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Abstract

Rooted Structures in Graphs
Dissertation by Samuel Mohr

Hugo Hadwiger conjectured in 1943 that each graph G with chromatic number χ(G) has a clique minor
on χ(G) vertices. Hadwiger’s Conjecture is known to be true for graphs with χ(G) ≤ 6, with χ(G) = 5
and χ(G) = 6 being merely equivalent to the Four-Colour-Theorem. Even Paul Erdős (1980) stated
that it is “one of the deepest unsolved problems in graph theory”, thus reinforcing the extreme nature
and difficulty of this conjecture.

One promising approach to tackle Hadwiger’s Conjecture is to bound the number of colourings of
considered graphs and, in particular, to consider uniquely optimally colourable graphs. Matthias
Kriesell started considerations on graphs with a Kempe colouring, that is graphs with a proper colouring
such that the subgraph induced by the union of any two colour classes is connected. Evidently, the
optimal colouring of a uniquely colourable graph is a Kempe colouring.

A transversal of a graph’s Kempe colouring is a vertex set containing exactly one vertex from
each colour class. For each transversal T of a Kempe colouring, there is a system of edge-
disjoint paths between all vertices from T . The question arises, whether it is possible to show
the existence of a clique minor of the same size as T such that each bag contains one vertex
from T . We call a minor with the aforementioned property a rooted minor. An affirmative
answer to this question, which was conjectured by Matthias Kriesell (2017), would imply
Hadwiger’s Conjecture for uniquely colourable graphs. Beyond that, there are more reasons
to study this conjecture of Kriesell. On one hand, there are graphs with a Kempe colouring
using far more colours than their chromatic number. On the other hand, many proofs of
partial results on Hadwiger’s Conjecture seem to leave no freedom for prescribing vertices in
the clique minor at the expense of forcing any pair of colour classes to be connected.

The question is known to be true for |T | ≤ 4 by a result of Fabila-Monroy and Wood. In this
thesis, we confirm it for line graphs and for |T | = 5 if T induces a connected subgraph. For
certain graph classes, it emerges that a relaxation of the problem holds. But in general, it
turns out that this relaxation is false. Thus, it is not sufficient to force any two transversal
vertices to be connected by a 2-coloured path in order to obtain a rooted minor.

Based on rooted minors and results built up from connectivity conditions, the question arose
whether it is possible to reduce graphs, in which a certain set of vertices is highly connected,
to some basic structure representing the connectivity. This question is investigated in this
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thesis and answered with two best-possible theorems. The first one elucidates that if a set
of vertices, let us call it X, cannot be separated with less than c vertices (c ≤ 3), then there
exists a c-connected topological minor rooted at X. In case of c = 4, a second result ensures
that it is at least possible to obtain a 4-connected rooted minor, whereas larger connectivities
do not lead to highly connected minors in general.

These theorems are applied in this thesis to achieve results about subgraphs containing the
set X by deriving them from various results regarding spanning subgraphs. For instance, a
theorem of Barnette, stating that a 3-connected planar graph contains a spanning tree of
maximum degree at most 3, can easily translated; i.e. there exists a tree with maximum
degree at most 3 containing X. Since we cannot guarantee 4-connected topological minors
rooted at X, more effort is needed to establish cycles spanning X in planar graphs. To
escape this barrier, the theory of Tutte paths is adapted.

In 1956, William Tutte broke the long-standing open problem whether 4-connected planar graphs are
hamiltonian and, thereby, extended a theorem of Whitney stating that 4-connected triangulations are
hamiltonian. The underlying idea is to prove that planar graphs contain a cycle such that components
outside the cycle have a limited number of attaching points to the cycle. In particular, this number
of shared attachment vertices is bounded by 3, immediately implying Tutte’s result.

By a construction of Moon and Moser it is known that there exist 3-connected planar graphs and
a positive constant c such that the length of a longest cycle (circumference) is c · |V (G)|log3 2 of
such a graph G. Several years later, this formula was confirmed to be a lower bound by Chen and
Yu. We study a slight weakening of the 4-connectedness of planar graphs. A 3-connected
graph is essentially 4-connected if all separators of order 3 only split single vertices from the
remaining graph. If we consider essentially 4-connected planar graphs instead of 3-connected
ones, then the minimum circumference in this graph class is described by a linear function in
the number of vertices, as Jackson and Wormald showed first. In this thesis, we increase the
previously best known coefficient of the linear bound, which was published by Fabrici, Harant,
and Jendroľ. Moreover, the best-possible bound of 2

3(n + 4) for essentially 4-connected
triangulations on n vertices is proved.

Finally, the thesis explores the class of 1-planar graphs and studies their longest cycles.
A graph is 1-planar if it has an embedding into the plane such that each edge is crossed at most
once. This class, in contrast to planar graphs, differs with regard to many aspects. The decision
problem of 1-planarity is N P-complete and there is more than one way to construe maximal 1-planar
graphs. In this thesis, an analogue to Whitney’s theorem is proved; i.e., that 3-connected
maximal 1-planar graphs have a sublinear circumference just as their planar relatives, and
that 4-connected maximal 1-planar graphs are hamiltonian. In the non-maximal case, Tutte’s
theorem cannot be translated directly; we will construct a family of 5-connected 1-planar
graphs in the thesis that is far from being hamiltonian. Whether each 6-connected 1-planar
graph is hamiltonian remains open. Some ideas on how an approach to this question using
an extended Tutte theory could look like is finally touched upon in the outlook.



Zusammenfassung

Gewurzelte Strukturen in Graphen
Dissertation von Samuel Mohr

Der Schweizer Mathematiker Hugo Hadwiger stellte 1943 die Vermutung auf, dass jeder Graph G mit
chromatischer Zahl χ(G) einen vollständigen Minoren auf χ(G) Knoten besitzt. Diese Vermutung ist
für alle Graphen mit χ(G) ≤ 6 wahr, wobei für die Fälle χ(G) = 5 und χ(G) = 6 nur die Äquivalenz
zum Vierfarbensatz bekannt ist. Paul Erdős (1980) nannte es eines der weitreichendsten ungelösten
Probleme der Graphentheorie und bekräftigte die fehlende Greifbarkeit und Schwere dieser Vermutung.

Ein vielversprechender Ansatz zu neuen Erkenntnissen über Hadwigers Vermutung ist eine Beschrän-
kung der Anzahl der Färbungen. Dabei kann insbesondere die Untersuchung eindeutig färbbarer Gra-
phen helfen. Um darüber Ergebnisse zu erzielen, startete Matthias Kriesell erste Untersuchungen von
Graphen mit einer Kempe-Färbung. Das sind Graphen mit einer speziellen Färbung, bei denen die
Vereinigung je zweier Farbklassen einen zusammenhängenden Untergraphen induziert. Offensichtlich
ist die optimale Färbung eines eindeutigen Graphens auch eine Kempe-Färbung.

Eine Transversale einer Kempe-Färbung eines Graphen ist eine Knotenmenge, die genau
einen Knoten aus jeder Farbklasse enthält. Für jede Transversale T einer Kempe-Färbung
gibt es ein System von kanten-disjunkten Wegen zwischen allen Knoten aus T . Es stellt sich
die Frage, ob es möglich ist, die Existenz eines vollständigen Minoren derselben Größe wie T
zu gewährleisten, sodass jede Tasche genau einen Knoten aus T enthält. Wir nennen einen
Minor mit den oben beschriebenen Eigenschaften einen gewurzelten Minor. Eine positive
Beantwortung dieser Frage, deren Bejahung bereits von Matthias Kriesell (2017) vermutet
wurde, würde Hadwigers Vermutung für eindeutig färbbare Graphen bestätigen. Es gibt aber
noch weitere Gründe, diese Vermutung zu untersuchen. Einerseits gibt es Graphen mit einer
Kempe-Färbung, die wesentlich mehr Farben als die chromatische Zahl enthält. Andererseits
lassen viele Beweise bekannter Teilresultate zu Hadwigers Vermutung keinen Spielraum, um
Knoten in den Taschen der Minoren vorzuschreiben, auch nicht unter der Forderung, dass je
zwei Farbklassen zusammenhängend sind.
Die Frage lässt sich positiv für |T | ≤ 4 durch ein Resultat von Fabila-Monroy und Wood
beantworten. In dieser Dissertation wird sie zudem für Kantengraphen und für |T | = 5
verifiziert, sofern T einen zusammenhängenden Teilgraphen induziert. Für bestimmte Gra-
phenklassen wird sich zeigen, dass eine Verallgemeinerung des Problems gilt. Jedoch stellt
sich heraus, dass die Gültigkeit der Verallgemeinerung im Allgemeinen nicht bestätigt werden
kann. Somit ist es nicht ausreichend, zu fordern, dass je zwei Transversalknoten auf einem
zweigefärbten Weg liegen, um einen gewurzelten Minor zu erhalten.
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Basierend auf gewurzelten Minoren und verschiedenen Sätzen, die auf Zusammenhangsbedin-
gungen aufbauen, stellt sich die Frage, ob es möglich ist, Graphen, in denen eine bestimmte
Menge an Knoten hoch zusammenhängend ist, auf gewisse einfachere Strukturen zu reduzie-
ren, die lediglich den Zusammenhang repräsentieren. Diese Frage wird in der vorliegenden
Arbeit untersucht und mit zwei bestmöglichen Theoremen beantwortet. Das erste Theorem
erläutert, dass, sofern eine Knotenmenge, welche wir X nennen, sich nicht durch weniger als
c Knoten trennen lässt (c ≤ 3), ein c-fach zusammenhängender topologischer Minor existiert,
welcher in X verwurzelt ist. Im Fall von c = 4 besagt ein zweites Ergebnis, dass es in diesem
Fall zumindest möglich ist, einen 4-fach zusammenhängenden gewurzelten Minoren zu er-
halten. Für größere c ist es im Allgemeinen nicht möglich, einen hoch zusammenhängenden
Minor zu ermitteln.

Diese neuen Ergebnisse werden im folgenden Verlauf der Dissertation angewendet, um Unter-
graphen, welche eine Menge X enthalten, sicherzustellen , wobei die Resultate von bekannten
Theoremen über spannende Untergraphen abgeleitet werden. So lässt sich beispielsweise ein
Theorem von Barnette, welches besagt, dass 3-fach zusammenhängende planare Graphen ei-
nen Spannbaum vom Maximalgrad höchstens 3 besitzen, einfach übertragen. Folglich gibt es
einen Baum vom Maximalgrad höchstens 3, der X enthält. Da wir keinen 4-fach zusammen-
hängenden topologischen Minor gewurzelt auf X garantieren können, wird mehr Aufwand
nötig sein, um Kreise durch alle Knoten aus X eines planaren Graphen zu erhalten. Um
dieses Problem zu lösen, wird die Theorie der Tutte-Wege angepasst.

Im Jahr 1956 konnte William Tutte das lange offene Problem, ob 4-fach zusammenhängende planare
Graphen hamiltonsch sind, lösen und somit ein Theorem von Whitney erweitern, welches besagt,
dass 4-fach zusammenhängende Triangulationen hamiltonsch sind. Die zugrunde liegende Idee ist, zu
zeigen, dass planare Graphen einen Kreis enthalten, sodass jede Komponente außerhalb des Kreises
eine beschränkte Anzahl an Berührungspunkten an dem Kreis besitzt. Im Konkreten ist gezeigt wor-
den, dass die Zahl der gemeinsamen Berührungsknoten durch 3 beschränkt ist, woraus sofort Tuttes
Ergebnis folgt.

Durch eine Konstruktion von Moon und Moser ist bekannt, dass es eine positive Konstante c und 3-fach
zusammenhängende planare Graphen gibt, sodass die Länge eines längsten Kreises (der Umfang) eines
Graphen G durch c · |V (G)|log3 2 beschrieben wird. Einige Jahre später konnte der Term durch Chen
und Yu als untere Schranke bestätigt werden. In dieser Arbeit wird eine leichte Abschwächung des
4-Zusammenhangs planarer Graphen untersucht. Wenn der 4-Zusammenhang durch wesent-
lichen 4-Zusammenhang ersetzt wird, das heißt, dass die betrachteten Graphen Separatoren
der Größe 3 besitzen dürfen, diese aber nur einzelne Knoten vom restlichen Graphen trennen,
so ist durch Jackson und Wormald zuerst gezeigt worden, dass der kurzmöglichste Umfang
in dieser Graphenklasse durch eine lineare Funktion in der Anzahl an Knoten beschrieben
wird. Diese Arbeit stellt eine Verbesserung des zuletzt bekannten Koeffizienten der linearen
Schranke vor, welcher von Fabrici, Harant und Jendroľ veröffentlicht wurde. Im Falle von
wesentlich 4-fach zusammenhängenden Triangulationen auf n Knoten wird die bestmögliche
Schranke von 2

3(n+ 4) bewiesen.

Abschließend wird in der Dissertation die Klasse der 1-planaren Graphen untersucht und
ihre längsten Kreise studiert. Ein Graph ist 1-planar, wenn er eine Einbettung in die Ebene besitzt,
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sodass jede Kante höchstens einmal gekreuzt wird. Diese Klasse unterscheidet sich in vielerlei Hinsicht
zu den planaren Graphen. Das Entscheidungsproblem, ob ein Graph 1-planar ist, ist N P-vollständig
und es gibt verschiedene Ansätze, einen 1-planaren Graphen als maximal anzusehen. In der vor-
liegenden Arbeit wird ein Analogon zu Whitneys Theorem bewiesen. Es wird gezeigt, dass
3-fach zusammenhängende maximal 1-planare Graphen einen sublinearen Umfang wie ihre
planaren Verwandten haben können, und dass 4-fach zusammenhängende maximal 1-planare
Graphen hamiltonsch sind. Im nicht-maximalen Fall kann Tuttes Theorem nicht direkt über-
tragen werden. Dies zeigt die Konstruktion einer Familie von 5-fach zusammenhängenden
1-planaren Graphen in dieser Arbeit, welche bei weitem nicht hamiltonsch sind. Ob 6-fach
zusammenhängende 1-planare Graphen hamiltonsch sind, bleibt offen. Einige Ideen, wie eine
Herangehensweise an diese Frage durch eine Erweiterung der Tutte Theorie aussehen könnte,
werden abschließend kurz angerissen.
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Introduction 1
“One of the deepest unsolved problems in graph theory is the following conjecture due to
Hadwiger [...].” These words were chosen by Béla Bollobás, Paul Allen Catlin,
and Paul Erdős in 1980 to begin their paper on Hadwiger’s Conjecture in random
graphs [BCE80]. The object of interest is a conjecture postulated by Hugo Hadwiger
in 1943 [Had43]. It states that for all k ∈N, a graph can be coloured with k−1 colours or
contains a clique minor of size k. Before diving into the details, allow me to take you briefly
back in history to the early days of Graph Theory.

1.1 Historical Context [Wil13]

It all began in the early 18th century in Königsberg, East Prussia, where a challenge arose
to find a walk crossing each of the seven bridges over the Pregel river exactly once and then
ending back at its starting point. Leonhard Euler finally proved in 1741 that this problem
has no solution [Eul41]. In these early days, the challenge was to develop the right tools to
attack and solve these kinds of problems.
Probably the most famous problem in graph theory is the Four-Colour-Conjecture. It was
in 1852, when Francis Guthrie first mentioned it during his task to colour the map of
the counties of England. He noticed that it could be done with four different colours in all
considered cases. The conjecture states that every map, i.e. graph that can be drawn onto
the Euclidean plane without crossing edges, can be coloured properly with four colours. It
was obvious that it could not be done with three colours in general, but there had been no
example where five colours were necessary.
The first known written reference of this conjecture is a letter from Augustus De Morgan,
a professor of mathematics from London, to his colleague William Rowan Hamilton. He
explained that the problem had been devised by F. Guthrie (one of the brothers Francis
or Frederick), a student of his at the time, and lamented that he was presently unable to
resolve it.
In 1878, Arthur Cayley presented this conjecture to the London Mathematical Society
and made it well-known [Cay79]. He noticed that it was enough to consider cubic maps.
Almost every famous mathematician from those times worked on this problem, which led to
a series of failed attempts.
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The first incorrect proof of this conjecture, due to Alfred Bray Kempe in 1879, was based
on an innovative idea [Kem79]: It considers so-called unavoidable sets, i.e. sets of config-
urations such that each minimal counterexample to the conjecture, should it exist, must
necessarily contain at least one of its elements. If it is possible to find a solution to reduce
each of those unavoidable configurations, then this will lead to a smaller counterexample,
contradicting the assumption. Nonetheless, Kempe’s proof was falsified by Percy J. Hea-
wood showing a mistake in one of the reductions [Hea98]. At the very least, he managed
to modify Kempe’s proof, thereby obtaining the Five-Colour-Theorem. In 1880, Peter
Guthrie Tait associated this conjecture with the Hamiltonicity of cubic 3-connected pla-
nar graphs. His attempt to prove the Four-Colour-Conjecture [Tai80] was refuted by Julius
Petersen [Pet98] some years later and was finally disproved by William T. Tutte [Tut46]
in 1946.

Several decades later, in the 60s and 70s of the last century, Heinrich Heesch continued
the study of unavoidable sets [Hee69]. He developed computer aided methods for a proof
of the reducibility of all configurations. But the lack of accessible computing power at the
time stopped him succeeding in his work. Based on his ideas, Kenneth I. Appel and
Wolfgang Haken [AH89] from the University of Illinois eventually gave the first proof
in 1976 by reducing a set of exactly 1973 unavoidable configurations, and converted the con-
jecture into what we know today as Four-Colour-Theorem. In 1996, further simplifications
were proved by Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin
Thomas [Rob+96] and the number of configurations was lowered to 633.

1.1.1 Tutte Paths

Up to the present day, there is the unpleasant flavour of the computer-aided proofs of the
Four-Colour-Theorem. It obfuscates the real reason as to why the Four-Colour-Theorem
holds and does not reveal the main attribute of planar graphs leading to the 4-colourability.

On the other hand, let us consider the idea behind Peter G. Tait’s approach [Tai80]
from 1880 to prove the Four-Colour-Theorem, which is suggestive of providing the reason
that four colours suffice. To this end, take a planar graph G and a plane embedding. We
can assume that this embedding is a triangulation of the plane, otherwise insert edges until
it is triangulated. The dual graph of G, i.e. the graph with the face set of G as the vertex
set and its adjacency relation, is a 3-connected, cubic, planar graph. Assume that — and
conjectured by Tait — this graph has a Hamiltonian cycle, namely a cycle containing
all vertices of the dual graph exactly once. This cycle separates the plane into an interior
and an exterior and, therefore, separates the vertex set of G into two sets. The subgraph
of G induced by each of the two sets is a tree and consequently 2-colourable. By merging
both colourings, we obtain a 4-colouring of the graph G. The key observation is that planar
graphs have planar dual graphs and that cycles in a plane separate the plane.

Tait’s conjecture, claiming the situation above, turned out to be false. In 1946, William
T. Tutte presented a cubic 3-connected planar graph on 45 vertices without a Hamiltonian
cycle [Tut46]. Subsequently, the question arose which planar graphs are Hamiltonian, since
“little was known about conditions for the existence of a Hamiltonian cycle in a planar
graph” until 1956, as Tutte emphasises in his paper [Tut56]. In that year, Tutte proved
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that 4-connected planar graphs are Hamiltonian with an inventive idea [Tut56]. He also
was facing the problem that it was unpromising to perform induction on the vertex set of
4-connected planar graphs, since removing vertices may decrease connectivity. The idea to
overcome these issues were Tutte paths. We define Tutte paths later; for now it is sufficient
to know that these are paths in graphs such that all components of the graph without that
path have a very small number of attachments on the path. Since all planar graphs contain
Tutte paths, it is concluded that 4-connected planar graphs are Hamiltonian.

His ideas had a big impact on the following research: they were adopted in new elegant proofs
of slightly stronger results [San97; Tho83], were generalised to obtain results for graphs
embedded on higher surfaces [TY94; TYZ05], and were used to prove results related to
Hamiltonicity [FHJ16; JW90]. Recently, it was shown that Tutte paths can be computed
in quadratic time [SS18], thus, implying some algorithmic aspects to all results obtained from
Tutte cycles. The theory of Tutte paths and cycles will be the subject of Sections 2.4
to 2.6 and Chapters 6 to 9.

1.1.2 Hadwiger’s Conjecture

Another attempt to understand the Four-Colour-Theorem was to “pare down its hypotheses
to a minimum core, in the hope of hitting the essentials; throw away planarity and impose
some weaker condition”, as described by Paul D. Seymour in his survey on Hadwiger’s
Conjecture [Sey16].

It is well-known that planar graphs are precisely characterised by Klaus Wagner [Wag37]
as those graphs containing neither a K5- nor K3,3-minor. Thus, the Four-Colour-Theorem
states that all graphs without a K5- and K3,3-minor are 4-colourable. It is self-explanatory
to exclude K5 as a minor since K5 itself is not a 4-colourable graph, but why is K3,3 also
excluded?

In 1943, Hugo Hadwiger tried to answer this question [Had43]. Since he was not able to
prove the Four-Colour-Conjecture, he postulated his famous conjecture:

Conjecture 1 (Hadwiger, 1943 [Had43]). Each graph without a clique minor of size k ∈ N
can be coloured with k−1 colours. �

H. Hadwiger was able to prove his conjecture for values k = 1, 2, 3, 4. The case k=5 would
imply the Four-Colour-Conjecture, however, for k > 4, he noticed:

„Es scheint auch hier eine eigentümliche Regellosigkeit wirksam zu werden, welche ei-
ne gesetzmässige Erfassung der kombinatorisch-topologischen Möglichkeiten stark behin-
dert.“

Hugo Hadwiger, 1943 [Had43]

“A peculiar irregularity seems to occur, which strongly impedes the gathering of the combina-
torial-topological possibilities into rules.” This shows that H. Hadwiger already suspected
that his conjecture would be very tough. And indeed, no proof of the case k= 5 exists to
this present day. Though his approach to prove the Four-Colour-Conjecture has not been
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successful, Hadwiger’s Conjecture remains a tantalising conjecture for graph theorists and
offers a far-reaching generalisation of the Four-Colour-Theorem.

By an old result of Klaus Wagner [Wag37], it is elementary to show the equivalence of
the Four-Colour-Conjecture and the case k=5 of Hadwiger’s Conjecture. The only proof
towards Hadwiger’s Conjecture by Neil Robertson, Paul D. Seymour, and Robin
Thomas in 1993 [RST93] shows that every minimal counterexample to Hadwiger’s Con-
jecture for the case k=6 consists of a planar graph with one additional apex vertex; therefore,
such graphs are 5-colourable assuming the Four-Colour-Theorem holds. Consequently, the
case k=6 is also merely equivalent to the Four-Colour-Theorem.

This lack of results is another indicator that Hadwiger’s Conjecture is tenacious. Fur-
thermore, many strengthenings of this conjecture turned out to fail. For example, György
Hajós conjectured that every graph with chromatic number k contains a subdivision of a
complete graph on k vertices, which was disproved by Paul A. Catlin [Cat79]. Moreover,
Hadwiger’s Conjecture fails for infinite graphs [Zyp12] and a list colouring version does not
hold as well [BJW11; Voi93]. Hadwiger’s Conjecture will be the main topic of Sections 2.1
to 2.4 and Chapters 4 and 5.

1.2 Structure of the Dissertation

Based on the research project “Complete Minors in Graphs with Few Colourings” funded
by the German Research Foundation (DFG), the goal of this thesis is a contribution to the
collection of results on Hadwiger’s Conjecture. Focusing on graphs with few colourings
obliges one to study the structure of graphs. The main structural concept used in this thesis
is that of rooted minors. This concept will be refreshed from literature and expounded upon
in such a way that demonstrates its strength. In connection with rooted minors, this thesis
will also focus heavily on two other important structural concepts in graph theory: Tutte
paths and colourings of graphs.

This thesis is organised as follows. Chapter 2 starts with an overview of partial results on
Hadwiger’s Conjecture. Then, each new result of this thesis is motivated by an individual
opening question and relevant, state-of-the-art results are discussed. We distill each prob-
lem to its ‘core’, and straightforward conclusions are made. Moreover, interesting initial
approaches are stated and small results are mentioned that are not fully developed to be
published in journal papers. Open problems complete these investigations.

Chapters 4 to 9 contain new results reported in the style of journal publications. Within these
chapters, all stated results are developed in close collaboration with the co-authors listed at
the beginning of each chapter. To conclude this thesis, Chapter 10 restates remaining open
problems and questions tied to this thesis and motivates possible future research.
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1.3 Some Preliminaries

We give a brief summary of basic definitions in graph theory used in this thesis. For a
complete overview, we refer to [Die17] and [BM08]. Definitions used in a more specific
context will be introduced when their need has come.

By N we denote the set of natural numbers excluding zero. Given an arbitrary set A, the
power set P(A) is the set of all subsets of A. The size or order of A is the number of
elements in A and denoted by |A|. A subset B ∈ P(A) is called a k-subset of A if |B| = k

for an k ∈ N. The set of all k-subsets of A is denoted by Pk(A). A partition of A is a set
A = {Ai : i ∈ {1, . . . , k}} ⊆ P(A) of pairwise disjoint, non-empty subsets of A such that its
union ∪

i∈{1,...,k}Ai is A.

Since we will define an inclusion relation ⊆ on graphs, it is justified to say, that a maximal
(with respect to a certain property) object K is understood to be inclusion-maximal, i.e. K
has this property and each object P such that K ⊆ P,K 6= P does not have this property.

Graphs

All graphs are simple, undirected, and finite if not explicitly declared otherwise. Thus, a
graph is a pair G = (V (G), E(G)) on a finite set V (G), called the vertex set, and the edge set
E(G) ⊆ P2(V (G)). For an edge e := {x, y} ∈ E(G), we usually write e=xy. A subgraph of
G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G); we write H ⊆ G. A subgraph H is
induced if E(H) = P2(V (H)) ∩E(G). To avoid unnecessary ambiguities, we always assume
that V (G) ∩ E(G) = ∅.

Let G be a graph and x ∈ V (G). The neighbourhood NG(x) is defined by NG(x) := {y ∈
V (G) : xy ∈ E(G)}. An edge e ∈ E(G) is incident to x if x ∈ e. The degree dG(x) is the
number of edges incident with x, and we call x adjacent to y if xy ∈ E(G).

Let G be a graph, X ⊆ V (G), and E ⊆ E(G). We denote by G[X], G−X, and G−E

the subgraph of G induced by X, induced by V (G) \X, and the graph obtained from G by
removing all edges from E, respectively. Abusing notation, we write G−x and G−e instead
of G−{x} and G−{e} for x ∈ V (G), e ∈ E(G), respectively.

The complement G of G is the graph on the same vertex set and E(G) := P2(V (G)) \E(G).

Let H1 and H2 be two graphs. We say that H1 and H2 are isomorphic if there exists a
bijection φ : V (H1) → V (H2) such that xy ∈ E(H1) if and only if φ(x)φ(y) ∈ E(H2). The
union H1∪H2 is the graph G with V (G) := V (H1)∪V (H2) and E(G) := E(H1)∪E(H2). The
join H1+H2 is the graph G with V (G) := V (H1)∪V (H2) and E(G) := E(H1)∪E(H2)∪{xy :
x ∈ V (H1), y ∈ V (H2), x 6= y}.

Vertex sets

Let X be a finite set. The graph G with V (G) = X and E(G) = P2(X) is the complete
graph on the vertex set X and denoted by KX . By Kk with k ∈ N, we denote a complete
graph on an unspecified k-element vertex set.
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A path P of length k ∈ N ∪ {0} is a graph on a vertex set {v0, v1, . . . , vk} with E(P ) =
{v0v1, v1v2, . . . , vk−1vk}. We say that P starts in v0 and ends in vk and call it a v0,vk-path.
A cycle can be defined in the same vein by identifying v0 and vk. For a cycle C, an edge
e ∈ P2(V (C)) \ E(C) is a chord of C.

Let G be a graph and X ⊆ V (G). The set X is an anticlique (also independent set) if all
vertices of X are pairwise non-adjacent in G, i.e. G[X] is an edgeless graph. A clique is a
set X ⊆ V (G) such that G[X] is a complete graph. With the independence number α and
the clique number ω(G) we denote the number of vertices in a largest independent set and
largest clique, respectively.

A graph G is called apex if it contains a vertex x ∈ V (G) adjacent to all vertices in V (G)\{x}.
Such a vertex x is an apex vertex.

Let A ⊆ P(V (G)) be a set of vertex subsets and T ⊆ V (G). We say that T is a transversal
of A if |A ∩ T | = 1 for all A ∈ A. In other words, T traverses A.

Colouring

A k-colouring of a graph G with k ∈ N is a partition C of the vertex set V (G) into k′ ≤ k non-
empty sets A1, . . . , Ak′ . The colouring C is called proper if each set is an anticlique of G that
is there are no two adjacent vertices of G in the same colour class A ∈ C. If a colouring is
mentioned, we actually mean a proper colouring in this entire thesis. The chromatic number
χ(G) is the minimum k such that there is a proper k-colouring of G. A colouring C of G is
optimal if C is a proper k-colouring with k = χ(G).

A graph G is k-critical for k ∈ N if χ(G) = k and χ(H) < k for each proper subgraph H of
G.

A graph G is called perfect if χ(H) = ω(H) for all induced subgraphs H of G. This means
that for all subgraphs H of G the necessary number of colours to colour its largest clique is
sufficient to colour the whole graph. The well-known Weak Perfect Graph Theorem proved
by L. Lovász states that a graph is perfect if and only if its complement is perfect [Lov72].
One property of perfect graphs is that for these graphs Hadwiger’s Conjecture holds.

Connectedness

A component of G is a maximal connected subgraph, i.e. between each pair x, y of vertices
there exists a path from x to y in G. A set S ⊆ V (G) is a separator if G−S has more
components than G. If S is a minimal separator of a connected graph G and G−S separates
G in components H1,H2, . . . , then {G[V (H1) ∪ S], G[V (H2) ∪ S], . . . } is a separation of G.
If A,B ⊆ V (G) and S ⊆ V (G) such that there is no path from A to B in G−S, then S

separates A and B. In this case, G is disconnected.

If a graph G on at least k + 1 vertices is connected and has no separator S of size smaller
than k for a k ∈ N, then we say that G is k-connected. A well-known result by K. Menger
is the following:
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Theorem 1.1 (Menger, 1927 [Men27]). Let G be a graph and A,B ⊆ V (G), then the
minimum size of a set S separating A and B is equal to the maximum number of internally
disjoint paths from A to B. �

A graph G is k-edge-connected with k ∈ N if there is no set E ⊆ E(G) with |E| < k such
that the graph G′ := G−E (obtained from G by removing all edges E) is disconnected. If we
allow G′ to be disconnected but at most one component contains cycles, then G is cyclically
k-edge-connected.

Let H1 and H2 be two graphs on different vertex sets and C1 and C2 be cliques in H1 and
H2 of equal size, respectively. The graph G obtained from H1 and H2 by identifying both
graphs at C1 and C2 is a clique-sum of H1 and H2 at C1 and C2. Let k := |V (C1)|, then G
is a k-clique-sum.

Embeddings

All graphs can be represented by drawings in the Euclidean plane, such that vertices are
distinct points and edges are arcs, i.e. non-self-intersecting continuous curves. A graph G is
planar if there exists a drawing of G such that two arcs only meet at end vertices.

Without further explicit reference we use the Jordan curve theorem, which states that each
closed polygonal curve splits the Euclidean plane in an exterior and an interior. An easy
corollary asserts that every planar 2-connected graph partitions the Euclidean plane into
arcwise connected regions called faces and each face has a cycle, called facial cycle, as a
boundary. There is exactly one unbounded face, which we call the outer face.

A planar graph G is maximal planar or a triangulation if all faces of G are a triangle, i.e.
each facial cycles consists of three edges.

For a connected planar graph G with n vertices, m edges, and f faces, Euler’s formula

2 = n−m+ f

holds.

The planar dual of a planar graph G with face set F is a graphH on the vertex set V (H) := F

and e=αβ ∈ E(H) if and only if the faces α and β of G are incident to a common edge in
G.

It is also possible to embed graphs on higher surfaces, such as the projective plane, and
define a genus of a graph. For more details, we refer to contemporary text books of graph
theory.

Hamiltonicity

Let G be a graph. A cycle C of G is a Hamiltonian cycle if C contains all vertices of G.
A graph containing a Hamiltonian cycle is a Hamiltonian graph. If for each two distinct
vertices x, y ∈ V (G), there is a x,y-path in G containing all vertices of G, then we say that
G is Hamilton-connected.
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Minors

Let G andM be graphs and (Vt)t∈V (M) be a family of pairwise disjoint, non-empty subsets of
V (G) such that G[Vt] is connected for all t ∈ V (M). We say that G contains anM-certificate
c= (Vt)t∈V (M) if and only if there is an edge xy ∈ E(G) connecting x ∈ Vt and y ∈ Vs for
all st ∈ E(M). The set Vt, t ∈ V (M) is the branch set or bag of t in c. If G contains an
M-certificate, then M is a minor of G and we write M ≺ G.

It is also common to define a minor of a graph G as a sequence of edge and vertex deletions
and contractions of edges in G. It should be mentioned here that a graph M ′ isomorphic to
the outcome of such a sequence is a minor of G if and only if there is an M ′-certificate in G.
Deleting all vertices not covered by branch sets and contracting each branch set to a single
vertex results in a graph isomorphic to the minor.

The graph S is a subdivision of M if there is an injection β : V (M) → V (S) and for
each edges e = xy ∈ E(M) we choose a path Pe in S such that V (S) =

∪
e∈E(M) V (Pe),

V (Pe) ∩ {β(v) : v ∈ V (M)} = {β(x), β(y)} for e ∈ E(M), and V (Pe) ∩V (Pe′) = β(e∩ e′) for
e 6=e′. If G has a subgraph isomorphic to a subdivision of M , then M is a topological minor
of G.

Linkage

Let G be a graph and {x1, y1, . . . , xk, yk} ⊆ V (G) a set of 2k vertices of G for a k ∈ N. An
(x1y1, . . . , xkyk)-linkage is a system of k vertex-disjoint paths P1, . . . , Pk such that Pi is a
xi,yi-path.
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Within this chapter, a thematic classification of the results developed in this thesis is provided
and initial approaches to pursuing questions are elaborated upon. We start with an overview
of Hadwiger’s Conjecture in Section 2.1. One component of this conjecture is colourings;
thus, different approaches for characterising graphs with few colourings are presented in
Section 2.2. Rooted minors as the main tool of this thesis are introduced in Section 2.3,
in which we further depict the results of two publications (Chapters 4 and 5). Motivated
by “local connectivities”, we refine the definitions of rooted minors to consider “half-rooted
minors” and study the connectedness of a vertex subset in Section 2.4 (and Chapter 6). The
essential tool of the last two Sections 2.5 and 2.6 are Tutte cycles. New applications and
their capabilities are investigated; those are in relation to the publications of Chapters 7
to 9.

2.1 Hadwiger’s Conjecture

This brief overview of Hadwiger’s Conjecture does not raise a claim to be complete. It
is rather focused on topics concerning this thesis. For a more detailed survey, we refer to
Seymour’s [Sey16] and Toft’s excellent surveys [Tof96].
An equivalent formulation of Hadwiger’s Conjecture (Conjecture 1) is

Kt ⊀ G =⇒ χ(G) ≤ t− 1 (H(t))

for all t ∈ N, which is more convenient to verify in the special cases with t ≤ 6.

2.1.1 Proving the Special Cases

Proof of H(t) for t ∈ {1, 2, 3, 4}. Let G be a graph. If t= 1 and Kt ⊀ G, then G contains
no vertices, hence, G is the empty graph and 0-colourable. If t= 2 and Kt ⊀ G, then G contains
no edges, hence, G is an edgeless graph and we can colour all vertices with one colour. If t= 3 and
Kt ⊀ G, then G contains no cycles, hence, G is a forest and consequently 2-colourable.

Therefore, let t = 4 and Kt ⊀ G. We follow the idea of H. Hadwiger in his paper about the
conjecture [Had43]. We proceed by induction on the number of vertices and the proof consists of two
assertions:
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(i) Every minimal graph G with K3 ≺ G is 3-colourable.

(ii) Let G be a K4-minor-free graph and H an induced subgraph of G such that H is minimal with
K3 ≺ H. Then G contains a 3-colouring extending a 3-colouring of H.

A minimal graph G with K3 ≺ G is connected and all vertices have degree 2. Thus, G is a cycle and
is 3-colourable.

Let G be a graph on n vertices and assume that the assertions hold for all graphs with less than n
vertices. If G is a cycle, then H = G and we are done. Otherwise, G contains an induced cycle C,
which we assume to be coloured. For each subgraph of H, the vertices of H incident in G with some
edge not belonging to H are the vertices of attachment of H in G. Let H be a minimal subgraph of
G such that each vertex of attachment of H in G is a vertex of C and H is not a proper subgraph of
C.

We observe that H is not an edge (not isomorphic to K2) since C has no chord in G. Thus V (H) \
V (C) 6= ∅. Furthermore, |V (C) ∩ V (H)| ≤ 2 since otherwise there is a K4-certificate (Vi)i∈{1,2,3,4}

in G with V1 ∪ V2 ∪ V3 = V (C), each Vi, i ∈ {1, 2, 3} contains one vertex of attachment of H, and
V4 = V (H) \ V (C).

If |V (C) ∩ V (H)| = 1, we can colour G − (V (H) \ V (C)) and H with three colours such that the
colouring of the former graph extends a colouring of C and the colouring of the latter graph coincides
the first colouring in V (C) ∩ V (H).

Consequently, {b1, b2} := V (C) ∩ V (H) and there is a separation of C in C1 and C2 such that
V (C1) ∩ V (C2) = {b1, b2}. Assume that |V (C2)| ≥ 3, otherwise change the roles of C1 and C2. Then
H ∪ C1 has less than n vertices and contains a cycle D with C1 ⊆ D. We can colour D such that
it extends the colouring of C1 and by the induction hypothesis, there is a 3-colouring of H ∪ C1.
Moreover, there is a colouring of G − (V (H) \ V (C)) with three colours extending the colouring of
C. We can merge both colourings, which completes the proof of H(4). ■

For t ∈ {5, 6}, there is no known proof of H(t) without assuming the validity of the Four-
Colour-Theorem. We prove the equivalence between both cases and the Four-Colour-Theo-
rem.

Proof of the Equivalence of H(t) and the Four-Colour-Theorem for t ∈ {5, 6}.
Assume that H(6) holds and let G be a graph without a K5-minor. Let G′ be the graph obtained
from G by adding a new apex vertex v′, i.e. a new vertex adjacent to all other vertices of G. It is
straightforward to check that G′ is K6-minor-free, hence, there is a colouring C of G′ with at most
five colours. Since NG′(v′) = V (G′) \ {v′}, there is a colour class A ∈ C such that A= {v′}. Thus,
C \A is a k-colouring of G with k ≤ 4, and H(5) holds.

If G is a planar graph, then by Wagner’s result [Wag37] K5 ⊀ G and G is 4-colourable by H(5).
This proves that H(t), t ∈ {5, 6} implies the Four-Colour-Theorem.

Assume that the Four-Colour-Theorem holds: let G be a K5-minor-free graph. We may assume
that G is a maximal graph with K5 ⊀ G, otherwise repeatedly add edges. In [Wag60], Klaus
Wagner proved the equivalence between H(5) and the Four-Colour-Theorem by using his theorem
in [Wag37]. It says that G is obtained from 2- and 3-clique-sums of maximal planar graphs and the
8-vertex Wagner graph, i.e. the graph obtained from C8 by inserting edges for each pair x, y ∈ V (C8)
of distance 4 in C8. Since all these graphs are 4-colourable, we can obtain a colouring of G by merging
all the colourings and identifying colour classes along the cliques.
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Suppose that H(6) fails and let G be a minimal K6-minor-free counterexample to Hadwiger’s
Conjecture. By a result of N. Robertson, P. Seymour, and R. Thomas [RST93], G is a graph
consisting of a planar graph and an additional apex vertex v. By the Four-Colour-Theorem, G− v is
4-colourable; hence, we obtain a 5-colouring of G, contradicting the assumption. ■

We can summarise:

Theorem 2.1. Hadwiger’s Conjecture H(t) holds for t ∈ {1, 2, . . . , 6}. �

For t ≥ 7, Hadwiger’s Conjecture is widely open. For t ∈ {7, 8}, we have the following
partial results:

Theorem 2.2 (Albar, Gonçalves [AG18]; Kawarabayashi, Toft [KT05]).

(i) Every K7-minor-free graph is 8-colourable.

(ii) Every K8-minor-free graph is 10-colourable.

(iii) Every graph G with χ(G) = 7 contains a K7-minor or a K4,4-minor.

(iv) Every graph G with χ(G) = 7 contains a K7-minor or a K3,5-minor. �

If we restrict to subclasses of graphs, it might be easier to obtain some affirmative results. For
example, Theorem 2.3 below verifies Hadwiger’s Conjecture for line graphs. A superclass
of line graphs are claw-free graphs, namely graphs without K1,3 as an induced subgraph. For
claw-free graphs, we have nearly the full picture.

Theorem 2.3 (Reed, Seymour [RS04]; Fradkin [Fra12]).

(i) Hadwiger’s Conjecture holds for line graphs.

(ii) Hadwiger’s Conjecture holds for claw-free graphs with independence number at
least 3. �

2.1.2 Density Arguments

Recall Hadwiger’s Conjecture for the case t= 3. A graph without a K3-minor is a graph
without a cycle and, subsequently, a forest. Such a graph has a nice property: there is a
vertex of degree 1 and each subgraph is a forest. Hence, we can colour a K3-minor-free
graph with two colours inductively by removing a vertex x of degree at most 1, colouring the
remaining graph, and choosing a colour for x distinct from its neighbour’s colour (if x has a
neighbour).

This leads us to the concept of degeneracy:

Definition 2.4. A graph G is k-degenerate for k ∈ N ∪ {0} if every non-empty subgraph
has a vertex of degree at most k. �
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As demonstrated for the 1-degenerate forests, all k-degenerate graphs can easily be coloured
with the same sequential colouring algorithm:

Proposition 2.5. A k-degenerate graph is (k+1)-colourable. �

Using Proposition 2.5, we obtain another proof of H(t) for t ∈ {2, 3, 4}. A graph without
Kt-minor, t ∈ {2, 3, 4}, is (t−2)-degenerate and, therefore, (t−1)-colourable. This proof of
the case t=4 was given by Dirac [Dir52].

Bounding the average degree is a natural way to bound degeneracy. The average degree
av(G) of a graph G is calculated by 2 |E(G)|/|V (G)|. If we were able to bound the average
degree for Kk-minor-free graphs, we could prove some bound on the chromatic number of
Kk-minor-free graphs. This idea was initially followed by W. Mader, bounding the average
degree by the number of edges.

Theorem 2.6 (Mader [Mad68]). For every integer p ∈ {2, 3, . . . , 7}, each Kp-minor-free
graph on n ≥ p vertices has at most (p−2)n−

(p−1
2

)
edges. �

It follows immediately that a Kp-minor-free graph on n ≥ p vertices has av(G) ≤ 2p− 4 and
is (2p−4)-degenerate, hence, it is (2p−3)-colourable.

This bound is best-possible. For p ∈ {2, 3, . . . , 7} take a complete graph Kp−2 and join it to
n−(p−2) further vertices, i.e. G = Kp−2 +Kn−(p−2). This graph attains the number of edges
stated in Theorem 2.6 and is Kp-minor-free. If the assertion of Mader’s theorem could be
continued for larger p, then this would prove Hadwiger’s Conjecture within a factor of 2.

However, the situation changes for p ≥ 8. The complete multipartite graph K2,2,2,2,2 is
K8-minor-free and has (p−2)n−

(p−1
2

)
+ 1 edges. Taking 5-clique-sums of copies of K2,2,2,2,2

produces counterexamples exceeding (p− 2)n −
(p−1

2
)

= 6n − 10 by any constant. The
silver lining is that there are no further counterexamples apart from those, as proved by
Jørgensen in [Jør94].

The question arises whether it is possible to generalise Mader’s theorem, maybe by char-
acterising the counterexamples as done in the case p= 8. The bad news is that for large p,
a random graph on n vertices must have at least Ω(pn

√
log p) edges to contain a Kp-minor;

this was shown by several people, e.g. [BCE80; Kos84].

Nevertheless, the next step to p=9 was taken by Song and Thomas [ST06]:

Theorem 2.7 (Song, Thomas [ST06]). Every graph on n ≥ 9 vertices and at least 7n−27
edges either has a K9-minor, is isomorphic to K2,2,2,3,3, or is built of clique-sums of size 6
from copies of K1,2,2,2,2,2. �

We observe that the number of examples not fitting into the scheme of Mader’s theorem
(Theorem 2.6) seems to be increasing. On the other hand, assuming n ≥ 13, a 7-connected
graph with at least 7n−27 edges cannot be obtained from 6-clique-sums and, therefore,
contains a K9-minor by Theorem 2.7.
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The continuation of this observation is conjectured by R. Thomas and P. Seymour:

Conjecture 2 (Thomas, Seymour – see e.g. [ST06]). For every p ≥ 1 there exists a con-
stant N = N(p) such that every (p−2)-connected graph on n ≥ N vertices and at least
(p−2)n−

(p−1
2

)
+ 1 edges has a Kp-minor. �

Let us drop the condition on connectedness and consider reasonably large p. Which average
degree forces a graph to contain a certain Kk-minor? By Theorem 2.7 and Conjecture 2
above, it does not seem to be promising to hope for a linear bound in k. Indeed, the answer
was given independently by A. Kostochka and A. Thomason in the 80’s:

Theorem 2.8 (Kostochka [Kos84], Thomason [Tho84]). A graph of average degree r

contains a Kk-minor with k = Θ(r/
√

log r). �

It was shown that this is best possible up to constants; the examples are random graphs
with an appropriate probability for the edges. For the sake of completeness, let us consider
these examples and how Hadwiger’s Conjecture behaves with random graphs.

2.1.3 Random Graphs

The probably most-known model for random graphs is G(n, p). A definition can, for instance,
be found in [BCE80].

Definition 2.9. For n ∈ N, let p(n) ∈ [0, 1] be fixed. We say that G(n, p) is the discrete
probability space consisting of all graphs with vertex set {1, 2, . . . , n} and each pair of vertices
is joined by an edge with probability p independently from all the other edges. �

Bollobás, Catlin, and Erdős studied the size of a largest clique minor in G(n, p) with
constant p ∈ [0, 1]:

Theorem 2.10 (Bollobás, Catlin, Erdős [BCE80]). For a graph G on n vertices, let
c(G) be the largest integer such that Kc(G) ≺ G. The probability that for G ∈ G(n, p)

n√
logb n + 4

≤ c(G) ≤ n√
logb n − 1

with b := 1 − 1/p holds tends to 1 with n → ∞. �

Theorem 2.10 verifies that Theorem 2.8 is best possible up to constants.

The first study on the chromatic number of G(n, p) was done by Grimmett and McDi-
armid [GM75]. They bounded the independence number and clique number of G(n, p) and
derived a bound on the chromatic number:

Theorem 2.11 (Grimmett, McDiarmid [GM75]). For almost every graph G ∈ G(n, p)
the chromatic number χ(G) is at least

1
2

log(1 − 1
p) n

logn
. �
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Combining Theorems 2.10 and 2.11, we see that there exists N ∈ N such that for all graphs
G ∈ G(n, p) with n ≥ N , c(G) ≥ χ(G) with high probability, which implies the assertion of
Hadwiger’s Conjecture for many graphs.

Theorem 2.10 is further developed: a strong result about Kk-minor in sparse random graphs
was published in [FKO08].

Theorem 2.12 (Fountoulakis, Kühn, Osthus [FKO08]). For a graph G, let c(G) be
the largest integer such that Kc(G) ≺ G. Let ε > 0, then there exists a constant C =C(ε)
such that for all p : N → [0, 1] with C/n < p < 1 − ε, it holds asymptotically almost surely

c(G) = (1 ± ε) n√
logb(np)

with b := 1 − 1/p and G ∈ G(n, p). �

This result about sparse graphs does not help to obtain results about Hadwiger’s Conjec-
ture. The considered graphs are too sparse to obtain reasonable results about the chromatic
number and link them to Theorem 2.12. But the techniques of probability theory can be
used to obtain results about large clique minors, for instance the following theorem. For a
graph G, the girth is the length of a shortest cycle in G.

Theorem 2.13 (Kühn, Osthus [KO03]). For all odd integers g ≥ 3 there exists c=c(g) >
0 such that every graph of minimum degree r and girth at least g contains a Kt-minor for
some t ≥ cr(g+1)/4/

√
log r . �

Theorem 2.13 implies the following corollary:

Corollary 2.14 (Kühn, Osthus [KO03]).

(i) Hadwiger’s Conjecture is true for C4-free graphs of sufficiently large chromatic num-
ber.

(ii) Hadwiger’s Conjecture is true for graphs of girth at least 19. �

We finish our investigations on random graphs here and move on to graphs with few colour-
ings.

2.2 Graphs with Few Colourings

In the short overview about Hadwiger’s Conjecture, we have seen that all considerations
meant to bound the number of colour classes or the size of the clique minors have been un-
rewarding in proving some of the cases H(t) for t > 6. The approach to uniformly bound the
order of all colour classes, e.g. assuming α(G) = 2 in Seymour’s Conjecture (Conjecture 4),
has also not been crowned with success. Instead, Matthias Kriesell suggested in [Kri17]
to bound the number of colourings, in particular to consider uniquely optimally colourable
graphs.
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In this section, we focus on graphs with few colourings, investigate some of their simple
properties, and consider minor-related conclusions supporting Hadwiger’s Conjecture. We
casually say — and this does not get to the heart of the matter from every point of view —
that a graph has few colourings if it is impossible to obtain a second optimal colouring from
a given one by recolouring only few vertices.

For instance assume that G is a k-critical graph and let e = xy ∈ E(G). Then G − e is
(k−1)-colourable. Let C′ be a (k−1)-colouring of G−e. It is easy to see that C1 := {A\{x} :
A ∈ C′} ∪ {{x}} and C2 := {A \ {y} : A ∈ C′} ∪ {{y}} are two k-colourings of G and that C2
can be derived from C1 by recolouring only two vertices, precisely x and y. The underlying
idea of the research on graphs with few colourings is that more structure is expected to be
present, which helps with finding a desired minor. This leads us to the first question, which
will be considered in this section.

Question 1. How can we obtain large clique minors in graphs with few colourings? �

2.2.1 Uniquely Colourable Graphs

We call a graph G uniquely k-colourable if χ(G) = k and for any two optimal colourings C
and C′ of G, we have C = C′. This means that there is only one optimal colouring of the
graph. We start by proving some simple properties of uniquely colourable graphs.

Lemma 2.15. Let G be a uniquely colourable graph with an optimal colouring C. For any
two distinct colour classes A,B ∈ C, the subgraph of G induced by A∪B is connected. �

Proof. Suppose to the contrary that there is a graphG with unique colouring C and there are A,B ∈ C,
A 6= B, such that G[A ∪ B] has at least two components. Let H be such a component and consider
the colouring C̃ with C̃ = (C \ {A,B}) ∪ {(A \ V (H)) ∪ (B ∩ V (H))} ∪ {(B \ V (H)) ∪ (A ∩ V (H))}.
Then C̃ is an optimal colouring of G distinct from C, a contradiction. □

The colouring C̃ of G in the proof of Lemma 2.15 is obtained from the colouring C by changing
colours in the component H of G[A ∪ B]. We say that this operation is a Kempe change
along H and this is a simple operation for obtaining new colourings from given ones.

An easy consequence of Lemma 2.15 is the following lemma:

Lemma 2.16. Let G be a uniquely colourable graph with colouring C. Then:

(i) For each vertex x ∈ V (G) and colour class A ∈ C such that x /∈ A, there is a neighbour
y ∈ NG(x) of colour A, i.e. y ∈ A.

(ii) G is connected.

(iii) The minimum degree of G is at least |C| − 1. �

Moreover, Lemma 2.17 holds:

Lemma 2.17. Let G be a uniquely k-colourable graph with k ≥ 2. Then G is (k−1)-con-
nected. �
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Proof. Suppose to the contrary that there is a non-complete graph G (otherwise G is (k−1)-connected)
with a unique k-colouring C and for two non-adjacent vertices x, y, there is S ⊆ V (G) with |S| ≤
k − 2 separating x and y. But then there are distinct A,B ∈ C with A ∩ S = ∅ = B ∩ S, and
(G − S)[A ∪ B] = G[A ∪ B] is connected. Since x and y have neighbours in A ∪ B, they cannot be
separated by S, a contradiction. □

It is easy to see that the complete graph Kk on k vertices is uniquely k-colourable and we
can obtain a family of uniquely k-colourable graphs by consecutively adding a vertex and
connecting it to all vertices except those of one colour class. This raises the question whether
all uniquely k-colourable graphs contain Kk as a subgraph, therefore, trivially verifying
Hadwiger’s Conjecture for uniquely colourable graphs.

This question whether a uniquely k-colourable graph always contains Kk as a subgraph was
first disproved by Harary, Hedetniemi, and Robinson [HHR69]. They found a uniquely
3-colourable graph F without triangles. For k ≥ 4, a uniquely k-colourable graph without
Kk is F +Kk−3, where F +Kk−3 is the complete join of F and Kk−3.

We are interested in constructions of uniquely k-colourable graphs such that the colour classes
have “nearly the same size”. The reason is that — later in Section 2.3 — we want to choose
one vertex from each colour class and find a certificate containing those chosen vertices in
the bags. Small colour classes do not give many possibilities to choose a vertex in a small
colour class, which might simplify the problem since we can reduce it to considerations of
graphs with one colour less.

Even though properties of uniquely colourable graphs have been widely studied [AMS01;
CG69; EHK98; HHR69; Neš73; Xu90], it seems that there has not been much investigation
regarding same-sized colour classes. Therefore, in this thesis a new construction of uniquely
k-colourable graphs with the additional property that these graph are Kk-free is provided.
Given a uniquely k-colourable graph H without Kk and equal colour class sizes, this con-
struction leads to a uniquely (k+1)-colourable graph G without Kk+1 as subgraph and all
colour classes have equal size. This construction is published in S. Mohr: A construction
of uniquely colourable graphs [Moh]; the entire paper can be found in Chapter 3. In what
follows below, we consider the construction and analyse it with respect to Hadwiger’s
Conjecture.

Construction

Let H be a k-colourable graph with a proper k-colouring C = {A1, . . . , Ak}. We obtain a
new graph ν(H) := G with a proper (k+1)-colouring C′ from H by taking k further copies
of H and adding edges such that the following holds:

V (G) := V (H) ∪ {vp : v ∈ V (H), p = 1, . . . , k},
E(G) := E(H) ∪ {vpup : vu ∈ E(H), p = 1, . . . , k}

∪ {vup, uvp : vu ∈ E(H), p = 1, . . . , k}
∪ {vpvq : v ∈ V (H), v ∈ Ap, q ∈ {1, . . . , k} \ {p}},



2.2 Graphs with Few Colourings 17

and

C′ := {A′
i : i = 1, . . . , k} ∪ {{vp : v ∈ Ap, p = 1, . . . , k}}

with A′
i := {v, vp : v ∈ Ai, p ∈ {1, . . . , k} \ {i}}.

Theorem 2.18. For k ≥ 3, let H be a uniquely k-colourable graph without Kk, then
ν(H) as constructed on page 16 is uniquely (k+1)-colourable without Kk+1. Furthermore,
ω(ν(H)) = ω(H) + 1 and if all colour classes of H have equal size, so have all those of
ν(H). �

For the proof, we refer to the proofs of Theorem 3.1 and Proposition 3.2.

Figure 2.1: The graph G3: a uniquely 3-colourable triangle-free
graph on 12 vertices and equal colour class sizes.

Starting with the graph G3 illustrated in Figure 2.1, let Gi+1 := ν(Gi) be iteratively defined
for i ≥ 3. By Theorem 2.18, we obtain a sequence G3, G4, G5, . . . of uniquely colourable
graphs with equal colour class sizes. Gi is i-colourable and contains Ki−1 as a subgraph.

Proposition 2.19. Each graph of the sequence G3, G4, G5, . . . fulfils the assertion of Had-
wiger’s Conjecture. �

Proof. A uniquely 3-colourable graph is 2-connected by Lemma 2.17, hence, it has a cycle and
K3 ≺ G3.

We proceed by induction. Let i ≥ 4 and c=(Vℓ)ℓ∈{1,2,...,i−1} be a Ki−1-certificate of Gi−1. Take an
arbitrary transversal T of c and x ∈ V (G) \ V (Gi−1). Since |T | = i− 1 and Gi is (i−1)-connected by
Lemma 2.17, there is a system of (i−1) paths connecting x with T by Menger’s Theorem. Let P
be the vertices of all these paths and let Vi := V (P ) \ (V1 ∪ V2 ∪ · · · ∪ Vi−1). Then c′ =(Vℓ)ℓ∈{1,2,...,i}

is a Ki-certificate in Gi and Gi contains a Ki-minor. ■

We have seen that Hadwiger’s Conjecture holds for the graphs obtained from our construc-
tion. Obviously, the following conjecture inspired by Hadwiger’s Conjecture immediately
suggests itself.

Conjecture 3. Every uniquely k-colourable graph has a Kk-minor.
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A first step to an answer of Conjecture 3 was made by M. Kriesell:

Theorem 2.20 (Kriesell [Kri17] and [Kri20a]). For k ≤ 10, each uniquely k-colourable
graph has a Kk-minor.

Conjecture 3 is still widely open, but the situation changes if we restrict our consideration to
graphs without antitriangles, i.e. graphs with independence number at most 2. The related
conjecture is the following Conjecture 4 due to Paul D. Seymour extending Hadwiger’s
Conjecture for α(G) = 2 (see e.g. [Bla07]):

Conjecture 4 (Seymour). Let G be a graph with α(G) ≤ 2, then G contains a Kk-minor
with k := d |V (G)|

2 e. Furthermore, the Kk-certificate can be chosen such that each branch sets
consists of one or two vertices. �

As a first impression, the consideration of graphs with independence number at most 2 seems
to be rather restrictive. Quite the contrary, the complements of these graphs are triangle-free
graphs and one notices a big interest and research on triangle-free graphs. Moreover, P. Sey-
mour thinks that this class of graphs is an “excellent place to look for a counterexample to
Hadwiger’s Conjecture” [Sey16].
In the setting of uniquely colourable graphs, Seymour’s Conjecture 4 is true. Actually,
Kriesell proved the following stronger result:

Theorem 2.21 (Kriesell [Kri17]). Let G be a uniquely colourable graph with α(G) ≤ 2,
then G contains a Kk-minor with k := d |V (G)|

2 e. Furthermore, for each transversal T of
the unique colouring of G the Kk-certificate can be chosen such that the branch sets are
traversed by T and each consists of one or two vertices. �

In the following, we turn our attention back to Conjecture 3 and study Kriesell’s proofs of
Theorem 2.20. He works with Kempe colourings, which are introduced in the next section.
We will begin by restricting to antitriangle-free graphs to get familiar with the new concepts.

2.2.2 Kempe Colourings

The restriction to uniquely colourable graphs is too rigorous provided that in most situations
we only need a certain property of the unique colourings. We would like to shift away from
unique colourings and restrict our requirements to ‘simpler’ colourings. This is the point
where Kempe colourings come into play. To understand the idea, consider the property of
the (unique) colouring of a uniquely colourable graph that the subgraph of G induced by any
two distinct colour classes is connected (Lemma 2.15). Based on this property, we define a
Kempe colouring as follows:

Definition 2.22. A colouring C of a graph G is a Kempe colouring if for each pair of
distinct colour classes A,B ∈ C, the induced subgraph G[A ∪B] is connected. �

A Kempe colouring is a colouring that is fixed under Kempe change operations, i.e. these
do not alter the colouring. We can consider this as a generalisation of an optimal colouring
of a uniquely colourable graph.
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Example 2.23. For integers k, ℓ ≥ 3, let K = {1, 2, . . . , k}, L = {1, 2, . . . , ℓ}, and G be the
graph with vertex set V (G) := K × L and edge set E(G) := {(i, j)(i′, j′) : (i, j), (i′, j′) ∈
V (G), i 6= i′, j 6= j′}. Then C := {K × {j} : j ∈ L} is a Kempe colouring of G. �

By choosing k= 3 in Example 2.23, the resulting graph is 3-colourable for all ℓ ≥ 3 but C
is a Kempe ℓ-colouring. This shows that there are graphs with a Kempe colouring using
significantly more colours than an optimal colouring. Hence, all following results about
clique minors of the same size as a Kempe colouring are stronger results compared to those
targeting the chromatic number as in Hadwiger’s Conjecture.

Since the definition of Kempe colourings is based on the property of uniquely colourable
graphs, which is most used in the proofs of Lemmas 2.16 and 2.17, these results can easily
be extended to Lemma 2.24

Lemma 2.24. Let G be a graph with Kempe colouring C of size k. Then:

(i) δ(G) ≥ k − 1,

(ii) G is (k−1)-connected,

(iii) |E(G)| ≥ (k − 1) |V (G)| −
(k

2
)
. �

We can ask whether Theorem 2.21 about antitriangle-free graphs can be generalised to
Kempe colourings. Kriesell mentioned that he was not able to do so [Kri17]. Thus, the
following problem is still open:

Problem 1 (Kriesell [Kri17]). Let G be a graph with α(G) ≤ 2 and C be a Kempe
colouring of size k. Does G contain a Kk-minor? �

To solve Problem 1, one has to find exactly as many branch sets as there are colour classes
in the Kempe colouring. If we merely demand the number of branch sets to be half the size
of the Kempe colouring, the problem turns out to be very easy:

Proposition 2.25. Let G be a graph with α(G) ≤ 2 and C be a Kempe colouring of size
k. Then G contains a Kℓ-minor with ℓ ≥ (k − 1)/2. �

Proof. Let G be a graph with α(G) ≤ 2 and C be a Kempe colouring of size k. Take a partition of
C into pairs (Aj , Bj)j=1,2,...,bk/2c (drop one colour class if k is odd). Then for all j ∈ {1, 2, . . . , bk2 c}
the branch sets Kj := Aj ∪Bj are non-empty, connected, and adjacent. □

How can we do better than Proposition 2.25? To examine this, let us loosen Problem 1 and
assume that we are satisfied if we can get three branch sets out of four colour classes. The
following problem describes this setup. It is still open, but I would like to share a so far
unsuccessful idea.

Problem 2. Let G be a graph with α(G) ≤ 2 and C be a Kempe colouring of size k. Does
G contain a Kℓ-minor with ℓ ≥ 3

4k? �
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Approach to a proof. Let G be a graph with α(G) ≤ 2 and C be a Kempe colouring of size k. We
successively take colour classes from C and construct a set of branch sets. In each step, the number
of taken colour classes is smaller or equal to 4/3 times the number of produced branch sets.

As a first step, we observe that a colour class A ∈ C of size 1 consists of one vertex that is apex.
Consequently, remove A from C and append it to the set of branch sets. We continue with a graph
such that all colour classes have size 2 and each pair of two colour classes is connected either by a
path on three edges or a cycle of length 4. In both cases, we take a suitable partition of C into sets
(Aj , Bj)j of size 2 (assuming that |C| is even) and choose for each pair (Aj , Bj) a perfect matching
in G[Aj ∪Bj ]. Let M be the set of all these matching edges.

We will consider an auxiliary graph Q with vertex set V (Q) := M. For two distinct edges e, f ∈ M
we call the pair (e, f) conflicting if they are not connected, i.e. there is no edge connecting an end
vertex of e with an end vertex of f . The edges of Q are all conflicting pairs of matching edges. An
edge e ∈ M is called conflict-free, if there is no edge f ∈ M \ {e} such that e, f is conflicting, i.e. e
is an isolated vertex in Q. Note that the two matching edges from one colour pair (Aj , Bj) cannot
be conflicting.

If there is a colour pair (Aj , Bj) such that both corresponding matching edges ej , fj from M are
conflict-free, then V (ej) and V (fj) are candidates for branch sets since they are connected to all
other matching edges. Remove the corresponding colour classes and add V (ej) and V (fj) to the set
of branching sets. Hence, it remains a set of matching edges M′ and for each edge e ∈ M′ there is an
edge f ∈ M′ with the end vertices in the same colour classes and at least one of e, f is not conflict-
free.

Assume that there is such an edge e ∈ M′ that has exactly one conflicting edge g ∈ M′. Let f, h ∈ M′

be the matching edge with vertices in the same colour class as e and g, respectively. Then e, f, g, h
are distinct and there is no edge between e and g in G. Thus, because of the Kempe colouring, all
possible edges between f and g, h and all possible edges between h and e, f exist in E(G). Assume
that the end vertices of f are x, y and those of g, h are ag, bg and ah, bh, respectively, such that
ag, ah ∈ A for some A ∈ C. Then, V (e), {x, ag, ah}, and {y, bg, bh} induce connected subgraphs and
are adjacent to all remaining matching edges. Thus, these three sets are branch sets obtained from
four colour classes.

Any isolated vertex of Q can be considered as a branch set adjacent to all matching edges. Hence,
we can assume that Q has minimum degree 2. The graph Q is triangle-free; furthermore, for each
matching edge e ∈ V (Q), the neighbourhood NQ(e) is not only independent in Q, the vertices from
the set X :=

∪
f∈NQ(e) induces a clique in G because α(G) ≤ 2. These ideas might help to complete

the proof. However, we cannot reveal the prefect matching since this might destroy adjacencies to
the already considered branch sets. Moreover, it is unclear how to choose a perfect matching to avoid
bad situations.

Getting back to the general case (drop the assumption α(G) ≤ 2), one can ask how to
improve the results that graph with Kempe colourings of size k have Kk-minors for k ≥ 11.
For k ≤ 10, Kriesell actually proved the following stronger version of Theorem 2.20.
We recall that a Kempe colouring might have significantly more colours than an optimal
colouring.

Theorem 2.26 (Kriesell [Kri17] and [Kri20a]). For k ≤ 10, each graph with an arbitrary
Kempe colouring of size k has a Kk-minor. �
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Let us investigate how the proof works. A first observation is that if Theorem 2.26 holds
for an integer k ∈ N, then it holds for graphs with a Kempe k′-colouring for all k′ < k. The
second proof showing the result for k ≤ 10 [Kri20a] uses Song’s and Thomas’s result about
minors in graphs with a certain edge density (Theorem 2.7).

Let G be a graph with a Kempe 10-colouring C and let G′ be obtained from G by removing
the vertices of two colours A,B ∈ C. By choosing two suitable vertices in x, y ∈ V (G′), the
graph G′ + xy has enough edges (by Lemma 2.24) to fulfil the hypothesis of Theorem 2.7.
Since G′ is 7-connected (again by Lemma 2.24), G′ + xy cannot be obtained from clique-
sums and — assuming the cases with a small number of vertices can be solved — G′ + xy

contains a K9-minor. Since we have not used the vertices from A ∪ B, it is possible using
them to extend the K9-minor to a K10-minor of G.

This proof heavily depends on Song and Thomas’s result (Theorem 2.7). A new contri-
bution to this problem could well extend Theorem 2.26. Therefore, Problem 3 concerning
Conjecture 2 is stated here:

Problem 3. Let p ∈ N. How can Kp-minor-free graphs on n vertices and at least (p−2)n−(p−1
2

)
+ 1 be characterised? �

Problem 3 is known for p ∈ {1, 2, . . . , 9}, see page 12.

The first proof of Theorem 2.26 by Kriesell for k ≤ 6 [Kri17] uses a result about rooted
K4-minors. Before going into the details, one also observes that Theorem 2.21 is a “rooted
minors version”. We postpone the considerations of this kind of minor to Section 2.3 and
continue our studies of graphs with few colourings.

2.2.3 Other Concepts of Graphs with Few Colourings

We have seen some results about uniquely colourable graphs, namely graphs with only one
optimal colouring. The proceeding step is to ask for graphs with exactly two optimal proper
colourings. This question is discussed in [Kri20b], where a full characterisation of the max-
imal k-colourable graphs with more than one k-colouring is given. These graphs can be
represented by matrices.

For p ∈ N, let A ∈ Np×p be a matrix of positive integers. We construct a graph GA obtained
from A as follows:

V (GA) := {(z, t) : z ∈ {1, 2, . . . , p}2, t ∈ {1, 2, . . . , A(z)}},
E(GA) := {(w, s)(z, t) : (w, s), (z, t) ∈ V (GA), w1 6= z1, w2 6= z2}.

We notice that GA is the graph with A(z) vertices for each element z of A and two vertices
of GA are adjacent if they differ in all coordinates. It is easy to see that

Ci := {{(z, t) ∈ V (GA) : zi = ℓ} : ℓ ∈ {1, 2, . . . , p}}

for i ∈ {1, 2} are two p-colourings of GA that colour GA row-wise and column-wise, respec-
tively. By a straightforward argument we get χ(GA) = p and C1 and C2 are the only optimal
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colourings of GA (note that A(z) ≥ 1 for all z). We can say that GA belongs to the class of
graphs with few colourings.

Assume first that A is constant, i.e. A ∈ {k}p×p for a k ∈ N. C. Brosse studied Ks-certifi-
cates in GA such that each branch set consists of at most two vertices.

Proposition 2.27 (Brosse [Bro17]). Let p, k ∈ N and GA be obtained from A ∈ {k}p×p.
Then there exists a Ks-certificates in GA with s = k ·

(p
2
)

+ b (k−1) n
2 c + n such that each

branch set has size at most 2. �

As a consequence, there are large clique minors in GA, in particular Ks ≺ GA, and Had-
wiger’s Conjecture holds for these graphs. However, there is an easy observation concluding
this fact even for non-constant matrices:

Let a be the maximum element of A. It is obvious that GA is a subgraph of GA′ with A′ ∈
{a}p×p, the constant matrix with elements a. The graph GA′ is isomorphic to (Kp ×Kp)[Ka],
whereH1×H2 andH1[H2] denote the Cartesian and the lexicographic product of two graphs
H1 and H2, respectively.

Ravindra and Parthasarathy proved that the lexicographic product of two perfect graphs
is perfect [RP77] and the Cartesian product of two graphs is perfect if and only if it does not
contain an induced odd cycle. Since it is well-known that complements (Weak Perfect Graph
Theorem [Lov72]) and induced subgraphs of perfect graphs are also perfect, we conclude that
GA is perfect and therefore fulfils the assertion of Hadwiger’s Conjecture.

Moreover, the definition of GA can easily be generalised by using higher dimensional matri-
ces; therefore obtaining graphs with a given number of optimal colourings. The results of
Proposition 2.27 can easily be translated, rising hope that Hadwiger’s Conjecture will also
hold for these graphs. Nevertheless, arguing by graph products fails as Kp ×Kp ×Kp is not
perfect (for p ≥ 3). We skip further details here and move on to “rooted minors”.

2.3 Rooted Minors

We have investigated uniquely colourable graphs and graphs admitting a Kempe colouring
in the last section. One property of all these graphs is that if the graph is k-colourable
and x1, x2, . . . , xk are vertices having different colours, then there exists a system of edge-
disjoint xi,xj-paths (i 6= j from {1, . . . , k}), namely the paths using only vertices of the
two colours corresponding to xi and xj . This so-called clique immersion of order k at
x1, x2, . . . , xk provides structure to find a Kk-minor and the question arises whether there
exists a Kk-certificate such that x1, x2, . . . , xk belong to different branch sets.

This has been answered affirmatively if one forbids antitriangles for uniquely colourable
graphs, as we have seen in Theorem 2.21. In this section, we further develop our survey
on minors so that we can force the branch sets to contain some predefined vertices. Minors
having such properties are rooted minors; we investigate this concept and start with formal
definitions.



2.3 Rooted Minors 23

Definition of Rooted Minors

Rooted minors were firstly mentioned in Robertson’s and Seymour’s first paper of the
series “Graph minors”. It is well-known that we can consider trees to be rooted, meaning
that we can emphasise one vertex and call it root of the tree. As a generalisation, we say
that a graph is a rooted graph G if one vertex v ∈ V (G) is distinguished, and define the root
ρ(G) := v.

Definition 2.28 (Robertson, Seymour [RS83]). Let G,H be rooted graphs. Then H

is a rooted minor if there exists an H-certificate c = (Vv)v∈V (H) in G such that ρ(G) ∈
Vρ(H). �

Several papers later, Robertson and Seymour introduced rooted bipartite minors:

Definition 2.29 (Robertson, Seymour [RS90]). Let G be a graph and k, ℓ integers. G
has a rooted Kk,ℓ-minor if for any ℓ distinct vertices v1, v2, . . . , vℓ ∈ V (G), there is a Kk,ℓ-cer-
tificate c = (Vv)v∈V (Kk,ℓ) in G such that for each x ∈ B, with B being the second colour
class of Kk,ℓ of order ℓ, there is 1 ≤ i ≤ ℓ with vi ∈ Vx. �

This leads us to the most general version that is stated for example in Wollan’s Ph.D.
thesis about “Extremal Functions for Graph Linkages and Rooted Minors” [Wol05].

Definition 2.30 (Wollan [Wol05; Wol08]). Let G,H be graphs, X ⊆ V (G) with |X| =
|V (H)|, and π : X → V (H) be a bijection. Then the pair (G,X) contains a π-rooted minor
if there exists an H-certificate c = (Vv)v∈V (H) in G such that x ∈ Vπ(x) for all x ∈ X. �

Using this definition, we can reword Theorem 2.21:

Theorem 2.21 (Kriesell [Kri17]). Let G be a uniquely colourable graph with α(G) ≤ 2
and T be a transversal of the unique colouring of G, furthermore let π : T → V (Kk) be
an arbitrary bijection. Then (G,T ) contains a π-rooted Kk-minor with k := |T | ≥ d |V (G)|

2 e.
Furthermore, the branch sets consists of one or two vertices. �

In a multitude of cases, we are interested in Kk-minors. In this case, the choice of π is
irrelevant. Therefore, we can simplify Definition 2.30 in the case that we are considering
Kk-minors, as is done by R. Fabila-Monroy and D. Wood:

Definition 2.31 (Fabila-Monroy, Wood [FW13]). Let G be a graph, X ⊆ V (G) with
k := |X|. Then G contains a Kk-minor rooted at X if there exists an Kk-certificate c =
(Vv)v∈V (Kk) in G such that |Vv ∩X| = 1 for all v ∈ Kk. �

Motivated by Theorems 2.21 and 2.26, Kriesell postulated the following conjecture about
rooted minors in graphs admitting a Kempe colouring, which serves as opening question for
this section:

Conjecture 5 (Kriesell [Kri17]). Let G be a graph, C be its Kempe colouring of size k
and T a transversal of C, then G contains a Kk-minor rooted at T . �

This conjecture is the subject of the following research and results.
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2.3.1 Kriesell’s Conjecture

Kriesell’s conjecture (Conjecture 5) is known to be true for k ≤ 4:

Proposition 2.32. For k ≤ 4, let G be a graph, C be a Kempe colouring of size k, and T
be a transversal of C, then G contains a Kk-minor rooted at T . �

To prove this result, we use a theorem of Fabila-Monroy and Wood [FW13]. This theorem
was already used by Kriesell to prove the first cases (k ≤ 6) of Theorem 2.26. We will see
its varied usability a couple of times in this thesis.

Theorem 2.33 (Fabila-Monroy, Wood [FW13, Theorem 8]). Let G be a 3-connected
graph and a, b, c, d ∈ V (G) distinct vertices. ThenG contains aK4-minor rooted at {a, b, c, d}
if and only if G contains an (ab, cd)-linkage, an (ac, bd)-linkage, and an (ad, bc)-linkage. �

Proof of Proposition 2.32. Let G be a graph, C be a Kempe colouring, and T be a transversal
of C. If k := |C| < 4, we add 4 − k vertices x1, . . . , x4−k to T and fully connected them to G and
among each other. Hence, we can assume that k = 4. By Lemma 2.17, G is 3-connected, and for
distinct a, b ∈ T , there exists a 2-coloured path in the subgraph of G induced by the two colour
classes omitting vertices of the other two colours. Thus, all the linkages exist in G and the assertion
follows from Theorem 2.33. ■

As we have seen in the proof of Proposition 2.32, if there is a graph G with a Kempe
colouring C such that there is A ∈ C with |A| = 1, then we know that this vertex x ∈ A is an
apex vertex of G and x ∈ T . Thus, we can consider G−x, C \A, and T \{x} to use inductive
arguments in order to obtain an K|C|−1-minor rooted at T \ {x}, which easily extends to a
rooted K|C|-minor.

Assuming that there is A ∈ C with |A| very small, it might be possible to contract A to a
single vertex by using only a few other vertices of the graph. This might not disturb the
Kempe colouring too much. For these reasons, there is an interest in graphs with equal sized
colour classes and, in particular, uniquely colourable graphs with equal sized colour classes in
their unique colourings considered in Section 2.2.1. And indeed, the sequence G3, G4, G5, . . .

of graphs considered in Proposition 2.19 also fulfils Kriesell’s conjecture; hence, we can
extend Proposition 2.19:

Proposition 2.34. For each graph of G3, G4, G5, . . . , let Ti be an arbitrary transversal of
the unique colouring Ci of Gi, i ≥ 3. Then Gi contains a Ki-minor rooted at Ti for all
i ≥ 3. �

Proof. We proceed by induction. Since G3 is 2-connected (see Lemma 2.17), there exists a cycle in
G3 containing all three vertices from T3; this proves that G3 contains a K3-minor rooted at T3.

Assume that Proposition 2.34 holds for Gi and arbitrary Ti, i ≥ 3. Let Ai+1 ∈ Ci+1 be the colour
class with V (Gi) ∩Ai+1 = ∅ and ti+1 ∈ Ti+1 ∩Ai+1 the explicitly defined transversal vertex of Ai+1.
For each t ∈ Ti+1 \ ({ti+1} ∪ V (Gi)), there is a vertex vt ∈ V (Gi) and p ∈ {1, 2, . . . , i} such that
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t = vpt . Let wt ∈ V (Gi) be a neighbour of vt and we can assume that wt and wt′ are distinct vertices
for distinct t, t′ ∈ Ti+1 \ ({ti+1} ∪ V (Gi)).

Let T ′ be the set containing t if t ∈ (Ti+1 \ {ti+1}) ∩ V (Gi) and vt if t ∈ (Ti+1 \ {ti+1}) \ V (Gi).
Then T ′ is a transversal of the colouring {A ∩ V (H) : A ∈ Ci+1 \ {Ai+1}} in Gi. By the induction
hypothesis, Gi contains a Ki-minor rooted at T ′. Denote by c = (Vℓ)ℓ∈{1,2,...,i} the Ki-certificate in
Gi.

For each t ∈ Ti+1 \ ({ti+1}∪V (Gi)), there is an index ℓ such that vt ∈ Vℓ. Let V ′
ℓ := Vℓ∪{t = vpt , w

p
t }

and V ′
ℓ := Vℓ if Vℓ ∩ Ti+1 is not empty. We obtain a Ki-certificate c′ = (V ′

ℓ )ℓ∈{1,2,...,i} in Gi+1 rooted
at Ti+1 \ {ti+1}

There exists p ∈ {1, 2, . . . , i} and B := {vp : v ∈ V (Gi)} ⊆ V (Gi+1) such that |B∩(Ti+1 \{ti+1})| ≤ 1
and NGi+1(ti+1) ∩ B 6= ∅. Set V ′

i+1 := (B \
∪
ℓ∈{1,...,i} V

′
ℓ ) ∪ {ti+1}. By the assumptions above,

Gi+1[V ′
i+1] is connected and V (Gi) ⊆ NGi+1(B). Since each bag of c′ contains a vertex of V (Gi),

c′′ = (V ′
ℓ )ℓ∈{1,2,...,i+1} is a demanded Ki+1-certificate, proving that Gi+1 has a Ki+1-minor rooted

at Ti+1. ■

The next question is whether there is an infinite class of graphs fulfilling Conjecture 5. One
affirmative answer is given in M. Kriesell and S. Mohr: Rooted complete minors in line
graphs with a Kempe coloring, Graphs and Combinatorics 35.2 (2019) [KM19]; the entire
paper can be found in Chapter 4. The following theorem holds (Theorem 4.1):

Theorem 2.35. For every transversal of every Kempe colouring of the line graph L(H) of
any graph H there exists a complete minor in L(H) traversed by T . �

Recall Proposition 2.32, which verifies Kriesell’s conjecture for k ≤ 4. This is proved by
using Theorem 2.33. As a consequence, a generalisation of this theorem to rooted K5-minors
would probably lead to new affirmations of Conjecture 5. However, there are no obvious
ways to prove such a generalisation and David R. Wood (personal communication, 2019,
[Woo19]) does also consider this as an interesting open problem. On the other hand, to prove
Proposition 2.32, we just used the Kempe colouring to ensure 3-connectedness and to be
able to apply Theorem 2.33. Hence, it is natural to ask for a relaxation of the hypotheses
of Conjecture 5. This has been done in M. Kriesell and S. Mohr: Kempe chains and
rooted minors [KM]; the paper can be found in Chapter 5. We will now state the problem
and related results.

In all of the following, let G be a graph and C be one of its k-colourings. Furthermore, let
T be an arbitrary transversal of C. For each pair of distinct vertices x, y ∈ T , assume that
there is a connected component, i.e. a Kempe chain, of G[A∪B] containing both vertices x
and y, where A,B ∈ C, x ∈ A, y ∈ B. We can ask the following question:

Question 2. For which integers k and all choices of G, C, T as above doesG have aKk-minor
rooted at T? �

Since graphs with Kempe colourings fulfil the hypotheses of Question 2, an affirmative
answer of Question 2 for all k would imply Conjecture 5.
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Question 2 can be slightly weakened. Let KT be the complete graph on vertex set T . Then
Question 2 asks for a π-rooted KT -minor with π being the identity on T . Let H be the
graph on vertex set T and let x, y ∈ T be joined by an edge in H if and only if there is a
Kempe chain of G[A ∪ B] containing both vertices x and y, where A,B ∈ C, x ∈ A, y ∈ B.
Instead of asking for k in Question 2, we ask for graphs H such that for all choices of G, C, T
with H defined as above, there exists a π-rooted H-minor with π being the identity on T .
The complete survey on this problem can be found in Chapter 5.
It is concluded that Question 2 holds for k ≤ 4 and fails for k ≥ 7, hence, this approach
is not successful to attack Conjecture 5. However, a tiny but nonetheless difficult positive
answer for the case k = 5 in Conjecture 5 is the following proposition:

Proposition 2.36. For k = 5, let G be a graph, C be a Kempe colouring of size k, and
T be a transversal of C such that G[T ] is connected. Then G contains a Kk-minor rooted
at T . �

2.3.2 Open Questions on Rooted Minors

We conclude this section by stating some open problems arising in this thesis.
First of all, it would be great to solve Kriesell’s conjecture (Conjecture 5):

Problem 4. How may we prove that for each graph G with a Kempe colouring C of size k
and for every transversal T of C, that G contains a Kk-minor rooted at T? �

To solve this problem, it might help to find a generalisation of Fabila-Monroy’s and
Wood’s theorem about rooted K4-minors (Theorem 2.33); however, this is very likely not
possible for large k.

Problem 5.
(i) What is the full characterisation of all graphs and all tuples of vertices {a, b, c, d, e} of

G such that there is no K5-minor rooted at {a, b, c, d, e}?

(ii) What are sufficient conditions for a graph G and a fixed vertex set T ⊆ V (G) of k
vertices in order to force a Kk-minor rooted at these vertices? �

Problem 5 (i) is a question by David R. Wood (personal communication, 2019, [Woo19]).
In Question 2 it is asked for an integer k. It has been shown that the question fails for k ≥ 7
and affirmative answers for k′ imply Question 2 for all k ≤ k′. Thus, it is self-explanatory
to ask:

Problem 6. For which integers k′ ≤ 6 does Question 2 hold for all k ≤ k′? �

2.4 Half-Rooted Minors

Remember the following setting as in the previous section: We have a graph G with a
k-colouring C and a transversal T of C such that each pair of vertices x, y ∈ T belongs to the
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same Kempe chain. It is obvious that such a graph Gmight have isolated vertices, separating
vertices, or even vertices of degree 2 that cannot be removed without disconnecting a Kempe
chain of two transversal vertices. The graph in Figure 2.2 is an example.

Figure 2.2: A graph with a 4-colouring such that each pair of transversal vertices (represented
by squares) belong to one Kempe chain.

On the other hand, the vertices in T are connected in a “nice way”. In particular, there exist
all three linkages between the four transversal vertices; these linkages are 2-coloured paths.
It might be of interest to apply some theorems to this graph, e.g. the result of Fabila-
Monroy and Wood about rooted K4-minors (Theorem 2.33), that depend on a certain
connectedness. In the paper T. Böhme, J. Harant, M. Kriesell, S. Mohr, and J. M.
Schmidt: Rooted Minors and Locally Spanning Subgraphs [Böh+] the following question
is considered:

Question 3 (not precisely). Given k, does there exist an integers ℓ(k) that fulfils: For each
graph G and X ⊆ V (G) such that there is no separator S in G with |S| ≤ ℓ(k) separating
vertices of X, G has a k-connected minor (or topological minor) that “contains X”? �

A minor “containing X” should first be precisely defined. Let G be a graph and X ⊆ V (G).
A first idea is to use Definition 2.30 about π-rooted minors but it is very likely that all
k-connected minors have more vertices than |X| and the definition is not suitable. We
have to extend the definition about π-rooted minors (Definition 2.30) and adapt it to our
circumstances.

Definition 2.37. LetG,H be graphs, X ⊆ V (G) with |X| ≤ |V (H)|, and π : X → V (H) be
an injection. Then the pair (G,X) contains a π-rooted minor if there exists an H-certificate
c = (Vv)v∈V (H) in G such that x ∈ Vπ(x) for all x ∈ X. �

This definition differs from Definition 2.30 in that |X| is allowed to be strictly smaller than
|V (H)|. Hence, π cannot be a bijection and we just require π to be an injection. We say that
G contains an k-connected X-minor if there exists a k-connected graph H and an injection
π : X → V (H) such that G has a π-rooted H-minor. In the same vein, we can define a
topological X-minor:

Definition 2.38. Let G,H be graphs, X ⊆ V (G) with |X| ≤ |V (H)|, and π : X → V (H)
be an injection. Then the pair (G,X) contains a π-rooted topological minor if G contains a
subgraph M isomorphic to a subdivision of H with β : V (H) → V (M) ⊆ V (G) such that
β ◦ π = idX . �
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A set S ⊂ V (G) is an X-separator of G if at least two components of G−S contain a vertex
of X. We define κG(X) to be the maximum integer less than or equal to |X| − 1 such that
the cardinality of each X-separator S ⊂ V (G) — if any exists — is at least κG(X). It follows
that κG(X) = |X|−1 if G[X] is complete; however, if X is a proper subset of V (G), then the
converse need not to be true. If κG(V (G)) ≥ k for a graph G, then G is k-connected, and
a V (G)-separator of G is a separator of G in the usual sense. This terminology corresponds
to the commonly used definition of connectedness.

Now, we can precisely phrase Question 3:

Question 3 (precisely). Given k, does there exist an integer g(k) such that for each graph
G and X ⊆ V (G) with κG(X) ≥ g(k), that G has a k-connected X-minor (or topological
X-minor)? �

This question is investigated in the publication covered in Chapter 6:

Theorem 2.39 (see Theorem 6.2). Let k ∈ {1, 2, 3, 4}, G be a graph, and X ⊆ V (G) such
that κG(X) ≥ k. Then:

(i) G has a k-connected X-minor.

(ii) If k ≤ 3, then G has a k-connected topological X-minor. �

The proof can be found in Section 6.2 on page 72. This theorem is best possible in the sense
that there are graphs with arbitrarily high κG(X) without 4-connected topological X-minors
(Observation 6.4), without 6-connected X-minors (Observation 6.5), and there are graphs
with κG(X) = 6 that do not contain a 5-connected X-minor (Observation 6.3).

Since we are interested in the vertices of a graph H corresponding to X, it is convenient
to assume that X ⊆ V (H) and π is the identity on X. This simplification is practised in
Chapter 6 and a suitable definition of these X-minors and edge contraction is provided there.

Theorem 2.39 has some immediate consequences. For example, the following theorem can
be translated to the subsequent corollary.

Theorem 2.40 (Barnette [Bar66]). If G is a 3-connected planar graph, then G has a
spanning tree of maximum degree 3. �

Corollary 2.41. If G is a planar graph, X ⊆ V (G), and κG(X) ≥ 3, then G contains a
tree T containing all vertices of X and T has maximum degree 3. �

Proof. By Theorem 2.39, G has a topological X-minor H containing X (due to our assumption that
X ⊆ V (H)). We apply Theorem 2.40 to H and obtain a tree T ′. A subdivision of T ′ fulfilling the
properties can be found in G. □

As in the proof of Corollary 2.41, many results about 3-connected graph can be translated to
graphs with κG(X) = 3. Since a graph G with a set X ⊆ V (G) such that κG(X) = 3 contains
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a 3-connected topological minor, other results about subgraphs in 3-connected planar and
non-planar graphs containing X can be obtained; this is also done in Theorem 6.8.
In the following, we will focus on structural properties of these graphs. By a result of Tutte,
we know that for all 3-connected graphs G there exists a sequence H0,H1, . . . , Hn = G of
3-connected graphs starting with H0 = K4 and Hi can be obtained from Hi+1 by contracting
a suitable edge [Tut61]. The following proposition generalises this to graphs G with a vertex
set X such that κG(X) = 3.

Proposition 2.42. A graph G and X ⊆ V (G) fulfils κG(X) ≥ 3 if and only if it con-
tains a subgraph H with X ⊆ V (H), dH(x) ≥ 3 for x ∈ X, and there exists a sequence
H0,H1, . . . , Hn, H = Hn of graphs with the following properties:
(i) H0 is a subdivision of K4.

(ii) Hi+1 is a graph such that each pair x, y ∈ V (Hi+1) with dHi+1(x), dHi+1(y) ≥ 3 does
not have two or more connecting paths with only internal vertices of degree 2. Let
P = x0x1 . . . xℓ be a path of length ℓ ∈ N in Hi+1 such that dHi+1(x0), dHi+1(xℓ) ≥ 3
and dHi+1(x1) = · · · = dHi+1(xℓ−1) = 2. Then Hi is obtained from Hi+1 by contracting
P to a new vertex vP of degree at least 3. �

Proof. Let G be a graph with X ⊆ V (G) fulfilling κG(X) = 3. By Theorem 2.39 (ii), G has a 3-con-
nected topological X-minor M . Hence, there is a subgraph H of G obtained from a subdivision of M
and X ⊆ V (H). By the aforementioned result of Tutte [Tut61], there is a sequenceM0,M1, . . . ,Mn

such that M0 is isomorphic to K4, Mn = M , Mi+1 has an edge xy with dMi+1(x), dMi+1(y) ≥ 3, and
Mi is obtained from Mi+1 by contracting xy. This complies with a demanded sequence starting with
H0 as a subdivision ofM0 and Hi is a subdivision ofMi for i ∈ {1, 2, . . . , n}. SinceMi has no parallel
edges, the sequence has the claimed properties and ends in Hn = H.

Assume that for G and X there exists a subgraph H obtained from such a sequence as described in
the assertion of Proposition 2.42. To finish the proof it is sufficient to show that κH(X ′) ≥ 3 with
X ′ := {v ∈ V (H) : dH(v) ≥ 3}. Therefore, let X ′

i := {v ∈ V (Hi) : dHi
(v) ≥ 3} and we show that

κHi+1(X ′
i+1) ≥ 3 if κHi(X ′

i) ≥ 3. Suppose that this is not the case and let i the smallest index with
κHi

(X ′
i) ≤ 2. It is obvious that i ≥ 1.

Then there is a minimal separator S with |S| ≤ 2 and two components C1 and C2 of Hi − S each
containing vertices from X ′

i. Since s ∈ S has a neighbour in C1 and C2, we can assume that S is
chosen to minimize |V (C2)| and, therefore, S ⊆ X ′

i. Thus, the path P is contained in one component
plus S and we may assume that V (P ) ⊆ V (C2) ∪ S. If C2 comprises the whole path P , then S

separates vP and C1, a contradiction. If C2 contains a vertex v ∈ X ′
i such that dHi−1(v) ≥ 3, then

(S \ {x0, xn}) ∪ {vP } is a separator of size at most 2 and separates v from C1, a contraction. If
V (C2) ∩ X ′

i ⊆ {x0, xn}, then the end vertex of P in C2 has degree 2, a contraction. Consequently,
there is v ∈ (X ′

i ∩ V (C2)) \ V (P ) such that dHi−1(v) = 2. There are two paths P1 and P2 from
v to x0 and xn, respectively, and both paths have only inner vertices of degree 2. In Hi−1, there
are two paths from v to vP , a contradiction to the definition of Hi−1. We conclude that there is no
X-separator. ■

We have seen that a graph G and X ⊆ V (G) fulfilling κG(X) = 3 comprises a subgraph
implementing the connectedness of X. Since there is no guaranty for a 4-connected topo-
logical minor if κG(X) = 4, it is not obvious what part of the graph forces κG(X) = 4. A
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step towards some knowledge about these graphs is Theorem 2.39 (i) implying that these
graphs have a 4-connected X-minor. One can think of this as that in these graphs, each
vertex from X can be grouped with some further vertices to obtain bags such that there are
some possibilities to walk along the bags between two vertices of X.

The situation changes rapidly if κG(X) = 5. Apart from trivial conclusions of the smaller
cases — G has a 4-connected X-minor — we do not know much. It is even hopeless to expect
a 5-connected X-minor in this case as demonstrated in Observation 6.3.

Moreover, the following question about cycles in graphs with κG(X) = 4 turns out to be
challenging.

Question 4. Let G be a planar graph, X ⊆ V (G), and κG(X) ≥ 4. Does G contain a cycle
passing all vertices of X? �

As a first approach, we apply Theorem 2.39 on G and obtain an X-minor H of G and an
H-certificate (Vx)x∈V (H) such that H is 4-connected. By a famous result of W. Tutte — see
also the forthcoming Theorem 2.44 — H is Hamiltonian and contains a cycle C through
all vertices of H. For each edge xy in C, we choose an edge e(xy) ∈ E(G) such that the edge
e(xy) connects a vertex in Vx with a vertex in Vy. Since G[Vx] is connected for all x ∈ V (H),
the edges e(xy) and e(xz) for xy, xz ∈ E(C) can be connected by a path in G[Vx]. In this
manner, we obtain a cycle C ′ in G.

e(yx) e(xz)

v

Vx

Figure 2.3: Cycle (red and dashed) cannot be extended in G[Vx] to contain v ∈ X.

In general, it is not possible to route the cycle C ′ from e(xy) to e(xz) for xy, xz ∈ E(C)
through the unique vertex v ∈ X ∩ Vx (see Figure 2.3). Consequently, we need to deeper
look into the proof of Tutte to solve Question 4.

In the next section, the proof of Tutte and related questions will be covered.

2.5 Tutte Cycles

Tutte cycles evolved as a strong tool to prove results about long cycles in graphs. The
original and long-standing question was to prove that 4-connected planar graphs are Hamil-
tonian. In 1931, Whitney [Whi31] published a partial result; he was able to show that
4-connected triangulations of the plane, i.e. 4-connected maximal planar graphs, are Hamil-
tonian.
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The big issue is how to use inductive proof methods on 4-connected graphs. We still seem to
be unable to do induction on the number of vertices of 4-connected graphs. After removing a
vertex of such a graph, it will hardly be fixable to remain 4-connected and one likely cannot
apply the induction hypotheses.

Hassler Whitney [Whi31] has overcome this problem: He proved a lemma that a cycle
of arbitrary length with some minor further conditions in a 4-connected triangulations can
be rerouted to contain the vertices of the cycle and all vertices in its interior. Note that
the new cycle skips all vertices in the exterior. This lemma, which implies immediately
the Hamiltonicity of 4-connected triangulations by applying the lemma to a facial cycle,
was proved by induction on the length of the initial cycle. Using this approach, Whitney
bypassed induction on the number of vertices of the graph and succeeded in showing the
assertion. He explained in his publication [Whi31] that it “seemed to be the first case when
a large class of planar graphs has been shown to have this property [Hamiltonicity]”.

William T. Tutte [Tut56] finally came up with the appropriate idea to show that arbi-
trary 4-connected planar graphs are Hamiltonian. The key component is Tutte cycles.
W. Tutte was able to verify that each planar graph contains a Tutte cycle through two
edges incident with the same face. Performing induction on the number of vertices of planar
graphs came along without serious difficulties. Before getting further into the history of
Tutte cycles, let us consider their definition from Tutte’s paper in 1977 [Tut77].

Definition 2.43 (Tutte [Tut77]). Let G be a graph, H be a subgraph of G and C be a
cycle of G.

(i) The vertices of H incident in G with some edge not belonging to H are the vertices of
attachment of H in G.

(ii) The bridges of C in G are all minimal subgraphs H of G such that each vertex of
attachment of H in G is a vertex of C and H is not a proper subgraph of C.

(iii) We call C a Tutte cycle if all bridges of C in G have at most three vertices of
attachment and at most two vertices of attachment if the bridge contains an edge
incident with the outer face.

(iv) We call a path P in G a Tutte path if all bridges of P in G have the same properties
as bridges of Tutte cycles. �

Note that subgraphs of a graph G isomorphic to K2 are bridges of a cycle C in G if and
only if both end vertices of the edge but not the edge itself belong to C. We say that these
bridges are trivial bridges.

Tutte proved the following theorem.

Theorem 2.44 (Tutte [Tut56]). Let G be a planar graph and e, e′ ∈ E(G) two edges
simultaneously contained in at least one cycle and incident with the outer face. Then G

contains a Tutte cycle. �

The immediate consequence is that 4-connected planar graphs are Hamiltonian. Note
that the vertices of attachment of a non-trivial bridge compose a separator in the graph
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contradicting the 4-connectedness. Based on this initial publication [Tut56] from 1956, a
series of papers have evolved showing slightly stronger results and more artistical proofs.
Even Tutte published several years later a second paper [Tut77], in which he developed the
theory of bridges from scratch and gave a short and simple proof of his Theorem 2.44.

Tutte’s classical result was generalised by Carsten Thomassen [Tho83], implying that
4-connected planar graphs are even Hamilton-connected.

Theorem 2.45 (Thomassen [Tho83]). Let G be a 2-connected planar graph and e ∈
E(G), v ∈ V (G) be an edge and a vertex incident with the outer face, respectively. Then G
contains a Tutte path from an arbitrary vertex u ∈ V (G) through e and ending in v. �

The strongest version among them on 4-connected planar graphs is the theorem due to
Daniel P. Sanders [San97]:

Theorem 2.46 (Sanders [San97]). Let G be a 2-connected planar graph and e ∈ E(G)
an edge incident with the outer face. Then G contains a Tutte path between two arbitrary
vertices u, v ∈ V (G) through e. �

In a recent publication, Schmid and Schmidt investigated algorithmic aspects of Tutte
cycles [SS18]. They concluded that they can be computed in O(n2) for planar graphs on n
vertices.

Tutte paths and cycles are strong tools to prove Hamiltonicity of 4-connected planar
graphs. However, there are mainly two ways of extending these theories. One of them is to
translate the theory and results to other graph classes than planar graphs. The second one
is to derive results from Tutte cycles for subclasses of planar graphs. For the remainder of
this section, the latter question will be considered. An outlook on what can be done with
Tutte paths in non-planar graphs will be presented in Section 2.6.

2.5.1 Essentially 4-connected Planar Graphs

LetG be a graph. We recall that the circumference circ(G) ofG is the length of a longest cycle
of G. By Theorem 2.44, we know that each 4-connected planar graph G is Hamiltonian,
hence circ(G) = |V (G)|. It is natural to ask for the circumference of 3-connected planar
graphs:

Example 2.47. Let G be an arbitrary 3-connected maximal planar graph. We consider the
following construction: For each face α of G, we add a new vertex vα to G and connect vα

to the three vertices incident with α by three edges. It is easy to see that the new obtained
graph G′ is still 3-connected and a triangulation of the plane.

Let C ′ be a longest cycle of G. By the construction of G′, it is impossible that two new
vertices are consecutive on C ′. Hence, C ′ has at most twice as many edges as a longest cycle
C in G. On the other hand, a longest cycle C of G splits the plane into an exterior and
an interior. Replacing the edges of C alternatingly with the vertex of G′ in the incident
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face on the exterior and interior, we obtain a cycle of G′ with exactly twice the number of
edges. �

This Example 2.47 shows that for every ε > 0 there exists a 3-connected maximal planar
graph G such that circ(G) ≤ ε · |V (G)|. The repeated application of the construction
in Example 2.47 was already observed by Moon and Moser [MM63]. They constructed
infinitely many maximal planar graphs G with circ(G) ≤ 9|V (G)|log3 2 and conjectured that
this bound is of right magnitude, i.e. there is a constant c such that each 3-connected planar
graph G has circ(G) ≥ c · |V (G)|log3 2. This was later approved by Chen and Yu [CY02].

We observe that the circumference of 3-connected planar graphs is bounded by a sublinear
function whereas for 4-connected planar graphs it is the identity function by Tutte’s The-
orem 2.44. It is natural to ask how a slight weakening of the connectedness condition of
planar graphs affects the circumference and whether there is such a graph class with a linear
bounding function.

Definition 2.48. Let S be a minimal separator of a graph G. We say that S is a trivial
separator if at most one component of G− S contains edges.

A 3-connected graph is called essentially 4-connected if all 3-separators are trivial. �

Each 4-connected graph is essentially 4-connected and the class of (3-connected) essentially
4-connected planar graphs can be considered as a graph class between 3-connected and
4-connected planar graphs with respect to a chain of inclusions. Let G be a 4-connected
maximal planar graph on n vertices and G′ be the graph obtained from the construction in
Example 2.47. Then G′ has n + (2n − 4) vertices by Euler’s formula and circ(G′) = 2n
since G was Hamiltonian. Furthermore, G′ is an essentially 4-connected maximal planar
graph. We remark:

Observation 2.49. There are essentially 4-connected maximal planar graphs G such that
circ(G) = 2

3(|V (G)| + 4). �

Bill Jackson and Nicholas C. Wormald proved a first linear lower bound on the cir-
cumference of essentially 4-connected planar graphs [JW92].

Theorem 2.50. For any essentially 4-connected planar graph G on n vertices, circ(G) ≥
2 n+4

5 . �

They did not explicitly postulate the following conjecture but since the publication of their
first paper there has been put quite some effort into approaching this best-possible (see
Observation 2.49) bound.

Conjecture 6 (see Conjecture 12 in Chapter 8). For every essentially 4-connected planar
graph G on n ≥ 8 vertices, circ(G) ≥ 2

3(n+ 4). �

A next step was taken by Fabrici, Harant, and Jendroľ [FHJ16] as they showed that
circ(G) ≥ 1

2(n+ 4) for each graph G fulfilling the condition of Conjecture 6.
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In I. Fabrici, J. Harant, S. Mohr, and J. M. Schmidt: Longer cycles in essentially
4-connected planar graphs, Discussiones Mathematicae Graph Theory 40.1 (2020) [Fab+20b]
— see Chapter 7 for the entire paper — the following theorem was proved and the factor 1

2
was pushed to 3

5 .

Theorem 2.51 (see Theorem 7.1). For any essentially 4-connected planar graph G on n

vertices, circ(G) ≥ 3
5(n+ 2). �

The complete proof can be found on page 85; here, I like to briefly present the main idea.
Let G be an essentially 4-connected planar graph G and C be a Tutte cycle of G. Assume
that there is a non-trivial bridge H of C in G, then H is isomorphic to K1,3 since each non-
trivial bridge has three vertices of attachment and there is at most one inner vertex, i.e.
|V (H) − V (C)| = 1. This is due to the fact that otherwise the three vertices of attachment
of H are a non-trivial 3-separator.

Thus, the number of vertices aside a Tutte path is strongly related to the number of faces
in the following subgraph of G: Let G′ be the graph obtained from G by removing all chords
of C, i.e. by removing all edges in E(G)\E(C) that connect vertices of C. Using a charging-
discharging argument, we conclude that there exists a Tutte cycle in G of desired length.
For this, we charge all faces of G′ adjacent to at most one vertex not belonging to C. After
two rechargings, we can bound the number of edges in C and thereby the length of a longest
cycle in G.

Doing the same procedure with a slightly more careful case distinguishing [Fab+20c], it is
even possible to prove circ(G) ≥ 5

8(n+ 2).

The idea in the proof of Theorem 2.51 is to ignore chords of the Tutte cycle because one
does not have much control over them. The situation changes completely if we assume
that G is a maximal planar graph. In this case, it is rather useful to remove all vertices
of G not belonging to a Tutte cycle C of G and keep the chords. The obtained graph is
still maximal planar and the essentially 4-connectedness forces some structure. A complete
analysis is done in I. Fabrici, J. Harant, S. Mohr, and J. M. Schmidt: Circumference
of essentially 4-connected planar triangulations [Fab+], which can be found in Chapter 8.
It was possible to verify Conjecture 6 for maximal planar graphs, see Theorem 8.2.

2.5.2 Spectrum

Recall Thomassen’s result about Tutte paths (Theorem 2.45).

Example 2.52. Let G be a 4-connected planar graph and x ∈ V (G), we prove that G
contains a cycle through all vertices but x. To this extent, let y ∈ NG(x) and v ∈ NG(y)\{x}
such that vxy is not a facial triangle. By Theorem 2.45, G contains a Tutte path P from
v to x using the edge xy. This edge will be the last edge of P . We can remove this edge and
add the edge vy to obtain the desired cycle. �

Thomas and Yu [TY94] extended the observation in Example 2.52 and confirmed a conjec-
ture of Michael D. Plummer [Plu75] that every 4-connected planar graph contains a cycle
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through all but two vertices. Continuing in this manner, it is natural to ask the following
question:

Question 5. Let G be a 4-connected planar graph and k an integer with 3 ≤ k ≤ |V (G)|,
does there exist a cycle of length k in G? �

We define the spectrum of a graph G:

Definition 2.53. Let G be a graph on n vertices. The spectrum of a graph G is the maximal
set S ⊆ {3, 4, . . . , n} of integers such that G has a cycle of all lengths k ∈ S.

If G has cycles of all lengths k for 3 ≤ k ≤ n, i.e. S = {3, 4, . . . , n}, then G is called
pancyclic. �

Thus, we can write the following conjecture about Question 5, which was already addressed
by J A. Bondy:

Conjecture 7 (Bondy [Bon71]). A planar Hamiltonian graph in which every vertex has
the valency at least 4 is pancyclic. �

By the results in [Tho83] and [TY94], Question 5 has been answered affirmatively in case of
k ∈ {|V (G)|, |V (G)|−1, |V (G)|−2}. A simple counting argument shows that a planar graph
with minimum degree at least 4 always contains a triangle.

Assume that G is an arbitrary essentially 4-edge-connected cubic planar graph with girth at
least 5. Then the line graph L(G) of G is 4-regular, 4-connected, and planar. As a cycle
of length 4 in L(G) would correspond to a 4-cycle in G, L(G) has no cycle of length 4.
An example for such a graph is the dodecahedron, which refutes Conjecture 7. Beside of
4-cycles, no 4-connected planar graph without a cycle of length k for 3 ≤ k ≤ |V (G)|, k 6= 4
is known.

Furthermore, by results of Chen, Fan, and Yu [CFY04] we know that using Tutte paths
one cannot get to cycles of length below n − 3 in 4-connected planar graphs on n vertices.
They further proved that — assuming n is large enough — each of those graphs on n vertices
contains cycles of length k for k ∈ {n, n−1, . . . , n−6} by using Tutte paths and contractible
edges. Cui, Hu, and Wang [CHW09] showed that there is also always a cycle of length n−7.

We can summarise this in the following widely open conjecture due to Joseph Malkevitch:

Conjecture 8 (Malkevitch [Mal88]). Every 4-connected planar graph with a cycle of
length 4 is pancyclic. �

Together with Tomáš Madaras and Roman Soták in Košice (personal communication,
2017, [MS17]), we asked whether it is possible to obtain some results about the middle part
of the spectrum. A possible draft of this problem is the following.

Proposition 2.54. Let G be a 4-connected planar graph on n vertices. Then there is an
integer k with 1

3n ≤ k ≤ 2
3n such that G contains a cycle of length k. �
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Proof. By Theorem 2.44, G contains a Hamiltonian cycle C that separates the plane into an
interior and an exterior. Let G′ be the graph obtained from G by removing all chords of C laying in
the exterior. By Euler’s formula, the number f of faces of G is

f = |E(G)| − n+ 2 ≥ 1
2 4n− n+ 2 = n+ 2.

Thus, we can assume without loss of generality that G′ has at least n
2 + 1 faces.

Let H be the weak dual of G′, that is the dual of G′ without the outer face. The graph H has at
least n

2 vertices and is a tree. We assign the following weight function w : V (H) ∪ E(H) → Z to H:

w(α) := size of face α in G, for α ∈ V (H),
w(e) := −2, for e ∈ E(H).

Let T be a subtree of H and take all edges of G incident with a vertex of T but not corresponding
to the dual edges of T . It is easy to see that these edges represent a cycle in G and the weight
w(T ) :=

∑
v∈V (T ) w(v) +

∑
e∈E(T ) w(e) of T is the length of this cycle.

Thus, we transformed the problem of finding a cycle to the question for subtrees of specific weights.
Assume first that H contains a vertex v of weight 1

3n ≤ w(v) ≤ 2
3n. Then T := H[{v}] is the desired

subtree. Since w(H) = n and H has at least n
2 vertices, w(v) ≤ 1

3n for all vertices v ∈ V (H). We
build at tree T starting with an arbitrary vertex v ∈ V (H) and add iteratively vertices to T until the
weight of T exceeds n

3 . Then T has the desired weight and Proposition 2.54 is proved. ■

Originating this idea, Solomon Lo [Lo19] approached the problem of finding subtrees of
weighted trees having some specific weight around the half of the total weight. He proved a
rather technical theorem I will skip here and concentrate on its corollary.

Corollary 2.55 (Lo [Lo19]). Let G be a planar Hamiltonian graph with δ(G) ≥ 4, then
G contains a cycle of length k for each k ∈ {b |V (G)|

2 c, d |V (G)|
2 e, d |V (G)|

2 e + 1, d |V (G)|
2 e + 2,

d |V (G)|
2 e + 3}. �

This is a first result about the middle part of spectrum of 4-connected planar graphs. We
conclude that we know that 4-connected planar graphs on n vertices — assuming n is large
enough — have cycles of lengths 3, 5, n

2 ,
n
2 +1, n

2 +2, n
2 +3, n−7, n−6, . . . , n−1, n. One cannot

guarantee that there are cycles of length 4. We like to end this section with the following
problem to solve Conjecture 8:

Problem 7. Does each 4-connected planar graph G have cycles of length k for every k ∈
{3, 5, 6, . . . , |V (G)|}, i.e. is G almost pancyclic (cycles of length 4 may be missing)? �

2.6 Tutte Cycles in Non-planar Graphs

Tutte paths have proved being a strong tool to obtain results on cycles and paths in planar
graph. There were a some attempts to generalise Tutte paths on graphs of higher genus.
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For instance, Thomas and Yu [TY94] investigated Tutte paths in the projective plane.
They were able to modify such graphs to obtain planar ones and apply the Tutte theory.
In the next Section 2.6.1, we first consider another possibility to use Tutte path on a graph
class by reducing problems to associated planar graphs. In Section 2.6.2, a first idea about
a Tutte theory on non-planar graphs is developed.

2.6.1 1-planar Graphs

In this section, we consider 1-planar graphs and obtain results about long cycles in this graph
class by applying Tutte’s theorem (Theorem 2.44) to certain related graphs. First, let us
introduce 1-planar graphs as done in [Moh19].
All graphs can be represented by drawings in the plane, such that vertices are distinct points
and edges are arcs, i.e. non-self-intersecting continuous Jordan curves. A graph G is planar
if there exists a drawing of G such that two arcs only meet at end vertices. There are several
approaches to generalise the concept of planarity. One of them is to allow a given constant
number of crossings for each edge in a drawing. It is easy to see that a drawing can be
changed locally to a different drawing with fewer crossings if two edges with a shared end
vertex cross or if two edges cross several times. Thus, we can restrict our considerations to
drawings with the property that if two edges cross, then they do so exactly once and their
four end vertices are mutually distinct.

Definition 2.56. A graph G is 1-planar if there exists a drawing such that each edge is
crossed at most once by another edge. �

This class of 1-planar graphs was introduced by Gerhard Ringel [Rin65] in connection
with the simultaneous vertex-face colouring of plane graphs; properties of 1-planar graphs
have been widely studied since then.
A graph G from a family G of graphs is maximal if G + uv /∈ G for any two non-adjacent
vertices u, v ∈ V (G). In this sense, a graph is maximal 1-planar if it is 1-planar but each of
the graphs G+ uv for non-adjacent vertices u, v ∈ V (G) is not.

The circumference of a graph G, i.e. the number of vertices of a longest cycle of G is denoted
by circ(G). If circ(G) = n for a graph G on n vertices, then G is Hamiltonian and a longest
cycle of G is a Hamiltonian cycle.
Recall from Section 2.5.1 that there are infinitely many maximal planar graphs G with
circ(G) ≤ 9|V (G)|log3 2 by a result of Moon and Moser [MM63] and that this bound is of
right magnitude as proved by Chen and Yu [CY02]. We are interested in the circumference
of 3-connected maximal 1-planar graphs. In [HMS12], the question remained open whether
every maximal 1-planar graph is Hamiltonian. Moreover, the question has arisen whether
such a construction as the one of Moon and Moser is also possible in the class of 3-connected
maximal 1-planar graphs.

The length of cycles in the class of 1-planar graphs is investigated in I. Fabrici, J. Harant,
T. Madaras, S. Mohr, R. Soták, and C. T. Zamfirescu: Long cycles and spanning sub-
graphs of locally maximal 1-planar graphs, Journal of Graph Theory 95.1 (2020) [Fab+20a];
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the entire paper can be found in Chapter 9. With the Theorems 9.1 and 9.5, we get the
following Theorem 2.57 providing the sufficient tools for giving an answer to both questions
(see also [Moh19]).

Theorem 2.57.

(i) If H is a maximal planar graph on n ≥ 3 vertices, then there is a 3-connected maximal
1-planar graph G on 7n− 12 vertices such that circ(G) ≤ 4 · circ(H).

(ii) Each 3-connected maximal 1-planar graph has a spanning 3-connected planar subgraph.
�

The proof of Theorem 2.57 (ii) is done by carefully removing some edges from crossings;
the 3-connectedness is preserved by the fact that the graph is maximal 1-planar (see Theo-
rem 9.5). For Theorem 2.57 (i) we refer to the proof of Theorem 9.1.

Given a 3-connected maximal planar graph H with circ(H) ≤ 9|V (H)|log3 2, e.g. H is a
graph as constructed by Moon and Moser in [MM63]. For the graph G obtained from H

in Theorem 2.57 (i), circ(G) ≤ c′ · |V (G)|log3 2 holds for a suitable constant c′. Hence, the
circumference of these graphs is still sublinear in the same magnitude.

On the other hand, let G be a 3-connected maximal 1-planar graph on n vertices and H be a
planar 3-connected spanning subgraph which must exist by Theorem 2.57 (ii). Using Chen
and Yu’s result, H has a cycle of order at least c · nlog3 2. But this is also a cycle of G and
immediately Corollary 2.58 follows:

Corollary 2.58. There are positive constants c and c′ such that each 3-connected maximal
1-planar graph G has circ(G) ≥ c · |V (G)|log3 2 and an infinitely family of maximal 1-planar
graphs G with circumference circ(G) ≤ c′ · |V (G)|log3 2 exists. �

In the 4-connected case, Theorems 9.2 and 9.3 lead to the forthcoming Theorem 2.59,
showing that there is a difference between the classes of planar and 1-planar graphs.

Theorem 2.59.

(i) Each 4-connected maximal 1-planar graph is Hamiltonian.

(ii) There are infinitely many non-Hamiltonian 5-connected 1-planar graphs. �

The proof of Theorem 2.59 (i) is a byproduct of stronger claims (Theorems 9.3 and 9.4)
that are discussed in Chapter 9. Since the main idea is the same I like to present it here.

Let G be a 4-connected maximal 1-planar graph and assume that G is embedded in the plane.
If uv, xy ∈ E(G) are two crossing edges, then we can insert a new vertex z at the crossing
point and replace the edges uv, xy by uz, vz, xz, yz. Since G is maximal 1-planar, it is an
easy observation that for crossing edges uv, xy ∈ E(G) all remaining four edges ux, uy, vx, vy
are present in G. Thus, the vertex z cannot strongly influence the connectedness of G, and
indeed, the new obtained graph is still 4-connected, see Lemma 9.6. In this way, we can
construct a planar graph G′ and apply Tutte’s theorem, e.g. Theorem 2.44, to obtain a
Hamiltonian cycle of G′, which can be traced to a Hamiltonian cycle of G.
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2.6.2 An Approach to a New Theory

It is known that a 1-planar graph on n vertices has at most 4n − 8 edges [PT97]; hence, it
is 7-degenerate. As a consequence, a 1-planar graph can be at most 7-connected. Figure 2.4
(right picture) presents a 7-connected 1-planar graph obtained from the 4-regular 4-connected
planar graph on the left in Figure 2.4 by inserting two crossing edges in each 4-face.

Figure 2.4: From left to right: to a 4-regular planar graph with each vertex incident to
at least three 4-faces we insert two crossing edges into all 4-faces to obtain a 7-connected
1-planar graph.

In the previous section, we saw a possibility to reduce the Hamiltonian problem of maximal
1-planar graphs to the class of planar graphs and apply Tutte theory. The paper about
1-planar graphs answers many questions as one can see in Table 9.1. But the following
problem has remained open:

Problem 8. Is every 6-connected (not maximal) 1-planar graph Hamiltonian? �

The following Figure 2.5 presents a 7-connected 1-planar graph embedded in the plane. If we
remove an edge of each crossing, the resulting graph is not even 4-connected. Furthermore,
inserting a vertex to each crossing of the 6-connected 1-planar graph without the dashed
edge drawn in Figure 2.5 produces a non-4-connected graph, too.

Thus, it might be very likely that it is not possible to obtain a 4-connected planar graph from
a 6-connected or even 7-connected 1-planar graph with the ideas of Chapter 9. Consequently,
new ideas need to be developed to tackle Problem 8. In the following, we like to sketch one
possible approach and discuss its weaknesses.

We start by recalling Definition 2.43 that defines bridges of a cycle C. This concept is used
by W. Tutte [Tut56] in his proof of the Hamiltonicity of 4-connected planar graphs. It
is obvious that we can replace the cycle C in Definition 2.43 by any subgraph F . Given a
graph G and a subgraph F of G, we define in the same manner the F-bridges as the minimal
subgraphs H of G such that each vertex of attachment of H in G is a vertex of F and H is
not a proper subgraph of F .
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Figure 2.5: A 7-connected 1-planar graph without a planar 4-connected subgraph that can
be obtained by removing crossing edges. The circles are filled by copies of the right graph
in Figure 2.4.

For 2-connected planar graphs, Tutte showed that one can find a path P such that all
P -bridges do not have to many vertices of attachment. If the graph is in addition 4-connected,
all P -bridges can only be edges, i.e. trivial bridges and the graph is Hamiltonian.

Lemma 2.60 (Tutte [Tut56]). Let G be a 2-connected planar graph with outer cycle C
and v, u and e be two distinct vertices and a edge of C, respectively. Then G has a path P
from v to u containing e such that

(i) Each P -bridge has at most three vertices of attachment.

(ii) Each P -bridge containing an edge of C has at most two vertices of attachment. �

To affirmatively answer Problem 8, it might be a promising approach to develop an analogous
theory for 1-planar graphs. One component of the theory — as seen in Lemma 2.60 —
are facial cycles, the observation that a cycle separates the plane into an exterior and an
interior, and the concept of bridges allowing one to deal with induction without concerns
about keeping the connectedness.

In 1-planar graphs there might be no facial cycle of the outer face; without even knowing
what a face of a 1-planar graph could be. Moreover, a cycle can still be crossed by an
edge connecting some subgraph in the interior with a subgraph in the exterior of a cycle.
Therefore, we start with a possible definition of faces in 1-planar graphs. On that basis, we
introduce a new concept of a way how to bound faces in 1-planar graphs. This will involve
a path system of two parallel paths separating an interior from an exterior.

All graphs are assumed to be drawn in the Euclidean plane in a way such that edges are
allowed to be crossed, and if an edge e is crossed, then it is crossed by exactly one edge f and
the end vertices of e, f are distinct. Given a face α of a planar graph, there is not necessarily
a facial cycle but instead, we can define a facial walk composed of the facial cycles of the
blocks and the edges incident only with the face α.
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For a 1-planar graph G we define an associated planar graph G× as follows (see for exam-
ple [HMS12]):

Definition 2.61. Let G be drawn in the plane. Then, G× is the plane graph obtained from
G by turning all crossings to new 4-valent vertices. If uv and xy are two crossing edges of G,
then let c be the vertex of G× corresponding to the crossing point of uv and xy. The edges
uc and vc are the half-edges of uv. �

Let α be a face of the planar graph G× such that ucx is a subpath of the facial cycle of α
in G×. If ux is an edge of G and ux is crossed by another edge in G, then it is possible to
redraw the edge ux in G such that ux lies in a region of G corresponding to the face α of
G×. It follows that ux is not crossed by another edge in G anymore. Thus, in the following
we will assume that 1-planar graphs are embedded such that if uv and xy are crossing edges
of G, then the edge xu (if exists) is not crossed by another edge in G.
Hereafter, if we mention a face of a 1-planar graph, we actually mean a face of G×. And an
edge of G is incident with a face if the edge itself or one of its half-edges is incident with the
face in G×. Note that this goes along with planar graphs, since for a planar graph G, it is
G = G×.

To define the path system presenting facial boundaries, we need a few definitions.

Definition 2.62. Let G be a 1-planar graph. We call two edges uv and xy of G parallel
if u, v, x, y are pairwise distinct and all possible six edges between these vertices can be
inserted into G such that the embedding of the graph remains 1-planar and there is exactly
one crossing between these six edges. �

We remark that two crossed edges are always parallel as explained above.

Definition 2.63. Let G be a 1-planar graph and α be a face of G. Then there is a facial
walk of α in G× which corresponds to vertices, crossing points, non-crossing edges, and half-
edges of G. We call all these objects together the facial stripe S(α) of α. All vertices of G
in S(α), i.e. all vertices incident with α, are the facial vertices V (S(α)) of α.
Let H be the graph G× − V (S(α)) and β be the face of H with α ⊂ β. Then, for each
remaining component there is a facial walk of β in H which corresponds to vertices, crossing
points, non-crossing edges, and half-edges of G. We call all these objects together the outer
stripe O(α) of α. All vertices of G in O(α) are the outer stripe vertices V (O(α)) of α.
The facial stripe of the outer face is also called the boundary stripe of G. The union of facial
stripe and outer stripe of a face α is called the α-band. �

Note that the facial stripe might not be a cycle of the graph G even if G is highly connected.
The following Lemma 2.64 shows that for a face α of G the α-band separates the face from
the remaining graph in a way as facial cycles of planar graphs also do. We omit the proof of
the lemma here.

Lemma 2.64. Let G be a graph and α be a face of G. Take an arbitrary 1-planar graph H
and embed it in α. Insert edges to connect H to G such that the embedding remains 1-planar.
Then all vertices of attachment of H in the new graph are vertices of the α-band. �
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We have found useful analogues for faces and facial boundary cycles in 1-planar graph. The
Definition 2.65 explains how to describe the face-incident vertices and edges in Tutte’s
theorem.

Definition 2.65. Let G be a 1-planar graph with outer face α.

(i) Two vertices u and u′ of G are close if either the edge uu′ is non-crossed in G or an
edge uu′ can be added to G such that uu′ is a non-crossing edge.

(ii) Two vertices u and u′ of G are called a band pair of α if u and v are close and
u ∈ V (S(α)), i.e. u is a facial vertex of α, and u′ ∈ V (O(α)), i.e. u′ is a outer stripe
vertex of α.

(iii) Two edges e and e′ of G are called parallel edges along α if e and e′ are parallel and
either

• e is an edge of the facial stripe and V (e′) ⊆ V (O(α)) or
• e and e′ cross and each of them has one end vertex in V (S(α)) and one end vertex

in V (O(α)). �

We are now prepared to define a bridge theory for 1-planar graphs. We state the following
Conjecture 9, which implies an affirmative answer to Problem 8. It might be promising to
follow the same pattern as in the proof of Theorem 2.44 by C. Thomassen [Tho83]. How-
ever, Conjecture 9 seems not to be obvious and easy to prove and there have appeared some
difficulties while working on this conjecture. At least, the conjecture holds for 4-connected
planar graphs which can be seen by applying Tutte’s theorem on the graph without outer
facial cycle. Therefore, it remains a conjecture and maybe time will turn it into a theorem.

Conjecture 9. Let G be a 4-connected 1-planar graph with outer face α and let u, u′ be a
band pair of vertices with u ∈ V (S(α)) and u′ ∈ V (O(α)). Furthermore, let v, v′ be another
pairwise distinct band pair and let e, e′ be a pair of parallel edges along α.

Then G contains two vertex-disjoint paths connecting U = {u, u′} with V = {v, v′} starting
with edges uc, u′c′ and each path contains one edge of {e, e′}. Let P be the union of these
two graphs, then

(i) each P -bridge has at most five vertices of attachment,

(ii) each P -bridge containing an edge of the α-band has at most four vertices of attachment,
and

(iii) the edges uc, u′c′ are parallel along α or G[u, u′, c, c′] is complete. �
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We use standard terminology from graph theory and consider simple, finite graphs G with
vertex set V (G) and edge set E(G). A k-colouring of a graph G with k ∈ N is a partition
C of the vertex set V (G) into k′ ≤ k non-empty sets A1, . . . , Ak′ . The colouring C is called
proper if each set is an independent set of G, that means that there are no two adjacent
vertices of G in the same colour class A ∈ C. The chromatic number χ(G) is the minimum
k such that there is a proper k-colouring of G.

We call a graph G uniquely k-colourable if χ(G) = k and for any two proper k-colourings
C and C′ of G, we have C = C′. It is easy to see that the complete graph Kk on k vertices
is uniquely k-colourable and we can obtain a family of uniquely k-colourable graphs by
consecutively adding a vertex and join it to all vertices except those of one colour class. This
raises the question if all uniquely k-colourable graphs contain Kk as a subgraph.
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The properties of uniquely colourable graphs have been widely studied, for example in
[AMS01; BS76; CG69; EHK98; HHR69; Neš73; Xu90]. One such property — can be found in
[CG69] — is that the union of any two distinct colour classes induces a connected graph. As-
sume to the contrary that there is a graph G with unique colouring C and there are A,B ∈ C,
A 6= B, such that G[A ∪ B] has at least two components. Let H be such a component and
consider the colouring C̃ with C̃ = (C \ {A,B}) ∪ {(A\V (H)) ∪ (B∩V (H))} ∪ {(B \V (H)) ∪
(A ∩ V (H))}. Then C̃ is a proper colouring of G distinct from C, a contradiction. We say C̃
is obtained from C by a Kempe change along H.

This implies that in a uniquely k-colourable graphs every vertex has a neighbour in every
other colour class. Hence, it is connected and has minimum degree at least k − 1. Further-
more, a uniquely k-colourable graphs is (k−1)-connected. To see this, assume that there
is a non-complete graph G with a unique k-colouring C and for two non-adjacent vertices
x, y, there is a separator S with |S| ≤ k − 2. But then there are distinct A,B ∈ C with
A ∩ S = ∅ = B ∩ S and (G − S)[A ∪ B] = G[A ∪ B] is connected. Since x and y have
neighbours in A ∪B, they cannot be separated by S, a contradiction.

This question whether a uniquely k-colourable graphs always contains Kk as a subgraph
was first disproved by Harary, Hedetniemi, and Robinson [HHR69]. They presented a
uniquely 3-colourable graph F without triangles. For k ≥ 4, a uniquely k-colourable graph
is F +Kk−3, where G1 +G2 is the complete join of the two graphs G1 and G2.

Several years later, Xu [Xu90] proved that the number of edges of a uniquely k-colourable
graph on n vertices is at least (k−1)n −

(k
2
)
and that this is best possible. He further

conjectured that uniquely k-colourable graphs with exactly this number of edges have Kk

as a subgraph [Xu90]. This conjecture was disproved by Akbari, Mirrokni, and Sad-
jad [AMS01]. They constructed a K3-free uniquely 3-colourable graph G on 24 vertices and
45 edges. For the cases of k ≥ 4, again G+Kk−3 disproves the conjecture.

We are interested in constructions of uniquely k-colourable graphs such that the colour classes
have “nearly the same size”. One useful concept for this is the critical chromatic number
introduced by Komlós [Kom00] in the context of bounds on a Tiling Turán number. Given
a k-colourable graph H on h vertices, let σ(H) be the smallest possible size of a colour class
in any proper k-colouring of H. Then the critical chromatic number is defined by

χcr(H) = (χ(H) − 1) · h

h− σ(H)
.

The critical chromatic number fulfils χ(H) − 1 < χcr(H) ≤ χ(H) and equality holds if and
only if in every k-colouring of H the colour classes have the same size.

All constructions above have critical chromatic number close to χ(G) − 1 = k − 1.

In the following, we give a new construction of uniquely k-colourable graphs. Given a
uniquely k-colourable graph H without Kk and χcr(H) = χ(H), this construction leads to a
uniquely (k+1)-colourable graph G without Kk+1 and χcr(G) = χ(G). We further compare
this construction with a result of Nešetřil [Neš73] and a probabilistic proof for the existence
of uniquely colourable graphs by Bollobás and Sauer in [BS76].
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Construction

Let H be a k-colourable graph with a proper k-colouring C = {A1, . . . , Ak}. Then G = ν(H)
with a proper (k+1)-colouring C′ is obtained by

V (G) = V (H) ∪ {vp : v ∈ V (H), p = 1, . . . , k},
E(G) = E(H) ∪ {vpup : vu ∈ E(H), p = 1, . . . , k}

∪ {vup, uvp : vu ∈ E(H), p = 1, . . . , k}
∪ {vpvq : v ∈ V (H), v ∈ Ap, q ∈ {1, . . . , k} \ {p}}

and

C′ = {A′
i : i = 1, . . . , k} ∪ {{vp : v ∈ Ap, p = 1, . . . , k}}

with A′
i = {v, vp : v ∈ Ai, p ∈ {1, . . . , k} \ {i}}.

Theorem 3.1. Let H be a uniquely k-colourable graph with k ≥ 3, then ν(H) is uniquely
(k+1)-colourable. �

Proof. First, it is straightforward to check that C′ is a proper colouring with k+1 colours. Therefore,
assume that there is another colouring C̃ with k+1 colours.

Fix a colour D ∈ C̃. For v ∈ V (H) ∩D consider the vertices vq for all q = 1, . . . , k. They do not have
the same colour as they are not all pairwise non-adjacent. Thus, there is an index pv ∈ {1, . . . , k}
such that vpv /∈ D. Let v(D) be v if v /∈ D and vpv otherwise, and X(D) = {v(D) : v ∈ V (H)}. By
the construction, G[X(D)] is isomorphic to H and misses the colour D; hence it is coloured with k
colours. By the hypothesis, this is the only colouring of G[X(D)] and if v(D), w(D) with v, w ∈ V (H)
have a common colour, then v(D′), w(D′) are coloured uniformly for all D′ ∈ C̃.

Assume first that V (H) ∩D 6= ∅ for all D ∈ C̃. If there were v, w ∈ V (H) ∩D for some D ∈ C̃ such
that v(D) ∈ A,w(D) ∈ B for distinct A,B ∈ C̃, then v(C), w(C) ∈ D for C ∈ C̃ \ {A,B,D} would
have different colours, contradiction. Hence, for each D ∈ C̃ there is a colour class AD ∈ C̃ such that
v(D) ∈ AD for all v ∈ V (H) ∩D.

If there was D ∈ C̃ such that V (H) ∩ AD 6= ∅, then for each B ∈ C̃ \ {A,D}, the induced subgraph
G[X(D)∩(AD∪B)] would be connected. As v(D) ∈ AD for all v ∈ V (H)∩D, the set V (H)∩(D∪AD)
is independent and there is a vertex w ∈ V (H) ∩ B with NH(w) ∩ D 6= ∅ 6= NH(w) ∩ AD. This
vertex w and, therefore, all wi with i ∈ {1, . . . , k} have neighbours in all colours except B. Hence,
{w,wi : i ∈ {1, . . . , k}} ⊆ B, contradiction.

Consequently, the vertices in V (H) are coloured by k colours. Then, because of the uniquely k-coloura-
bility of H, {A∩V (H) : A ∈ C̃, A∩V (H) 6= ∅} = C. Let D ∈ C̃ be the colour set with D∩V (H) = ∅.
Let v ∈ V (H) with v ∈ A ∈ C̃ and consider the vertices vq, q = 1, . . . , k. Since G[(V (H)\{v})∪{vq}]
is isomorphic to H and vpvq ∈ E(G) for some p ∈ {1, . . . , k} and all q ∈ {1, . . . , k} \ {p}, either
vp ∈ A and vq ∈ D for q ∈ {1, . . . , k} \ {p}, or vp ∈ D and vq ∈ A. In the first case, let w ∈ V (H) be
a neighbour of v with w ∈ B ∈ C̃ and choose s, t ∈ {1, . . . , k} \ {p} such that s 6= t and wswt ∈ E(G);
this is possible since k ≥ 3. Since G[(V (H) \ {w}) ∪ {ws}] and G[V (H) \ {w} ∪ {wt}] are isomorphic
to H, ws ∈ B,wt ∈ D or vice versa. This is a contradiction as vsws, vtwt ∈ E(G) and vs, vt ∈ D.
Therefore, we can conclude that vp ∈ D and vq ∈ A, and, with the arbitrary choice of v, it follows
C̃ = C′; and Theorem 3.1 is proved. ■
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Proposition 3.2. The construction G = ν(H) with a k-colourable graph H on n vertices
has the following properties:

a) G is uniquely (k+1)-colourable if k ≥ 3 and H uniquely k-colourable,

b) ω(G) = ω(H) + 1,

c) χcr(G) = χ(G) if χcr(H) = χ(H),

d) |E(G)| = (3k + 1) |E(H)| + (k − 1)n and |V (G)| = (k + 1)n,

e) The minimum degree of G is 2 δ(H) + 1,

f) H is an induced subgraph of G. �

Proof. By Theorem 3.1 we showed a) and it is easy to see f ) from the construction. Simply counting
vertices and edges leads to d).

To show b), let C be a maximum clique of G.

Assume that there are distinct r, s, t ∈ {1, . . . , k} and u, v, w ∈ V (H) such that ur, vs, wt ∈ C. Since
these three vertices belong to a triangle, it is u = v = w, but these vertices can only induce a
path. Hence, assume next that there are distinct r, s ∈ {1, . . . , k} and distinct v, w ∈ V (H) with
vr, wr, ws ∈ C. But then vrws /∈ E(G).

Thus, assume that C ⊆ V (H) ∪ {vp : v ∈ V (H)} for some fixed p ∈ {1, . . . , k}. Then there is no
v ∈ V (H) with v, vp ∈ C because vvp /∈ E(G). But then, {v : v ∈ C or vp ∈ C} is a clique of the
same size.

Hence, there are adjacent vp, vq ∈ C and C \ {vp, vq} ⊆ V (H). Then C \ {vp, vq} ∪ {v} is a clique
of size ω(G) − 1 of H. On the other hand, replacing v from a clique of H with distinct and adjacent
vp, vq, we get a clique of G; and b) is proved.

If χcr(H) = χ(H), then each colour set of H has size s = |V (H)|
χ(H) . By the construction of the colouring,

each colour set of G has size k · s. Since C′ is the only colouring, we get χcr(G) = χ(G) and we have
proved c).

By the construction, we obtain the following degree function for v ∈ V (G), which shows e).

dG(x) =


(k + 1) dH(v), if x = v ∈ V (H),
2 dH(v) + k − 1, if x = vp and v ∈ Ap,
2 dH(v) + 1, if x = vp and v /∈ Ap.

■

Small triangle-free uniquely 3-colourable graphs

Using some computer calculation, Figure 3.1 shows a graph on 12 vertices and 22 solid drawn
edges. Adding at most one of the dashed edges, we obtain a list of three non-isomorphic
uniquely 3-colourable triangle-free graphs on 12 vertices with critical chromatic number 3.

Corollary 3.3. For all k ≥ 3 there are uniquely k-colourableKk-free graphs on 2·k! vertices
with critical chromatic number k. �
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Figure 3.1: Non-isomorphic uniquely 3-colourable triangle-free
graphs on 12 vertices with critical chromatic number 3

Proof. For k = 3, it is straightforward to check that the graphs in Figure 3.1 are uniquely 3-colourable,
triangle-free, have 12 vertices and critical chromatic number 3.

For k > 3, iteratively apply the construction ν to one of the graphs in Figure 3.1 to obtain a
k-colourable graph. All demanded properties follow from Proposition 3.2. □

Probably the graphs in Figure 3.1 are the only non-isomorphic uniquely 3-colourable triangle-
free graphs with critical chromatic number 3 on 12 vertices. But to verify the calculations, it
should be necessary to start a second independent implementation in another programming
language. Therefore, we do not like to pretend that Figure 3.1 shows all of them. We
conclude this section by showing that they are smallest possible.

Proposition 3.4. The graphs in Figure 3.1 have smallest number of vertices among all
uniquely 3-colourable triangle-free graphs with critical chromatic number 3. �

Proof. Since the critical chromatic number is 3, the number of vertices n of such graphs has to be
divisible by 3. We left the case n=3 and n=6 to the reader and assume that there is such a graph
G with n=9 vertices.

As mentioned above, each two colour classes induce a connected subgraph. Therefore let A and B be
two colour classes of G, then |A| = |B| = 3 and G[A∪B] connected. If there was a vertex v ∈ A with
degree 3 in G[A∪B], then each neighbour w ∈ C of v in the third colour class C would form a triangle
with v and a suitable vertex from B. Hence G[A ∪ B] is either a path or a cycle on six vertices. In
both cases, at least two vertices in A have degree 2 in G[A ∪ B]. By a symmetric argument, there
are two vertices in A having degree 2 in G[A∪C] and two vertices in B having degree 2 in G[B ∪C].
Thus, there is a vertex v ∈ A with a neighbour w ∈ B such that there is a common neighbour u ∈ C

of v and w; and we obtain a triangle on {u, v, w}, a contradiction. ■

Comparison with other results

In this section, we compare our new construction of uniquely colourable graphs with a
straightforward construction, with a triangle-free construction by Nešetřil [Neš73], and a
probabilistic proof by Bollobás and Sauer [BS76], which forces an arbitrary girth. To
obtain, for an integer k ≥ 3, a uniquely k-colourable Kk-free graphs with equal colour class
sizes, none of the following constructions is suitable. To our best knowledge, there are no
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such other suitable constructions yet; thus, the construction ν and Corollary 3.3 seem to fill
a gap.

Construction 1:

The complete graph Kk on k vertices is uniquely k-colourable. Given a uniquely k-colourable
graph H, adding a new vertex and joining it to all vertices of H except those of one colour
class, we obtain a new uniquely k-colourable graph. This is a way for increasing the critical
chromatic number of uniquely k-colourable graphs by choosing repeatedly a smallest colour
class.

However, if there is a clique in the original graph H containing a vertex from each non-
maximal colour class, then we obtain a Kk after balancing all colour class sizes as described
above. Hence, depending on our starting graph H, in some cases we cannot obtain a uniquely
k-colourable Kk-free graphs with equal colour class sizes using Construction 1.

Construction 2 (Nešetřil [Neš73]):

To get a uniquely k-colourable graph, k ≥ 2, choose n > 16 k · (2(k − 2))2k−1 and start with
the uniquely 2-colourable path P 0

n = Pn on n vertices and colour classes A1, A2. The uniquely
k-colourable graph P (k−2)

n is constructed iteratively. Assume that P (j−1)
n , j ≥ 1 with colour

classes A1, . . . , A(j+1) is constructed and let Mj be the set of all independent sets M of
P

(j−1)
n with |M | = j+2 such thatM ∩Ai 6= ∅, 1 ≤ i ≤ j+1. Then V (P j

n) = V (P (j−1)
n )∪Mj

and xy ∈ E(P j
n) if xy ∈ E(P (j−1)

n ) or x ∈ y ∈ Mj . The new colour class is A(j+2) = Mj .

By this construction, we obtain a triangle-free graph G that is uniquely k-colourable with a
colouring C = {A1, . . . , Ak}. It is |A1| = |A2| = Θ(n), |A3| = Θ(n3), |A4| = Θ(n8), ….

Thus, the size of the colour classes differs; moreover, the critical chromatic number tends to
k − 1 for k → ∞.

Construction 3 (Bollobás, Sauer [BS76]):

Bollobás and Sauer used a probabilistic approach to show the existence of uniquely
k-colourable graphs with an arbitrary minimum value g for the girth. To this extent, they
started with k-partite graphs, each partition of size n and m =

(k
2
)
n1+ε uniformly chosen

edges with 0 < ε < 1
4g .

It is shown that many of these graphs contain only few cycles of length smaller than g and
these cycles do not share a vertex. By removing a few edges to destroy these short cycles,
most graphs are still uniquely k-colourable and we obtain the existence of a demanded graph.

Choosing g=4 and analysing their arguments, there exists a uniquely k-colourable triangle-
free graph on Θ(k129) vertices. However, this does not yield an explicit construction.
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It has been conjectured that if a finite graph has a vertex coloring such that the
union of any two color classes induces a connected graph, then for every set T
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complete minor such that T contains exactly one member from each branching
set. Here we prove the statement for line graphs.
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Hadwiger’s Conjecture states that the order h(G) of a largest clique minor in a graph
G is at least its chromatic number χ(G) [Had43]. It is known to be true for graphs with
χ(G) ≤ 6, where for χ(G) = 5 or χ(G) = 6, we have equivalence to the Four-Color-Theorem,
respectively [RST93]. Instead of restricting the number of color classes, one could also
uniformly bound the order of the color classes, but even when forbidding anticliques of
order 3 (which bounds these orders by 2), the problem is wide open (cf. [Sey16]). In [Kri17],
the first author suggested to bound the number of colorings, in particular to consider uniquely
optimally colorable graphs; if G is uniquely k-colorable and x1, . . . , xk have different colors,
then it is easy to see that there exists a system of edge-disjoint xi,xj-paths (i 6= j from
{1, . . . , k}), a so-called (weak) clique immersion of order k at x1, . . . , xk, and the question
suggests itself whether there exists a clique minor of the same order such that x1, . . . , xk are
in different bags. This has been answered affirmatively in [Kri17] if one forbids antitriangles
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in G. The present paper gives an affirmative answer in the case that G is a line graph. It
should be mentioned that Hadwiger’s Conjecture is known to be true for line graphs in
general by a result of Reed and Seymour [RS04], but it seems that their argument leaves
no freedom for prescribing vertices in the clique minor at the expense of forcing any pair of
color classes to be connected.

*

All graphs considered here are supposed to be finite, undirected, and loopless. They may
contain parallel edges, graphs without these are called simple. For graph terminology not
defined here, we refer to [Die17]. A clique minor ofG is a set of connected, nonempty, pairwise
disjoint, pairwise adjacent subsets of V (G) (the branching sets), where a set A ⊆ V (G) is
connected if the subgraph G[A] induced by A in G is connected, and disjoint A,B ⊆ V (G)
are adjacent if some vertex of A is adjacent to some vertex of B. An anticlique of G is a set
of pairwise nonadjacent vertices. A coloring of a graph G is a partition C into anticliques,
the color classes, and we call it a Kempe coloring if the union of any two of these induces
a connected subgraph in G. Throughout, a (minimal) transversal of a set S of pairwise
disjoint sets is a set T ⊆

∪
S such that |T ∩ A| = 1 for all A ∈ S; in this case, we also say

that S is traversed by T . The line graph L(H) of some graph H is the (simple) graph with
vertex set E(H) where two distinct vertices are adjacent if and only they are incident (as
edges) in H.

The first author conjectured in [Kri17] that for every transversal T of every Kempe coloring
of a graph G there exists a complete minor in G traversed by T . Here we prove the conjecture
for line graphs.

Theorem 4.1. For every transversal of every Kempe coloring of the line graph L(H) of any
graph H there exists a complete minor in L(H) traversed by T . �

Of course this statement can be fomulated entirely without addressing to line graphs. Call
a set F of edges of a graph H connected if any two of them are on a path of edges from F ,
and call two sets F, F ′ of edges incident if some edge of F is incident with some edge of F ′.
Theorem 4.1 translates as follows:

Theorem 4.2. Let H be a graph and C be a partition of E(H) into (not necessarily max-
imum) matchings such that the union of any two of them is connected. Then for every
transversal T of C there exists a set of connected, pairwise disjoint, pairwise incident edge
sets traversed by T . �

*

As our proof of Theorem 4.2 uses contraction at some places, it is reasonable to allow
multiple edges (but no loops) in H. However, the precondition of Theorem 4.2 imposes a
very special structure on H as soon as H contains a pair of parallel edges. We thus prefer
to give a separate, simple proof for this situation instead of handling parallel edges in the
proof of Theorem 4.2. Given a graph H, let us say that F ⊆ E(H) covers v ∈ V (H) if v
is incident with at least one edge from F . By EH(v) we denote the set of all edges incident
with v ∈ V (H).
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Lemma 4.3. LetH be a graph with a pair of parallel edges and C be a partition of E(H) into
(not necessarily maximum) matchings such that the union of any two of them is connected.
Then for every transversal T of C, there exists a set of connected, pairwise disjoint, pairwise
incident edge sets traversed by T . �

Proof. Let e, f be parallel edges of H. They are in different matchings Me,Mf of C, and they form
a cycle of length 2, so that Me = {e} and Mf = {f}. Let M ∈ C \ {Me,Mf}. As every edge in
M is incident with some edge of Me, every edge from M (and hence every edge from H) is incident
with e, f , implying that M contains at most two edges. If |M | = 1, say, M = {g}, then, likewise, g
is incident with every other edge of H and we apply induction to H − g, C \ {M}, and T \ {g} as to
find a set K of connected, pairwise disjoint, pairwise incident edge sets traversed by T , and K∪ {{g}}
proves the statement for H (and C, T ). — So we may assume that every M distinct from Me,Mf

consists of two edges. In particular, e, f is the only pair of parallel edges in H. Let x, y be the end
vertices of e, f , and let Mi = {xai, ybi}, i ∈ {1, . . . , ℓ} be the matchings from C \ {Me,Mf}. The ai
are pairwise distinct, and so are the bi. For i 6= j from {1, . . . , ℓ}, at least one of ai = bj or bi = aj
holds since Mi ∪ Mj is connected. Since ai, bi have degree at most 2, for i ∈ {1, . . . , ℓ}, there exists
at most one j 6= i with ai = bj and at most one j 6= i with bi = aj . It follows that ℓ ≤ 3. We may
assume that the ℓ+2 transversal edges from T are not pairwise incident, as in this case {{g} : g ∈ T}
proves the statement. In particular, ℓ ≥ 2, and for i 6= j only one of ai = bj and bi = aj holds,
as otherwise Mi ∪ Mj induce a 4-cycle, ℓ = 2, and the four transversal edges are pairwise incident.
Hence, we may assume that if ℓ = 2, then b1 = a2 and T = {e, f, xa1, yb2} without loss of generality,
and if ℓ = 3, then b1 = a2, b2 = a3, b3 = a1 and T = {e, f, xa1, yb2, yb3} without loss of generality. In
either case, {{e}, {f}, {xa1, xa2, yb1}, {yb2}, . . . , {ybℓ}} proves the statement. ■

If C is the only coloring of order k in a graph G, then C is a Kempe coloring, and there
is no coloring with fewer than k colors (so k equals the chromatic number χ(G) of G).
Even in this very special case, we do not know whether G has a complete minor of order
k (disregarding transversals), that is, we do not know if Hadwiger’s Conjecture [Had43]
is true for uniquely k-colorable graphs. However, the situation for uniquely k-colorable line
graphs is almost completely trivial, as for k ≥ 4, the star K1,k is the only uniquely k-edge-
colorable simple graph [Tho78] (and the non-simple ones are covered by Lemma 4.3).
At this point, one may wonder if the graphs considered in Theorem 4.2 are “rare”. Let us
show that this is not the case. A partition of the edge set of a graph into (perfect) matchings
such that the union of any two of them induces a Hamiltonian cycle in G is called a
perfect 1-factorization. Clearly, every graph with a perfect 1-factorization is k-regular and
meets the assumptions of Theorem 4.2. There is an old conjecture by Kotzig stating that
every complete graph of even order has a perfect 1-factorization [Kot63], indicating that it
is difficult to determine whether a graph has a perfect 1-factorization. However, for our
purposes it suffices to construct some variety of graphs which have one, as done in (A), (B)
below.
(A) Given k, let a = (a1, . . . , ak) be a sequence of pairwise distinct nonnegative integers
and take m larger than all of these and relatively prime to any possible difference ai − aj ,
i 6= j; for example, just take a large prime number. Let V = Zm × {0, 1}, set Mi :=
{(z, 0)(z + ai, 1) : z ∈ Zm}, where a denotes the residual class modulo m containing a ∈ Z,
and let E := M1 ∪ · · · ∪ Mk. The resulting graph (V,E) =: H(m, a) =: H is bipartite,
k-regular, and {M1, . . . ,Mk} is a partition of E into perfect matchings. The graph induced
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by the union of Mi ∪Mj thus decomposes into cycles. Take a vertex (z, 0) from such a cycle
C; by following the Mi-edge, we reach (z + ai, 1), and by following the Mj-edge from there
we reach (z + ai − aj , 0). So C contains all vertices of the form (z + t · (ai − aj), 0), t ∈ Z,
from Zm × {0}, and since ai − aj and m are relatively prime, it contains all vertices from
Zm × {0}. Consequently, C is a Hamiltonian cycle, so H admits a perfect 1-factorization
of order k.
(B) For i ∈ {1, 2}, take any graph Hi with a perfect 1-factorization Ci of order k. Take
a vertex vi in V (Hi) and consider the edges ei,1, . . . , ei,k incident with vi. Let Mi,j be the
member from Ci containing ei,j . Assuming that H1,H2 are disjoint, let H be obtained from
the union of H1 − v1 and H2 − v2 by adding a new edge fj from the end vertex of e1,j

distinct from v1 to the end vertex of e2,j distinct from v2 for each j ∈ {1, . . . , k}. Then
Mj := ((M1,j ∪M2,j) \ {e1j , e2,j}) ∪ {fj} for j ∈ {1, . . . , k} defines a perfect matching of H,
and the union of any two of these induces a Hamiltonian cycleof H, so H has a perfect
1-factorization.
(C) If one deletes a vertex of any graph with a perfect 1-factorization, then the edge set of
the resulting graph has an (obvious) partition into matchings such that the union of any
two of them is a Hamiltonian path; so we get further graphs meeting the assumptions of
Theorem 4.2 this way.

*
Back to Theorem 4.2, let us now consider the case that H is a complete graph. It turns out
that for any set T of n edges (not necessarily being a transversal of some set of matchings
as in Theorem 4.2) we can find connected, pairwise disjoint, pairwise incident edge sets
traversed by T .

Lemma 4.4. For every set T of n edges of the simple complete graph H on n ≥ 3 vertices,
there exists a set of connected, pairwise disjoint, pairwise incident edge sets traversed by
T . �

Proof. For n = 3, the statement is obviously true. For n > 3, consider the subgraph H[T ] :=
(V (H), T ) induced by T . It has average degree 2 and, therefore, a vertex v with at most two
neighbors in H[T ].

If v has exactly one neighbor x in H[T ], then we apply induction to H − v and find a set K of n− 1
connected, pairwise disjoint, pairwise incident edge sets traversed by T \ {vx}, and K ∪ {EH(v)}
proves the statement for H.

If v has exactly two neighbors x, y in H[T ], then we may assume that x is not incident with all the
n − 2 edges from T \ {vx, vy}, since otherwise these would form a spanning star in H − v and one
of the leaves of this star had degree 1 in H[T ] since n > 3 — a case which we have just considered.
Therefore, there exists an edge xz in E(H − v) \ T . Induction applied to H − v provides a set K of
n− 1 connected, pairwise disjoint, pairwise incident edges traversed by (T \ {vx, vy}) ∪ {xz}. Let F
be the member of K containing xz. The set EH(v) \ {vx} is incident to all of K in H, as each of these
cover at least two neighbors of v, so that (K \ {F}) ∪ {F ∪ {vx}, EH(v) \ {vx}} proves the statement
for H.

If v has no neighbors in H[T ] and xy is any edge in T , then by induction there exists a set K of
n − 1 connected, pairwise incident edges traversed by T \ {xy} in H − v. If xy is not an edge of
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any member of K, then K ∪ {EH(v) ∪ {xy}} proves the statement for H. Otherwise, there is an
F ∈ K with xy ∈ F . Let wz 6= xy be the edge from T contained in F , where we may assume that
w 6∈ {x, y}. By symmetry, we may assume that w is in the component of H[F ] − xy containing x, so
that F ′ := (F \ {xy}) ∪ {vw, vy} is connected and covers v and all vertices covered by F . The set
F ′′ := (EH(v) \ {vw, vy}) ∪ {xy} is connected and covers all vertices of H except for w, so that it is
incident with F ′ and all sets from K as each of these cover at least two neighbors of v. Consequently,
(K \ {F}) ∪ {F ′, F ′′} proves the statement for H. ■

It remains open if Lemma 4.4 is best possible in the sense that we cannot prescribe a set T
of more than n edges there. For n = 3 and n = 4, optimality is easy to check, for n = 5, one
cannot prescribe six edges if they form a subgraph K2,3. In general, for n > 2, one cannot
prescribe 2n − 2 edges if they form a graph K2,n−2 plus two edges, one of them connecting
the two vertices of degree n− 2 in K2,n−2, but there should be better bounds.

*
Finishing preparation for the proof of our main result, let us recall and slightly extend
Lemmas from [Kri17] and [Kri01].

Lemma 4.5 (Kriesell [Kri17]). Suppose that C is a Kempe coloring of order k of a
graph G and let S ⊆ V (G) be a separating set. Then (i) if F ∈ C does not contain
any vertex from S, then it contains a vertex from every component of G − S, and (ii) S
contains vertices from at least k−1 members of C. �

Proof. Let C,D be distinct components of G − S and let F ∈ C with F ∩ S = ∅. Suppose, to the
contrary, that F ∩ V (C) = ∅. Take any vertex x ∈ V (C) and the set A from C containing x. Then
x has no neighbors in F , so that G[A ∪ F ] is not connected, contradiction. This proves (i). For (ii),
suppose, to the contrary, that there exists F 6= F ′ from C with F ∩ S = ∅ and F ′ ∩ S = ∅. By (i),
there exist x ∈ F ∩V (C) and y ∈ F ′ ∩V (D), but no x,y-path in G avoiding S and, hence, no x,y-path
in G[F ∪ F ′], contradiction. □

In particular, every graph with a Kempe coloring of order k must be (k−1)-connected. We
repeat the following Lemma (and its proof) from [Kri01].

Lemma 4.6 (Kriesell [Kri01]). Suppose thatH is a graph such that L(H) is k-connected.
Then for all distinct vertices a, b of degree at least k, there exist k edge-disjoint a,b-paths
in H. �

Proof. If there were no such paths, then, by Menger’s Theorem (cf. [Die17]), there exists an a,b-cut
S in H with less than k edges. We may assume that S is a minimal a,b-cut, implying that H −S has
exactly two components C,D, where a ∈ V (C) and b ∈ V (D). Since both a, b have degree at least
k, there exists an edge e ∈ EH(a) \ S, that is, e ∈ E(C), and at least one edge f ∈ E(D). But then
S separates e from f in H and, thus, e from f in L(H), contradicting the assumption that L(H) is
k-connected. □

We are now ready to prove our main result. At some places, we will contract some subgraph
X of H to a single vertex. In order to make object references easier, we choose a graph model
where the edge set of the resulting graph actually equals E(H)\E(X), not just “corresponds
to E(H) \ E(X)” in whatever way.
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Proof of Theorem 4.2. We proceed by induction on |E(H)|. Let C be a partition of E(H) into
matchings such that the union of any two of them is connected, set k := |C|, and let T be a transversal
of C. We have to show that there exists a set of k connected, pairwise disjoint, pairwise incident edge
sets traversed by T in H. Observe that the statement is easy to prove whenever k ≤ 2. Hence, we
may assume k ≥ 3. In particular, |E(H)| ≥ 3. By Lemma 4.3 we may assume that H is simple.
Observe that C is a Kempe coloring of L(H).

As C is a partition of E(H) into k matchings, all vertices in H have degree at most k. Suppose first
that there is a vertex v of degree k in H. Then U := EH(v) induces a clique of order k in L(H). If
there is a set of k disjoint U ,T -paths in L(H), then their vertex sets form a clique minor in L(H) and,
at the same time, a set of k connected, pairwise disjoint, pairwise incident edge sets in H, traversed
by T . So we may assume that there are no k disjoint U ,T -paths in L(H). By Menger’s Theorem
(cf. [Die17]), there exists a vertex set S in L(H) with |S| < k separating U from T , and we may take
a smallest such set, implying that L(H) − S has only two components C,D (since for every vertex
v ∈ S, NL(H)(v) contains a vertex from each component of L(H) − S but is, at the same time, the
union of at most two cliques of L(H)). We may assume that, say, C contains at least one vertex
from U as |U | > |S|. But then C contains no vertex from T , and D contains at least one vertex from
T and no vertex from U . Back in H, the set S is a minimal cut in H and H − S has exactly two
components, C ′, D′, where E(C ′) = V (C) and E(D′) = V (D). As E(C ′) contains an edge from U ,
v ∈ V (C ′) follows.

From Lemma 4.5 we know that S consists of k−1 objects, all coming from distinct members of C.
Let F be the unique member from C with F ∩ S = ∅. Let H ′ be the graph obtained from H by
contracting D′ to a single vertex w. Since F ∈ C contains an edge from E(C ′) by Lemma 4.5 and all
other classes contain an edge from S, we obtain a partition of E(H ′) into matchings such that the
union of any two of them is connected, by deleting all edges of E(D′) from their sets in C. Thus, we
also have a Kempe coloring of L(H ′), so that, by Lemma 4.5, L(H ′) is (k−1)-connected. Since v
has degree at least k and w has degree k−1 in H ′, there exist k−1 edge-disjoint v,w-paths in H ′ by
Lemma 4.6. For e ∈ S, let Pe be the path among these containing e.

Now letH ′′ be the graph obtained fromH by contracting C ′ to a single vertex (recall that E(C ′) 6= ∅).
As above, by deleting all edges of E(C ′) from their sets in C, we obtain a partition of E(H ′′) into
matchings such that the union of any two of them is connected. Moreover, T remains a transversal
of the modified partition. Since |E(H ′′)| < |E(H)|, we may apply induction to H ′′ and find a
set K of connected, pairwise disjoint, pairwise incident edge sets traversed by T in H ′′. Setting
A′ := A ∪

∪
{E(Pe) : e ∈ A, e ∈ S} for A ∈ K, one readily checks that K′ := {A′ : A ∈ K} proves the

statement of the theorem for H.

Therefore, we may assume from now on that the maximum degree ∆ of H is at most k−1. Let δ
denote the minimum degree of H. Every edge xy is incident with at least one edge from each of the
k−1 members of C not containing xy, so that dH(x) + dH(y) ≥ k + 1. Consequently, δ ≥ k + 1 − ∆
and ∆ ≥ (k + 1)/2. For distinct A,B from C, consider the subgraph H(A,B) formed by all edges of
A ∪ B. It is either a path or a cycle, and we say that H(A,B) ends in a vertex v if v has degree 1
in H(A,B), or alternatively, if v is covered by exactly one edge of A,B. Now, if v has degree d
in H, then it is covered by exactly d of the k matchings from C, so that exactly d · (k − d) of the
subgraphs H(A,B) end in v. Observe that k − ∆ < δ ≤ d ≤ ∆ and consider the quadratic function
f defined by f(d) := d · (k − d) − ∆ · (k − ∆) with zeroes ∆ and k − ∆. We get f(d) ≥ 0, that
is, d · (k − d) ≥ ∆ · (k − ∆), for d ∈ (k − ∆,∆] with equality only if d = ∆. Consequently, in
each vertex v, for at least ∆ · (k − ∆) > 0 pairs A,B ∈ C, the graph H(A,B) ends in v. As there
are only

(
k
2
)
many subgraphs H(A,B) and as each of them ends in two or zero vertices, we get
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|V (H)| · ∆ · (k − ∆) ≤ k · (k − 1). Moreover, |V (H)| ≥ ∆ + 1 since H is simple, so

(∆ + 1) · ∆ · (k − ∆) ≤ k · (k − 1). (4.1)

Consider the cubic function g defined by g(∆) := (∆ + 1) · ∆ · (k − ∆) − k · (k − 1). It has zeros
k−1 and ±

√
k , so that it is positive for ∆ ∈ (

√
k, k − 1), that is, (∆ + 1) · ∆ · (k − ∆) > k · (k − 1)

for all ∆ ∈ [(k + 1)/2, k − 1) as k ≥ 3. Since ∆ ∈ [(k + 1)/2, k − 1] and (4.1) holds, this necessarily
implies ∆ = k − 1 and equality in (4.1). Backtracking through the arguments leading to (4.1) yields,
subsequently: |V (H)| = ∆ + 1; in each vertex v, exactly ∆ · (k− ∆) of the H(A,B) end; and, finally,
each vertex of H has degree d = ∆.

It follows that H is the simple complete graph on ∆+1 = k ≥ 3 vertices, and we obtain the statement
of Theorem 4.2 for H from Lemma 4.4. ■
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5.1 Introduction

All graphs in the present paper are supposed to be finite, undirected, and simple. For
terminology not defined here we refer to contemporary text books such as [BM08] or [Die17].
By KS the complete graph on a finite set S is denoted. A (minimal) transversal of a set C of
disjoint sets is a set T containing exactly one member of every A ∈ C and nothing else; we
also say that C is traversed by T . A coloring of a graph G is a partition C of its vertex set
V (G) into anticliques, that is, sets of pairwise nonadjacent vertices. The chromatic number
χ(G) is the smallest order of a coloring of G. A Kempe chain is a connected component
of G[A ∪ B] for some A 6= B from C. For a transversal T of a coloring C of G we define
the graph H(G,C, T ) to be the graph on T where any two s 6= t are adjacent if and only if
they belong to the same Kempe chain in G. A graph H is a minor of a graph G if there
exists a family c = (Vt)t∈V (H) of pairwise disjoint subsets of V (G), called bags, such that Vt

is nonempty and G[Vt] is connected for all t ∈ V (H) and there is an edge connecting Vt and
Vs for all st ∈ E(H). Any such c is called an H-certificate in G, and a rooted H-certificate if,
moreover, V (H) ⊆ V (G) and t ∈ Vt for all t ∈ V (H). If there exists a rooted H-certificate,
then H is a rooted minor of G.

Let us say that a graph K has property (*) if for every transversal T of every coloring C

with |C| = |V (K)| of every graph G such that K is isomorphic to a spanning subgraph H of
H(G,C, T ), there exists a rooted H-certificate in G. It is obvious that property (*) holds for
K1 and transfers to isomorphic copies of K.

Theorem 5.1. Property (*) inherits to subgraphs of K; furthermore, K has (*) if and only
if every component of K has. �

Proof. First, assume K ′ has property (*) and K is a spanning subgraph of K ′. Take an arbitrary
graph G with a coloring C with |C| = |V (K)| and a transversal T of C such that K is isomorphic
to a spanning subgraph H of H(G,C, T ). For e ∈ E(K ′) \ E(K) add a suitable edge between two
transversal vertices to G (if not already present) to obtain a graph G′. Then K ′ is isomorphic to a
spanning subgraph H ′ of H(G′,C, T ). Since K ′ has property (*), there is a rooted H ′-certificate c in
G′ and c is also a rooted H-certificate in G. Next, assume that K ′ has property (*) and let K 6= K ′ be
a component of K ′. Take an arbitrary graph G with a coloring C with |C| = |V (K)| and a transversal
T of C such that K is isomorphic to a spanning subgraph H of H(G,C, T ). A graph G′ can be
obtained from G by the disjoint union with a complete graph KS on vertex set S := V (K) − V (K ′).
Let C′ := C ∪ {{s} : s ∈ S} and T ′ := T ∪ S. Then K ′ is isomorphic to a spanning subgraph H ′ of
H(G′,C′, T ′). Since K ′ has property (*), there is a rooted H ′-certificate c′ = (Vt)t∈V (K′) in G′. Then
c := (Vt)t∈V (K) is a rooted H-certificate in G. If, conversely, every component of K has property (*)
and there is an arbitrary graph G with a coloring C with |C| = |V (K)| and a transversal T of C such
that K is isomorphic to a spanning subgraph H of H(G,C, T ), then for each component H1,H2, . . .

of H there are pairwise disjoint subgraphs G1, G2, . . . of G and C1,C2, . . . and T1, T2, . . . such that
Hi is a subgraph of H(Gi,Ci, Ti) for i ∈ {1, 2, . . . }. Since property (*) holds for Hi, i ∈ {1, 2, . . . },
there is a rooted Hi-certificate ci in Gi. Then the union of c1, c2, . . . (considered as subsets of
V (Hi) ×P(V (G))) is a rooted H-certificate in G, so that K has property (*). Finally, assume K ′ has
property (*) and let K be a subgraph of K ′. Then K ∪ (V (K ′) \ V (K), ∅) is a spanning subgraph of
K ′ and has property (*), and so has K as one of its components. ■
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A coloring C is a Kempe coloring if any two vertices from distinct color classes belong to
the same Kempe chain or, in other words, the union of any two color classes is connected.
The following has been conjectured in [Kri17] by the first author.

Conjecture 10. Let C be a Kempe coloring of some graph G and let T be a transversal of
C. Then there exists a set of connected, pairwise disjoint, pairwise adjacent subsets of V (G)
traversed by T . �

This would prove Hadwiger’s Conjecture — that every graph with chromatic number k
has a complete minor of order k [Had43] — for graphs with a Kempe coloring, in particular
for uniquely k-colorable graphs. In the terminology defined above, the conjecture reads as
follows: If C is a Kempe coloring of G and T is a transversal of C (so that H := H(G,C, T )
is the complete graph on T ) then there exists a rooted H-certificate. This would follow if
every complete graph — and hence every graph — K had property (*).

However, property (*) turns out to be too restrictive to be true: We will see that K7 does
not have property (*). This will not produce a counterexample to Conjecture 10 above; in
fact, the coloring of our corresponding example is very far from being a Kempe coloring in
the sense that only 8 of the

(7
2
)

= 21 pairs of color classes induce a connected subgraph.

We also have a number of positive results. Graphs with at most four vertices do have
property (*), so that the question for the largest b such that all graphs of order at most b
have property (*) suggests itself (it must be one of 4, 5, 6 by the results of the present paper).
Moreover, graphs with at most one cycle have property (*). As a consequence, for example,
we get (immediately from Lemma 5.5 below) that if x0, . . . , xℓ−1 belong to different color
classes of some coloring C of a graph G and xi, xi+1 belong to the same Kempe chain for
i ∈ {0, . . . , ℓ−1} (indices modulo ℓ), then there exists a cycle C in G and disjoint xi,yi-paths
Pi with V (C) ∩ V (Pi) = {yi} and y0, . . . , yℓ−1 occur in this order on C.

Apart from this, we determine a number of further 5-vertex graphs having property (*) and
infer that if T is a connected transversal of a Kempe coloring of order 5 of some graph G,
then there exists a rooted H(G,C, T )-certificate (where H(G,C, T ) is isomorphic to K5).

5.2 Kempe Chains and Rooted K7-minors

For a graph G we define the graph Z(G) by V (Z(G)) := V (G) × {1, 2} and E(Z(G)) :=
{(x, i)(y, j) : xy ∈ E(G) ∧ (i 6= 1 ∨ j 6= 1)}. That is, Z(G) is obtained from the lexico-
graphic product of G with the graph ({1, 2}, ∅) by deleting all edges connecting vertices
from V (G) × {1}. For s = (x, i) ∈ V (Z(G)) let us define s := (x, 3 − i). It follows that
C := {{(x, 1), (x, 2)} : x ∈ V (G)} = {{s, s} : s ∈ V (Z(G))} is a coloring of Z(G) — the
canonical coloring — and that T := V (G)×{1} is a transversal of C. Observe that T induces
an anticlique in Z(G). As the union of two color classes {(x, 1), (x, 2)}, {(y, 1), (y, 2)} induce
(i) a path of length four between its transversal vertices if xy ∈ E(G) and (ii) an edgeless
graph if xy 6∈ E(G), we see that H := H(Z(G),C, T ) is isomorphic to G (via (x, 1) 7→ x).
Moreover, we find a copy of G induced in Z(G) in a very natural way: Z(G)[V (G) × {2}] is
isomorphic to G (via (x, 2) 7→ x). The question is if we find a rooted H-certificate in Z(G);
if not then G (!) fails to have property (*).
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The bags of any H-certificate c = (Vt)t∈T in Z(G) have average order at most 2. That is, as
soon as there are bags of order at least 3, there must be bags of order 1; locally, the inverse
implication is almost true, as follows:

Claim 1. If st ∈ E(H) is not on any triangle of H, then |Vs| = 1 implies |Vt| ≥ 3. �

Proof. Suppose that |Vs| = 1, that is, Vs = {s}. Since s, t are not adjacent in Z(G), |Vt| ≥ 2. If
|Vt| = 2, then Vt = {t, u} for some u ∈ V (Z(G)), where t, u and s, u are adjacent in Z(G) so that
u ∈ V (Z(G)) \ V (H), u 6= s and t, u must be adjacent in H. Since s, t, u do not form a triangle in
H, s, u are nonadjacent in H so that s, u are nonadjacent in Z(G); consequently, s has no neighbors
in Vt, contradiction. This implies |Vt| ≥ 3 as claimed. □

If all bags of c have order 2, then we look at the function f : V (G) → V (G) defined by
f(x) := y if V(x,1) = {(x, 1), (y, 2)}. Since the bags are disjoint, f is an injection and, thus,
a permutation of V (G). Since the bags are connected, xf(x) ∈ E(G), so that we may
represent f as a partial orientation of G, where xy is oriented from x to y if y = f(x) and
from y to x if x = f(y) (which may happen simultaneously). As c is a rooted H-certificate in
Z(G) we know that xy ∈ E(G) implies that V(x,1), V(y,1) are adjacent, which is equivalent to
saying that, in Z(G), f(x) is adjacent to one of y, f(y) or f(y) is adjacent to one of x, f(x).
Conversely, if f is a permutation of V (G) such that (i) xf(x) ∈ E(G) and (ii) xy ∈ E(G)
implies that f(x) is adjacent to one of y, f(y) or f(y) is adjacent to one of x, f(x), then
V(x,1) := {(x, 1), (f(x), 2)} defines an H-certificate in Z(G). Let us call a permutation of
V (G) with (i) and (ii) a good permutation throughout this section.

Claim 2. If G has a good permutation, then every vertex of degree at least 3 in G is on a
cycle of length at most 4 in G. �

Proof. Let f be a good permutation and suppose that w is a vertex of degree at least 3 in G and let
x, y, z be three neighbors in G, where f(w) = x. We may assume that f(y) 6= w (otherwise f(z) 6= w

and we swap the roles of y, z). If u := f(y) 6= w is a neighbor of w then w, y, u form a triangle and
we are done. Otherwise, {w, f(w) = x}, {y, f(y) = u} are disjoint, and (ii) implies that, in G, u is a
neighbor of w or x, or that x is a neighbor of y or u; in either case, w is on a cycle of length 3 or 4.
This proves Claim 2. □

Let us specialize the considerations to the graph G obtained from a cycle G′ of length 6 by
adding another vertex x and two edges connecting x to two vertices a, b at distance 3 on G′.
Assume, to the contrary, that Z(G) has an H-certificate (Vt)t∈T with T = V (G) × {1}. Let
A be the set of vertices t ∈ T with |Vt| = 1. By Claim 2, G cannot have a good permutation,
so |A| ≥ 1. A is an anticlique in H (and in Z(G)), so |A| ≤ 3, and, by Claim 1, |Vs| ≥ 3
for every vertex s in the neighborhood of A in H. For each case |A| = 1, |A| = 2, |A| = 3
one readily verifies |NH(A)| ≥ |A| + 1. It follows q :=

∑
t∈T |Vt| ≥ 3 · (|A| + 1) + 2 · (7 −

2|A| − 1) + 1 · |A| = 15, contradicting q ≤ |V (Z(G))| = 14. It follows that G does not have
property (*). As property (*) inherits to spanning subgraphs we conclude that K7 does not
have it either. In fact, we could take Z(G) with C and T as above and just add all edges
between transversal vertices (x, 1), (y, 1) with xy 6∈ E(G) as to obtain a graph G′ without
a rooted H(G′,C, T )-certificate, where H(G′,C, T ) is now the complete graph on the seven
vertices from T . So we have proved:
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Theorem 5.2. K7 does not have property (*). �

Let d ≥ 3. We now specialize to a connected, d-regular, nonbipartite graph G of girth at
least 5 and assume, to the contrary, that Z(G) has an H-certificate c = (Vt)t∈T . Let A,B,C
be the set of vertices x ∈ V (G) with |V(x,1)| being 1, 2, and at least 3, respectively. By
Claim 2, there cannot be a good permutation, so that |A| ≥ 1. The vertices from A and
A × {1} induce an edgeless graph in G and Z(G), respectively, and the neighbors of A in
G are all from C by Claim 1. The number of edges between A and C in G is thus equal to
d|A| and at most d|C| with equality only if every vertex from C has all its d neighbors in
A. However, in the latter case, G[A ∪ C] is d-regular and bipartite and B is empty as G is
connected, so that G is bipartite, contradiction. It follows d|A| < d|C| and, consequently,
|Z(G)| ≥

∑
t∈T |Vt| ≥ |A| + 2|B| + 3|C| > 2|A| + 2|B| + 2|C| = |Z(G)|, contradiction. So we

have proved

Theorem 5.3. If G is connected, d-regular with d ≥ 3, nonbipartite of girth at least 5, then
it does not have property (*). �

The smallest graph meeting the assumptions of Theorem 5.3 is, incidentally, the Petersen
graph.

5.3 Unicyclically Arranged Kempe Chains

We continue with a number of positive results. The main result of Fabila-Monroy and
Wood in [FW13, Theorem 8] states that for any 3-connected graph G and distinct vertices
t1, t2, t3, t4 ∈ V (G) such that two vertex-disjoint ti,tj-path and tk,tℓ-path exist for each
choice of distinct i, j, k, ℓ ∈ {1, 2, 3, 4}, then there exists a rooted H-certificate where H is
the complete graph on {t1, . . . , t4}. This generalizes to:

Theorem 5.4. Every graph on at most four vertices has property (*). �

Proof. We prove thatK4 has property (*). As (*) inherits to subgraphs, this will complete the proof.
Therefore, let G be a graph, C be a coloring of G with |C| = 4, and let T be a transversal of C. For
x ∈ V (G), let Ax denote the member of C containing x, and suppose that for all x 6= y from T there
exists an x,y-path Pxy in G[Ax ∪Ay], that is, H := H(G,C, T ) is a complete graph on four vertices.
Suppose that G was a minimal counterexample. Then G is connected and E(G) =

∪
x 6=y E(Pxy). By

the previously stated result of Fabila-Monroy and Wood, G is not 3-connected.

We may assume that G has a separator S with |S| ≤ 2. If S ⊆ Ax for some x ∈ T , then T \ {x}
is contained in some component C of G − S. Let G′ be the graph obtained from G by contracting
X := V (G)\V (C) to a single vertex w. For A ∈ C set A′ := (A\X)∪{w} if A = Ax and A′ := A\X
otherwise, and for z ∈ T set z′ := w if z ∈ X and z′ := z otherwise. Then C′ := {A′ : A ∈ C} is a
coloring of G′ and T ′ := {t′ : t ∈ T} is a transversal of C′. Moreover, H ′ := H(G,C′, T ′) is a complete
graph on T ′. By the choice of G, there exists a rooted H ′-certificate in G′, that can be extended to
a rooted H-certificate of G by replacing its bag B containing w — if any — with (B \ {w}) ∪ X,
contradiction.
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Otherwise, G is 2-connected and there exist x 6= y from T such that each of S∩Ax and S∩Ay consists
of a single vertex x0, y0, respectively. Again, T \ {x, y} is contained in the same component C of
G−S. Let G′ be the graph obtained from G by deleting X := V (G)\ (V (C)∪S) and adding an edge
x0y0 (if it does not already exist). For A ∈ C, let A′ := A\X, so that C′ := {A′ : A ∈ C} is a coloring
of G′. For z ∈ T , set z′ := z0 if z ∈ {x, y} ∩X and z′ := z otherwise, so that T ′ := {z′ : z ∈ T} is a
transversal of C′, and H ′ := H(G′,C′, T ) is a complete graph on T ′. By the choice of G, G′ admits a
rooted H ′-certificate c′. If X does not contain both x and y, say, y /∈ X, then c′ can be extended to a
rooted H-certificate of G by replacing its bag B containing x0 — if any — with B∪X, contradiction.
If, otherwise, X contains both x and y, then there are two vertex-disjoint paths P1 and P2 connecting
x0 and y0 to {x, y}, respectively (by 2-connectivity of G and Menger’s Theorem). It is obvious,
that V (P1), V (P2) ⊆ S ∪ X. Let X0 := V (P1) and let Y0 be the vertex set of the component of
G[S ∪X] −X0 containing P2, and therefore also y0 and {x, y} \X0. Since G is 2-connected and all
neighbors of Y0 \ {y0} 6= ∅ are in X0 ∪ {y0}, X0 and Y0 are adjacent in G. Now, a rooted H-certificate
can be obtained from c′ by replacing the bags B1 and B2 containing x0 and y0 with B1 ∪ X0 and
B2 ∪ Y0, respectively. Thus, all bags contain exactly one vertex from T and are pairwise adjacent,
contradiction. ■

Here is an infinite class of connected graphs for which (*) is true.

Lemma 5.5. Every cycle has property (*). �

Proof. Given ℓ, we have to prove for every graph G, every coloring C = {A0, . . . , Aℓ−1} and every
choice ti ∈ Ai for i ∈ {0, . . . , ℓ − 1} such that there exists a ti,ti+1-path Pi in G[Ai ∪ Ai+1] for all
i ∈ {0, . . . , ℓ−1}, indices modulo ℓ, there exists a rooted H := ({t0, . . . , tℓ−1}, {t0t1, t1t2, . . . , tℓ−2tℓ−1,

tℓ−1t0})-certificate. Suppose that G was a minimal counterexample. Then E(G) = E(P0) ∪ · · · ∪
E(Pℓ−1). If x ∈ Ai\{ti} had only two neighbors, say, y, z in Aj , where j ∈ {i+1, i−1}, then let G′ be
obtained from G by contracting yxz to a new vertex w, define A′

i := Ai\{x}, A′
j := (Aj \{y, z})∪{w},

A′
k := Ak for k ∈ {0, . . . , ℓ− 1} \ {i, j}, t′k := w if k = j ∧ tk ∈ {y, z}, and t′k := tk otherwise. Letting

H ′ := ({t′0, . . . , t′ℓ−1}, {t′0t′1, t′1t′2, . . . , t′ℓ−2t
′
ℓ−1, t

′
ℓ−1t

′
0}), we know that, by choice of G, there exists a

rooted H ′-certificate in G′, from which we can construct a rooted H-certificate of G by replacing its
bag B containing w — if any — with (B \ {w}) ∪ {y, x, z}, contradiction. Hence we may assume that
every vertex in Ai \ {ti} has degree 4, that is, it is on both Pi and Pi−1. In particular, all Ai have the
same order d ≥ 1. If d = 1, then G = H, so that G is not a counterexample, contradiction. Hence
d ≥ 2, and we consider G′ := G − {t0, . . . , tℓ−1}, A′

i := Ai \ {ti} and let t′i ∈ A′
i be the neighbor of

ti−1 on Pi−1. As t′i+1 is on Pi − {ti, ti+1} = G[A′
i ∪ A′

i+1], we know by choice of G that G′ has a
rooted H ′-certificate (H ′ as above), from which we get a rooted H-certificate of G by extending the
bag containing t′i by the vertex ti−1, contradiction. ■

Lemma 5.5 generalizes to unicylic graphs, as follows.

Theorem 5.6. Every (connected) graph with at most one cycle has property (*). �

Proof. Let K be a connected graph with at most one cycle. Suppose that K has not property (*).
Hence, we may assume by Lemma 5.5 that G is not a cycle and contains at least one edge. Therefore,
K contains a vertex q of degree 1. Let r be the neighbor of q in K. By induction, we may assume that
K − q has property (*). Since K has not, there exists a graph G with a coloring C and a transversal
T of C such that K is isomorphic to a spanning subgraph H of H(G,C, T ) but G has no rooted
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H-certificate. Again we may take G minimal with respect to this property, implying that for all
A 6= B from C, G[A∪B] has a single nontrivial component which induces a path between the vertices
a ∈ A ∩ T , b ∈ B ∩ T if ab ∈ E(H) and E(G[A ∪B]) = ∅ otherwise. Now let Q 6= R be the members
of C with q ∈ Q, r ∈ R. If there existed a vertex x ∈ Q \ {q} then x has degree 2, and we take its
neighbors y, z ∈ R, contract yxz to a single vertex w. For A ∈ C set A′ := (A\{y, z})∪{w} if A = R,
A′ := A \ {x} if A = Q, and A′ := A otherwise, and for z ∈ T set z′ := w if z ∈ {y, z} and z′ := z

otherwise. Then C′ := {A′ : A ∈ C} is a coloring of G′ and T ′ := {t′ : t ∈ T} is a transversal of C′.
By choice of G, G′ has a rooted H(G′,C′, T ′)-certificate, and we get a rooted H-certificate of G by
replacing its bag B containing w — if any — with (B \ {w}) ∪ {y, x, z}, contradiction. Therefore,
Q = {q} so that, by induction, G− q has a rooted H(G− q,C \ {Q}, T \ {q})-certificate, from which
we get a rooted H-certificate by adding the bag Q = {q}. ■

5.4 The Graphs Z(G) for |V (G)| ≤ 6

One could ask if Theorem 5.2 extends to smaller complete graphs or, alternatively, if the
bound (“four”) in Theorem 5.4 can be increased. Both questions need new methods: In this
section, we will see that the method used in Section 5.2 to identify graphs not satisfying (*)
does not work out for graphs on less than seven vertices, whereas, in the next section, we
will collect our knowledge on (*) for graphs on five vertices. We start with another positive
result.

Lemma 5.7. Let G be a graph, C be a coloring of G, T be a transversal of C and H :=
H(G,C, T ). Suppose that A is an anticlique in H and suppose that there is a matching M
in H from V (H) \ A into A (covering V (H) \ A, but not necessarily covering A). Suppose
that for every edge st ∈ M where s ∈ V (H) \A and t ∈ A, G[P ∪Q] − t is connected, where
P,Q denotes the color class from C containing s, t, respectively. Then there is a rooted
H-certificate in G. �

Proof. For s ∈ A set Vs := {s}. For s ∈ V (H) \A let t be the vertex in A such that st ∈ M , let P,Q
be the classes of C containing s, t, respectively, and set Vs := (P ∪Q) \ {t}. One readily verifies that
(Vs)s∈V (H) is a rooted H-certificate. □

Theorem 5.8. Let G be any graph with at most 6 vertices. Consider Z(G) defined as in
Section 5.2 with its canonical coloring C = {{x} × {1, 2} : x ∈ V (G)} and the transversal
T := V (G) × {1}. Then Z(G) has a rooted H(Z(G),C, T )-certificate. �

Proof. Let G be a counterexample and set H := H(Z(G),C, T ). By the positive results of the
Section 5.3, we may assume that |V (H)| ∈ {5, 6}, that H is connected, and that H contains more
than one cycle. If H has a cutvertex s, then there is a component C of H − s with one or two
vertices; if V (C) = {t}, then we know that Z(G)−{s, s, t, t} has a rooted (H−{s, t})-certificate, and
we extend it to a rooted H-certificate of Z(G) by setting Vs := {s, s, t} and Vt := {t}; if, otherwise,
V (C) = {t, u}, then Z(G) − {t, t, u, u} has a rooted (H − {t, u})-certificate, and we extend it to a
rooted H-certificate of Z(G) by setting Vt := {t, u} and Vu := {u, t}. Therefore, we may assume that
H is 2-connected.

Let us call an anticlique matchable if there exists a matchingM from V (H)\A into A. By Lemma 5.7,
we may assume that H has no matchable anticlique. For |V (H)| = 5 it follows that there is no
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anticlique A of order larger than 2, as it would be matchable by 2-connectivity of H. Consequently,
H has a spanning 5-cycle t0, t1, t2, t3, t4, and setting Vti := {ti, ti+1} (indices mod 5) yields a family
of pairwise adjacent cliques and, thus, a rooted H-certificate.

For |V (H)| = 6 it follows that there is not anticlique A of order larger than 3 (as, again, A would
be matchable). If A was an anticlique of order 3, then there would be a matching M from A to
V (H) \ A by Hall’s Theorem (see [Die17]), since every vertex in A has two neighbors in V (H) \ A
and NH(A) = V (H) \A as there are no anticliques of order 4. M is a matching from V (G) \A into
A, too, so A would be matchable, contradiction. It follows that G has no anticliques of order larger
than 2.

Let us say that a matching N = {r1s1, r2s2, r3s3} of H is good if every edge from E(H) \N is either
on a triangle containing one edge from N or on a cycle of length 4 containing two edges from N . In
this case, Vri

:= {ri, si}, Vsi
:= {si, ri} for i ∈ {1, 2, 3} defines a rooted H-certificate.

If H has a spanning cycle t0t1t2t3t4t5, then setting Vti := {ti, ti+1} yields a family of cliques such that
Vti is adjacent to Vti+1 and Vti+2 ((sub-)indices modulo 6). So we get a rooted H-certificate in the
case that all three long chords t0t3, t1t4, t2t5 of the cycle are missing. If all long chords are present,
then they form a good matching in H, and we are done, too.

Suppose that S is a smallest separator in H and that C,D are two components of H − S. Then
|S| ≥ 2, C,D are complete, and there are no further components of H − S as H has no anticlique
of order 3. If |V (C)| = |V (D)| = |S| = 2, then there is a spanning cycle t0t1t2t3t4t5 in G with
V (C) = {t0, t1}, S = {t2, t5}, and V (D) = {t3, t4}; if t2t5 6∈ E(H), then all long chords are missing,
and we are done, otherwise {t0t1, t2t5, t3t4} is a good matching.

Suppose that V (C) = {s}, S = {t, u}, V (D) = {a, b, c}. We may assume that both t and u have
more than one neighbor among a, b, c, for otherwise NH({s, t}) or NH({s, u}) would be a separator
of order 2 as discussed in the previous paragraph. If NH(t) \ {u} = NH(u) \ {t} = {s, a, b}, then
{st, ua, bc} is a good matching, and we are done. Otherwise, ta, tb, ub, uc ∈ E(H) without loss of
generality, and if tc 6∈ E(H) and ua 6∈ E(H), then stabcu is a cycle of length 6 without long chords,
and we are done. So tc ∈ E(H) without loss of generality. If ua ∈ E(H), too, then su, ta, bc is a
good matching, otherwise Vs := {s, u}, Vu := {u, s}, Vt := {t, c}, Vc := {c, b}, Vb := {b, t}, Va := {a}
defines a rooted H-certificate.

From now on we may assume that G is 3-connected. If H has a spanning wheel with center s and
rim cycle t0, . . . , t4, then Vs := {s}, Vti := {ti, ti+1} (indices mod 5) defines a rooted H-certificate. If
H has a spanning prism with triangles s0s1s2, t0t1t2 and connecting edges siti, then the connecting
edges form a good matching.

If |S| = 3, then V (C) = {s}, S = {t, u, v}, V (D) = {a, b}, ta, ua, ub, vb ∈ E(H) without loss of
generality. If tv ∈ E(H), then we have a spanning prism with triangles stv and uab. Otherwise,
one of tu, uv is in E(H) (as S is not an anticlique), say tu ∈ E(H). If uv ∈ E(H), then we have a
spanning wheel with center u, otherwise va ∈ E(H) and we have a spanning prism with triangles stu
and vab.

Hence we may assume that G is 4-connected and, therefore, obtained from K6 by deleting some edges
of some perfect matching. Consequently, it has a spanning prism, and we are done. ■
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5.5 Connected Transversals of 5-colorings

By Theorem 5.4, all graphs with at most four vertices have property (*), whereas by Theo-
rem 5.2, there exists a graph on seven vertices which has not. For graphs K on five vertices
we do not have the full picture; since we may assume that such a K is connected and since a
connected graph on five vertices and at most five edges contains at most one cycle, we know
by Theorem 5.6 that all graphs on five vertices and at most five edges have property (*),
too. This extends as follows:

Theorem 5.9. Every graph on five vertices and at most six edges has property (*). �

Proof. Let K be a graph with |V (K)| = 5 and |E(K)| ≤ 6. To verify (*) for K, we may assume
that K is connected and |E(K)| = 6 by results and observations of the previous sections. If there
is a vertex of degree 1 in K, by a similar argument as in the proof of Theorem 5.6 we can reduce
the problem to a graph with four vertices which is already solved. Thus, up to isomorphism, there
are only three remaining graphs to consider: The hourglass 

JJ obtained from the union of two disjoint
triangles by identifying two nonadjacent vertices, the complete bipartite graph K2,3 with color classes
of order 2 and 3, respectively, and the graph C+

5 obtained from a 5-cycle by adding a edge connecting
some pair of nonadjacent vertices.

Assume, to the contrary, thatK does not have property (*); then there exists a graphG with a coloring
C and a transversal T of C such that K is isomorphic to a spanning subgraph H of H(G,C, T ) but
G has no rooted H-certificate. Again we may take G minimal with respect to this property, implying
that for all A 6= B from C, G[A∪B] has a single nontrivial component which induces a path between
the unique vertices a ∈ A∩T , b ∈ B ∩T if ab ∈ E(H) and E(G[A∪B]) = ∅ otherwise. In particular,
H(G,C, T ) is isomorphic to K. As in the proof of Lemma 5.5, we may assume that all vertices in
V (G) \ T have degree at least 4.

In all three cases, let T := {t1, . . . , t5} and C := {A1, . . . , A5} such that ti ∈ Ai for all i ∈ {1, . . . , 5};
the ti will be specified differently in each case. In each case, we will find a rooted H-certificate c
defined by its bags Bi =: c(ti)

Case 1. K is isomorphic to the hourglass 

JJ.

Let t1 ∈ T be the vertex of degree 4 in H, and let s2, s3 be two neighbors in G of t1 in the color
classes A2 and A3, respectively, such that t2t3 ∈ E(H). Then there is a t2,t3-path P in G[A2 ∪ A3],
and, because of the assumptions to G, s2, s3 ∈ A2 ∪A3 = V (P ). It is possible to partition V (P ) into
two bags B2 and B3 such that each of them contains exactly one vertex from {s2, s3} and one from
{t2, t3}, and G[B2], G[B3] are connected subgraphs. Repeating this step for the other two neighbors
of t1 in G, we obtain bags B2, . . . , B5 forming a rooted H-certificate together with the fifth bag
B1 := {t1}, contradiction.

Case 2. K is isomorphic to the graph K2,3.

First, note that all Kempe chains in G have at least four vertices. (Otherwise remove one edge
connecting two transversal vertices; the remaining graph is unicyclic and we are done by Theorem 5.6.)
Additionally, assume |V (G)| to be minimal.

Let t1, t2, t3 be the vertices of T of degree 2 in H and let si (not necessarily distinct) be a neighbor of
ti for i ∈ {1, 2, 3} such that s1, s2, s3 ∈ A4. The vertices si have at least two neighbors in a color class
other than Ai. Assume first that two among s1, s2, s3 have such neighbors in a common color class
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(this will always happens if s1, s2, s3 are not pairwise distinct); say, without loss of generality, there
are neighbors of s1 and s2 in A3. We set B1 := {t1}, B2 := {t2}, B3 := {t3}, B4 := V (P34)\{t3}, B5 :=
(V (P15) \ {t1}) ∪ (V (P25) \ {t2}), where Pij is the path from ti to tj in G[Ai ∪ Aj ]. Because each
vertex in A5 is a vertex of P15 or P25 — all these vertices have degree at least 3 — there are edges
between B5 and B1, B2, B3. Since s1 and s2 have a neighbor in A3, we conclude {s1, s2} ⊆ V (P34),
and B1, . . . , B5 form a rooted H-certificate of G, contradiction.

Thus, for i ∈ {1, 2, 3}, the vertices si are distinct and each has a neighbor in a color class Ãi 6= Ai
such that Ã1, Ã2, Ã3 are distinct. Then si is a vertex of the 2-colored path from t4 to the transversal
vertex of Ãi. Let ui be the neighbor of si in Ãi with shortest distance to t4 on this 2-colored
path. Moreover, u1, u2, u3 are colored differently as Ã1, Ã2, Ã3 are distinct. Since ui /∈ {t1, t2, t3},
all si, ti, ui (i ∈ {1, 2, 3}) are distinct. Consider the graph G′ := G − {s1, t1, s2, t2, s3, t3} with the
induced coloring C′ := {A ∩ V (G′) : A ∈ C}, and T ′ := {u1, u2, u3, t4, t5}. All vertices in V (G) \ T
have degree at least 4 in G, thus, ui has neighbors in A5 and is on the 2-colored path from the
transversal vertex of Ãi to t5. Because of the choice of u1, u2, u3, there is a 2-colored path from ui to
t4 for i ∈ {1, 2, 3} in G′. Thus, H(G′,C′, T ′) has a spanning subgraph H ′ isomorphic to K. Because
of the minimality of G, there is a rooted H ′-certificate in G′. Adding to its bag containing ui the
vertices si, ti for i ∈ {1, 2, 3}, we obtain a rooted H-certificate of G, contradiction.

Case 3. K is isomorphic to the graph C+
5 .

Let t1 ∈ T be the vertex of degree 2 in H in the unique triangle of H, let t2, t3 ∈ T be the two vertices
of degree 3 in H, and let t4, t5 the remaining two transversal vertices such that t2t4 ∈ E(H). Choose
an arbitrary partition of A1 ∪ A2 ∪ A3 into B1, B2, B3 such that B1 = {t1} and t2 ∈ B2, t3 ∈ B3,
G[B2], G[B3] are connected subgraphs, and B1, B2, B3 are bags of a rooted KS-certificate with S :=
{t1, t2, t3}. Note that t1 has two neighbors on the t2,t3-path in G[A2 ∪ A3]. If t4 has a neighbor in
B2, then set B4 := {t4} and B5 := (A4 ∪A5) \ {t4} as to obtain a rooted H-certificate, contradiction.
By symmetry, t5 has no neighbor in B3. But then, consider the t4,t2-path P in G[A2 ∪ A4]. This
one starts with t4 followed by a vertex in B3 and ends in t2 ∈ B2. Thus, there is a vertex v ∈ A4

having neighbors in both B2 and B3. Since there is a t5,t3-path Q in G[A3 ∪ A5], disjoint from P ,
there is another vertex w ∈ A5 having neighbors in both B2 and B3. Due to the assumptions to
G, v and w have degree 4 and, therefore, they are vertices on the t4,t5-path S in G[A4 ∪ A5]. Now
take a partition of S into adjacent B4 and B5 such that t4 ∈ B4, t5 ∈ B5, G[B4], G[B5] are connected
subgraphs, and |{v, w} ∩ B4| = |{v, w} ∩ B5| = 1. Then the bags B2, . . . , B5 are pairwise adjacent,
hence G has a rooted H-certificate, a contradiction. ■

Corollary 5.10. Let G be a graph with a Kempe coloring C of order 5 and let T be a
transversal of C such that G[T ] is connected. Then there exists a rooted KT -certificate in
G. �

Proof. Since G has a Kempe coloring, any pair of transversal vertices is connected by a 2-colored
path. Hence, H(G,C, T ) is isomorphic to K5. Let H be obtained from it by removing edges if they
exist in G[T ], i.e. V (H) = T and E(H) = {st : s, t ∈ T, s 6= t, st /∈ E(G)}. Since G[T ] is connected,
|E(G[T ])| ≥ 4 and |E(H)| ≤ 6. Thus, H fulfills the conditions of Theorem 5.9 and has property (*).
We find a rooted H-certificate c of G. It remains to show that c is a rooted H(G,C, T )-certificate of
G. If for s, t ∈ T the edge st is not in E(G), then st ∈ E(H) and Bs = c(s), Bt = c(t) are adjacent.
Otherwise, st ∈ E(G), then Bs, Bt are connected by the edge st. ■
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5.6 Concluding Remarks

Assuming thatK5 has property (*), any graph G with a 5-coloring C and a transversal T such
that H(G,C, T ) is a complete graph on 5 vertices cannot be planar and even has a K5-minor.
We conclude by two remarks that such graphs are not planar and have a K5-minor even if
K5 may not have property (*). The problem whether K5 has property (*) remains open.

Remark 5.11. Let G be a graph with a 5-coloring C and T be a transversal of C. If for
each distinct s, t ∈ T there is a 2-colored path from s to t in G, then G is not planar. �

Proof. On the contrary assume that G is planar, and, again, we may assume G to be minimal,
implying that for all A 6= B from C, G[A∪B] has a single nontrivial component which induces a path
between the unique vertices a ∈ A∩T, b ∈ B∩T . Consider a drawing of G into the plane. Then each
of the ten 2-colored paths between the transversal vertices can be considered as a Jordan curve of a
plane drawing of K5 on T with crossings. Evoke Tutte-Hanani-Theorem [Tut70] which states that
in any planar representation of a non-planar graph G there are two nonadjacent edges whose crossing
number is odd. Since K5 is non-planar, there must be two of the Jordan curves with different end
vertices crossing and such a crossing is always a vertex of G. But then, these two Jordan curves
share an end vertex in the same color as the crossing vertex, contradiction. ■

Remark 5.12. Let G be a graph with a 5-coloring C and T be a transversal of C. If for all
s 6= t from T there is a 2-colored path from s to t in G, then G has K5 as minor. �

Proof. Assume that G does not contain K5 as minor and let G be chosen as a minimal counterex-
ample. If G was not 3-connected, then there would be a separator S with |S| ≤ 2 and a component C
of G− S containing at least three vertices from T . Repeating the same arguments as in the proof of
Theorem 5.4, we can reduce G to a smaller counterexample. Hence, we assume that G is 3-connected.

Denote by G+ the graph obtained from G by repeatedly adding edges as long as the resulting graph
does not contain a K5-minor. Then, G+ is a 3-connected maximal K5-minor-free graph by construc-
tion. By a famous result of Wagner [Wag37], G+ is a 3-clique-sum of maximal planar graphs or
the 8-vertex Wagner graph. Since G is not planar by Remark 5.11 and not the 8-vertex Wagner
graph (G has minimum degree at least 4), there is a clique S in G+ with |S| = 3 that separates G+.
Since G is a spanning subgraph of G+, S also separates G.

Let Ax denote the member of C containing x with x ∈ V (G). Then there are s (s ≥ 2) distinct
x1, x2, . . . , xs ∈ T such that Axi ∩ S = ∅ for i ∈ {1, . . . , s}. Again as in the proof of Theorem 5.4,
there is one component C of G− S containing all xi, i ∈ {1, . . . , s}.

Let X := V (G) \ (V (C) ∪ S) and assume first that there is y ∈ T such that |Ay ∩ S| ≥ 2. Let
G′ be obtained from G by contracting Y := X ∪ (S ∩ Ay) to a single vertex w. For A ∈ C set
A′ := (A \ Y ) ∪ {w} if A = Ay and A′ := A \ Y otherwise, so that C′ := {A′ : A ∈ C} is a coloring of
G′. For z ∈ T , set z′ := w if z ∈ Y ∩Ay, z′ := z0 with z0 ∈ S \Ay uniquely determined if z ∈ Y \Ay
and z′ := z otherwise, so that T ′ := {z′ : z ∈ T} is a transversal of C′, and H ′ := H(G′,C′, T ′) is a
complete graph on T ′. By the choice of G, G′ has a K5-minor and so has G because G′ is a minor of
G, contradiction.

Thus, there are distinct y1, y2, y3 ∈ T such that |Ayi
∩ S| = 1 with i ∈ {1, 2, 3}. If X = {d}, then d

is not in T and d cannot be a vertex of a 2-colored path of G, contradiction. Thus, X consists of at
least two vertices with degree at least 3 in G[X ∪S]. If there was no cycle in G[X ∪S], then G[X ∪S]
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would be a tree. A leaf of this tree would be a vertex from S, contradiction because a tree with at
least two vertices of degree at least three has at least four leaves.

Hence, there is a cycle D in G[X ∪S] and by the 3-connectedness of G, there are three vertex-disjoint
si,ci-paths Pi, i ∈ {1, 2, 3} in G such that V (Pi) ∩ S = {si} and V (Pi) ∩ V (D) = {ci} (possibly
si = ci). It is easy to see that V (Pi) ⊆ X ∪ S. Denote by Di the subpath of D from ci to ci+1

missing ci+2 (indices modulo 3). Let G′ be obtained from G[V (C) ∪D ∪
∪3
i=1 V (Pi)] by contracting

V (Pi) ∪ (V (Di) \ {ci+1}) to a single vertex wi for i ∈ {1, 2, 3}. Observe that w1w2w3 is a triangle
in G′. For A ∈ C set A′ := (A ∩ V (C)) ∪ {wi} if si ∈ A and A′ := A ∩ V (C) otherwise, so that
C′ := {A′ : A ∈ C} is a coloring of G′. For z ∈ T , set z′ := wi if z /∈ V (C) with z ∈ Asi

for suitable
i ∈ {1, 2, 3}, and z′ := z otherwise, so that T ′ := {z′ : z ∈ T} is a transversal of C′. It is straight-
forward to check that H ′ := H(G′,C′, T ′) is a complete graph on T ′. By the choice of G, G′ has a
K5-minor and so has G because G′ is a minor of G, contradiction. ■



�submitted to: Journal of Graph Theory.
T. Böhme, J. Harant, M. Kriesell, S. Mohr, and J. M. Schmidt, Rooted Minors
and Locally Spanning Subgraphs.
Available at arXiv: 2003.04011.

Rooted Minors and Locally Spanning
Subgraphs1 6
Thomas Böhme, Jochen Harant, Matthias Kriesell, Samuel
Mohr2 , and Jens M. Schmidt3

Ilmenau University of Technology, Department of Mathematics, Ilmenau, Germany

Given a graph G and X ⊆ V (G), we say M is an minor of G rooted at X, if
M is a minor of G such that each bag contains at most one vertex of X and X
is a subset of the union of all bags. We consider the problem whether G has a
highly connected minor rooted at X if X ⊆ V (G) cannot be separated in G by
removing a few vertices of G.

Our results constitute a general machinery for strengthening statements about
k-connected graphs (for 1 ≤ k ≤ 4) to locally spanning versions, i.e. subgraphs
containing X, of graphs in which only a vertex subset X has high connectivity. As
a first set of applications, we use this machinery to create locally spanning versions
of six well-known results about degree-bounded trees, Hamiltonian paths and
cycles, and subgraphs of planar graphs.

Keywords: Minor, rooted minor, connectedness, spanning subgraph.

AMS classification: 05c83, 05c40, 05c38.

1Partially supported by DAAD, Germany (as part of BMBF) and the Ministry of Education, Science,
Research and Sport of the Slovak Republic within the project 57447800.

2Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – 327533333.
3This research is supported by the grant SCHM 3186/1-1 (270450205) from the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation)

https://arxiv.org/abs/2003.04011


6.1 Introduction and Main Result 69

6.1 Introduction and Main Result

In the present paper, we consider simple, finite, and undirected graphs; V (G) and E(G)
denote the vertex set and the edge set of a graph G, respectively. For graph terminology not
defined here, we refer to [Die17].

Let G be a graph and M be a family of pairwise disjoint subsets of V (G) such that these
sets — called bags — are non-empty and for each bag A ⊆ V (G) the subgraph G[A] induced
by A in G is connected. Let the bags of M be represented by the vertex set V (M) of a
graph M , then we say M = (Vv)v∈V (M) is an M-certificate and M is a minor of G if there is
an edge of G connecting two bags Vu and Vv of M for every uv ∈ E(M). As an equivalent
definition (see [Die17]), a graph M is a minor of a graph G if it isomorphic to a graph that
can be obtained from a subgraph of G by contracting edges.

Here, we want to keep a set X ⊆ V (G) of root vertices alive in the minors. Therefore, we
extend the concept of minors and introduce rooted minors. For adjacent vertices x, y ∈ V (G),
let G/xy denote the graph obtained from G by removing y and by adding a new edge xz for
every z such that yz ∈ E(G) and xz /∈ E(G). That is, the edge xy is contracted into the
vertex x stated first (multiple edges do not occur); this is different from the standard notion
of contraction, where a new artificial vertex vxy is introduced as to replace both x and y.
We call an edge xy of G X-legal if y /∈ X. While this distinguishes xy from yx, both notions
refer to the same undirected edge.

A graph M is a minor of G rooted at X or, shortly, an X-minor of G if it can be obtained
from a subgraph of G containing G[X] as a subgraph by a (possibly empty) sequence of
contraction of X-legal edges. Lemma 6.1 shows that there is an equivalent definition of a
minor of G rooted at X by using certificates:

Lemma 6.1. Let G be a graph and X ⊆ V (G). If M is a graph with X ⊆ V (M) and there
is an M-certificate M = (Vv)v∈V (M) of G, then M is an X-minor of G if and only if v ∈ Vv

for all v ∈ V (M) and E(G[X]) ⊆ E(M). �

Proof of Lemma 6.1. Suppose M and M fulfil v ∈ Vv for all v ∈ V (M) and xy ∈ E(M) for each
xy ∈ E(G[X]). Then G′ = G[

∪
v∈V (M) Vv] is a subgraph of G. We obtain a subgraph G′′ of G′

by removing all edges between Vv and Vw for all distinct v, w ∈ V (M) with vw /∈ E(M). Since
xy ∈ E(M) for xy ∈ E(G[X]), G′′ contains G[X] as a subgraph. Starting with G′′ and repeatedly
contracting X-legal edges vy with v ∈ V (M) and y ∈ Vv\{v} ⊆ V (G)\X as long as there is v ∈ V (M)
with |Vv| ≥ 2, we obtain M . Hence, M is an X-minor of G.

Now, letM be an X-minor of G obtained from a subgraph G′ of G by contracting edges. We partition
V (G′) by defining Vv for every v ∈ V (M). Let Vv = {v} and iteratively add back all vertices y ∈ V (G′)
to Vv if wy was contracted to w ∈ Vv. Then M = (Vv)v∈V (M) is an M-certificate, X ⊆ V (M), v ∈ Vv
for v ∈ V (M) and xy ∈ E(M) for xy ∈ E(G[X]) since xy ∈ E(G′). □

Note that an X-minor of G contains G[X] as a subgraph and an ∅-minor of G is a minor of
G in the usual sense whereas a minor of G is isomorphic to some ∅-minor of G. In this paper
the set X is never empty.

If for an X-minorM of G there is an isomorphism φ from a subdivision ofM into a subgraph
of G such that all vertices of M are fixed by φ, then M is called a topological X-minor of G.
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A set S ⊂ V (G) is an X-separator of G if at least two components of G − S obtained from
G by removing S contain a vertex of X.

Let κG(X) be the maximum integer less than or equal to |X| − 1 such that the cardinality
of each X-separator S ⊂ V (G) — if any exists — is at least κG(X). It follows that κG(X) =
|X| − 1 if G[X] is complete; however, if X is a proper subset of V (G), then the converse
need not to be true. If κG(V (G)) ≥ k for a graph G, then we say that G is k-connected, and
a V (G)-separator of G is a separator of G. This terminology corresponds to the commonly
used definition of connectivity, e.g. in [Die17].

In the remainder of this section, we deal with the question whether, for a given graph G

and X ⊆ V (G), G has a highly connected X-minor or even a highly connected topological
X-minor if κG(X) is large. An answer is given by the forthcoming Theorem 6.2; we present
examples showing that this theorem is best possible. The proof can be found in Section 6.2.
As applications, we present, in the third Section 6.3, local versions of some theorems on the
existence of special spanning subgraphs of graphs.

Theorem 6.2. Let k ∈ {1, 2, 3, 4}, G be a graph, and X ⊆ V (G) such that κG(X) ≥ k.
Then:

(i) G has a k-connected X-minor.

(ii) If 1 ≤ k ≤ 3, then G has a k-connected topological X-minor. �

Observation 6.3. Theorem 6.2 (i) is best possible, because there are infinitely many (pla-
nar) graphs G with the property that G contains X ⊆ V (G) such that κG(X) = 6 and G
has no 5-connected X-minor. �

Figure 6.1: The graph G7.

Proof. For an integer t ≥ 7, the graph G7 of Figure 6.1 can be readily generalized to a plane graph
Gt containing a set X of t white vertices of degree 6 forming a t-gon of Gt and 4t black vertices of
degree 4 such that κGt(X) = 6. The assertion is proved, if there is no 5-connected X-minor M of Gt.

Assume that M exists and that M is obtained from a subgraph H of Gt by contractions of X-legal
edges. If |V (G) \ V (H)| = b, then we can say that M is obtained from Gt by a number a of
contractions of X-legal edges and by b removals of vertices not belonging to X. If an X-legal edge
xy is contracted or a vertex z /∈ X is removed, then the degree of a vertex distinct from x, y or
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distinct from z, respectively, does not increase, respectively. Since Gt has 4t vertices of degree 4
and the minimum degree δ(M) of M is at least 5, each black vertex either must be removed or
an incident edge must be contracted. Thus, it follows 2a + b ≥ 4t implying a + b ≥ 2t. Because
n = |V (M)| = |V (Gt)| − (a+ b) = 5t− (a+ b), we obtain n ≤ 3t.

Note that M , as an X-minor of a planar graph, is planar. Since M is 5-connected, it has, up to the
choice of the outer face, a unique embedding into the plane. It is clear (consider the drawing of G7

in Figure 6.1) that the vertices of X remain boundary vertices of a t-gon α of such an embedding of
M into the plane. For a vertex x ∈ X, let NM (x) be the set of neighbors of x in M , |NM (x)| ≥ 5.
Furthermore, |N∗(x)| ≥ 3 for N∗(x) = NM (x) \ X and x ∈ X, because otherwise the boundary
cycle of α has a chord incident with x and the end vertices of this chord form a separator of M ,
contradicting the 3-connectedness, and therefore also the 5-connectedness ofM . If N∗(x1)∩N∗(x2) 6=
∅ for non-adjacent x1, x2 ∈ X, then S = {x1, x2, u} with u ∈ N∗(x1) ∩ N∗(x2) is a separator of
M , a contradiction. For the same reason |N∗(x1) ∩ N∗(x2)| ≤ 1 for adjacent x1, x2 ∈ X, and if
N∗(x1) ∩N∗(x2) = {u}, then x1, x2, and u are the boundary vertices of a 3-gon of M . It follows

n = |V (M)| ≥ |X| + |
∪
x∈X

N∗(x)| ≥ t+
∑
x∈X

(|N∗(x)| − 1) ≥ 3t.

All together, n = 3t, V (M) = X∪
∪
x∈X N

∗(x), |N∗(x)| = 3 for x ∈ X, |N∗(x1)∩N∗(x2)| = 0 for non-
adjacent x1, x2 ∈ X, |N∗(x1) ∩ N∗(x2)| = 1 for adjacent x1, x2 ∈ X, and if N∗(x1) ∩ N∗(x2) = {u}
in this case, then x1, x2, and u are the boundary vertices of a 3-gon of M .

For v ∈
∪
x∈X N

∗(x), it holds |NM (v)∩X| ≤ 2, thus, |NM (v)∩(V (M)\X)| = |NM (v)∩(
∪
x∈X N

∗(x))|
≥ 3 and it is checked readily that v has a neighbor w ∈ N∗(x′) such that x 6= x′ and {x, x′, v, w} is
a separator of M , a contradiction to the 5-connectedness of M . □

Observation 6.4. Theorem 6.2 (ii) is best possible, because for an arbitrary integer ℓ, there
is a (planar) graph G and X ⊆ V (G) with κG(X) ≥ ℓ such that every topological X-minor
of G is not 4-connected. �

ℓ ℓ ℓ ℓ ℓ

ℓ

Figure 6.2: The graph Fℓ.

Proof. For ℓ ≥ 4 consider the graph Fℓ of Figure 6.2 and let X be the set of white vertices of Fℓ.
The vertices of X have degree ℓ ≥ 4 and all black vertices have degree at most 3 in Fℓ. Moreover,
it is easy to see that κFℓ

(X) = ℓ. Suppose, to the contrary, that there is a 4-connected topological
X-minor M of Fℓ and an isomorphism φ from a subdivision of M into a subgraph H of Fℓ. Then
vertex v ∈ V (M) is a vertex of H and has degree at least 4 in H and, therefore, also in Fℓ, thus,
v ∈ X. Since X ⊆ V (M) it follows X = V (M). The vertices of X are boundary vertices of a common
face in Fℓ, hence, also in M . Consequently, M is a simple outerplanar graph implying δ(M) = 2, a
contradicting δ(M) ≥ 4. □

This shows also, that there cannot be any integer ℓ such that κG(X) ≥ ℓ implies the existence
of a 4-connected topological X-minor. By the first example (Observation 6.3), it remains
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open whether an integer ℓ exists — it must be at least 7 — such that every graphG containing
X ⊆ V (G) with κG(X) ≥ ℓ has a 5-connectedX-minor. We conclude this section by showing:

Observation 6.5. There cannot be any integer ℓ such that κG(X) ≥ ℓ implies the existence
of a 6-connected X-minor. �

ℓ ℓ ℓ ℓ

ℓ

ℓ · (ℓ+ 1)

Figure 6.3: The graph Hℓ.

Proof. Let ℓ ≥ 6 and consider the planar graph Hℓ of Figure 6.3. It contains a set X of ℓ+ 1 white
vertices of degree ℓ and further ℓ2(ℓ + 1) black vertices. It is easy to see that κHℓ

(X) = ℓ. An
arbitrary X-minor M of Hℓ is also planar and, since it contains X, it has at least ℓ+ 1 ≥ 7 vertices.
It is known that planar graphs are not 6-connected. □

6.2 Proof of Theorem 6.2

In the sequel, the following Lemma 6.6 — as a consequence of Menger’s Theorem [BGH01;
Men27] — and Lemma 6.7 are used several times.

Lemma 6.6. Let G be a graph, X ⊆ V (G), k ≥ 1, and |X| ≥ k + 1.

Then κG(X) ≥ k if and only if for every x, y ∈ X with xy /∈ E(G) there are k internally
vertex disjoint paths connecting x and y. �

Let S be an X-separator of G, the union F of the vertex sets of at least one but not of all
components of G− S is called an S-X-fragment, if both F and F := V (G− S) \ F contain
at least one vertex from X. In this case, F is an S-X-fragment, too. For a S-V (G)-fragment
F , we again drop the V (G) in the notion; thus, F is an S-fragment for a separator S of G.
We say that some set Y ⊆ V (G) is X-free if Y ∩X = ∅.

Lemma 6.7. Let G be a graph, S ⊂ V (G) be a separator of G, and F be an X-free
S-fragment of G. Furthermore, let G′ be the graph obtained from G[F ∪ S] by adding all
possible edges between vertices of S (if not already present).
Then κG′(X) ≥ κG(X). �
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Proof of Lemma 6.7. If G′[X] is complete, then κG′(X) = |X|−1 ≥ κG(X), hence, Lemma 6.7 holds
in this case.

Consider x1, x2 ∈ X such that x1 and x2 are non-adjacent in G′. Since S forms a clique in G′, we
may assume that x2 /∈ S (possibly x1 ∈ S). According to Lemma 6.6, we have to show that there
are at least κG(X) internally vertex disjoint paths in G′ connecting x1 and x2. Note that x1 and x2

are also non-adjacent in G and, again using Lemma 6.6, consider a set P of κG(X) internally vertex
disjoint paths of G connecting x1 and x2.

If some P ∈ P is not a path of G′, then P contains at least one subpath Q on at least 3 vertices
connecting two vertices u, v ∈ S such that V (Q) ∩ V (G′) = {u, v}. We obtain a path connecting x1

and x2 from P by removing all inner vertices of Q and adding the edge uv. Note that uv ∈ E(G′) and
repeating this procedure finally leads to a path P ′ of G′. If P ∈ P is a path of G′, we put P ′ = P .

Since V (P ′) ⊆ V (P ) for all P ∈ P , the set P ′ = {P ′ : P ∈ P} is a set of κG(X) internally vertex
disjoint paths connecting x1 and x2. Since x1 and x2 have been chosen arbitrarily, Lemma 6.7 is
proved. □

First we prove Theorem 6.2 (ii).

Proof of Theorem 6.2 (ii). Since X is connected in G, there is a component K of G containing
all vertices from X. If K is k-connected, then K itself is a k-connected topological X-minor of G and
(ii) is proved in this case.

Assume that (ii) is not true and let G be a smallest counterexample. Then G is connected and consider
a smallest separator S of G, |S| ≤ k − 1 ≤ 2. Since κG(X) ≥ k, there is an X-free S-fragment F of
G and X ⊆ F ∪ S.

Let G′ be obtained from G[F ∪ S] by adding all possible edges between vertices of S (if not already
present), then, by Lemma 6.7, κG′(X) ≥ k. Since G′ has less vertices than G, G′ contains a subgraph
H ′ isomorphic to a subdivision of a k-connected X-minor M ′ of G′. Note that M ′ is also an X-minor
of G, since we can contract F into one of the at most two vertices of S by performing only X-legal
edge contractions.

If H ′ is also a subgraph of G, then this contradicts the choice of G. Thus, k = 3, κG(V (G)) = 2,
S = {u, v} and uv ∈ E(H ′) \ E(G). In this case, let H be obtained from H ′ by replacing uv with
a path Q of G connecting u and v such that V (Q) ∩ F = ∅. Then H is a subgraph of G and also
isomorphic to a subdivision of M ′, again a contradiction, and (ii) is proved. ■

Proof of Theorem 6.2 (i). Since a topological X-minor is an X-minor, Theorem 6.2 (ii) im-
plies (i) if k ∈ {1, 2, 3}. It remains to consider the case k=4 and it suffices to show:

If κG(X) ≥ 4, then there exists an X-legal edge xy such that κG/xy(X) ≥ 4, unless G is 4-connected.

Claim 1. If xy is an X-legal edge of G, then κG/xy(X) ≥ κG(X) or κG/xy(X) = κG(X) − 1 and
the latter case holds if and only if there exists an X-separator of G of size κG(X) containing x and
y. �

Proof of Claim 1. We assume κG/xy(X) < κG(X). Then (G/xy)[X] is not complete, because other-
wise |X| − 1 = κG/xy(X) < κG(X), contradicting κG(X) ≤ |X| − 1.

Let x1, x2 ∈ X and S ⊂ V (G/xy) be chosen such that |S| = κG/xy(X) and S separates x1 and x2 in
G/xy.
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Then x1x2 /∈ E(G/xy) and it follows x1x2 /∈ E(G) because an edge in E(G) \ E(G/xy) is incident
with y. Since κG/xy(X) < κG(X), G − S contains a path P connecting x1 and x2. If y /∈ V (P ),
then P is also a path of G/xy − S, contradicting the choice of S. If y ∈ V (P ) and x /∈ S, then
x ∈ V (G/xy), NG(y) \ {x} ⊆ NG/xy(x) and, in both cases x ∈ V (P ) and x /∈ V (P ), it is easy to see
that (G/xy) − S still contains a path connecting x1 and x2, again a contradiction.

All together, x ∈ S and every path of G−S connecting x1 and x2 contains y. It follows that S ∪ {y}
separates x1 and x2 in G, hence, κG(X) ≤ |S ∪ {y}| = κG/xy(X) + 1 ≤ κG(X). □

So suppose that κG(X) ≥ 4 and G is not 4-connected. Since |V (G)| ≥ |X| > 4, there must exist a
separator T with |T | ∈ {1, 2, 3}. Since at most one component of G − T contains vertices from X,
there exists an X-free T-fragment F . Let x ∈ T and y ∈ NG(x) ∩ F , then xy is X-legal, and it turns
out by Claim 1 that κG/xy(X) ≥ 4 if G[X] is complete or if κG(X) ≥ 5. Assume that |T | ∈ {1, 2}.
For all u, v ∈ X with uv /∈ E(G), there are four internally vertex disjoint paths in G connecting u and
v. If one of these paths contains y, then this path, say P , also contains x and there is a path in G/xy
connecting u and v using only vertices from P ; hence, κG/xy(X) ≥ 4. Therefore, κG(V (G)) = 3 and
κG(X) = 4.

Claim 2. Let G be a graph, X,X ′ ⊆ V (G), G[X] and G[X ′] not complete and S and S′ be X-sepa-
rators and X ′-separators with |S| = κG(X) and |S′| = κG(X ′), respectively. For an S-X-fragment F
and an S′-X ′-fragment F ′, let T (F, F ′) := (F ∩ S′) ∪ (S′ ∩ S) ∪ (S ∩ F ′).

Then

(i) If F ∩ F ′ 6= ∅, then T (F, F ′) is a separator of G separating F ∩ F ′ from the remaining graph,

(ii) |T (F, F ′)| + |T (F, F ′)| = |S| + |S′|. �

Proof of Claim 2. Since S and S′ are separators, NG(F ∩ F ′) ⊆ S ∪ F and NG(F ∩ F ′) ⊆ S′ ∪ F ′.
Hence, NG(F ∩F ′) ⊆ T (F, F ′). Obviously, V (G) 6= T (F, F ′)∪(F ∩F ′), thus NG(F ∩F ′) is a separator
of G; and so is T (F, F ′). This proves (i) and easy counting leads to (ii). □

Now, let us go back to the situation that there is a separator T of G with |T | = κG(V (G)) = 3.

Claim 3. Let T be a separator of G with |T | = 3. Then

(i) T is an anticlique,

(ii) if F is an X-free T-fragment, x ∈ T , y ∈ F ∩ NG(x), S is an X-separator with x, y ∈ S of
minimal size, and B is an S-X-fragment, then |B ∩ T | = 1. �

Proof of Claim 3. Let F be an X-free T-fragment and x ∈ T . For y ∈ F ∩ NG(x), the edge xy
is X-legal. By Claim 1, there exists an X-separator S with x, y ∈ S. Let B be an S-X-fragment.
If T ∩ B = ∅, then B ∩ F is not X-free and is separated by T (B,F ) from B (Claim 2 (i)). But
T (B,F ) = (B ∩ T ) ∪ (T ∩ S) ∪ (S ∩ F ) ⊆ S \ {y} has at most three vertices, a contraction to
κG(X) = 4.

In the same vein, T ∩ B 6= ∅ and, because |T | = 3, it follows |B ∩ T | = |B ∩ T | = 1 and the two
vertices in T \ {x} are non-adjacent. Since x has been chosen arbitrarily from T , T is an anticlique
in G, and so is every separator T of G with |T | = 3. □

Claim 4. Let T be a separator of G with |T | = 3 and F be an X-free T-fragment, then |F | = 1. �
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Proof of Claim 4. Let x ∈ T , y ∈ F ∩NG(x), S be an X-separator with x, y ∈ S of minimal size (by
Claim 1), and B be an S-X-fragment. If |F ∩S| ≥ 2, then |T (B,F )| ≤ 3 and |T (B,F )| ≤ 3, and both
B ∩ F and B ∩ F are X-free, so that X ⊆ T ∪ (F ∩ S), contradicting |X| ≥ 5. Hence F ∩ S = {y}.
Let x′ be the unique vertex in B ∩ T by Claim 3 (ii).

It follows that B∩F = ∅ for otherwise this set would be an {x, y, x′}-fragment as T (B,F ) = {x, y, x′}
is a separator of G by Claim 2 (i); but {x, y, x′} is not an anticlique since xy ∈ E(G), which is a
contradiction to Claim 3 (i). Likewise, B ∩ F = ∅, so that F = {y}, and again, this holds for every
X-free T-fragment. □

Now, let T = {x, x′, x′′} be a separator of G, F = {y} be an X-free T-fragment (Claim 4), and S be an
X-separator with x, y ∈ S and |S| = 4. Then there is an S-X-fragment B and unique vertices x′ and
x′′ in B ∩ T and B ∩ T , respectively (by Claim 3 (ii)). There exists an X-separator S′ with x′, y ∈ S′

by Claim 1 and we may take an S′-X-fragment B′ such that x ∈ B′ and x′′ ∈ B′ (by Claim 3 (ii)).
This situation is sketched in Figure 6.4.
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Claim 5. The following holds:

(i) B ∩B′ or B ∩B′ is X-free,

(ii) B ∩B′ or B ∩B′ is X-free,

(iii) If B ∩B′ = ∅, then |T (B,B′)| ≥ 5. �

Proof of Claim 5. To prove (i) assume that B ∩ B′ and B ∩ B′ are not X-free. Then, by Claim 2,
T (B,B′) and T (B,B′) both are X-separators and since |T (B,B′)| + |T (B,B′)| = |S| + |S′| = 8,
we have |T (B,B′)| = |T (B,B′)| = 4. But T (B,B′) \ {y} is also an X-separator because y has no
neighbor in B ∩B′, a contraction.

By the same arguments, T (B,B′) \ {y} is an X-separator of size 3 if B ∩B′ and B ∩B′ both are not
X-free, and (ii) is shown.

To see (iii), assume that B ∩B′ = ∅. Since x and x′ must have neighbors in B and B′, respectively,
which can only be in S′ \ {x′} and S \ {x}, respectively, T (B,B′) has at least five vertices. □

Claim 6. Let T be a separator of G with |T | = 3, then T ∩X = ∅.
If additionally B and B′ are an S-X-fragment and an S′-X-fragment, respectively, as defined before,
then B ∩B′ is X-free. �
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Proof of Claim 6. Assume that B ∩ B′ is not X-free. Thus, B ∩ B′ is X-free by Claim 5 (ii). One
checks that |B ∩ S′| ≥ |S ∩ B′| and |B′ ∩ S| ≥ |S′ ∩ B| (by Lemma 6.6, a vertex from X in B ∩ B′

has at least four internally vertex disjoint paths to any vertex from X in B and B′, respectively).

Furthermore, T (B,B′) is an X-separator by Claim 2 (i) and, therefore, |T (B,B′)| ≥ 4. Thus,
|T (B,B′)| ≤ 4 (Claim 2 (ii)) and by Claim 5 (iii), B∩B′ 6= ∅, so that T̂ = NG(B∩B′) = T (B,B′)\{y}
is a separator of size 3 in G. By Claim 4, B ∩B′ is a T̂-fragment and its unique vertex b is adjacent
to the three vertices in T̂ . Let v be the unique vertex from T (B,B′) \ {x, x′, y}. The situation is
sketched in Figure 6.5.

yx

x′

x′′

b

v

c

X-free
S′

B′ B′

S

B

B

Figure 6.5

If v ∈ S ∩ B′, then |T (B,B′)| ≥ 5 (since |B ∩ S′| ≥ |S ∩ B′|), which implies that B ∩ B′ is empty.
Thus, B = {b, x′} and x′ ∈ X, so that x′ has degree at least 4 and must be adjacent to at least one of
the two neighbors of b in S; this is not possible as NG(b) = T̂ is an anticlique (Claim 3). Analogously,
the assertion v ∈ S′ ∩B is contradictory.

It follows that v ∈ S ∩ S′. Thus, |T (B,B′)| = |T (B,B′)| = 4, where y has no neighbors in B ∩ B′

and B ∩B′, so that the latter two sets are X-free. It follows that X ∩B′ = {x} and x has degree at
least 4. Since x is non-adjacent to the two neighbors of b in S′, it must have a neighbor in B′ distinct
from b, implying that B ∩B′ is non-empty and, consequently, consists of a single vertex c. Since x is
not adjacent to the two neighbors of c in S′, the only neighbors of x are b, c, and y, a contraction.

Therefore, B ∩B′ is X-free and, in particular, x′′ /∈ X. By symmetry, x, x′ /∈ X, so that X is disjoint
from T and, hence, from every separator T in G with |T | = 3. □

Let B,B′ as before and note that B∩B′ 6= ∅ isX-free (by definition and by Claim 6). By symmetry we
may assume that B∩B′ is X-free (see Claim 5 (i)), so that B∩X ⊆ S′ ∩B. This implies that T (B,B′)
is not a separator in G of size 3 (since T (B,B′) is notX-free). Thus, |T (B,B′)| ≥ 4 and |T (B,B′)| ≤ 4
by Claim 2 (ii). By Claim 5 (iii), B ∩ B′ is non-empty, and, as NG(B ∩ B′) = T (B,B′) \ {y} is a
separator of size 3, we get by Claim 4 that B ∩B′ consists of a single vertex b adjacent to all vertices
in T (B,B′) \ {y}, and, hence b is adjacent to all vertices in B′ ∩S; among them, there is at least one
vertex from B′ ∩X (since B ∩B′ and B ∩B′ are X-free). This contradicts Claim 6 that NG(b) must
be X-free; and Theorem 6.2 (i) is proved. ■
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6.3 Locally Spanning Subgraphs

As examples of applications of Theorem 6.2, we show in this section how Theorem 6.2 can
be used to ensure the existence of a subgraph H of a graph G such that H contains a
specified X ⊆ V (G), i.e. H is X-spanning, and H has certain properties if κG(X) is large
(Theorem 6.8 and Theorem 6.10). For a positive integer t, a t-tree is a tree with maximum
degree at most t. Since an X-minor of a planar graph G is also planar, we first list four
statements on the existence of subgraphs of a sufficiently highly connected planar graph G.
In Statements 6.5 and 6.6, we consider non-planar graphs.

For 3-connected planar graphs, Barnette, Biedl, and Gao proved the following State-
ments 6.1 and 6.2, where Statement 6.1 is best possible since there are 3-connected planar
graphs without a Hamiltonian path.

Statement 6.1 (D. Barnette [Bar66], T. Biedl [Bie14]). If G is a 3-connected planar
graph and uv ∈ E(G), then G has a spanning 3-tree, such that u and v are leaves of
that tree. �

Statement 6.2 (Z. Gao [Gao95]). A 3-connected planar graph G contains a 2-connected
spanning subgraph of maximum degree at most 6. �

In [Bar94], it is shown that the constant 6 in Statement 6.2 cannot be replaced with 5.

Tutte [Tut56] proved that every 4-connected planar graph has a Hamiltonian cycle,
and Thomassen [Tho83] generalized this result by showing that every 4-connected pla-
nar graph has a Hamiltonian path connecting every given pair of vertices. Eventually,
Sanders [San97] extended the results of Thomassen and of Tutte and proved the follow-
ing statement.

Statement 6.3 (D. Sanders [San97]). Every 4-connected planar graph G has a Hamil-
tonian path between any two specified vertices x1 and x2 and containing any specified edge
other than x1x2. �

In [GH10], it is shown that Statement 6.3 is best possible in the sense that there are 4-con-
nected maximal planar graphs with three edges of large distance apart such that any Hamil-
tonian cycle misses one of them.

Thomas and Yu proved Statement 6.4.

Statement 6.4 (R. Thomas, X. Yu [San97]). A graph obtained from a 4-connected pla-
nar graph G on at least five vertices by deleting two vertices is Hamiltonian. �

Clearly, if three vertices of a 4-separator of a 4-connected planar graph are removed, then the
resulting graph does not contain a Hamiltonian cycle, thus, Statement 6.4 is best possible.

For not necessarily planar graphs, Statements 6.5 and 6.6 hold.

Statement 6.5 (K. Ota, K. Ozeki [OO09]). Let t ≥ 4 be an even integer and let G be a
3-connected graph. If G has no K3,t-minor, then G has a spanning (t−1)-tree. �
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For a surface Σ, the Euler characteristic χ is defined by χ = 2 − 2g if Σ is an orientable
surface of genus g, and by χ = 2 − g if Σ is a non-orientable surface of genus g. Ellingham
showed the following result.

Statement 6.6 (M. Ellingham [Ell96], [OY11]). Let G be a 4-connected graph embedded
on a surface of Euler characteristic χ < 0. Then G has a spanning d10−χ

4 e-tree. �

In the sequel, X-spanning versions of all six statements listed above are given. In Theo-
rem 6.8, we present locally spanning subgraph versions of the Statements 6.1, 6.2, and 6.5,
which are straight consequences of the statements and Theorem 6.2 (ii). The translation of
the other three statements into local versions (see Theorem 6.10) needs more effort. Note
that a minor of a graph G does not contain a graph U as a minor if already G does not
contain U as a minor.

Theorem 6.8. (i) If G is a planar graph, X ⊆ V (G), and κG(X) ≥ 3, then G contains
an X-spanning 3-tree H1. Moreover, if uv ∈ E(G[X]), then H1 can be chosen such
that u and v are leaves of H1.

(ii) If G is a planar graph, X ⊆ V (G), and κG(X) ≥ 3, then G contains a 2-connected
X-spanning subgraph H2 of maximum degree at most 6.

(iii) If t ≥ 4 is an even integer, X ⊆ V (G) for a graph G, κG(X) ≥ 3, and G has no
K3,t-minor, then G has an X-spanning (t−1)-tree. �

Proof of Theorem 6.8. Let G be a graph and X ⊆ V (G) with κG(X) ≥ 3 and properties
requested as in Theorem 6.8. By Theorem 6.2 (ii), there is a topological X-minor M of G, which
contains G[X] as a subgraph, and let φ be an isomorphism from a certain subdivision of M into a
subgraph of G such that all vertices of M are fixed by φ. Applying the suitable Statement 6.1, 6.2,
or 6.5 on M , we obtain a spanning subgraph H of M containing all vertices from X. Using the
isomorphism φ, a subdivision of H can be found in G which is X-spanning and has the properties in
G that H has in M . ■

Given a graph G and X ⊆ V (G), a subgraph H of G is an X-spanning generalized cycle of
G if H is the edge disjoint union of a cycle C of G and |X| pairwise vertex disjoint paths
P [xi, yi] of G connecting xi and yi (possibly xi = yi) such that X ∩ V (P [xi, yi]) = {xi} and
V (C) ∩ V (P [xi, yi]) = {yi} for i = 1, . . . , |X|. An X-spanning generalized path P of G is
defined similarly if in the previous definition the cycle C is replaced with a path P of G.
Note that an X-spanning path or an X-spanning cycle is also an X-spanning generalized path
or an X-spanning generalized cycle, respectively, and we observationerve:

Observation 6.9. Let X ⊆ V (G) for some graph G and M be an X-minor of G. If M has
an X-spanning path or an X-spanning cycle as a subgraph, then G contains an X-spanning
generalized path or an X-spanning generalized cycle, respectively. �

Proof. Let P be an X-spanning path of M and M = (Vv)v∈V (M) be an M-certificate. For each edge
uv ∈ E(P ), there is an edge euv ∈ E(G) between a vertex in Vu and a vertex in Vv. For each v ∈ V (P )
we define a set Ev of edges in Vv as follows: If v is an end vertex of P or if, for uv, vw ∈ E(P ) with
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u 6= w, the end vertices of euv and evw in Vv coincide, then Ev = ∅. Otherwise, the end vertices
of euv and evw in Vv can be connected by a path Q in G[Vv], since G[Vv] is connected, and we put
Ev = E(Q).

We obtain a path P ′ in G with E(P ′) = {euv : uv ∈ E(P )} ∪
∪
v∈V (P ) Ev, which has non-empty

intersection with Vv for all v ∈ V (P ). If x ∈ X is not on P ′, then there is a path Px in Vx connecting
x to the subpath of P ′ in G[Vx], i.e. X ∩ V (Px) = {x} and |V (P ′) ∩ V (Px)| = 1. Eventually, P ′

together with all paths Px for x ∈ X \ V (P ′) forms an X-spanning generalized path of G.

Using the same arguments, the existence of a X-spanning generalized cycle of G can be proved if M
contains an X-spanning cycle. □

Using Theorem 6.2 (i) and previous Observation 6.9, the Statements 6.3 and 6.4 can be
immediately translated to locally spanning versions if the formulations “X-spanning path”
and “X \ {x1, x2}-spanning cycle” in the forthcoming Theorem 6.10 (i) and (ii) are replaced
by “X-spanning generalized path” and “X \{x1, x2}-spanning generalized cycle”, respectively.
Theorem 6.10 (i) and (ii) do not follow directly from Theorem 6.2 since Theorem 6.2 (ii)
is not true in case k = 4 (see Observation 6.4). We will use the theory of Tutte paths
in 2-connected plane graphs (see [San97; Tho83; Tut56]) instead of Theorem 6.2 to prove
the strong locally spanning versions, stated in Theorem 6.10 (i) and (ii), of Statements 6.3
and 6.4, respectively.

Furthermore, we show that Theorem 6.10 (iii) is a consequence of Statement 6.6 and Theo-
rem 6.2 (i); thereby the upper bound on the maximum degree of the desired tree increases
by “+1” compared with the one of Statement 6.6 (observe again that Theorem 6.2 (ii) does
not hold in case k=4).

Theorem 6.10. (i) If G is a planar graph, X ⊆ V (G), κG(X) ≥ 4, x1, x2 ∈ X, E′ ⊂
E(G[X]), |E′| ≤ 1, and x1x2 /∈ E′, then G contains an X-spanning path P connecting
x1 and x2 with E′ ⊆ E(P ).

(ii) If G is a planar graph, X ⊆ V (G), κG(X) ≥ 4, and x1, x2 ∈ X, then G − {x1, x2}
contains an X \ {x1, x2}-spanning cycle.

(iii) Let G be a graph embedded on a surface of Euler characteristic χ < 0, X ⊆ V (G),
κG(X) ≥ 4. Then G has an X-spanning (d10−χ

4 e + 1)-tree. �

Proof of Theorem 6.10. In the following proof of Theorem 6.10, Observation 6.11 ob-
tained from Lemma 6.7 is used several times.

Observation 6.11. Let G be a graph, S ⊂ V (G) be a separator of G, and F be an X-free
S-fragment of G. Furthermore, let G′ be the graph obtained from G[F ∪ S] by adding all
possible edges between vertices of S (if not already present).

Then κG′(X) ≥ κG(X) and G′ is planar if all following conditions hold: G is planar, |S| ≤ 3,
and S is a minimal separator. �

Before we start to prove Theorem 6.10 (i), we introduce the concept of bridges and Tutte
paths, on which the proofs of Statements 6.3 and 6.4 are principally based [Tut56]. Therefore,
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let G be a 2-connected graph embedded into the plane, H be a subgraph of G, V (G)\V (H) 6=
∅, and K be a component of G − V (H). If NG(K) ⊆ V (H) is the set of neighbors of K in
V (H), then the graph B with V (B) = V (K) ∪ NG(K) and E(B) = E(K) ∪ {uv ∈ E(G) :
u ∈ V (K), v ∈ V (H)} is a non-trivial bridge of H, where NG(K) and V (K) are called the
sets T (B) of touch vertices and I(B) of inner vertices of B, respectively. (A trivial bridge is
an edge of G−E(H) whose two end vertices are contained in H.) Since we are interested in
bridges containing a vertex of X as an inner vertex, all references to bridges focus to non-
trivial ones.

The exterior cycle of G is the cycle CG bounding the infinite face of G. A path P of G on at
least two vertices is a Tutte path of G if each bridge of P has at most three touch vertices
and each bridge containing an edge of CG has exactly two touch vertices. (Note that a bridge
of P cannot have less than two touch vertices since G is 2-connected.)

Tutte [Tut56] proved that, for x, y ∈ V (CG) and e ∈ E(CG), G contains a Tutte path
from x to y containing e. Thomassen [Tho83] improved Tutte’s result by removing the
restriction on the location of y, and, eventually, Sanders ([San97]) established the following
Lemma 6.12:

Lemma 6.12 (D. Sanders [San97]). If G is a 2-connected plane graph, e ∈ E(CG), and
x, y ∈ V (G), then G has a Tutte path from x to y containing e. �

A bridge of a Tutte path of a 3-connected planar graph G has exactly three touch vertices.
Moreover, a 3-connected planar graph has a unique embedding in the plane up to the choice
of the infinite face, thus, the following Observation 6.13 holds.

Observation 6.13. If G is 3-connected, then in Lemma 6.12 the condition e ∈ E(CG) can
be replaced with e ∈ E(G). �

Thomas and Yu [San97] generalized the terms of Tutte in the following sense. Let E′ ⊆
E(G) for a 2-connected graph G, then a path P of G on at least two vertices is an E′-snake
of G if each bridge of P has at most three touch vertices and each bridge containing an edge
of E′ has exactly two touch vertices. Note that a Tutte path in its original meaning is an
E(CG)-snake. A cycle C of G is an E′-sling of G if C − e for some e ∈ E(C) is an E′-snake.
The following lemma generalizes Tutte’s result.

Lemma 6.14 (R. Thomas, X. Yu [San97]). If G is a 2-connected plane graph with outer
cycle CG, another facial cycle D, and e ∈ E(CG), then G has an (E(CG) ∪ E(D))-sling C
such that e ∈ E(C) and no C-bridge contains edges of both CG and D. �

If G is a plane graph, X ⊆ V (G), κG(X) ≥ 4, E′ ⊆ E(G), and Q is an E′-snake of G, then,
by the forthcoming Lemma 6.15, all vertices of X either belong to a single Q-bridge or all
belong to Q.

Lemma 6.15. Let Q be an E′-snake of a 2-connected planar graph G, E′ ⊆ E(G), X ⊆
V (G), and κG(X) ≥ 4. If X is not a subset of V (Q), then X ⊆ V (B) for some bridge B of
Q and, in this case, Q contains at most 3 vertices of X. �
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Proof. Let x ∈ X \ V (Q), then there is a bridge B of Q containing x as an inner vertex and
B has at most three touch vertices on Q. Assume there is a vertex y ∈ X \ V (B). Then the
touch vertices T (B) form an X-separator of G, contradicting κG(X) ≥ 4. Hence, X ⊆ V (B) and
|X ∩ V (Q)| ≤ |V (B) ∩ V (Q)| = |T (B)| ≤ 3. □

Proof of Theorem 6.10 (i). Suppose, to the contrary, that Theorem 6.10 (i) does not hold and
let G be a counterexample such that |V (G)| is minimum.

If G is not 2-connected, then, because κG(X) ≥ 4, X ⊆ V (K) for a block K of G. Moreover,
E′ ⊂ E(K) and, by Lemma 6.7, κK(X) ≥ κG(X) ≥ 4. Thus, K is a smaller counterexample than G,
a contradiction.

Assume that G has a separator S = {u, v} ⊆ V (G). Because κG(X) ≥ 4, there is an S-fragment
F , such that X ⊆ F ∪ S. Let G1 be obtained from G[F ∪ S] by adding the edge uv (if not already
present). By Lemma 6.7 and Observation 6.11, it follows X ⊆ V (G1), E′ ⊂ E(G1), and κG1(X) ≥ 4.
Since G− F contains S, there is a path Q of G− F with ends u and v. The subgraph of G obtained
from G1 by replacing the path (u, uv, v) with Q shows that G1 is a smaller counterexample than G,
again a contradiction.

Hence, we may assume that G is 3-connected and consider two cases to complete the proof of Theo-
rem 6.10 (i).

Case 1. |E′| = 1.
Let Q be a Tutte path of G connecting x1 and x2 such that E′ ⊂ E(Q) (Lemma 6.12 and
Observation 6.13). If X ⊆ V (Q), then Q is the desired path P , contradicting the choice of G.
By Lemma 6.15, it follows |V (Q) ∩X| ≤ 3 and there is a bridge B of Q such that X ⊆ V (B),
I(B) ∩ X 6= ∅. Since E′ consists of one edge e from E(G[X]) and x1x2 /∈ E′, we may assume
that e = x1u for some vertex u ∈ X. Hence, T (B) = {x1, x2, u}.
If |V (Q)| ≥ 4 or Q has a second bridge distinct from B, then the graph G1 obtained from
G[I(B)∪T (B)] by adding all possible edges between vertices of T (B) (if not already present —
see Lemma 6.7 with T (B) as separator), is a smaller counterexample than G, a contradiction.
Thus, G = G1 if x1x2 ∈ E(G) or G is obtained from G1 by removing x1x2 otherwise. Moreover,
V (Q) = {x1, u, x2}. Let v ∈ I(B) ∩X, w be an arbitrary neighbor of v distinct from x1 (note
that w exists because κG(X) ≥ 4), and G′ = G− x1. Note that G′ is 2-connected and assume
that G′ is embedded in the plane such that vw is an edge of the exterior cycle CG′ . Let R be
a Tutte path of G′ from u to x2 through the edge vw. The path obtained from R by adding
x1 and e = x1u contains at least four vertices of X; hence, with Lemma 6.15, it contains X, a
contradiction.

Case 2. E′ = ∅.
Choose an arbitrary edge e = uv of G such that {u, v} ∩ {x1, x2} = ∅. To see that e exists,
assume that each edge of G is incident with x1 or with x2. Then G − {x1, x2} is edgeless, a
contradiction to κG(X) ≥ 4 and |X| ≥ 5.
Now consider a Tutte path Q from x1 to x2 through e. Since X ⊆ V (Q) contradicts the
choice of G, there exists a bridge B of Q such that X ⊆ V (B). It follows X ∩ I(B) 6= ∅
and x1, x2 ∈ T (B). Since |V (Q)| ≥ 4, the graph obtained from G[I(B) ∪ T (B)] by adding all
possible edges between vertices of T (B) (if not already present), is a smaller counterexample
than G, a contradiction. ■
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Proof of Theorem 6.10 (ii). Suppose, to the contrary, that Theorem 6.10 (ii) does not hold
and let G be a counterexample such that |V (G)| is minimum.

If G is not 2-connected, then, as in the proof of Theorem 6.10 (i), there is a block K of G with
X ⊆ V (K) and κK(X) ≥ 4. Thus, K is a smaller counterexample than G, a contradiction.

Assume that G is embedded in the plane such that x1 is incident with the outer face and consider
G− {x1, x2}. Since |X| ≥ 5 (because κG(X) ≥ 4) and κ(G−{x1,x2})(X \ {x1, x2}) ≥ 2, there is a block
H containing X \ {x1, x2}.

Assume there is a component K of G − ({x1, x2} ∪ V (H)) and let NG(K) be the neighbors of
K in G. Because H, as a block of G − {x1, x2}, is a maximal 2-connected subgraph, it follows
|NG(K) ∩ V (H)| ≤ 1. Obviously, NG(K) \ V (H) ⊆ {x1, x2} and, therefore, |NG(K)| ≤ 3.

Consider the graph G1 obtained from G by removing V (K) and adding all edges between the vertices
of NG(K) (if not already present). Then G1 is planar since |NG(K)| ≤ 3 and, furthermore, κG1(X) ≥
4 (see Lemma 6.7 and Observation 6.11). By the choice of G, there is a cycle C of G1 containing all
vertices of X except x1 and x2. Evidently, C misses all new edges between the vertices of NG(K),
thus, C is also a cycle of G, a contraction. We conclude that H = G− {x1, x2}.

For i = 1, 2, there are (not necessarily distinct) faces αi of H containing the vertex xi in G and let
Ci be the facial cycle of αi in H. Because of the choice of the embedding of G, α1 is the outer face
of H, thus, CH = C1. We follow the proof in [San97].

Case 1. C1 = C2.
If α1 6= α2, then H = C1 and C1 is the desired cycle. Otherwise, the vertices of V (C1) can
be numbered with v1, v2, . . . , vk according to their cyclic order in a such way that x2 is not
adjacent to vertices v2, v3, . . . , vℓ−1 and x1 is not adjacent to vertices vℓ+1, vℓ+2, . . . , vk for some
integer ℓ with 3 ≤ ℓ ≤ k − 1 (note that x1 and x2 have degree at least 4 in G). We apply
Lemma 6.12 and consider a Tutte path Q of H from v1 to v2 containing vℓvℓ+1 which can be
joined by v1v2 to a cycle. Since G is a counterexample, there is x ∈ X \ (V (Q) ∪ {x1, x2}) and
a bridge B of Q in H containing x as an inner vertex.
If I(B) ∩ V (C1) = ∅, then NG(x1) ∩ V (B) ⊆ T (B) and T (B) separates x from x1 in G,
contracting κG(X) ≥ 4. Otherwise, there is v ∈ I(B) ∩ V (C1). Then the edge uv, where u is
a neighbor of v at C1, belongs to B. Especially, u ∈ V (B) and B has exactly two attachment
points s and t in V (Q) and s, t ∈ V (C1). Thus, the subpath P of C1 from s to t containing
v is a path of B. If (I(B) ∩ V (C1)) \ V (P ) 6= ∅, then there would be another subpath P ′

of C1 connecting s and t with V (P ′) ⊆ V (B), hence, E(C1) = E(P ) ∪ E(P ′), contradicting
vℓvℓ+1 ∈ E(Q).
Furthermore, v1, vℓ /∈ I(B) and (I(B) ∩ V (C1)) ∩ NG(xi) = ∅ for one i ∈ {1, 2}. But then
NG(xi) ∩ V (B) ⊆ T (B) and T (B) ∪ {x3−i} separates x from xi, contracting κG(X) ≥ 4.

Case 2. C1 6= C2.
By Lemma 6.14, there is an (E(C1) ∪ E(C2))-sling C. Since G is a counterexample, there is
x ∈ X \ V (C) and a bridge B of C containing x as an inner vertex and, by Lemma 6.14, not
simultaneously edges from both cycles C1 and C2. Hence, I(B)∩V (C1) = ∅ or I(B)∩V (C2) = ∅,
and in both cases T (B) separates x from x1 or x2 in G, contradicting κG(X) ≥ 4. ■

Proof of Theorem 6.10 (iii). Note that any minor of G is also embeddable on a surface of
Euler characteristic χ. Using Theorem 6.2 (i) and Statement 6.6, let M be a 4-connected X-minor
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of G, M = (Vv)v∈V (M) be an M-certificate of G, and T be a spanning tree of M of maximum degree
at most d 10−χ

4 e.

For each edge e = uv ∈ E(T ), let e′ ∈ E(G) be an arbitrary edge between a vertex in Vu and
Vv. Furthermore, set V ′

v = Vv ∩ (
∪
e∈E(T ) V (e′)) for v ∈ V (T ). Moreover, for v ∈ V (T ) and

w ∈ V ′
v , let f(w) = |{e ∈ E(T ) : w is incident with e′}|. Since

∑
w∈V ′

v
f(w) = dT (v), it follows

1 ≤ f(w) ≤ dT (v) − |V ′
v | + 1 for all w ∈ V ′

v . Since G[Vv] is connected for v ∈ V (T ), the following
Observation 6.16 can be seen readily by induction on |V ′

v |.

Observation 6.16. For v ∈ V (T ), G[Vv] contains a V ′
v -spanning tree TV ′

v
such that, for all w ∈

V (TV ′
v
), dTV ′

v
(w) ≤ |V ′

v | − 1 if w ∈ V ′
v and dTV ′

v
(w) ≤ |V ′

v |, otherwise. �

Let T ∗ be the tree of G with

V (T ∗) =
∪

v∈V (T )

V (TV ′
v
) and

E(T ∗) = (
∪

v∈V (T )

E(TV ′
v
)) ∪ {e′ : e ∈ E(T )}.

Since f(w) ≤ dT (v) − |V ′
v | + 1 and dTV ′

v
(w) ≤ |V ′

v | − 1, it follows dT∗(w) = f(w) + dTV ′
v
(w) ≤ dT (v)

for w ∈ V ′
v and v ∈ V (T ). If w ∈ (Vv \ V ′

v) ∩ V (T ∗) for some v ∈ V (T ), then dT∗(w) = dTV ′
v
(w) ≤

|V ′
v | ≤

∑
u∈V ′

v
f(u) = dT (v). All together, the maximum degree of T ∗ is at most d 10−χ

4 e.

Clearly, X ⊆
∪
v∈V (T ) Vv and |X∩Vv| ≤ 1 for v ∈ V (T ). For every v ∈ V (T ) and x ∈ X∩(Vv\V (TV ′

v
)),

let P be a path of G[Vv] connecting x with a vertex y of TV ′
v
such that V (P ) ∩ V (TV ′

v
) = {y} and

add P to T ∗. The resulting graph is the desired X-spanning (d 10−χ
4 e + 1)-tree of G. ■
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For a finite and simple graph G with vertex set V (G) and edge set E(G), let N(x) and
d(x) = |N(x)| denote the neighborhood and the degree of any x ∈ V (G) in G, respectively.
The circumference circ(G) of a graph G is the length of a longest cycle of G. A subset
S ⊆ V (G) is an s-separator of G if |S| = s and G − S is disconnected. From now on,
let G be a 3-connected planar graph. For every 3-separator S of G, it is well-known that
G− S has exactly two components. We call S trivial if at least one component of G− S is
a single vertex. If every 3-separator S of G is trivial, we call the 3-connected planar graph
G essentially 4-connected. In the present paper, we are interested in lower bounds on the
circumference of essentially 4-connected planar graphs.

Jackson and Wormald [JW92] proved that circ(G) ≥ 2n+4
5 for every essentially 4-con-

nected planar graph on n vertices and presented an infinite family of essentially 4-connected
planar graphs G such that circ(G) ≤ c · n for each real constant c > 2

3 . Moreover, there is a
construction of infinitely many essentially 4-connected planar graphs with circ(G) = 2

3(n+4)
(for example see [FHJ16]). It is open whether there exists an essentially 4-connected planar
graph G on n vertices with circ(G) < 2

3(n + 4). Further results on the length of longest
cycles in essentially 4-connected planar graphs can be found in [FHJ16; GM76; Zha87].

Fabrici, Harant and Jendroľ [FHJ16] extended the result of Jackson and Wormald
by proving that circ(G) ≥ 1

2(n + 4) for every essentially 4-connected planar graph G on n
vertices.

Our result is presented in the following Theorem.

Theorem 7.1. For any essentially 4-connected planar graph G on n vertices, circ(G) ≥
3
5(n+ 2). �

We remark that the assertion of Theorem 7.1 can be improved to circ(G) ≥ 3
5(n+4) if n ≥ 16.

This follows from using Lemma 5 in [FHJ16] and a more special version of the forthcoming
inequality (7.1). We will also show how cycles of G of length at least 3

5(n+ 2) can be found
in quadratic time.

Let C be a plane cycle and let B be a set disjoint from V (C). A plane graph H is called a
(B,C)-graph if B ∪ V (C) is the vertex set of H, the cycle C is an induced subgraph of H,
the subgraph of H induced by B is edgeless, and each vertex of B has degree 3 in H. The
vertices in B are called outer vertices of C.

A face f of H is called minor (major) if it is incident with at most one (at least two) outer
vertices. Note that f is incident with no outer vertex if and only if C is the facial cycle of f .

For every (B,C)-graph H, let µ(H) denote the number of minor faces of H. Then

µ(H) ≥ |V (H)| − |V (C)| + 2. (7.1)

Proof of inequality (7.1). Let H be a smallest counterexample. Since B = ∅ implies |V (H)| =
|V (C)| and µ(H) = 2, which satisfies the inequality (7.1), we may assume that B is non-empty. For
each vertex y ∈ B, the three neighbors of y divide C into three internally disjoint paths P1(y), P2(y),
and P3(y) with end vertices in N(y). We may assume that |V (P1(y))| ≤ |V (P2(y))| ≤ |V (P3(y))| and
define ϕ(y) = |V (P1(y))| + |V (P2(y))| − 1 in this case.
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Let x ∈ B be chosen such that ϕ(x) = min{ϕ(y) : y ∈ B}. Consider the two cycles A1 and A2

induced by V (P1(x)) ∪ {x} and V (P2(x)) ∪ {x}, respectively. We claim that the interior of A1 as
well as the interior of A2 is a face of H and, hence, both are minor faces. Suppose that there
is a vertex z in the interior of Ai for i ∈ {1, 2}. Then ϕ(z) = |V (P1(z))| + |V (P2(z))| − 1 ≤
max{ |V (P1(x))|, |V (P2(x))| } < |V (P1(x))| + |V (P2(x))| − 1 = ϕ(x), which contradicts the choice
of x.

Let H ′ = H − x. Note that H ′ is a ((B \ {x}), C)-graph and has fewer vertices than H. Then
|V (H ′)| = |V (H)| − 1, µ(H ′) ≤ µ(H) − 1, and µ(H ′) ≥ |V (H ′)| − |V (C)| + 2, hence µ(H) ≥
1 + µ(H ′) ≥ 1 + |V (H ′)| − |V (C)| + 2 = |V (H)| − |V (C)| + 2. ■

Proof of Theorem 7.1. Let G be an essentially 4-connected plane graph on n vertices. If G
has at most 10 vertices, then it is well known that G is Hamiltonian [Dil96]. In this case, we are
done, since n ≥ 3

5 (n + 2) for n ≥ 3. Thus, we assume n ≥ 11. A cycle C of G is called an outer-
independent-3-cycle (OI3-cycle) if V (G) \ V (C) is an independent set of vertices and d(x) = 3 for
every x ∈ V (G) \ V (C). An edge a = xy ∈ E(C) of a cycle C is called an extendable edge of C if x
and y have a common neighbor in V (G) \ V (C).

In [FHJ16], it is shown that every essentially 4-connected planar graph G on n ≥ 11 vertices contains
an OI3-cycle. In this proof, let C be a longest OI3-cycle of G, let c = |V (C)|, and let H be the graph
obtained from G by removing all chords of C, i.e. by removing all edges in E(G) \E(C) that connect
vertices of C. Clearly, C does not contain an extendable edge. Obviously, H is a (B,C)-graph, with
B = V (H) \ V (C).

For the number µ of minor faces of H, we have by (7.1)

µ ≥ n− c+ 2.

Moreover, we will show

6µ ≤ 4 c (7.2)

and then, Theorem 7.1 follows immediately.

Proof of inequality (7.2). An edge e of C is incident with exactly two faces f1 and f2 of H. In
this case, we say f1 is opposite to f2 with respect to e. A face f of H is called j-face if it is incident
with exactly j edges of C and the edges of C incident with f are called C-edges of f . Because C does
not contain an extendable edge, we have j ≥ 2 for every minor j-face of H.

We define a weight function w0 on the set F (H) of faces of H, by setting weight w0(f) = 6 for every
minor face f of H and weight w0(f) = 0 for every major face f of H. Then

∑
f∈F (H) w0(f) = 6µ.

Next, we redistribute the weights of faces of H by the rules R1 and R2.

Rule R1. A minor 2-face f of H sends weight 1 through both C-edges to the opposite (possibly
identical) faces.

Rule R2. A minor 3-face f of H with C-edges ux, xy, and yz sends weight 1 through its middle
C-edge xy to the opposite face.

Let w1 denote the new weight function; clearly,
∑
f∈F (H) w1(f) = 6µ still holds.
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For the proof of (7.2), we will show

w1(f) ≤ 2 j for each j-face f of H. (7.3)

To see that (7.2) is a consequence of (7.3), let each j-face f of H satisfying j ≥ 1 send the weight
w1(f)
j to each of its C-edges. Note that each 0-face f is major, thus w1(f) = 0. Hence, the total

weight of all minor and major faces is moved to the edges of C. Since every edge of C gets weight at
most 4, we obtain 6µ =

∑
f∈F (H) w1(f) ≤ 4 c, and (7.2) follows.

Proof of inequality (7.3). Next we distinguish several cases. In most of them, we construct
a cycle C̃ that is obtained from C by replacing a subpath of C with another path. In every case,
C̃ will be an OI3-cycle of G that is longer than C. This contradicts the choice of C and therefore
shows that the considered case cannot occur. Note that all vertices of C in the following figures are
different, because the length of the longest OI3-cycle C in a planar graph on n ≥ 11 vertices is at
least 8 [FHJ16, Lemma 4(ii)].

Case 1. f is a major j-face.
Because w0(f) = 0 and f gets weight ≤ 1 through each of its C-edges, we have w1(f) ≤ j.

Case 2. f is a minor 2-face (see Figure 7.1).
We will show that f does not get any new weight by R1 or by R2; this implies w1(f) =
w0(f) − (1 + 1) = 4. Let xy and yz be the C-edges of f and a be the outer vertex incident
with f (see Figure 7.1).

x y z

a

f

C

Figure 7.1

If f gets new weight by R1 or by R2 from a face f ′ opposite to f with respect to a C-edge of
f , then f ′ is a minor 2-face or a minor 3-face of H. Without loss of generality, we may assume
that f ′ is opposite to f with respect to the edge yz. Then yz is a common C-edge of f and f ′

and we distinguish the following subcases.

Case 2a. f ′ is a 2-face and xy is a C-edge of f ′.
Then {x, z} is the neighborhood of y in G, which contradicts the 3-connectedness of G.

Case 2b. f ′ is a 2-face and xy is not a C-edge of f ′ (see Figure 7.2).
Then a longer OI3-cycle C̃ is obtained from C by replacing the path (x, y, z, u) with the
path (x, a, z, y, b, u), which gives a contradiction.

Case 2c. f ′ is a 3-face.
Since f ′ sends weight to f , then, by rule R2, a C-edge of f is the middle C-edge of f ′.
It follows that both C-edges of f are also C-edges of f ′ and the situation as shown in
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x y z u

a

f

b

C

Figure 7.2

x y z u

a

f

b

C

Figure 7.3

Figure 7.3 occurs. The edge yu exists in G, because otherwise d(y) = 2 and G would not
be 3-connected. Then C̃ is obtained from C by replacing the path (x, y, z, u) with the
path (x, a, z, y, u).

Case 3. f is a minor 3-face (see Figure 7.4).
Since f loses weight 1 by rule R2 and possibly gets weight w by R1 or by R2, we have
w1(f ′) = 5 + w.
If w ≤ 1, then we are done.

v x y z

a

f

C

Figure 7.4

If w ≥ 2, then f does not get any weight through the edge xy from the opposite face f ′.
Otherwise, if f ′ is a 2-face, then we have the situation as in Case 2c and if f ′ is a 3-face, then
w = 1, with contradiction in both cases. Hence, f gets weight 1 through vx from the opposite
face f1 and weight 1 through yz from the opposite face f2. Clearly, f1 6= f2 and they are not
simultaneously 3-faces.

Case 3a. Both f1 and f2 are 2-faces.
The situation is as illustrated in Figure 7.5 and C̃ is obtained from C by replacing
the path (w, v, x, y, z, u) with the path (w, b, x, v, a, z, y, c, u). Note that b 6= c, because
d(b) = d(c) = 3.

Case 3b. f1 is a 2-face and f2 is a 3-face.
Then e2 = yz is the middle C-edge of f2, as shown in Figure 7.6, and C̃ is obtained from
C by replacing the path (w, v, x, y, z, u) with the path (w, v, a, z, y, x, c, u).
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w v x y z u
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Figure 7.5

w v x y z u

a

f

b c

C

Figure 7.6

Case 4. f is a minor 4-face (see Figure 7.7).

v w x y z

a

f

C

Figure 7.7

If w1(f) = w0(f) + w = 6 + w and w ≤ 2, then we are done.
If otherwise w ≥ 3, there are at least three edges e1, e2, and e3 among the four C-edges vw,
wx, xy, and yz of f such that f gets weight from minor faces which are opposite to f with
respect to e1, e2, and e3, respectively.

Case 4a. w = 3 and {e1, e2, e3} = {vw,wx, xy}.
Then no edge of {e1, e2, e3} is the middle C-edge of a minor 3-face and yz is not a C-edge
of a minor 2-face. We have the situation of Figure 7.8 and one of the edges vx or xz
exists in G, because otherwise x would have degree 2 in G.
Then C̃ is obtained again from C by replacing the path (v, w, x, y, z) with the path
(v, x, w, c, y, z) or with the path (v, w, c, y, x, z), respectively.

v w x y z

a

f

b c

C

Figure 7.8

t v w x y z

a

f

b c

C

Figure 7.9
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Case 4b. w = 3, {e1, e2, e3} = {vw, xy, yz} and wx is not a C-edge of a minor 3-face.
Then vw is not the middle C-edge of a minor 3-face opposite to f . We have the situation
of Figure 7.9 and one of the edges vy or wy exists in G, because otherwise y would have
degree 2 in G.
Note that b 6= c, because d(b) = d(c) = 3. Then C̃ is obtained from C by replacing the
path (t, v, w, x, y, z) with the path (t, b, w, v, y, x, c, z) or with the path (t, v, w, y, x, c, z).

Case 4c. w = 3, {e1, e2, e3} = {vw, xy, yz} and wx is a C-edge of a minor 3-face.
Then vw is the middle C-edge of a minor 3-face opposite to f (see Figure 7.10).
Then at least one of the edges vy or wy exists, because otherwise y would have degree
2 in G, and C̃ is obtained from C by replacing the path (t, v, w, x, y, z) with the path
(t, b, x, w, v, y, z) or with the path (t, v, w, y, x, c, z).

t v w x y z

a

f

b c

C

Figure 7.10

v w x y z

a

f

b c

C

Figure 7.11

Case 4d. w = 4.
Then the edges vw, wx, xy, and yz are C-edges of minor 2-faces of H. Either a situation
similar to Case 4a occurs, a contradiction, or the situation of Figure 7.11 follows.
Then the edge wy exists in G, because otherwise d(w) = 2 or d(y) = 2 in G, and C̃ is
obtained from C by replacing the path (v, w, x, y, z) with the path (v, w, y, x, c, z).

Case 5. f is a minor 5-face.
Let w1(f) = w0(f) +w = 6 +w. If w ≤ 4, then w1(f) ≤ 10 and we are done. If w = 5, then all
five C-edges of f are also C-edges of minor 2-faces and we have the situation of Figure 7.12.
If the edge vx exists, then C̃ is obtained from C by replacing the path (s, v, w, x) with the path
(s, b, w, v, x).
If vx does not exist, then, because d(v) ≥ 3, y or z is a neighbor of v. If the edge vy exists, we
get d(x) = 2, a contradiction. Hence, vz exists and, since d(x) ≥ 3, xz exists as well. In this
case, C̃ is obtained from C by replacing the path (w, x, y, z) with the path (w, c, y, x, z).

The remaining case completes the proof of (7.3) and therefore the proof of (7.2).

Case 6. f is a minor j-face with j ≥ 6.
Then w1(f) = w0(f) + w = 6 + w ≤ 6 + j ≤ 2 j. ■
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Algorithm.

We now show that a cycle of length at least 3
5(n + 2) in any essentially 4-connected planar

graph G on n vertices can be computed in time O(n2). For n ≤ 10, we may compute even
a longest cycle in constant time, so assume n ≥ 11. The existential proof of Theorem 7.1
proceeds by using a longest not extendable OI3-cycle of G. However, it is straightforward
to observe that the proof is still valid when we replace this cycle by an OI3-cycle C that is
not extendable and for which none of the local replacements described in the Cases 1–6 can
be applied to increase its length (as argued, all these replacements preserve an OI3-cycle).

It suffices to describe how such a cycle C can be computed efficiently; the desired length of
C is then implied by Theorem 7.1. In [FHJ16, Lemma 3], an OI3-cycle of G is obtained by
constructing a special Tutte cycle with the aid of Sanders’s result on Tutte paths [San97].
Using the recent result in [SS18], we can compute such Tutte paths and, by prescribing
its end vertices accordingly, also the desired Tutte cycle in time O(n2). This gives an
OI3-cycle Ci of G.

If Ci is extendable, we compute an extendable edge of Ci and extend Ci to a longer cycle
Ci+1; this takes time O(n) and preserves that Ci+1 is an OI3-cycle. Otherwise, if there is no
extendable edge of Ci (in this case, the length of Ci is at least 8 due to n ≥ 11 and [FHJ16,
Lemma 4(ii)]), we decide in time O(n) whether one of the local replacements of the Cases 1–6
can be applied to Ci. If so, we apply any such case and obtain the longer OI3-cycle Ci+1
(which however may be extendable); since all replacements modify only subgraphs of constant
size, this can be done in constant time. Iterating this implies a total running time of O(n2),
as the length of the cycle is increased at most O(n) times.
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We consider finite, simple, and undirected graphs. The circumference circ(G) of a graph G
is the length of a longest cycle of G. A cycle C of G is an outer independent cycle of G if the
set V (G) \V (C) is independent. Note that an outer independent cycle is sometimes called a
dominating cycle [Bro02], although this is in contrast to the more commonly used definition
of a dominating subgraph H of G, where V (H) dominates V (G) in the usual sense. A set
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S ⊆ V (G) (S ⊆ E(G)) is a k-cut (a k-edge-cut) of G if |S| = k and G − S is disconnected.
A 3-cut (a 3-edge-cut) S of a 3-connected (3-edge-connected) graph G is trivial if at most one
component of G−S contains at least two vertices and the graph G is essentially 4-connected
(essentially 4-edge-connected) if every 3-cut (3-edge-cut) of G is trivial. A 3-edge-connected
graph G is cyclically 4-edge-connected if for every 3-edge-cut S of G, at most one component
of G− S contains a cycle.
It is well-known that for (3-connected) cubic graphs different from the triangular prism
K3 ×K2 (which is essentially 4-connected only) these three notions coincide (see e.g. [FJ89]
and [VZ18]). Obviously, the line graph H = L(G) of a 3-connected graph G is 4-connected if
and only if G is essentially 4-edge-connected. These two observations are reasons for the quite
great interest in studying all these three concepts of connectedness of graphs intensively.
Zhan [Zha86] proved that every 4-edge-connected graph has a Hamiltonian line graph.
Broersma [Bro02] conjectured that even every essentially 4-edge-connected graph has a
Hamiltonian and showed that this is equivalent to the conjecture of Thomassen [Tho86]
stating that every 4-connected line graph is Hamiltonian (which is known to be equivalent
to the conjecture by Matthews and Sumner [MS84] stating that every 4-connected claw-
free graph is Hamiltonian, as shown by Ryjáček [Ryj97]). Among others, the subclass of
essentially 4-edge-connected cubic graphs is interesting due to a conjecture of Fleischner
and Jackson [FJ89] stating that every essentially 4-edge-connected cubic graph has an outer
independent cycle which is equivalent to the previous three conjectures.
Regarding to the existence of long cycles in essentially 4-connected graphs we mention the
following

Conjecture 11 (Bondy, see [Jac86]). There exists a constant c, 0 < c < 1, such that for
every essentially 4-connected cubic graph on n vertices, circ(G) ≥ cn. �

Note that the conjecture of Fleischner and Jackson implies Conjecture 11 with c = 3
4 .

Bondy’s conjecture was later extended to all cyclically 4-edge-connected graphs (see [FJ89]).
Máčajová and Mazák constructed essentially 4-connected cubic graphs on n = 8m ver-
tices with circumference 7m + 2 [MM16]. We remark that the conjecture of Fleischner
and Jackson and, therefore, also Bondy’s conjecture with c = 3

4 (this is the result of
Grünbaum and Malkevitch [GM76]) are true for planar graphs, which can be seen easily
by the forthcoming Lemma 8.1. Many results concerning the circumference of essentially
4-connected planar graphs G can be found in the literature.
For the class of essentially 4-connected cubic planar graphs, Tutte [Tut60] showed that
it contains a non-Hamiltonian graph, Aldred, Bau, Holton, and McKay [Ald+00]
found a smallest non-Hamiltonian graph on 42 vertices, and Van Cleemput and Zam-
firescu [VZ18] constructed a non-Hamiltonian graph on n vertices for all even n ≥ 42.
As already mentioned, Grünbaum and Malkevitch [GM76] proved that circ(G) ≥ 3

4n for
any essentially 4-connected cubic planar graph G on n vertices and Zhang [Zha87] (using
the theory of Tutte paths) improved this lower bound on the circumference by 1. Recently,
in [LS18], an infinite family of essentially 4-connected cubic planar graphs on n vertices with
circumference 359

366n was constructed.
In [JW92], Jackson and Wormald extended the problem to find lower bounds on the
circumference to the class of arbitrary essentially 4-connected planar graphs. Their result
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circ(G) ≥ 2n+4
5 was improved in [Fab+20c] to circ(G) ≥ 5

8(n + 2) for every essentially
4-connected planar graph G on n vertices. On the other side, there are infinitely many
essentially 4-connected maximal planar graphs G with circ(G) = 2

3(n + 4) [JW92]. To
see this, let G′ be a 4-connected maximal planar graph on n′ ≥ 6 vertices and let G be
obtained from G′ by inserting a new vertex into each face of G′ and connecting it with
all three boundary vertices of that face. Then G is an essentially 4-connected maximal
planar graph on n = 3n′ − 4 vertices and, since G′ is Hamiltonian, it is easy to see that
circ(G) = 2n′ = 2

3(n+ 4). It is still open whether there is an essentially 4-connected planar
graph G that satisfies circ(G) < 2

3(n+4). Indeed, we pose the following (to our knowledge so
far unstated) Conjecture 12, which has been the driving force in that area for over a decade.

Conjecture 12. For every essentially 4-connected planar graph on n ≥ 8 vertices, circ(G) ≥
2
3(n+ 4). �

By the forthcoming Theorem 8.2, Conjecture 12 is shown to be true for essentially 4-con-
nected maximal planar graphs.

We remark that G − S has exactly two components for every 3-connected planar graph G
and every 3-cut S of G. Thus, in this case, G is essentially 4-connected if and only if S forms
the neighborhood of a vertex of degree 3 of G for every 3-cut S of G. This property will be
used frequently in the proof of Theorem 8.2.

A cycle C of G is a good cycle of G if C is outer independent and degG(x) = 3 for all
x ∈ V (G) \ V (C). An edge xy of a good cycle C is extendable if x and y have a common
neighbor z ∈ V (G) \ V (C). In this case, the cycle C ′ of G, obtained from C by replacing
the edge xy with the path (x, z, y) is again good (and longer than C). The forthcoming
Lemma 8.1 is an essential tool in the proof of Theorem 8.2 (an implicit proof for cubic
essentially 4-connected planar graphs can be found in [GM76], the general case is proved
in [FHJ16]).

Lemma 8.1. Every essentially 4-connected planar graph on n ≥ 11 vertices contains a good
cycle. �

Theorem 8.2. For every essentially 4-connected maximal planar graph G on n ≥ 8 vertices,

circ(G) ≥ 2
3

(n+ 4). �

Proof of Theorem 8.2. Suppose n ≥ 11, as for n ∈ {8, 9, 10}, Theorem 8.2 follows from the
fact that G is Hamiltonian [BJ70]. Using Lemma 8.1, let C = [v1, v2, . . . , vk] (indices of vertices of
C are taken modulo k in the whole paper) be a longest good cycle of length k of G (i.e. circ(G) ≥ k)
and let H = G[V (C)] be the graph obtained from G by removing all vertices of degree 3 which do
not belong to C. Obviously, H is maximal planar and C is a Hamiltonian cycle of H. A face φ of
H is an empty face of H if φ is also a face of G, otherwise φ is a non-empty face of H. Denote by
Fe(H) the set of empty faces of H and let fe(H) = |Fe(H)|. Note that every face of G has at least
two (of three) vertices on C. The three neighbors of a vertex of V (G) \ V (C) induce a separating
3-cycle of G creating the boundary of a non-empty face of H, which has no edge in common with C
because otherwise such an edge would be an extendable edge of C in G.
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Let H1 and H2 be the spanning subgraphs of H consisting of the cycle C and of its chords lying in
the interior and in the exterior of C, respectively. Note that E(H1) ∩E(H2) = E(C) and H1 and H2

are maximal outerplanar graphs, both having k-gonal outer face and k − 2 triangular faces. Let Ti
be the weak dual of Hi, i ∈ {1, 2}, which is the graph having all triangular faces of Hi as vertex set
such that two vertices of Ti are adjacent if the triangular faces share an edge in Hi. Obviously, Ti is
a tree of maximum degree at most three.

A face φ of H is a j-face if exactly j of its three incident edges belong to E(C). Since n ≥ 11, there
is no 3-face in H and each face of H is a j-face with j ∈ {0, 1, 2}. Denote by fj(Hi) the number of
empty j-faces of Hi. Since C does not contain any extendable edge, the following claim is obvious.

Claim 1. Each face of H incident with an edge of any longest good cycle (in particular, each 1- or
2-face) is empty. �

An edge e of C incident with a j-face φ and an ℓ-face ψ, where j, ℓ ∈ {1, 2}, is a (j, ℓ)-edge. Let φ be
a 2-face of Hi. The sequence Bφ = (φ,φ2, . . . , φr), r ≥ 2, is the φ-branch if φ2, . . . , φr−1 are 1-faces
of Hi, φr is a 0-face of Hi, and φj , φj+1 (1 ≤ j ≤ r − 1) are adjacent (i.e. Bφ is a minimal path in
Ti with end vertices of degree 1 and 3). The rim R(Bφ) of the φ-branch Bφ is the subgraph of C
induced by all edges of C that are incident with an element of Bφ. Hence, it is easy to see:

Claim 2. The rim of a φ-branch Bφ = (φ,φ2, . . . , φr) is a path of length r. �

Claim 3. Let φ = [v1, v2, v3] be a 2-face of Hi, let Bφ = (φ,φ2, . . . , φr), r ≥ 2, be the φ-branch of
Hi, and let v0v2 ∈ E(H3−i). If

(i) R(Bφ) = (v1, v2, . . . , vr+1) is the rim of Bφ or

(ii) R(Bφ) = (v0, v1, . . . , vr) is the rim of Bφ and v−1v2 ∈ E(H3−i), or

(iii) R(Bφ) = (v3−r, . . . , v2, v3) is the rim of Bφ and v−1v2 ∈ E(H3−i),

then φr is empty. �

Proof. (i): The cycle C ′ obtained from C by replacing the path (v0, v1, . . . , vr+1) with the path
(v0, v2, . . . , vr, v1, vr+1) (Figure 8.1a) is another longest good cycle of G and contains the edge v1vr+1

incident with φr, thus φr is empty (by Claim 1).

(ii): Let φs = [v0, v1, vs], for some s with 3 ≤ s ≤ r, be a 1-face of Hi. The cycle C ′ obtained
from C by replacing the path (v−1, v0, . . . , vr) by the path (v−1, v2, . . . , vr−1, v1, v0, vr), for s = r

(Figure 8.1b), or by the path (v−1, v2, v1, v3, . . . , vr−1, v0, vr), for s ≤ r− 1 (Figure 8.1c), is a longest
good cycle of G and contains the edge v0vr incident with φr, thus φr is empty (by Claim 1).

(iii): If r ≤ 3, then φr is empty by (i) or (ii). If r ≥ 4, then v0v3, v−1v3 ∈ E(Hi), thus {v−1, v2, v3}
is a non-trivial 3-cut, a contradiction. □

These tools will be used continuously in the following; we continue with the proof of Theorem 8.2.
Hereby, we consider two cases. In the first case, both subgraphs H1 and H2 have some 0-faces. By
using a customized discharging method, we distribute some weights from edges to faces to prove that
sufficiently many faces are empty (each empty face will finally contain weight at most 2

3 ). In the
second case, there are only empty faces on one side of C, so that all vertices not in C are located on
the other side of C. We have to prove that there are some additional empty faces on this side.
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Figure 8.1: A longest good cycle (cyan) sharing an edge with φr.

CASE 1. Let H1 and H2 both contain at least two 0-faces or one non-empty 0-face.

For every edge e of C we define the weight w0(e) = 1. Obviously,
∑

e∈E(C)
w0(e) = |E(C)| = k.

First redistribution of weights.

Each edge of C sends weight to both incident faces as follows

Rule R1. A (1,1)-edge sends 1
2 to both incident 1-faces.

Rule R2. A (1,2)-edge sends 2
3 to the incident 1-face and 1

3 to the incident 2-face.

Rule R3. A (2,2)-edge sends 1
2 to both incident 2-faces.

The edges of C completely redistribute their weights to incident 1- and 2-faces. For an empty face φ,
let w1(φ) be the total weight obtained by φ (in first redistribution). Obviously, for an empty face φ,
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it is

w1(φ) =



1, if φ is a 2-face incident with two (2,2)-edges,
5
6 , if φ is a 2-face incident with a (1,2)-edge and a (2,2)-edge,
2
3 , if φ is a 2-face incident with two (1,2)-edges,
2
3 , if φ is a 1-face incident with a (1,2)-edge,
1
2 , if φ is a 1-face incident with a (1,1)-edge,
0, if φ is a 0-face.

Moreover,
∑

φ∈Fe(H)
w1(φ) = |E(C)| = k.

Second redistribution of weights.

The weight of 2-faces of H exceeding 2
3 will be redistributed to 1-faces and empty 0-faces of H by the

following rules. Let φ be a 2-face of Hi with w1(φ) > 2
3 (i.e. incident with at least one (2,2)-edge)

and let Bφ = (φ,φ2, . . . , φr), r ≥ 2, be the φ-branch. Moreover, let α be a 2-face of H3−i adjacent
to φ and let α2 be the face of H3−i adjacent to α.

Rule R4. φ sends w1(φ) − 2
3 to φr if φr is empty and r ≤ 3.

Rule R5. φ sends 1
6 to φj if φj (2 ≤ j ≤ r − 1) is a 1-face incident with a (1,1)-edge.

Rule R6. φ sends 1
6 to φr if φr is empty and r ≥ 4.

Rule R7. φ sends 1
6 to α2 if α is incident with a (1,2)-edge and α2 is an empty 0-face.

Rule R8. φ sends 1
6 to β2, where β is a 2-face of H3−i having exactly one common vertex with φ

and incident with two (1,2)-edges and β2 is an empty 0-face of H3−i adjacent to β.

For an empty face φ, let w2(φ) be the total weight obtained by φ (after second redistribution).
Obviously,

∑
φ∈Fe(H)

w2(φ) = |E(C)| = k (as non-empty faces do not obtain any weight). In the

following, we will show that the weight w2(φ) of each (empty) face φ does not exceed 2
3 which will

mean k =
∑

φ∈Fe(H)
w2(φ) ≤ 2

3fe(H). The maximal planar graph G has exactly 2n − 4 faces. Each

of fe(H) ≥ 3
2k empty faces of H is a face of G as well, and each of n − k (pairwise non-adjacent)

vertices of G not belonging to C (whose removal has created a non-empty face of H) is incident with
three (“private”) faces of G. Hence 2n− 4 = |F (G)| = fe(H) + 3(n− k) ≥ 3

2k + 3n− 3k and finally
k ≥ 2

3 (n+ 4) will follow.

Weight of a 2-face.

Let φ = [v1, v2, v3] be a 2-face of Hi and let Bφ = (φ,φ2, . . . , φr), r ≥ 2, be the φ-branch. As already
mentioned, 2

3 ≤ w1(φ) ≤ 1. We check that the weight of φ exceeding 2
3 will be shifted in the second

redistribution.

1. Let φ be incident with two (2,2)-edges (note that w1(φ) = 1). Denote α = [v0, v1, v2] and
β = [v2, v3, v4] the 2-faces of H3−i adjacent to φ. Let α2 and β2 be the face of H3−i adjacent to α
and β, respectively. Each of the faces φ2, α2, and β2 is either a 1-face or empty 0-face (by Claim 3(i)).
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Figure 8.2: Redistribution rules R4–R8 (1-f is a 1-face and e0-f is an empty 0-face).

1.1. Let α2 and β2 be 0-faces (possibly α2 = β2).

1.1.1. If edges v0v1 and v3v4 of C do not belong to the rim R(Bφ) of Bφ, then r = 2, thus φ sends
1
3 to empty 0-face φ2 (by R4).

1.1.2. If v0v1 belongs to the rim R(Bφ) and v3v4 does not belong to R(Bφ), then φ2 = [v0, v1, v3] is
a 1-face and φr is empty (by Claim 3(i)). Thus φ sends weight ≥ 1

6 to φr (by R4 or R6) and 1
6 to α2

(by R7). (Similarly if v0v1 does not belong to R(Bφ) and v3v4 belongs to R(Bφ).)

1.1.3. If edges v0v1 and v3v4 belong to the rim R(Bφ), then both are (1,2)-edges. Thus φ sends 1
6 to

α2 and 1
6 to β2 (by R7).

1.2. Let α2 = [v−1, v0, v2] be a 1-face and β2 be a 0-face. (Similarly if α2 is a 0-face and β2 is a
1-face.)

1.2.1. If v3v4 does not belong to the rim R(Bφ), then r ≤ 3 and φr is empty (by proof of Claim 3(iii)).
Thus φ sends 1

3 to φr (by R4).

1.2.2. If v3v4 belongs to the rim R(Bφ) and v0v1 does not belong to R(Bφ), then φ2 = [v1, v3, v4] is
a 1-face and φr is empty (by Claim 3(i)). Thus φ sends weight ≥ 1

6 to φr (by R4 or R6) and 1
6 to β2

(by R7).
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1.2.3. Let edges v3v4 and v0v1 belong to the rim R(Bφ), then both are (1,2)-edges. If v0v1 and v3v4

are incident with φ2 and φ3, then {v0, v2, v4} is a non-trivial 3-cut, a contradiction. If φ2 = [v0, v1, v3]
and φ3 = [v−1, v0, v3], then {v−1, v2, v3} is a non-trivial 3-cut, a contradiction as well. Thus φ2 =
[v1, v3, v4] and φ3 = [v1, v4, v5].

1.2.3.1. If v−1v0 does not belong to the rim R(Bφ), then φr is empty (by Claim 3(ii)). Thus φ sends
1
6 to φr (by R6) and 1

6 to β2 (by R7).

1.2.3.2. If v−1v0 belongs to the rim R(Bφ), then v−1v0 is a (1,1)-edge. Thus φ sends 1
6 to φj , a

1-face of Bφ incident with v−1v0 (by R5) and 1
6 to β2 (by R7).

1.3. Let α2 = [v−1, v0, v2] and β2 = [v2, v4, v5] be 1-faces.

1.3.1. If v3v4 does not belong to the rim R(Bφ), then r ≤ 3 and φr is empty (by proof of Claim 3(iii)).
Thus φ sends 1

3 to φr (by R4). (Similarly if v0v1 does not belong to R(Bφ).)

1.3.2. Let edges v0v1 and v3v4 belong to the rim R(Bφ), then both are (1,2)-edges. If v0v1 and v3v4

are incident with φ2 and φ3, then {v0, v2, v4} is a non-trivial 3-cut, a contradiction. If φ2 = [v0, v1, v3]
and φ3 = [v−1, v0, v3], then {v−1, v2, v3} is a non-trivial 3-cut, a contradiction as well. (Similarly if
φ2 = [v1, v3, v4] and φ3 = [v1, v4, v5].)

2. Let φ be incident with (2,2)-edge v1v2 and (1,2)-edge v2v3 (note that w1(φ) = 5
6 ). Denote

α = [v0, v1, v2] the 2-face of H3−i adjacent to φ and let α2 be the face of H3−i adjacent to α. Each
of the faces φ2 and α2 is either a 1-face or empty 0-face (by Claim 3(i)).

2.1. Let α2 be 0-face.

2.1.1. If v0v1 does not belong to the rim R(Bφ), then φr is empty (by Claim 3(i)). Thus φ sends 1
6

to φr (by R4 or R6).

2.1.2. If v0v1 belongs to the rim R(Bφ), then v0v1 is a (1,2)-edge. Thus φ sends 1
6 to α2 (by R7).

2.2. Let α2 be a 1-face incident with v−1v0 (i.e. α2 = [v−1, v0, v2]).

2.2.1. If v3v4 does not belong to the rim R(Bφ), then r ≤ 3 and φr is empty (by proof of Claim 3(iii)).
Thus φ sends 1

6 to φr (by R4).

2.2.2. If v3v4 belongs to the rim R(Bφ) and v0v1 does not belong to R(Bφ), then φ2 = [v1, v3, v4] is
a 1-face and φr is empty (by Claim 3(i)). Thus φ sends 1

6 to φr (by R4 or R6).

2.2.3. Let edges v3v4 and v0v1 belong to the rim R(Bφ). If v−1v0 does not belong to R(Bφ), then
φr is empty (by Claim 3(ii)). Thus φ sends 1

6 to φr (by R6). Otherwise v−1v0 belongs to R(Bφ),
thus it is a (1,1)-edge incident with a 1-face φj of Bφ. Hence φ sends 1

6 to φj (by R5).

2.3. Let α2 be a 1-face incident with v2v3 (i.e. α2 = [v0, v2, v3]). Since v0v3 ∈ E(H3−i), φ2 cannot
be the 1-face [v0, v1, v3] in Hi.

2.3.1. If v3v4 does not belong to the rim R(Bφ), then r = 2, thus φ sends 1
6 to φ2 (by R4).

2.3.2. If v3v4 belongs to the rim R(Bφ), then r ≥ 3 and φ2 = [v1, v3, v4].

2.3.2.1. If v3v4 is incident with a 1-face of H3−i (i.e. v3v4 is a (1,1)-edge), then φ sends 1
6 to φ2

(by R5).

2.3.2.2. Let v3v4 be incident with a 2-face β of H3−i (necessarily, β = [v3, v4, v5]). If r = 3, then φ3

is empty (by Claim 3(i)), thus φ sends 1
6 to φ3 (by R4). If r = 4, then φ3 = [v1, v4, v5] (as {v0, v3, v4}
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is a non-trivial 3-cut if φ3 = [v0, v1, v4]) and φ4 is empty (by Claim 3(i)), thus φ sends 1
6 to φ4 (by

R6). Finally, let r ≥ 5. Necessarily φ3 = [v1, v4, v5] (as for r = 4) and φ4 = [v1, v5, v6] (as {v0, v3, v5}
is a non-trivial 3-cut if φ4 = [v0, v1, v5]) are 1-faces of Bφ. If v5v6 is a (1,1)-edge, then φ sends 1

6
to φ4 (by R5). Otherwise v5v6 is a (1,2)-edge, thus it does not belong to β-branch (in H3−i) and
therefore β2 is a 0-face, which is, moreover, empty (as the cycle obtained from C by replacing the
path (v0, . . . , v5) by the path (v0, v2, v1, v4, v3, v5) is a longest good cycle of G and contains the edge
v3v5 incident with β2 (Claim 1)). Hence φ sends 1

6 to β2 (by R8).

Weight of a 1-face.

To estimate the weight of a 1-face, we use the following simple observation:

Claim 4. Each 1-face of H belongs to at most one branch. �

Let ψ be a 1-face incident with an edge e of C. If e is a (1,2)-edge, then ψ obtains weight 2
3 from

e (by R2) only. Otherwise e is a (1,1)-edge, thus ψ obtains 1
2 from e (by R1). Furthermore, in this

case, ψ can get 1
6 from a 2-face φ (by R5) if ψ belongs to the φ-branch. Hence w2(ψ) ≤ 2

3 .

Weight of an empty 0-face.

Each empty 0-face ω belongs to at most two branches (in Case 1). Let φ be a 2-face of Hi with the
φ-branch Bφ = (φ,φ2, . . . , φr) such that φr = ω, and let e be the edge incident with φr and φr−1

(where φr−1 = φ for r = 2).

If φ is adjacent to two 2-faces, then ω gets through e the weight 1
3 (by R4) for r ≤ 3 or the weight

1
6 (by R6) for r ≥ 4. If φ is adjacent to one 2-face, then ω gets through e the weight 1

6 (by R4) and
additionally 1

6 (by R7) for r = 2 or the weight at most 1
6 (by R4) for r = 3 or the weight 1

6 (by R6)
for r ≥ 4. Finally, if φ is adjacent to no 2-face, then ω gets through e the weight 1

6 (by R6) for r ≥ 4
or the weight at most 2 × 1

6 (by R8) for r ≤ 3.

We showed that w2(φ) ≤ 2
3 for each empty face φ and completed the Case 1.

Thus, we can assume that in Hi are only empty faces and among them, at most one face is a 0-face.
To complete the proof, we have to show that there are some empty faces in H3−i as well.

CASE 2. Let Hi contain no 0-face or exactly one 0-face which is additionally empty.

Obviously, if Hi contains no 0-face, then it contains two 2-faces α1 and α2 (since Ti is a path and
2-faces of Hi are leaves of Ti). Note that, (only) in this case, the branches in Hi are not defined.

Remember that H = G[V (C)] has k ≥ 7 vertices (as otherwise G with at most k + 2 ≤ 8 vertices is
Hamiltonian). If Hi contains exactly one 0-face, then it contains three 2-faces α1, α2 and α3 (since
Ti is a subdivision of K1,3 and 2-faces of Hi are leaves of Ti). We assume that H3−i contains at least
two 0-faces as otherwise all but at most one faces of H3−i are empty and G has n ≤ |V (H)|+1 = k+1
vertices and Theorem 8.2 follows immediately (with n ≥ 11).
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Distribution of points.

To estimate the number of empty 0- and 1-faces inH3−i, each 2-face αj ofHi (j ∈ {1, 2} ifHi contains
no 0-face and j ∈ {1, 2, 3} if Hi contains one 0-face, respectively) will distribute 1 or 2 points to faces
of H3−i. Let αj be adjacent to the faces φ and ψ of H3−i.

Rule P1. If φ and ψ are 2-faces ofH3−i with branchesBφ = (φ,φ2, . . . , φr) andBψ = (ψ,ψ2, . . . , ψt),
then φr and ψt will each receive 1 point (or 2 points if φr = ψt) from αj .

Rule P2. If φ and ψ are 1-faces of H3−i, then φ and ψ will each receive 1 point from αj .

Rule P3. If φ is a 2-faces of H3−i with φ-branch Bφ = (φ,φ2, . . . , φr) and ψ is a 1-face of H3−i not
belonging to Bφ, then φr and ψ will each receive 1 point from αj .

Rule P4. If φ is a 2-faces of H3−i with φ-branch Bφ = (φ,φ2, . . . , φr) and ψ is a 1-face of H3−i

belonging to Bφ, then only ψ will receive 1 point from αj .

For a face φ of H3−i, let p(φ) be the total number of points carried by φ (in the distribution of
points).

Claim 5. f1(H3−i) + 2f0(H3−i) ≥
∑

φ∈F(H3−i)
p(φ). �

Proof. We have to prove that each 1-face of H3−i gets at most 1 point and that each 0-face of H3−i

gets points only if it is empty and it gets at most 2 points. Consequently, Claim 5 follows by simple
counting.

Let β be a 1-face of H3−i. Since β can only get points if it is adjacent to some αj and there can only
be one such face then p(β) ≤ 1.

Let β be a 0-face of H3−i. Since β can only get points if it belongs to a branch and it belongs to at
most two branches (as there are at least two 0-faces in H3−i), then p(β) ≤ 2. Assume first that β
gets a point by P1. Then there is αj incident with two (2, 2)-edges and adjacent 2-faces φ and ψ of
H3−i. Let Bφ = (φ,φ2, . . . , φr) with φr = β be the branch which ends in β. By Claim 3(i), φr = β

is an empty 0-face.

Thus, assume that β gets a point by P3. Then there is αj incident with a (1, 2)-edge with adjacent
1-face ψ in H3−i and a (2, 2)-edge with adjacent 2-face φ such that ψ does not belong to the branch
Bφ = (φ,φ2, . . . , φr) with φr = β. Since the common edge of αj and ψ does not belong to the rim
R(Bφ), again by Claim 3(i), φr = β is an empty 0-face. □

Claim 6. f1(H3−i) + 2f0(H3−i) ≥ 4. �

Proof. If
∑

φ∈F(H3−i)
p(φ) ≥ 4, then f1(H3−i) + 2f0(H3−i) ≥ 4 (by Claim 5).

Assume
∑

φ∈F(H3−i)
p(φ) ≤ 3.

1. Let Hi contains exactly one 0-face. As there are three 2-faces α1, α2, α3 in Hi, then∑
φ∈F(H3−i)

p(φ) = 3.
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Furthermore, only P4 was applied to each αj (j ∈ {1, 2, 3}) hence there are three 1-faces with 1 point
and they belong to three different branches.

Since |V (H)| = k ≥ 7, there is j ∈ {1, 2, 3} such that αj is adjacent to a 1-face δ of Hi. Let φ be the
adjacent 2-face of αj in H3−i and Bφ = (φ,φ2, . . . , φr) be its branch.

1.1. If r ≥ 4, then φ2 and φ3 are 1-faces of the same branch. Thus, at most one among φ2 and φ3

has a point and f1(H3−i) ≥ 4.

1.2. If r = 3, then δ and φ are not adjacent (i.e. δ 6= φ2, since H has no multiple edges) and φ3 is
an empty 0-face (by Claim 3(ii)), hence f1(H3−i) + f0(H3−i) ≥ 4.

2. Let Hi contains no 0-face. Since
∑

φ∈F(H3−i)
p(φ) ≤ 3, there is j ∈ {1, 2} such that P4 was applied

to αj . Let δ be the 1-face of Hi adjacent to αj (since |V (H)| = k ≥ 7), let φ and ψ be the 2-face and
1-face of H3−i adjacent with αj , respectively, and let Bφ = (φ,φ2, . . . , φr) be the branch of φ. We
may assume αj = [v1, v2, v3] and φ = [v2, v3, v4].

2.1. Let r ≤ 4.

2.1.1. If δ = [v0, v1, v3], then v0v1 does not belong to the rim R(Bφ) (otherwise φ2 = [v1, v2, v4],
φ = [v0, v1, v4] and v0, v3, v4 is a non-trivial 3-cut, a contradiction) and φr is an empty 0-face (by
Claim 3(ii)). By P1–4, there is a face in H3−i other than ψ and φr with a point, thus f1(H3−i) +
2f0(H3−i) ≥ 4.

2.1.2. If δ = [v1, v3, v4], then φ2 = [v2, v4, v5] (since v1v4 ∈ E(Hi)), ψ = φ3 = [v1, v2, v5], and
{v1, v4, v5} is a non-trivial 3-cut, a contradiction.

2.2. Let r = 5. There are three 1-faces (in fact φ2, φ3, and φ4) all belonging to the same branch
Bφ. We may assume that P4 was applied to αj and P2 was applied to α3−j , and all three 1-faces are
adjacent to α1 or α2 (since otherwise there is another 1-face or empty 0-face and Claim 6 follows).

2.2.1. If α3−j = [v−1, v0, v1], then rim R(Bφ) = (v−1, . . . , v4), thus φ2 = [v1, v2, v4] and δ =
[v1, v3, v4], a contradiction to the simplicity of H.

2.2.2. If α3−j = [v4, v5, v6] and δ = [v0, v1, v3], then rim R(Bφ) = (v1, . . . , v6) and φ5 is an empty
0-face (by Claim 3(ii)), thus f1(H3−i) + f0(H3−i) ≥ 4.

2.2.3. If α3−j = [v4, v5, v6] and δ = [v1, v3, v4], then rim R(Bφ) = (v1, . . . , v6). Hence v1v6 ∈
E(H3−i) and consequently {v1, v4, v6} is a non-trivial 3-cut, a contradiction.

2.3. If r ≥ 6, then there are at least four 1-faces in Bφ, thus f1(H3−i) ≥ 4. □

Remember that each j-face of H3−i is incident with j (“private”) edges of C, hence 2f2(H3−i) +
f1(H3−i) = k. As each of the k − 2 triangular faces of Hi is empty, all non-empty faces of H belong
to H3−i and their number is (k− 2) − f2(H3−i) − f1(H3−i) − f0(H3−i) = (k− 2) − 1

2 (k− f1(H3−i)) −
f1(H3−i) − f0(H3−i) = k

2 − 2 − 1
2 (f1(H3−i) + 2f0(H3−i)) ≤ k

2 − 4 (by Claim 6). Finally, at most
k
2 − 4 vertices of G lie outside the cycle C (and exactly k vertices on C), hence n ≤ k + (k2 − 4) and
k ≥ 2

3 (n+ 4) follows, which completes the proof of Theorem 8.2. ■
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9.1 Introduction and Results

We use standard terminology of graph theory and consider finite and simple graphs, where
V (G) and E(G) denote the vertex set and the edge set of a graph G, respectively. These
graphs are represented by drawings in the plane, such that vertices are distinct points and
edges are arcs (non-self-intersecting continuous curves, i.e. open Jordan curves) that join
two points corresponding to their incident vertices. The arcs are supposed to contain no
vertex points in their interior. Such a drawing of a graph G in the plane is denoted by D(G).
For more details on drawings of graphs in the plane, see [HMS12; PT97]. If two edges of
D(G) have an internal point in common, then these edges cross and we call the pair of these
edges a crossing, and the aforementioned internal point their crossing point. It is easy to
see that a drawing can be changed locally to a different drawing with fewer crossings if two
edges with a shared end vertex cross or if two edges cross several times. Thus, in the sequel
we will consider drawings with the property that if two edges cross, then they do so exactly
once and their four end vertices are mutually distinct.

A graph G is planar if there exists a drawing D(G) of G without crossings. There are several
different approaches generalizing the concept of planarity. One of them is to allow a given
constant number of crossings for each edge in a drawing D(G). In particular, if there exists a
drawing D(G) of a graph G such that each edge of D(G) is crossed at most once by another
edge, then G is 1-planar. In this case we call D(G) a 1-planar drawing of G. This class
of graphs was introduced by Ringel [Rin65] in connection with the simultaneous vertex-
face coloring of plane graphs. Properties of 1-planar graphs are studied in [FM07; HMS12;
KM13; Kor08; PT97].

Pach and Tóth [PT97] proved that each 1-planar graph on n vertices, n ≥ 3, has at most
4n − 8 edges and this bound is attained for every n ≥ 12. As a consequence, a 1-planar
graph has a vertex of degree at most 7, hence, it is at most 7-connected. A 1-planar graph
on n vertices is optimal if it has exactly 4n− 8 edges. A graph G from a family G of graphs
is maximal if G + uv /∈ G for any two non-adjacent vertices u, v ∈ V (G). It is remarkable
that there exist maximal 1-planar graphs on n vertices that have significantly fewer than
4n − 8 edges [Bra+12]. Thus, in contrast to the planar case, the properties “optimal” and
“maximal” are not the same for 1-planar graphs. Obviously, an optimal 1-planar graph is
also maximal 1-planar. It is clear that a maximal planar graph is not necessarily maximal
1-planar.

The length (number of vertices) of a longest cycle of a graph G (also called circumference of
G) is denoted by circ(G). If circ(G) = n for a graph G on n vertices, then G is Hamiltonian
and a longest cycle of G is a Hamiltonian cycle. In the same vein, a graph is traceable if it
contains a path visiting every vertex of the graph.

In [HMS12], it is proved that an optimal 1-planar graph is Hamiltonian. This is in sharp
contrast with the family of planar graphs since Moon and Moser [MM63] constructed
infinitely many maximal planar graphs G with circ(G) ≤ 9|V (G)|log3 2 (in fact, Moon and
Moser even showed that every path in G is strictly shorter than the aforementioned length).
It is known that a maximal planar graph on n ≥ 4 vertices is 3-connected. In [HMS12],
maximal 1-planar graphs with vertices of degree 2 are constructed and it remained open
there whether every 3-connected maximal 1-planar graph is Hamiltonian. Moreover, the
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question arises whether such a construction as the one of Moon and Moser is also possible
in the class of 3-connected maximal 1-planar graphs. An answer to both questions is given by
Theorem 9.1 which has the consequence that there are positive constants c and α ≤ log3 2 < 1
such that infinitely many 3-connected maximal 1-planar graphs G with circ(G) ≤ c · |V (G)|α
exist.

Theorem 9.1. IfH is a maximal planar graph on n ≥ 4 vertices, then there is a 3-connected
maximal 1-planar graph G on 7n− 12 vertices such that circ(G) ≤ 4 · circ(H). �

For an arbitrary 1-planar drawing D(G) of a graph G, let D×(G) be the plane graph obtained
from D(G) by turning all crossings into new 4-valent vertices. If uv and xy are two crossing
edges of D(G), then let c be the vertex of D×(G) corresponding to the crossing point of uv
and xy. Let α be the face of D×(G) such that ucx is a subpath of the facial walk of α in
D×(G). If ux is an edge of G and ux is crossed by another edge in D(G), then it is possible
to redraw the edge ux in D(G) such that ux lies in the region of D(G) corresponding to the
face α of D×(G). It follows that ux is not crossed by another edge in D(G) anymore. Thus,
in the sequel we will consider 1-planar drawings D(G) of a graph G with the property that
if uv and xy are crossing edges of D(G), then the edge xu (if it exists) is not crossed by
another edge in D(G).

Now we will consider much wider classes of 1-planar graphs than the class of maximal 1-planar
graphs. Let K−

4 be the graph obtained from the complete graph K4 on four vertices by
removing one edge. Given a 1-planar drawing D(G) of a graph G, we call a crossing of D(G)
full or almost full if the four end vertices of its edges induce a K4 or a K−

4 , respectively.

If for a 1-planar graph G there exists a 1-planar drawing D(G) such that all crossings of
D(G) are full or almost full, or all crossings of D(G) are full, then, in the first case, we call
G weakly locally maximal 1-planar and D(G) a weakly locally maximal 1-planar drawing of
G or, in the second case, G locally maximal 1-planar and D(G) a locally maximal 1-planar
drawing of G, respectively. Obviously, a planar graph is locally maximal 1-planar and it
can easily be seen that a maximal 1-planar graph is also locally maximal 1-planar and that
a locally maximal 1-planar graph is also weakly locally maximal 1-planar. For a positive
integer k ≥ 2, Figure 9.1 shows a graph on 4k vertices which is locally maximal 1-planar,
obviously not maximal 1-planar, and also not planar since it contains a subdivision of K5
with major (4-valent) vertices u1, x1, y1, z1, xk.

Whitney [Whi31] showed that a 4-connected maximal planar graph is Hamiltonian. Later
Tutte [Tut56] proved that an arbitrary 4-connected planar graph has a Hamiltonian cycle.
We remark that non-Hamiltonian 4-connected 1-planar graphs are constructed in [HMS12].
In order to formulate the next result, we recall that for an infinite family G of graphs, its
shortness exponent is defined as

σ(G) = lim inf
G∈G

log circ(G)
log |V (G)|

.

See [GW73] for details concerning the theory of shortness exponents. We are able to prove
the following theorem — however, it remains open whether a non-Hamiltonian 6-connected
1-planar graph exists.
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Theorem 9.2. There are infinitely many non-traceable 5-connected weakly locally maximal
1-planar graphs. Moreover, for the class Γ of 5-connected 1-planar graphs we have σ(Γ) ≤
log 20
log 21 . �

We can infer from Theorem 9.2 that for an arbitrary ε > 0 there is a 5-connected 1-planar
graph G such that circ(G) < ε · |V (G)|.
It is also not known whether every 7-connected 1-planar graph is Hamiltonian (see [HMS12]),
so the intriguing question whether an analog of Tutte’s theorem holds for the family of
1-planar graphs remains open.
By Theorem 9.1, 3-connected maximal 1-planar graphs are far away from being Hamiltonian
in general — nonetheless Theorem 9.3 and Theorem 9.4 both imply that a 4-connected lo-
cally maximal 1-planar graph is Hamiltonian, i.e. Whitney’s theorem can be extended to
the class of 4-connected locally maximal 1-planar graphs. For an overview of the minimum
sufficient connectivity that leads to hamiltonicity for the different kinds of 1-planar max-
imality discussed in this article, we refer the reader to Table 9.1 at the end of this paper
(chapter).
As an extension of Tutte’s theorem, it is proved in [BZ19] that a 3-connected planar graph
with at most three 3-cuts is Hamiltonian. (In this paper, all cuts are vertex-cuts.) By
Theorem 9.2, this result cannot be extended to the class of 3-connected weakly locally max-
imal 1-planar graphs, however, Theorem 9.3 shows that the assertion is true for 3-connected
locally maximal 1-planar graphs.

Theorem 9.3. A 3-connected locally maximal 1-planar graph with at most three 3-cuts is
Hamiltonian. Furthermore, every 3-connected locally maximal 1-planar graph with at most
four 3-cuts is traceable. �

By Theorem 9.2, there are infinitely many non-Hamiltonian 5-connected weakly locally
maximal 1-planar graphs. Theorem 9.4 shows that the situation changes if the number of
almost full crossings in a weakly locally maximal 1-planar drawing of a graph is not too large,
even if this graph is only 4-connected.

Theorem 9.4. If a 4-connected graph has a weakly locally maximal 1-planar drawing with
at most three almost full crossings, then it is Hamiltonian. Moreover, if a 4-connected
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graph has a weakly locally maximal 1-planar drawing with at most four almost full crossings,
then it is traceable. �

Chen and Yu [CY02] showed that there is a constant c such that circ(G) ≥ c · |V (G)|log3 2

for an arbitrary 3-connected planar graph G. By Theorem 9.5, we show that the extension
of the result of Chen and Yu (and of any other result concerning lower bounds on the
length of a longest cycle of a 3-connected planar graph) to 3-connected locally maximal
1-planar graphs is possible. Moreover, by Theorem 9.5, every result on the existence of
a certain subgraph of a 3-connected planar graph is also true for a 3-connected locally
maximal 1-planar graph. Examples are the results of Barnette [Bar66] that a 3-connected
planar graph has a spanning tree of maximum degree at most 3, and of Gao [Gao95] that
a 3-connected planar graph has a spanning 2-connected subgraph of maximum degree at
most 6.

Theorem 9.5. Each 3-connected locally maximal 1-planar graph has a 3-connected planar
spanning subgraph. �

In Figure 9.1, a 4-connected locally maximal 1-planar graph is presented. Because it is non-
planar and 4-regular, it cannot contain a 4-connected planar spanning subgraph. Thus,
Theorem 9.5 is best possible in this sense.

One obtains a weakly locally maximal 1-planar graph G (and one of its weakly locally maxi-
mal 1-planar drawings) if the edges x1y1, . . . , xkyk are removed from the graph of Figure 9.1.
Assume this graph G contains a 3-connected planar spanning subgraph H. Since H has
minimum degree at least three, all edges incident with a vertex from {x1, . . . , xk, y1, . . . , yk}
belong to H. Thus, the graph H ′ obtained from H by removing the edges u1z1, . . . , ukzk is
a subgraph of H. If k ≥ 3, then it is easy to see that H ′ contains a subdivision of K3,3 with
major (3-valent) vertices x1, y1, xk and u1, z1, x2, a contradiction to the planarity of H. It
follows that Theorem 9.5 is also best possible in the sense that “locally maximal 1-planar”
cannot be replaced with “weakly locally maximal 1-planar”.

9.2 Proofs
Proof of
Theorem 9.1. IfH is a maximal planar graph on n ≥ 4 vertices, then there is a 3-connected
maximal 1-planar graph G on 7n− 12 vertices such that circ(G) ≤ 4 · circ(H). �

We construct G from H such that H is a subgraph of G. Therefore, the vertices of H are
said to be old and these in V (G) \ V (H) to be new.
It is well-known that a simple maximal planar graph on at least 4 vertices is 3-connected.
Whitney [Whi32] (see also [Fle73]) proved, that a 3-connected planar graph has a unique
(up to the choice of the outer face) planar drawing.
Let D0(H) be (in this sense) the unique planar drawing of H. Figure 9.2 shows a 1-planar
embedding of K6. A drawing D0(G) of G is obtained from D0(H) by inserting into each face
of D0(H) with boundary vertices u, v, and w a triangle with three new vertices a, b, and c,
and completed by further nine edges as shown in Figure 9.2.
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Obviously, D0(G) is a 1-planar drawing of G, hence, G is 1-planar. As H is maximal planar
with 2n− 4 faces, G has n+ 3(2n− 4) = 7n− 12 vertices.
Let CG be a longest cycle of G. If CG has at most eight vertices, then circ(G) = |V (CG)| ≤
4 · circ(H) is true. If P is a subpath of CG connecting two old vertices u and v such that
V (P ) \ {u, v} does not contain an old vertex, then u and v are vertices of a face of H and
|V (P ) \ {u, v}| ≤ 3 (see Figure 9.2). In case V (P ) \ {u, v} 6= ∅, let Q be the u and v

connecting path obtained from CG by removing V (P ) \ {u, v}. Note that Q contains at least
three old vertices because |V (CG)| ≥ 9. We add the edge uv to Q and the resulting graph is
again a cycle of G containing fewer new vertices than CG. Repeating this step, we obtain a
cycle CH of H and it follows that circ(G) = |V (CG)| ≤ 4 · |V (CH)| ≤ 4 · circ(H).

Now we show that G is 3-connected. Therefore, consider a minimal cut S of G. Since the
neighborhood of each new vertex forms a complete graph, S does not contain new vertices,
hence, S ⊂ V (H). If S is also a cut of H, then |S| ≥ 3 since a simple maximal planar graph is
3-connected. If |S| < 3, then, sinceH−S is still connected, G−S has a component consisting
of new vertices only. This is impossible since each new vertex has three old neighbors.

For the proof of Theorem 9.1, it remains to show that G is maximal 1-planar.

Let D(G) be an arbitrary 1-planar drawing of G. Two subgraphs H1 and H2 of G are said
to be k-sharing if H1 and H2 have at least k vertices in common. Moreover, H1 and H2
share a crossing in D(G) if there are edges e1 ∈ E(H1) and e2 ∈ E(H2) that cross in D(G).
Bachmaier et al. [Bac+17] showed that if two subgraphs of G both isomorphic to K5 share
a crossing in D(G), then they are 3-sharing. Using this result, we prove (i).

(i) An edge of H is not crossed in D(G).

Let uv be an edge of H (see Figure 9.2) and {a, b, c} and {a′, b′, c′} be the disjoint sets of
new vertices being inserted into the two faces of H both incident with uv, respectively. The
subgraphs G[{u, v, a, b, c}] and G[{u, v, a′, b′, c′}] of G are both isomorphic to K5. Assume
there is an edge e of G that crosses uv in D(G). Since each edge of G is an edge of a subgraph
isomorphic to K5, let K(e) be a K5-subgraph of G containing e.
By the aforementioned result in [Bac+17], it follows that G[{u, v, a, b, c}] and K(e) and
also G[{u, v, a′, b′, c′}] and K(e) are 3-sharing. This implies V (K(e)) ∩ {a, b, c} 6= ∅ and
V (K(e))∩{a′, b′, c′} 6= ∅. Since there is no edge between the sets {a, b, c} and {a′, b′, c′}, this
contradicts the completeness of K(e), and (i) is proved.
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By (i), the restriction D(H) of D(G) to V (H) is a planar embedding of H. The planar
embedding of H is unique, thus, D(H) = D0(H). Consider a face F of D0(H) with boundary
vertices u, v, and w. Since H has at least four vertices and again by (i), the three new vertices
a, b, and c all adjacent to u, v, and w lie in the interior of the face F and, up to permutation
of a, b, c, the situation of Figure 9.2 occurs. Thus, we may assume (ii).

(ii) G has the unique 1-planar embedding D0(G).

To show that G is maximal 1-planar, assume to the contrary that there are nonadjacent
vertices x and y such that the graph G + xy obtained from G by adding the edge xy is
1-planar. Therefore, let D(G+ xy) be a 1-planar drawing of G+ xy. If xy is removed from
D(G+xy), then we obtain a 1-planar embedding of G and this embedding is D0(G) because
of (ii). Thus, we may assume that in D0(G) the edge xy can be added in such a way that
the resulting drawing is still 1-planar.

If x is new, then let x = a (see Figure 9.2). Since xy /∈ E(G), y is not among the six
vertices in Figure 9.2 and the edge xy has to cross at least one of the edges ub, uc, bw, cv in
D(G+ xy), but each of them is already crossed in D0(G), a contradiction.

If x and y are old vertices, then, because H is maximal planar, H+xy is not planar anymore.
Thus, xy crosses an edge e ∈ E(H) in D(G + xy). Let e = uv (see Figure 9.2), then xy

crosses the edge av or bu in D(G+xy). However, av and bu cross each other in D0(G), again
a contradiction, and Theorem 9.1 is proved. ■

Proof of
Theorem 9.2. There are infinitely many non-traceable 5-connected weakly locally maximal
1-planar graphs. Moreover, for the class Γ of 5-connected 1-planar graphs we have σ(Γ) ≤
log 20
log 21 . �

Figure 9.3: The structure H

Consider the structure H shown in Figure 9.3, add a new white vertex, and join the five
half-edges of H to this new vertex. We obtain a weakly locally maximal 1-planar graph G.
It is not difficult to see that G is 5-connected. Moreover, since G contains 20 black vertices
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and 22 white vertices, and the set of white vertices is independent, it follows that G is non-
traceable. This construction can be generalized easily to obtain a weakly locally maximal
1-planar graph containing 4k black vertices and 4k + 2 independent white vertices, where k
is an arbitrary integer at least five.
Now construct the 5-connected weakly locally maximal 1-planar graph G0 from the graph
H by removing the five half-edges. Starting with G0, we construct an infinite sequence {Gi}
for i ≥ 0 of 5-connected 1-planar graphs as follows. Let Gi be already constructed and
Gi+1 be obtained by replacing each white vertex v of Gi with a copy Hv of H (Figure 9.3)
and connecting the five half-edges of H with the five neighbors of v in Gi. Let Mi =
{Hv : v is white in Gi−1} and wi be the number of white vertices of Gi. Then |Mi+1| = wi,
w0 = 21, and wi+1 = 21 · wi, thus, |V (Gi)| > wi = 21i+1.
Let Ti be a longest closed trail of Gi visiting each black vertex of Gi at most once and let
ti = |V (Ti)|. Note that Ti visits a white vertex v of Gi at most twice, since v has degree 5
in Gi. Since a longest cycle of Gi is also a closed trail of Gi, it follows that circ(Gi) ≤ ti for
all i ≥ 0.
For i ≥ 1, let hi = |{H ∈ Mi : V (H) ∩ V (Ti) 6= ∅}| be the number of copies of H in
Gi visited by Ti at least once; it is easy to see that hi ≥ 2. Moreover, since the 21 white
vertices of H ∈ Mi are independent and a half-edge of H is incident with a black vertex of
H, it follows that V (Ti) ∩ V (H) contains at most 19 of the 21 white vertices of H. Thus,
|V (Ti) ∩ V (H)| ≤ 39 and ti ≤ bi + 39hi, where bi denotes the number of vertices of Ti not
belonging to some H ∈ Mi. Let T be the closed trail of Gi−1 obtained from Ti by shrinking
all H ∈ Mi to white vertices of Gi−1 again.
Then ti−1 ≥ |V (T )| = bi+hi leads to ti−20ti−1 ≤ −19bi+19hi and, because all H ∈ Mi have
distance at least 2 in Gi, bi ≥ hi. Therefore, ti ≤ 20ti−1, which gives circ(Gi) ≤ ti ≤ 20it0.
Finally, since

log circ(Gi)
log |V (Gi)|

≤ log ti
log |V (Gi)|

<
log 20 + 1

i log t0
log 21 + 1

i log 21
for i ≥ 1,

we have
σ(Γ) ≤ lim

i→∞

log circ(Gi)
log |V (Gi)|

≤ log 20
log 21

.

For the proofs of Theorem 9.3 and Theorem 9.4 we need the two forthcoming lemmas.

Lemma 9.6. Let t be a non-negative integer and G be a non-planar 3-connected weakly
locally maximal 1-planar graph that has a weakly locally maximal 1-planar drawing with
t almost full crossings. Furthermore, among all weakly locally maximal 1-planar drawings of
G with at most t almost full crossings let D(G) be chosen with minimum number of crossings.
Let G′ with a drawing D(G′) be constructed by turning an arbitrary crossing X of D(G)
into a new 4-valent vertex v.
Then
(i) G′ is weakly locally maximal 1-planar and D(G′) has one crossing less than D(G).

(ii) If X is almost full, then G′ has a weakly locally maximal 1-planar drawing with at
most t−1 almost full crossings. Otherwise, G′ has a weakly locally maximal 1-planar
drawing with at most t almost full crossings.
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(iii) G′ is 3-connected.

(iv) Let S be a 3-cut of G′. If S ⊆ V (G), then S is also a 3-cut of G. If v ∈ S, then X is
almost full, the neighborhood of v in G′ forms a path on vertices a, b, c, d that appear
in this order, and there is z ∈ V (G) \ NG′(v) such that G has a 3-cut S′ = {b, c, z}
which separates a and d. �

Proof of Lemma 9.6. Obviously, G′ is weakly locally maximal 1-planar (remember that all con-
sidered 1-planar drawings D(G) of a graph G have the property that if two edges uv and xy are
crossing edges of D(G), then the edge xu (if it exists) is not crossed by another edge in D(G)).
Furthermore, D(G′) has one crossing less than D(G), D(G′) has the desired number of almost full
crossings, and (i) and (ii) immediately follow.

Assume that S is a minimal cut of G′ and v ∈ S. Then there are u,w ∈ NG′(v) such that u and
w belong to distinct components of G′ \ S, thus, G′[NG′(v) \ S] has to be disconnected. Since the
neighborhood NG′(v) of v in G′ forms an induced cycle (if X is full) or an induced path (if X is
almost full) on four vertices (note that G is simple), S ∩NG′(v) 6= ∅.

If G′ is not 3-connected, then G′ has a minimal cut S such that |S| ≤ 2 and v ∈ S. It follows that
X is not full and the subgraph of G′ spanned by NG′(v) is a path P with one of its inner vertices in
S. But then both inner vertices of P form a 2-cut of G, in contradiction to the 3-connectedness of G
and (iii) is proved.

Now, we prove (iv). First, let S be a 3-cut of G′ with S ⊆ V (G). Then there are components H1

and H2 of G′ \ S with v ∈ V (H1). Because NG′(v) ⊆ V (H1) ∪ S and |S| = 3, at most three of the
four neighbors of v belong to S. Hence, S is a 3-cut of G′ \ {v} and also of G. Next, assume that
G′ contains a 3-cut S with v ∈ S. Let e = xy and e′ = x′y′ be two edges of the chosen crossing of
D(G), i.e. NG′(v) = {x, y, x′, y′}.

Case 1: G′[{x, y, x′, y′}] is a cycle on 4 vertices.
Because G′[{x, y, x′, y′} \ S] is disconnected, it follows that S contains two independent neighbors
of v, say S = {v, x′, y′}. Thus, G′ − S has two components each containing a vertex of {x, y}. If
G′ − S has a further component H, then V (H) ∩ {x, y, x′, y′} = ∅ and {x′, y′} is a 2-cut of G′, a
contradiction. It is easy to see that there is either an open Jordan curve J of the plane connecting
x′ and y′ such that J ∩ D(G) = {x′, y′} or two edges, one from each component of G′ − S, cross
each other. The latter case cannot occur since the vertices of two crossing edges are connected in G′.
Thus, if the edge x′y′ is replaced with J , then we get a drawing D′(G) of G with fewer crossings than
D(G), a contradiction to the choice of D(G). It follows that Case 1 does not occur.

Case 2: G′[{x, y, x′, y′}] is a path on 4 vertices.
Without loss of generality assume yy′ /∈ E(G). Because G′[{x, y, x′, y′} \S] is disconnected, it follows
that S contains x or x′. Because of symmetry, let x ∈ S, i.e. S = {v, x, z} with z ∈ V (G).

Case 2.1: z /∈ {x, y, x′, y′}.
With a similar argument as in Case 1, G′ − S has exactly two components H1 and H2 with x′, y ∈
V (H1) and y′ ∈ V (H2). It is easy to see that S′ = {x, x′, z} is a 3-cut of G. Moreover, G − S′ has
two components H1 − x′ and H2 each containing one vertex from {y, y′}.

Case 2.2: z = y.
Then S = {v, x, y} and we use the same arguments as in Case 1 for a contradiction.
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Case 2.3: z = x′.
Then S = {v, x, x′} and, since G′ − S is disconnected, G− {x, x′} is disconnected, contradicting the
3-connectedness of G. ■

Lemma 9.7. Let G be a 1-planar graph, D(G) a 1-planar drawing of G, and e = xy and
e′ = x′y′ two crossing edges of D(G). Moreover, let G′ be obtained from G by turning the
crossing of e and e′ into a new 4-valent vertex v.

(i) If this crossing is full and G′ has a Hamiltonian cycle C ′ (Hamiltonian path P ′),
then G is Hamiltonian (traceable).

(ii) If this crossing is almost full with xx′ /∈ E(G), and G′ has a Hamiltonian cycle C ′

(Hamiltonian path P ′) not containing both vx and vx′, then G is Hamiltonian
(traceable). �

Proof of Lemma 9.7. Let vu and vw be adjacent edges of C ′. In either case we have uw ∈ E(G),
so replacing the subpath uvw of C ′ with the edge uw leads to a Hamiltonian cycle of G. The same
arguments hold for P ′ if v is not an end vertex of P ′. If it is, simply remove it and we obtain the
desired Hamiltonian path in G. ■

Proof of
Theorem 9.3. A 3-connected locally maximal 1-planar graph with at most three 3-cuts is
Hamiltonian. Furthermore, every 3-connected locally maximal 1-planar graph with at most
four 3-cuts is traceable. �

Let G1 be a 3-connected locally maximal 1-planar graph with at most three 3-cuts. We define
a sequence of locally maximal 1-planar graphs G1, G2, . . . , where for all i ≥ 1, Gi+1 is the
graph G′ if Gi is the graph G according to Lemma 9.6 (with t = 0). By Lemma 9.6, there
is an index k such that Gk is planar and 3-connected with at most three 3-cuts; no further
3-cut appears since all crossings of G1 are full. A result in [BZ19] states that a 3-connected
planar graph with at most three 3-cuts is Hamiltonian, thus, Gk is Hamiltonian. Applying
assertion (i) of Lemma 9.7 repeatedly implies that G1 is Hamiltonian.

In the same spirit, let now G1 be a 3-connected locally maximal 1-planar graph with at most
four 3-cuts. Define a sequence G1, G2, . . . as above. By Lemma 9.6, there is an index k such
that Gk is planar and 3-connected with at most four 3-cuts. It was proved in [BZ19] that a
3-connected planar graph with at most four 3-cuts is traceable, thus, Gk is traceable. Again
we apply assertion (i) of Lemma 9.7 repeatedly and obtain that G1 is traceable. ■

Proof of
Theorem 9.4. If a 4-connected graph has a weakly locally maximal 1-planar drawing with
at most three almost full crossings, then it is Hamiltonian. Moreover, if a 4-connected
graph has a weakly locally maximal 1-planar drawing with at most four almost full crossings,
then it is traceable. �

Let G1 be a 4-connected 1-planar graph which has a weakly locally maximal 1-planar drawing
with at most three almost full crossings. Among all weakly locally maximal 1-planar drawings
of G1 with at most three almost full crossings, let D(G1) be chosen with minimum number of
crossings. If the number s of almost full crossings in D(G1) is zero, then G1 is Hamiltonian
by Theorem 9.3.
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We assume s ≥ 1, consider an almost full crossing X of D(G1) and apply Lemma 9.6 to
this crossing with G = G1 and t = s, and obtain G′

1 = G′ with the new added vertex
v1 = v. Obviously, G′

1 has a drawing with at most s − 1 almost full crossings. Since G1 is
4-connected, G′

1 is 4-connected by Lemma 9.6. Let G2 be obtained from G′
1 by adding a

vertex u1, the edge u1v1 and the two edges connecting u1 with both 2-valent vertices of the
path G′

1[NG′
1
(v1)] (see Lemma 9.6 and Figure 9.4). Then, G2 is 3-connected and NG2(u1) is

the only 3-cut of G2. Furthermore, G2 has a weakly locally maximal 1-planar drawing with
s− 1 almost full crossings.

b a

c d

viui

Figure 9.4

bi = b = bj

ci = c = cj

ai

di

aj

dj

vjvi

Figure 9.5

Note that a Hamiltonian cycle of G2 (if it exists) leads to a Hamiltonian cycle of G′
1 =

G2 \ {u1} containing at least one edge of G′
1[NG2(u1)].

If s = 1, then let H = G2. Otherwise, we repeat this step s − 1 times and obtain a graph
H = G3 or H = G4. H is 3-connected locally maximal 1-planar. Assume there is a 3-cut S in
Gi+1 which is not a 3-cut of Gi for i ∈ {1, . . . , s}. Then S = NGi+1(ui) or S 6= NGi+1(ui) and
vi ∈ S. In the second case, by Lemma 9.6, there is a 3-cut in Gi separating two vertices of
NGi+1(vi) \ {ui}, a contradiction. Hence, H has exactly s 3-cuts, namely the neighborhoods
of u1, . . . , us. Since s ≤ 3, H is Hamiltonian by Theorem 9.3 and G = H − {u1, . . . , us} is
Hamiltonian because the neighborhoods of u1, . . . , us are complete in H. By the previous
remark, we may assume that G contains a Hamiltonian cycle C such that

E(G[NH(ui)]) ∩ E(C) 6= ∅ for i = 1, . . . , s. (∗)

Consider an arbitrary vertex v ∈ {v1, . . . , vs} and let {a, b, c, d} be the vertex set of the
induced path on NG(v) in this order.

If av, dv ∈ E(C), then bc ∈ E(C) by property (∗). In this case let P1 and P2 be the subpaths
of C obtained by removing v and the edge bc from C. If P1 connects ab and P2 connects
cd, then the cycle obtained from P1, P2, ac, and bd is a Hamiltonian cycle of the graph Gv

obtained from G by deleting v and adding the edges ac and bd. If P1 connects ac and P2
connects bd, then the cycle obtained from P1, P2, ab, and cd is a Hamiltonian cycle of the
graph Gv. If not both edges av, dv belong to C, then Gv is Hamiltonian by assertion (ii)
of Lemma 9.7.

Repeating this step s times, we get rid of v1, . . . , vs, the resulting graph is G1 and the
existence of a Hamiltonian cycle of G1 is shown. Note that if there exist distinct vi and vj

sharing the same bc, then C misses at least one edge of aivi, divi, ajvj , djvj (see Figure 9.5),
since otherwise the edges bui, uic, cuj , ujb of C form a cycle.
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The proof that any 4-connected 1-planar graph which has a weakly locally maximal 1-planar
drawing with at most four almost full crossings is traceable uses very similar arguments and
is therefore omitted. ■

Proof of
Theorem 9.5. Each 3-connected locally maximal 1-planar graph has a 3-connected planar
spanning subgraph. �

Among all locally maximal 1-planar drawings of G let D(G) be chosen such that the number
of crossings in D(G) is minimal. If two edges of D(G) cross each other, then remove an
arbitrary one of them and let H be the resulting graph. Obviously, H is plane and a
spanning subgraph of D(G) (and of G).

It remains to show that H is 3-connected. Assume H is not 3-connected and, therefore, let
S ⊂ V (H) be a cut of H with |S| ≤ 2 such that H1, . . . , Hk (k ≥ 2) are the components
of H − S. Since D(G) − S is connected, there are at least k−1 connecting edges xy ∈
E(D(G)) \ E(H) with x ∈ V (Hi) and y ∈ V (Hj) for suitable i, j ∈ {1, . . . , k} with i 6= j.
These edges are crossed in D(G) by edges from E(H).

Let x′y′ be the edge crossing some connecting edge xy ∈ E(D(G)) \ E(H) in D(G).

Since D(G) is locally maximal, {x, y, x′, y′} induces a complete subgraph of G, thus, both x′

and y′ are common neighbors of x and y.

It follows that S = {x′, y′}. Hence xy is the only connecting edge (another connecting
edge would also cross x′y′) and therefore k = 2. We argue as in Case 1 of the proof of
Lemma 9.6: there is an open Jordan curve J of the plane connecting x′ and y′ such that
J ∩ D(G) = {x′, y′} and, if the edge x′y′ is replaced with J , then we get a drawing D′(G)
with fewer crossings than D(G), a contradiction. ■
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9.3 Overview

We end this paper with a tabular overview of Hamiltonian properties of various families of
graphs that we have discussed.

Maximal Planar Optimal Maximal Locally Weakly 1-planar
planar 1-planar 1-planar maximal locally

1-planar maximal
1-planar

3 % % %(D1) % % %

4 !(A) !(B) !(C) !(D3) !(D3) % %(C)
5 ! ! ! ! ! %(D2) %(D2)
6 ! ! ! ? ?
7 ! !(C) ! ? ?

A. Whitney [Whi32] D1. This paper, Theorem 9.1
B. Tutte [Tut56] D2. This paper, Theorem 9.2
C. Hudák, Madaras, Suzuki [HMS12] D3. This paper, Theorems 9.3 and 9.4

Table 9.1: Hamiltonicity of planar and 1-planar graphs, as well as some related families,
listed by connectedness ranging from 3 to 7 (the maximum admissible value for 1-planar
graphs). Green cells (marked !) indicate that every graph with the specified connectedness
is Hamiltonian, red cells (marked %) signify that there exist such graphs which are not
Hamiltonian, question marks designate open problems, and “ ” stands for an impossible
combination of properties.

Acknowledgement

We thank the referees, whose constructive suggestions helped to improve the quality of this
article.



Outlook 10
This thesis presented an intermediate status of some topics in an extensive research field
of structural graph theory. We focused on concepts like uniquely colourable graphs, graphs
with a Kempe colouring, rooted minors with respect to Hadwiger’s Conjecture, structure
of local connectivity, and a new Tutte theory for graph classes apart from planar graphs.
However, the research will not end here. The aim of this last section is to give a collection
of related open problems that deserve further investigation.

Kempe colouring

Since all considerations meant to bound the number of colour classes or the size of the clique
minors have not been leading to new proofs of the cases H(t) for t ≥ 7 in Hadwiger’s
Conjecture, one part of the thesis dealt with graphs with few colourings. Based on uniquely
colourable graphs, the presented Kempe colourings substantiated their utility with respect
to Hadwiger’s Conjecture.

By adapting Seymour’s Conjecture (Conjecture 4) to graphs admitting a Kempe colouring,
the following open problem naturally arises.

Problem 1. Let G be a graph with α(G) ≤ 2 and C be a Kempe colouring of size k. Does
G contain a Kk-minor? �

Even the weaker version asking for a Kℓ-minor with ℓ ≥ 3
4k has remained still open:

Problem 2. Let G be a graph with α(G) ≤ 2 and C be a Kempe colouring of size k. Does
G contain a Kℓ-minor with ℓ ≥ 3

4k? �

Dropping the condition α(G) ≤ 2, the best-known result about Hadwiger’s Conjecture has
been published by M. Kriesell who showed that graphs with a Kempe colouring using
up to ten colours fulfil the assertion of Hadwiger’s Conjecture (Theorem 2.26). This was
proved using a theorem of Song and Thomas (Theorem 2.7) about the maximum number
of edges in Kp-minor-free graphs (p ≤ 9); those investigations had been started by Mader
(Theorem 2.6). It is an interesting task to continue research for p ≥ 10 since new results
may also lead to extensions of Kriesell’s Theorem 2.26 and Hadwiger’s Conjecture for
uniquely colourable graphs.
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Problem 3. Let p ∈ N, p ≥ 10. How can Kp-minor-free graphs on n vertices and at least
(p− 2)n−

(p−1
2

)
+ 1 edges be characterised? �

Rooted Minors

Most of the graphs considered in this thesis contain a clique immersion, i.e. for vertices
x1, x2, . . . , xk with pairwise different colours, there exists a system of edge-disjoint xi,xj-paths.
It is for this reason that we investigated minors rooted by the transversal of a Kempe colour-
ing. We were hoping to solve the following very ambitious Problem 4; however, in this thesis
we have only managed to obtain some results indicating an affirmative answer and refuted
a slight generalisation.

Problem 4. Let G be a graph with a Kempe colouring C of size k. Does G contain a
Kk-minor rooted at T for every transversal T of C? �

The answer to Problem 4 for k ≤ 4 is inferred from Theorem 2.33 published by Fabila-
Monroy and Wood. This result about rooted K4-minors has a wide range of applications.
We would be pleased with knowing a generalisation:

Problem 5.

(i) What is the full characterisation of all graphs and all tuples of vertices {a, b, c, d, e} of
G such that there is no K5-minor rooted at {a, b, c, d, e}?

(ii) What are sufficient conditions for a graph G and a fixed vertex set X ⊆ V (G) of k
vertices in order to force a Kk-minor rooted at these vertices? �

Related to the above problem is the following, again asking for a Kk-minor rooted at k
vertices with some additional assumptions to these vertices. First, these vertices are supposed
to be a transversal T of a (not necessarily optimal) colouring. Furthermore, it is demanded
that each pair of distinct vertices x, y ∈ T is contained in a connected component of G[A∪B],
where A,B ∈ C with x ∈ A, y ∈ B.

Problem 6. Which is the largest integer k such that the following is true for all k′ ≤ k:
Let G be a graph and C be a k′-colouring. Assume that for a transversal T of C each pair of
distinct vertices in T belongs to a common Kempe chain. Then G has a Kk′-minor rooted
at T . �

We have already seen in Chapter 5 that Problem 6 can only hold for k < 7.

Cycle Lengths

Another major part of this thesis investigated the capabilities of Tutte paths. Those had
initially been used to answer the long-standing question whether 4-connected planar graphs
are Hamiltonian. Over time, they have evolved as a strong tool for many questions about
cycle lengths, e.g. determining the spectrum of graphs. I like to restate the following wide
open problem about the spectrum of planar graphs (Malkevitch’s Conjecture 8).
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Problem 7. Does each 4-connected planar graph G have cycles of length k for every k ∈
{3, 5, 6, . . . , |V (G)|}, i.e. does G contain cycles of all possible length except 4? �

At the end of Chapter 2, we presented a new idea on how to implement a Tutte theory to
1-planar graphs. To conclude this thesis I would like to phrase this issue in the last Problem 8
and encourage further research on the new theory.

Problem 8. Is every 6-connected (not maximal) 1-planar graph Hamiltonian? �
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