN approximant delivers a rather good

representation of the point-mass EOB phasing precisely up to ω̂ = 0.06. Tab. 6.1

reports the phase difference

∆φ(ω̂0,ω̂1) =

∫ ω̂1

ω̂0

∆Qωd log ω̂ , (6.2)

accumulated between the frequencies [ω̂0, ω̂1] (or equivalently [f0, f1] in physical units)

marked by vertical lines in the plots. The numbers in the table illustrate quantita-

tively how the 5.5 PN phasing approximant delivers a phasing description that is, by

itself, more EOB compatible than the standarly used 3.5 PN one. Note that this is
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Table 6.1: EOB/PN phase difference accumulated between [f0, f1]. It is obtained by
integrating the ∆QEOBPN

ω ’s in Fig. 6.1 between the corresponding values of log(ω̂).
The limits of integration are denoted in Hz as we want to ideally refer to the fiducial
(1.35 + 1.35)M� binary system. The table is taken from [Dudi2].

ω̂0 × 104 ω̂1 f0[Hz] f1[Hz] ∆φEOBPN
3.5PN ∆φEOBPN

5.5PN

8.35 0.086 10 1024 0.2718 0.1364
8.35 0.060 10 718 −0.1916 1.45× 10−3

16.7 0.086 20 1024 0.3009 0.1354
16.7 0.060 20 718 −0.1625 4.54× 10−4

20.0 0.086 24 1024 0.3110 0.1348

achieved even if the EOB incorporates the effective, NR-informed, a6
c(ν) parameter,

that is not included in the TaylorF2 approximant.

6.1.2 Effect on Λ̃ inference

To study the implication of changing the PN-accuracy of the point-mass baseline

on the estimate of the tidal deformability parameter Λ̃, we inject full BNS waveform

and recover it using TaylorF2pseudo5.5PN. We construct equal-mass EOBNR hybrid

BNS waveforms by matching the TEOBResumS EOB tidal model [77] to state-of-the-

art NR simulations of the CoRe collaboration [Collab3] as discussed in Chapter 4.

Note that the version of TEOBResumS used here does not incorporate the analyti-

cal developments of Refs. [128, 129]. Two fiducial waveforms are considered here

corresponding to two non-spinning, equal-mass (1.35M�+ 1.35M�) BNS models de-

scribed by the SLy and H4 EOS. The corresponding values of the tidal parameters

are Λ̃ = 392.231 (SLy EOS) and Λ̃ = 1110.5 (H4 EOS). The waveforms are injected

at SNR of 30 and 100 into a fiducial data stream of the LIGO detectors [15]. We as-

sume the projected noise curve for the Advanced LIGO detectors in the zero-detuned

high-power configuration (ZDHP) [130] and no actual noise is added to the data.

Rest setup for parameter estimation was identical to the Ref. [Dudi1]. The injected

waveform is recovered with three approximants: (i) IMRPhenomD_NRTidal, where

the point-mass orbital phasing is obtained by a suitable representation of hybridized

EOB/NR BBH waveforms, the PhenomD approximant [87]; (ii) TaylorF2Tides where

the 3.5 PN orbital phase is augmented by the 6 PN (next-to-leading) tidal phase [90];

(iii) the same as above where the 3.5 PN orbital, non-spinning, phase is replaced

by the quasi-5.5 PN one. The models are described in detail in Chapter 3. The

LALInference package [45]) is then employed to extract the binary properties from

the signal. We use a uniform prior distribution in the interval [1M�, 3M�] for the

component masses, and a uniform prior between −1 and 1 for both dimensionless

aligned spins. We also pick a uniform prior distribution for the individual tidal pa-

rameters ΛA,B between 0 and 5000. The posteriors obtained for two injections from

three waveform models are presented in the left panel for the SLy EOS and right
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Figure 6.2: Posteriors obtained for tidal deformability Λ̃ from different waveform
model on different frequency intervals [fmin, fmax] with different SNR. The injected
waveforms have 1.35M� + 1.35M� binary with SLy EOS (left panel) and with H4
EOS (right panel). The vertical line corresponds to the injected value Λ̃SLy = 392.2
(left and Λ̃H4 = 1110.5 (right). Irrespectively of the value of SNR, the 3.5 PN base-
line introduces a strong bias (and spread) in the measure of Λ̃. By contrast, this is
practically reabsorbed when using the quasi-5.5PN point-mass baseline. The dashed
vertical lines correspond to a 90% confidence level. The plot is taken from [Dudi2].
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Table 6.2: Data behind Fig. 6.2. For each measured quantity, chirp mass M, sym-
metric mass ratio ν and tidal polarizability Λ̃, the colums report: the injected value;
the minimum value of frequency considered, either 24Hz or 32Hz; the combination
EOS-SNR; finally, the last three columns list the median values measured with the
three different waveform approximants with the 90% credible interval. The last row
of the table shows the average waveform generation time for each approximant,
assuming starting frequency of 24Hz. The table is taken from [Dudi2].

Injected Value fmin EOS SNR TaylorF2 3.5PN TaylorF2 5.5PN IMRPhenomD_NRTidal

M 1.1752
24 Hz

SLy 30 1.17531.1755
1.1752 1.17531.1755

1.1752 1.17531.1755
1.1752

H4 30 1.17531.1755
1.1752 1.17531.1755

1.1752 1.17531.1755
1.1752

SLy 100 1.17531.1754
1.1752 1.17531.1754

1.1752 1.17531.1754
1.1752

H4 100 1.17531.1754
1.1752 1.17531.1754

1.1752 1.17531.1754
1.1753

32 Hz
SLy 30 1.17541.1757

1.1752 1.17541.1757
1.1752 1.17541.1756

1.1752

H4 30 1.17541.1756
1.1751 1.17541.1757

1.1752 1.17531.1756
1.1751

ν 0.25
24 Hz

SLy 30 0.246490.24996
0.23147 0.245580.24995

0.23135 0.246360.24997
0.23105

H4 30 0.247290.24997
0.2338 0.245810.24995

0.23162 0.24590.24996
0.23079

SLy 100 0.248570.24998
0.23744 0.247380.24995

0.23691 0.247030.24998
0.23292

H4 100 0.248770.24997
0.24083 0.247350.24995

0.23694 0.247020.24997
0.23307

32 Hz
SLy 30 0.246580.24996

0.23107 0.24670.24997
0.23247 0.245920.24997

0.23054

H4 30 0.246840.24997
0.23282 0.246020.24995

0.23194 0.245760.24996
0.23051

Λ̃

392

24 Hz

SLy 30 935.912547.71
245.40 517.88971.32

162.29 400.47761.30
135.47

1110 H4 30 1690.563589.6
632.12 987.291575.33

422.78 1044.271459.18
630.88

392 SLy 100 452.24694.52
180.44 301.87459.52

149.57 295.21410.31
162.62

1110 H4 100 1405.421726.90
1065.20 894.931069.01

711.92 1051.611195.12
837.18

392
32 Hz

SLy 30 1007.472743.87
267.25 572.291177.84

156.79 419.89803.14
144.15

1110 H4 30 1675.673464.08
660.31 1042.611713.99

416.23 1060.441509.45
633.25

Average Time 22.9 ms 32.68 ms 60.13 ms

panel for the H4 EOS of Fig. 6.2. We compare the inference of the tidal parame-

ter done on two frequency intervals, [24, 1024] Hz and [32, 1024] Hz. Note that we

do not extend the analysis interval to higher frequencies because of we know that

the orbital part of the TaylorF2 approximants becomes largely inaccurate at such

frequencies. For SNR = 30, one finds that the 3.5 PN orbital baseline induces a

clear bias in Λ̃, while the quasi-5.5 PN one agrees much better with the IMRPhenomD

model as well as the injected value (vertical line in the plots). Incrementing the

SNR to 100, the statement only holds for the softer EOS, since for the H4 case also

the 5.5 PN approximant is biased, although still less than the 3.5 PN one. The two

figures are complemented by Tab. 6.2, that, for each choice of configuration and

SNR, lists the recovered values with their 90% credible interval. The last row of

the table also reports the time needed to generate a single waveform: interestingly,

the timing of the quasi-5.5PN TaylorF2 is comparable to the one of the 3.5 PN ap-

proximant, i.e., it remains approximately two times faster than IMRPhenomD_NRTidal

being consistent with this latter at SNR . 30. This suggests that, for events similar to

GW170817 or quieter, the quasi-5.5 PN TaylorF2 can effectively be used in place of

IMRPhenomD_NRTidal to get an even faster, yet accurate, estimate of the parameters.
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Figure 6.3: Heuristic explanation of the bias on Λ̃: 1.35M� + 1.35M� binary, Sly
EOS, Λ̃ = 392.231. Shown is the gauge-invariant difference ∆QEOBPN

ω ≡ QEOB
ω −QPN

ω

between the EOB Qω and the PN Qω with the 3.5 PN orbital baseline augmented
by the 6 PN-accurate tidal phase. Increasing the value of the tidal parameter to
Λ̃ = 442.987 is very effective in reducing the phase difference accumulated between
in the interval ω ∈ [0.02, 0.06] (dotted vertical line) to a negligible value. Such ω̂
interval correponds to f ∈ [24, 718] Hz for this binary. The upper frequency limit
corresponds to 957.4 Hz. The plot is taken from Ref. [Dudi2].

Understanding waveform systematics of the injections via the Qω

analysis

Here, we try to heuristically explain why the effect of the 3.5 PN-accurate orbital

baseline is to bias the value of Λ̃ towards values that are larger than the theoretical

expectation as can be seen in Figs. (6.2, 5.3). Assessing Fig. 6.1, one can notice that

the QEOB
ω −Q3.5PN

ω is negative. This indicates that the PN phase accelerates less than

the EOB one, i.e., the inspiral occurs more slowly in the 3.5 PN phasing description

than in the EOB. We could think of it as that the gravitational interaction behind

the 3.5 PN-accurate orbital phasing is less attractive as compared to what predicted

by the EOB model. This effect might be compensated by an additional part in the

total PN phasing that stems from a part of the dynamics that is intrinsically attrac-
tive, and that could compensate for the inaccurate behavior of the 3.5 PN. Since

eventually, the phase difference is given by an integral, two effects of the opposite

sign can mutually compensate and thus generate a PN-based frequency phase that is

compatible with the EOB. Since tidal interactions are attractive, the corresponding

part of the phasing is naturally able to compensate for the repulsive character of the

orbital phasing. For this compensation to be adequate, it may happen that Λ̃ has to

be larger than the theoretically correct one that accounts for the tidal interaction (at

leading order) in the EOB waveform.
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Such intuitive explanation can be tested by performing Qω analysis. Fig. 6.3

shows the comparison between two EOB-PNQω differences ∆QEOBPN
ω ≡ QEOB

ω −QPN
ω ,

where the QEOB
ω is the complete function, while QPN

ω is obtained by summing to-

gether the 3.5 PN orbital phase and the 6 PN-accurate tidal phase [32]. When we

use the theoretically correct value of Λ̃ = Λ1 = Λ2 = 392.231 for the SLy model with

masses 1.35M� each, the phase difference in the interval ω̂ ∈ [ω̂0, ω̂1] = [0.002, 0.06],

corresponding to f ∈ [20, 718] Hz (dotted vertical line in the figure) for this bi-

nary, is ∆φ(ω̂0, ω̂1) ' −0.276 radian. By contrast, if the value of Λ̃ is progressively

increased, the accumulated phase difference between [ω̂0, ω̂1] gets reduced up to

∆φ(ω̂0,ω̂1) ' 2.429 × 10−4 for Λ̃ = 442.987. Note however that such analytically pre-

dicted “bias” in Λ̃ depends on the frequency interval considered: if we extended

the integration up to ω̂1 ' 0.08 (corresponding to 957.4 Hz) one finds that a sim-

ilarly small accumulated phase difference ∆φ0.002, 0.08 ' 5.0 × 10−5 is obtained for

Λ̃ = 424.08, i.e. the analytical bias is reduced. This fact looks counterintuitive: a

result obtained with a PN approximant is not, a priori, expected to improve when

including higher frequencies. By contrast, the fact that the analytic bias is (slightly)

reduced increasing ω̂1 illustrates the lack of robustness as well as the lack of predictive
power of the approximant in the strong-field regime. Generally speaking, one sees

that the combination of 3.5 PN orbital phase with 6 PN tidal phase may result in a

waveform that is effectual with respect to the EOB one, in the sense that the noise-

weighted scalar product will be of the order of unity, but with an incorrect value of

the tidal parameter. This simple example is helpful to intuitively understand how

the incorrect behavior of the point-mass non-spinning phasing can eventually result

in a bias towards larger values of Λ̃. Interestingly, this value is close to the value

obtained with SNR=100 (see left-bottom panel of Fig. 6.2). Although the analysis

of Fig. 6.3 certainly cannot replace an injection-recovery study; it should be kept in

mind as a complementary tool to interpret its outcome within a simple, intuitive, but

a quantitative framework.

In summary, we introduce a new approximant TaylorF2pseudo5.5PN and check its

faithfulness by comparing it with EOB model (TEOBResumS) via Qω analysis and by

performing parameter estimation analysis. We also try to intuitively explain the be-

havior of TaylorF2Tides model that deviates from the expected value and provides an

upper bound on Λ̃ estimates as found in Refs. [Dudi1, Collab1]We have also com-

pared various truncation of 5.5 PN approximants such as (3.5, 4, 4.5, 5, 5.5)-PN

with complete EOB point mass phasing via Qω analysis and found that the 5.5 PN

phasing is remarkably close to the EOB phasing. Therefore, we recommend the use

of the quasi 5.5 PN approximant in searches as well as in parameter estimation of

GWs. This approximant could be further improved at higher frequencies by tuning

some of the free parameters (given in Appendix A), which are set to zero for the

time being. For further details, we refer to Ref. [Dudi2].
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6.2 NRTidalv2 model

NRTidal model is a frequency as well time domain model of tidal phase that can

be augmented to any point-mass baseline. The NRTidal model is based on the idea

discussed in Section 3.4. The phase of the GW is approximated as a sum of the

various contribution from point-mass baseline, spin, tides, etc., given in Eq. (6.3).

The tidal phase then parametrized by effective tidal coupling constant κeff , given

in Eq. (3.22) and fitted over the known NLO tidal contribution at low frequencies

Eq. (3.23) and tuned to EOB and NR data at high frequencies. However, studies in

Refs. [Dudi1, Dudi3] (discussed in Sec. 4.1 and 5.1) showed that the NRTidal model

might overestimate the tidal effects and underestimate the Λ̃ at large SNRs and/or

for stiff EOS. Therefore, it is crucial to improve this model so that a fast and accurate

waveform remains available for upcoming detections. We call the improved model

NRTidalv2. We describe the improvements that are made in NRTidalv2 [Dudi4],

with respect to the old NRTidal approximant.

• The closed-form phenomenological tidal description has been recalibrated us-

ing higher-order analytical knowledge and improved NR data. This approxi-

mant is based on the following assumption for GW phase:

ψ(ω̂) ≈ ψPP (ω̂) + ψSO(ω̂) + ψSS(ω̂) + ψT (ω̂), (6.3)

where ψ(ω̂) denotes the point particle contribution to the phase, ψSO(ω̂) and

ψSS(ω̂) denotes spin-orbit and spin-spin contribution respectively and contribu-

tion from the tidal effects is denoted by ψT (ω̂) in frequency domain. Similarly

like NRTidal, the ψT (ω̂) is based on Eq. (3.25). Although, here we employ the

known analytical knowledge upto 7.5 PN instead 6 PN. Thus, the improved

version of Eq. (3.25):

φT (x) = −κTeff

13

8ν
x5/2PNRTidalv2(x) , (6.4)

where φT is the time domain phase. Now, with the Padé approximant

PNRTidalv2(x) =
1 + n1x+ n3/2x

3/2 + n2x
2 + n5/2x

5/2 + n3x
3

1 + d1x+ d3/2x3/2 + d2x2
. (6.5)

Then SPA, discussed in, e.g., [131], is employed to derive the tidal phase

contribution ψT in the frequency domain:

ψT (x) = −κTeff

39

16ν
x5/2P̃NRTidalv2(x) , (6.6)
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with

P̃NRTidalv2(x) =
1 + ñ1x+ ñ3/2x

3/2 + ñ2x
2 + ñ5/2x

5/2 + ñ3x
3

1 + d̃1x+ d̃3/2x3/2 + d̃2x2
, (6.7)

We refer the reader to the Ref. [Dudi4] for the details about the coefficients.

• As another improvement, in NRTidalv2 tidal GW amplitude ANRTidal correction

to the model has been added. Using the 6 PN tidal correction to amplitude as

a starting point:

Ã6PN
T =

√
160πν

27

M2

DL

κTeffx
−7/4

(
−27

16
x5 − 449

64
x6

)
, (6.8)

where DL is the luminosity distance.

The amplitude correction is:

ÃNRTidalv2
T = −

√
5πν

24

9M2

DL
κTeffx

13/4 1 + 449
108x+ 22672

9 x2.89

1 + d x4
. (6.9)

where d = 13477.8 is the fitting coefficient.

• EOS dependent 3.5 PN spin-spin effects and 3 PN cubic in spin effects which

are proportional to the quadrupole and octopole moment of the NS are also

incorporated.

Table 6.3: The non-spinning BNS and BBH hybrids employed in the construction
of the NRTidal model. The columns refer to the name, the employed EOS, the
individual masses of the stars MA, MB, the tidal deformabilities ΛA,ΛB, the tidal
coupling constant κTeff [Eq.3.22], and the ID in the CoRe and SXS databases. The
table is taken from Ref. [Dudi4].

Name EOS MA MB ΛA ΛB κTeff ID
SLy SLy 1.350 1.350 392.1 392.1 73.5 CoRe:BAM:00951

H4 H4 1.372 1.372 1013.4 1013.4 190.0 CoRe:BAM:0037
MS1b MS1b 1.350 1.350 1389.4 1389.4 288.1 CoRe:BAM:0064
BBH – 1.350 1.350 0 0 0 SXS:BBH:0066

For NRTidal model, PN, EOB, and NR approximants have been separately used
in different frequency intervals for callibration. Here, we fit the coefficients using
hybrid waveforms, starting at the frequency 20 Hz, constructed by employing a time-
domain tidal EOB model (TEOBResumS) to cover inspiral regime [77] connected to a
high resolution NR simulation. The hybridization is done, as discussed in Chapter 4.
In addition to the BNS hybrid waveforms, we also create a hybrid between the non-
tidal version of the TEOBResumS model and a binary black hole waveform computed
with the SpEC code [132]; setup SXS:BBH:0066 of the public SXS catalog [133, 134].
The phase evolution of the time domain hybrid waveforms, listed in Tab. 6.3, are
shown in Fig. 6.4 in the top panel. We also present the phase difference between the
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Figure 6.4: Time domain phase of the hybrid waveforms employed to develop
NRTidal. The bottom panel shows the phase difference caused by tidal effects. The
plot is taken from Ref. [Dudi4].

BBH hybrid and BNS hybrids in the bottom panel. To compute the phase difference,
we first align the hybrid waveforms at ∼ 22 Hz. We find that in the last ∼ 5000 GW
cycles (3×104 rad) the phase difference caused by tidal effects is only ∼ 12 rad at the
merger frequency of our BNS setup. Again, we emphasize that only the four hybrid
waveforms listed in Tab. 4.1 are used for calibration of the NRTidalv2 model, where
the dataset we are going to fit is

φNR
T =

1

320 + 192 + 192

[
320(φSLy − φBBH) + 192(φH4 − φBBH)

+ 192(φMS1b − φBBH)

]
=

1

11

(
5φSLy + 3φH4 + 3φMS1b − 11φBBH

)
.

(6.10)

The factors are obtained by linearly weighting the resolutions of the individual NR

data, i.e., 320 points accross the star for the SLy setup and 192 for H4 and MS1b

setups. We decided to use this minimal dataset since these are the available data

with the highest accuracy. Note that a simple restriction to the highest resolution,

i.e., the SLy data, leads to a phase description which does not accurately characterize

binaries with large tidal deformabilities. Thus, it would be preferable to include

in the future a larger number of NR simulations with varying masses, spins, mass

ratios, and EOSs once these are available. However, while there are a small number

of high-quality waveforms [135], these waveforms do not span a sufficiently large

region of the parameter space to incorporate additional mass ratio, EOS, or mass

dependencies in our phenomenological ansatz. For assessing the accuracy of the

NRTidalv2 model, we used 18 hybrids listed in Tab. 4.1. We used IMRPhenomPv2

augmented to NRTidalv2 as a full waveform for the assessment. We compute the

mismatch between the IMRPhenomPv2_NRtidalv2 model and hybrids. We used the

Advanced LIGO zero-detuning high-power (ZDHP) noise curve for our analysis with
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fmin = 30 Hz and a variable fmax ranging from 500 Hz to merger frequency fmrg and

found the mismatches are below 5 × 10−3 for all cases. We also compute the time

domain phase difference of IMRPhenomPv2NRtidalv2 with NR data from the CoRe

database and found agreement within the estimated uncertainty. Overall, we found

that the performance of the NRTidalv2 model is comparable to the state-of-the-art

tidal EOB model.

6.3 Surrogate Model
We have emphasized the importance of accurate and fast to evaluate waveform

models, e.g. in Sec. 2.3, in the context of extracting the source properties of the sig-

nal. Waveform models employ for parameter estimations are discussed in chapter

3. The PN based models which are fast-to-evaluate than any other models, unfortu-

nately, are not accurate upto the merger and could potentially bias the measured pa-

rameters [Dudi1]. On the other hand, waveforms constructed under EOB formalism

(discussed in Sec. 3.2) are able to precisely describe the compact binaries upto the

merger and beyond for black hole binaries. However, they are slow to be used for pa-

rameter estimation. A possible solution to this problem was introduced in Ref. [136]

and is called reduced-order modeling or surrogate modeling. These methods pro-

vides a compact, accurate and fast-to-evaluate model in place of an accurate but slow

to evaluate model. First, we briefly review the reduced-order-modeling techniques

introduced in Ref. [83, 136] and refer these articles for detailed discussion. Then,

we present their implementation for the time domain tidal EOB model -TEOBResum

and show results for higher-multipoles upto (` = 4,m = 4). Later we briefly discuss

how these techniques can be used for spin-tidal EOB model - TEOBResumS [77]. The

publication is in preparation, and results are not fully matured yet. The TEOBResum

waveform is described by 7 input parameters (θ), namely, mass-ratio q, and the tidal

deformability of the two satrs, upto (` = 2, 3, and 4) tidal multipole moments. i.e.,

θ = (q,ΛA
2 ,Λ

B
2 ,Λ

A
3 ,Λ

B
3 ,Λ

A
4 ,Λ

B
4 ). We work in total mass rescaled units here. These 7

dimensional space can be reduced to 3 dimensions by using Yagi fits that correlates

` = 2 tidal parameter to ` = 3, 4 tidal parameters [137]. Systematic uncertainity

due to the fits has been studied in the Appendix A of Ref. [83] for few cases. First,

for building a surrogate model, one requires a set of precomputed waveforms (train-

ing set). These data set has to be preconditioned such that it varies as smoothly as

possible with parameters. For constructing the training set for multipolar TEOBResum

model, we follow Ref. [83] and choose the waveform parameters as:

θ := (q,ΛA,ΛB), (6.11)

and the parameters are in range q ∈ [0.5, 1] and ΛA,B
2 = [50, 5000]. We build the sur-

rogate model for amplitude A and phase φ independently, but over the same training
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set as amplitude and phase vary less with parameters and time, than strain, and that

results in a more accurate and compact model at the end. We choose the waveform

parameter θ to discretize the parameter space at Chebyshev-Gauss-Lobatto nodes, as

in later steps, we would like to perform the interpolation. For each parameter, we

choose 16 nodes in the given range such that in total 16× 16× 16 = 4096 waveforms

are required to generate the training set. As mentioned above, preconditioning is

needed for amplitude and phase to be a smooth function of the waveform parameter

θ. For the same, we align all the waveforms at the peak amplitude, i.e., at the merger

and shift the waveforms such that t = 0 corresponds to the merger time. We make

them equal length by chopping off the beginning portions and then set the initial

phase of all waveforms to zero. Then, we downsample the data to reduce the phys-

ical memory size. First we sample amplitude and phase in phase φ with a spacing

∆φ = π before t = −103M . Also, after that, in time with a spacing ∆t = 0.1M to get

the complicate behavior near merger. After generating the training set, the next step

is to build reduced basis to compress the data in time (or frequency) and parame-

ters. We employ greedy algorithm to construct reduced basis. For details we refer

the reader to Ref. [136] and the algorithm is discussed in Appendix B. The key idea

is that if the amplitude A(t, θ) and phase φ(t, θ) are given at a discrete set of training

points (N, here N = 4096) or parameters, then greedy algorithm selects a smaller

number (n < N) of parameters and corresponding amplitude and phase which con-

stitutes the basis. Then, we use Gram-Schmidt process to get the orthogonal basis

vectors {e}ni . Once we have the basis then any amplitude and phase can be written

in a linear combination of the basis vectors:

A(t, θ) ≈∑nA
i cAi (t)eAi (t), (6.12)

φ(t, θ) ≈∑nφ
i cφi (t)eφi (t). (6.13)

where the coefficients cAi (t) and cφi (t) are inner product of reduced basis and the

amplitude and phase 2. nA and nφ are number of basis, eAi (t) and eφi (t) are reduced

basis for amplitude and phase respectively. Now, the next step is to reduce the

data in time for that we build an empirical interpolant and choose few time nodes

τ , defined uniquely for a reduced basis. Such that, if the waveform is known at

those time nodes, it can be generated at any time by using the interpolant. This

algorithm is also discussed in the Appendix B. The first time node τ1 is a seed for

the greedy algorithm and we choose the first time node as the time at which the

first reduced basis is maximum in its absolute value: τ1 = arg maxt|e1|(t). We use

In[A](t, θ) notation for the interpolant which indicates that the interpolant is a linear

combination of first n reduced basis and its a function that acts on amplitude A,

2cAi (t) =
∫
e∗Ai (t)A(t, θ)dt
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similarly we can also write it for phase. The interpolant for n = 1 is given by:

I1[A](t, θ) = C1(θ)eAi (t), (6.14)

the coefficient C1(θ) is obtained by demanding that the interpolant generate the

data at the node τ1 i.e., I1[A](τ1, θ) = A(τ1, θ). Then, Eq. (6.14) at τ1 gives: C1(θ) =

A(τ1, θ)/e1(τ1). And the interpolant is written as:

I1[A](t, θ) = BA
1 (θ)Ai(τ, θ), where BA

1 = e1(t)/e1(τ1). (6.15)

To compute the the second time node τ2, we interpolant the second reduced basis

with the current interpolant and then the time sample at which it has the maximum

error in absolute value will be the second time node τ2:

τ2 := arg maxt|e2(t)− I1[e2](t, θ)| (6.16)

Then, we write the interpolant for the next step as in Eq. (6.14),

I2[A](t, θ) =
∑2

i=1Ci(θ)e
A
i (t), and coefficients are again computed by demanding

that at the second time node τ2 the interpolant reproduce the data. Similarly, we can

keep on iterating until all reduced basis are exhausted. We then have n empirical

time nodes (τ1, τ2, · · · , τn) and the interpolant takes the final form:

In[A](t, θ) =
n∑
j

Bj(t)A(τj, θ) (6.17)

where Bj(t) is independent of θ parameter and it’s computed offline, though the fast

interpolation is an online step when θ is given. Notice that to give A(t, θ) for a given

θ, the values at {A(τj, θ)}nj=1 has to be known. Here we show the computation of

interpolant for amplitude A, similar computation for phase is also performed. Once

we have reduced the problem in parameters and in time, the next step is to build a

fit for parameter θ dependence at each empirical nodes. Recall that we intentionally

discretize our parameter space such that we place our training set waveforms at

Chebyshev-Gauss-lobatto nodes so that Chebyshev interpolation can be employed.

Therefore, the amplitude and phase at each empirical node is given by:

A(τAj , θ) ≈ Ā(θ) :=
∑

l,m,n aj,lmnTl(q)Tm(ΛA
2 )Tn(ΛB

2 ), (6.18)

φ(τφj , θ) ≈ φ̄(θ) :=
∑

l,m,n aj,lmnTl(q)Tm(ΛA
2 )Tn(ΛB

2 ). (6.19)

We use Clenshaw summation techniques to do the summations. The computation of

coefficients aj,lmn and bj,lmn of the Chebyshev series is an offline step and they are

precomputed from the known amplitudes and phases on the training set grid using
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Gaussian quadrature. The surrogate model is then given by evaluating the empirical

interpolant at the parameteric fit to predict value at any new parameter θ:

AS(t, θ) :=
∑n

j B
A
j (t)Ā(θ), (6.20)

φS(t, θ) :=
∑n

j B
φ
j (t)φ̄(θ). (6.21)

Once a set of parameters are given θ := (q,ΛA,ΛB), the surrogate is evaluated online.

From amplitude and phase we construct the strain h as given in Eq. 28 of Ref. [83].

6.3.1 Results

Here we extend the model given in Ref. [83] and construct the surrogate model

for higher multipoles (` = 2, 3, 4 and m = 2, 4). We apply the above discussed

method on tidal EOB model TEOBResum (discussed in Sec. 3.2) (Note: we work

in dimesionless units rescaled by total mass M). The GW strain h = h+ − ih×, is

decomposed into spin weighted −2 spherical harmonics is given in Eq. (3.17). We

can write seperate multipoles as:

h`m = A`mexp
−ιφ`m (6.22)

(`,m) mode nφ ∇φ nA ∇A/A
(2, 2) 9 0.0012 15 5.27× 10−7

(3, 2) 9 0.0011 11 0.00253
(4, 2) 8 0.0013 8 0.00348
(4, 4) 8 0.0031 11 9.19× 10−5

Table 6.4: We list the number of basis required for phase (column 2) and amplitude
(column 4) for different modes (column 1). The error in phase ∇φ (in column 3)
maximized over the whole training set and maximum fractional error in amplitude
∇A/A = (column 5) over the whole training set and over all time samples.

We construct surrogate for each {A`m} and {φ`m}, starting at a frequency of 24

Hz and reconstruct the strain by applying Eq. (6.22) followed by Eq. (3.17). As

seen from the Fig. (6.4) the typical phase difference between BNS and BBH is of

the order ∼ 12 radians, this is due to the tidal effects. Therefore, we would like

to model the tidal interaction effectively such that the phase error is much smaller

than 12 radians. We first assess the accuracy of each mode by comparing the phase

and amplitude, computed at each grid point with the training set data. We list

the maximum error in phase (∆φ = maxset|φS − φEOB|) and maximum fractional

error in amplitude (∆A/A = maxset|AS/AEOB − 1|) over the whole training set for

different multipoles, maximized over all time samples, in Tab. (6.4). Note that the

contribution from m = 3 modes is very small, therefore we do not model that and
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also note that the error in amplitude for (3, 2) and (4, 2) modes looks high in the table

is because this is fractional error and the amplitude for these modes are of the order

of 10−3 or smaller. We compare in Fig. (6.5) the waveforms hlm individually, for

parameters θ = {q = 0.5,ΛA
2 = 400,ΛB

2 = 80}, generated using the TEOBResum code

and the surrogate model (hSlm) for the last 11 cycles before merger. These parameters

are not from 4096 training waveforms which we use to sample the parameter space.

We present the error in phase and amplitude in reconstructing all 4096 waveforms of

training set in Fig. (6.6) for the dominant (2, 2) mode. One can notice that the error

is higher for low mass ratio q and low ΛA
2 values cases.
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Figure 6.5: Fig. shows the waveform for a BNS system with parameters q = 0.5 ,
ΛA

2 = 400, Λ = 80, for (` = 2, 3, 4,m = 2, 4) mode generated using the TEOBResum
code (black line) and the surrogate (hSlm) (dotted red line) generated for the same
set of parameters for the final cycles before merger.

The maximum error in phase ∆φ is 0.0012 radian and maximum fractional error

in amplitude ∆A/A is 5.6× 10−7 for the dominant (2, 2) mode. These error estimate

are in agreement with the findings of Ref. [83]. In order to determine the accuracy of

our multipolar surrogate model in computing a generic waveform, we compute the

error in phase and amplitude at 1000 randomly choosen parameters (θ) in the given

range. We present the result for the same in Fig. 6.7. The maximum error in phase is

∆φ = 0.073 radian and maximum fractional error in amplitude is ∆A/A = 0.0105 in

the multipolar waveform strain h (constructed using Eq. 3.17). The major advantage

of employing surrogate modeling techniques is that it delivers a fast to evaluate

model. We find that the time to generate a generic multipolar waveform starting
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from 24 Hz is 12 sec while the original code which takes about 10 minutes on a

single core of quad core intel core i7 machine. A parallelized version of this code

could potentially speed up the evaluation further. At the moment, the code is written

in MATLAB. (We have not implemented the code in LALsuite yet).
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Figure 6.6: Fig. shows error in phase (top panel) and fractional error in amplitude
(bottom panel) between 163 training set waveforms used to construct the reduced
basis and waveforms generated using the surrogate model for (2, 2) mode.

TEOBResumS

TEOBResumS is an analytical waveform model with tides and spin and is described

by five parameters, i.e., in addition to three parameters which describe TEOBResum,

two more spin parameters, χA,B which are dimensionless spin of the stars. Parame-

ters which defines this models are:

θ = {q, Λ̃A
2 , Λ̃

B
2 , χA, χB}. (6.23)

Thus, it is a five-dimensional problem, and it computationally too expensive to solve

with the direct reduced-order modeling techniques, as we discussed.

74



CHAPTER 6. IMPROVING THE WAVEFORM MODELS 75

0.5 0.6 0.7 0.8 0.9 1.0
q

1000

2000

3000

4000

5000

Λ
A 2

0.5 0.6 0.7 0.8 0.9 1.0
q

1000

2000

3000

4000

5000

Λ
A 2

0.015

0.030

0.045

0.060

0.075

0.090

m
a
x
t|Φ

su
r
−

Φ
E

O
B
|

0.0015

0.0030

0.0045

0.0060

0.0075

0.0090

0.0105

0.0120

0.0135

m
a
x
t|A

su
r/
A

E
O

B
−

1|

Figure 6.7: Fig. shows error in phase (top panel) and fractional error in amplitude
(bottom panel) between 103 random generated multipolar waveforms and wave-
forms generated using the surrogate model.

To get required accuracy one requires, 16 nodes in each direction/parameter, thus

165 waveforms to construct a training set which is not feasible both in handling and

preconditioning such large data set. Therefore, here, we suggest another method

to make a surrogate model for TEOBResumS. We can decompose the phase of GW

into the contribution from point-baseline, spin, and tidal contribution as done for

NRTidal models. Using the phase expression given, in Eq. (6.6) :

φ(θ) = φpm(q, Ŝ, ...) + φtides(q,ΛA,ΛB) + φss(â
2
Q, ...) (6.24)

where φpm(q, Ŝ, ...) is the contribution to the phase due to the point-baseline with

spin. φtides(q,ΛA,ΛB) phase comes from the difference of non-spinning tidal BNS

waveform and non-spinning BBH waveform. φss(â
2
Q, ...) phase corresponds to self

spin interactions. Each part needs to carefully calculated for the same range of pa-

rameters. Once the training set for each part is generated, one can employ the same

steps to generate the surrogate model for each part, as we have already discussed.

Carefully adding the phases together would result in a compact and fast-to-evaluate

model. This work is in progress [Dudi7].
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Numerical simulations

Numerical relativity simulations are inevitable to probe the last few orbits of BNS

mergers and the post-mergers dynamics. Merger properties like ejecta, emission

of GWs, mass transfer, the end state of the remnant, etc. can be studied through

numerical simulations with full general relativistic hydrodynamics (GRHD). The NR

framework comprises of solving the full set of Einstein’s equations coupled to GRHD

using numerical methods [138], [Collab3].

In this chapter, we study the numerical simulations of BNS coalescence. The

SGRID code has been used to generate constraint solved and consistent initial data

for the simulations. Our collaborations (Tichy et al. [Dudi5]) upgraded the SGRID

code recently. We call the improved version new SGRID code throughout this thesis.

In Sec. 7.2, we discuss a few tests to check the performance of the new version of the

code as compared to the old code. We find that in the parameter space where both

codes are valid, their performance is comparable. Nevertheless, the new code with

modifications can reach more extreme regions of the BNS parameter space, e.g., it is

capable of producing initial data for stars with very high spin close to break-up, high

compactness and high mass-ratio binary systems [Dudi5]. In section 7.3, we discuss

the evolution of the initial data in the context of highly spinning BNS [Dudi6].

7.1 Numerical relativity
We discuss some of the basics of NR, however, for a detailed description of un-

derlying principles of NR, we refer the reader to Refs. [139–142]. Throughout this

work, we have used SGRID code (both versions) to produce the initial data and the

BAM code for the dynamic evolution of the initial data, but no changes in the codes

have been made as a part of the thesis.

The Einstein equations are given in Eq. (2.1) in a fully covariant way. In order

to solve Eq. (2.1) for very generic scenarios, e.g., BNS mergers, one has to write

those equations in a form suitable for obtaining numerical solutions. One of the

approaches to obtain that is 3+1 decomposition, which allows us to slice the four-
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dimensional spacetime into three-dimensional spacelike surfaces (hypersurfaces) along

a timelike curve. For a given n- dimension ManifoldM, we can foliateM by (n-1)

dimensional hypersurfaces Σ, if there exist a scalar field t on M, whose gradient

never vanishes such that all level surfaces are hypersurfaces. The parameter t can be

understood as coordinate time on the hypersurface Σt = Σ(t). The timelike, future

directed unit vector n which is normal to the slice Σt is given by:

nµ = −α∇µt (7.1)

where α is called lapse function. The normalization condition of timelike vector

leads to nµ = −1/gtt. The induced 3 metric on Σt is given by:

γµν = gµν + nµnν (7.2)

Another quantity of interest is the shift vector βµ, defined as the difference between

the normal vector nµ and ∂t at each point (xµ) on the hypersurface. The extrinsic

curvature Kµν characterizes the bending of Σ inM:

Kµν = −P σ
µ∇σnν (7.3)

where P ν
µ = δnµu + nµn

ν is the spatial projection operator. For the evolution of lapse

and shift, we employ the 1+log slicing condition along with the gamma driver shift

condition, see Ref. [143] for details. The slicing conditions are indispensable for

a stable numerical setup, and with an evolution system, they provide a well-posed

partial differential equation (PDE) problem. The Einstein Eq. (2.1) are projected

onto Σt and perpendicular to Σt, which splits the equations into 3+1 form and gives

a system of evolution and constraint equations. The Hamiltonian and momentum

constraint equations are

R +K2 −KαβK
αβ = 16πE, (7.4)

DjK
ij −DiK = 8πSi, (7.5)

where S = SµSµ is the spatial part of Tµν , E denotes the energy density measured by

the Eulerian observer with the four velocity nν . R is the three dimensional Riemann

tensor and Dµ is the three dimensional covariant derivative after projection of stan-

dard covariant derivative onto the space orthogonal to nα. The constraint equations

are required to be solved at all time slices and, thus, also for constructing initial data.

The evolution equation of the induced metric is given by:

∂tγij = −2αKij +Diβj +Djβi, (7.6)
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and the evolution equation of the extrinsic curvature:

∂tKij = −DiDjα + βkδkKij +Kik∂jβ
k +Kkj∂iβ

k

+ α(3Rij +KKij − 2KikK
k
j ) + 4πα(γij(S − E)− 2Sij). (7.7)

The equations (7.4, 7.5, 7.6, 7.7) are called ADM equations, named after Arnowitt,

Deser and Misner [144]. Since the ADM equations are only weakly hyperbolic, they

are not suitable for long stable numerical simulation. The formulation we used in

this thesis is derived by YORK [145] as it is more stable and thus suitable for long

numerical simulations. BSSN or BSSNOK [146–148] is the improved reformulation

of the ADM equation which provides the necessary well-posedness of the evolution

equation. In BAM code, we have BSSN implemented as well as Z4c [149, 150] which

is a more recent evolution system. Advantages of Z4c scheme are constraint damping

property and no zero speed charateristics. The code employs also constraint preserv-

ing boundary condition. In this thesis, we have used the Z4c evolution scheme. We

refer the reader to [142] for thorough details about the evolution schemes and the

equations.

EOS ρcrust/10−4 Γ1 Γ2 Γ3 Mmax M b
max Cmax cmaxS

SLy 2.36953 3.005 2.988 2.851 2.06 2.46 0.31 1.0
ALF2 3.15606 4.070 2.411 1.890 1.99 2.32 0.26 0.65
H4 1.43830 2.909 2.246 2.144 2.03 2.33 0.26 0.72
Γ2κ124 Γ = 2 κ =123.6489 1.82 2.00 0.21 0.62

Table 7.1: Table shows the properties of the EOS employed in this work. The column
refers to name of the EOS, the maximum density in the crust, the three polytropic
exponents for the individual pieces, and the maximum supported gravitational mass
Mmax, baryonic mass M b

max, compactness of the isolated nonrotating star Cmax, and
maximum adiabatic speed of sound within the maximum stable neutron star config-
uration respectively. This table is adopted from Ref. [142].

The evolution formulation like BSSN and Z4c requires initial data for the dynam-

ical evolution. We use SGRID code (Section 7.2) to generate constraint solved initial

data which employs conformal thin sandwich equations [151–153] along with the

constant rotational velocity (CRV) approach [154, 155] to solve the constraint equa-

tions. For the evolution equation of the matter variables, we use a 3+1 Eulerian

formulation of GRHD [156, 157] along with “Valencia formulation” [158]. We do

not directly evolve the primitive variables but convert them first into conservative

variables and then evolve them. We close the evolution system finally by choosing

an EOS of the form p = P (ρ, ε) for the stars. In this thesis, we employ polytropic EOS

P = κρΓ and piecewise polytropic EOS P = κiρ
Γi. Several zero-temperature EOS

like ALF2, SLy, H4, MS1b etc. can be fit with piecewise polytropes [159]. The EOSs

we have used in this Chapter, are given in the Tab. (7.1). We define the compactness
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by Ci := Mi/Ri, where Ri is the radius of ith star (in Schwarzschild coordinates)

and Mi is its gravitational mass. BAM employs the method of lines approach to

solve the evolution equation along with matter equation. The spatial dimensions are

discretized using finite differencing method which provide ODE’s at each grid point.

For the time integration fourth order Runge Kutta method is employed and Courant-

Friedrichs-Lewy condition of 0.25 is used. For the computation of numerical flux

with an approximate Riemann solver, the code employs the Local Lax-Friedrich flux.

We employ adaptive mesh refinement techniques in BAM for properly resolving near

field region and a far-field region.

7.2 Initial data
Initial data are a prerequisite for any evolution code like BAM. There are many

BNS initial data generating codes developed by the numerical community over the

past years, e.g., LORENE [160], BAM’s multigrid solver [161], COCAL code [162],

and SpEC’s spectral solver SPELLS [102, 163], and spectral code SGRID [99, 164,

165]. These codes have been employed to construct the initial data for various re-

gions of the parameter space. However, there are still scenarios that have not been

studied, e.g., highly spinning systems close to break-up or BNS systems with high

compactness or very high mass-ratio1. These scenarios will be of importance as,

with the advance of GW detectors, events with such extreme properties are likely

to be observed. The new SGRID code is capable of generating initial data for such

scenarios. This code is a pseudospectral code, i.e., it uses spectral methods to com-

pute spatial derivatives, described in Refs. [99, 154]. It solves the coupled elliptic

constraint equations along with matter equations to compute quasi-equilibrium ini-

tial data for the BNS system. The code employs several domains to cover the stars

and space around the stars, such that domain boundaries coincide with the star

surface and each domain described by their coordinates. This is crucial as at the

surface, where the specific enthalpy (h) becomes h = 1, the pressure P , internal

energy density ε, and mass density ρ0 becomes non-differentiable though the matter

inside is smooth. In the old SGRID, this problem was handled using Ansorg’s coor-

dinate (A, B, φ), described in Ref. [99] and depicted in Fig. 1 of Ref. [99]. Only 6

computational domains were needed to cover all of the space. The coordinate trans-

formation contains freely specifiable functions σ ± (B, φ) that can be chosen such

that the domain boundaries adapt the star surface. Unfortunately, the coordinate

transformation from Ansorg’s coordinate (A, B, φ) to Cartesian coordinates (x, y, z)

is not straightforward, which makes it difficult to adjust σ ± (B, φ) functions such

that the domain boundaries conincide with the star’s surfaces. Moreover, coordinate

singularity arises while solving the elliptic equations which give rise to numerical

1Here by mass-ratio, we mean Q = MA/MB > 1
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inaccuracies.
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Figure 7.1: Binding energy as function of the reduced orbital angular momentum
for binary systems with MA = MB = 1.375 and MA = 1.445,MB = 1.156, χA,B = 0.0
and χA,B = 0.05 and SLy EOS.

Therefore, to mitigate these issues Tichy et al. [Dudi5] have upgraded the old
SGRID code to the new SGRID code. In the new SGRID, we use surface fitted cubed

sphere coordinates (λ,A,B) which have no singularities. Here, we use several do-

mains to cover the star and its surrounding, e.g., the star is covered by cube in the

center, which is surrounded by cubed sphere wedges as shown in Fig. C.1a in Ap-

pendix C. The surroundings are covered by multiple domains, which together cover

a large cube. Additionally, the conformal factor ψ has been linearized, and a rescaled

density ρ has been employed in order to guarantee the uniqueness of the solution.

Moreover, the velocity potential φ equation has been modified on the star surface

such that the kinks which developed in the first derivative of φ now vanishes. At the

star center the velocity potential φ equation remains unchanged and by imposing the

boundary condition on the star surface, the changes in φ are small. We list the main

equations needs to be solved to generate the initial data in Appendix C, however

details about the modifications in the new SGRID code are beyond the scope of this

thesis and thus we refer to the Ref. [Dudi5].

Numerical results

As the first check of the new SGRID code, we perform following tests and compare

the results with the old SGRID code.
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Figure 7.2: JADM spacetime’s ADM angular momentum and and MADM ADM mass
as a function of the angular orbital velocity (MΩ). The employed binary systems
have masses MA = MB = 1.375 and MA = 1.445,MB = 1.156, and spins χA,B = 0.0
and χA,B = 0.05, and SLy EOS. The label new denotes initial data constructed using
new SGRID code and label old denotes same configuration constructed using old
SGRID code.

We compute initial data sequences for four different configuration of binary pa-

rameters with the old and the new version of the code. The four set of configurations

have a piecewise-polytropic fit of SLy EOS with gravitational masses MA = MB =

1.375M�, i.e., mass ratio Q = 1 and MA = 1.445M�, MB = 1.156M�, i.e., mass ratio

Q = 1.25 and dimesionless spins χA,B = 0 and χA,B = 0.05. The initial data are

computed at six different initial separation b = (18, 20, 22, 24, 26, 28)2.
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Figure 7.3: Comparing the waveforms computed for the configuration discussed
in text, where the initial data is computed using old (orange curve) and new (blue
curve) SGRID code. BAM code is used to evolve the initial data.

2b is the initial separation between the two stars in SGRID’s coordinate system, see e.g. Eq. 2.34b
of Ref. [99]
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In Fig. 7.1, we compare binding energy Eb versus the reduced orbital angular

momentum ` for all the configurations mentioned. The binding energy Eb is given

by:

Eb =
1

ν
(
MADM

M
− 1) , (7.8)

and the reduced orbital angular momentum:

` =
L

νM2
=
JADM − SA − SB

νM2
. (7.9)

where ν = MAMB/M
2 is the symmetric mass ratio and M is the total mass. SA,B

are individual spin magnitudes. In Fig. 7.1, the solid lines represents the new SGRID

data while the dashed curve represents the old SGRID data. Fig. 7.2 shows the

ADM angular momentum (JADM) top panel and ADM mass (MADM) bottom panel
as a function of the angular orbital velocity (MΩ) for both versions of SGRID. We

found that the results from the two versions of SGRID are in good agreement with

each other, and the differences are within numerical accuracy. As a second test, we

compute initial data, again using both old and new SGRID code, for a polytropic EOS

i.e, κ = 123.6489 and n = 1, and equal mass binary with baryonic mass M b
A = M b

B =

1.625 and two stars placed at a distance of 68.8 km. We evolve the two initial data

with BAM code with 6 levels3 of refinement and use 96 points to cover the stars. The

GWs are extracted at a distance of 900M�. Hamiltonian and momentum constraints

for the evolution are computed in level l = 1 i.e, at the second outermost Cartesian

box of the numerical domain. We show GWs in Fig. 7.3 and the Hamiltonian and

Momentum constraints in Fig. 7.4 for both versions of SGRID.
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Figure 7.4: Absolute value of Hamiltonian constraint (top panel) and the baryonic
mass conservation (bottom panel) is shown for the same setup shown in Fig. 7.3 for
both versions of SGRID.

3levels are described in Sec. 7.3
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Figure 7.5: The dimensionless spin computed according to Eq. 7.10 as a function of
spin computed in new SGRID for different EOSs (top panel). The fraction residuals
are shown in the bottom panel. The black dash curve represents χsgrid = χfit scenario.

One can construct initial data with arbitary spin [99, 164, 165] using SGRID

code. However, the spinning motion is defined by the rotational part of the velocity

in terms of the angular velocity of the fluid ωz in CRV approach. And, one can only

specify the ωz, masses and EOS as the input in SGRID code and not the “spin” of

a star directly4. Though, new SGRID outputs a spin estimate χSGRID at the end.

Therefore we need to find an ansatz for spin in terms of SGRID’s input parameter,

in order to reduce the computational cost of finding particular configurations of

initial data. One such phenomenological fit is given in Appendix C.2 of Ref. [99].

However, we found that it might give large errors at high spin. Therefore, building

upon that, we fit the following data generated for single stars to output χfit. We use

4 EOS, namely SLy, ALF2, H4 and Γ2 (given in the Tab. 7.1) with baryonic masses

Mb/M� ∈ [1.1, 1.7] in steps of 0.1 and compactnesses in the range of C ∈ [0.09, 0.20].

We find the following phenomenological fit for the dimensionless spin magnitude χ

of a single NS via numerical experiments:

χfit = a1(1 +m1Mb)(1 + c1C + c2C2 + c3C3 + c4C4)(1 + d1ω
z)ωz, (7.10)

where the coefficients a1 = 59.329, m1 = 1.9267, c1 = −17.1537, c2 = 122.8986,

c3 = −401.3542, c4 = 483.0869, and d1 = 10.2497 are computed by fitting the data,

4Methods to estimate the spin magnitude of a single star in a binary has been proposed in Sec.
II.C of Ref. [166]
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shown in Fig. 7.5. Specifically, we employ for all combinations of the NS mass

and EOS, ten different values of ωz ∈ [0.000, 0.02] in steps of ∆ωz = 0.002, for all

Mb ∈ [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7]. The fractional residuals for each configuration is

shown in the bottom panel of the Fig. 7.5. We found the new fit gives maximum

10% error for some extreme cases otherwise the error in the estimate is below 7% .

7.3 Spinning BNS mergers
There has been a number of observations of fast spinning NSs such as

PSRJ1748− 2446ad [167], which is the fastest spinning NS with a spin period of

1.4 ms, i.e. frequency of 716 Hz5, PSRJ1807− 2500B [168], which is the fastest

spinning NS in a binary with a frequency of 239 Hz, and PSRJ1946 + 2052 [169],

which is the fastest spinning NS in a BNS system with frequency 59 Hz. Moreover,

it has been shown in recent studies [25, 124, 170] that even if small spins are ne-

glected, this leads to biases in the measurement of the source properties. These two

facts stress that it is crucial to model the spin effects accurately. In this regard, we

report our numerical simulations of spinning BNS upto χ = 0.29. These are inter-

mediate results, and other numerical simulations with high resolution and different

spin configurations are undergoing.

Initial configurations: We employ the new SGRID code to construct initial data

with the fixed initial separation of 73.5 km between two stars for all setups. We

employ Eq. (7.10) to obtain an estimate of the four-velocity corresponding to a given

dimensionless spin χ as given in fifth and sixth column of Tab. 7.2.

Evolutions: We use the BAM code to evolve the initial data [171–173]. We

use the 3+1 decomposition of the Einstein equations using the Z4c scheme [149,

150]. For the evolutions of lapse and shift, 1+log and gamma-driver conditions are

employed [159, 174, 175]. Further details are described in Sec. 7.1. We employ a

hierarchy of cell-centered nested Cartesian grids to discretize the numerical domain.

We have L levels of refinement, labeled as l = 0, ..., L− 1, in the hierarchy. There is

constant grid spacing hl in each level of refinement with n (or nmv) points in each

direction. Each inner level is twice refined than the outer one, i.e., hl = h0/2
l. The

grids are nested such that any grid at level l, (l > 0, as l = 0 is the outermost level)

is covered by the grids at level l − 1. We also have some dynamically moving levels

l > lmv by employing the technique of "moving boxes". For this work we set lmv = 2

and use on total seven refinement levels for all the configurations listed in Tab. 7.2.

The grid spacing in the coarsest level is h0 = 10.8M� and the grid spacing in the

finest level is h6 = 0.168M� are for all the setups with EOS ALF2; h0 = 12M� and

h6 = 0.188M� are for all setups with EOS H4; and h0 = 10M� and h6 = 0.156M� are

5This corresponds to a dimesionless spin χ ∈ [0.3, 0.6] and the large range is due to uncertainity
in the measurement of EOS and mass.
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for all setups with EOS SLy. We employ n = 192 points in the non-moving boxes and

nmv = 96 points in the moving boxes. We perform eccentricity reduction procedure

for all the configurations to reduce residual oscillations. The procedure has been

described in Refs. [99, 176] and shown that eccentricity reduced initial data delivers

better quality numerical waveforms. The number of iterations performed to reduce

the eccentricity below < 10−3 is listed in the last column of Tab. 7.2. We consider

BNS configurations for equal mass system, i.e., Q = 1, (MA = MB), and vary EOS

and spins. Recall that the dimensionless spin is given by (χA,B = Sz/M
2
A,B)6. We use

three EOSs, namely, SLy, ALF2, and H4. Recall that SLy and ALF2 are soft EOSs, and

both are within the constraint imposed by GW170817. However, H4 is a stiff EOS

and is on the edge of posteriors obtained for GW170817 [Fig. 2.2] and ruled out by

source property article Ref. [Collab2]. Though, we believe that using H4 EOS will

help in modeling the spin effects better. All the BNS configurations employed are

listed in Tab. 7.2. For each EOS, we have a (00) case meaning none of the stars are

spinning. We have two spinning cases with SLy EOS, (i) SLy
(↑↑)
10

7 has both stars with

χA = 0.1545 spin aligned with the orbital angular momentum. (ii) SLy
(↑↑)
15 has both

stars with aligned spin χA,B = 0.2379. For ALF2 EOS, (i) ALF2
(↑↑)
10 is an aligned spin

setup with χA,B = 0.187, and (ii) ALF2
(↑↑)
15 is one of the highest spinning numerical

simulations to date, has both stars spinning with aligned spin χA,B = 0.2903. For H4

EOS, H4
(↑↑)
10 setup has aligned spins of both stars with χA,B = 0.20868.

7.3.1 Analysis

Our analysis tools were discussed in Refs. [177, 178] to which we refer the reader

for details. This includes the computation of the ejecta properties, merger remnant

characterizations, and the extraction of GWs.

Our simulations span Norb ∼ 14−17 orbits until the merger as the initial distance

between the stars is 73.5 km. One finds that the number of orbits increases for cases

with spin aligned to the orbital angular momentum due to the “orbital hang-up”

effect [99, 100, 166, 179]. We find that this effect is comparable to the variation

in EOS, i.e., simulations with stiffer EOS take fewer orbits to merge starting at a

fixed initial distance between the stars, e.g., SLy(00) takes approximately 16 orbits to

merge while H4(00) takes approximately 14 orbits.

6for aligned spin
7Naming convention follows: name of the EOS with superscript shows arrows aligned or anti

aligned to the angular momentum and subscript shows the ωz quantity as given in seventh column
of Tab. 7.2.

8H4
(↑↑)
15 setup is in progress and has a very high spin χA,B = 0.34 and thus, it is challenging to

simulate
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Name EOS MA,B[M�] SA,B χA χB ωz Λ̃ κTeff iteration

SLy(00) SLy 1.3500 0 0.0 0.0 0.0 392.08 73.51 2
ALF2(00) ALF2 1.3557 0 0.0 0.0 0.0 715.92 134.23 2
H4(00) H4 1.3717 0 0.0 0.0 0 1013.7 198.06 1
SLy

(↑↑)
10 SLy 1.3500 0.284, 0.283 0.1545 0.1545 0.010 392.08 73.51 2

ALF2
(↑↑)
10 ALF2 1.3557 0.346 0.1869 0.1869 0.010 715.92 134.23 1

H4
(↑↑)
10 H4 1.3717 0.395 0.2087 0.2087 0.010 1013.7 198.06 1

SLy
(↑↑)
15 SLy 1.3500 0.437 0.2379 0.2379 0.015 392.08 73.51 2

ALF2
(↑↑)
15 ALF2 1.3557 0.537 0.2903 0.2903 0.015 715.92 134.23 2

Table 7.2: BNS configurations for equal mass systems (MA = MB) with baryonic
mass (M b = 1.494607). The first column refers to the name of the configuration.
EOS in the second column, the gravitational mass of star A (MA) in the third column,
the stars’ spin (SA,B) in the fourth column, the dimensionless spins (χA,B) in the
fifth column, rotational part of the fluid velocity in terms of the angular velocity
(ωz) in the sixth column, tidal deformability (Λ̃) in the seventh and tidal coupling
constant (κTeff) in the eighth column and number of iterations performed for reducing
eccentricity in the ninth column are given.

At the later stage of the evolution, a fraction of matter ejected during merger.

The ejecta is shown for irrotational cases in left panel and for spinning cases in right

panel in Fig. 7.16 at the merger. After the merger, the remnants are HMNS9 [Sec.

2.2] for all the BNS simulations, listed in Tab. 7.2, which are supported for a longer

time by differential rotation for spinning configurations.

Energetics

We investigate the BNS dynamics via the gauge-invariant binding energy (Eb)

and specific angular momentum (`), Eb(`)-curves [180]. The specific binding energy

as given in Eq. (7.8), can be generalized for the dynamical evolution as

Eb =
1

ν

[
MADM(t = 0)− Erad

M
− 1

]
, (7.11)

where Erad denotes the energy emitted by GWs and M is the total gravitational mass

of the system. The specific orbital angular momentum (in dimensionless units) for

the dynamical evolution is

` =
L(t = 0)− Jrad

νM2
=
JADM(t = 0)− SA − SB − Jrad

νM2
, (7.12)

where Jrad is the angular momentum emitted via GWs. JADM and SA,B are the inputs

from the initial data.

9hypermassive neutron stars (HMNS)
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Figure 7.6: Top panel: Binding energy as a function of specific angular momentum
for the configuration with SLy EOS. The markers refer to the moment of merger
for all configurations. The bottom panel shows the spin contribution to the binding
energy for the setups with spin using SLy EOS as well as the 4 PN estimates as dashed
lines.

This equation follows the assumption that the spin magnitude remains approxi-

mately constant during the evolution [102].
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Figure 7.7: Top panel: Binding energy as a function of specific angular momentum
for the configuration with ALF2 EOS. The markers refer to the moment of merger
for all configurations. The bottom panel shows the spin contribution to the binding
energy for the setups with spins as well as the 4 PN estimates as dashed lines.
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Figure 7.8: Top panel: Binding energy as a function of specific angular momentum
for the configuration with H4 EOS. The markers refer to the moment of merger for
all configurations. The bottom panel shows the spin contribution to the binding
energy for the setups with spins as well as the 4 PN estimates as dashed lines.

We investigate the effects of spin on Eb(`) curves and therefore on the dynamics

for different EOS. We analyze Espin = E
(↑↑)
ωz −E(00), [hereafter we drop the subscript

"b"], where E00 is the binding energy of the non-spinning configuration and E
(↑↑)
ωz

is the binding energy of the spinning configuration. Our results are presented in

Figs. (7.6, 7.7 and 7.8), which show the specific binding energy for all the setups

listed in Tab. 7.2. For example, configurations with SLy EOS are shown in Fig.

7.6 (top panel) and the respective contributions due to the spin Espin is shown in

the bottom panel10 Fig. 7.7 shows the Eb(`)-curves (top panel) and Espin (bottom
panel) for the setups with ALF2 EOS. The binding energy E for aligned spin systems

are larger than for non-spinning system, i.e. Espin > 0, which shows the repulsive

nature of spins aligned to the orbital angular momentum. Also, E↑↑15 > E↑↑10 which

further illustrate that the higher spinning systems are more unbound. At the merger,

the ` decreases as spins increase in the configurations, which illustrates the impact

of the “hang up” effect. As the systems with high spins have more orbits to emit

the angular momentum, therefore they have low specific angular momentum at the

merger. Similar behavior of the Eb(`) curves can be noticed for the configurations

with H4 EOS in Fig. 7.8. We plot 4 PN estimates as dashed curves to compare with

our numerical results upto the merger. We notice significant deviations at ` ≤ 3.8

which show that PN estimates are inaccurate for the last few orbits. The 3.5 PN

and 4 PN expressions for binding energy can be found in Ref. [178] (and references

10Note: The plot reads from right to left, i.e., from high specific angular momentum ` to lower, as
the angular momentum gets emitted via GWs, the orbit shrinks.
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therein), and Refs. [181, 182], respectively. Eb(`) curves can be used to study the

individual effects like spin-orbit, spin-spin, self-spin and tidal effects for which we

require to have more setups with (↓↓) anti-aligned spins as well as setups with only

one spinning star (↑ 0) and (↓ 0) [178]. These configurations are under progress.

Ejecta

We characterize matter as unbound if it follows

ut < −1 and v̄r = vixi > 0, (7.13)

where the time component of the fluid 4-velocity ut = −W (α − βivi) with a lower

index, α denotes the lapse, βi denotes the shift vector, W represents the Lorentz

factor and xi = (x, y, z). Eq. (7.13) is based on the assumption that the fluid elements

follow geodesics and the orbit is unbound and has an outward pointing velocity,

cf. [183]. We compute the ejecta mass as the following integral, which is performed

on the region where the material is unbound as given by Eq. (7.13),

Mej =

∫
U

d3x q(D) (7.14)

where q(D) =
√
γD, D denotes fluid’s rest frame baryonic mass, γ denotes the deter-

minant of the 3-metric. The region of integration is given by

U = {xi = (x, y, z) : ut < −1 and v̄r > 0}. (7.15)

The ejected masses for all the configurations are listed in the sixth column of Tab. 7.3.

We notice that the ejection of mass decreases with increasing spins aligned to the or-

bital angular momentum for the systems we considered here [Tab. 7.2]. This is

consistent with the recent findings [184]; however, we do not add neutrino-cooling

effects or magnetic fields. A possible explanation could be that the high spin con-

figurations have more angular momenta at the merger; therefore, the merger would

be less impactful, and possibly this leads to less ejecta. We show the rest-mass den-

sity and unbound rest-mass density (ejecta) in the x − y plane in Fig. 7.16 around

merger time. The left panel shows the irrotational cases for different EOS SLy, ALF2,

and H4, from top to bottom, respectively, and the right panel shows corresponding

spinning configurations. The figure shows the mass ejection that originates from the

tidal tail. We do not find any significant mass ejection due to core collision; such

ejecta is mostly shock driven and happens in a perpendicular direction to the orbital

plane. One possible reason for the less shock driven ejecta is that the system mergers

with considerable angular momentum.
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Name MADM JADM Norb Mω22 Mej[M�] Mωmrg fmrg [Hz] f2 [Hz]

SLy(00) 2.68 8.02 ≈ 16 0.0320 8.8× 10−3 0.157 1886 3384

ALF2(00) 2.69 8.08 ≈ 15 0.0322 2.4× 10−3 0.142 1692 2760

H4(00) 2.72 8.23 ≈ 14 0.0327 1.4× 10−3 0.132 1565 2552

SLy
(↑↑)
10 2.68 8.55 ≈ 16 0.0320 2.2× 10−4 0.169 2030 3328

ALF2
(↑↑)
10 2.69 8.72 ≈ 16 0.0322 1.3× 10−3 0.146 1743 2680

H4
(↑↑)
10 2.73 8.97 ≈ 15 0.0327 1.2× 10−3 0.134 1579 2504

SLy
(↑↑)
15 2.68 8.85 ≈ 17 0.0318 8.7× 10−4 0.170 2035 3272

ALF2
(↑↑)
15 2.69 9.09 ≈ 16 0.0319 4.9× 10−4 0.147 1751 2688

Table 7.3: Properties of the BNS mergers. The table lists: name of the configura-
tion, ADM mass MADM and angular momentum JADM, the number of orbits Norb,
the dimensionless initial GW frequency (Mω22), the mass of the ejecta (Mej), the
dimensionless gravitational merger frequency Mωmrg, merger frequency (fmrg) in Hz
and the postmerger peak frequency (f2) in Hz.
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Figure 7.9: Real part of the (2, 2) mode of the GW strain (rh22) versus retarded time
u/M rescaled by total mass for SLy(00) (blue), SLy

(↑↑)
10 (pink) and SLy

(↑↑)
15 (orange)

configurations.

To investigate the effects of spin on the GWs, we compute GWs signal following

the Ref. [172]. We extract GWs at r = 900M� and present our results for (l = m = 2)

multipole in Figs. (7.9, 7.10 and 7.11) for all the configurations listed in Tab. 7.2.
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Figure 7.10: Real part of the (2, 2) mode of the GW strain (rh22) versus retarded
time u/M rescaled by total mass for ALF2(00) (blue), ALF2

(↑↑)
10 (pink) and ALF2

(↑↑)
15

(orange) configurations.

The figures show the real part of the GW strain for the (2, 2) mode and its

amplitude as a function of retarded time u rescaled by total mass M . We observe

that the number of orbit before merger increase as the spin (aligned to the orbital

angular momentum) given in Tab. 7.3. Particularly, the configuration Sly
(↑↑)
15 with

χA,B = 0.238, has ∼ 6 additional GW cycles and SLy
(↑↑)
10 has three additional cycles as

compared to the irrotational case (SLy(00)). The high spin configuration (ALF2
(↑↑)
15 )

with χA,B = 0.29 also has three additional GW cycle than ALF2
(↑↑)
10 setup which has

spin χA,B = 0.187. As compared to the irrotational case for ALF2 EOS (ALF2(00)),

the spinning system ALF2
(↑↑)
10 has ∼ 2 additional GW cycles. For configurations with

stiff EOS, H4
(↑↑)
10 has ∼ 4 additional GW cycle as compared to the irrotational case

H4(00). We find that the configuration with stiff EOS has less GW cycle before merger

than setups with soft EOSs. We compare the NR waveforms with the EOB waveforms

for (2, 2) mode. We employ TEOBResumS11 waveform model for generating the EOB

waveform. We show comparison for the spinning configurations in Fig. 7.12, where

the blue curve is NR data, pink dashed curve is the EOB data and orange curve is

the phase difference in the NR and EOB. We align both waveforms in early inspiral,

i.e., before u ≤ 1500M for comparison. We found that the phase difference is getting

higher around 2−3 orbits before the merger and it is about 1−2 radian at the merger

We investigate the post-merger spectrum of the GWs using Fourier transforma-

tion. Figs. (7.13, 7.14 and 7.15) show the PSD of all signals with markers for the

merger and peak postmerger frequencies12. We list some of the important quantities

11We use version v1.0 of the TEOBResumS code.
12Here, we only report the f2 which is the dominant frequency in (2,2) mode after the merger
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like merger frequency in Hz (fmrg), and in dimensionless and mass rescaled units

(Mωmrg), and peak postmerger frequency (f2) in Hz in Tab. 7.3.
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Figure 7.11: Real part of the (2, 2) mode of the GW strain (rh22) versus retarded
time u/M rescaled by total mass for H4(00) (blue) and H4

(↑↑)
10 (pink) configurations.
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Figure 7.12: Comparison between real part of (2, 2) mode of the GW strain rh22

with TEOBResumS waveforms for the spinning configurations listed in Tab. 7.2. The
EOB and NR waveforms are aligned during the early inspiral. The phase difference is
shown as orange curve. The difference is larger around 3-4 cycles before the merger.
The phase difference is larger for the stiff EOS H4 setup than for soft EOS setups at
the merger.
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Figure 7.13: Fourier transform of time domain waveforms of SLy(00) (blue), SLy
(↑↑)
10

(pink) and SLy
(↑↑)
15 (orange) configurations. The markers for merger frequency (fmrg)

are triangles and postmerger peak frequency (f2) are stars.

We find that the merger frequency moves to higher value as spin (aligned) in-

creases. The configurations with soft EOS have higher merger frequency as com-

pared to the setups with stiff EOS. The shift in the merger frequency Mωmrg is about

±0.01 where the exact value depends on the EOS and spin [166]. The irrotational

cases have a faster phase evolution, i.e. merger at lower frequency as compared to

the spinning configurations, this happens due to the spin orbit effect [185]. How-

ever, the observation for f2 is opposite, i.e., it moves to lower value with aligned

spins which is in agreement with the findings of Refs. [166, 178]. We find that the

configurations with aligned spin have remnant with a longer lifetime, therefore col-

lapse to a final BH would be delayed in such scenarios. We also find that the stiff

EOS, namely, H4, supports the remnant for an even longer time as compared to con-

figurations with soft EOS. Although, the system with stiff EOS has smaller merger

frequency fmrg.

In summary, we evaluated the performance of the new SGRID code by compar-

ing initial data sequences computed for equal and unequal mass systems with and

without spins using new and old SGRID code. We employed Eb(`) - curves to study

the initial data sequences. We also dynamically evolved the initial data for the same

configuration computed using both SGRID codes and compared their GW, Hamilto-

nian, and momentum constraints. We found that the performance of the new SGRID

code is comparable to the old code. With the new improvement in the SGRID code,

now it is possible to compute initial data for high compactness, high mass-ratios,

and high spins configurations.
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Figure 7.14: Fourier transform of time domain waveforms of ALF2(00) (blue),
ALF2
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10 (pink) and ALF2
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15 (orange) configurations. The markers for merger fre-

quency (fmrg) are triangles and postmerger peak frequency (f2) are stars.
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Figure 7.15: Fourier transform of time domain waveforms of H4(00) (blue) and
H4

(↑↑)
10 (pink) configurations. The markers for merger frequency (fmrg) are triangles

and postmerger peak frequency (f2) are stars.

We also show intermediate results for highly spinning BNS merger simulations.

We analyzed the simulated data using Eb(`)-curves. We report ejecta properties,

GWs and post-merger spectrum. We compare these properties of spinning setups

with irrotational cases to infer the effects of spin on dynamics. These results are
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part of a study where we want to decouple all the spin effects and understand the

effect of spins and EOS on the dynamics. In the near future, we plan to perform

more simulations with one star has aligned and another star has anti-aligned spin

with respect to the orbital angular momentum (↑↓), and both stars have anti-aligned

spins with respect to the orbital angular momentum (↓↓) in order to decouple all the

spin effects like spin-spin interactions, spin-orbit, and self-spin effects. For placing

the error bars, more simulations with different resolutions are required. Therefore,

numerical simulations with very high spinning NSs aligned and anti-aligned to the

orbital angular momentum with different resolutions are undergoing [Dudi6].
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Figure 7.16: Snapshots of bound rest-mass density (log10(ρ)), unbound rest-mass
density (log10(ρu)) and fluid’s velocity (vx, vy) across the orbital plane around the
merger. For configurations: Left panel (from top to bottom): SLy(00), ALF2(00),
H4(00). Right panel (from top to bottom): SLy

(↑↑)
15 , ALF2
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Chapter 8

Conclusion

In this thesis, we investigated gravitational waveform models and incorporated im-

provements to some models. We provided hybrid waveforms for BNS by stitching

an inspiral regime waveform to a NR simulation waveform for the same parameters,

available publicly on the CoRe database. The hybrids are constructed for a range of

parameters; equal and unequal mass systems with spinning and non-spinning cases,

which help in validating the waveform models. The major applications of hybrid

waveforms are in assessing the accuracy of models via performing mismatch calcula-

tions. To further test the waveform models, parameter estimation can be performed

where hybrid waveforms can be injected in place of a real signal in the fiducial data

stream. We presented examples of all these applications in different chapters. With

the use of hybrid waveforms, we also studied systematics among various waveform

models generally employed for parameter estimation purposes. Before the detection

of GW170817, the first BNS merger, we wanted to explore the following two ques-

tions in the presence of a true BNS signal:

(i) What is the impact of neglecting tidal effects in the analysis of the inspiral GW
signal?
(ii) Does the use of inspiral-only waveforms lead to a significant loss of information, or
possibly to biases in the estimation of the source properties?
We injected hybrid waveforms as a full BNS signal in the data stream of LIGO ob-

servatory and estimated parameters for eight injection scenarios, which covers two

different EOS, two different injected SNR, different sampling rate, and two differ-

ent noise PSD. We employed six different waveform models with and without tidal

interactions to estimate the parameters in order to understand the systematic dif-

ferences in models. We found that for a typical observation, i.e., SNR ∼ 25 and a

fairly soft EOS (Λ̃ ∼ 400) even the usage of BBH models does not bias the mea-

surement of mass and spin parameter. Though, as the EOS gets stiffer and SNR

gets higher, there will be significant bias in the measured value. We also found that

TaylorF2Tides is estimating a higher value of tidal parameter than expected and thus
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can be used to place an upper bound on tidal deformability. Later, we also tried to

explain this behavior of TaylorF2Tides using Qω-analysis intuitively. We also found

that NRTidal models, which are used to convert any BBH model into BNS model,

underestimate the tidal deformability at high SNR. These investigations suggested

that there is an immediate need to improve these waveform models as we do not

have sufficient command on waveforms at high SNRs and with upcoming advanced

detectors and 3G detectors we expect to have BNS observations with high SNR and

high mass ratios and high spins possibly. We then worked on the improvement of

these models, namely, TaylorF2 and NRTidal. We tested the improved point-mass

baseline of TaylorF2 from 3.5 PN to quasi 5.5 PN. We performed Qω-analysis to

compare both and found that the phase evolution of TaylorF2 at quasi 5.5 PN is

closer to the state-of-the-art EOB model. We also performed the parameter estima-

tion study, again by injecting hybrid waveforms in the LIGO data stream and recov-

ering using IMRPhenomD_NRTidal, TaylorF2Tides at 3.5 PN baseline and quasi 5.5 PN.

We found that the results obtained with IMRPhenomD_NRTidal and TaylorF2Tides at

quasi 5.5 PN are in agreement with each other and with the injected value, and that

TaylorF2Tides at quasi 5.5 PN is twice as fast as IMRPhenomD_NRTidal while there

were some biases in TaylorF2Tides at 3.5 PN results. Hence we recommend the use

of TaylorF2Tides at quasi 5.5 PN model for searches as well as parameter estimation

purposes. This new model is getting reviewed at the time of writing this thesis. For

improved NRTidalv2 model, we supplied the hybrid waveforms, which are used for

improving the fit and computing the fitting coefficients, validating the model, and

also evaluating its performance by performing mismatch calculations.

We then reviewed surrogate modeling techniques in the context of delivering a

compact, accurate, and fast-to-evaluate waveform model. We applied the method on

multipolar tidal EOB model TEOBResum and showed that the final surrogate model

is 300 times faster than the original model with negligible loss of accuracy. We also

tried to apply the same methods for the TEOBResumS model, which includes tidal and

spin effects. Due to dimensionality issues, we found that the techniques cannot be

directly applied. Nevertheless, we proposed a possible solution to this problem.

Furthermore, we had a preliminary study of high spin BNS systems using NR

simulations. In order to probe the late inspiral, merger, and post-merger dynam-

ics of a BNS merger with high spins. We perform numerical simulations of highly

spinning BNS by employing BAM code to evolve the initial data. Our colleagues

have developed a formalism (new SGRID) to construct BNS initial data, in principle,

with arbitrary masses, spins, and eccentricities. We construct initial data using the

new SGRID code, for which the performance was also checked by evaluating the

results computed with the old and new code. We analyzed the numerical simula-

tions via Eb(`) - curves as they are gauge-invariant quantity. We investigated the

ejecta properties, post-merger properties, and GWs for high spin BNS mergers. We
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presented results of the evolution of highly spinning BNS (up to dimensionless spin

χA,B = 0.29) with full (3+1)D numerical relativity simulations using consistent ini-

tial conditions. These are among the highest spinning numerical evolutions of BNS

to date. These waveforms with high resolution can be used as a testbed to extract the

spin effects in the GW phase evolution and to test other semi-analytical waveform

models.

Future work

We want to propose the next steps to undertake in the near future:

• A detailed waveform systematics study needs to be done in order to understand

the degeneracy among spins, tides, and mass parameters with new models and

injections with different mass ratios and spins.

• Apply the proposed reduced-order modeling techniques in the context of a sur-

rogate model for TEOBResumS, such that it can be employed for the parameter

estimation purposes.

• Perform more numerical simulations with high resolutions and different spin

values in order to understand and separate the spin-spin effects, spin-tide ef-

fects in order to provide a testbed for modeling these effects.

With the motivation to contribute to future BNS detections, we propose a full BNS

waveform model, including inspiral, merger, and post-merger regime. The idea is to

generate enough hybrid waveforms and make a surrogate model using hybrid wave-

forms as the training set. Having such a model will be essential for the data analysis

of the third generation (and advance LIGO) detectors as we expect to observe all the

regimes of the waveforms in the future.
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Appendix A

Quasi-5.5PN-accurate orbital phasing

Building upon Damour et al. [131], Ref. [127] illustrated how to formally obtain a

high-order PN approximant by PN-expanding the EOB energy EEOB and energy flux

FEOB along circular orbits. Stopping the expansion at 4.5 PN, allowed one to obtain

a consistent 4.5 PN approximant with a few parameters needed to formally take into

account the yet uncalculated ν-dependent terms in the waveform amplitudes at 4

PN. Here we follow precisely that approach, but we extend it to 5.5 PN accuracy.

To get the waveform phase in the frequency domain along circular orbits, we start

with the gauge-invariant1 description of the adiabatic phasing and is given by the

function

Qω ≡ EEOB(x)

(
dFEOB

dx

)−1

, (A.1)

where x ≡ (MΩ)2/3, with Ω the orbital frequency along circular orbits. The high-

order phasing approximant is obtained by Taylor-expanding the above equation and

then by solving the equation

d2Ψ5.5PN

d2f̂
=
Qω(f̂)

f̂ 2
, (A.2)

where f̂ ≡ Mf ≡ Ω/2π. The double integration of Eq. (A.2) delivers Ψ5.5PN(f̂)

modulo an affine part of the form p + qf̂ , where (p, q) are two arbitrary integration

constants that are fixed to be consistent with the usual conventions adopted in the

literature for the 3.5 PN approximant [186].

We consider here only nonspinning binaries (the reader is referred to Appendix

B of the Ref. [187] for the discussion of the spin case). The corresponding, circular-

ized, EOB Hamiltonian reads HEOB
0 = M

√
1 + 2ν(Ĥeff − 1) where Ĥeff ≡ Heff/µ =√

A(u)(1 + u2j2), where j is the orbital angular momentum along circular orbits,

u ≡ M/R the inverse radial separation and A(u) is the EOB interaction potential

kept with a 5 PN term ν(ac6 + aln
6 lnu)u6 with ac6 an analytically unknown coefficient.

1In the sense that it is independent of time and phase arbitrary shifts.
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The orbital angular momentum along circular orbits j is obtained solving ∂uĤeff = 0.

By PN-expanding one of Hamilton’s equations, MΩ = ∂ϕH
EOB, one obtains x(u) as a

5 PN truncated series in u, that, once inverted, allows to obtain the (formal) 5.5 PN

accurate energy flux as function of x by PN-expanding its general EOB expression

F =
∑∞

`=2

∑m
`=−m F

Newt
`m F̂`m, where FNewt

`m is the Newtonian (leading-order) contri-

bution and F̂`m is the relativistic correction. Each multipolar contribution within the

EOB formalism comes written in factorized and resummed form as

F̂`m =
(
Ŝ

(ε)
eff

)2

|T`m|2(ρ`m)2`. (A.3)

Here, Ŝ(ε)
eff is the effective source, that is the effective EOB energy Êeff(x) ≡ Eeff/µ

when ε = 0 (` + m=even) or the Newton-normalized orbital angular momentum

when ε = 1 (` + m=odd). The squared modulus of the tail factor T`m resumes

an infinite number of PN hereditary logarithms [188, 189]. We use the relativistic

residual amplitude (ρ`m) information reported in Eqs (7)-(18) of Ref. [127], where

the unknown high PN coefficients (polynomials in ν) have been parameterized by

some coefficients c`m. We include for consistency all the coefficients to go up to the

` = 7, m = even multipoles.

From Eq. (A.1) one obtains the following PN-expanded expression

Q̂PN
ω = 1 + b2x+ b3x

3/2 + b4x
2 + b5x

5/2

+ b6x
3 + b7x

7/2 + b8x
4 + b9x

9/2 + b10x
5 + b11x

11/2. (A.4)

The coefficients of this expansion, that are reported in full in Appendix C of the

Ref. [187], have the structure bi ≡ b0
i + bi(ν), where b0

i is the ν-independent (test-

particle) part, fully known analytically, while the bi(ν) encode the ν-dependence that

is completely known at 3PN, while only partially known at 4 PN because the corre-

sponding waveform calculation is not completed yet. The ν-dependence beyond 3PN

is formally incorporated by extending the analytically known ρ`m function with ad-

ditional ν-dependent coefficients and then reflects in the coefficients bi(ν). Among

these coefficients, those that depend on the parameters that we have introduced in

the computation are

b8 = b8(c3PN
21 , c4PN

22 ) (A.5)

b10 = b10(c3PN
21 , c4PN

22 , c5PN
22 ) (A.6)

b11 = b11(c3PN
21 , c4PN

22 ) . (A.7)

In the following analysis, we fix to zero ac6 as well as all the yet uncalculated, ν-

dependent, PN waveform coefficients entering Eq. (A.4) above. This entitles us to

use the definition of quasi-5.5 PN approximant (this PN-order choice is discussed
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in Appendix A and resumed in Fig. 7 of Ref. [187]). Note however that in the

NR-informed EOB model, that we shall use to check the reliability of this quasi-

5.5 PN approximant, all the waveform coefficients are equally fixed to be zero; on

the contrary, ac6 is informed by NR simulations and, as such, effectively takes into

account, to some extent, all this missing analytical information. The importance of

the ν-dependent waveform coefficients is, a priori, expected to be low, as suggested

in Tab. II of [190]. This is in accord with the fact that an eventual tuning of some

free parameters is better when they tend to be small.
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Algorithms for Surrogate model

Greedy algorithm to construct a reduced basis

1. Input Y (·; θ), θ, ε
2. Set i = 0 and define σ0 = 1
3. Seed choice (arbitrary): µ1 ∈ T ,e1 = Y (·, µ1)
4. RB = e1

5. while σ0 ≥ ε
6. i = i+1;
7. σi = maxθ∈T ||Y (·; θ)− PiY (·; θ)||2
8. µi+1 = argmaxθ∈T ||Y (·; θ)− PiY (·; θ)||2
9. ei+1 = Y (·;µi+1)− PiY (·;µi+1)
10. ei+1 = ei+1/||ei+1||
11. RB = RB Uei+1

12. end while
13. Set n=i

14. Output RB = {ei}ni=1 and greedy points {µi}ni=1

Table B.1: The table is taken from Ref. [83].

Greedy algorithm to construct a reduced basis:
We do not work with the real and imaginary part of the GW strain h, rather with

the amplitude and phase, as already explained in the text, they vary less with pa-

rameters (θ) and time (t). Therefore, we build a reduced basis as well as empirical

interpolant separately for amplitude and phase and then combine both using Eq.

(6.22). Assuming all the training set amplitudes/phases are functions in the given

parameter space. Then, we would like to construct a basis such that any function in

the parameter space is a linear combination of this reduced basis. We specify a toler-

ance (ε) such that upto this tolerance, only the projection P of any function onto the

reduced basis will be different from the original function. The algorithm is sketched

in Tab. B.1, which terminates after n iterations when the projection error is smaller

than the specified tolerance. We use || · ||2 notation for L2 norm. We employ iterated
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and modified Gram Schmidt process to construct an orthonormal basis vector. We

choose the first function as our first reduced basis (any function in the training set

can be chosen). Then, we project all functions on this basis and compute the pro-

jection error (line 7 in Tab. B.1). The function with the maximum projection error

is our next basis. We then iterate and calculate the projection error using two basis

vector. We keep on iterating until the projection error is smaller than the specified

tolerance. More details about the greedy algorithm are discussed in Ref. [136]. The

algorithm outputs n reduced basis {ei}ni=1 and greedy points {µi}ni=1.

Greedy algorithm for constructing Empirical interpolant:
Once we have reduced the data in parameters (θ), then we reduce it in time (t), by

building empirical interpolant In[·]. As already described in the text, the interpolant

is uniquely defined for the particular reduced basis and will reproduce the function

on all-time samples when its value is given on the specified empirical nodes τj. The

empirical node τ1 is the time point at which the absolute value of the first basis is

the highest. The key idea is that the interpolant is a linear combination of the first

n basis, then for the first basis, the interpolant is given by Eq. (6.14), and then we

demand that at the empirical node τ the interpolant reproduce the data. Then, using

Eq. (6.15), we obtain the coefficient and interpolant for generating the first basis.

We try to interpolate the second basis with this interpolant and the time sample with

the maximum error, will be our next empirical node τ2, Eq. (6.16). Similarly, as

described in the text, we keep on iterating until all the reduced basis is exhausted.

The algorithm is given in Tab. B.2 and discussed in detailed in Ref. [136]. The

algorithm outputs empirical nodes {τi}ni=1 and interpolant In.

Algorithm for constructing Empirical Interpolant

1. Input {ei}ni=1, t := {ti}Li

2. i = argmax|e1(t)| (it returns the largest value over all time samples)
3. Set τ1 = ti
4. for j = 2→ n do
5. Build Ij−1[ej](t) from
6. ~r = Ij−1[ej](t)− ej(t)
7. i = argmax|~r|
8. τj = ti
9. end for
13. Set n=i

14. Output EI nodes = {Ti}ni=1 and interpolant operator In

Table B.2: The table is taken from Ref. [83].
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Appendix C

SGRID

We assume the matter inside the stars to be perfect fluid and the stress energy tensor

is given by:

T µν = [ρ0(1 + ε) + P ]uµuν + Pgµν . (C.1)

where ρ0 is the mass density, P denotes pressure, uµ is 4-velocity and ε denotes the

internal energy density divided by ρ0. For the polytropic EOS:

P = κρ
1+1/n
0 , (C.2)

where n is the polytropic index and κ is a constant; the pressure, mass density, which

is proportional to baryon number density and the internal energy can be written in

terms of specific enthalpy h.

h = 1 + ε+ P/ρ0. (C.3)

We use several domains to cover the stars and space around the stars, such that

domains boundaries coincide with the star surface. Each domain described by its

own coordinates. This is crucial as at the surface, where (h = 1), the pressure, ε

and ρ0 becomes non-differentiable though the matter inside is smooth. In the old
SGRID, this problem was handled using Ansorg’s coordinate (A,B, φ) described in

Ref. [99] and depicted in Fig. 1 of the Ref. [99]. Only six computational domains

were needed to cover all of the space. The coordinate transformation contains freely

specifiable functions σ ± (B, φ) that can be chosen such that the domain boundaries

adapt the star surface. Tichy et al. [Dudi5] have upgraded the SGRID code such

that it is capable of constructing initial data for BNS with extreme properties. In

the new SGRID, we use surface fitted cubed sphere coordinates (λ,A,B), which has

no singularities anywhere. Here, we use several domains to cover the star and its

surroundings, e.g., the star is covered by cube in the center, which is surrounded

by cubed sphere wedges, as shown in Fig. C.1a. The surroundings are covered by

multiple domains, which together cover a large cube.

Figure C.1b shows how two such larger cubes as in Fig. C.1a can be put next to
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(a) The plot shows some domains and their
coordinate lines in the xy-plane. Plotted
are the domains inside and around neutron
star 1. The star is roughly spherical and
covered by a central cube and six cubed
sphere wedges, four of which are shown be-
cause they intersect the xy-plane. The space
around the star is covered by six more do-
mains to form a larger cube. The plot is
taken from [Dudi5].

(b) The plot shows the domains in and
around both stars augmented by several more
domains. The result is a large sphere that cov-
ers both stars and their surroundings. The plot
is taken from [Dudi5].

each other, and in turn be surrounded by more wedges so as to cover a large sphere.

The conformal thin sandwich approach [99, 164, 165] is employed to construct

quasi-equilibrium constraint solved initial data for which the following assumptions

are required. We write the fluid 4-velocity uµ in terms of the 3-velocity

(3)ũi = hγiνu
ν , (C.4)

which we separate into an irrotational piece Diφ and a rotational piece wi

(3)ũi = Diφ+ wi, (C.5)

where Di is the derivative operator compatible with the 3-metric γij.

Assumptions: The first assuption is the existence of an approximate symmetry vec-

tor ξµ, such that

£ξgµν ≈ 0. (C.6)

For a spinning star, we ssume

γνi £ξ (∇νφ) ≈ 0, (C.7)

as £ξu
µ is non-zero. In order to have the rotational piece of the fluid velocity con-
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stant along the world line of the star center, we assume

γνi £ ∇φ
hu0
wν ≈ 0, (C.8)

and
(3)£ w

hu0
wi ≈ 0 (C.9)

Moreover, we assume maximal slicing

γijK
ij = 0 (C.10)

and conformal flatness

γij = ψ4δij (C.11)

This results in a coupled system of partial differential equations (PDE):

D̄2ψ +
ψ5

32α2
(L̄B)ij(L̄B)ij + 2πψ5ρ = 0, (C.12)

D̄j(L̄B)ij − (L̄B)ijD̄j ln(αψ−6)− 16παψ4ji = 0, (C.13)

D̄2(αψ)− αψ
[

7ψ4

32α2
(L̄B)ij(L̄B)ij + 2πψ4(ρ+ 2S)

]
= 0, (C.14)

Di

[ρ0α

h
(Diφ+ wi)− ρ0αu

0(βi + ξi)
]

= 0, (C.15)

and

h =
√
L2 − (Diφ+ wi)(Diφ+ wi). (C.16)

Here (L̄B)ij = D̄iBj + D̄jBi − 2
3
δijD̄kB

k, D̄i = ∂i. While, in general, the rotational

piece of the fluid velocity wi can be chosen freely, we will use the from

wi = εijkωj(xk − xkC∗) (C.17)

which as demonstrated in [155] results in almost rigidly rotating fluid configurations

with low expansion and shear. The parameter xkC∗ denotes the location of the star

center, and ωj is an arbitrarily chosen vector that determines the star spin. Once the

equations (C.12), (C.13), (C.14), (C.15) and (C.16) are solved we know h (and thus

the matter distribution) and the fluid 3-velocity (3)ũi via Eq. (C.5). The 3-metric is

obtained from Eq. (C.11) and the extrinsic curvature is given by

Kij =
1

2ψ4α
(L̄β)ij. (C.18)

For further details, we refer to Ref. [Dudi5].
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