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Motivation

Worldwide, 549.393 newly diagnosed cases of bladder cancer were reported last year with

nearly 200.000 deaths.1,2 Bladder cancer accounts for 3 % of all cancer worldwide and

remains one of the most expensive cancers to treat in oncology in the western world.3–5

The main reasons of the high average lifetime treatment costs include the requirement of

regular hospitalization, an intensive follow-up period and further disease monitoring.6–8 The

improvement of diagnostic practices enables earlier oncoming of effective treatment which

can reduce the recurrence rate and consequently decrease the follow-up procedures, resulting

in a significant lowering of associated public health costs.

Among the diagnostic procedures, the gold standard approaches are cystoscopy,9 and

histopathology.10 The transurethral resection of bladder tumor (TURBT) is performed under

local anesthetic, but may result in distress and discomfort to the patient.11 This also can

increase the risk of tissue and organ function damage,12,13 reducing the recurrence rates in

a year for early diagnosed patients.14,15 Histology results still produce false positives by

labeling small papillary and flat lesions as cancer or false negatives due to sampling errors.16

In recent years, significant effort went into the development of optical imaging and spec-

troscopic approaches to assist the standard techniques by providing real-time detection of

macroscopic and microscopic biomedical information.17,18 In particular, the combination

of such modalities can provide clinically relevant biomarkers along with chemical and mor-

phological properties of the bladder tissue. Optical imaging and spectroscopy have been

applied to identify anomalies in tissue based on the analysis of its composition and structure

at the microscopic level. Compact implementation of the modalities, rapid acquisition of

the data and high specificity for the multiclass discrimination of diseases is demanded for

clinical translation. The development of a multimodal optical imaging system that satisfies

the mentioned conditions can potentially support point-of-care decisions and facilitate earlier

oncoming diagnosis and treatment.

Raman Spectroscopy (RS) and Optical coherence tomography (OCT) are established
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non-invasive optical imaging techniques for biomolecular19–22 and morphological23–26 charac-

terization of human tissue, respectively. RS and OCT are emerging in clinical investigations,

as techniques that can assist the diagnosis of tumor diseases. RS providing the molecular

changes to detect tumors and OCT imaging the morphological features to detect the stage

of the tumor.27 The combination of both modalities can provide on-site assistance during

cystoscopy to avoid the unnecessary rejection of tissue and to enhance accuracy during diag-

nosis. This thesis focuses mainly on the implementation and the clinical studies for grading

diagnosis by using Raman spectroscopy.

Concretely, Raman spectroscopy has been widely used to observe molecular activity in

humans in a non-invasive manner. RS detects vibrational modes in tissues and generates

fingerprint spectra attributed to specific molecules and their surroundings, supporting thereby

the identification of tissue anomalies. Numerous clinical studies of RS at the academic level

have been reported. For instance, the diagnosis of cardiovascular diseases, in oncology and

the molecular characterization of human cells and organs. RS utilizes the relation between

proteins, lipids and nucleic acid content to discriminate tumors in different organs, e.g.,

brain, neck, lungs and breast tissues, as well as several studies in colon, cervical, prostate

and bladder cancer.

RS oncological investigations target to identify malignant tumors, detect cancer in early

stages, decrease the amount of redundant biopsies and assist surgery for adequate tumor re-

section.28 Despite promising results, most of the applications approached in scientific studies

are still far from clinical approval and commercialization.29,30 The research results reported

in this dissertation address the identified technical and analytical constraints that still need to

be further investigated in order to allow the transition of Raman imaging based spectroscopic

solutions to routine medical diagnosis and surgical procedure of bladder cancer.
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1
Introduction

1.1 Fundamentals of Raman spectroscopy

Raman spectroscopy (RS) is a nondestructive optical vibrational spectroscopic technique that

provides molecular information based on the inelastic scattering of electromagnetic radiation,

where energy is transferred between photons and molecular vibrations.31 This light scatter-

ing phenomenon is named Raman Effect and was first reported by Chandrasekhara Venkata

Raman in 1928.32 The Raman Effect results from the interaction between electromagnetic

waves (incident light from a laser) with matter (solid, liquid or gas). This phenomenon is ex-

hibited as the scattering of light resulting from the periodical perturbation of the constituent

molecules. The oscillation of the electron cloud within the molecules leads to a periodic

separation of charge, known as induced dipole moment.

1



Chapter 1. Introduction

Figure 1.1: Raman scattering process: a) light scattering due to an electromagnetic incident
wave (glycine molecule of collagen), b) quantum theory of Raman scattering, h is Plank’s
constant vv is the molecular vibration frequency, E is the energy level; c) the strong Rayleigh
scattering line at the excitation frequency and the weak, red and blue shifted Raman scat-
tering bands, stokes and anti-stokes respectively. b) and c) adapted from.31

If the incident electromagnetic waves interact with the molecules in a way that energy is

either lost or gained, the scattered electromagnetic waves are shifted in frequency, this effect

is known as inelastic scattering. Raman scattering is one form of inelastic scattering, where

change of the induced polarizability and its frequency is characteristic of the molecule with

a unique vibrational mode. The strength of the induced electromagnetic dipole moment of
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Chapter 1. Introduction

an excited molecule is expressed by:

p = αE0cos(2πv0t) (1.1)

Where v0 is the frequency of the incident electromagnetic field (E0cos(2πv0t)), E0 is the

amplitude of the electromagnetic wave at t time and α is the polarizability. The polarizability

is a tensor, which depends on dimension and shape of the chemical bond and therefore on

the vibration of the molecule.31 This relationship can be expressed as a Taylor series, which

is expanded around the equilibrium nuclear geometry Q = 0:

α = α0 +
∑

k

∂α

∂Qk

·Qk +
1

2

∑

k,l

∂2α

∂Qk∂Ql

·Qk ·Ql + · · · (1.2)

The normal coordinates Qk and Ql correspond to the kth and lth normal vibration of the

molecule, related with the frequencies vk and vl. The normal coordinate oscillation can be

approximated by a harmonic oscillator, namely

Qk = Qv0 · cos(2π · vv · t+ ϕv) (1.3)

Where ϕv denotes a phase angle and Qv0 the amplitude of the normal vibration. Consid-

ering vibrations totally independent, the vth normal vibration can be represented by

αv = α0 + α
′

v ·Qv (1.4)

With αv the polarizability, substituting equations:

αv = α0 + α
′

v · cos(2π · vv · t+ ϕv) (1.5)

If the first two terms of the Taylor series are considered, it can be assume that the

polarizability tensor behaves as a harmonic oscillator, with a frequency vv that is equivalent

to the vibrational frequency of the normal coordinate of the molecule. If the equations are

replaced in the definition of the dipole moment, it becomes

p = α0 · E0 cos(2πv0t) + α
′

v · E0 ·Qv0 · cos(2πv0t) · cos(2π · vv · t+ ϕv) (1.6)
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Chapter 1. Introduction

Which can be rewritten as

p = α0 · E0 cos(2πv0t)

+
1

2
· α′

vE0 ·Qv0 · cos[2π · (v0 + vv) · t+ ϕv]

+
1

2
· α′

vE0 ·Qv0 · cos[2π · (v0 − vv) · t− ϕv]

As a result, the induced dipole moment is a function of the vibrational frequencies of the

molecule (vv) and of the incident radiation (v0). In the equation, the first term corresponds to

the elastic scattering of the electromagnetic radiation, also known as Rayleigh scattering. The

second and third term in the formula represents the inelastic scattering, Raman scattering,

where the second term corresponds to higher frequency of scattered radiation also named

anti-Stokes scattering, while the last term is related to the reduction of frequency (Stokes

scattering), this is shown in Figure 1.1 c). The variation of polarizability with the molecular

vibration produces Raman scattering. Therefore, the vibrational mode of the molecules is

only Raman active when the polarizability changes with vibrational displacement between

the molecules. Maximum compression and elongation between molecules will result in high

negative and positive change in the polarizability, representing the vibrational pattern of the

molecule. This is the classical framework for describing Raman scattering.

The definition of Raman scattering in terms of discrete vibrational energy states is also

relevant to understand the quantum mechanical framework, which is illustrated in Figure 1.1

b). Considering a vibrational energy well where each discrete vibrational state corresponds

to a vibrational quantum number, neighbor energy levels differ as

∆Evib = hvvib (1.7)

A given fraction of molecules will exist in each vibrational state following the Boltzmann

distribution, where each vibrational quantum level can be interpreted as the probability func-

tion of the instantaneous displacement. Hence, Raman scattering can also be interpreted as

a shift in vibrational energy state resulting from the interaction of an incident photon. Once

the incident electromagnetic wave induces an oscillating dipole moment, it puts the molecular

system into a virtual energy state, which is several times greater than the vibrational quanta

and is generally different to any particular electronic state. During the interaction with the

incident photon, energy equivalent to the vibrational mode is provided to the molecule. As

a result, photon energy is changed. Stokes scattering is the most common Raman scattering

process because it is more likely that the molecular system is found in the ground vibrational

4



Chapter 1. Introduction

Figure 1.2: Raman fiber probe setup: The excitation source is filtered and focussed to be
guided by the excitation fiber of the Raman probe to the sample and the scattered signal is
collected by the collection fibers (blue), which transmit the signal to the spectrometer. The
CCD camera detects and digitize the signal as a function of wavelength.

state, while for the anti-stokes scattering, the molecule must originally be in an excited

vibrational state.

1.2 Instrumentation and Raman fiber probes

Successful implementations of Raman spectroscopy depends mainly to its instrumentation

and the selected parameters. A careful selection is necessary in order to facilitate the mea-

surement of the weak signals, which are often overlapped with background signals. The

Figure 1.2 illustrates a Raman setup and Raman fiber probe, used for tissue characteriza-

tion. The excitation source typically employed is an intense, collimated monochromatic laser

which is filtered and focused before to excite the sample. Raman scattering signal is around

106 times weaker than the Rayleigh signal in solid materials.33 Spectrometers are employed

to take the signal and disperse it into spectral components and merge the signal on the CCD

camera, where the signal is digitized as function of the wavelength. The large mismatch

in scattering intensity enables the elastically scattered signal to dominate over the Raman

signal. Therefore, notch filters are used to reject the elastically scattered light before it enters

the spectrometer.34 In the course of this dissertation a review was prepared to present an

update of the in vivo clinical applications of Raman spectroscopy, shown in [EC4]. Sec-

tion two describes in more detail the main challenges and instrumental approaches when

5



Chapter 1. Introduction

implementing compact Raman systems in clinics.

The generated Raman signal is not only depending on the power of excitation but also on

the wavelength, which varies inversely with the fourth power of the excitation wavelength.

A shorter laser wavelength increases the Raman scattering probability. However, laser wave-

lengths in the shorter visible and UV also lead to fluorescence, which may interfere with

the Raman signals. Tissue and cells contain several fluorescent constituents therefore, back-

ground correction strategies need to be applied to deal with the high fluorescence.31

A key component of a Raman system is the detector, in most cases a charged couple device

(CCD) is used. For the selection of the CCD important technical parameters, for instance

the noise level and the quantum efficiency (QE) are considered. To collect very low inten-

sity Raman signal, it is crucial that the quantum efficiency is high. High performance CCD

cameras have usually above 90 % QE for a region between 800 and 910 nm range35 which

allows an efficient detection of the generated photons in the low wavelength region for a 785

nm excitation. Two main sources of noise are present in CCD cameras, read and dark noise.

Read noise occurs during the read-out process of the charges from the chip and depends on

the acquisition speed and the analog-to-digital conversion, for the CCD selection this feature

is very important to ensure the highest achievable signal to noise ratio (SNR). Dark noise

is caused by thermally generated electrons in the silicon structure of the CCD, which make

this noise temperature dependent. The technical solution to this type of noise is the employ-

ment of thermoelectric cooling, which reduces the noise. This is crucial when considering

the integration time of the measurements and number of fibers needed in a probe for the

collection efficiency, which can also increase the noise considerably.36,37 The [EC4] presents

a more detailed description of the instrumental requirements for clinical Raman applications.

Raman imaging applications usually employ translational stages with submicrometer step-

size resolution to scan the samples and obtain a spectral image that can provide a spectrum

per pixel; normally this signal can be collected by a Raman probe, which will define the

resolution and quality of the obtained Raman image.38

An endoscopic Raman probe integrates many functions into specially arranged fibers, for

the light excitation and sample signal collection. They can be classified according to their

applications, according to the filtering methods, optical components or amount of fibers they

possess. According to the number of fibers, there are single and multi-fiber Raman probes.39

An overview of recently applied Raman probe design is presented in [EC4]. The single Ra-

man probes are usually made with one fiber and some optical components, such as filters

and focusing lens. Single Raman probes possess great efficiency due to the complete overlap

of excitation and collection light at all distances from the fiber end facet. Their production

6



Chapter 1. Introduction

Figure 1.3: Common designs of fiber-based Raman probes: a) six around one fiber probe,
the micro-filters are located at the fiber tip; b) handheld Raman probe.

cost is much lower in comparison with the multi-fiber probes. However, one of the major

drawbacks is the multiplexing of excitation and scattered radiation at one end of the fiber

and the very large Raman scattering from the fiber material itself.40

Multifiber Raman probes can be arranged from two fibers to more-around-one fiber probes.

The basic two fiber probes have three typical configurations. For instance, a two fiber probe

can be made up of two parallel fibers with flat tips, as illustrated in Figure 1.3 a); this is not

efficient due to the large dead volume. Another typical configuration is a non-coaxial fiber

Raman probe, which has better collection efficiency but probes of this kind are often too

large for clinical applications that need to be performed in internal organs. It is also possible

to configure two fibers with an angle between them to enhance the overlap of excitation and

collection light. The selection of any configuration depends mainly on the application, the

instrumentation, the measuring environment and the needs in terms of signal.41

The six-around-one probe has the excitation fiber at the center and the collection fibers

around the centered fiber. They can be arranged at different geometries, can be parallel

with flat tips and possess a large dead volume. Any arrangement can be applied to enhance

collection efficiency,42 Figure 1.3 a) illustrate a typical design with the filters placed at the

fiber tips.

In a typical more-around-one fiber probe, the excitation fiber located in the center is

filtered with a short-pass filter that reflects the silica based Raman background and the col-

lection signal can be filtered from Rayleigh scattering with a long pass filter, which suppresses

the backscattered laser light from re-entering the collection fibers. Filters are located at the

distal end of each fiber. This can be observed in more detail in Figure 1.3 a) and b). The

clinical studies performed within this doctoral dissertation employed handheld Raman probes

with the previously described configurations illustrated in Figure 1.3.

7



Chapter 1. Introduction

1.3 Clinical applications of Raman spectroscopy in on-

cology

The potential of Raman spectroscopy for the detection of cancer in different organs has been

studied for the past two decades. Most of the investigations have focused on early diag-

nosis aimed to improve diagnosis and treatment of cancer, where oncological needs can be

fulfilled by Raman spectroscopy by providing guidance during intra-operative resection of

tumor margins and assisting the early detection of pre-malignant tissue.43 Early diagnosis

of breast cancer has been reported by Saha et al.44 They performed an ex vivo study by

using a multi-fibre Raman probe to detect microcalcifications in breast tissue, achieving a

specificity of 97 % and thereby proving the potential of Raman spectroscopy being employed

as a real-time tool for radiologist.44

Further ex vivo and in vivo studies in skin cancer detection demonstrated the capability of

RS to detect and discriminate benign, malignant and pre-malignant skin tumors.45–49 Skin

and breast are easy to access; it is also of special interest to prove that RS instrumentation

is so well developed that internal organs can also be accessed for further analysis. One of the

first studies that proved the technical feasibility of measuring in vivo lungs lesions employing

a multi-fiber RS probe was performed in 2008.50 RS applied to the diagnosis of gastric lessons

have also been reported by Huang´s group, where a multi-fiber Raman probe has been em-

ployed to diagnose gastric cancer in vivo with an accuracy of 85.6 %.51–53 Clinical studies in

colon specimens were also conducted ex vivo54–56 and in vivo57,58 where Raman probes were

employed to detect anomalies, as hyperplastic polyps and adenocarcinomas, malignant and

non-malignant groups were classified and anatomically differences of colon anomalies were

also studied. Similarly, investigations in cervical cancer were conducted using fiber optic

probes, reporting the diagnosis of cervical dysplasia,59,60 grading of squamous intraepithelial

lesions and the in vivo feasibility real time discrimination of cervical lesions.61,62 The section

“medical in vivo” applications of [EC4] presents an overview of the latest clinical studies

and applications of Raman spectroscopy as a potential tool for medical diagnosis and intra-

operative assistance.

Although Raman spectroscopy has demonstrated being a sophisticated technique with the

ability to accurately discriminate tumor changes in different organs, there are still many

practical limitations. Further developments in the improvement of multivariate classification

algorithms and the diagnostic models are required. Optimized design and construction ap-

proaches of Raman probes are needed to enhance signal to noise ratios and to ensure system

robustness to withstand day-to-day usage by clinical staff, including decontamination and

8



Chapter 1. Introduction

disinfection processes. More clinical studies are required in order to allow a clinical transi-

tion of the systems where medical standard and evaluations need to be further implemented.

This research work aims to contribute in the design and performance of new clinical studies

and development of new strategies for robustness in multivariable statistical modelling for

oncologic diagnostic in bladder.

9



2
State Of The Art On Bladder Cancer

Diagnosis

2.1 Definition of bladder pathology and current diag-

nosis

The human urinary bladder is an elastic pelvic organ which possess the functions to expand

(when filled ovoid-formed) and to contract (when empty tetrahedral-formed).63,64 Its water-

tight characteristic is determined by the urothelium (epithelium) layer, which also offers a

barrier between urine and underlying tissues. The different types of urothelial cells provide

a well-organized protein barrier with tight junctions limiting solute and water movements

across the barrier. In this layer there is a higher presence of proteins and lipids. Another

important layer is the connective tissue or lamina propia and it is mainly composed of col-

lagen. This layer connects the urothelium with the muscle layer, which consists mainly of

actin. The muscle of the bladder wall is protected by a mucosa that consists of a tight transi-

tional epithelium, which is made up basal cell, intermediate and superficial layer.65 Bladder

cancer is a heterogeneous superficial lesion of the urothelium, which includes flat or papillary

anomalies as well as invasive disease. The non-invasive urothelium carcinoma restricts the

10



Chapter 2. State Of The Art On Bladder Cancer Diagnosis

malignant cells into the urothelial layer. If the tumor cells reach the basement membrane and

invade connective tissue and underlying muscle, the neoplasm becomes invasive.66 Several

grading systems for bladder cancer have been established but the most commonly employed

grading scheme is adopted by the World Health Organization International Society of Uro-

logical Pathology (WHO/ISUP), which divides papillary carcinomas into low-grade and high

grade. Most of the diagnosed bladder cancer is of urothelial type, however, many subtypes

also exists within urothelial neoplasia and lamina propia.67

Bladder tumor lesions can be distinguished in two main groups: papillary (rounded) lesions

and flat lesions. Among papillary, the urothelial papilloma is a benign tumor composed of

separate fibrovascular cores, which are lined with retained cellular organization, preserving

the umbrella cell layer of the urothelium (<7 cell thickness). Low malignancy is presented

if the thickness of the papilloma increases thickening of the urothelium and is known as

papillary urothelial neoplasm of low malignant potential (PUNLMP), the flat counterpart is

known as urothelial proliferation of uncertain malignant potential (UPUMP). Neoplasm or

tumor occurs by nuclei enlargement and structural abnormality in nucleus and architecture

of the urothelial cells, commonly named low grade papillary urothelial carcinoma (LGPUC),

where the nuclei enlargement is less than five times of a white blood cell. A similar repre-

sentation of the low grade papillary in a flat lesion is known as urothelial dysplasia. High

grade carcinoma occurs when extremely nuclear abnormally, variability in size, form and cell

disorganization is exhibited. Contrary to low grade neoplasm, high grade papillary urothelial

carcinoma (HGPUC) nuclei enlargement measures more than five times of a white blood cell.

A flat duplicate of the high grade carcinoma, compassed within the flat lesions, is the urothe-

lial carcinoma in situ (CIS), which possess identical cellular and architectural characteristics

of HGPUC without having the fibrovascular cores, normally grows along the bladder mucosa.

High grade carcinoma cells are fragmented, showing loss of polarity and disorganization re-

spect to the basement membrane.10,66,67

The described non-muscle invasive bladder cancer (NMIBC) lesions are typically diagnosed

identifying the extension of the local tumor and spread to upper urinary track and other

organs. The clinical evaluation of the tumor invasion is provided by cystoscopy.68 Clinical

suspicion is confirmed by differentiating between NMIBC and muscular invasive malignancy

(MIBC) during first biopsy. In case that NMIBC is identified, a follow procedure is the

transurethral resection of the bladder, which aims to entirely remove all visible malignancies.

When MIBC is diagnosed tumor grade and stage need to be determined.69 TURB is in any

case necessary and it is desired to reduce recurrence and follow-up procedures. Molecular,

microscopic and macroscopic imaging techniques can potentially facilitate the tumor detec-

11



Chapter 2. State Of The Art On Bladder Cancer Diagnosis

tion during biopsy offering real-time visualization of cancer cells.

The macroscopic imaging techniques are more established techniques, generally with a wide

field of view, millimeter resolution and mucosal depth. A new improvement of the standard,

white light cystoscopy (WLC) is narrow band imaging (NBI),16 which enhanced contrast

between glucose and blood vessels, improving tumor visualization and detection.70 A well

established imaging technique is the Photodynamic Diagnosis (PDD), which increases visual

contrast between benign and malignant tissue by selective fluorophores. Multiple studies val-

idated its ability to distinguish malignant and flat tumors, allowing a more complete tumor

resection and reducing overall cost of bladder cancer care.71 However, PDD has also shown

high false positive diagnosed lesions, which may results from its macroscopic nature.72

Microscopic imaging approaches encompass for instance confocal laser endomicroscopy (CLE),

which is in early experimental stage and not commercially available. CLE uses a fiber op-

tic probe inserted into an operating cystoscope and a fluorescent agent to obtain real-time

microscopic images of the tissue, helping to achieve detailed images of tissue structure and

evaluate appearance of individual cells, which allow distinguishing high from low grade neo-

plasm.73 A wider depth between 1 to 3 mm, is achieved by optical coherence tomography

(OCT), without the need for a contrast agent and providing real-time cross-sectional images

of superficial tissues using near infrared light reflection from tissue. OCT can differentiate

between normal and abnormal urothelium and is commercially available.74 However OCT

does not differentiate tumor grades and requires improvements in tissue contrast.75

The incorporation of high definition and multiple chip cameras allows WLC to obtain optimal

endoscopic images. Despite the achieved optical quality, the detection of small papillary blad-

der tumors and flat urothelial carcinoma in situ needs improvement.76–78 Reported macro-

scopic and microscopic imaging technologies propose the chance to enhance detection and

staging of malignant tumors. To date, photodynamic diagnosis has the more evidence-based

data, encompassing reduction in disease recurrence, where the high false positive detection

rate is one of the major limitation.79 Here, Raman spectroscopy can play an important role,

complementing the information that recent technologies actually provide, enabling objective

biochemical assessment of biopsied tissue samples. This section focusses mainly on the in-

vestigations performed on bladder tissue using Raman spectroscopic systems and presents a

brief overview of the achievements and the main constraints of recent Raman spectroscopic

developments.
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Chapter 2. State Of The Art On Bladder Cancer Diagnosis

Figure 2.1: Bladder constitution and tumor progression: a) drawing of the bladder wall lay-
ers and the tumor progression from early to advanced bladder cancer (drawing used from
Razmaria et. al81); b) concentration of collagen, protein and lipid for each bladder disease
(normal-lila, cystitis-blue, CIS-green, low grade/G1/G2-orange and high grade/G3-red), con-
centrations obtained from Stone et. al;82 c) measured and reconstructed Raman spectra: Left
panel measured Raman spectra of lipid (green), protein (blue), collagen (lila), and right panel
Raman spectra of bladder diseases. The Raman spectra for the bladder diseases was con-
structed using lipid, collagen and protein measured spectra and the concentrations provided
by the least square algorithm presented in.82

2.2 Main constitutional components of bladder

The urothelium is the lining epithelium of the bladder with a thickness that varies from

three to seven cell layers, where each layer is mainly formed by tightly packed urothelial

cells. Urothelium lies upon an extracellular matrix which is mostly constituted by collagen I

and III80 and is also known as the basal lamina. The second extracellular matrix that follows

the lamina propia is formed by an elastic fiber network of muscle bundles.81 This is visualized

in Figure 2.1 a). Molecular changes with tumor progression are strong related with changes

in protein matrix. Tumor degrades the cellular matrix and invades the basement membrane

by actions of protease families, encoding thymidine phosphorylase, which promotes the pro-

duction of matrix metalloproteinase (MMP). MMP is a large group of enzymes with various
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Chapter 2. State Of The Art On Bladder Cancer Diagnosis

proteins of the extracellular matrix, which play a role in tissue remodeling and inflammatory

conditions.83 Non-muscle invasive tumors can be associated with increment of nuclear activ-

ity of thymide phosphorylase.84,85 In the same way NMIBC can also be associated with loss

of collagen VII, where cell migration in normal urothelial cells is restricted, causing the loss

of polarity and subsequently loss of collagen VII.86

An investigation on the main constituents of bladder tissue and its tumor progression

is reported by Stone et al.,82 where the Raman spectra of bladder tissue constituents were

measured to find the quantity and its change through disease progression, the concentrations

obtained for lipids, collagen and lipids are represented in Figure 2.1 b). Among the selected

constituents, DNA was measured as representative component of the cell nucleus. Actin was

also considered, as being present in cell cytoplasm, collagen as representative constituent of

the lamina propria, and oleic acid as abundant in urothelium. In the same way pure con-

stituents associated with malignancy were considered, as lycopene and choline reported to

be abundant in malignant tissue. Ordinary least squares fitting was applied to obtain the

relative concentrations of the measured constituents in healthy bladder tissue, as well as in

each tumor malignancy measured. Pure spectra of protein, lipid and collagen were measured

from chicken meat (see left panel of Figure 2.1 c).The relative concentrations and the pure

spectra were employed to reconstruct Raman bladder spectra for healthy state and for blad-

der tumor diseases (right panel Figure 2.1 c). The reconstructed bladder spectra provide an

overview of the expected relevant Raman bands that are associated to the presence of lipids,

proteins and collagen in bladder tissue and its cancerous diseases.

The Raman spectra and the concentrations presented in Figure 2.1 b) and c) show that low

and high grade tumors present an increment of protein content and a decrease in collagen.

An important observation to differentiate low and high grade is given between the incre-

ment of collagen and decrease of protein in low grade. For carcinoma in situ the collagen

concentration increases, which can be related to damages in the connective tissue.

2.3 Instrumentation employed in previous studies

Numerous ex vivo studies on bladder biopsies have been reported, where different instrumen-

tation has been employed. Most of the studies aim to use very compact Raman systems,

however, this is only feasible by using a hand held Raman probe. This section review briefly

the instrumentation developments reported in the past years.
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Figure 2.2: Typical Micro-spectrometer Raman setup with a near-infrared laser attached to
a microscope, image adapted from.90

2.3.1 Raman system

Raman mapping is performed employing a computer controller motorized stage and a Raman

microspectrometer, as the Figure 2.2 illustrates. The laser light is coupled into the microscope

via a single mode optical fiber and short pass filter, usually an objective is used to focus the

laser light onto the sample. Additional optical elements are employed, filters to suppress

the laser light that is scattered back and to transmit the wavelength range required for the

system. Laser light is focused to the sample and the light collection is performed by an

objective and optical elements that redirect the signal to the spectrometer and to the CCD

camera. Among the variety of Raman microspectrometers available in the market, many

studies have employed Renishaw and Kaiser Raman systems (Renishaw system 100/1000

and HoloSpec).82,87–90

2.3.2 Raman probes

The Visionex Gaser 10 forward viewing fiber optic probe87,91 was the first employed Raman

fiber probe in vivo and was used in guinea pigs bladder. The measurements were performed

with a laser power of 170 mW and a laser wavelength of 830 nm. The Raman probe was

formed by a central excitation fiber of 400 µm core diameter and NA of 0.22 with 6 sur-
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Figure 2.3: Fiber Raman probes employed in previous clinical studies on bladder: a) VisioneX
Envira Raman probe;96 b) EMVision Raman probe.94

rounding collecting fibers (300 µm core diameter), the fibers were covered by a metal case

and the probe diameter was approximately 2.5 mm. The filters were placed onto the core

of the fibers and 2.5 cm spaced from the probe tip. A Visionex Envira Raman probe with

a very similar design, was also used for the first ex vivo study on bladder tissue, the probe

could penetrate the sample with a depth of 500 µm in a volume of 1 mm3.92

In 2009 Grimbergen et al.93 reported a clinical study in bladder biopsies employing an EMVi-

sion Raman probe during TURBT. The EmVision probe has a central excitation fiber and

7 surrounding collection fibers, the collection volume of this fiber is around 1 cm3 and the

filters are located at the tip of the fiber, this probe was also used in the first in vivo study

on human bladder reported by Draga et al.94 Barman et al.90 measured ex vivo biopsies

utilizing a bifurcated optical fiber Raman probe, where the excitation light fiber had a 200

µm core diameter and NA of 0.1, for this design 15 collection fibers with a 200 µm core

diameter surrounded the delivery fiber. The short pass filter in this design was located at

the tip of the excitation fiber and the long pass filter was placed at the tips of the collection

fibers. Recently a low resolution Raman probe with a 7-around-1 design was employed to

measure fresh bladder tissue and was built with low-OH fibers (core diameter of 300 µm and

a 0.2 NA), the centered fiber had a band-pass filter glued at the distal end and the collection

fibers tips were connected to a ring formed long-pass filter.95 Many designs has been reported

and the review [EC4] presents a detailed description of the influence of the probe design in

the Raman signal.
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2.4 Evaluation of Raman spectra

The evaluation of Raman spectra plays an essential role in Raman spectroscopy-based clin-

ical applications. Each step in the data processing workflow is crucial to achieve reliable

and accurate diagnosis. A brand of study employed since 1972, known as chemometrics, is

an essential area of investigation and contributes substantially to the statistical modeling

in Raman spectroscopy.97 Reported studies on bladder cancer have been applying different

approaches to train and validate the statistical and multivatiate models, this section briefly

reviews the typically employed approaches in the clinical studies applied to bladder cancer

diagnosis.

The pretreatment of Raman spectra reported to date has very similar workflows, where

mainly one of the first steps involves is the wavenumber and intensity calibration. Wave-

length calibration is usually performed by measuring standard samples, such as polystyrene

or paracetamol; known spectral peaks of these samples are used as reference to correct the

changes or shift that may occur due to setup and environmental conditions. The intensity

calibration is performed by using a standardized white lamp, where the lamp spectrum is

measured and compared to the standard spectrum. by using the measured and reference

lamp spectra a transfer function is computed and applied to correct the spectra.

Right after calibration it is also a common procedure to correct spectrum of possible cosmic

spikes, dark and shot noise, where special algorithms can be applied to treat these technical

issues. The fluorescence background is typically removed by using polynomial fit techniques,

like least squares or extended multiplicative signal correction. Normalization in the intensity

axis is applied to correct band intensity values of each spectrum to achieve a common scale.

Once the raw spectra is preprocessed, the corrected set of Raman spectra are employed for

statistical modeling to translate spectral signals into high-level information like tumor grad-

ing. For instance, principal components analysis (PCA) and partial least squares (PLS) has

been extensively used to extract and select relevant spectral features and translate this into

disease classes. Statistical modelling is further developed by applying clustering, classifi-

cation or regression. Multivariate approaches, such as, linear discriminant analysis (LDA),

clustering analysis (CA), support vector machine (SVM) and artificial neuronal networks

(ANN) have been employed.

� Principal component analysis (PCA) reduces the number of variables within a data

set by transforming the spectral set into a group of variables denominated principal

components (PC); here all principal components are orthogonal to each other and

represent most of the variance of the data set. Statistically, the covariance matrix of
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the data set is determined and the eigenvectors of this matrix are calculated in order

to find the PCs.98

� Partial least squares (PLS) is an extension of PCA in which the information in the

original data set is estimated onto a small number of underlying (latent) variables to

ensure that the first components are the ones most relevant for predicting the response

variables.99

� Linear discriminant analysis (LDA) optimizes class categorization by computing

the direction that provides the best separation for two or more groups of data. LDA

finds a linear combination of vectors that optimize the ratio between-group variance

and within-group variance.100

� Clustering analysis (CA) organizes the spectra into clusters, which share similar

spectral features. CA is based on finding distances between and within each cluster

and an average spectrum is normally used to represent each cluster. Supervised clas-

sification generally utilizes LDA to define the group membership. On the other hand

unsupervised classification, where the class membership is unknown, utilizes hierarchi-

cal cluster analysis (HCA) or K-means clustering.101

� Support vector machine (SVM) uses a null space matrix to transform a non-linear

separation problem into a linear separation problem. SVM sets a boundary between

groups of data that fall into different classes.102

� Artificial neuronal networks (ANN) organize layers which are elaborated on a

number of interconnected nodes with an activation function. The input layer contains

the input data of the network and is connected to the called “hidden layers” where

the processing is performed through a system of weighted connections. ANNs are built

with a learning rule which changes the weights of the connections in relation to input

patterns.103

The performance of the statistical model is evaluated by the cross validation, where a

validation set of data is used to estimate the accuracy of the multivariate algorithm. This

step is also crucial for reliable diagnosis. There are several approaches to evaluate the per-

formance of the model and the selected classifier. The validation method should be clearly

defined, a commonly used approach is leave-one-out, which uses a single spectrum for the

validation.

The approaches to select the training and testing set to create and validate the model vari-

ate, for instance, k-folds selection, blind selection, random selection of data. It is, however,
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recommended to define the approach in close relation to the measured data and the provided

true data, sampling and size of the data in order to avoid miss classification. A summary

of the clinical studies performed on bladder tissue for cancer diagnosis is displayed in Ta-

ble 2.1. It can be observed that new optimized diagnosis approaches and instrumentation

improvements have been reported to date. New reported clinical studies have demonstrated

that diagnosis accuracy is improving. Regardless of the methods applied, high noise and

fluorescence background, tissue heterogeneity, overfitting in statistical modeling, remain as

unresolved issues which need further optimization.

Year Tissue

type

Equipment Samples Statistical

modeling

Results

2002104 Snap-

frozen

bladder

biopsies

micro-

spectrometer

12 sam-

ples and

patients

PCA-LDA

(Normal,

CIS, LG,

MG, HG)

Sensitivities 93

%, 96 % and 98

% Specificities

99 %, 96 % and

96 %

200592 Snap-

frozen

bladder

biopsies

Fiber-optic

Raman system

24

patients

PCA (Be-

nign and

malignant

tumor)

Accuracy 84 %

Sensitivity 89 %

Specificity 79 %

2006105 Snap-

frozen

bladder

biopsies

Raman micro-

spectrometer

15

patients

Cluster anal-

ysis and LDA

(Tumor and

non-tumor)

Sensitivity 94 %

Specificity 92 %

200682 Snap-

frozen

bladder

biopsies

Raman micro-

spectrometer

15

patients

Ordinary

least squares

Concentration

of constituents

in relation with

bladder dissease

200989 Snap-

frozen

bladder

biopsies

Raman micro-

spectrometer

73

patients

PCA/LDA

(With and

without ALA

group differ-

entiation)

Sensitivity 75.4

% Specificity

88.7 %
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201094 Bladder

locations

during

TURBT

(in vivo)

Multi-fiber Ra-

man probe with

a portable Ra-

man system.

Handheld Emvi-

sion fiber-optic

Raman probe

21

patients

PCA/LDA

(Bladder

tumor and

normal tis-

sue)

Sensitivity 85 %

Specificity 79 %

2010106 Bladder

paraffin

treated

bladder

tissue and

cells

Raman micro-

spectrometer

172 pa-

tients

PCA (Non-

tumor, low

grade and

high grade)

Low grade cor-

rected assigned

74 % High

grade corrected

assigned 98.5 %

201290 Bladder

paraffin

treated

bladder

tissue and

cells

Confocal Raman

spectroscope

with Raman

probe

28 biop-

sies

from 14

patients

PCA (Cancer

and normal)

Accuracy 92 %

Sensitivity 85

.7 % Specificity

85.7 %

2018107 Snap-

frozen

biopsies

Portable fiber

optic Raman

system with

handheld Emvi-

sion fiber-optic

Raman probe

32 biop-

sies

from 10

patients

PCA/ANN

(Normal, low

grade and

high grade)

Accuracy 93.1

% Normal sens.

88.5 % spec.

95.1 % Low

grade sens. 90.3

% spec. 98 %

2018108 Fresh biop-

sies after

TURBT

Raman micro-

spectrometer

12 biop-

sies

from 8

patients

PCA (Nor-

mal, low

grade and

high grade)

Accuracy 93 %

Sensitivity 99 %

Specificity 87 %

Table 2.1: Summary of the clinical studies performed on bladder tissue
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3
Selected Work and Results

This section presents an overview of the investigations, clinical studies and approaches applied

to deal with the main open research questions when applying Raman spectroscopy as a

diagnostic tool for bladder cancer tumor grading and general Raman Spectroscopy-based

oncological clinical studies, as described in the last section. The related research topics are

outlined as follows:

� Fluorescence background correction for biological Raman spectra can be performed us-

ing technical and computational methods, an overview of the main issues when apply-

ing different approaches is introduced and a carefully evaluation through experiments

and simulations is presented in order to define the main advantages when applying a

specific background correction approach and the parameters that require optimization

when employing any technique in biological applications.

� Model creation and evaluation are strongly influencing the diagnostic capabilities of Ra-

man spectroscopy in oncological clinical applications; the goal is to achieve a systematic

model development that avoids over-fitting, training error and estimation errors. The

influence of heterogeneity in the model performance is evaluated and a robust cross

validation approach is proposed.
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� During cystoscopy suspicions tumors are detected through white light endoscopy, where

suspicious tumor tissue is resected and further examined by histopathology. Just after

resection, the pathologist provides information about the differentiation of the cells

and the depth penetration of the tumor in the tissue, known as grading and staging of

tumor respectively. Information about tumor grading and staging during cystoscopy

will assist onsite diagnosis and reduce significantly the amount of unnecessary biopsy.

In this study we present an ex vivo study, where optical coherence tomography (OCT)

and Raman spectroscopy (RS) are combined to visualize morphological changes of

tissue in depth and biomolecular features respectively. The OCT-RS compact system

performs automatically, and statistical modeling algorithms are developed to provide

onsite prediction of the detected lesions.

3.1 Evaluation of shifted excitation Raman difference

spectroscopy (SERDS) and comparison to compu-

tational background correction approaches for bio-

chemical Raman spectral analysis

Biological tissue is generally constituted by collagen, elastin, protein and lipid cells, which

are also considered key sources of autofluorescence.109 In tissues, the extracellular matrix

generally plays an important role in the autofluorescence emission, even more than cells,

because elastin and collagen, within all the endogenous fluorophores, exhibits high quantum

yields.110 The autofluorescence contributions in tissue are undesired when measuring Raman

signals, because the fluorescence obscure relevant Raman bands. Therefore, it is necessary to

apply background correction removal prior to statistical modeling in order to further analyze

the Raman spectra.

An overview of instrumental and computational techniques is presented in Table 3.1, it is

however relevant to evaluate the performance of the most applied approaches under high

fluorescence conditions and to determine theoretically and experimentally the most effective

method to correct background present in bladder tissue. An evaluation and comparison of

Shifted Excitation Raman Difference Spectroscopy (SERDS) and Extended Multiplicative

Signal Correction (EMSC) is reported in [EC1].

The investigation presented in this subsection focuses in evaluating both SERDS and

EMSC for lipid, protein, collagen and simulated fluorescence spectra, where the optimal shift
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Figure 3.1: Measured and background corrected Raman spectrum. Left panel shows the
desired Raman spectrum for bladder tissue in healthy state and right panel shows the real
measured Raman spectrum with noise and fluorescence, where clearly the fluorescence and
the noise obscure the Raman bands of the bladder tissue

and the signal to noise ratio is evaluated.

Separation of fluorescence is possible trough modulation, where fluorescence occurs indepen-

dently from the excitation frequency always from the first level of the ground state of the

fluorophore. Here shifted excitation Raman difference spectroscopy plays a role, where two

Raman spectra are recorded at two minimally different excitation wavelengths. In theory,

the two measured Raman spectra are composed of identical fluorescence but shifted Raman

peaks. Therefore, the fluorescence can be subtracted from the difference spectrum of the two

recorded Raman spectra. However, high fluorescence spectra is very noisy and the signal to

noise ratio (SNR) increases in the difference spectrum. In addition, the resulted difference

spectrum can be very difficult to interpret. Therefore, it is necessary to evaluate which op-

timal shift can be applied in order to achieve high SNR and interpretable difference Raman

spectrum.

The evaluation of optimal shift was performed using Raman spectra of lipid, collagen and

protein sections of low fluorescent chicken meat measured on a commercial Raman micro-

scope setup (Holoprobe, Kaiser optical system). Simulation of fluorescence, noise and SNR

was performed previous to calculate the optimal shift evaluation.

The spectra were acquired at 1 second integration time and excited with 785 nm laser wave-

length. The set of fluorescence spectra from real measurements were fitted, multiplied by a

constant factor and added to the Raman spectra.
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Methods Description Advantages Disadvantages

Shifted exci-

tation Raman

difference spec-

troscopy111112113

Small changes in ex-

citation wavelength

gives a shifted Raman

spectrum, fluoresce

contributions does not

change with the shift

and can be subtracted.

Fluorescence can

be effectively re-

moved in samples

with spectral bands

of similar spectral

widths, e.g crys-

talline proteins.

A lot of noise

is added when

subtracting high

fluorescent signal.

Photobleaching114 Sample irradiation for

a long period of time,

where a photolytic de-

composition of the fluo-

rescent molecules is in-

duced.

Overall fluores-

cence background

can be reduced.

Changes of relative

peak heights occur-

ring due to photo-

bleaching process can

produce physical and

chemical changes in

sample constituents.

Time-gating

Raman spec-

troscopy115

Ultrashort laser pulses

driving a Kerr shutter

to gather eary-arriving

Raman photons, while

blocking later-arriving

fluorescence.

The use of pulse

energies bellow the

damage threshold

improve SNR for

the fluorescence

removal process

at reasonable

integration times.

Low signal to noise

ratio, highly complex

and costly.

Modulated

Excitation

wavelength

shifting116

Raman signal mea-

sured at two closely

spaced excitation wave-

lengths and the two

shifted Raman signals

are treated with a low-

frequency modulator

to reconstruct Raman

spectrum.

Effective back-

ground rejection

based on the fluo-

rescence lifetime is

achieved.

Need of lock-in de-

tection, wavelength

variable and fast

lasers are required,

is costly and fast

read-out camera is

needed for efficient

signal correction.
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Extended Multi-

plicative Scatter

Correction117

Based on least square

fitting of pre-defined

background and the

pure components.

SNR is not re-

duced, special

equipment is not

required and it does

not affect spectral

interpretation.

The removal of com-

plex and unknown

background is very

challenging.

Polynomial Fit-

ting118

Relies on user-selected

spectral locations

where the zero baseline

will be fit and on

iterative polynomial

ability.

Simple and effec-

tive method to

eliminate back-

ground.

It is time consuming

due to subject inter-

vention, is challeng-

ing to identify non-

Raman active fre-

quencies and the high

noise circumstances

is a crucial limiting

factor.

Least Squares

Methods119
are based on fitting of

linear combinations of

reference data to the

measured spectra, here

the sum of the squared

differences between ob-

served and fitting val-

ues is minimized.

Reasonable mathe-

matical correction

of fluorescence

background can be

achieved under the

right selection of

parameters.

Method susceptible

to variability and

high noise circum-

stances is a crucial

limiting factor.

Table 3.1: Summary of the instrumental and computational background correction methods
applied to Raman spectra

The noise was determined by applying a Poisson distribution function on the square

root of the fluorescence intensity. The generated background and noise is added to the

original spectra, the section 2.1 ”Theoretical approach” of [EC1] describe in more detail the

mentioned steps. The shift simulation of different laser excitation wavelength is performed

by generating a set of shifted spectra by multiple wavelength steps between 1 nm and 4 nm.

The signal to noise ratio (SNR) was estimated under the shot noise-limited definition, where

the shot noise is considered as the only noise source and is determined as the square root

of the signal intensity. Each spectral pixel was employed to calculate the SNR, therefore

as a result a wave-number dependent SNR spectrum was obtained, where the regions with
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Figure 3.2: SNR spectra at different fluorescence intensities: a) spectral bands of the mea-
sured spectrum. The points (purple colored) in the spectrum are the maxima and the win-
dows estimated bands; b) SNR spectrum with fluorescence, the spectrum is SNR without
fluorescence (purple colored), the blue with fluorescence 5 times the maximal band of the
spectral signal and the yellow spectrum is the SNR with fluorescence factor 10 of the normal
signal

not relevant Raman bands were not considered. The single value of SNR was calculated by

employing a band finder function with the second derivative of the SNR spectrum, where the

maximum bands were considered to average each SNR detected peak intensity.

High intensity of the fluorescence signal, not just obscures Raman spectra but also add

noise level, which increases with the fluorescence intensity following the square root of the

total signal intensity, as showed in Figure 3.2. The definition of SNR allows evaluating the

performance of SERDS, by simulating the shift, the noise and fluorescence on the measured

spectra.

The optimal shift is usually defined as the wavelength difference, which is equivalent to the

half-width of a Raman band.120 This definition just applies when the spectrum has bands

with similar bandwidths, which is not the situation of Raman spectra of most biological

samples. In this investigation a new approach to determine the optimal shift by applying the

autocorrelation function is proposed; the autocorrelation determines the level of similarity of

a spectrum when it is shifted. When two spectra are completely overlapped there is a perfect

autocorrelation (acf=1), which means that the difference spectrum of the full overlapped

functions will be equivalent to zero, meaning that there is no signal in the difference spectrum.
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Figure 3.3: Optimal shift estimation by using the autocorrelation function (left) and by using
the 1-autocorrelation function (right) of reconstructed bladder tissue spectra

If the correlation is low or nearly zero, the low self-similarity is an indicator of high intensity

signals for the difference spectrum between the two spectra. Therefore, the value obtained by

normalizing is used as reference of high signal in the difference spectrum. The autocorrelation

and the value “1-afc” for the measured spectra of the pure components was calculated, this is

illustrated in the Figure 3.3. The region employed to analyze the optimal shift was selected

under the technical implementation limitation (shifts under 13 nm). Therefore, a range

between 0 and 12.6 nm was selected for the acf calculations. The highest intensities in the

difference spectra of a typical lipid, protein and collagen spectrum were observed at shifts of

5 nm and 7 nm respectively, see Figure 2 a) and b) of [EC1]. Figure 3.3 shows that higher

shifts results in a reduction of the 1-acf intensity which indicates a reduction of signal for the

difference spectrum. Shortly, high shifts result in higher SNR and low correlation between

the shifted spectra serves as indicator of higher signal in its different spectra.

This study evaluates the performance of SERDS and EMSC for simulated Raman spectra

at different fluorescence intensities, and each measured constituent, i.e. lipid, collagen, and

protein. To illustrate in more detail the performance of the correction provided by the

mentioned approaches, the reconstructed bladder spectra with a fluorescence 4 times the

spectral signal intensity is shown in the Figure 3.4.

One can observe that the EMSC corrected spectra is comparable to the original spectra

with noise, indicating that the computational background correction manages to maintain

the original spectra and the intensity of the signal is not reduced during the background

correction process. On the other hand, the difference spectrum based on SERDS correction
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Figure 3.4: EMSC (red) and SERDS (green) corrected spectra of reconstructed bladder
tissue. Previous to correction the simulated Raman spectrum with a fluorescence 4 times the
spectral signal intensity. Comparing corrected spectra to the original spectrum (purple) and
the spectrum with added noise (blue). SERDS correction was applied with a 4 nm shift

loses signal during the correction process due to the shot noise effect. During the SERDS

correction the spectral intensities are subtracted but the noise is added due to its random

nature. As a result the SNR decreases, being very low at high fluorescence intensities. The

SNR decreases inversely proportional to the square root of the fluorescence background in a

Raman spectrum.

A relation between SNR and fluorescence is introduced and expressed mathematically in

[EC1]. Despite that both, EMSC and SERDS have showed to serve as practical solutions

to eliminate the fluorescence background, each technique offers different advantages and can

be applied according to the experimental needs. If Raman spectra of high autofluorescent

tissue are measured, EMSC is a very suitable solution because despite the high noise levels

expected in tissue like bladder the SNR is preserved, which is not the case that SERDS can

offer. If very complex background needs to be removed like unknown light signal in Operation

Theater, EMSC is challenging but SERDS can be useful to remove such kind of background.
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This study demonstrated EMSC feasibility when correcting background in bladder tissue.

3.2 Clinical study for the characterization of bladder

tissue using a compact Raman spectroscopy imag-

ing system

Clinical histology is a well established medical procedure to diagnose bladder cancer, however,

depends on invasive and time-consuming procedures, which can result in increased health risk

for the patient and makes the today’s cancer diagnosis and treatment of bladder cancer one

of the most expensive medical practices.3

In the past decade, Raman spectroscopy has proved to be a potential technique to enable

the detection of label-free chemical information at tissue level for medical diagnosis of cancer

tumors, helping to improve the diagnostic precision, as described in the previous chapter.121

One specific problem with current Raman imaging systems is that they are large and require

significant space, which is frequently very limited in a clinical environment. In addition, there

are a variety of not well understood effects on the performance of tissue classification using

Raman spectroscopy. In [EC2], a clinical study for the characterization of bladder tissue

using a compact Raman spectroscopy imaging system is reported.

For this study 67 biopsies were obtained during TURBT from healthy bladder wall and

from bladder tumor of 28 patients. The patients were informed and written consent was

conferred under approved clinical study protocol (No: H-17015549). Data from 19 biopsies

were excluded from the data analysis for one of the following reasons: instrumental failure,

insufficient signal-to-noise ratio or excessive fluorescence signal that obscured the Raman

spectra. The data consisted of wide field images, multiple Raman spectra and histhopato-

logical grading. Each sample was divided in two pieces and one piece was frozen (−80◦C) for

pathological analysis. 5 % of the samples were frozen and 95 % of the biopsies were fresh.

The fresh biopsies were handled with a fresh needle and placed on top of a CaF2 slide.

Conventional Raman-imaging systems are large (approx. 3 m3) and not compact enough

for clinical investigations, where space in or close to an operation theater is highly limited.

To achieve a compact optical setup a handheld Raman probe was employed. Most common

probes can readily achieve a focal spot size of 100 µm, and offer a collection NA of 0.35. The

compact system we employed is integrated by an imaging spectrometer (princeton instru-

ments, IsoPlane 160) with a CCD camera (pixis 400), an 785 nm wavelength laser (toptica,

XTRA), a Raman probe (InPhotonics) and motorized x-y platform (thorlabs, MLS203), all
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Figure 3.5: Workflow of the scanning system and inphotonics Raman fiber probe.

the setup is detailed as described in [EC2].

The handheld Raman probe is fiber-coupled by a 785 nm excitation laser, see Figure

3.5. The beam is collimated, filtered, and reflected by a mirror and a dichroic mirror. The

excitation light is further focused by a lens to a spot size of 100 µm. The generated Raman

signal is collected by the same lens, and after passing the dichroic filter the light is filtered

and focused onto a collection fiber with an NA of 0.22 and a diameter of 200 µm, which is

then coupled to a spectrometer. The system scans and acquires the Raman signal pixel-wise

within a selected area, as illustrated in Figure 3.5.

One of the main challenges is the high background, due to the high autofluorescence

from the tissue that obscures the Raman signal. In addition, there is some background from

the fiber and optic components of the probe. Initially, it is necessary to evaluate the best

approach to remove the background and it is crucial to know how the created model can deal

with biopsy heterogeneity. In order to address the background problem, the acquired Raman

spectra was pre-treated. As first step, wavenumber calibration was applied by employing

the relative peak positions of acetaminophen (Sigma-Aldrich) and the intensity calibration

was done by utilizing the reference spectrum of the Kaiser HCA calibration lamp. Following

intensity calibration and cosmic spike correction, further treatment involved noise filtering by
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Figure 3.6: Mean spectra of non-tumor (black), low-grade (blue) and high-grade tumor (red).
The main Raman bands are also assigned, where the black correspond to collagen bands, blue
to protein and red to lipid bands.

applying PCA using the prcomp function of stats package and the Savitsky-Golay filter. To

correct the fluorescence background extended multiplicative signal correction was performed

(EMSC) and the spectra were then max normalized to unity, a detailed description of the

pretreatment workflow is reported in [EC2].

The band assignments are displayed in Figure 3.6. Spectral contributions of lipids are ob-

served at 869, 1064, 1646 cm−1, where an increment of bands intensities in tumor spectra in

comparison with the non-tumor spectrum is seen. The increment in lipid content can be asso-

ciated to tumor tissue. Relevant lipid bands are resolved at the CH2 bending mode in lipids.

On the other hand, CH2 symmetric stretching of protein and lipids are displayed at 1446,

2850, 2885 and 2930 cm−1, band assignment was elaborated with the support of,122,123124

reference database.

The statistical modeling was executed combining partial least squares regression (PLS) to
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reduce dataset dimension and the linear discriminant analysis (LDA) to separate the classes:

non-tumor, low-grade and high-grade tumor. This combination is known as PLS-LDA. The

supplementary information of [EC2] shows the performance of other classifiers, such as sup-

port vector machine, Quadrant discriminant analysis and logistic regression.

The cross-validation procedure was performed following the steps:

1. Randomly selection of spectra from 1 to 80 per biopsy creating a dataset per selection.

2. Mean spectrum of the random selection per biopsy is calculated.

3. As CV, k-fold partition of mean spectra into random 5 subsets is applied.

4. Each of the selected random groups will form a training set of 5 mean spectra and a

testing dataset of left mean spectra.

5. The training set creates the models level 1 (ML1) and the testing set validates the

model with 10 iterations, in total 5000 models are generated. ML1 differentiate tumor

and non-tumor spectra.

6. Randomly 10 % of the created ML1 predictions are used to compute the mean of

predictions per single spectrum. As a result a mean prediction per single spectrum in

each biopsy dataset is originated, producing a mapping of prediction values to classify

tumor and non-tumor.

7. The spectra predicted as tumor by ML1 is employed to create and validate the second

level models (ML2) which classify the tumor as low and high grade tumor.

8. A mean tumor spectrum is calculated per biopsy.

9. A random k-fold partition into 5 subsets is applied to divide the set into training and

testing set.

10. The training set creates the ML2 and the testing set validates the model, this process

is repeated 10 times per biopsy and subset. In total 160 models and predictions are

obtained.

The Figure 3.7 a) and b) show two typical heterogeneous biopsies, the prediction of the

models for the indicated number of spectra is also presented in Figure 3.7 c) and d), which

clearly show that if the amount of random spectra selected to build the models level 1 is

32



Chapter 3. Selected Work and Results

Figure 3.7: Mean prediction map for tumor and non-tumor regions of heterogeneous biopsies
and Means-sd of tumor area against the number of spectra randomly selected to build the
models: a) mean prediction map of test biopsy with 37 % of tumor area and 59 % of non-
tumor area; b) mean prediction map of test biopsy with 27 % of tumor area and 70 % of
non-tumor area; c) mean-sd of tumor area of test biopsy with 37 % of tumor area and 59 %
of non-tumor area and d) mean-sd of tumor area of test biopsy with 27 % of tumor area and
70 % of non-tumor area.
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high, the prediction becomes more stable in comparison of low amount of random spectra.

The predictions for the tumor area displayed in Figure 3.7 c) and d) serve as indicator of

the number of spectra required to build the model in order to achieve a robust prediction.

In order to ensure that just spectra from tumor areas are entering the subsequent modeling

phase, the predictions achieved per single spectrum as displayed in Figure 3.7 a) and b) were

averaged and respective spectrum was considered as “tumor” at a mean prediction above

1.5 and as “non-tumor” for mean predictions below to 1.5. The obtained prediction maps

serve to understand the model behavior when the biopsy is heterogeneous and adapt the

ML2 construction and validation to the first level predictions obtained in ML1.

As a result, the ML1 classify non-tumor and tumor biopsies with a sensitivity of 92 % and

a specificity of 93 % and ML2 differentiate low and high grade tumor achieving a predictive

performance of 84 % accuracy with a sensitivity of 85 % and a specificity of 83 %, more

details of the models performance and a comparison of different CV approaches is reported

in [EC2]. In addition, the obtained Raman images were analyzed to learn about the hetero-

geneity of non-tumor and tumor bladder tissue at the bulk level, where mapping the Raman

intensity of specific bands on the biopsies was useful to observe the distribution of tissue

constituents as collagen and lipids on the scanned biopsy. Mapping observations indicated

that lipid contributions are more dominant in tumor biopsies in comparison to the non-tumor

biopsies. The constituent maps are illustrated in [EC2].

Bladder tumor grading was achieved and the relevant alterations in molecular constituents

were correlated to evaluate the tissue heterogeneity. The study presented in this subsection

reports a novel approach to use the validation and prediction of the model to characterize

the tissue heterogeneity, providing more reliable results for tumor grading in non homoge-

neous bladder biopsies with non-tumor and tumor sections. The developed Raman system

can complement the well-stablished methods, such as cystoscopy, to differentiate and detect

tumor areas and different tumor grade on the bladder tissue.

3.3 Ex vivo Combination of Raman-imaging spectroscopy

and piezo-tube based optical coherence tomogra-

phy for bladder tissue diagnostics

Onsite real time assistance during cystoscopy can be accomplished by applying the com-

bination of optical modalities to acquire more information about the tissue. In this study

we implemented a system that combines optical coherence tomography (OCT) and Raman
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spectroscopy (RS). OCT for tumor staging and RS for tumor grading in bladder tissue. OCT

has the potential to identify the invasion and depth of the tumor by taking cross-sectional

images of the bladder wall. Raman spectroscopy, on the other hand, can obtain information

about the grade by assessing the biochemical composition on the tissue’s surface, allowing

the identification of tumor grade on the analyzed surface, in [EC3] the ex vivo combination

of RS and OCT imaging for bladder tissue diagnoses is investigated.

The multimodal combination was employed in a clinical study to measure 119 fresh biopsies

obtained during TURBT. The study has the approval of the local ethical committee and

the Danish national board of medicine and the examinations were performed under written

consent of patients. A summary of the disease of the measured biopsies is presented in Table

1 and Table 2 of [EC3]. Three biopsies were not considered for analysis due to its nature

of papillary urothelial neoplasm of low malignant potential (PUNLMP), which is not a can-

cerous lesion but can increase the probability of tumor progression. Right after reception

the biopsies were humidified with a sodium-chloride solution and delivered to the OCT-RS

system within 15 minutes. For the biopsies that were not measured in a period below 20

minutes, samples were frozen to −80◦C. During examinations with the OCT-RS system, the

biopsies were placed on CaF2 slides with the urothelium facing the system probes, measure-

ments were performed in approximately 15 minutes, once the measurements were finished,

the biopsies were stored in a formalin solution for pathological examination. The measure-

ments were done sequentially at the same location through the biopsy. To acquire different

information, molecular and morphologic, at the same sample locations two fiber probes were

used and mounted on a holder with a known offset.

The Raman and OCT probes are mounted above an automated translation stage (MLS203),

see Figure 3.8. Raman and OCT systems are communicated by a trigger-based Arduino

communication (Board model UNO/R3) and all the system was controlled by a in-house

developed LabView human machine interface (HMI), which set the coordinates, acquire the

images and communicate between both imaging systems. The measurement workflow starts

with a bright field image, which is obtained with a CMOS camera (DCC1645C). Once the

image is acquired the user selects a region of interest (ROI) and the LabView HMI estimates

the scanning coordinates for the Raman and OCT probes. The OCT system was acquiring

nine images in 1 minute and the Raman system 30x30 spectral pixels in 13 minutes. For

the Raman system a similar setup as the one described in [EC2] was employed. The RS

spectrometer, a laser and CCD camera were integrated in a Acton series LS785 Princeton

system, detailed information is described in the material and methods section of [EC3]. The

in-house developed Raman probe was connected to the system as it is shown in the left panel
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of Figure 3.8. The presented Raman probe reported in [EC3] performs better than the

In-Photonics Raman probe employed in [EC2], the SNR is higher and the fiber background

is properly filtered which allows analyzing in more detail the fingerprint region without ob-

scuring relevant collagen and protein bands. Inside the Raman probe, the fiber transmitted

excitation light is focussed by a standard lens, it passes a narrow-band clean-up filter and

a dichroic- long-pass filter, then light is focussed by an objective lens to a spot size of 100

µm, the same objective collects the Raman signal and after passing the dichroic filter an

additional long-pass filter transmits the acquired signal and focused it to the collection fiber

(200 µm diameter). The OCT system utilizes an akinetic swept source laser with a central

wavelength of 1304 nm and a swept frequency of approximately 173 kHz, optical OCT system

is based on a Mach-Zehnder interferometer configuration. The OCT probe is a piezo-tube

based fiber endoscope with a diameter of 3 mm and a length of 15.6 mm, its optical com-

ponents are arranged in a Fourier-plane configuration which permit a telecentric scanning

across the tissue plane, the OCT probe is illustrated in the right side of Figure 3.8. The field

of view (FOV) of the OCT probe is adjusted to 1 to 1.4 mm scanning diameter and the piezo

tube is driven to a frequency of 510 Hz and is attached to a scanning fiber, which follows

a spiral scanning pattern. The OCT acquisition system utilizes a position sensitive device

(PSD, SpotOn Analog, Duma Optronics Ltd.) to reconstruct volumetric OCT-stacks of the

spirilized scan pattern within 2 seconds. The FOV of the OCT probe is not large enough to

scan a biopsy with a single scan, therefore subsequent scans ware performed in a rasterized

scan pattern. The acquired OCT images are then stitched together in a post-processing step

to obtain an image of the whole biopsy.

Data analysis of Raman acquired spectra follows previously described workflow for pre-

treatment, reported in [EC2] and [EC3]. One additional step is added for the background

correction, were before to apply EMSC for fluorescence correction, the corrected spectra was

baselined applying asymmetric least squares (ALS). Statistical modeling was performed by

applying PLS-LDA classification to initially differentiate tumor and non-tumor spectra, and

further classify the tumor spectra into low and high-grade tumor. Classification and cross-

validation is detailed described in [EC2] and [EC3]. As a result two models are created:

model level 1 (ML1) and model level 2 (ML2), were the predictions of the models created

in ML1 are utilized to train, validate and test ML2. Tumor and non-tumor biopsies are

differentiated with an accuracy of 92 %, one can see clearly in Figure 3.9 a) how the test

dataset is separated into tumor and non-tumor, where the beeswarm plot displays the linear

discriminant coefficients. In particular, the negative coefficients belong to the predicted non-

tumor class (black points) and positive coefficients are related to spectra predicted as tumor,
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Figure 3.8: Combined multimodal imaging system and fiber Raman and OCT probes. The
Raman system and Raman probe are highlighted in red and consists of a translate platform, a
PC and a black box, which contains a single mode laser, a spectrometer and the CCD camera.
Besides a bright field camera (located between the probes in the white highlighted area), the
Arduino Board is connected to the Raman-PC. The OCT setup is highlighted in green and it
includes a laser source, the interferometric optical setup including the photodiodes, driving
electronics for the endoscope and a PC. An internal visualization of the Raman probe is
displayed at the bottom left panel; in the same way also the internal components of the OCT
probe are visualized at the bottom right panel.
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Figure 3.9: Linear discriminant coefficients and mean spectra of tumor (red) and non-tumor
(black) biopsies: a) beeswarm plot of the predicted classes after testing the first model
(ML1); b) mean spectra of tumor and non-tumor stacked with the mean-sd linear discriminant
coefficients of the predicted model after validating the first model (ML1) with the testing
dataset.

this is well related to the mean spectra of tumor and non-tumor biopsies and the linear

discriminant coefficients per wavelength displayed in Figure 3.9 b). The negative peaks

observed between the bands 856, 937 and 1265 cm−1,124 mostly collagen bands, show high

intensity peaks in the non-tumor mean spectrum. On the other hand, the lipid bands are

well related to positive peaks between the bands 1299/1300, 1656 and 2885 cm−1, which

are associated to the CH2 deformation, twist vibration and C = C symmetric stretching of

lipids.125 The grading classification performance of ML2 achieved an accuracy of 77 % for the

low and high-grade differentiation, where true positives (LG) can be easier identified than

false negatives (HG), achieving a sensitivity of 81 % and specificity of 68 % to differentiate

low-grade from high-grade tumor. A relevant fact related to the low specificity lies in the

small variations between LG and HG spectra and the small number of HG spectra measured

in this study (11 biopsies). In addition to the statistical modeling a multivariate curve

resolution (MCR) algorithm was applied to estimate the collagen distribution in the imaged

bladder tissue, the algorithm provides an estimation of the concentration of the extracted

pure components in the biopsy Raman image providing a visualization of relevant tissue

constituents through the sample.126 The estimation of pure components initiates with an

orthogonal projection approach (OPA), which preforms an initial estimation of the pure
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Figure 3.10: Mapping of ML1 predictions (left) and collagen distribution (right) for: a)
heterogeneous non-tumor; b) heterogeneous tumor. The minimum collagen concentration
value is 0.043 and the maximum value is 0.052.

components based on their dissimilarity. The initial guesses of pure components are then

compared to literature in order to associate them to pure components, most of the extracted

components in non-tumor biopsies were meeting main relevant bands of pure collagen spectra

previously reported.82 The mean standard deviation of the extracted OPA components is

used to calculate the MCR pure components and concentrations; here ALS complements

the MCR algorithm serving as fitting function, the materials and method section of [EC3]

describes comprehensively the methodology employed to obtain the mapping of collagen

distribution on the biopsies.

The results of the statistical modeling are consistent with the relation between collagen

dominant presence in non-tumor spectra. Accordingly, collagen distribution can be related to

the mean predictions of model level 1 (ML1), which classifies tumor and non-tumor spectra.

The prediction maps are illustrated next to the collagen distribution maps of each hetero-

geneous biopsy. Figure 3.10 shows clearly this relation. Two heterogeneous biopsies are

compared, where a biopsy diagnosed as non-tumor, 3.10 a), has areas which present also

lower collagen content and can be related to tumor presence. In the biopsy diagnosed as tu-

mor, Figure 3.10 b), there are areas that were predicted as non-tumor and present a brighter

area in the collagen distribution map, indicating more presence of collagen in non-tumor ar-

eas as in the neoplastic areas. The darker mapped areas are indicating lower collagen content.

OCT images are classified by applying texture analysis,127 where the texture reflections

are examined, associated and correlated to histopathological images in order to correlate
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the changes in texture to any malignancy. Once the changes are detected the classification

was performed applying a Gaussian support vector machine (SVM) function using a holdout

validation with 20 % of the data, more details of how this approach is applied is described

in [EC3]. Tumor areas are detected with an accuracy of 73.4 %, a sensitivity of 78 % and a

specificity of 69 %.

The endoscopic combination of OCT and Raman can provide visual information to assist the

diagnosis of bladder staging and grading during cytology. Raman spectroscopy demonstrated

distinct spectral differences in the biochemical composition of non-tumor, low- and high-

grade tumor in bladder tissue ex vivo, particularly in the Raman bands associated to lipids

and collagen. The biochemical statistical modeling using Raman spectra of the bladder

biopsies and the MCR concentrations of extracted collagen component in the bulk samples

demonstrated that the presence of collagen is reduced in tumor tissue in comparison to

the non-tumor tissue. The obtained MCR maps could be used to chemically visualize the

constituent distinction of non-tumor and tumor biopsies.
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Summary

Raman spectroscopy systems and chemometric data analysis have been demonstrated to be

capable to assist disease diagnosis in oncology. Employing new instrumental implementa-

tions, data handling and diagnostic classification algorithms, it was possible to show the

feasibility of Raman spectroscopic systems in the characterization of cancerous tumors in

different organs. Although Raman spectroscopy has been extensively studied in diverse on-

cological applications, there are open challenges that need to be tackled when implementing

compact fiber-based Raman systems, introduced in [EC2]. For one, more attention needs

to be paid to the pre-treatment of data, especially when correcting the background signal

coming from the sample (autofluorescence) and the setup (fiber, filters and optical elements).

In addition, it is required to explore in detail the evaluation of tissue heterogeneity and its

impact on the development, validation and robustness of classification models. Furthermore,

the biochemical information provided by Raman spectroscopy is limited to the sample surface

and its biochemical constituents, missing morphological cross-sectional features which are rel-

evant to early tumor staging. Therefore, the combination of modalities plays an important

role in achieving a more comprehensive interpretation of the detected cancerous tumor. The

aforementioned challenges were addressed in this thesis. The investigations reported were re-

lated to three main themes: pre-treatment workflow and background correction, hierarchical
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modeling and validation on heterogeneous samples and combination of Raman spectroscopy

with modalities that complement morphological and biochemical data.

In the first study, experimental and computational methods to subtract fluorescence and

fiber background in biological samples were evaluated from theoretical and practical view-

points [EC1]. The theoretical evaluation of SERDS (instrumental technique) and EMSC

(computational method) on lipid, protein and collagen samples was performed on simulated

data sets with artificial fluorescence and noise levels. SERDS is simulated by an in-house

algorithm that mimics recorded spectra at different wavelengths by shifting the spectra and

computing the difference between the shifted spectra. In addition, the algorithm simulates

the different noise and fluorescence intensities and correlates the shifted spectra to evalu-

ate the optimal shift. Computational background correction was performed by using an

EMSC function (available in R). Before applying EMSC, an in-house algorithm simulates

computationally the fluorescence background using a polynomial approach. The background

correction is performed at different background and noise intensities. EMSC was selected

after comparing its performance with other background correction approaches such as the

modified polynomial fitting, asymmetric least squares, iterative least squares and fill peaks

algorithms, this is presented in more detail in [EC2]. The performance of the instrumental

and computational approach was compared by evaluating the signal to noise ratio (SNR)

of the corrected spectra. It was demonstrated that to obtain good background correction

by SERDS the spectra first must be smoothed and baseline corrected in order to compen-

sate signal intensity fluctuations and an additional computational background correction is

required to achieve background-free difference spectra. The study also showed that a large

shift allows retaining more signal intensity in a spectrum after subtraction, where optimal

shifts of 7 to 11 nm were computed for different biological constituents. The presented op-

timal wavelength shifts are larger than expected, but in practice large shifts can lead to the

excitation of different fluorophores resulting in diverse fluorescence profiles. SERDS spectra

are also challenging for further analysis. Even though specialized reconstruction algorithms

are available, it is still complicated to get an adequate determination of the exact band po-

sitions. Nevertheless, SERDS can be a potential solution to subtract unknown background

since it does not need previous knowledge of the background to perform a correction. The

background correction provided by EMSC for the simulated and experimental data yields

promising results, achieving higher SNR than SERDS in the corrected spectra. On the other

hand, complex samples and backgrounds can be challenging to correct because there is a

need to compute approximations of pure spectra and fluorescence background components.

Concisely, EMSC and SERDS are powerful tools for fluorescence background correction. For
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the situation in which background type is known and can be reliably estimated, EMSC sur-

passes SERDS, since it does not modify the Raman spectrum and does not need additional

equipment to perform the correction. Nevertheless, when the background is unknown and

cannot be estimated, SERDS could potentially be a good choice to suppress the background.

The second investigation presents a study in which fiber-based Raman spectroscopy is

used to differentiate bladder cancer from healthy tissue, especially giving attention to the in-

fluence of heterogeneity in the measured samples observed when performing Raman mapping

of the tissues, see [EC2]. This study was focused on, firstly, proving that fiber-based Raman

spectroscopy imaging can be applied to effectively assist bladder cancer diagnosis mimicking

in vivo conditions by providing tumor differentiation and grading. Secondly, presenting a data

pre-processing workflow which automatically corrects fiber and autofluorescence background

signal. Thirdly, introducing a robust chemometric scheme, capable to extract comprehensive

information from the biopsies and effectively classify non-tumor, low- and high-grade tumor

bladder tissue. Lastly, the impact of heterogeneity on the model performance was evaluated

using the prediction of first level model and the biochemical band information distribution

to compute the tumor/non-tumor relation with the dominant constituents of bladder tissue.

The optimal workflow to pre-treat the acquired data was also based in an evaluation of ef-

fective computational methods. Within the available background correction methods in this

study, asymmetric least squares (ALS), the polynomial fitting, statistics-sensitive non-linear

iterative peak-clipping algorithm (SNIP) correction and EMSC were tested. In [EC2] it

is shown that ALS leads to over-fitting in the low and high-wavenumber region and back-

ground from fiber and substrate is not suppressed. Similar observations were made when

correcting with polynomial fitting. On the one hand, SNIP correction could remove fiber

background as EMSC does; on the other hand it requires higher computational effort taking

longer than EMSC to compute the correction and shows higher standard deviation. There-

fore, EMSC was selected to automatically correct the background of all measured biopsies.

Four classifiers were tested to accomplish robust classification. Before applying the classifier,

data reduction was performed by the partial least square (PLS) method. Among the tested

classifiers LDA demonstrated the best performance compared to quadrant discriminant anal-

ysis (QDA), support vector machine (SVM) and linear progression (LP), the results of the

performance are shown in [EC2]. The LDA classifier achieved the highest sensitivity and

accuracy and demonstrated being less prone to over-fitting in comparison to QDA. Never-

theless, a good classifier is not enough in order to achieve the best performance, considering

that the data set contains heterogeneous sets of spectra. We proposed in this study a new

approach to build and validate the model, by applying a hierarchical workflow, where ini-
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tially tumor and non-tumor spectra are classified by employing k-fold cross validation. The

first level models ML1 differentiate between tumor and non-tumor achieving 92 % accuracy

and only tumor regions from tumor biopsies were sent to the second level models ML2 for

the high-grade/low-grade classifications. In [EC2] it was also demonstrated that the new

classification strategy achieved better scores when discriminating tumor grade than the clas-

sical one level model classification procedure, despite that tumor grading differentiation has

been very challenging due to the data size, the designed classification scheme proved to be

efficient compared to classical methods. This clinical study, as preliminary step to precede

performing in vivo tests, is evidence that fiber-based Raman spectroscopy can serve as a very

useful modality to effectively discriminate healthy and tumor tissue as well as tumor grades

during TURBT. Tissue heterogeneity was tackled with the predictions achieved with ML1,

where the mean predictions of each pixel were mapped to display tumor and non-tumor sec-

tions of each biopsy, the results were discussed in more detail in [EC2]. Collagen and lipid

band intensities were also mapped, and the band intensity distribution was correlated with

the ML1 mean prediction to show the relation between collagen and lipid content in healthy

and cancerous tissue. Collagen rich regions are observed for healthy tissue in comparison to

cancerous tissue which is lipid rich. These findings demonstrate that the fiber-based Raman

system is capable to complement cystoscopy during TURBT conditions in order to obtain

immediate tumor and cancer grading discrimination.

The combination of modalities was investigated in study three [EC3], where Raman spec-

troscopy (RS) and optical coherence tomography (OCT) were implemented in a fiber-based

setup ex vivo. The investigation focuses on demonstrating that the fiber-based implemen-

tations, which can be integrated into endoscopes, can assess tumor in-situ and providing

grading of the bladder wall. As initial stage to achieve optimal in vivo performance, [EC3]

reports the development of a combined OCT-RS system which provides tumor staging and

grading of bladder biopsies. The system is designed for in vivo performance by employing

fiber probes for each modality in order to obtain operation benchmarks for the best expected

scheme. In total, 119 biopsies were measured by imaging the top surface of the biopsy mim-

icking in vivo circumstances. To image the biopsy a motorized X-Y platform was employed

for the scanning and OCT stacks and Raman spectra were collected from the same locations.

Approximately 9 OCT stacks and 300 Raman spectra were acquired per biopsy and the same

biopsy surface was also sent for histopathological analysis. The OCT images were analyzed

by applying texture analysis to classify the OCT images automatically, which effectively al-

lowed the successful differentiation of different tumor stages. In addition, the OCT stacks

were further treated to acquire equally sized fragments excluding the border areas of the field
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of view to avoid high texture features. The Raman spectra were pre-processed as described

in materials and methods section of [EC2], following a specific workflow to pre-treat Raman

spectra such as calibration, denoising, EMSC background correction and area normalization.

Statistical modeling of the Raman data was performed by applying hierarchical classification

as reported in [EC2] and [EC3], where dimension reduction by PLS and classification by

LDA were conducted. The cross validation of the model was done by applying k-folds and

the validation of the models was performed by a hierarchical scheme which created two model

levels (ML1 and ML2) to classify firstly tumor/non-tumor and secondly low-/high-grade can-

cer tissue. The first classification layer (ML1) predictions were employed to input the tumor

areas to the second classification layer (ML2). In addition, Raman prediction maps and mul-

tivariate curve resolution (MCR) were applied to map the collagen distribution on biopsies,

as it is one of the main constituents employed to differentiate cancerous tumor from normal

bladder tissue. The diagnostic evaluation of OCT achieved 78 % sensitivity and 69 % speci-

ficity for early stage cancer differentiation. RS achieved in ML2 a sensitivity of 81 % and

specificity of 61 % for low- and high-grade tissue discrimination and to distinguish non-tumor

tissue the ML1 provided a sensitivity of 95 % and a specificity of 88 %. Relevant observa-

tions that link the LDA coefficients and constituent bands were also reported, where tumor

related negative coefficients were associated with lipid bands and LDA positive coefficients

with collagen bands. OCT and RS information was also correlated by overlapping the OCT

stacks and the RS prediction maps in order to visualize the tumor sections predicted by RS

with the OCT staging to detect tumor areas on the biopsy. Clinically relevant information

about tumor stage and grade was provided by the developed OCT-RS system, where both

modalities provided comprehensive diagnostic evidence about tissue staging and grading to

complement in-situ assessment of the bladder wall. The reported findings open the path

for further development of multimodal endoscopic probes which facilitate OCT and RS to

deliver the surgeons relevant clinical data in real-time. In-situ tumor discrimination enables

better biopsy handling and minimizes tissue resection by providing accurate assessment.

In conclusion, this thesis is an advance towards resolving most of the open concerns of

Raman spectroscopic fiber-based implementation for real-time cancer diagnosis of bladder

tissue. The presented work provides: (1) Evaluation and comparison of background cor-

rection strategies of Raman spectra in highly fluorescent biological samples; (2) Assessment

of bladder tumor grading through an automated fiber-based Raman imaging system as an

initial stage for in vivo diagnosis; (3) Multimodal combination of OCT and RS employing

endoscopic probes to diagnosis bladder tissue grading and staging mimicking in vivo condi-

tions. All these contributions are substantial and highly beneficial to further drive the clinical
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translation of Raman spectroscopy towards the bladder oncological field.
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5
Zusammenfassung

Es wurde gezeigt, dass Ramanspektroskopische Systeme und chemometrische Datenanalysen

die Diagnose von Krankheiten in der Onkologie unterstützen können. Mithilfe neuer instru-

menteller Implementierungen, Datenhandhabungs- und diagnostischer Klassifizierungsalgo-

rithmen konnte die Machbarkeit von Raman-spektroskopischen Systemen bei der Charakter-

isierung von Krebstumoren in verschiedenen Organen gezeigt werden. Obwohl die Raman-

Spektroskopie in verschiedenen onkologischen Anwendungen eingehend untersucht wurde,

gibt es einige offene Herausforderungen, die bei der Implementierung der in [EC2] eingeführten

kompakten faserbasierten Raman-Systemen angegangen werden müssen. Zum einen muss der

Vorbehandlung von Daten mehr Aufmerksamkeit gewidmet werden, insbesondere bei der Ko-

rrektur des Hintergrundsignals der Probe (Fluoreszenz) und des Aufbaus (Faser, Filter und

optische Elemente). Darüber hinaus müssen die Bewertung der Gewebeheterogenität und ihre

Auswirkungen auf die Entwicklung und Validierung von Klassifizierungsmodellen eingehend

untersucht werden. Beispielsweise müssen alternative Ansätze getestet werden, um eine ro-

buste Modellierung aufzubauen. Darüber hinaus ist die biochemische Information, die durch

Raman-Spektroskopie bereitgestellt wird, auf die Probenoberfläche und ihre biochemischen

Bestandteile beschränkt, wobei morphologische Querschnittsmerkmale fehlen, die für das

frühe Staging von Tumoren relevant sind. Daher spielt die Kombination der Modalitäten
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eine wichtige Rolle für eine umfassendere Interpretation des erkannten Krebstumors. Auf

diese genannten Herausforderungen wurden in der vorliegenden Arbeit eingegangen. Die

Untersuchungen bezogen sich auf drei Hauptthemen: Vorbehandlung und Hintergrundkor-

rektur der Raman-Daten, hierarchische Modellierung und Validierung heterogener Proben

und Kombination von Modalitäten, sodass sich morphologische und biochemische Daten

ergänzen.

In der ersten Studie wurden experimentelle und rechnerische Methoden zur Subtrak-

tion von Fluoreszenz und Faserhintergrund in biologischen Proben unter theoretischen und

praktischen Gesichtspunkten bewertet [EC1]. Die theoretische Bewertung von SERDS (In-

strumentaltechnik) und EMSC (Berechnungsmethode) an Lipid-, Protein- und Kollagen-

proben wurde an simulierten Datensätzen mit künstlicher Fluoreszenz und Rauschpegeln

durchgeführt. SERDS wird durch einen hausinternen Algorithmus simuliert, der aufgezeich-

nete Spektren bei verschiedenen Wellenlängen nachahmt, indem die Spektren verschoben und

die Differenz zwischen den verschobenen Spektren berechnet werden. Zusätzlich simuliert

der Algorithmus die verschiedenen Rausch- und Fluoreszenzintensitäten und korreliert die

verschobenen Spektren, um die optimale Verschiebung der Anregungswellenlänge zu berech-

nen. Die rechnergestützte Hintergrundkorrektur wurde mit einer EMSC-Funktion (verfügbar

in R) durchgeführt. Vor der Anwendung von EMSC simuliert ein hausinterner Algorith-

mus den Fluoreszenzhintergrund mithilfe eines Polynomansatzes. Die Hintergrundkorrek-

tur wird bei unterschiedlichen Hintergrund- und Rauschintensitäten durchgeführt. EMSC

wurde ausgewählt, nachdem seine Leistung mit anderen Ansätzen zur Hintergrundkorrek-

tur verglichen wurde, wie der modifizierten Polynomanpassung, den Algorithmen für asym-

metrische kleinste Quadrate, iterative kleinste Quadrate und Fill Peaks. Dies wird in [EC2]

ausführlicher dargestellt. Die Leistung des instrumentellen und rechnerischen Ansatzes wurde

durch Auswertung des Signal-Rausch-Verhältnisses (SNR) der korrigierten Spektren ver-

glichen. Es wurde gezeigt, dass zur Erzielung einer guten Hintergrundkorrektur durch SERDS

die Spektren zuerst geglättet und die Basislinie korrigiert werden müssen, um Signalinten-

sitätsschwankungen auszugleichen, und eine zusätzliche rechnerische Hintergrundkorrektur

erforderlich ist, um hintergrundfreie Differenzspektren zu erzielen. Die Studie zeigte auch,

dass eine große Verschiebung es ermöglicht, mehr Signalintensität in einem Spektrum nach der

Subtraktion beizubehalten, wobei optimale Verschiebungen von 7 bis 11 nm für verschiedene

biologische Bestandteile berechnet wurden. Die dargestellten optimalen Wellenlängenver-

schiebungen sind größer als erwartet, aber in der Praxis können große Verschiebungen zur

Anregung verschiedener Fluorophore führen, was zu verschiedenen Fluoreszenzprofilen führt.

SERDS-Spektren sind auch eine Herausforderung für die weitere Analyse. Obwohl spezial-
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isierte Rekonstruktionsalgorithmen zur Verfügung stehen, ist es immer noch schwierig, die

genauen Bandpositionen angemessen zu bestimmen. Dennoch kann SERDS eine mögliche

Lösung sein, um unbekannten Hintergrund zu subtrahieren, da keine Vorkenntnisse erforder-

lich sind, um eine Korrektur durchzuführen. Die von der EMSC bereitgestellte Hintergrund-

korrektur für die simulierten und experimentellen Daten liefert vielversprechende Ergebnisse

und erzielt in den korrigierten Spektren ein höheres SNR als SERDS. Allerdings können kom-

plexe Proben und Hintergründe schwierig zu korrigieren sein, da Näherungen von unbehandelt

Spektren und Fluoreszenzhintergrundkomponenten berechnet werden müssen. Zusammen-

fassend, EMSC und SERDS sind leistungsstarke Methoden für die Hintergrundkorrektur

von Fluoreszenz. Für die Situation, in der der Hintergrundtyp bekannt ist und zuverlässig

geschätzt werden kann, übertrifft EMSC SERDS, da es das Raman-Spektrum nicht modi-

fiziert und keine zusätzliche Ausrüstung benötigt, um ein höheres SNR zu erreichen. Wenn

der Hintergrund unbekannt ist und nicht geschätzt werden kann, ist SERDS möglicherweise

eine gute Wahl, um den Hintergrund zu unterdrücken.

Die zweite Untersuchung präsentiert eine Studie, in der faserbasierte Raman-Spektroskopie

verwendet wird, um Blasenkrebsgewebe von gesundem Gewebe zu unterscheiden, wobei ins-

besondere der Einfluss der Heterogenität in den gemessenen Proben berücksichtigt wird,

die bei der Raman-Abbildung der Gewebe beobachtet wurden, siehe [EC2]. Diese Studie

konzentrierte sich zum einen auf den Nachweis, dass die faserbasierte Raman-Spektroskopie

angewendet werden kann, um die Blasenkrebsdiagnose effektiv zu unterstützen und in-vivo-

Zustände zu simulieren. Dies geschieht indem Tumor-Differenzierung und Grading bereit-

gestellt werden. Zum anderen wird eine Datenvorbehandlung vorgestellt, die automatisch das

Hintergrundsignal von Fasern und Autofluoreszenz korrigiert. Ebenfalls wird eine robuste,

chemometrische Methode präsentiert, mit der umfassende Informationen aus den Biopsien

extrahiert und Gewebe, das keine Tumore enthält, sowie niedrig- und hochgradiges Tumor-

blasengewebe effektiv klassifiziert werden können. Abschließend wird der Einfluss der Het-

erogenität auf die Modellleistung unter Verwendung der Vorhersage des First-Level-Modells

und der Verteilung der biochemischen Bandeninformationen bewertet, um die Tumor/Nicht-

Tumor-Beziehung mit den dominierenden Bestandteilen des Blasengewebes zu berechnen.

Der optimale Workflow zur Vorbehandlung der erfassten Daten basierte auch auf einer Be-

wertung effektiver Berechnungsmethoden. Im Rahmen der verfügbaren Hintergrundkorrek-

turmethoden in dieser Studie wurden asymmetrische kleinste Quadrate (ALS), die Poly-

nomanpassung, statistiksensitive nichtlineare iterative Peak-Clipping-Algorithmus (SNIP) -

Korrektur und EMSC getestet. In [EC2] wird gezeigt, dass ALS zu einer Überanpassung

im Bereich niedriger und hoher Wellenzahlen führt und der Hintergrund von Fasern und
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Substraten nicht unterdrückt wird. Ähnliche Beobachtungen wurden bei der Korrektur mit

Polynomanpassung gemacht. Einerseits könnte die SNIP-Korrektur den Faserhintergrund

ebenso wie die EMSC entfernen, andererseits erfordert sie einen höheren Rechenaufwand als

die EMSC, und zeigt eine höhere Standardabweichung. Daher wurde EMSC ausgewählt, um

den Hintergrund aller gemessenen Biopsien automatisch zu korrigieren.

Vier Klassifikatoren wurden getestet, um eine robuste Klassifizierung zu erreichen. Vor

der Anwendung des Klassifikators wurde die Datenreduktion durch Partial Least Square

(PLS) durchgeführt. Unter den getesteten Klassifikatoren zeigte LDA die beste Leistung im

Vergleich zu Quadrantendiskriminanzanalyse (QDA), Support Vector Machine (SVM) und

linearer Progression (LP). Die Ergebnisse der Leistungsfähigkeit sind in [EC2] angegeben.

Der LDA-Klassifikator erzielte die höchste Empfindlichkeit und Genauigkeit und zeigte, dass

er im Vergleich zu QDA weniger anfällig für Überanpassung ist. Trotzdem reicht ein guter

Klassifikator nicht aus, um die beste Leistung zu erzielen, wenn man bedenkt, dass der Daten-

satz heterogene Datensätze von Spektren enthält. Wir schlugen in dieser Studie einen neuen

Ansatz zur Erstellung und Validierung des Modells durch Anwendung eines hierarchischen

Workflows vor, bei dem zunächst Tumor- und Nicht-Tumor-Spektren mithilfe einer k-fachen

Kreuzvalidierung klassifiziert werden. Die Modelle der ersten Ebene ML1 unterscheiden zwis-

chen Tumor und Nicht-Tumor mit einer Genauigkeit von 92%, woraufhin nur Tumorregionen

aus Tumorbiopsien für die hochgradigen/niedriggradigen Klassifikationen an die Modelle der

zweiten Ebene ML2 weitergegeben wurden. In [EC2] wurde auch gezeigt, dass die neue Klas-

sifizierungsstrategie bei der Unterscheidung des Tumorgrades bessere Ergebnisse erzielt als

das klassische einstufige Modellklassifizierungsverfahren. Obwohl die Unterscheidung des Tu-

morgrades aufgrund der Datengröße des entworfenen Klassifizierungsschemas sehr schwierig

war, erwies sich das zweistufige Verfahren im Vergleich zu klassischen Methoden als effizient.

Diese klinische Studie als vorbereitender Schritt für die Durchführung von invivo Tests ist

ein Beweis dafür, dass die faserbasierte Raman-Spektroskopie eine sehr vielversprechende

Methode zur wirksamen Unterscheidung von gesundem und tumorartigen Gewebe sowie Tu-

morgraden während der TURBT darstellt. Die Gewebeheterogenität wurde mit den mit ML1

erzielten Vorhersagen untersucht, wobei die gemittelte Vorhersage jedes Pixels so abgebildet

wurden, dass Tumor- und Nicht-Tumor-Schnitte jeder Biopsie angezeigt wurden. Die Ergeb-

nisse wurden detailliert in [EC2] diskutiert. Kollagen- und Lipidbandenintensitäten wurden

ebenfalls visualisiert, und die Bandenintensitätsverteilung mit der mittleren ML1-Vorhersage

korreliert, um die Beziehung zwischen Kollagen- und Lipidgehalt in gesundem und krebsar-

tigem Gewebe zu zeigen. Kollagenreiche Regionen werden für gesundes Gewebe im Vergleich

zu krebsartigem Gewebe beobachtet, das im Gegensatz dazu lipidhaltig ist. Diese Ergebnisse
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zeigen, dass das faserbasierte Raman-System die Zystoskopie unter TURBT-Bedingungen

ergänzen kann, um eine sofortige Einstufung von Tumor und Krebs zu erreichen.

Die Kombination von verschiedenen Modalitäten wurde in der dritten Studie [EC3] un-

tersucht, in der Raman-Spektroskopie (RS) und optische Kohärenztomographie (OCT) in

einem faserbasierten Aufbau ex vivo implementiert wurden. Die Untersuchung konzentriert

sich auf den Nachweis, dass fasergestützte Implementierungen, die in Endoskope integriert

werden können, Tumore in situ bewerten und eine Einstufung der Blasenwand ermöglichen.

[EC3] berichtet über die Entwicklung eines kombinierten OCT-RS-Systems, das die Tu-

morabstufung und Einstufung von Blasenbiopsien ermöglicht, um eine optimale in vivo Leis-

tungsfähigkeit zu erzielen. Das System ist für in vivo Anwendungen ausgelegt, indem für

jede Modalität Fasersonden verwendet werden, um Indikatoren zur Handhabung für das

am besten zu erwartende Schema zu erhalten. Insgesamt wurden 119 Biopsien durch Ver-

messung der Oberfläche gemessen, wobei die in vivo Bedingungen nachgeahmt wurden.

Um die Biopsie bildgebend zu messen, wurde ein motorisierter X-Y-Tisch für das Scan-

nen verwendet und OCT-Volumen und Raman-Spektren wurden an denselben Orten gesam-

melt. Pro Biopsie wurden ungefähr 9 OCT-Volumen und 300 Raman-Spektren aufgenom-

men, und die gleiche Biopsie wurde auch zur histopathologischen Analyse gesendet. Die

OCT-Bilder wurden analysiert, indem eine Texturanalyse angewendet wurde, um die OCT-

Bilder automatisch zu klassifizieren, was die erfolgreiche Differenzierung des Tumors effek-

tiv ermöglichte. Zusätzlich wurden die OCT-Volumen weiter behandelt, um Fragmente

gleicher Größe zu erhalten, mit Ausnahme der Randbereiche des Sichtfelds um hohe Tex-

turmerkmale zu vermeiden. Die Raman-Spektren wurden wie im Abschnitt [EC2] ”Ma-

terialien und Methoden” beschrieben vorbehandelt, um Raman-Spektren wie Kalibrierung,

Rauschunterdrückung, EMSC-Hintergrundkorrektur und Flächennormalisierung vorzubere-

iten. Die statistische Modellierung der Raman-Daten wurde durchgeführt, indem eine hi-

erarchische Klassifizierung angewendet wurde, wie in [EC2] und [EC3] angegeben, wobei

eine Dimensionsreduzierung durch PLS und eine Klassifizierung durch LDA durchgeführt

wurden. Eine k-fache Kreuzvalidierung des Modells und die Validierung der Modelle er-

folgte durch ein hierarchisches Schema mit zwei Modellebenen (ML1 und ML2). Zuerst

wird Tumor / Nicht-Tumor und als zweites niedrig- / hochwertiges Krebsgewebe klassifiziert.

Die Vorhersagen der ersten Klassifizierungsschicht (ML1) wurden verwendet, um die Tu-

morgebiete in die zweite Klassifizierungsschicht (ML2) einzugeben. Darüber hinaus wurden

Raman-Vorhersage-Abbildungen und multivariate Kurvenauflösungen (MCR) angewendet,

um die Kollagenverteilung auf Biopsien abzubilden, da dies einer der Hauptbestandteile ist,

die zur Unterscheidung von Krebstumor und normalem Blasengewebe eingesetzt werden. Die

51



Chapter 5. Zusammenfassung

diagnostische Bewertung durch OCT ergab eine Sensitivität von 78% und eine Spezifität von

69% für die Krebsdifferenzierung im Frühstadium. ML2 durch RS erreichte eine Sensitivität

von 81% und eine Spezifität von 61% für die Unterscheidung von geringem und hohem Tu-

morgrad. Zur Unterscheidung von Nicht-Tumorgewebe lieferte das ML1 eine Sensitivität

von 95% und eine Spezifität von 88%. Relevante Beobachtungen, die die LDA-Koeffizienten

und die konstituierenden Banden verknüpfen, wurden ebenfalls berichtet, wobei mit Tumor

assoziierte negative Koeffizienten mit Lipidbanden und positive LDA-Koeffizienten mit Kol-

lagenbanden assoziiert wurden. OCT- und RS-Informationen wurden auch durch Überlappen

der OCT-Volumen und der RS-Vorhersage-Abbildungen korreliert, um die Tumorvorhersage

von RS mit dem OCT-Staging zur Erkennung von Tumorgebieten auf der Biopsie zu visu-

alisieren. Klinisch relevante Informationen zu Tumoreinstufung und -grad lieferte das en-

twickelte OCT-RS-System, bei dem beide Modalitäten umfassende diagnostische Belege für

die Gewebestufe und -klassifizierung ermöglichte, um die in situ Beurteilung der Blasenwand

zu ergänzen. Die präsentierten Ergebnisse öffnen den Weg für weitere Entwicklungen multi-

modaler endoskopischer OCT und RS Sonden, die es ermöglichen, den Chirurgen relevante

klinische Daten in Echtzeit zu liefern. In situ Tumordiskriminierung ermöglicht eine bessere

Handhabung der Biopsie und eine Minimierung der Gewebsresektion.

Zusammenfassend ist die vorliegende Arbeit ein Fortschritt bei der Lösung der meisten

offenen Herausforderungen der Implementierung von Raman-spektroskopischen Fasern für

die Echtzeit-Krebsdiagnose von Blasengewebe. Die vorgestellte Arbeit bietet: (1) Bewer-

tung und Vergleich von Hintergrundkorrekturstrategien von Raman-Spektren in stark flu-

oreszierenden biologischen Proben; (2) Bewertung der Blasen-Tumor-Einstufung durch ein

automatisiertes, fasergestütztes Raman-Bildgebungssystem als ein Anfangsstadium für die

in vivo Diagnose; (3) Multimodale Kombination von OCT und RS unter Verwendung von

endoskopischen Sonden zur Diagnose der Blasengewebsklassifizierung und zur Durchführung

unter in vivo-ähnlichen Bedingungen. Alle diese Beiträge sind substanziell und von großem

Nutzen, um die klinische Translation der Raman-Spektroskopie im Bereich der Blasenonkolo-

gie voranzutreiben.
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Jeremias Püls, Wolfgang Drexler, Rainer Leitgeb, Nathalie Garstka, Shahrokh Shariat,

Clara Stiebing, Iwan Schie, Jürgen Popp, Marco Andreana, and Angelika Unterhuber.

Combination of high-resolution optical coherence tomography and raman spectroscopy

for improved staging and grading in bladder cancer. 8(12):2371.

[109] A. Sally Davis, Anke Richter, Steven Becker, Jenna E. Moyer, Aline Sandouk, Jeff

Skinner, and Jeffery K. Taubenberger. Characterizing and diminishing autofluorescence

in formalin-fixed paraffin-embedded human respiratory tissue. 62(6):405–423.

[110] Monica Monici. Cell and tissue autofluorescence research and diagnostic applications.

In Biotechnology Annual Review, volume 11, pages 227–256. Elsevier.

[111] Sebastian Dochow, Norbert Bergner, Christoph Krafft, Joachim Clement, Michael

Mazilu, Bavishna B. Praveen, Praveen C. Ashok, Rob Marchington, Kishan Dholakia,

and Jürgen Popp. Classification of raman spectra of single cells with autofluorescence

suppression by wavelength modulated excitation. 5(18):4608–4614.

63



Chapter 6. Bibliography

[112] Michael Mazilu, Anna Chiara De Luca, Andrew Riches, C. Simon Herrington, and

Kishan Dholakia. Optimal algorithm for fluorescence suppression of modulated raman

spectroscopy. 18(11):11382.

[113] Shuxia Guo, Olga Chernavskaia, Jürgen Popp, and Thomas Bocklitz. Spectral recon-

struction for shifted-excitation raman difference spectroscopy (SERDS). 186:372–380.

[114] A. M. Macdonald and P. Wyeth. On the use of photobleaching to reduce fluorescence

background in raman spectroscopy to improve the reliability of pigment identification

on painted textiles. 37(8):830–835.

[115] Florian Knorr, Zachary J. Smith, and Sebastian Wachsmann-Hogiu. Development of a

time-gated system for raman spectroscopy of biological samples. 18(19):20049–20058.

[116] John DiBenedetto, Gene A. Capelle, and Mary O’Neill. Time-resolved hyperspectral

fluorescence spectroscopy using frequency-modulated excitation. 112(1):013109.

[117] Nils Kristian Afseth and Achim Kohler. Extended multiplicative signal correction in

vibrational spectroscopy, a tutorial. 117:92–99.

[118] Chad A. Lieber and Anita Mahadevan-Jansen. Automated method for subtraction of

fluorescence from biological raman spectra. 57(11):1363–1367.

[119] Bruce Slutsky. Handbook of Chemometrics and Qualimetrics. Journal of Chemical

Information and Computer Sciences, 38(6):1254–1254, November 1998.

[120] Jun Zhao, Mike M. Carrabba, and Fritz S. Allen. Automated fluorescence rejection

using shifted excitation raman difference spectroscopy. 56(7):834–845.

[121] F. Siebert and Peter Hildebrandt. Vibrational spectroscopy in life science. Tutorials in

biophysics. Wiley-VCH. OCLC: ocn181420638.

[122] Zanyar Movasaghi, Shazza Rehman, and Ihtesham U. Rehman. Raman spectroscopy

of biological tissues. 42(5):493–541.

[123] K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, and M. Baranska. Raman

spectroscopy of lipids: a review: Raman spectroscopy of lipids. 46(1):4–20.

[124] Joke De Gelder, Kris De Gussem, Peter Vandenabeele, and Luc Moens. Reference

database of raman spectra of biological molecules.

64



Chapter 6. Bibliography

[125] Halina Abramczyk, Jakub Surmacki, Monika Kopeć, Alicja Klaudia Olejnik, Katarzyna
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Abstract: Raman spectroscopy provides label-free biochemical information from tissue samples
without complicated sample preparation. The clinical capability of Raman spectroscopy has been
demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo
applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest,
such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence
background, which can be several orders of magnitude larger than the Raman signal. To eliminate
the disturbing fluorescence background, several approaches are available. Among instrumentational
methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and
studied. Similarly, computational techniques, for instance extended multiplicative scatter correction
(EMSC), have also been employed to remove undesired background contributions. Here, we present
a theoretical and experimental evaluation and comparison of fluorescence background removal
approaches for Raman spectra based on SERDS and EMSC.

Keywords: Raman spectroscopy; SERDS; EMSC; background correction; signal to noise ratio

1. Introduction

There is a significant requirement for rapid and minimally to non-invasive tools for cancer
diagnosis. The ability to obtain specific biochemical information from biological samples without
the need for labeling makes Raman spectroscopy attractive for many diagnostic applications in
medicine [1,2]. For instance, Raman spectroscopy has been used to accurately identify and grade
transitional cell carcinoma (TCC) in vitro and has shown promising results as an auxiliary method
for pathological identification of bladder tissue [3–6]. The development of optical fiber Raman probes
with high efficiency and throughput provided the opportunity to perform in vivo measurements of
skin, brain, esophagus, and bladder, demonstrating that data acquisition, analysis and diagnostics can
be performed at the patient in real time [7–10].

Human tissue is mainly composed of proteins, lipids, nucleic acids, and carbohydrates [11]. One
of the main challenges for the implementation of Raman spectroscopy in the clinic is the excitation
of auto-fluorescence in tissue. Biological tissues can show significant auto-fluorescence [12], which
depends on the excited fluorophores, the excitation wavelength, and is several magnitudes stronger

Sensors 2017, 17, 1724; doi:10.3390/s17081724 www.mdpi.com/journal/sensors
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than the Raman signal, leading to high shot noise. A considerable number of instrumental [13–16]
and computational methods have been proposed to reduce or subtract the fluorescence background
contribution in Raman spectra [17–20].

Computational methods include, for example, polynomial fitting [21], different least squares
methods [22] and extended multiplicative scatter correction (EMSC) [23]. Polynomial fitting
approximates the broad fluorescence background as an n-order polynomial function, fitting the
polynomial function to spectral areas without Raman bands. Next to manually deciding which
areas should be used, automatic methods for curve fitting in chromatographic analysis have been
proposed under high noise circumstances, which is a limiting factor for this method [24]. Least squares
methods rely on fitting of linear combinations of reference data to the measured spectra, where the
sum of the squared differences between the observed values and the fitted values is minimized [25].
Different least squares approaches have previously been implemented, such as for instance iterative
least squares or weighted least squares [26,27]. One very promising framework for model-based
background correction in Raman spectroscopy is EMSC [28]. It is also based on a least squares fitting
of pre-defined background spectra, but also including the fitting of pure components spectra [23].
Further computational techniques used to separate the fluorescence background from Raman spectra
are principal component analysis [29], and wavelets analysis [30]. Wavelets analysis decomposes the
spectrum into different frequency components and the background is suppressed by setting the very
low frequency components to zero. Furthermore, by setting the high frequency components to zero as
well, noise contributions can be removed. However, the transformation of the signal into frequency
bands may result in distortion in some spectral areas [19,31].

As a methodical approach photobleaching has been suggested to remove fluorescence.
By irradiating the sample with an excitation laser for a long period of time, a photolytic decomposition
of the fluorescent interfering molecules is induced [14,15,32]. Another technique that addresses
the reduction of the fluorescence background, as well as low signal to noise ratio (SNR) problems,
is time-gating Raman spectroscopy. It employs ultra-short laser pulses that drive an all-optical
Kerr shutter to gate early-arriving Raman photons, while blocking the later-arriving fluorescence
photons. However, the systems are highly complex, costly, and challenging to modify [33]. Modulated
excitation wavelength shifting is an instrumental method, where Raman measurements are performed
at two closely spaced excitation wavelengths to obtain two shifted Raman spectra. By introducing
a low-frequency modulator, a Raman spectrum is reconstructed. The main limitation is the need of
lock-in detection [34]. Modulated Raman spectroscopy was introduced with a frequency-modulated
excitation laser, continuous acquisition of Raman spectra, and without lock-in detection [35].
A popular instrumental method that has been widely applied is shifted excitation Raman difference
spectroscopy (SERDS) [16,36–39]. SERDS is based on the principle that small changes in the excitation
wavelength result in a spectral shift of the Raman spectrum, while the fluorescence contribution
does not change spectrally. By calculating the difference between closely shifted Raman spectra all
wavelength-independent contributions are removed. It was shown that not only fluorescence can be
effectively removed by this method, but also ambient light, etaloning, and any other non-varying
source [40–42]. Since the positions of the Raman bands are used for the interpretation of Raman
spectra, it was previously suggested that the optimal shift in excitation wavelength should correspond
to the full width at half maximum of a relevant Raman band [43,44]. Applying this shift results in a
difference spectrum were the band position corresponds to the inflection point between the minimum
and maximum of the respective band. This assumption is valid for samples, which have spectral bands
with similar spectral widths, such as powders or crystalline proteins, and are acquired at very high
spectral resolution. Since the Raman bandwidth of specific biological components vary within one
spectrum, this theoretical optimal shift for the reconstruction of band positions cannot be applied for
complex biological Raman spectra. Moreover, for biomedical applications there is not just one single
Raman band, which is important for the differentiation between, e.g., tumor and non-tumor tissues.
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Previous studies have evaluated the capability of SERDS to subtract strong fluorescence
background exceeding the Raman signal up to a ratio of 200:1 [36,44–48]. A main topic in these
studies is the necessary processing of SERDS spectra, using computational methods in order to acquire
typical Raman spectra [37,49–51]. However, there are no studies where SERDS is evaluated and
compared directly to computational background correction methods.

In this study, theoretical and experimental results for SERDS spectra of biological components,
such as lipids and proteins, are evaluated. SNRs are determined based on different fluorescent
background estimations. Additionally the concept of an optimal shift for SERDS is discussed
theoretically and experimentally. Different algorithms for optimizing the spectral quality of the
difference spectra are tested and compared to EMSC as a conventional computational background
correction method.

2. Materials and Methods

2.1. Theoretical Approach

Raman spectra of lipid and protein components of chicken meat with a low fluorescence
background were recorded, using a commercial Raman microscope setup (Holoprobe, Kaiser Optical
System, Ann Arbor, MI, USA) with an excitation wavelength of 785 nm and an integration time of
1 s, see Figure 1a,b. These spectra were used as a basis for the theoretical analysis on the influence of
fluorescent background contributions and noise levels on the recovery of informational content.

Data analysis of the Raman spectra and spectral simulations were performed in R [52], using
the packages hyperSpec, Ramancal, baseline, and pracma [53–56]. The recorded Raman spectra
were wavelength calibrated, during which all spectra were corrected to the same wavenumber axis
relative to 785 nm. Furthermore, the spectra were background corrected by using support points
determined from a convex hull of the spectrum and smoothed by applying a local polynomial regression
fitting. The processed spectra were shifted by multiple wavelength steps between 1 nm and 4 nm to
simulate Raman spectra recorded at different excitation wavelengths. The optimal shift was evaluated
using the autocorrelation function from the forecast package [57,58]. The computational background
correction was performed on the measured Raman spectra at 785 nm excitation, using the emsc function
available in the cbmodels package [59]. For the simulations of different auto-fluorescence contributions,
fluorescence spectra were measured on the commercial Raman setup and fitted by a polynomial
function. The different fluorescence intensity levels were simulated by the multiplication of a constant
factor and added to the Raman spectra of lipids and proteins. The noise contribution was estimated by
applying a Poisson distribution function on the square root of the intensity, see Figure 1c,d.

SNRs were determined under the shot noise-limited definition [60], where the noise is calculated
as the square root of the signal intensity. The SNR was calculated for each pixel of the spectrum,
leading to a wavenumber-dependent SNR spectrum. Regions without relevant bands were removed.
To determine a single SNR value for each spectrum, the second derivative of the spectrum without noise
was calculated and the maxima including surrounding points of a certain wavenumber window were
detected. A threshold was used to determine spectral locations to calculate the SNRs of importance,
see Figure 1e,f. Those selected SNRs were averaged to obtain a mean SNR for the entire spectrum.
The second derivative and smoothing of the preprocessed spectrum were performed by using the
polynomial filtering method of Savitzky and Golay [55].

2.2. Experimental Approach

Raman measurements were performed using a tunable diode laser DL Pro (Toptica Photonics AG,
Gräfelfing, Germany) enabling a tuning range from 765 to 805 nm. To achieve a higher output power
the laser was coupled, using a single mode fiber, into a laser amplifier (BoosTA, Toptica Photonics
AG). The output laser power at 785 nm after the amplifier was adjusted to 200 mW. The laser power at
785 nm after the objective was 95 mW. No damage to the tissue was observed.
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estimated by the Savitzky and Golay function; (f) SNR of the lipid spectra with fluorescence, the black 
spectrum is the SNR of the lipid spectrum, the red spectrum correspond to the SNR of the lipid 
spectrum with fluorescence 5 times the maximal band of the lipid signal, the blue spectrum is the SNR 
of the lipid spectrum with fluorescence factor 10 of the lipid signal. 

Figure 1. Baseline corrected spectra and spectra with simulated fluorescence backgrounds and shot
noise levels: (a) Baseline corrected spectrum of lipids; (b) Baseline corrected spectrum of proteins;
(c) Lipid spectra with added fluorescence intensities, i.e., 10 (blue), 8 (green) and 5 (red) times the
maximal band of the lipid signal, including corresponding noise levels. The black spectrum is the lipid
spectrum without fluorescence; (d) Protein spectra with added fluorescence intensities, i.e., 10 (blue),
8 (green) and 5 (red) times the maximal band of the lipid signal, including corresponding noise levels.
The black spectrum is the protein spectrum without fluorescence; (e) Spectral bands and windows
of the measured lipid spectrum, the black points are the maxima and the windows estimated by the
Savitzky and Golay function; (f) SNR of the lipid spectra with fluorescence, the black spectrum is
the SNR of the lipid spectrum, the red spectrum correspond to the SNR of the lipid spectrum with
fluorescence 5 times the maximal band of the lipid signal, the blue spectrum is the SNR of the lipid
spectrum with fluorescence factor 10 of the lipid signal.

Excitation wavelengths between 784 and 786 nm where chosen. Wavelengths below and higher
this range experienced high losses due to filter parameters, resulting in reduced excitation power
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and lower Raman signals. The laser was guided into a home-built microscope setup with a 40×
magnification, NA = 0.55 objective lens. The setup has been previously described [61]. The sample was
placed on a holder, which is mounted on two motorized x-y translational stages (CONEX MFA-Series;
Newport, Irvine, CA, USA). To allow a sample translation in z-direction the motorized x–y translational
stages were mounted on an automated z-positioning stage (MTS25-Z8, Thorlabs, Newton, NJ, USA).
The generated Raman signal was collected by the same objective lens and separated from the excitation
light by a dichroic notch filter (785 nm, bandwidth 89 nm; Semrock, Rochester, NY, USA). An
additional notch filter (785 nm ± 19 nm; Laser Components, Olching, Germany) was used for a
reliable suppression of the excitation light. An achromatic doublet (100 mm; Thorlabs) focuses the
Raman signal onto a multimode fiber (105 µm core, Thorlabs). The signal was then fiber-coupled
into a spectrometer (IsoPlane160, Princeton Instruments, Acton, MA, USA) that is equipped with a
grating with 400 grooves/mm, blazed at 750 nm, and allows a spectral resolution of 9 cm−1. The
signal is dispersed onto a charge-coupled device (CCD) (PIXIS-400BR-eXcelon; Princeton Instruments)
with a nominal quantum efficiency of up to 98% at 800 nm. The setup is controlled by in-house
written data-acquisition software in LabView (National Instruments, Austin, TX, USA). The data
acquisition was designed such that at each spatial location in the sample five Raman spectra at
different excitation wavelengths, ranging between 784 nm to 786 nm with an interval of 0.5 nm, were
measured consecutively. After all measurements for one spatial location were performed, the next
location was measured.

Raman images were acquired of meat samples, providing typical biological spectra of fibrous
protein from muscle tissue and tendons, non-fibrous proteins, lipids, and bone. Images were acquired
of 10 mm by 10 mm areas with a step size of 0.5 mm, and an integration time of 1 s. Data analyses
were performed in R [52]. All spectra were cleared from cosmic spikes [62,63]. To generate background
corrected Raman spectra, the spectra measured at 785.0 nm were baseline corrected by EMSC. Seven
components, i.e., constant offset, a linear function, and multiple fluorescence functions were used as
background estimates; and Raman spectra of collagen, protein, lipid spectrum and bone were used for
pure component spectra. The components were fitted to the measured Raman spectra. The determined
coefficients multiplied with the background component spectra were subtracted from the raw spectra.
The corrected spectra were area normalized and grouped into four clusters by hierarchical cluster
analysis (HCA).

Difference spectra were obtained by subtracting the Raman spectra acquired at different excitation
wavelengths from the Raman spectrum measured at the excitation wavelength of 786 nm of the same
spatial location in the tissue sample. Thereby, four SERDS spectra per image point with different
wavelength shifts, i.e., 0.5 nm, 1.0 nm, 1.5 nm, 2.0 nm, were obtained, which can be represented in four
SERDS images containing 400 Raman difference spectra. Before calculating the differences spectra,
the cosmic spike-corrected spectra were normalized or optimized. Three different types of processing
methods were tested:

area normalization : San(ν̃i) =
S(ν̃i)

∑n
i=1 S(ν̃i)

(1)

z-score normalization/standard normal variate [64]:

Szn(ν̃i) =
S(ν̃i)−mean(S)

SD(S)
(2)

subtraction optimization : minimization o f AUC (|S1 − (x·S2)|) (3)

with S—signal; ν̃—relative wavenumber; SD—standard deviation; AUC—area under the curve.
For the subtraction optimization a random value x is multiplied to the spectrum, which is being

subtracted, and the area under the curve (AUC) of the absolute values of the difference spectrum is
calculated. The value x is than iteratively adjusted, so that the AUC is minimized.
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3. Results

3.1. Theoretical Approach

Ideally, Raman spectra show defined bands, as seen in Figure 1a for lipids and Figure 1b for
proteins. However, due to the high auto-fluorescence background in biological tissue, Raman bands
are superimposed with an auto-fluorescence background and as well as accompanying shot noise,
shown in Figure 1c,d.

Even small amounts of fluorescent molecules in a sample can cause high background intensities.
The fluorescence scattering cross-section is usually several orders of magnitude higher than the Raman
scattering cross-section [65,66].

After adding the simulated fluorescence background and shot noise to the Raman signal,
as shown in Figure 1, the Raman bands can barely be distinguished, because the noise level is increasing
with the intensity of the fluorescence signal, following the square root of the total signal intensity.
Therefore, at higher fluorescence contributions the SNR is lower for a constant Raman signal intensity,
as shown in Figure 1f. An estimated average SNR value of the main bands for each spectrum was
calculated based on the described algorithm in the materials and method Section 2.1. The average SNR
for the lipid spectrum without fluorescence is approximately 6.8 (Figure 1f, black spectrum). If the
lipid spectrum has a fluorescence intensity five times higher than the maximal band intensity of the
lipid spectrum the average SNR decreases to 3.4 (Figure 1f, red spectrum). For a fluorescence intensity
10 times higher than the maximal band intensity of the lipid spectrum the average SNR is only 2.5.

In order to evaluate different methods to correct auto-fluorescence background contributions a
set of fluorescence intensities was created to simulate fluorescence contributions at different intensities
and hence, different SNRs for a Raman signal with constant signal intensity. SERDS simulations were
then performed on the set of created noise and background affected spectra. Before the evaluation
of SERDS for background correction, an optimal laser wavelength shift had to be determined. The
optimal shift distance has often been defined as the wavelength difference, which corresponds to the
half-width of a Raman band [43]. However, this is only valid when bands with similar bandwidth
are present within a spectrum, which is not the case in Raman spectra of most biological samples as
discussed in the introduction. Therefore, the optimal wavelength shift was defined as the shift, which
retains most of the signal information in the difference spectrum. Autocorrelation of pure Raman
spectra were performed to determine the optimal shift. The autocorrelation function of lipid (black)
and protein (red) is shown in Figure 2a.

A complete overlap between the spectrum and itself results in a perfect autocorrelation (acf = 1),
seen in Figure 2a. Meaning, if two signals are fully overlapped the difference spectrum of those
signals will have zero informational content. A very low autocorrelation coefficient indicates a low
self-similarity of the signal and will result in high signal intensities in the difference spectra. Hence,
high 1-acf values will result in higher signal of difference spectra. This approach was used as an
indicator for the optimal shift for pure spectra of lipid and protein. Shifts were analyzed in a region
between 0 to 12.6 nm because a higher shift might result in effects on the fluorescence spectrum and
are technically very challenging to implement. The highest intensities retained in the difference spectra
were for a shift of 7 nm for lipid, and 10 nm for protein, corresponding to 110 and 160 cm−1, respectively
(see Figure 2b). These values are much higher than commonly reported [37,67,68]. It is also visible in
Figure 2b that when the shift in wavelength for lipid is higher than 7 nm the 1-acf decreases, resulting
in a reduction of signal. The influence of the shift on the retained signal intensity can be best visualized
by plotting the corresponding difference Raman spectra for lipids with and without noise, as seen in
Figure 2c,d. For a shift of 1 nm (green) there is 47% of the signal retained, for a shift of 2 nm (black) 54%
of the signal is retained and by shifting 4 nm (blue) a considerable part of the signal is retained (68%).

To compare SERDS and EMSC the simulated Raman spectra with fluorescence and noise from
Figure 1c,d, with a fluorescence intensity level of five times the maximal band of the lipid signal,
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were chosen. A Raman shift of 4 nm was used and after applying SERDS the absolute values of the
difference lipid and protein spectra were calculated (see Figure 3a,b, blue spectra).
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Figure 2. Optimal shift: (a) Estimation by using the autocorrelation function of lipid and protein spectra
(b) Estimation by using the 1-autocorrelation function of lipid and protein spectra; (c) Simulation of the
difference spectra of lipid at 1 nm shift (green), 2 nm shift (black) and 4 nm shift (blue) with noise, the
values are the percentage values of the retained signal; (d) Simulation of the difference spectra of lipid
at 1 nm shift (green), 2 nm shift (black) and 4 nm shift (blue) without noise.

The absolute values of the difference spectra are illustrated in order to indicate how much signal
is retained in the difference spectra. The same plot also shows the EMSC corrected spectra (green), and
the original Raman spectra with and without noise, colored red and black, respectively. The processed
SERDS signal (blue) has lower intensity than the EMSC corrected spectra (green). When comparing
the EMSC corrected spectra (green) with the original spectra with noise (red) in Figure 3, one can see
that it resembles the original spectra with noise quite well. The intensity of the signal is not reduced as
in the case of the difference spectrum based on SERDS (blue). The reader should keep in mind that
the acquisition time for SERDS is twice as long, as for a normal spectrum, because two spectra are
acquired. Hence, the intensity of the Raman signal for the background corrected case should actually
be twice as high.

In a shot noise limited measurement the SNR of a Raman signal is inversely proportional to the
square root of the sum of the Raman signal and the fluorescence (Equation (4)). Consequently, the SNR
will be very low at very high fluorescence intensities. For SERDS a further problem occurs, which is
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that while the signal intensity is subtractive, the noise contribution is additive, Equation (5). Hence,
one disadvantage in SERDS is the reduction of the overall SNR in the difference spectra. It is possible
to express the SNR of SERDS measurements in terms of the SNR of Raman measurements for identical
acquisition conditions, i.e., the acquisition time of a Raman spectrum has to match the acquisition time
of two SERDS spectra.
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Figure 3. EMSC and SERDS spectra for lipid and protein: (a) Lipid spectrum without background
(black); lipid spectrum with noise added (red, noise corresponds to the poison distribution of original
spectrum and the added fluorescence five times the maximal band of the lipid signal); EMSC corrected
lipid spectrum after adding a fluorescence background five times the maximal band of the lipid signal
(green); absolute values of SERDS difference spectrum of lipid after shifting 4 nm (blue); (b) Protein
spectrum without background (black); protein spectrum with noise added (red, this noise corresponds
to the poison distribution of original spectrum and the added fluorescence five times the maximal band
of the protein signal); EMSC corrected protein spectrum after having fluorescence background five
times the maximal band of the protein signal (green); absolute values of SERDS difference spectrum of
protein after shifting 4 nm (blue).

Equation (9) shows that for S2 smaller than S1 the SNRSERDS will be smaller or equal to half of
the SNRRAMAN; for S2 = S1 SNRSERDS is 0; and for S2 ≥ 2S1 SNRSERDS ≥ SNRRAMAN/2. The last term
indicates that the SERDS difference spectrum can locally have a higher SNR as a Raman spectrum.
However, in general the total spectral SNR is of importance and the local SNR is not always meaningful.
The summation in Equation (10) allows assessing the SNR over the entire measurable spectral region
or a region of interest. Because the autocorrelation function for any reasonable shift is non-zero (see
also Figure 2a), the total SNR of SERDS is always smaller than the SNR of Raman.

SNRRAMAN(λi) =
S1(λi)√

S1(λi) + F1(λi)
(4)

SNRSERDS(λi) =

∣∣∣∣∣
S1(λi)− S2(λi)√

S1(λi) + F1(λi) + S2(λi) + F2(λi)

∣∣∣∣∣ (5)

for S� F and F1(λi) ≈ F2(λi)

SNRSERDS(λi) =
1√
2

∣∣∣∣∣
S1(λi)− S2(λi)√

S1(λi) + F1(λi)

∣∣∣∣∣ (6)
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for identical acquisition parameters for Raman and SERDS tSERDS = 2·tRAMAN

SNRRAMAN(λi) =
2·S1(λi)√

2·
√

S1(λi) + F1(λi)
(7)

SNRSERDS(λi)

SNRRAMAN(λi)
=

1
2
·
∣∣∣∣
S1(λi)− S2(λi)

S1(λi)

∣∣∣∣ (8)

SNRSERDS(λi) =
SNRRAMAN(λi)

2
·
(∣∣∣∣1−

S2(λi)

S1(λi)

∣∣∣∣
)

(9)

SNRSERDS =
1
2
·

n

∑
i=1

SNRRAMAN(λi)·
(∣∣∣∣1−

S2(λi)

S1(λi)

∣∣∣∣
)

f or S1 ≥ 1 (10)

with S—Raman signal; F—fluorescence signal; λi—wavelength; t—acquisition time.

3.2. Experimental Approach

Since the simulations showed the influence of the shift in excitation wavelength on the SERDS
spectra, SERDS measurements of tissue samples were performed with different wavelength shifts.
Because the largest shift that could be realized in our experimental setup was 2 nm (ca. 32 cm−1), four
different shifts in excitation wavelength were measured in a 0.5 nm interval. In Figure 4 these different
mean SERDS spectra of raw data for the lipid cluster of a tissue sample are shown. They show the
same tendencies that could be seen in the simulations: the largest shift (blue) has the highest intensity,
while the lowest can be observed for the smallest shift (black). This 0.5 nm shift is so small that the
retained background is significant to the retained signal and cannot correct the spectra efficiently. It is
also evident that the subtraction of raw spectra does not remove the background completely.
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Figure 4. Measured difference mean raw spectra of a lipid cluster at different excitation wavelength
shifts (shift: 0.5 nm (black), 1.0 nm (red), 1.5 nm (green), 2.0 nm (blue)).

For the comparison of SERDS and EMSC, the largest possible shift was applied for the
experimental measurements. Raw spectra (λ1 = 786 nm, λ2 = 784 nm, λSERDS = λ1 − λ2) were
used to generate the SERDS spectra. The EMSC correction was performed on the spectra measured
at 785.0 nm.

The correction of real data with the computational background correction method EMSC can
be demanding, if there are no pure component spectra available for the measuring system. For a
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system where all contributing spectral components are known this method works very well even for
spectra with a high fluorescence background. The fluorescence background can be approximated by a
higher polynomial and used as a background component. For a Raman image of a complex tissue with
multiple spectra of different components, background estimation for fluorescence can be challenging
since the contribution might vary locally. Even if multiple fluorescence background estimates are
used for the EMSC algorithm, unknown varying backgrounds can cause performance problems for
the EMSC background correction. On the other hand, SERDS difference spectra are hard to interpret
since the band position cannot be reconstructed easily. Since difference spectra can be compared to
the 1st derivative of a Raman spectrum, the 1st derivative of the EMSC corrected Raman spectra
were calculated (Figure 5g–i). The black vertical lines show the band position in the EMSC corrected
spectra (Figure 5d–f). For the lipid spectrum the band positions of the EMSC corrected spectrum
overlaps quite nicely with the inflection points of the 1st derivative and the SERDS spectrum as seen
in Figure 5a,d,g. For protein spectra, the band position of the EMSC corrected spectra also overlap
with the inflection points of the 1st derivative of the EMSC and the SERDS spectra (Figure 5b,e,h and
Figure 5c,f,i). However, the difference spectra are noisy and the bands are not easily located. It is even
worse for the 1st derivative EMSC corrected spectra of proteins, which has a very high noise level.
In the weaker protein spectrum in Figure 5c,f,i, bands are very hard to discern because of the high
noise in the 1st derivative spectrum.
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Figure 5. Comparison of measured lipid spectrum (a,d,g) and two protein spectra (b,e,h) and (c,f,i).
Raw SERDS difference spectra (2 nm shift, (a–c), blue); EMSC corrected spectra at 785 nm ((d–f), green);
1st derivative of the EMSC corrected spectra at 785 nm ((g–i), green); the vertical black lines mark
band positions.

The intensity loss due to the subtraction of two raw spectra to generate the SERDS spectrum is
clearly evident. The SERDS intensity is approximately half of the intensity of the EMSC spectra as seen
in Figure 5. The SNR for the SERDS spectra is also lower than for the EMSC corrected spectra.
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Unlike in the simulated data the measured Raman spectra cannot be corrected by subtraction
of one Raman spectrum from another. As shown in Figure 5 (blue spectra) and Figure 6a,b (black
spectra), a simple subtraction of the raw spectra does not result in background-free difference spectra.
For example, the mean spectrum of lipids is below zero intensity and has a bent in the spectral profile
(Figure 6, black spectra). Photobleaching and variation in the laser power at the different excitation
wavelengths cause changes in the background and total intensity, making the simple correction
approach not suitable for most biological samples. A better overlap of the SERDS pair has to be
accomplished, which requires further data processing before calculating the difference spectra.

Spectral normalization is one possible approach to obtain same relative intensities for all excitation
wavelengths. Two different normalization procedures, as well as a subtraction optimization, were
applied to the raw spectra as explained in the methods section. In Figure 4 the effect of the different
spectral processing methods on lipid and protein spectra with fluorescence contributions are shown.

Lipids have a high Raman scattering cross-section and frequently occur at high local
concentrations and therefore have a high Raman intensity as in comparison to protein for identical
acquisition conditions, leading to strong difference bands. Due to the high intensity in comparison to
the noise contribution, the noise-related standard deviation of the lipid difference spectra is low in
comparison to protein spectra. Proteins have a smaller Raman scattering cross-section in comparison
to lipids and have a lower local concentration, and a higher noise-related standard deviation in the
protein difference spectra.
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Figure 6. Comparison of different SERDS data processing methods with a 2 nm shift for (a) measured
lipid spectra and (b) measured protein spectra. For every method the mean spectrum (darker shade)
along with its standard deviation is shown. Black: difference spectra obtained by subtraction of
raw data; red: difference spectra after area normalization; green: difference spectra after z-score
normalization; blue: difference spectra after subtraction optimization.

By applying area normalization to the SERDS spectra before subtraction, an improvement of the
background correction can be observed. This improvement is a result of the better overlap between the
spectra (Figure 6a,b, red spectra). There are still background contributions left in the difference spectra,
which are clearly visible in the bending and the offset of the protein spectra (Figure 6b, red spectrum).

The z-score normalization results in an even better overlap between the spectra (Figure 6a,b, green
spectra). The background in the difference spectra is minimized and the mean spectra are close to zero
intensity for areas with no signal. Especially for the lipid spectra the z-score normalized difference
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spectrum has almost no background and no bending. For the high wavenumber region, however, this
normalization also does not work well.

A further approach, which was tested, is based on subtraction optimization. Due to minimization
of the area under the difference spectra, artifacts based on different laser intensities at the different
excitation wavelength, and filter throughput of the different wavelength can be corrected. Still, after the
subtraction optimization small background contributions are left (Figure 6a,b, blue spectra). Although
the difference spectra are closer to zero where there is no signal, there is still a deviation visible
especially in the protein difference spectrum. The intensity differences of the Raman bands in the
difference spectrum are more pronounced than in the other methods and the standard deviation is
minimized. The high wavenumber region is better corrected than for the other methods.

The results show that a simple subtraction of the raw spectra is not suitable to remove background
contributions in a Raman spectrum with high auto-fluorescence contributions. With preprocessing of
the spectra based on normalization or subtraction optimization a better overlap of the SERDS pair can
be achieved. Nevertheless, some background artifacts still remain. Especially the difference spectra
of the broad envelope of CHn bands between 2800 and 3100 cm−1 result in not very pronounced
difference bands. This shows that the small wavelength shift of 2 nm is not sufficient to have a
clear separation of the broad CHn bands. Hence, the CHn bands are canceled out by subtracting the
two spectra. Z-score normalization and the subtraction optimization both result in a better spectral
overlap of the background and provide a better correction than the area normalization. The remaining
background of the difference spectra can be corrected, using a polynomial fitting approach.

4. Discussion

The goal of this research was to compare an instrumental with a computational background
correction method for Raman spectroscopy of biological samples. One of the most common
instrumentation-based methods for background correction of Raman spectra is SERDS, which was
compared to the computational method EMSC. The evaluation between the methods was first
performed on simulated fluorescence and noise levels, and then on measured spectra.

The simulation of the effect of fluorescence and shot noise showed that Raman bands can be
barely distinguished even if the fluorescence intensity is just five times higher than the maximal Raman
band of the lipid signal, because of the shot noise resulting from fluorescence background. The SNR
at each wavenumber of the simulated spectra was calculated and an estimated value was used to
evaluate the overall SNR for different fluorescence signal intensities and difference spectra. This
demonstrated that the SNR of the difference spectrum is lower than for a normal Raman spectrum,
because the signal is subtractive while the noise is additive. It was also shown that the SNR is reduced
inversely proportional to the square root of the fluorescence background for a Raman spectrum with
fixed signal intensity. In contrary to previous suggestions to use very small shifts, which correspond
to the full width at half maximum of a Raman band, a new criterion was proposed: i.e., the optimal
shift is defined as the wavelength shift that retains the most information in the spectrum. By using the
autocorrelation function, an optimal shift for lipids and proteins, using the proposed criterion was
estimated. It was found that there is a region between 5 and 7.5 nm (for lipid) that retains the highest
information and results in the highest SNR. This corresponds to a wavenumber shift of 80 to 120 cm−1.
If the spectra are shifted by more than 7.5 nm, the correlation between the spectra will result in reduced
signal after the subtraction. The reduction is due to an increase in an overlap between bands, which do
not correspond to the same vibrations, being shifted into each other, resulting in misleading Raman
difference information.

For EMSC it was shown that broad polynomial backgrounds could be removed without distorting
the Raman bands and compromising the signal intensity nor adding additional noise to the spectra.
Furthermore, EMSC can be superior to SERDS, since the spectral acquisition of SERDS requires the
acquisition of two spectra, and hence, twice the acquisition time.
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For the experimental implementation of SERDS a shift of 5 to 7.5 nm, as required for lipid
spectra, can currently not be implemented in our setup, due to limits imposed by the used filters
and the intensity stability of the excitation source. A wavelength shift of 2.0 nm was the largest
implementable shift without a loss in excitation power. Still, the experimental data supported the
simulated results, i.e., the larger the shift, the higher the retained intensities in SERDS spectra, which
was shown experimentally for shifts of 0.5 nm, 1.0 nm, 1.5 nm and 2.0 nm for lipids, and the better
the SNR. The experiments have shown that for protein and lipid spectra a simple subtraction of the
shifted raw spectra, as is usually done for SERDS, does not suffice to obtain background-free SERDS
spectra, and more complex computational methods, such as normalization or optimization, have
to be used. From the three tested methods, z-score normalization and the subtraction optimization
gave the best results. After performing EMSC on single Raman spectra, it was shown theoretically
and experimentally that the EMSC corrected spectra can recover the main Raman bands for lipids
and proteins. The simulation of the EMSC corrected spectra provided the same information as the
original spectra, even when shot noise was added. In contrast to the SERDS difference spectra, the
spectral interpretation of the Raman bands is not affected. To have a better comparison between
difference spectra and EMSC corrected spectra, the 1st derivatives of the EMSC corrected spectra were
calculated based on the experimental data set. It is clearly visible that SERDS experiences a high loss of
intensity information due to the subtraction. Since for SERDS two Raman spectra have to be acquired,
the measurement time is doubled compared to conventional Raman spectroscopy, leading to long
acquisition times for Raman imaging of tissue samples. However, a drawback of the EMSC method is
the estimation of very complex unknown backgrounds or multiple different fluorescence backgrounds,
which can occur in a single Raman images, due to photobleaching or presence of different fluorophores
in the sample.

5. Conclusions

For SERDS a reasonably good SNR is necessary to achieve a good background correction. The
spectra have to be normalized or optimized before calculation of the SERDS spectra to compensate
for fluctuations in signal intensity of the fluorescence background. Even then a further background
correction is needed to obtain background-free difference spectra. The larger the shift of the excitation
wavelength, the more signal intensity in a spectrum can be retained after the subtraction. For lipids the
optimal shift is at 110 cm−1 (7 nm for 785 nm excitation) and for protein at 160 cm−1 (10 nm for 785 nm
excitation). The proposed wavelength shifts are rather large, and can lead to changes in fluorescence
intensity or, in the worst case, can excite different fluorophores and result in completely different
fluorescence profiles. The interpretation of the difference spectra can be challenging, since it is hard to
determine the exact band positions. On the other hand, SERDS is advantageous because no previous
knowledge of the background is necessary for a correction.

Background correction with EMSC gives promising results for the simulated and the experimental
data. It can, however, be challenging when dealing with complex samples and complex backgrounds.
Pure spectra have to be generated and fluorescence background components have to be approximated.
For Raman images with different fluorescence backgrounds, this can be tedious since more than one
fluorescence component will be necessary.

In summary, SERDS and EMSC are both powerful tools for fluorescence background correction,
with distinct advantages and disadvantages. When background spectra can be estimated, EMSC
outperforms SERDS, because it keeps the fidelity of the Raman spectrum, does not require additional
equipment, and guaranties a higher SNR. When, however, backgrounds are too complex to be
estimated, SERDS could be a good choice as a background correction method.
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Abstract

Existing approaches for early-stage blad-

der tumor diagnosis largely depend on

invasive and time-consuming procedures,

resulting in hospitalization, bleeding,

bladder perforation, infection and other

health risks for the patient. The reduction

of current risk factors, while maintaining

or even improving the diagnostic preci-

sion, is an underlying factor in clinical

instrumentation research. For example, for clinic surveillance of patients with

a history of noninvasive bladder tumors real-time tumor diagnosis can enable

immediate laser-based removal of tumors using flexible cystoscopes in the out-

patient clinic. Therefore, novel diagnostic modalities are required that can pro-

vide real-time in vivo tumor diagnosis. Raman spectroscopy provides

biochemical information of tissue samples ex vivo and in vivo and without the

need for complicated sample preparation and staining procedures. For the past

decade there has been a rise in applications to diagnose and characterize early

cancer in different organs, such as in head and neck, colon and stomach, but

also different pathologies, for example, inflammation and atherosclerotic

plaques. Bladder pathology has also been studied but only with little attention

to aspects that can influence the diagnosis, such as tissue heterogeneity, data

preprocessing and model development. The present study presents a clinical

investigative study on bladder biopsies to characterize the tumor grading

ex vivo, using a compact fiber probe-based imaging Raman system, as a crucial

step towards in vivo Raman endoscopy. Furthermore, this study presents an

evaluation of the tissue heterogeneity of highly fluorescent bladder tissues, and
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the multivariate statistical analysis for discrimination between nontumor tis-

sue, and low- and high-grade tumor.

KEYWORD S

bladder cancer, imaging-based Raman, PLS-LDA, Raman probe, Raman spectroscopy

1 | INTRODUCTION

Bladder cancer is ranking as the ninth most frequently
diagnosed epithelial cancer worldwide. In 2012, around
549 393 new bladder cancers cases were reported glob-
ally, out of which 200 000 cases were fatal, and approxi-
mately 75% of the deceased were males [1, 2]. About
75% of the patients suffer from nonmuscle invasive blad-
der cancer displaying favorable prognosis, although
30%-80% of cases will recur [3]. Bladder cancer histo-
pathological diagnosis is based on stage and grade of the
tumor, where the stage refers to tumor invasion into the
bladder wall and grade to aggressiveness of the cells.
Stage and grade are judged by pathologist's examination
of an excisional tissue biopsy obtained via an endoscope
inserted through the urethra to the bladder, having the
patient most often in general anesthesia in the operating
theater. The tissue from suspected abnormal areas of the
bladder is sliced and stained for further morphological
evaluation by a pathologist. To monitor progression and
recurrence a frequent screening is required, making the
current bladder cancer diagnosis and treatment one of
the priciest medical practices with average lifetime costs
estimated at over $230 000 per patient [4–6]. The histo-
pathological procedure provides morphological tissue
features at the intra- and intercellular level, neverthe-
less, the underlying biochemical information is not
assessed [7]. Moreover, the diagnosis is not available
instantly due to histological/cytological preparations
preceding final microscopy by the pathologist. In order
to improve treatment, real-time differentiation between
healthy and tumor tissue, high- and low-grade lesions at
early stage is urgently needed [8–10]. In the past two
decades new optical methods for clinical diagnostics,
such as fluorescence endoscopy [11], optical coherence
tomography [12], narrow band imaging [8], and others,
have emerged. Most of these techniques effectively pro-
vide contrast to detect tumor lesions and allow for dif-
ferential diagnostics, that is, tumor vs healthy tissue,
but largely lack the means to assess the biomolecular,
which may assist the urologist to decide treatment with-
out delay. Knowing the molecular fingerprint of cells
not only allows for precise diagnostic characterization of

the tumor, but also enables new pathological insight
into the disease progression. Raman spectroscopy has
emerged as an incipient tool for in vivo diagnostics,
which provides a comprehensive and label-free bio-
chemical characterization of tissue samples [13]. The
method has been widely used in clinical ex vivo and
in vivo investigations for the diagnosis of inflammatory
diseases and cancers in different organs [13–28], demon-
strating the great potential for label-free histopathology
[29], cytology [30], biopsy surgical targeting and moni-
toring studies. This spectroscopic technique has readily
been used to characterize bladder tissue by De Jong et al
and Stone et al in 2002 [13, 31], demonstrating its capa-
bility to distinguish tumor malignances in epithelial tis-
sues [19]. A review on the applications of Raman
spectroscopy for the interrogation of bladder tissue for
cancer diagnosis is summarized in [32].

Raman spectroscopy has been applied in vivo to char-
acterize tumor tissue, assisting surgeons during transure-
thral resection of tissue to differentiate on site malignant
tumor [33]. As a first instance of in vivo bladder charac-
terization, Draga et al reported the ex vivo and in vivo
characterization of bladder tissue, employing a fiber-optic
Raman probe to detect tumor bladder from normal blad-
der with a sensitivity of 85% [34]. Notwithstanding,
tumor resection of biopsies is still invasive; the target is
to adapt Raman spectroscopy to an endoscope in order to
minimize the invasion during the tissue inspection in
surgery. The present study explicitly aims at providing an
in-depth characterization of bladder cancer and outlines
strategies for data processing and establishes parameters
for future in vivo label-free diagnosis [35]. Therefore,
greater extend of ex vivo investigations are crucial to fur-
ther move this technology into this direction, in this con-
nection the presented study plays an essential role.

The translation of Raman spectroscopy as a clinical
standard tool to assist current diagnosis of bladder tumor
grading still must tackle technological and methodical
challenges. For instance, proper correction of tissue
autofluorescence issue, routines to validate the robustness
of the system for clinical use of the equipment, and the
consensus on optimal data preprocessing methods will
have to be further investigated [36].
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The aim of the present study is to demonstrate the
feasibility of Raman spectroscopy to further comple-
ment clinical trials by differentiating the tumor grading
of bladder biopsies and correlating the main changes in
molecular constituents to characterize the tissue hetero-
geneity. We provide a comprehensive overview of sam-
ple and data handling, followed by detailed description
of the implemented system. We elucidated problems of
tissue heterogeneity, which can significantly reduce the
performance of a model. In addition, we present a com-
parison between model-based prediction for tumor and
non-tumor and changes in the molecular signatures
associated with the pathological differences. Our pres-
ented evaluation will help to improve the comprehen-
sion of the molecular differences between underlying
molecular changes in bladder pathology.

2 | MATERIALS AND METHODS

2.1 | Study population and procedures

Biopsies were obtained from patients, admitted to the
urology department in Herlev hospital, suffering from
bladder tumor or suspicion of bladder tumor disproved
during surgery. The clinical study protocol was approved
by the local Danish ethical committee No: H-17015549.
Flow of sensitive data was secured and approved by the
Danish Data Protection Agency via data management
agreements between research centers. After patients were
informed and written consent was conferred, biopsies
were obtained at the operating theater during transure-
thral resection of bladder tumors. The biopsies were
obtained from healthy bladder wall and from bladder
tumors. Each biopsy was divided into two parts, of which
one biopsy was sent for a histopathological diagnosis and
the other was placed on acetate paper and saline buffer
added for spectroscopic examination. In contrast to previ-
ously reported studies [13, 37], an entire extracted biopsy
without thin-sectioning was used in this study with the
purpose of maintaining the integrity of the tissue, since
sectioning and staining can severely alter the structure of
the biopsy. The summary of the present pathologies is
outlined in Table S1.

A total of 67 biopsies were obtained from 28 patients
with bladder tumor (8 females; 20 males; median age:
73 years) from which 19 biopsies from seven patients
were excluded from the data analysis due to either being
of other tissue, that is, benign prostate (n = 4), prostate
cancer (n = 2), unknown histopathology (n = 6) or mea-
sured under different experimental conditions (n = 7)
(Figure 1). Of the remaining biopsies a total of 42 biop-
sies were examined immediately after surgery and six

were frozen at −80�C, and analyzed at a later time
point.

2.2 | Setup description

Raman spectra were collected on a custom-made
Raman system equipped with a fiber-optic Raman
probe (InPhotonics, RPB), which was connected to a
785-nm single-mode excitation laser (XTRA, Toptica)
with a nominal output power of 300 mW, and a spec-
trometer (IsoPlane 160, Princeton Instruments)
equipped with a 400 groves/mm grating and a back-
illuminated deep depletion CCD camera (PIXIS400,
Princeton Instruments) with a 1340 × 400 imaging
array and 20 μm × 20 μm sized pixels. The excitation
light was filtered inside the probe to remove unwanted
background contributions from the delivery fiber and
focused by a lens into a spot of 100 μm. The generated
Raman signal was collected by the same lens. The sig-
nal was separated from the excitation with a dichroic
mirror, and then focused into the entrance aperture of
a multimode collection fiber with a core diameter of
200 μm and an numerical apperture (NA) of 0.22, which
is connected to the spectrometer. The samples were
placed on a calcium fluoride (CaF2) slide (Crystal, Ger-
many) that was mounted on the motorized translational
stage (MLS203, Thorlabs). The setup is illustrated in
Figure 2.

FIGURE 1 Summary and breakdown of patients and biopsies.

Misc. refers to miscellaneous nonbladder tumor histopathology

(four benign prostatic tissues, two cancer prostate tissue, six

biopsies with unknown histopathology), and biopsies measured

under different experimental conditions. Biopsies belonging to this

group were not selected to train the model. Tumor (nongrading)

refers to histopathological assignment indicating tumor without

grading. This data was used just to create the models that

differentiate tumor and nontumor regions
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Raman images of the biopsies were acquired by
raster-scanning the sample, while keeping the probe sta-
tionary. A conventional CMOS camera (DCC1545M,
Thorlabs), which was located next to the Raman probe,
allowed the acquisition of a brightfield image of the
sample and the selection of a region of interest (ROI) for
the Raman measurements. The acquisition of Raman
spectra from the biopsy was performed automatically,
using in-house software for instrument controlling writ-
ten in LabView. Each of the samples was placed on the
CaF2 slide with the urothelial surface pointing to the
Raman probe. Similar to previously reported studies, a
785-nm excitation wavelength was selected to avoid
high fluorescence [38, 39], with an excitation power of
100 mW, which allows obtaining a sufficient signal to
noise ratio, without any obvious damage to the tissue.
Each spectrum was acquired at an acquisition time of
3 seconds, but the total spectral collection time was
dependent on the ROI size. For the averaged sample size
of approximately 4 mm2 the measurement of 400 spectra
took around 20 minutes.

2.3 | Data analysis

All data pretreatment and analysis steps were performed
using the RStudio software for statistical computing and
graphics [40, 41]. The data import, export, the
preprocessing algorithms and the development of the
classification model were performed using hyperSpec and
cbmodels packages [42].

2.3.1 | Preprocessing

Raman spectra of bladder tissue exhibit very high tissue
autofluorescence (Figure 3A). To extract the Raman sig-
nal from the raw spectra the data was preprocessed, that
is, calibrated and corrected for cosmic spikes and back-
ground contributions, respectively. The wavenumber cali-
bration was performed using the relative peak positions
of N-acetyl-p-aminophenol powder (Acetaminophen,
Sigma-Aldrich) and intensity calibration was performed
by using the reference spectrum of a white light source
standardized by the National Institute of Standards and
Technology (Kaiser HCA calibration accessory). The cor-
rection for the constant offset bias and the dark current
was implemented by subtracting a recorded dark spec-
trum. Following this, cosmic spikes were removed using
a correction algorithm developed by Ryabchykov et al
[43]. The calibrated spectra were noise-filtered using the
prcomp function of the stats package in R, followed by a
Savitsky-Golay filtering [44].

As introduced in this section, one of the main chal-
lenges for the data preprocessing is the high fluorescence
background, as it can be observed in Figure 3A. This
background mainly originates from the presence of
endogenous fluorophores, such as pyridinic (NADPH)
and flavin coenzymes as well as collagen and elastin from
the extracellular matrix [45]. Besides the high
autofluorescence from the tissue that obscures the
Raman signal, there is some additional background from
the fiber probe. Among the background correction
methods asymmetric least squares (ALS) [46], the

FIGURE 2 Schematic representation of the Raman imaging system combined with a Raman fiber-optic probe. The optical design of

the fiber-optic Raman probe is indicated in more detail on the left-hand side
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modified polynomial fitting of Lieber and Mahadevan-
Jansen [47], statistics-sensitive nonlinear iterative peak-
clipping algorithm (SNIP) correction [48] and extended
multiplicative signal correction (EMSC) were tested.
Figure S1 displays the individual results for a visual com-
parison. The best performance for background correction
was achieved by EMSC, Figure S1A, and is based on a
least squares fitting of predefined background spectra, n-
order polynomials, and pure components spectra [49]. To
provide a comparison, the other methods are also shown:
ALS corrected spectra, Figure S1B, presented overfitting
in the low- and high-wavenumber region and back-
ground contributions from fiber and substrate were not
removed, the same is observed applying the polynomial
fitting approach (Figure S1C). The SNIP correction,
Figure S1D, can remove background coming from fiber
and substrate as EMSC does, however, it is slower than
EMSC and the SD due to the background is higher in
comparison to EMSC. Following the background correc-
tion, the data was normalized to unity. The resulting
mean spectrum with the spectral information from 600 to
3100 cm−1 is shown in Figure 3B, where the main spec-
tral contributions are related to proteins, collagen,
nucleic acids and lipids.

2.3.2 | Classification model

The classification was performed combining partial least
squares regression (PLS) as dimension reduction technique
with linear discriminant analysis (LDA) to differentiate three
main classes from the biopsies: nontumor (NT) tissue, low-
grade (LG) and high-grade (HG) tumor. The combination of
the PLS and LDA classifier allows to have an insight in the
underlying interclass differences in the molecular signature
via loadings and weights. In addition, the combination of

the methods has demonstrated that it can cope with large
variable to sample ratios [50].

In the PLS-LDA model, the linear discriminant
(LD) classifier uses the number of components deter-
mined by the partial least squares, also known as the
latent variables, as input space. The dimension reduction
technique helps to select relevant variables correlating
the best with the class attributes [50, 51]. The partial least
squares regression was performed using the function plsr
of the pls package [52]. The predictor matrix was based
on several mean spectra per biopsy and the response vec-
tor contained the histopathological assignment. The
number of components was determined based on leave-
one-out-cross-validation, while assessing the highest cor-
relation vs the least error [53].

2.3.3 | Cross-validation

To prevent overfitting of the classifier, cross-validation
(CV) was performed by applying a hierarchical scheme
for classification models, as presented in more detail by
Guo et al [54]. Hereby, a two-layer CV was applied where
the first layer or internal CV, known as training dataset,
was employed to construct the model and the external
CV or testing dataset was used for validation. The perfor-
mance of the classification model was validated by apply-
ing hierarchical splitting of the data, where a two-level
model was created, and is referred in the rest of the text
as model level 1 (ML1) for tumor and NT differentiation,
while model level 2 (ML2) refers to the differentiation of
LG and HG tumor, respectively. To test the influence of
the sampling area for ML1, between 1 and 80 spectra
were taken from random pixel locations of each biopsy,
and a mean spectrum was calculated. The dataset was
partitioned into fivefold with 10 iterations, resulting in

FIGURE 3 Mean and SD spectra of (A) raw Raman spectra for the entire dataset and (B) a mean Raman spectrum after the

preprocessing
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50 different models for each set, as illustrated in Figure 4.
The prediction for the tumor area is displayed in
Figure S3, where the prediction for the tumor and NT
location is indicated for a typical biopsy, and an indicated
number of spectra. To better summarize the results, the
prediction of the models for the indicated number of
spectra is plotted as the ratio of tumor region and total
region to the number of spectra used to build the model
(Figure S4). In most situations the ML1 model performs
independently of the number of spectra used. To ensure
that only spectra from tumor areas enter the subsequent
modeling ML2 phase, the predictions for each single
spectrum per biopsy were aggregated and the respective
spectrum was considered as “tumor” at a mean predic-
tion value above 1.5 and as “NT” at a value below 1.5,
respectively. Spectra with the predictive value 1.5 were
not assigned to any group. This range was selected by cal-
culating the kernel density of the mean prediction of
each biopsy, where it was found that for this range the
likelihood for belonging to any of the group NT (1) or
tumor (2) is 0. Shortly, the calculated mean prediction
was performed on each spectrum of each biopsy and just
the set of spectra predicted as tumor was subsequently
used for next modeling phase, this is represented in
Figure 4. Based on selected spectra from malignant tissue

the ML2 were created by using fivefold CV with 10 itera-
tions. The whole workflow is described in more detail in
Figure 4.

3 | RESULTS AND DISCUSSION

In total 67 biopsies were measured out of which
48 were used to create and validate the ML1 model
and of those 28 biopsies were used to generate and val-
idate ML2. Spectra from biopsies were assigned to
three groups according to the histopathological grad-
ing of the tissue, that is, NT, LG and HG tumor,
Figure 5. The mean spectra and SD of each group of
spectra have been calculated and plotted in Figure 6.
The main bands associated to lipid, collagen, protein
and nucleic acids have been labeled to allow an assign-
ment of the main differences between each group and
its molecular constituents. The goal of the investiga-
tion was, firstly, to characterize and to discriminate
bladder cancerous tissue and to perform tumor grad-
ing, using an in-house developed fiber probe-based
Raman-imaging platform, which effectively mimics
the in vivo conditions. Secondly, to provide and com-
pare a comprehensive data preprocessing and analysis

FIGURE 4 Workflow of the data splitting method used for the k-fold cross-validation of the models. Hierarchical splitting of data, the

data was split in fivefold groups to create (training set 1) and validate (testing set 1) the first level models (ML1): nontumor and tumor; the

models of the first level are used to select the tumor areas of the tumor data, just the tumor data resulted from the predictions of ML1 is

further partitioned in fivefold to obtain 5 groups of training set 2 and testing set 2, creating and validating the second level models (ML2),

respectively. The zoomed area represent how the mean set for each biopsy is obtained, random points from 1 to 80 are selected and for each

of the random groups a mean spectra is determined and each biopsy has a group of 80 mean spectra
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workflow that can deal with commonly occurring
background contributions, for example, fiber and
autofluorescence background, and to introduce a

robust analysis strategy, which extracts compressive
information from the biopsies and classifies tumor and
cancerous grade in bladder. Thirdly, to evaluate the

FIGURE 5 Beeswarm plots of the LDA scores of classification models mean ± SD of the coefficients for a single iteration. Figure 5A,B

beeswarm plot after predicting the models level 1 with the training sets 1 and models level 2 with the training sets 2, respectively. Figure 5C,

D beeswarm plot after validating the models level 1 with the testing sets 1 and the models level 2 with the testing sets 2, respectively.

Figure 5E,F mean ± SD of the coefficients for the predictions after validating ML1 and ML2
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effects of intrinsic tissue heterogeneity on the perfor-
mance of the models and to explore the spatial varia-
tion of Raman bands representative for dominant
constituents of cancerous/healthy bladder tissue.

3.1 | Chemometric modeling of biopsy
grading

As outlined in Section 2.3.3, a two-level PLS-LDA classifi-
cation model was built to differentiate between tumor
from NT ML1 and LG from HG tumor tissue ML2.
Figure 5A,C shows the beeswarm plots of the LD scores

for the training and testing dataset of a fivefold iteration
for ML1, respectively. The figures indicate that the model
performs very well to separate tumor (red) from NT
(black) biopsies with a sensitivity of 92% and a specificity
of 93%, Table 1. The achieved values to discriminate
tumor and NT tissue are well within the range reported
in previous studies [31, 32]. Despite that grade differenti-
ation is not as high, similar results were also reported
[32, 55]. While most of the reported studies used micros-
copy setups, here measurements were performed using a
small hand-held probe, which allowed to significantly
reduce the footprint of the entire device. The achieved
classification values were also potentially influenced by

FIGURE 6 Mean Raman spectra with

corresponding standard deviation of

biopsies diagnosed as nontumor (NT,

black), low-grade (LG, blue) and high-grade

(HG, red) tumor tissue, respectively. The

two bottom panels are difference spectra

derived from mean spectra from NT and

HG tumor and the difference spectrum

between the mean of NT and LG tumor.

The vertical lines indicate major bands
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the heterogeneity of the measured biopsies, and the fact
that, even though the biopsies were taken in close vicin-
ity slight differences which could have influence the vali-
dation of the model, might have been present.

The mean and the SD of respective LD coefficients of
ML1 are shown in Figure 5E. It is important to point out
that for ML1 the negative LD coefficients correlate with
the bands that indicate features related to NT tissue,
while the positive coefficients values indicate bands
related to tumor tissue. Positive features around 1299 and
1313 cm−1 indicate dominant presence of lipid bands in
tumor tissue, and negative features in the same region
indicate the dominant presence of collagen in NT tissue.
The performance of the ML2 is represented in Figure 5B,
D where the LDA scores are shown in a beeswarm plot
and a clear separation between the LG (green) and HG
(lila) classes is observed. The negative coefficients in
Figure 5F are indicators of spectral features to distinguish
LG from HG tumor. ML2 achieve an adequate tumor
grading in terms of predictive performance with a sensi-
tivity of 85% and an overall model accuracy of 84%
(Table 1).

Different classifiers were tested to establish the best
classifier for this dataset. Figure S2A displays the perfor-
mance of the employed classifiers after applying PLS-
based dimension reduction for LDA, QDA (quadratic dis-
criminant analysis) and LR (logistic regression). LDA
demonstrated to be the classifier with the best perfor-
mance, achieving highest accuracy and sensitivity for
ML1 and ML2. LR was also tested, nevertheless, in com-
parison to LDA, the differences in the performance were
minimal. LDA is less prone to overfitting in comparison
to QDA and does not require as big sample size to guar-
anty robustness. While SVM (support vector machine)
achieved the highest specificity, it had also the lowest
sensitivity. The new proposed hierarchical second level
classification model, which employs ML1 and ML2,
achieved better classification scores when discriminating
tumor and NT bladder tissue as the classical one level
classification model approaches, reported recently in
fiber-based Raman bladder diagnosis investigations [34,
55]. Figure S2B illustrates the performance comparison
for classifying LG and HG by using three different

approaches, the level 1 model classification approach
using a mean spectra per biopsy did not meet efficient
scores to differentiate LG from HG, discriminating with
very low accuracy (51%). Due to the heterogeneous
nature of some biopsies, applying the classical one-layer
approach with a set of random pixels per biopsy, for
example, 80 random pixels, and computing the mean
spectra termed mean random pixel (MRP), the outcome
improves, but is still too low to be of clinical value. When
applying the two-layer approach, using different sets of
MRPs, as employed in this study, the achieved perfor-
mance provides an improved discrimination between LG
and HG tumor with and accuracy of 84%. In order to test
the classification performance for tumor and NT tissue
differentiation based on the biochemical information of
particular bands only, two prominent bands, that is, col-
lagen band (1305 cm−1) intensities and lipid band
(2850 cm−1), were used for the training of a model. The
band information alone allowed to achieve a reasonable
classification accuracy of 87% (Figure S2C).

3.2 | Band assignments in Raman
spectra of nontumor, low- and high-grade
tumor tissue

The mean spectra of the LG and HG samples were calcu-
lated with the predicted tumor areas of the biopsies using
ML1 and are plotted together with the mean spectra of
healthy tissue, in Figure 6. Spectral contributions of colla-
gen and protein bands are resolved at 729, 937, 1003,
1104 and 1265 cm−1, where C C stretching of protein is
observed at 729 cm−1 and the C C vibration of collagen
backbone is evident at 937 cm−1 [56, 57]. The presence of
phenylalanyl protein at 1003 and 1104 cm−1 differs
between the mean spectra of LG and HG tumor. Strong
presence of amide III of collagen is observed at
1265 cm−1, where the band intensity of the NT mean
spectrum is higher than the band intensity of both LG
and HG tumor mean spectra; those differences in colla-
gen bands were also reported by De Jong et al and Stone
et al [37, 58].

Main spectral contributions of lipids are resolved at
1064, 1446, 1656 cm−1 and the high wavenumber region
at 2850 and 2930 cm−1, where an increase in band inten-
sities of the tumor spectra (LG and HG) in comparison
with the NT spectrum indicates and increment in lipid
content for tumor tissue. In addition, the difference spec-
tra between NT and HG (purple), NT and LG (green),
Figure 6, show a higher lipid content in both, LG and HG
biopsies, which can be observed in the negative peaks of
the bands at 1064, 2850 and 2885 cm−1. Significant lipid
bands are resolved at the CH2 bending mode of lipids

TABLE 1 Statistics of the model by class

Class ML1 (%) ML2 (%)

Sensitivity 92 85

Specificity 93 83

Accuracy 92 84

Confidence interval (89-95) (78-89)

Note: The confidence interval is calculated for the accuracy.
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and CH2 symmetric stretching of protein and lipids evi-
dent at 1446, 2850, 2885 and 2930 cm−1, respectively [59].
The band assignments are summarized in Table 2. Main
variations between LG and HG tumor spectra are
resolved at protein bands 1176 and 1446 cm−1, as well as
in the high wavenumber region at 2930 cm−1. The spec-
tral features for LG and HG spectra have also been previ-
ously reported by Stone et al [58].

3.3 | Evaluation of biopsy heterogeneity

Tumor heterogeneity can be understood in multiples
ways: it can be described in terms of observable features,
such as morphology, nanoscale structure [60], cellular
arrangement, histology [61], genotypes and protein
expression [62]. Likewise, it can be studied at different
levels, such as molecular, intracellular or bulk levels. A
previous study demonstrated that Raman spectroscopic
imaging can provide high spatial resolution measure-
ments of the distribution profiles from tissue constitu-
ents, such as collagen and glycosaminoglycans in tissue
[63] and nucleic acid, protein and lipid in eukaryotic cells
[64, 65]. Heterogeneity is particularly challenging for
classification problems, where heterogeneous data can
significantly affect the reliability and performance of the
models. Furthermore, for clinical in vivo applications it is
important to understand if there is a need to perform
Raman imaging to do an accurate characterization of the
tumor grading, or if point measurements using, for exam-
ple, a fiber optic Raman probe suffices. Two approaches
were investigated at the bulk level. The first approach
uses the classification model's predictions (ML1) to esti-
mate the tumor and NT fraction of the biopsy. The sec-
ond approach consists in the visual inspection of the
distribution of main constituents, collagen, protein and
lipids in corresponding Raman images of the biopsy at
relevant bands. There is currently no Raman-based study,
which characterizes the heterogeneity of bladder tissue.
The presented work considers the intrinsic biomolecular
heterogeneity of tumor tissue and attempts to elucidate
the molecular fingerprint, which allows to discriminate
between the different pathologies.

3.3.1 | Heterogeneity of the biopsy based
on the prediction of ML1

For classification problems, heterogeneous data can affect
the reliability and performance of the models, resulting
in reduced sensitivity and specificity. For biopsies, het-
erogeneity is frequently also related to the fact that the
extracted tissue samples not only have the tissue of

interest, that is, tumor tissue, but also contain normal tis-
sue located in the proximity of the tumor tissue, or due to
the proper orientation of the tissue for measurement.
From brightfield images it is impossible to differentiate
tumor and NT regions. In consequence, taking spectral
information from the entire biopsy can affect the perfor-
mance of the models, or result in not well reproducible
data. It is, therefore, important to find a method to
split the heterogeneous data into a set of homogeneous
groups of data.

There are two key questions, firstly, how the tissue
heterogeneity can be bypassed to do a proper classifica-
tion of tumor grading and secondly how the proposed

TABLE 2 Raman band assignments for spectra in

Figure 6 [67]

Wavenumber
(cm−1) Bond assignment Macromolecules

729 C C stretching,
proline

Collagen [56]

869 C C stretching,
choline group

Collagen and lipid
[68]

937 (C C) vibration of
the collagen
backbone

Collagen [56, 57]

1003 Phenylalanine, C C
skeletal, phosphate
group

Collagen and lipid
[57, 68]

1064 Skeletal C C stretch Lipid [57]

1103 Phosphate group and
symmetric ring
breathing of
phenylalanine

Proteins (collagen)
and lipid [57, 69]

1176 C H bending
tyrosine

Proteins [57]

1265 Amide III of
collagen, v(CN),
d(NH) amide III

Collagen [56, 57,
70]

1335 CH3CH2 wagging Collagen [18, 57]

1446 CH2 bending mode of
proteins and lipids,
CH2 deformation

Lipids and proteins
[19, 57]

1656 C C lipids, amide I
(proteins)

Lipids and proteins
[69]

2850 υsCH2, lipids, fatty
acids CH2

symmetric

Lipids [57, 59]

2885 νas( CH2), νsCH3,
lipids, fatty acids

Lipids [57, 59]

2930 CH2 sym. stretching,
chain-end CH3

sym. stretching

Protein and lipids
[59, 71]
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model generation method can effectively group the data
into homogeneous units. To answer these questions, the
generated ML1 was employed to predict all the spectra of
each tumor biopsy, as it was described in Section 2.3.
Each individual spectrum of a biopsy was tested and
cross-validated by the model and a mean of the resulting
predictive values was calculated. This mean prediction
value was plotted at each location of the hyperspectral
image of each biopsy. Four cases are shown in Figure 7,
where 1 encodes a purely NT (black) and 2 a purely
tumor spectrum (red), respectively. For further analysis
we set the boundary condition such that values below 1.5
to NT tissue and values above 1.5 to be tumor tissue. As
can be seen in Figure 7 biopsies significantly differ from
each other.

For example, the biopsy in Figure 7A,B are very homo-
geneous, that is, independently of the location of the
acquired spectrum ML1 would mostly predict for
(A) healthy tissue and (B) tumor tissue. The pathological
diagnosis was healthy and HG tumor, respectively. The
biopsies mapped in Figure 7C,D, on the other hand, are
highly heterogeneous and present multiple NT regions,

which if included into the model building would nega-
tively affect the results. From the examples shown here it
is clear that many of tumor biopsies actually contain areas
that are NT, and if included into the modeling, would sub-
stantially influence the performance of the model.

3.3.2 | Heterogeneity at the bulk level
based on the molecular content in the
biopsy

Raman imaging can be used to learn about the heteroge-
neity of healthy and tumor bladder tissue at the bulk
level by mapping the Raman intensity of specific bands
on a biopsy. In Figure 8 the distributions of relevant con-
stituents of the biopsies, that is, collagen (1265 cm−1) and
lipid (2885 cm−1) Raman bands for two selected biopsies
diagnosed as high-grade tumor (left panels) and inflam-
mation (right panels), respectively, are visualized. For
comparison, Figure 8A illustrates the mean prediction of
ML1 on homogeneous tumor and NT biopsies and
Figure 8B,C illustrates the relative Raman intensity of

FIGURE 7 Mean prediction map for tumor and nontumor (NT) regions of test biopsies: (A) NT biopsy 98% of the spectra predicted as

NT, (B) homogeneous tumor biopsy with 72% of tumor (T) area, (C) biopsy with 21% of tumor (T) area and 71% of NT area, and (D) test

biopsy with 37% of T area and 59% of NT area
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the bands at selected wavenumbers. Based on Figure 8B
it can be seen how lipid contributions are more dominant
in the tumor biopsy in comparison to the NT biopsy. The
presence of collagen is observed in Figure 8C where
amide III of collagen exhibits higher intensity in the NT
biopsy in contrast to the tumor biopsy. To get a better
comprehension of the imaging data a scatter plot of the
relative intensity of lipid and collagen from all biopsies
was used to depict the relative concentrations of lipid and
collagen, Figure 8D. The point clouds were visualized in
a 2D scatter plot, which encodes the relative number of
points from tumor (red) and NT spectra (black). Consis-
tently, most Raman spectra belonging to NT tissue
according to ML1 show higher amounts of collagen in
comparison to those from biopsies predicted as tumor.
On the other hand, spectra from tumor tissue prove to
have higher relative amounts of lipid. Both, Raman
images shown in Figure 8A-C and the scatter plot in
Figure 8D provide evidence for significant spectral
changes in bladder tissue undergoing tumor development
and are consistent with results from biochemical investi-
gations of previous studies [32, 58, 66].

4 | CONCLUSION

In this study, we demonstrated that Raman spectroscopic
imaging employing a hand-held probe can be used as a
valuable tool to characterize bladder tissue at the molecu-
lar level. We provide an extensive biochemical characteri-
zation of bladder cancer pathology to facilitate real-time
assessment of tumor tissue in future studies. The optical
fiber Raman probe imitates the optical performance
expected in an in vivo setting, presenting initial operation
benchmarks and influential factors to consider for future
in vivo investigations. A hierarchical classification was
performed, where the first level models (ML1) predict the
main differences between tumor and NT tissue and the
second level models (ML2) differentiate between HG and
LG tumor. The model-based evaluation has shown that
the changes in collagen bands and the increase of the lipid
intensity can be associated in differences between tumor
and NT tissue, and changes in the protein bands can be
used as an indicator to differentiate between LG and
HG. The PLS-LDA models can differentiate tumor from
NT with a sensitivity of 92% and a specificity of 93%, while

FIGURE 8 Images of tumor and nontumor based on: (A) mean prediction of the ML1 for homogeneous tumor and nontumor biopsies,

where red is predicted as tumor and black as nontumor; Raman intensity image of the same tumor and nontumor tissue at: (B) lipid band

(2885 cm−1) and (C) collagen band (1265 cm−1). The color information represents different chemical constituents, that is, green for collagen

and yellow for lipid. The scatter plot (E) of the relative intensity of lipid and collagen for all biopsies shows the relation between the main

constituents and the tissue characterization (nontumor and tumor). The intensity of the bands at the mentioned wavenumbers was

normalized to min-max
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the achieved sensitivity to differentiate LG from HG tumor
is 85%. In our selected test group, NT tissue is assigned
with an overall accuracy of 92% with confidence levels
between 89% and 95%. The LG and HG can be predicted
with 84% accuracy in a confidence interval between 78%
and 89%. The findings of this study also serve as indication
of biopsy heterogeneity, where the prediction of the
models, which classify tumor and NT, are used to map the
tumor areas on the biopsy. This results in a better perfor-
mance of the second level models, which use only the
tumor areas to train and validate the models to differenti-
ate LG and HG tumors. In addition, the mapping of the
intensity at representative lipid, collagen and protein
bands of different biopsies served to follow changes of
these main constituents. It was demonstrated that a fiber-
based Raman system may complement the well-
established methods, such as cystoscopy, to achieve an
immediate bladder tumor diagnosis and thus give the pos-
sibility to treat tumor immediately instead of waiting for
histopathological diagnosis of a biopsy from the bladder
lesion. Ultimately, Raman probe assisted bladder endos-
copy can be performed in the outpatient department using
small and less traumatizing instruments, resulting in addi-
tional health cost savings and significant improvement in
patients' prognosis and quality of life. Simultaneously,
immediate tumor diagnosis will allow for the instant deci-
sion whether the patient can be treated immediately in the
outpatient department or needs admittance to the urology
ward, as LG noninvasive bladder tumors less than 1.5 cm
can be treated in the outpatient department.
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Non-muscle-invasive bladder cancer affects millions of people worldwide, resulting in significant discom-

fort to the patient and potential death. Today, cystoscopy is the gold standard for bladder cancer assess-

ment, using white light endoscopy to detect tumor suspected lesion areas, followed by resection of these

areas and subsequent histopathological evaluation. Not only does the pathological examination take days,

but due to the invasive nature, the performed biopsy can result in significant harm to the patient.

Nowadays, optical modalities, such as optical coherence tomography (OCT) and Raman spectroscopy

(RS), have proven to detect cancer in real time and can provide more detailed clinical information of a

lesion, e.g. its penetration depth (stage) and the differentiation of the cells (grade). In this paper, we

present an ex vivo study performed with a combined piezoelectric tube-based OCT-probe and fiber optic

RS-probe imaging system that allows large field-of-view imaging of bladder biopsies, using both modal-

ities and co-registered visualization, detection and grading of cancerous bladder lesions. In the present

study, 119 examined biopsies were characterized, showing that fiber-optic based OCT provides a sensi-

tivity of 78% and a specificity of 69% for the detection of non-muscle-invasive bladder cancer, while RS,

on the other hand, provides a sensitivity of 81% and a specificity of 61% for the grading of low- and high-

grade tissues. Moreover, the study shows that a piezoelectric tube-based OCT probe can have significant

endurance, suitable for future long-lasting in vivo applications. These results also indicate that combined

OCT and RS fiber probe-based characterization offers an exciting possibility for label-free and morpho-

chemical optical biopsies for bladder cancer diagnostics.

Introduction

There are currently 3.4 million people affected by bladder

cancer worldwide,1 with 75% of the newly diagnosed cases

being non-muscle-invasive bladder cancer (NMIBC) and

thereby non-muscle-invasive disease.2 Among the different

types of NMIBC, the five year recurrence rate is 20–80%.3 The

risk of recurrence and repeated surveillance cystoscopy in the

outpatient department (OPD), which is the standard procedure

when suspicious lesions are detected, subsequently jeopar-

dizes the health of the patient.4 The current gold standard in

bladder cancer assessment is cystoscopy, which provides a

visualization of the bladder mucosa by white light endoscopy

(WL). Although the detection rate for muscle-invasive bladder

cancer using WL is very high, 97–100%, the detection of

†Electronic supplementary information (ESI) available. See DOI: 10.1039/

c9an01911a
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NMIBC is still challenging.5 Significant efforts go into develop-

ments to remedy this situation.

Along with the examination by WL, a biopsy is performed

and the resected suspicious tissue is inspected by pathol-

ogists.6 This allows access to clinically relevant information on

the stage and grade of a lesion. The tumor stage classifies the

invasion depth into the bladder wall. The tumor grade, on the

other hand, describes the level of differentiation from healthy

cells.7 Histological diagnosis is defined in accordance with

UICC’s 2017 TNM classification8 and the 2016 WHO classifi-

cation.9 There is a significant need to allow instant diagnosis

during surveillance cystoscopy in the OPD, thus avoiding

admittance to the operating theatre for diagnostic surgery.

In situ diagnostic procedures of stage and grade during

surgery are currently not available, resulting in unnecessary

tissue resection, which can cause significant negative effects

on the patient’s well-being. Photodynamic diagnosis (PDD),

using hexylaminolevulinic acid as a photosensitizing com-

pound for fluorescence guidance, is a promising approach,

which may assist the presented optical diagnostic method.6,10

Moreover, PDD does not provide clinically relevant infor-

mation on stage and grade for immediate treatment decision.

Due to these current shortcomings for the onsite diagnosis of

NMIBC, there is a significant need for real-time assessment of

the tumor stage and grade during cystoscopy.

Autofluorescence and diffuse reflectance have also been

applied in bladder biopsies, demonstrating the capability to

differentiate tumor and healthy bladder tissue with high sensi-

tivities and specificities, where significant changes of trypto-

phan and collagen at 340 nm and 390 nm emission peaks

were reported.11,12 Nevertheless, in order to differentiate

tumor grade in the bladder tissue, more biochemical infor-

mation about the sample that can be associated with the main

molecular changes related to tumor grading is needed.

In recent years, there have been extensive developments in

optical technologies and their translation to clinical diagnostic

applications, e.g. interference-based approaches, such as

optical coherence tomography (OCT), and label-free molecular

specific spectroscopy-based approaches, such as Raman spec-

troscopy (RS). OCT is widely used in ophthalmology to indicate

anatomical changes in the retina by providing cross-sectional

images in depth at micrometer resolution, allowing access to

structural tissue information.13,14 Since the eye is optically

easily accessible, the retina can be examined non-invasively

using a laser beam. However, to acquire information from the

internal organs, OCT has to be extended with an optical endo-

scope. Such endoscopic OCT-based imaging has been reported

for the cardiovascular system, the gastrointestinal tract and

the urinary tract.15–18 These implementations, however, only

achieved B-scans and endoscopic volume images of the

bladder tissue, which are paramount to characterize the tumor

tissue, were not previously presented. A comprehensive over-

view on OCT methodology and applications is given else-

where.19 While OCT can rapidly provide morphological infor-

mation from different depths, it lacks chemical information

on the underlying molecular composition.

Raman spectroscopy, on the other hand, is based on inelas-

tic light scattering between a photon and a molecule, provid-

ing label-free information on the molecular composition of a

sample. RS provides information on molecular changes at a

single cell level,20–23 and has been extensively used for clinical

tissue characterization.24–26 It has been broadly applied in

numerous studies for the diagnosis of cardiovascular dis-

eases,27 biochemical characterization of human cells28 and

organs,29 including the discrimination of brain tumors30,31

and malignant breast tissues,32–34 and extensive research in

cervical cancer,35–37 lung cancer,38 and colon,39 prostate40 and

bladder cancers.41,42 RS has been readily implemented in fiber

optic probes for a variety of pathologies of different organs.43

While each modality has intriguing capabilities, individu-

ally they can cover only a certain but complementary diagnos-

tic aspect. As such, only a combination of both modalities can

harvest the full diagnostic potential, and provide information

on the invasiveness of the tumor, i.e. stage, by taking cross-sec-

tional images of the bladder wall at a micrometer scale, using

OCT, and obtain information about the grade by assessing the

biochemical composition of the superficial tissue, using RS.44

Ko et al. reported on the first multimodal approach of com-

bining OCT and RS to detect and characterize dental dis-

eases.45 Ever since, multimodal optical coherence tomography

and Raman spectroscopy (OCT-RS) has been reported for

imaging ex vivo human breast tissue samples and in vivo

wound healing,46 ex vivo human retina,47 in vivo and ex vivo

skin,48–51 ex vivo atherosclerotic plaque deposition52 and

ex vivo rectal mucosa.53 Furthermore, Ashok et al. combined

OCT and RS to increase the sensitivity and specificity of colon

cancer detection.54 In this study, microscopy-based OCT

achieved a sensitivity, specificity and accuracy of 78%, 74%

and 75%, respectively. RS achieved 89% sensitivity, 77% speci-

ficity and 82% accuracy. Recently, Bovenkamp et al. showed

the ability of microscopic OCT and RS to provide diagnostic

information regarding stage and grade of bladder cancer. For

differentiating the pT2 stage from the pTa stage, they reported

a sensitivity, specificity and accuracy of 80%, 60% and 71%,

respectively. Furthermore, the sensitivity of detecting high

grade lesions with RS was 99%, whereas the specificity was

87%, indicating correct detection of low grade lesions.55

To use these techniques in vivo in the clinics, they need to

be integrated into rigid or flexible cystoscopes to allow in situ

assessment of the bladder wall. As a first step in this direction,

we report on the development of a combined OCT-Raman

system for stage and grade examination of bladder biopsies,

based on fiber-optical probes. The combined system mimics

the optical performance of an endoscopic probe combining

OCT and RS. It gives insight into in vivo conditions and the

expectable outcome with the first performance benchmarks.

Moreover, it allows one to co-register morphological and mole-

cular information of NMIBC, using fiber optical probes, and

enables new opportunities to interpret the data, by the assess-

ment of co-localized molecular and morphological signals.

The developed system was used to characterize a total of 119

biopsies in an imaging fashion that mimics in vivo conditions,
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for the diagnostic evaluation for the detection of NMIBC, and

for the grading of low- and high-grade tissues.

Materials and methods
Biopsy handling

The study was approved by the Ethical Committee at the

Capital Region of Denmark, H-17015549, and a data processor

agreement between the universities in Jena and Vienna and

the Capital Region of Denmark was made (HGH-2018-038.

I-suite nr. 6639). Prior to the operations, the patients gave

their written informed consent to have biopsies for the study

taken. All operations were performed according to the guide-

lines of the Urological Department at Herlev Hospital, Capital

Region of Denmark and the experiments were performed in

accordance with the above approvals obtained. For the experi-

ments, 119 biopsies from 44 patients were obtained during

resection of the bladder tumor in the operation theatre.

Immediately after the procedure, the biopsies were moistened

with a sodium chloride solution and delivered to the imaging

laboratory within 15 minutes. In case a sample could not be

examined within 20 minutes after removal, it was snap-frozen

to −20 °C and imaged on the following 1–2 days. For examin-

ation on the OCT-RS setup, the biopsies were carefully placed

on CaF2 glass slides and positioned on the translational stage

(Fig. 1 and 2). After the combined analysis using OCT-RS, the

biopsies were fixed and stained. The pathologist then staged

and graded the biopsies based on the underlying histology.

The histopathological results are summarized in Tables 1 and

2. The quantity of the extracted malignant biopsies reflects

NMIBC samples. Since pTa and CIS are confined to the urothe-

lium57 and pT1a has only invaded the superficial lamina

propria, they are considered non-muscle-invasive bladder

cancer58 and by that early stage.

Instrumentation

Swept source OCT (SS-OCT) system. The experiments were

performed using a miniaturized imaging device that mimics

an in vivo situation where the measurement would be per-

Fig. 1 Combined multimodal imaging system. The Raman setup con-

sists of a single mode laser, a spectrometer and a PC. Besides a bright

field camera (1), the Arduino board is also connected to the Raman PC.

The Raman probe (2) receives the excitation light from the laser and

guides back the Raman signal to the spectrometer. The swept source

OCT (SS-OCT) setup includes an akinetic laser source, the interfero-

metric optical setup including the photodiodes, driving electronics for

the endoscope and a PC. The OCT probe (3) is optically connected to

the optical setup. Moreover, the OCT probe is electrically connected to

the piezo amplifier. The communication is realized via an Arduino board,

triggering the acquisition and the translation of the two-axis stage,

which is connected to the Raman PC.

Fig. 2 Image acquisition workflow. (a) A certain region of interest (ROI)

is chosen out of the bright field image. Starting the acquisition leads to

the translation underneath the OCT endoscope. (b) Bottom: The calcu-

lated number of scans is performed consecutively. (c) Bottom: The

biopsy is translated to the Raman probe and the ROI is scanned, pixel by

pixel, to achieve a Raman map. After choosing the ROI, the data acqui-

sition is fully automated. (b) Top: Single OCT stack, which has a size of

500 × 500 pixels. It includes non-informative pixels due to the remap-

ping described in OCT data acquisition. (c) Top: Single Raman point

measurement, showing the acquired spectrum at this position.

Table 1 Description of the collected biopsies. PUNLMP: papillary

urothelial neoplasm of low malignant potential. PUNLMP is not yet a

cancerous lesion and possesses a very limited probability of pro-

gression.56 The number of patients is indicated in brackets. The patient

with PUNLMP is added to the non-tumor group

Non-tumor PUNLMP Cancerous Total

66 (22) 3 50 (22) 116 (44)

Table 2 Detailed description of the tumor samples. The number of

patients is indicated in brackets. Since one patient can exhibit different

stages or grades of cancerous lesions, the number of samples is higher

than the number of patients with cancerous lesions

Stage Grade

CIS pTa pT1a High Low

1 (1) 48 (22) 1 (1) 12 (6) 38 (19)
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formed using a fiber-optic probe. The OCT system (see Fig. 1)

used an akinetic swept source laser (Insight Photonic

Solutions, Inc., Lafayette, Colorado)59 with a central wave-

length of 1304 nm, a bandwidth of ∼90 nm (at 0 dB level) and

a sweep frequency of ∼173 kHz. The OCT system60 was based

on a Mach–Zehnder interferometer configuration, with an

output power of 11 mW at the tip of the endoscope. A system

sensitivity of 104 dB was achieved, which is reduced to 99 dB

in combination with the fiber-optic probe. The detailed

description of the system incorporating the endoscopic probe

can be found elsewhere.61 For OCT imaging, a piezoelectric

tube-based forward viewing endoscope with a diameter of

3 mm and a rigid length of 15.6 mm was used. The optical com-

ponents were arranged in a Fourier-plane configuration to allow

telecentric scanning across the tissue plane.62 The field of view

(FOV) was adjusted at stable scanning behavior to a diameter of

1–1.4 mm. The piezoelectric tube was driven at a quasi-reso-

nance frequency of 510 Hz and scanned the attached optical

fiber in a spiral pattern. The measured axial and lateral resolu-

tion was 12 µm and 28 µm in air, respectively. The confocal

parameter was ∼950 µm. The working distance was ∼500 µm.

OCT data acquisition. For the three-dimensional remapping

of the OCT data acquired with the piezoelectric tube-based

scanning probe, a positional calibration was performed prior

to the measurements. During this step, the scan pattern was

imaged onto a position-sensitive device (PSD – SpotOn Analog

SPOTANA-9L, Duma Optronics Ltd), the parameters were opti-

mized for an optimal scan pattern, and a look-up table (LUT)

was created. To reconstruct the volumetric OCT stacks with a

size of 500 × 500 pixels, an algorithm in combination with the

LUT was used to remap the spiral-shaped scan pattern onto a

square-Cartesian grid. Due to the circular scan pattern, the

final 3D-volume had a cylindrical shape. The time for an entire

spiral – rising and collapsing – was 2 seconds, which can be

reduced to less than a second by changing the resonance fre-

quency of the scanned fiber. However, the data during the

rising spiral was recorded for an OCT stack, and the acqui-

sition rate was 0.5 Hz. The OCT volume scan consisted of 510

consecutive circles (B-scans) with 340 A-scans per B-scan.

Because the FOV of one single spiral was not large enough to

image an entire biopsy with a size between 1 mm2 and

15 mm2, subsequent scans were performed in a raster scan

pattern. These stacks were stitched together in a post-proces-

sing step to obtain an image of the entire biopsy (Fig. 2b). The

OCT data were acquired in such a way that the round FOVs

were overlapping with the neighboring FOVs. To stitch the

individual OCT FOVs, the volume scans were aligned by rotat-

ing the 3D stacks and cropping, in order to create rectangular

stacks. These were combined in the same order the data were

acquired.

Raman system. The acquisition of the Raman spectra was

performed by collecting the Raman signal with an in-house

developed Raman fiber-optic probe, which was connected to a

spectrometer (Acton Series LS785, Princeton Instruments) with

a spectral resolution of 5 cm−1. The spectrometer was

equipped with a back-illuminated deep-depletion charge-

coupled device (BI-DD-CCD) (PIXIS 100BR_eXcelon, Princeton

Instruments) with a 1340 × 100 imaging array and 20 × 20 µm

sized pixels. The excitation fiber of the Raman probe was

coupled to a 785 nm single-mode excitation laser (Fergy-Laser,

Princeton Instruments) with an output power of 70 mW at the

end of the fiber probe. This power could be safely used in

in vivo applications. The excitation light from the optical fiber

was coupled out from the fiber probe using a lens, and after

passing through a narrow-band clean-up filter and a dichroic-

longpass filter focused onto a spot size of 100 µm. The gener-

ated Raman signal was collected using the same lens, and after

passing through the dichroic-longpass filter and an additional

longpass filter focused onto a multimodal collection fiber, with

a diameter of 200 µm, which was coupled to the spectrometer.

The biological sample was scanned pixel-by-pixel resulting in a

two-dimensional hyperspectral Raman map (Fig. 2c).

Combined OCT and Raman setup. The measurements of

morpho-molecular tissue information of a biopsy were per-

formed sequentially. To achieve the data sampling from the

same sample locations, the fiber-optical probes were mounted

on an in-house designed holder with a known positional offset

between the OCT and the Raman probe, and were mounted

above a translational stage (MLS203, Thorlabs). Since the

device controlling software for OCT acquisition and Raman

acquisition was running on two separate computers, and the

translational stage was controlled by the Raman unit, a trigger-

based communication was established between the systems,

using an Arduino UNO board (Board model UNO/R3). This

allowed the sending of triggering events between the two

systems to initiate an acquisition for both modalities from the

same region of interest (ROI). Both systems incorporated self-

built LABVIEW software for acquisition and driving of the

imaging systems. Fig. 1 shows the combination of the Raman

and SS-OCT setups. The automated imaging procedure can be

described as given below.

First, a region of interest on the biopsy was selected by

using a bright field image acquired with a standard camera

(DCC1645C, Thorlabs) (Fig. 2a). Based on the specific FOV

covered by the OCT probe, the software calculated the required

number of tiles in x and y for the OCT measurement. The

number of points for the Raman acquisition was kept constant

to 30 × 30 points. After the start of the data acquisition pro-

cedure, the biopsy was moved below the OCT probe, and an

OCT stack was acquired. After the acquisition of the first tile

was performed, the OCT software sent a trigger through the

Arduino board, indicating that the OCT stack was acquired,

and the Raman computer executed a command to translate

the biopsy to the next location. This was repeated until the

entire ROI on the biopsy was sampled. After all OCT frames

were acquired, the biopsy was automatically moved below the

Raman probe, followed by a scan of the identical ROI as in

OCT. The acquisition time for each imaging modality

depended on the biopsy size: for example, imaging a biopsy

with a size of ∼4 mm2 took 1 minute for the acquisition of

nine (3 × 3) OCT stacks and 13 minutes for 900 (30 × 30)

Raman-point measurements. The goal of the study was to
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sample the entire biopsy to allow for a comprehensive charac-

terization of the underlying morpho-molecular changes occur-

ring in malignant tissues. For the measurements in an in vivo

setting, the acquisition time for OCT imaging and single point

Raman spectroscopy is less than 5 s each.

Data analysis

OCT texture analysis. Texture analysis has been shown to be

a suitable approach to perform an automated image classifi-

cation for OCT images63 and has been successfully used to

differentiate benign and malignant biological tissues.64

Consequently, this method was chosen to analyze the OCT

images.54,55 The texture analysis approach described by

Bovenkamp et al. was used in the present study.55 In contrast

to the reported procedure, the single OCT stacks were divided

into 25 × 25 equally sized fragments and only the middle 5 × 5

subframes were used for the texture analysis. This excluded

the border area of the single scanned FOVs only containing

zero pixels due to the circular shape of the scanning pattern

(Fig. 2b). Furthermore, the outermost circles might be under-

sampled at a large FOV or distorted due to slight changes in the

resonance frequency of the scanner during operation. Because

OCT measurements were performed on biopsies placed on the

CaF2 glass slide, some of the OCT stacks contained high glass

reflections. Therefore, only a subset of OCT stacks per biopsy

was chosen. The stacks, containing glass reflections, exhibit

texture feature artifacts not found in stacks that contain infor-

mation about the biopsy only. These features were used to

exclude the glass stacks, which are not relevant for classifying

malignant and benign tissues. As a result, the classification was

built on 80 features per observation and 29 006 observations in

total. The classification was carried out using a fine Gaussian

support vector machine (SVM) with a 20% holdout validation.

Spectral analysis of Raman data: pre-processing. Before any

analysis of the Raman data was performed, all spectra were

identically pre-processed. The spectra were first corrected for

cosmic spikes, using an algorithm developed by Ryabchykov

et al.65 The wavenumber calibration was performed based on a

reference spectrum of 4-acetamidophenol. Subsequently, the

measured spectra were de-noised by using the first 8 PCA com-

ponents. The spectra were corrected for dark current followed

by an intensity calibration, using the spectra of a National

Institute of Standards and Technology (NIST)-standardized

white light source (Kaiser HCA accessory). The measured

intensity lamp spectra were fitted to the reference spectra of

the lamp and a transfer function was estimated to calibrate the

intensity of the measured spectra. The baseline correction was

performed using asymmetric least squares (AsLS) and

extended multiplicative signal correction (EMSC).66 As the last

two steps of the pre-treatment workflow, all Raman spectra

were further treated using the Savitzky–Golay filter and area

normalized within the regions from 600 to 1750 cm−1 and

2800 to 3000 cm−1. These regions were afterwards used to con-

struct the classification models, using partial least squares

linear discriminant analysis (PLS-LDA) to classify between

tumor and non-tumor. All computations were performed using

the statistical programming language R and Python.

Classification model and cross-validation of Raman data

The classification was performed using a PLS-LDA algorithm,

which combines partial least squares and linear discriminant

analysis using a 5-fold cross-validation. A hierarchical

approach to create and validate each model was adopted,

where the first layer model system ML1 focusses on classifying

between tumor and non-tumor, and the second layer model

system ML2 uses the tumor predictions to differentiate low-

and high-grade tumors (Fig. 3).

The created models were validated by applying k-fold parti-

tioning of the data, where each layer has a specific partition

according to the existent data for each variable of classifi-

cation. For the first classification layer (ML1), 10 iterations for

each partitioning were performed. The generated ML1-models

were validated by the test data. In order to test all spectra of

each biopsy, 10% of the created models were selected ran-

domly. For each spectral point, a mean of the predictions was

calculated, and this prediction map per pixel is displayed in

the flowchart (Fig. 3). The mean prediction maps were used to

select the spectra predicted as tumor and non-tumor. The

second layer classification model system (ML2) used the

tumor-defined areas of the biopsies. A mean spectrum per

biopsy was calculated for those areas. The resulting data was

Fig. 3 Flowchart of all main steps employed to create and validate the

first- and second-layer model systems ML1 and ML2, respectively.
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k-fold partitioned and a set of training and testing biopsies

was selected. The ML2 was created with the training data set

that results from 16-fold partitions and was validated with the

testing biopsies; 10 iterations of 16 different partitions were

employed to create and validate ML2 (Fig. 3). The described

method has previously been reported in Cordero et al.67

Multivariate curve resolution alternating least squares

(MCR-ALS) for collagen distribution of Raman data

Initially, the pure components for each biopsy were deter-

mined by using an orthogonal projection approach (OPA)

algorithm. This function extracts the initial ‘pure’ components

of the set of spectra based on spectral dissimilarity of the data

set. It is important to note that the pure component spectra

can contain contributions from other substances and can

deviate to some degree to pure component spectra of the

native substance. The OPA estimates the dispersion matrix of

the mean spectrum of the data set: the higher the dissimilar-

ity, the purer the component. The estimated pure components

of tumor and non-tumor spectra were correlated to the litera-

ture.41 It was found that for non-tumor biopsies, there are

most of the relevant bands of collagen 1 spectrum, which can

be linked to the dominant presence of collagen in non-tumor

spectra. All the non-tumor biopsies were used to find the col-

lagen pure component, which was calculated by employing the

OPA function, which provides the first estimation of pure com-

ponents of the dataset. Afterwards, the mean standard devi-

ation of the OPA pure collagen obtained from each biopsy was

used to further calculate the MCR concentrations, where ALS

complement the MCR function fitting the concentrations to

improve the estimations of the pure components. The

MCR-ALS algorithm used the extracted mean collagen pure

component and consequently calculates the relative concen-

tration at each measured location of each biopsy. The concen-

tration matrix indicates how intense the presence of collagen

in the biopsy is and was calculated for each biopsy.

Results and discussion
Correlation of OCT to histopathological images

To visually compare the morphological information obtained

from OCT with the histopathological information, OCT and the

corresponding histopathology for two different biopsies are

shown in Fig. 4. In the non-tumor case (Fig. 4a), the layered

appearance of the bladder wall is visible by OCT. The thin dark

top layer in the OCT image is correlated to the mucosa, delimit-

ing the bladder from the inner lumen. The second bright layer

corresponds to the connective tissue, also referred to as lamina

propria. Besides nerves and blood vessels, the bright appearance

in the OCT images indicates a strong scattering tissue constitu-

ent, such as collagen fibers. The deepest visible layer in the OCT

image is the muscularis propria, the muscle layer. It has a clear

demarcation from the lamina propria and appears rather dark.

In Fig. 4b, the corresponding OCT and histopathological image

of a pTa lesion is shown. Here, the thickened urothelium is

clearly visible. Whereas the pTa staged tumor has not infiltrated

the lamina propria, the demarcation between the urothelium

and lamina propria is still intact.

These correlations show the ability of the presented endo-

scopic OCT probe to identify early stage lesions due to mor-

phological changes in the mucosa of the bladder wall. The

used OCT probe design is thereby suitable to detect NMIBC.

Even though some biopsies can be distinctly correlated, in

general, the correlation between OCT and histopathological

images is difficult and was not feasible for all biopsies. For

example, the biopsy-collection procedure relies on forceps,

which mechanically stresses the biopsy. Additionally, the

biopsy can get twisted during transportation from the oper-

ation theatre to the OCT-RS setup. Furthermore, the fixation

process for histopathological slicing includes formalin, which

can cause the biopsy to shrink, inducing discrepancies in

dimensions. For example, in renal and intestinal biopsies,

shrinkage between 11% and 33% was reported,

respectively.68,69 For quantitative classification of the OCT

data, texture analysis was carried out.

Texture analysis of the OCT data

The classification was performed on 116 non-tumor and

tumor biopsies. The stacks were labeled with histopathological

results obtained for the biopsies and the results of the texture

analysis are summarized in Table 3. Sensitivity indicates the

correct detection of tumor in accordance with the histopatho-

Fig. 4 OCT image correlation to histopathological images. (a)

Representative example of a non-tumor bladder wall. The green line

indicates the mucosa/urothelium layer, the blue line shows the lamina

propria and the red line is the muscularis layer. The red arrow points to a

vessel, the yellow arrow indicates fat accumulation and the black arrow

indicates mechanical rupture. (b) Representative example of a pTa low

grade tumor bladder wall. Here, the mucosa/urothelium is thickened

(green line). The white arrow indicates a region of less intensity, because

the lamina propria (blue line) is highly scattering. The visible edge in (b)

is a stitching artefact. The corresponding histopathological images are

not co-localized to the OCT B-scans. The OCT insets are maximum pro-

jections of 10 B-scans. Scale bars: 250 µm.
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logical result. An accuracy of 73.4% was achieved. Bovenkamp

et al. focused on the differentiation of advanced tumor

stages.55 In contrast, in this study, we concentrated on the

detection of NMIBC lesions, as the number of available

samples for pTa(1) was small, i.e. one single sample. We have,

therefore, not separately included the two samples, staged as

pT1a and CIS, in the texture analysis, since the statistical basis

for a significant classification outcome is not given. Since the

advanced stages of muscle-invasive bladder cancer are visually

detectable, it is of higher clinical relevance to detect NMIBC by

OCT. From the four texture features, the contrast texture prop-

erty at 45, 90 and 135 degrees contributed the most (92%) to

the differentiation between healthy and diseased tissues.

While malignant tissues always showed lower contrast values,

benign tissues showed a higher contrast. This is understand-

able, as malignant tissues are characterized by structural loss

of the bladder wall anatomy as soon as cancer progresses. This

observation confirms the preliminary results of Bovenkamp

et al. on a larger study cohort. The results for accuracy are com-

parable to other publications using microscopes for OCT

image acquisition and texture analysis for cancer

classification.54,55 The deviation is primarily due to the use of

a fiber-probe-based scanning approach, where compromises

with respect to the optical performance are made. But on the

other hand, there is clear evidence that the optical perform-

ance of the probe is sufficient for NMIBC. Furthermore, the

remaining glass reflection artifacts from the substrate can

additionally reduce the performance. This, however, should be

of no concern for in vivo measurements. Nevertheless, the per-

formance of the texture analysis was further compromised,

because the classification of the histopathological results pro-

vides only a single label for the entire biopsy corresponding to

the highest pathologic severity observed. The OCT images, on

the other hand, are spatially resolved, and contain a variety of

regions. For instance, a pTa staged biopsy may contain areas of

healthy bladder wall, which does not influence the histopatholo-

gical outcome. In contrast, the classification is sensitive to these

transitions and the heterogeneity of the lesion within one par-

ticular biopsy. The sensitivity for pTa, for instance, increases to

90%, if two blinded experts, familiar with OCT images of the

bladder wall, are classifying the OCT images. If the decision was

inconclusive between the two experts, the pathologically more

severe statement was taken to label the biopsy. The heterogen-

eity of the biopsy can be a significant factor that reduces the

accuracy of the OCT texture analysis (see Fig. 7).

Raman analysis

For Raman spectroscopy, a two-layer model system was created

and validated to distinguish tumor from non-tumor tissues,

followed by grading of tumor regions. The first model level

differentiates tumor and non-tumor with an accuracy of 92%.

As described in the first section, the two-layer model was

created with a different set of spectra, summarized in the flow-

chart shown in Fig. 3. For the second modeling step ML2,

which differentiates low-grade from high-grade, an accuracy of

77% was achieved. Fig. 5a shows the mean spectrum of all

Table 3 Performance of OCT and Raman spectroscopy (RS): texture

analysis differentiating non-tumor from NMIBC (OCT), the model level 1

(ML1) separating tumor (T) from non-tumor (NT) and the model level 2

(ML2) discriminating high grade (HG) from low grade (LG)

OCT (%) RS – T/NT (%) RS – HG/LG (%)

Accuracy 73.4 92 77
Sensitivity 78 95 81
Specificity 69 88 68
Confidence interval (72.9–73.9) (92.2–92.6) (73–81)

Fig. 5 Relation between the mean and the mean coefficients of ML1. (a) Mean spectra of non-tumor (black) and low grade (blue) and high grade

(red) tumor. (b) Mean coefficients of ML1 resulted from the tumor/non-tumor classification. The red bands are characteristic lipid bands and the

grey bands are typical collagen bands. One can observe that the lipid bands are related to the positive coefficients for tumor and the collagen bands

to the negative coefficients for non-tumor biopsies.
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non-tumor (black) and low- (blue) and high-grade (red) tumor

biopsies, in which the lipid and collagen bands are high-

lighted. The mean coefficient of the model system layer 1

(ML1) is shown in Fig. 5b. The same bands are also high-

lighted, illustrating the relation between negative coefficients

and the spectral bands for collagen at 856 cm−1, 937 cm−1 and

1265 cm−1, which indicate the C–C vibrations and amide II of

collagen,70 respectively. The collagen bands and the negative

LDA coefficients show a clear relationship between the con-

stituent and the non-tumor class. The marked lipid bands at

1300 cm−1, 1656 cm−1 and 2854 cm−1 correspond to the CH2

deformation, twist vibration, CvC and the symmetric stretch-

ing of lipids, respectively.70,71 As can be seen from the com-

parison, there is a relation between the main lipid bands,

positive LDA coefficients, and the tumor class. These obser-

vations are consistent with previous findings,41,72 where non-

tumor tissues are mainly characterized for having a dominant

presence of collagen. The two-layer model (ML1 and ML2)

performance is summarized in Table 3: ML2 can identify the

true positive LG easily than the true negative HG, with an

achieved sensitivity of 81% to differentiate low-grade tumour

from high-grade tumor. The achieved specificity of 68% to

differentiate the grading indicates that the models need more

spectral information of the true negative HG in order to

better distinguish the main differences between tumor

grading. As Fig. 5a shows, low and high grade mean spectra

have very little variations and more HG-biopsies are required

to allow the models to classify properly between the two

classes.

MCR analysis and collagen distribution. The classification

models show a distinct relation between the collagen presence

in non-tumor and tumor samples; therefore the collagen distri-

bution can be related to the mean predictions of model ML1.

As previously described, each biopsy has a set of spectra that

has a mean prediction obtained from model ML1, which

allows providing information on the heterogeneity or hom-

ogeneity of a biopsy. An MCR algorithm is applied to use the

extracted pure components of collagen for the non-tumor

biopsies to find the constituent distribution in the biopsy by

estimating the concentration of the component for each spec-

trum of the biopsy.

Fig. 6a shows the mean and standard deviation spectra of

the homogeneous non-tumor (black) and tumor (red) biopsy

and the extracted MCR collagen component (green) from all

non-tumor biopsies, as described in the previous sections.

Fig. 6b displays the mapping of the mean prediction (left) and

the collagen distribution (right), showing how the presence of

collagen dominates in the biopsy that is predicted as a homo-

geneous non-tumor tissue. This is consistent with Fig. 6c,

where the mapping of a heterogeneous non-tumor biopsy

shows that the areas predicted as tumor (red areas) have less

presence of collagen (darker green) in comparison with the

areas predicted as non-tumor (black areas). In the same way,

Fig. 6d and e show the mapping of mean prediction and col-

lagen concentrations in homogeneous and heterogeneous

tumor biopsies, respectively.

The homogeneous tumor biopsy shows a distinct difference

when compared to the homogeneous non-tumor biopsy, where

the dark colored area indicates a low presence of collagen.

Similarly, the areas predicted as non-tumor in Fig. 6d are

brighter than the areas predicted as tumor for the hetero-

geneous tumor tissue. This contrast is depicted easily by com-

paring the prediction and collagen distribution maps in Fig. 6.

The black area of the prediction map (left) is non-tumor and is

lighter colored in the collagen distribution map (right). The

correlation between the prediction maps and the collagen dis-

tribution maps provides an insight into the relation between

one of the main bladder tissue constituents and the tumor

regions of the analyzed tissue.

OCT-Raman combination

The combination of RS and OCT opens a new means to better

comprehend the essential basis of the data. Even though both

modalities are based on different physical origins, i.e. OCT

depends on the light scattering due to changes of the index of

refraction in the tissue, and RS relies on the molecular

vibrational bonds in the sample, both origins are inherently

Fig. 6 Mean-sd (standard deviation) spectra and the corresponding

collagen pure component: (a) mean and standard deviation of non-

tumor spectra of the homogeneous non-tumor biopsy (black), homo-

geneous tumor biopsy (red) and extracted pure collagen from non-

tumor biopsies (green). Mean prediction and MCR collagen concen-

tration for (b) homogeneous non-tumor, (c) heterogeneous non-tumor,

(d) heterogeneous tumor and (e) heterogeneous tumor biopsies. The

minimum collagen concentration value is 0.043 and the maximum value

is 0.052.
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coupled. The collected imaging data of the two complementary

modalities were acquired in a co-registered manner, offering

the possibility to correlate molecular and morphological fea-

tures from the same locations.

The correlation was performed, first by stitching the OCT

stacks and applying an in-house developed algorithm to

compute the surface curvature of the biopsy, which allowed for

the flattening of the surface. After the curvature correction, the

mean of the biopsy in the z-dimension was calculated, and the

obtained image was employed to compute a mask for locations

belonging to the biopsy and locations outside the biopsy. The

RS data were pre-treated as described in the Materials and

methods section, and the mean prediction Raman map was

employed to correlate the OCT and RS data. The RS mean pre-

diction map was interpolated to account for the size difference

between the Raman map and the OCT image. Furthermore,

because the OCT scan covered more area than the RS map, the

RS map was used as a mask for the OCT image. Transparency

was applied to the RS map in order to provide visual infor-

mation of both the OCT image and the Raman map.

Fig. 7 shows the transition of tumor to non-tumor area

using the combined information of both modalities. To better

visualize the data, images were displayed for both modalities

indicating a healthy bladder wall structure within a cancerous

lesion. An OCT cross-sectional and en-face image of a biopsy,

which was histopathologically diagnosed as pTa low-grade

tumor is shown in Fig. 7a. The overlaid Raman information of

the tumor margin, where the red shade is the predicted tumor

fraction and the black shade is the predicted non-tumor frac-

tion as established by the ML1 model, is shown in Fig. 7b. The

bright features of the lamina propria appear in the OCT

image, which indicates a pronounced transition between the

urothelium and the lamina propria in the healthy bladder wall

and are well correlated to the regions that were predicted as

non-tumor tissues by RS. To better visualize the information,

cross-sectional images of the indicated regions marked by the

colored lines are framed in green and yellow. The cross-sec-

tional images are maximum projections of 10 scans around

the indicated position. This combination of both modalities

enables a better comprehension of the underlying signal

origin and enables further localized pathological analysis of

the biopsies with localized diagnosis to provide more detailed

histopathological labels. This can lead to increased accuracy

given by computer-assisted classification of tumor and non-

tumor areas, providing a strong indication that the combi-

nation of optical label-free modalities can provide a compre-

hensive, localized diagnostic value.

Although biopsy handling and the pathological examin-

ation, such as biopsy torsion or discrete biopsy labels, influ-

ence the performance, the achieved accuracies of 73% and

77% for OCT and RS, respectively, are promising for future

in vivo tests, allowing the determination of the stage and grade

simultaneously in vivo. Here, artefacts from sample handling

will become completely negligible, additionally improving the

accuracy.

Conclusions

In summary, we have demonstrated that fiber-probe based

OCT and RS are suitable to provide clinically relevant infor-

mation for detection and grading of NMIBC biopsies. Here, a

Fig. 7 Heterogeneity of a pTa low grade labelled biopsy. (a) OCT scan: Red arrows indicate loss of transition between the urothelium and the

lamina propria showing a pTa stage cancer. (b) OCT-RS combination: Model system ML1 highlights tumor (red) and non-tumor (black) areas and it is

overlapped to the OCT image (en-face and B-scans). The blue arrows point to regions of present lamina propria. The lamina propria appears bright

in the OCT image and RS predicts the non-tumor tissue (black color within the stripes above the B-scans). The purple framed image indicates the

en-face image. Cross-sectional images are framed in green and yellow. Locations within the 3D stack are marked with colored lines. Cross-sectional

images are maximum projections of 10 scans around the shown position. Scale bars: 250 µm.
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forward looking, piezoelectric tube-based OCT probe is used

for a comprehensive characterization of bladder cancer lesions

for the first time, providing volumetric morphological infor-

mation of entire biopsies. The presented OCT probe provides

sufficiently high optical performance to determine small mor-

phological structures in depth. Raman spectroscopy, on the

other hand, demonstrates clear spectral differentiation of

tumor and non-tumor, and low- and high-grade lesions in the

bladder tissue based on the biomolecular composition. By

developing an imaging platform that combines both modal-

ities using forward-viewing fiber-optical probes, it was possible

to acquire morphological volumetric images of biopsies and to

create co-localized and co-registered hyperspectral molecular

maps for the sample, providing comprehensive diagnostic

information for the penetration and grade of bladder cancer at

an early stage. By performing the study using fiber-optic

probes and a large number of samples, it was possible to

evaluate the relevant parameters of the probes for the in vivo

application of OCT and RS. For example, it was possible to

show that the piezoelectric tube-based OCT probe is mechani-

cally stable to conduct a reproducible measurement of more

than 100 biopsies with more than 1000 individual stack acqui-

sitions over an extended period of time. Probe parameters,

such as the outer dimension, meet the restrictions given by

surgical instruments for in vivo applications, including

additional sheathing for biocompatibility and safety. The para-

meter evaluation reveals adequate power levels and perform-

ance for visualization of the clinically relevant data for both

modalities. The presented axial and lateral resolution for OCT

and a sensitivity of 99 dB are sufficient. The FOV should be as

big as possible, but a diameter of 1 mm is enough to identify

and characterize relevant lesions. The excitation power of

70 mW and 11 mW used by RS and OCT, respectively, are well

within the limit for maximum permissible exposure on skin

and suitable for in vivo applications. The required acquisition

times of 0.5 s and 2 s for RS and OCT, respectively, are suitable

for interoperative handling by urologists during bladder exam-

ination. Comparing OCT and RS, one can see that OCT can

acquire information from a larger FOV faster, allowing for the

detection of cancerous lesions. RS, on the other hand, provides

higher sensitivity, specificity and accuracy for differentiating

tumor from non-tumor tissues, and additionally allows the

grading of tumors. As such, OCT can be used as a red-flag

technology and RS can be used to provide diagnostic infor-

mation. Moreover, the results serve substantially as the next

step towards in vivo testing of the OCT-RS combination. The

presented findings pave the way for the development of multi-

modal, endoscopic probes enabling OCT and RS to supply the

clinicians with clinically important, localized information in

real time, which is until now only accessible after histopatholo-

gical examination.
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Abstract. For more than two decades, Raman spectroscopy has found widespread use in biological and medi-
cal applications. The instrumentation and the statistical evaluation procedures have matured, enabling the
lengthy transition from ex-vivo demonstration to in-vivo examinations. This transition goes hand-in-hand with
many technological developments and tightly bound requirements for a successful implementation in a clinical
environment, which are often difficult to assess for novice scientists in the field. This review outlines the required
instrumentation and instrumentation parameters, designs, and developments of fiber optic probes for the in-vivo
applications in a clinical setting. It aims at providing an overview of contemporary technology and clinical trials
and attempts to identify future developments necessary to bring the emerging technology to the clinical end
users. A comprehensive overview of in-vivo applications of fiber optic Raman probes to characterize different
tissue and disease types is also given. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction
Raman spectroscopy is a label-free, nondestructive, and non-
invasive method that provides information about the molecular
composition and structure of a sample. It has found widespread
use in the fields of material sciences, pharmaceutical analysis,
inline and offline process controlling, airport security, and many
others. In the last few decades, Raman spectroscopy has also
begun to emerge as a promising tool for biomedical analytics
and clinical diagnostics, such as the detection and staging of
cancer, and has been validated in countless ex-vivo studies.1–11

Due to the highly promising results, there has been an incredible
effort to move Raman spectroscopy to clinical in-vivo applica-
tions, where the method can unfold its full diagnostic potential.
Although these in-vivo studies demonstrate a superb diagnostic
potential of Raman spectroscopy in clinical surroundings, they
also reveal technological challenges and shortcomings of the
method. Due to the highly complex implementation of the tech-
nique for in-vivo applications it is often difficult, especially for
novice scientists in the field of in-vivo Raman spectroscopy, to
assess the relevant instrumentational design parameters and their
influence on the detected signal, the different available fiber
optical Raman probe designs, and the readily evaluated in-vivo
applications.

The implementation of Raman spectroscopy for clinical
applications significantly differs from Raman-based analysis
of prokaryotic and eukaryotic cells. For example, to provide
easy access to most anatomical locations in-vivo, fiber optic
Raman probes, which are designed for specific applications

and are available in a large number of configurations, are
required. Due to the generation of a strong Raman background
in the fiber, the development of those probes is highly complex
and complicates the development of single-use probes.
Moreover, probes have to be designed in a way that allows sus-
tainable sterilization procedures to be routinely used in a medi-
cal environment. Because fiber optic Raman probes are usually
single-point sensors, efforts have to be made to register the
measurement spot at the body site to determine the precise loca-
tion of the optical biopsy. This is often achieved through image
guidance, and the combination with other modalities, such as
white-light or fluorescence imaging, optical coherence tomog-
raphy (OCT), optoacoustic or magnetic resonance (MR) tomog-
raphy, and many others. The additional imaging modalities can
also deliver complementary information of the target region and
can significantly boost sensitivity and specificity. It is well-
known that in biomedical applications intrinsic autofluorescence
can easily obscure the weak Raman signal.12 This can, for the
most part, be circumvented using 785 or 830 nm as the excita-
tion wavelength and often in combination with other software13

or hardware-based methods,14 such as time gating,15 frequency
modulation,16 and shifted excitation.17,18

In addition to the Raman probes, the entire Raman system,
including the narrowband laser source, the optical and electronic
components, the software for the device controlling, and data
processing are underlying stringent requirements to achieve
desirable results. Moreover, the Raman device has to be devel-
oped in agreement with local and global medical regulatory
standards for the application in clinical studies. This includes
risk analysis, which has to prove that the benefits provided
by the method outweigh possible risks. An ongoing problem
in the field is also the frequently observed inconsistencies of
spectral biomarkers for the same diseases. When proper spectral

*Address all correspondence to: Iwan W. Schie, E-mail: iwan.schie@leibniz-
ipht.de

†Equally contributing authors
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disease markers are available, real-time analysis of the measured
Raman spectra is a key requirement for clinical applications.
This normally requires a sophisticated statistical analysis,19–21

relying on pre-established databases with a multitude of stored
sample data.

This review aims to provide an overview of the different
aspects and challenges for moving Raman spectroscopy from
research laboratories to clinics to novice scientists in the field
of in-vivo Raman spectroscopy. The overview starts with the
basic requirements for the instrumentation and outlines the rel-
evant instrumentational parameters, which are needed to reliably
detect the weak Raman signal, following an outline of common
fiber optic Raman probe developments and common geometries
for in-vivo applications. Finally, the review provides a compre-
hensive summary focusing specifically on in-vivo applications,
using Raman spectroscopy of different disease types and differ-
ent organs.

2 Raman Instrumentation
The successful implementation of any application using Raman
spectroscopy is tightly bound by the instrumentational param-
eters, which have to be chosen very carefully to measure the
weak Raman signals often in the presence of a high background.
As such, this section outlines the most important factors for the
required components, such as excitation sources, detectors, and
spectrometers, and relates the information to the relevant param-
eters, such as linewidth, noise sources, and resolution. A com-
prehensive overview of all discussed parameters is summarized
in Table 1.

In comparison with most eukaryotic and prokaryotic cells,
the Raman signals of histopathological tissue biopsies and
in-vivo measurements are highly prone to exhibit a strong
autofluorescence. While other methods such as fluorescence

lifetime microscopy (FLIM) rely on the presence of tissue auto-
fluorescence, in Raman spectroscopy the presence of fluores-
cence creates significant complications. To overcome these
drawbacks, near-infrared lasers, most commonly 785 and
830 nm, are used for the excitation of a Raman signal from
tissue samples. Due to the narrow spectral width of vibrational
bands, which are on the order of a few cm−1, the linewidth
for the excitation lasers is constrained, which means that the
excitation linewidth should be <0.1 nm to achieve high-resolu-
tion spectra. Most of the excitation sources used for biomedical
Raman spectroscopy exhibit linewidths of a few picometers with
a high excitation power, resulting in higher cost. For low-cost
implementations it is, therefore, worthwhile to consider the
appropriate laser parameters.

For imaging applications on ex-vivo biopsies, the sample is
usually placed on an x − y translational stage with submicrom-
eter step-size resolution and illuminated using an objective lens
with a high numerical aperture (NA), typically >NA 0.5 and
most commonly close to NA 1.0. This is further combined with
appropriate illumination and collection optics, which ensure
a signal generation and collection from a diffraction-limited
spot. When the proper aperture is added in the conjugate
focal plane, the Raman acquisition can be operated confocally
and enables a three-dimensional (3-D) sectioning of the biopsy
sample. Using a confocal Raman implementation, a biopsy
probe can be easily mapped, and the biochemical information
can be directly correlated to the histopathological hematoxylin
and eosin (H&E) staining. A typical Raman imaging setup
is shown in Fig. 1(a) and two exemplary Raman spectra
of lipid-rich and protein-rich tissue are shown in Fig. 1(b).
A comprehensive overview of different Raman-instrumentation
schemes, which can be combined with the various probe
designs, is given in Refs. 2 and 22.

Table 1 These device parameters are most commonly found in clinical in-vivoRaman spectroscopy. The table provides only a general overview of
the available parameter space. In some implementations, the parameters can vary from the parameters in the table. Moreover, keep in mind
that many of the parameters are coupled.

Device Relevant parameters Typical parameter values Influences

Detector QE 30 to 90% @ 900 nm SNR, acquisition time

Read-out-speed 16 kHz to 8 MHz SNR; number of frames/s

Read noise 3 to 20e − ∕pixel SNR; acquisition time

Dark current 0.0001 to 0.03 e − ∕s∕pixel @ at −80°C SNR; acquisition time

Number of pixels Horizontally: 532 to 2048 Spectral range

Pixel size Vertically: 100 to 2048 Etendue

13 × 13 μm2 to 26 × 26 μm2 Resolution

Excitation sources Wavelengths 785 nm; 830 nm; 1064 nm Autofluorescence; SNR

Spectral linewidth typ. <100 pm Resolution

Excitation power 10 to 150 mW SNR; sample damage

Spectrometer f∕# 1.8 to 9.7 Light gathering ability

Slit width 50 to 200 μm Resolution

Focal length 150 to 750 μm Resolution
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Due to long acquisition times, typically on the order of sec-
onds for a single spectrum, Raman imaging is usually not an
option for in-vivo applications. In-vivomeasurements are, there-
fore, most commonly performed by acquiring single-point
Raman spectra using fiber optic probes. The design of such
Raman probes will be discussed in detail in Sec. 3 of this review.

The key component of a Raman system is the detector,
which in most cases is a charged coupled device (CCD).
Several important factors have to be considered when choosing
the appropriate CCD array for any Raman spectroscopy appli-
cation. Specifically, the noise level and the quantum efficiency
are of great importance. Because of the very low intensity of
a Raman signal, typically on the order of 104 to 105 collected
photons for an entire Raman spectrum from a protein-rich
tissue sample, using a 785-nm excitation with an excitation of
about 50-mW power in the sample plane, a collection NA of
0.35, and 100-μm spot size, it is crucial that the quantum effi-
ciency is high. Keeping in mind that while 105 photons are quite
a large number in comparison with many other applications, the
total number of photons is typically distributed over 600 CCD-
pixels, which results on average in <170 photons per pixel. For
high-performance scientific CCD cameras that are currently
commercially available, the QE is above 90% for the low-wave-
number region, which is between 800 and 910 nm, correspond-
ing to 238 and 1750 cm−1, respectively, for a 785-nm excitation
laser. This allows the photons generated in the low-wavenumber
region to be efficiently detected. For the high-wavenumber
region, which is located between 1006 and 1030 nm for a
785-nm excitation laser, corresponding to 2800 and 3000 cm−1,
respectively, the QE is significantly reduced due to the band gap
of silica. The OH stretching region of water, which extends all
the way to 3800 cm−1, corresponding to 1120 nm, exhibits an
even lower QE, i.e., <10%. Generally, photons are not detectible

above 1100 nm using silicon-based CCD detectors. This is of
interest because it has been previously demonstrated that the
water region can provide valuable information in differentiating
tumor from nontumor tissue.23

There are several different architecture-types of CCDs avail-
able, e.g., front-illuminated (FI), back-illuminated (BI), and
back-illuminated deep-depletion (BI-DD) cameras. FI cameras
have QEs well below 50% for the wavelength regions mentioned
above and are only suitable for applications where this lack of
QE can be compensated for by the excitation power or acquis-
ition time. However, FI cameras are also available at a lower
price, compared with the two other designs, and have nearly
no dark current. The BI-CCD cameras have significantly higher
QE than FI-CCD cameras but can suffer from etaloning, which
is specifically disruptive when dealing with high fluorescence
backgrounds. Etaloning is created by NIR photons that were
not absorbed in the photosensitive region but reflected at the
detector interface, creating a ringing pattern on the spectrum
and significantly altering the Raman spectrum. BI-DD-CCD
cameras have a thicker photosensitive region, which helps to
reduce the etaloning effect and provides the highest QE in
the NIR region, but it also comes at a higher cost.

There have been new developments toward the implementa-
tion of InGaAs detectors for the short-wave infrared (SWIR)
region. Although some promising first results have been dem-
onstrated by the group around Puppels,24 one of the main prob-
lems is the significantly higher dark noise and read noise, which
can be quite challenging for some applications. Moreover, due
to the 1∕λ4 dependency of the Raman intensity on the excitation
wavelength λ, the Raman signal generation for a 1064-nm
excitation is reduced 3.4-fold in comparison with a 785-nm
excitation.

There are two main noise sources for the signal acquisition
using CCD cameras: read noise and dark noise. As the name
suggests, read noise is generated during the read-out process
of the charges from the chip and the preamplification step on
the CCD camera. In addition to the device-associated noise
sources, for most applications the fundamental limit for the
recovery of a Raman signal is the photon shot noise. Read
noise depends on the acquisition speed and varies for commonly
used scientific CCD detectors between 3 and 20 electrons per
pixel for comparable models from different manufacturers.
Hence, specifically for low-signal applications, it is important
to ensure that the right acquisition speed is chosen to ensure
the highest achievable signal-to-noise ratio (SNR). Electron
multiplying CCDs (EMCCDs) are frequently mentioned and
have readily been used in Raman spectroscopy of biological
samples. These, however, only help to circumvent the read
noise using electron amplification before the electron-to-voltage
conversion in the AD unit. An often-unmentioned fact about
EMCCDs is that they have a higher charge transfer noise,
which is given by a factor of

p
2. This means that only for

acquisition at a very low-signal level, i.e., 10 to 20 photons
per pixel, does the EMCCD outperform a CCD. However,
due to the higher noise factor for longer acquisition times
and higher photon levels, which is the most common case
for Raman spectroscopy, the noise level of an EMCCD will
be higher than for a CCD. Also, the cost for an EMCCD detector
is significantly higher than any of the standard CCD detectors.
A good comparison for the noise performance of different detec-
tors is given in Ref. 25. To measure the read noise of a CCD
detector, one can simply acquire a dark spectrum at a short

(a)

(b)

Fig. 1 (a) Typical Raman setup for the acquisition of Raman images
of biopsies. Required components are L1-2-fiber coupling lens, CL,
cleanup filter; DC, dichroic filter; LP, longpass filter; Obj., objective
lens; collection and illumination fiber; and TS, translational stage;
(b) typical Raman spectra from lipid- and protein-rich areas of a tissue
sample.
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acquisition time, e.g., 50 ms, and very small number of vertical
pixels, ensuring that the dark current becomes negligible. When
no specific imaging information is required, it is possible to per-
form a vertical hardware binning of the entire CCD-chip or a
defined region. This can help to increase the signal and ensures
that read noise is only affecting individual pixels. However, for
some implementations, such as line-excitation or spatial-offset
Raman spectroscopy (SORS), it is important to retain the ver-
tical information on the detector because it is correlated to spa-
tial information in the sample. Here, the SNR level is reduced in
comparison with comparable measurements with full vertical
binning.

In addition to the read noise, dark noise is an important factor
to consider when choosing the right CCD detector for biomedi-
cal Raman applications. Dark noise occurs from thermally gen-
erated electrons in the silicon structure of the CCD and is highly
temperature dependent. Hence, all common detectors in Raman
spectroscopy are cooled. Nowadays, thermoelectric cooling is
the method of choice, whereas liquid-nitrogen-cooled detectors
are found less frequently in laboratories. The large and cumber-
some liquid-nitrogen-cooled detectors would also further com-
plicate the transition of Raman devices to clinics, where space in
the operating theater is very limited. Typical values for the dark
current at −80°C vary between 0.0001 and 0.03 electrons per
second per pixel, with significantly lower values for FI-CCDs
than for BI-DD-CCDs. The generation of dark noise has also
to be considered for any Raman spectroscopy application.
For short acquisition times, i.e., <1 s, and a vertical binning
of a few dozen of pixels, the dark noise contribution is negligible
and way below the read noise level. If, however, the signal
acquisition is on the order of a few seconds, or a large number
of pixels are vertically binned, which is common when using
Raman fiber probes with multiple collection fibers, it can
become the limiting factor. Considering typical fiber probes
with 10 collection fibers, with a core diameter of 200 μm, an
imaging ratio, which is the magnification of the entrance slit
into the detection plane, of the spectrometer of one, and a
pixel size of 20 μm, a total of 100 pixels will be illuminated.
Performing a vertical binning over 100 pixels and an acquisition
time of 10 s, the dark current for typical BB-DD CCDs is readily
30 electrons per second per pixel, resulting in a dark noise of 5.4
electrons per pixel, which is higher than the read noise for some
available detectors. Nevertheless, for most in-vivo and ex-vivo
Raman applications, the main noise factor stems from shot
noise of the fluorescence signal, as fluorescence can seldom
be completely avoided. Shot noise is the random statistical fluc-
tuation of the arrival time of photons at the detector, and it
follows a Poisson distribution. The fluctuation in the number
of arrived photons is described by

p
N, where N is the number

of photons. For Raman spectroscopy, this specifically means
that if the fluorescence signal is large, the random fluctuation
in the photon arrival can be just as high or higher as the mea-
sured Raman signal, which places a fundamental limit on the
Raman signal detection. For example, when 20 Raman photons
arrive on a single detector pixel and the number of fluorescence
photons at the same pixel is 400, the SNR just due to shot noise
is already 1, in combination with the other noise sources, the
SNR will be <1. For any meaningful classification, an SNR >
5 is usually required.

The generated Raman signal is dispersed onto the CCD
detector through a spectrometer. There are several types of spec-
trometers that are employed for Raman spectroscopy, such as

lens-based and Czerny–Turner arrangements, each having spe-
cific advantages and disadvantages. There are a few factors that
have to be considered when choosing the right spectrometer,
such as spectral resolution, light-collection ability, the diffrac-
tion efficiency, imaging artifacts, and scattering suppression.
Many of those parameters are closely interconnected. The
most obvious parameter for a spectrometer is the achievable
spectral resolution. The resolution depends primarily on the
focal length, which is the focal length of the mirror or lens,
slit-width, groove density of the diffraction grating, and the
detector pixel dimension. In most Raman fiber probe schemes,
the linearly arranged collection fibers act as the entrance slit and
define the aperture size. In general, it is desirable to detect the
entire spectral region between ∼300 and 3800 cm−1 at once,
which puts a constraint on the usable grating and the achievable
spectral resolution, considering a fixed sensor size. There are
implementations that allow imaging the low-wavenumber and
high-wavenumber regions, vertically offset on the same detec-
tor, enabling measurement of the full spectral range at increased
resolution. The desired spectral resolution also constrains the
focal length and the light-collection ability of a spectrometer,
i.e., the higher the resolution, the longer the spectrometer and
the lower the light-collection ability. The typical f-numbers
(f∕#), which is the system’s focal length to the entrance aperture
ratio, range between f∕1.8 and f∕6.5 for typical Raman spec-
trometers, where the lower number means a higher light-collec-
tion ability. Please keep in mind that if a fiber is used to couple
the light to the spectrometer, the fiber has to match the f∕# to
ensure optimal coupling and best imaging performance of the
spectrometer. Another factor to consider when using a spectrom-
eter is the imaging performance, which is explicitly important
when working with Raman fiber probes with multiple collection
fibers that are imaged on the CCD detector. For example, most
Czerny–Turner spectrometer designs can exhibit strong astigma-
tism, which leads to the so-called bowtie effect when using
fibers. Here, only the center wavelength is properly imaged
onto the detector while wavelengths further away from the cen-
tral wavelength experience a vertical spreading. This becomes a
significant problem when using fibers arranged vertically in a
line because the signals from the individual fibers start bleeding
into the neighboring ones. Lens-based spectrometers exhibit
excellent imaging properties with nearly no bowtie effect, but
they have, on the other hand, a significant problem with out-
of-plane diffraction, which is caused by the diffraction grating
and rays vertically offset to the optical axis. This results in
a curvature of the input from an input fiber-line array.26 There
are, however, computational options to correct for those
artifacts.27 Recently, new commercially available spectrometers
that offer superb imaging properties with little aberration have
been launched.

3 Fiber and Probe Development
The key component for moving Raman spectroscopy to clinical
in-vivo applications is fiber optical Raman probes. Over the
years, a large literature body has emerged on the different
types of Raman probe configurations, often too large to be
assessed by a novice scientist. Each specific probe configuration
can lead to different types of information, resulting in a
differentiated interpretation of the data. Moreover, the number
of available probe designs is constantly increasing because
new probes not only are designed to perform Raman spectros-
copy but also include other optical modalities, such as
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autofluorescence, OCT, reflectance, just to name a few. As such,
it is paramount to understand the different probe designs, how
they differ, and what type of information they can provide.
In this article, we give a detailed overview of different probe
configurations and provide information on the possible
applications.

Optical fiber sensors are increasingly used in health monitor-
ing devices. The characteristic features of silica optical fibers,
i.e., small diameter, user-defined length, and high mechanical
flexibility, allow facilitating the positioning of the sensor
head at remote or otherwise difficult-to-access (body) sites.
This permits the development of Raman probes that can fit in
the instrument channel of standard medical endoscopes, and the
insensitivity of optical fibers to electromagnetic fields enables
applications in combination with magnetic resonance imaging
(MRI). Additionally, fiber-based sensors do not interfere with
conventional electronics, are nontoxic and chemically inert,
and enable Raman spectroscopy to access hard-to-reach loca-
tions in vivo. The implementation of such optical Raman fiber
probes can be quite complex. For example, the intensity of the
Raman signal generated along the length of silica-based optical
fibers can overshadow the generated Raman signal from the
sample. Therefore, excitation and detection paths are usually
separated into individual fibers to apply appropriate filtering
at the distal fiber ends. The excitation fiber is supplemented
with a narrowband or a shortpass filter to suppress the silica-
based Raman background. In the collection path, on the other
hand, a longpass filter is needed to prevent reflected or backscat-
tered laser light from re-entering the fiber. Oftentimes, a multi-
tude of collection fibers is used to improve collection efficiency.
At the proximal end, the collection fibers are aligned to effi-
ciently couple the detected Raman signal into the spectrometer.
Huang et al.28 designed a special round-to-parabolic fiber bundle
comprising 64 fibers (100-μm-core diameter, NA, 0.22) packed
in a round geometry at the collection end but spread out into a
parabolic linear array in an orientation opposite to the image
aberration of the lens-based spectrograph at the spectrograph’s
entrance site.

In addition to standard optical fibers, there are a variety of
optical fibers types that have also been employed, e.g., hollow,29

microstructured,30 bandgap,31 or multicore32 fibers. However,
the development in recent years shows that, due to easy avail-
ability and low cost, mostly standard silica fibers are used. An
overview of basic Raman fiber probe designs is given in Ref. 33.
Here, the focus will be on fiber optic Raman probes used or
intended for in-vivo applications.

The Raman fiber probe design is strongly dependent on the
application. It is obvious that different constraints exist when
using the Raman probe, e.g., within a cardiovascular catheter
as compared with measurements in the oral cavity or on the
skin. Therefore, not only are spectroscopic parameters, such as
the design of the filters, the collection efficiency, and the beam
steering properties, important, but first and foremost, the probe
diameter and flexibility of the probe have to be considered. Of
course, size restrictions are less limiting for skin applications in
comparison with cardiovascular applications. Additionally, for
applications in hospitals, the designs of fiber optic probes
have to conform to hospital guidelines, i.e., the entire fiber-
spectroscopic system has to be enclosed to avoid stray light
and fit on a small transportable cart for the operating theater.
The clearance for the European market requires CE certification.
With this marking, the manufacturer or importer declares

compliance with the relevant EU legislation applicable to a
product, regardless of where it was manufactured. Concerning
the laser powers at the sample position, the guidelines are
defined by ANSI Standard Z136.3–2011 “Safe Use of Lasers
in Health Care” for the U.S. and EN 60825-1/A2 for Europe.
Because of performing in-vivo experiments in patients, bio-
compatible materials should be used to avoid toxic effects.34

Furthermore, the optical fiber probe has to withstand hospital
sterilization procedures.1

3.1 Basic Raman Probe Setups

One major difference between endoscopic Raman probes is
whether they are confocal or volume probes. For illustration pur-
poses, Fig. 2(a) shows an endoscopic volume probe, also known
as a nonsuperficial or nonconfocal probe. These are endoscopic
probes without any focusing optics and are the simplest endo-
scopic fiber optical Raman probes. Figure 2(b) shows a confocal
endoscopic fiber optical Raman probe, which is more complex
than the nonconfocal probe due to the addition of extra optical
components, such as ball lens, gradient index lens (GRIN
lens),35 or aspheric lenses.36 To allow for side-viewing applica-
tion, mirrors [Fig. 2(c)], or prisms can be added. One possible
confocal handheld Raman probe design described in Ref. 37 is
shown in Fig. 2(d). The handheld Raman probe comprises two
optical arms: one for the delivery of the excitation light, the
other for the collection of the Raman scattered signal, integrated
with optical filtering modules. The excitation light is focused on

Fig. 2 Different fiber optical Raman probes. (a) Basic endoscopic
probe, (b) with ball lens for focusing, (c) with side-view option, and
(d) handheld Raman probe.
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the tissue by an NIR-coated sapphire ball lens to a focal spot
diameter of ∼0.2 mm. The lens is mounted on the tip of the
Raman probe and has a diameter of 5 mm. This probe and
the more compact version,38 with a total outer diameter of 8 mm
were used for in-vivo cervical tissue measurements,37,39 as well
as measurement of the oral cavity.40 Using Monte Carlo simu-
lations, the depth selectivity of ball lens-coupled probes and its
dependence on refractive index and diameter of the ball lens
have also been demonstrated.41

To reduce interference from deeper tissue layers during
endoscopy, a beveled confocal fiber optic Raman probe coupled
with a ball lens was introduced in Ref. 42. It was shown that the
ratios of the Raman photons collected from epithelium versus
stromal depend on the bevel-angle of the fibers.42 In-vivo mea-
surements during endoscopy also revealed that the Raman spec-
tra acquired using the confocal Raman probe are not easily
comparable with a volume-type Raman probe43 because of
the different probed tissue volumes. It was found that about
85% of the collected signal arouse from the top 200-μm epi-
thelium layer of the gastric tissue, whereas 15% arouse from
a range between 200 and 800 μm. In addition, the beveled
Raman probe provides approximately twofold improvements
in tissue Raman-to-autofluorescence intensity ratios as com-
pared with the use of a volume Raman probe.44 Beveled probes
were used in a large trial to acquire spectra from 373 patients
with different histological subtypes in the upper gastrointestinal
(GI) tract and to construct a comprehensive Raman library with
>12.000 Raman spectra.45 For the online analysis of the in-vivo
spectra, dedicated MATLAB-based software was used with
automated data acquisition and spectra preprocessing, allowing
also discarding of noncontact spectra.46 In further trials,40,47,48

the advantage of using both the high and the low-wavenumber
range was shown. A comparative study demonstrates that the
Raman spectroscopic technique coupled with beveled fiber optic
Raman probe has great potential to enhance in-vivo diagnostics
of gastric precancer and early cancer at endoscopy,44 as com-
pared with a volume probe.

Another clinical setup was introduced byMotz et al.,49 which
uses a sapphire ball lens with a 2-mm diameter and a coupled
fiber probe with 15 collection fibers.50 Here, filters deposited on
a special glass substrate were used, instead of directly coating
the fiber ends.43 The probe was applied for margin assessment
during breast surgery51 and in combination with a fluorescence/
diffuse reflectance probe for skin cancer diagnostics.52

A commercial handheld fiber probe (InPhotonics, Norwood,
Massachusetts) consisting of a 105-μm excitation fiber and a
200-μm collection fiber was used to study cervical53 as well
as oral cancers.54

Short et al.55 introduced a probe intended for lung cancer
diagnostics. The probe comprises two filter stages: one set
coated at the distal end of the probe, and the other is placed
in the parallel light path; see Fig. 3. In contrast to contact probes
of other groups, this noncontact probe had a probe tip to tissue
distance of between 5 and 10 mm and was used to generate an
excitation illumination spot diameter on the tissue surface
between 2 and 4 mm. An in-vivo application with the aforemen-
tioned probe showed that high-grade dysplasia and malignant
lung lesions can be detected with a high sensitivity of 90%
and a specificity of 65%,56 using only the high wavenumber
range, i.e., above 2800 cm−1. To accurately indicate the area
being measured, a 532-nm guide laser was added and connected
to three of the 31 collection fibers.57

Custom-made commercial probes are also in widespread use.
Agenant et al.58 compared a nonsuperficial (or volume probe)59

with a superficial Raman probe, both from EMVision LLC60

(Loxahatchee, Florida) with respect to their sampling range.
Both use seven collection fibers surrounding a single excitation
fiber. The superficial probe had additionally a two-component
converging lens, which is a 1-mm-thick flat window of fused
silica, and a proximal element of a plano-convex sapphire lens;
see Fig. 4. This configuration allows overlapping the excitation
and collection light at the sample without interference from the
sapphire Raman signal and an ∼0.5-mm surface diameter of the
sampled region. Using a layered phantom model, they found
that the optimal sampling range of the superficial probe is
between 0 and 200 μm and for the nonsuperficial probe between
0 and 300 μm.58 With this range, the superficial probe measures
close to the origin of urothelial carcinomas 100 to 200 μm
below the surface. It is designed to comply with the regulations
of the Medical Device Directive, made of biocompatible
materials, and can withstand repeated plasma (STERRAD®)
sterilization. With its outer diameter of 2.1 mm, it fits through
the endoscopic channel of a cystoscope58 or a colonoscope.61

The same type of superficial probe has been used for intraoper-
ative brain cancer detection.62–64 Using the fiber probe on 17
patients with WHO grade 2 to 4 gliomas, it was possible to accu-
rately differentiate normal brain from dense cancer and normal
brain invaded by cancer cells, with a sensitivity of 93% and

Fig. 3 Schematic diagram of the endoscopic laser Raman spectros-
copy system. The inserts show the arrangement of the excitation (red)
and collection fibers (green). The collection fibers were connected to
the spectrograph through a special round-to-parabolic fiber bundle to
correct the spectral imaging distortion. With permission from Ref. 56.

Fig. 4 Superficial probe (1 = 7 times collection fibers, 2 = excitation
fiber, 3 = Raman laser cone, 4 = Raman collection cone, and 5 = two-
component front lens). With permission from Ref. 58.
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a specificity of 91%.64 The group around Mahadevan–Jansen
used this probe to characterize human cervical remodeling
throughout pregnancy65 and inflammatory bowel disease
(IBD).66 For the examination of soft-tissue sarcoma immediately
after excision, the slim body of the probe was made pen-like and
housed, resulting to an outer diameter of 6 mm.67 The tissue of
42 patients was measured by bringing the tip of the fiber optic
probe in direct contact with the regions of interest, i.e., tumor
bed, control of normal muscle tissue, and fat tissue.

Optical filters are usually employed to prevent the reentry
of reflected laser light into collection fibers. Another approach
is to use a noncollinear arrangement of excitation and collection
fibers, which additionally offers advantages concerning the
Raman fiber background.28 The probe was designed as a Raman
probe for skin analysis26,68 and applied with the collection arm
perpendicular to the skin surface. To collect the signal 58, opti-
cal fibers with a core diameter of 100 μm were used. The fibers
are arranged along a curvature and coupled into the spectrom-
eter. As described in Refs. 68 and 69, this probe was used for
the detection of benign and malignant skin cancer lesions,
respectively. The results published in 2012 showed sensitivities
between 95% and 99% and specificities between 15% and
54%.68 Related patents are licensed to Verisante Technology
Inc., Germany, which gained market access in 2011 for the
evaluation of suspicious skin lesions in terms of diagnosing mela-
noma, squamous cell carcinoma, and/or basal cell carcinoma.70

Another handheld probe for skin measurements71 was introduced
in Ref. 72, additionally containing positioning elements to enable
automated positioning of the objective making it somewhat bulky,
with an outer dimension of 12.7 × 20.3 cm. As this handheld sys-
tem contains no visual imaging capabilities, a targeting system,
consisting of a guiding collar with a removable reticle, was devel-
oped to allow accurate identification of the measurement location.
As for skin applications, a special probe design is not required
as the one-around-seven probe from EMVision can also be
employed, as was demonstrated in Ref. 73. For skin analysis
not related to cancer, but to characterize depth profiles of stratum
corneum, e.g., penetration studies of drugs or cosmetic products,
in numerous cases a model 3510 Skin Composition Analyzer
(River Diagnostics, Rotterdam, The Netherlands) was frequently
employed.74–78

An alternative miniaturized, confocal fiber optic probe
intended to fit within the instrument channel of a standard medi-
cal endoscope, with a diameter of 2.8 mm, was developed by
Day et al.36 It was optimized for the study of the carcinogenesis
process of esophageal malignancy. The optical layout is related
to the probe shown in Fig. 2(d). The group used a monolithic
filter/mirror component and developed wet-etched silicon moth-
erboards and the jigs to ensure sufficient positioning accuracy of
the optical parts. Although the probe is designed for in-vivo
application, up to now it has been used to study resected tissues
only.35,79,80 Almond et al.35 turned it into a contact probe by
replacing the aspheric lens with a grin lens.36

3.2 Unfiltered Probes

The necessary spectral filtering to suppress the background
makes the design and implementation of fiber optic Raman
probes for the fingerprint region rather complex. At wavenum-
bers larger than ∼2000 cm−1, the silica core and the cladding of
the fiber generate considerably lower Raman background signal.
This implies that the costly filters at the distal end of the probes
could be omitted if the monitoring would be restricted to the

high-wavenumber range, which was defined in Sec. 2.
Hence, the diagnostic properties of the high-wavenumber
range in comparison with the full or only the low-wavenumber
range have been of significant interest and were widely
investigated.57,81,82 A comparison between the predictive
strength of high- and low-wavenumber range was performed
using a filtered and an unfiltered probe, respectively.81 Applying
this approach on colon lesions and employing multivariate
analyses, the researchers found that detecting the high wave-
number Raman profiles might provide sufficient information
for predicting the pathology. This has also been confirmed
by others,83 where a single fiber was used for both excitation
as well as collection.

3.3 Spatially Offset Raman Spectroscopy

SORS is a method for the effective retrieval of Raman spectra of
subsurface layers in diffusely scattering media and was intro-
duced by Matousek et al.84 The concept behind SORS is that
there is a spatial separation between the point of laser illumina-
tion and the point of Raman signal collection on the sample
surface.84,85 There are two main categories: SORS with a central
illumination point and a collection ring and inverse-SORS with
an illumination ring and a central collection area; see Fig. 5. A
method to quantitatively determine the optimal offset for a given
chemical sample is introduced in Ref. 86. Commercial devices
are available and routinely used for airport security or in phar-
maceutics,87 i.e., for measurements through packages. Starting
in 2006,88 it has been used for in-vivo transcutaneous measure-
ment of bone tissue,89–92 mainly by inverse-SORS. Using a cus-
tom-built instrument (Cobalt Light Systems Ltd., Oxfordshire,
UK) with offsets of up to 9.5-mm, photon migration properties
and Raman signal recovery from the depth within three selected
bone types have been assessed.89 SORS can also be employed
for soft-tissue characterization, e.g., for breast tumors beneath a
layer of normal tissue.93–95 An SORS probe for the diagnostics
of breast tumors was developed, arranging the collection fibers
in four circle segments94 and not in full circles as shown in
Fig. 5. Raman signal collection from three coaxial annuli of
optical fibers was demonstrated.96 In very recent publications,

Fig. 5 Spatially offset Raman spectroscopy (a) sketch of SORS and
inverse SORS principle and (b) SORS annular fiber probe with an
inner and outer ring of collecting fibers. With permission from Ref. 33.
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alternative approaches for depth-resolved Raman measure-
ments, namely frequency offset Raman spectroscopy (FORS)97

and time-domain Raman diffuse spectroscopy,98 were intro-
duced. With FORS, depth probing can be achieved by exploiting
the different values of the optical properties of the medium at
different frequencies, whereas time-domain approach exploits
differing arrival times of photons.

3.4 Multimodal Probes

Already in 2008, Patil et al.99 introduced a dual-modal device
capable of performing sequential acquisition of Raman spectra
and OCT images along a common optical axis. An integrated
system with a common sample arm as well as common detection
path was also demonstrated.100 Here, both coregistered datasets
are recorded sequentially with the same spectrometer. As a con-
tinuation of Ref. 99, the clinical OCT/Raman setup of Patil
et al.101 allowed screening areas of up to 15-mm transverse
and 2.4 mm in depth with OCT to identify measurement loca-
tions of interest for Raman measurements. However, the overall
probe size of 10.2 × 12.7 × 20.3 cmmakes it mainly suitable for
skin applications. A side-view hybrid probe for in-vivo real-time
measurements was developed,102,103 making use of the comple-
mentary information provided by OCT and Raman spectros-
copy. The handheld OCT/RS probe has a length of ∼120 mm
with a probe head size of ∼13 mm × 8 mm, making it suitable
for in-vivo tissue measurements on human organs, such as the
oral cavity, cervix, and skin, or for intraoperative monitoring,
e.g., brain surgeries. With this, both the tissue morphology
and biochemical information can be acquired simultaneously
in vivo. However, making full use of the potential of combined
Raman-OCT will require the development of analytical tech-
niques that appropriately correlate the information from both
types of data, i.e., imaging and spectroscopy.101 In Ref. 103,
it was demonstrated that the diagnostic strength of the combi-
nation is improved in comparison with Raman spectroscopy or
OCT alone. To address the issue of obtaining both morphologi-
cal and molecular information at depth, a hybrid approach inte-
grating OCTwith wavelength modulated spatially offset Raman
spectroscopy (WM-SORS) was introduced.104 Using polysty-
rene in lard phantom, coregistered Raman spectroscopy and
OCT measurements at depths of up to 1.2 mm were demon-
strated. The wavelength modulation additionally suppresses
fluorescence background.16,105 A Raman-OCT probe for the
prospective in-vivo clinical melanoma skin cancer screening
was integrated into a commercial spectral domain OCT-setup
(Telesto II, Thorlabs).106 To allow a future upgrade with an opto-
acoustic detector, a pulsed excitation source for Raman spectros-
copy was used. For first in-vivo measurements, an elliptically
illuminated skin area with axes of 9 and 7 mm and integration
times of 100 s were used.

Scepanovic et al.107 developed a multimodal system that
combined Raman spectroscopy, autofluorescence, and diffuse
reflectance and comprising three light sources that are sequen-
tially coupled to the probe by an optical fiber switch. It was
employed for in-vivo detection of vulnerable or thrombotic
plaques during femoral bypass and carotid endarterectomy
surgeries.108 The ball lens-coupled probe contained a single
excitation fiber and a concentric ring of 15 collection fibers,
10 of which were used to collect Raman spectra, and the remain-
ing five to collect reflectance and fluorescence data.

A multispectroscopy surgical probe from EMVision, similar
to the probes described in US patents 8,175,423 and 8,702,321,

allows sequential acquisition of Raman spectra and fluorescence
signals for two excitation wavelengths and the reflection of
a white-light source, controlled by an optical switch.109

Depending on the read-out technique, fluorescence intensity
or fluorescence lifetime110 can be recorded. Figure 6 shows
the principal setup, consisting of seven collection fibers around
an excitation fiber for Raman spectra and, in green, two fibers
for the collection of the other modalities. A multimodal setup,
designed for skin cancer diagnostics, was introduced in
Ref. 111. It is nearly identical to the probe shown in Fig. 7,
except that three fibers with a 200-μm-core diameter are
arranged in a triangle and used for fluorescence and diffuse
reflectance spectroscopy (DFS). In addition, eight fibers, i.e.,
seven 300-μm-core collection fibers and one 200-μm-core exci-
tation fiber, are used for Raman spectroscopy. Another differ-
ence is that three “non-Raman” fibers bypass not only the
donut-shaped longpass filter but also the front lens to correct
for spectral aberrations.

3.5 Image Guidance

Recent developments in biomedical Raman spectroscopy indi-
cate that image guidance for Raman measurements is highly
advantageous, especially with regard to future computer-
assisted and robotic surgery. In Ref. 113, integration and visu-
alization of an image-registered Raman probe were demon-
strated. It was shown that the position of the probe can be
tracked and registered to any imaging modality, e.g., computed
tomography (CT) scans. During brain surgery, a navigation
attachment (Medtronic SureTrak) was used for spatial regis-
tration with the Medtronic StealthStation system, enabling
MR guidance of measurement and tissue sample collection
locations.62,64 A commercial Raman probe from EMVision
LLC was adapted to the ARAKNES114 robotic platform and
tested using tissue samples. The final intent is to identify
ambiguous tissue margins during robot-assisted endoluminal
surgeries.115 As Raman probes can only perform single-point
measurements, the knowledge of the exact measurement
point is of great importance116 because the samples are often
very heterogeneous. Schleusener et al.117 have, therefore,
designed a macroscopic Raman probe with a video-recorded
measurement spot. Image guidance is also very advantageous
for endoscopy as it helps to correlate the Raman measurements
with histopathological findings. In 2009, Huang et al.43 intro-
duced image-guided endoscopy in combination with Raman
spectroscopy (Fig. 8). The group used a trimodal widefield
setup, i.e., white-light reflectance (WLR), autofluorescence,
and narrow-band imaging in combination with point-wise

Fig. 6 Schematic view of the probe with filters, lenses, and beam
propagation cones. Front view of the probe distal end. The fibers
shown in blue are used for collecting the Raman scattering. The
fiber shown in red transmits the light for the Raman excitation. The
fibers shown in green are for generating the fluorescence/white-
light signal. With permission from Ref. 110.

Journal of Biomedical Optics 071210-8 July 2018 • Vol. 23(7)

Cordero et al.: In-vivo Raman spectroscopy: from basics to applications

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 7/1/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Raman measurements. A Raman endoscopic probe with an
outer diameter of 1.8 mm was constructed to fit through the
instrument channel of a medical endoscope. This is a more direct
approach as compared with MR or CT guidance. Confocal, as
well as volume probes, can be employed, as long as the size
restrictions given by the instrument channel are observed.
The Raman probe developed by Huang et al.43 consisted of
33 optical fibers: one for excitation and 32 for Raman signal
collection. The distal end of the fiber probe was coated with
two different types of filters; the central excitation fiber is

coated with a narrow bandpass filter, centered at 785 nm,
with an FWHM of �2.5 nm. The surrounding collection
fibers were coated with edge longpass filters and a cutoff
at 800 nm. The Huang-group has published several papers,
using the described Raman probe for a variety of in-vivo
applications.46,82,118–121 For example, to construct a spectral
database to build a model for gastric cancer diagnostics, they
acquired 2748 spectra of gastric tissue from 305 patients
in vivo using the described real-time system.46 To get a universal
tool, organ-specific diagnostic models were implemented,

Fig. 7 Schematic of the multimodal spectroscopy probe with a side view on the left and a cross sectional
view on the right. A central excitation fiber 200-μm core diameter, 0.22 NA is the surrounded by 15 col-
lection fibers, 10 of which collect Raman spectra and five of which collect DRS/IFS return light. The probe
tip contains a module to filter the excitation and collection light and a sapphire ball lens to optimize
collection. Adapted from Ref. 107.

Fig. 8 Schematic of the integrated Raman spectroscopy and trimodal endoscopic imaging system
developed for in-vivo tissue Raman measurements at endoscopy. With permission from Ref. 43.
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enabling instant switching among the spectral databases of
different organs, e.g., esophagus, gastric, colon, cervix, bladder,
lung, nasopharynx, larynx, and the oral cavity, including the
hard palate, soft palate, buccal, inner lip, ventral, and the
tongue.46 This instrumental setup was also used with a confocal
probe and improved depth resolution for the characterization of
nasopharyngeal cancer.48 In this study, spectra from 95 patients
were recorded. As biopsies were taken only from suspicious
sites, relying on otolaryngologists’ observations, the researchers
state that the “healthy baseline” may not be fully corrected,
which could result in errors in tissue Raman classification.48

More clinical information regarding the mentioned publications
can be found in Sec. 4.

3.6 Clinical Use

Several technical challenges remain for clinical use, such as a
robust control over the laser radiation dose and measurement
repeatability during endoscopy. A decrease in the SNR, due
to the aging of the Raman probe after repeated cycles of
harsh reprocessing procedures, is also of concern. To address
such issues, disposable, biocompatible, and sterile sheaths for
manufacturing endoscopic fiber optic Raman probes is being
designed and tested.115,122 Sterilization is realized mostly by
either cold gas ethylene oxide or Sterrad R (Advanced
Sterilization Products, Irvine, California).58,108

To save costs, unfiltered probes have also been investigated
and would make single-use probes more feasible as reprocessing
can damage the probe or alter its spectral behavior.81 For some
applications, a large excitation spot is preferred as a larger laser
intensity can be used while still complying with the maximum
permissible exposure (MPE) guidelines.122 However, a lack of
precision in controlling the sampling distance was anticipated
under most operating circumstances. Using an EMVision
Raman probe117 with an added light suppression shield,
Schleusener et al.12 investigated the perturbation factors in
the clinical surrounding, such as ambient light, contact force,
and immersion fluids. Also, user induced, e.g., caused by vary-
ing contact force and angle, and system-induced variabilities
were investigated.123 Using an unfocused seven-plus-one probe
(EMVision), only small user influence was observed.

During surgery, there can be interference from light sources,
as for example, surgical spotlights, white-light sources, and
LCD-monitor light. The same holds true when combining
Raman systems with image guidance. Spectral interference
from the imaging light, which gives rise to spectral artifacts,
can easily obscure the weak Raman signal and reduce the pre-
dictive accuracy of the analysis. Switching the imaging light off
during a Raman measurement increases the risk of puncturing
the tissue, and the point of spectral acquisition cannot be visu-
ally confirmed.57 Desroches et al.63 more thoroughly researched
the impact of surrounding light and found arrangements, which
avoid measurements in complete darkness, i.e., standard oper-
ating room lights can be left turned on as long as they are
pointed away from the sample. In a follow-up publication,124

a filter adapter for the surgical microscope composed of two
shortpass filters was designed. This adapter in combination
with background removal efficiently suppressed the interference
of the operating microscope light source.

Depending on the clinical surrounding, special approaches
are necessary. For Raman measurements during interventional
MRI, a special fiber probe is needed, with no metal parts in
the probe head. Ashok et al. developed an MRI compatible

fiber optical Raman probe with a disposable probe head, which
also maintains sterility. To make the probe head a single-use
component, the filtering was decoupled from the head and
the commonly used steel capillaries were replaced by a heat-
shrinkable sleeve.

Furthermore, efficient calibration procedures have to
be applied to ensure reproducible system performance.
Wavenumber calibration is typically accomplished using
calibration standards,109 such as acetaminophen, naphthalene,
and a calibration light source. The spectral system response
can be calibrated using a tungsten-halogen lamp.67,111 For quan-
titative analysis of in-vivo tissue, Raman measurements in
real-time univariate125 or multivariate126 reference signals can
be used.

4 Medical In-Vivo Applications
Raman spectroscopy has been used extensively for the charac-
terization of ex-vivo biopsy samples; however, the real benefit of
the method can only be explored through in-vivo applications.
As such, there has been a significant movement from ex-vivo to
in-vivo studies in recent years. This section presents the latest
in-vivo studies and applications of Raman spectroscopy as a
potential tool for intraoperative assistance and for the medical
diagnostics on a variety of diseases and tissue types, such as
cardiovascular and inflammatory disease and lung, breast,
digestive and urinary tract, brain, and skin cancer.

4.1 Cardiovascular Diseases

Cardiovascular diseases are the leading causes of death
worldwide.127 Due to the aging of blood vessels lining, the
inner walls of arteries become susceptible to deposition and per-
meation of various lipids circulating through the bloodstream,
resulting in a clogging of the vessel walls, a disease which is
called atherosclerosis (AT). The associated swelling can
severely reduce the blood flow and thus the nutritional supply
of the affected organs, which is one of the leading causes of
cardiovascular events.

Apart from diagnosing the presence of atherosclerotic
plaques, it is well-known that the severity of a plaque and
its stability are strongly correlated with its biochemical
composition.128 For instance, the identification of vulnerable
plaques remains one of the most important and challenging
aspects of cardiology. There are several types of vulnerable pla-
ques, which have distinct biochemical compositions that are
characterized by lipid cores, thin fibrous caps infiltrated by mac-
rophages, proteoglycan matrices in a smooth muscle cell-rich
environment, intraplaque hemorrhage, or calcificed nodules
protruding into the vessel lumen.129 Thus, specific information
about the composition of a plaque would greatly improve the
risk assessment and management.

Several spectroscopic techniques based on near-infrared
absorption, Raman spectroscopy, or fluorescence are currently
under investigation or being developed.130 Due to a high-
molecular specificity and sensitivity for lipids and crystalline
calcium, which are the main constituting biochemical compo-
nents of atherosclerotic plaque, Raman spectroscopy is a predes-
tined tool to perform this characterization. Furthermore, it is
readily possible to distinguish between subclasses of lipids,
such as triglycerides, cholesterol, and different cholesterol
esters. The coupling of Raman spectroscopy to miniaturized
probes allows a catheter-based implementation that can be
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performed during a routine catheter administered cardiovascular
intervention, such as stenting or balloon-induced angioplasty.
The development of miniaturized Raman probes would allow
a combination with cardiac catheterization and could potentially
facilitate the diagnosis. It can also be combined with other
intravascular imaging techniques.

First, in-vivo experiments were reported as early as 2000 on
lipid plaque observed in sheep.131 In 2006, Raman spectroscopy
was tested during carotid endarterectomy and femoral artery
bypass surgeries.132 Experiments in combination with other
spectroscopic techniques, in particular with DRS and autofluor-
escence, often referred to as intrinsic fluorescence spectroscopy
(IFS),108,133 demonstrated that Raman spectroscopy is very
sensitive to lipid pools. Concurrently, obtained DRS data have
been related to the presence of β-carotenoids and superficial
foam cells. Autofluorescence, on the other hand, has been
used to detect the thickness of fibrous caps. Depending on
the Raman probe design, the currently available Raman probes
for cardiovascular applications are about 1 mm in diameter,
which is generally subject to improvement. At this point, it is
noteworthy to mention that Raman excitation within the NIR
is not hindered by the presence of blood, and the intensity of
the occurring autofluorescence is not too high and does not
obscure relevant Raman signals.134

In contrast to other modalities, Raman spectroscopy offers
enormous benefits because of its potential to provide quantita-
tive data. Early on in cardiovascular applications with Raman
spectroscopy, it has been demonstrated that individual plaque
components can be quantified. Because of unique compositional
parameters, different plaque types can be analyzed in a nonsub-
jective manner that can assist in the recognition of vulnerable
plaques and improve the aforementioned risk management.
It is also possible to combine Raman spectroscopy with OCT
for fast image contrast on the plaque morphology. In-vivo
Raman spectroscopy in combination with OCT has been applied
consecutively on rabbits (Fig. 9).112 The allocation of the
collected OCT and Raman data can be assured by X-ray angi-
ography during the operation; however, a probe that allows both
modalities would be of significant impact. The OCT images and
the Raman spectral information of distinct abnormal positions of
early plaque formations were recorded. The morphology of
early plaque formations was characterized by the OCT images
and the Raman data obtained clearly showed the lipid nature of
the depositions. All reported studies, mostly ex vivo, focused on
proof of principle experiments. In particular, the application of
Raman probes within arteries under in-vivo conditions is still
very basic. The current challenges are predominantly of a tech-
nical nature, i.e., to design Raman probes that fulfill the tech-
nical requirements for applications in human.

Intravascular FLIM has also been compared with Raman
spectroscopy. Both modalities were simultaneously acquired
from two human coronary specimens using a bimodal probe.135

Raman spectroscopy could distinguish lipid from necrotic
cores, whereas FLIM extracted information could identify
fibrous caps.

4.2 Inflammatory Diseases

Inflammatory diseases are linked to a vast array of disorders
characterized by inflammation and include allergic asthma,
autoimmune disease, hepatitis, and IBD, among others. The
diagnosis of inflammatory changes is crucial for the early diag-
nosis and treatment of autoimmune infections and metastatic

diseases.136 Ex-vivo Raman-based diagnostics of asthma and
hepatitis was investigated by analyzing serum and blood plasma
samples.137,138

Ulcerative colitis (UC) and Crohn’s disease are two distinct
types of IBD. The ability to endoscopically, pathologically, and
radiologically diagnose and analyze the disease severity still
needs improvement.139 The potential of Raman spectroscopy
to detect molecular alterations in UC and Crohn’s (CC) has
already been demonstrated.140 Pence et al.141 tested a colonos-
copy-coupled Raman fiber probe on 53 patients. Raman spectra
were collected from the cecum, transverse, and sigmoid sites of
the colon with integration times of 0.5 s and an excitation power
of 80 mW. To improve the signal collection, a shallow focus
design through a focusing microlens at the probe tip was
implemented.142 The authors employed a sparse multinomial
logistic regression algorithm to discriminate between UC and
CC. The model was based on a Bayesian machine learning
framework of statistical pattern recognition and allowed an over-
all classification accuracy of 95%. Recently, Pence et al.66

reported a pilot in-vivo Raman study to characterize IBD in
23 patients including healthy subjects that underwent a routine
surveillance and evaluation colonoscopy, with biopsies col-
lected. The classifiers did not achieve optimal sensitivity and
specificity, with 62% and 22%, respectively, when discriminat-
ing colitis from the quiescent disease. Nevertheless, the
analyzed Raman spectra provided enough information to
discriminate between IBD and normal colon, demonstrating
the potential of Raman spectroscopy for providing unknown
biochemical information that can be used as a diagnostic
tool for IBD.

Fig. 9 EnlargedOCT image (a) from the section shown in comparison
with an EvG stain (b) of a section from the same region; L, lumen or
artery; M, muscularis media; A, adventitia. Graph (c) shows a Raman
spectrum with characteristic lipid bands collected within the region,
where the OCT image was obtained. The position of the Raman
probe is shown in (d). Reprinted with permission Matthäus et al.,
“Detection and characterization of early plaque formations by
Raman probe spectroscopy and OCT: an in-vivo study on a rabbit
model” with permission of the Journal of Biomedical Optics.112
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4.3 Cancer

4.3.1 Lung

Lung and bronchus cancers are the most common causes of
cancer deaths worldwide,143 and smoking is the leading cause
for this kind of cancer.144 Techniques, such as CT, chest
X-ray, and sputum cytology, are commonly employed for
lung cancer screening, but by the time of diagnosis in more
than half of the patients the cancer has already metastasized.
Early detection is urgently required to allow appropriate treat-
ment and a reduction of mortality rates.145 For example, using
low-dose CT scanning, it was demonstrated that screening
a high-risk population for lung cancer has led to a mortality
reduction.146,147 White-light bronchoscopy has also been tested
for early detection of cancer. However, it was reported that this
technique cannot diagnose early cancers and precancerous
lesions, such as angiogenic squamous dysplasia and squamous
cell carcinoma in situ, and only 29% carcinoma in situ (CIS) and
69% of microinvasive tumors were detectable.148 Fluorescence
bronchoscopy has been tested and remains a promising tool for
early detection of lung cancer.149 Nevertheless, a main limitation
is the specificity and the ability to only detect the proximal
bronchial tree.150 Early ex-vivo and in-vivo Raman studies
demonstrated the potential of Raman spectroscopy to differen-
tiate accurately tumor from healthy tissue.151,152 Recently,
McGregor demonstrated that Raman spectroscopy together
with multivariable analysis allowed differentiation of high-
grade dysplasia and malignant lung lesions from tumor tissue
and benign lung lesions with a high sensitivity and good speci-
ficity for 280 tissue sites of 80 patients.56 The authors acquired
Raman spectra mainly from the high wavenumber region (2775
to 3040 cm−1), with an acquisition time of 1 s. It was observed
that spectra with malignant lesions presented a distinctive loss in
lipid at 2850 cm−1. The analysis of this vibrational band
allowed the discrimination of tumor from normal tissue with
a sensitivity of 90% and specificity of 65%, respectively. It
was further shown that the low specificity could be improved
when Raman spectroscopy was combined with autofluorescence
and white-light bronchoscopy.153 Thereby, the efficiency of
Raman spectroscopy has been demonstrated for lung and bron-
chus cancers detection. Nevertheless, so far it remains investiga-
tional and larger clinical trials are required to validate its
effectiveness in the early cancer diagnostics.

4.3.2 Breast

The second most common cancer and one of the most frequent
malignancies in women worldwide is breast cancer, with 1.7
million new cases per year.154 Many diagnostic methods have
been investigated to diagnose early-stage breast cancer, includ-
ing MRI, ultrasonography (US), positron emission tomography
(PET), and CT, and are routinely used in the clinics.155

Nevertheless, the sensitivity for the detection of early-stage
breast cancer is rather low, and a intrasurgical assessment of
the tumor margins is often quite challenging. In addition,
there are cost and time constraints that still need to be addressed,
and these create a demand for highly-sensitive and rapid meth-
ods to assess tumor margins during the surgery of early-stage
breast cancer.155,156 An early study employing 321 Raman spec-
tra from 44 patients demonstrated the potential of Raman spec-
troscopy to effectively diagnose early-stage breast cancer with
a sensitivity of 72% for malignant tissue and 62% for benign

tissue and a specificity for normal tissue of 83%.157 The authors
found that the normal tissue exhibits characteristic bands of car-
otenoids at 1150 and 1520 cm−1, which can be assigned to C─C
and C═C stretching vibrations, respectively. Other characteristic
changes were observed in the symmetric and asymmetric C─H
vibrations at 2850 and 2940 cm−1, respectively, which are
representative of lipids. These characteristic bands were not
observed or did exhibit altered appearance in malignant breast
tumor tissue. In addition, the group found that the fatty acid
composition in cancerous breast tissue had an increased content
of 20-carbon essential fatty acid, which is significantly different
from the fatty acid profiles present in normal breast tissue. This
was also observed by Abramczyk et al.158,159 after testing the
Raman same system on 150 patients. One possible interpretation
is that the noncancerous tissue is dominated by monounsatu-
rated oleic acid.159 Saha et al.160 reported on the potential of
Raman spectroscopy for the real-time identification of microcal-
cifications as an early sign of breast cancer during stereotactic
breast core needle biopsies. The study included ex-vivo Raman
measurements from 159 tissue sites of 33 patients to detect
microcalcifications in breast tissue biopsies. Using a probe
described by Motz et al.,50 the authors employed ordinary
least squares fitting to approximate the acquired spectra with
a breast model that was developed in a previous study.161

The authors showed that it was possible to distinguish the
types of microcalcifications based on the presence or absence
of vibrational bands characteristic of calcium oxalate at 912
and 1477 cm−1; see Fig. 10(a). The specific location in the
biopsy from where the spectrum was acquired is shown in
Fig. 10(b). In contrast, Fig. 10(c) highlights the prominent
band 960 cm−1, which is characteristic for calcium hydroxya-
patite/(microcalcification type II). The specific location in the
biopsy is shown in Fig. 10(d).

Additionally, Horsnell162 and Haka et al.163 evaluated the
potential of Raman spectroscopy for in-vivo diagnostics for
breast cancer. Both report on the feasibility to use the method
in an operational theatre environment during surgery. The study
by Haka et al. included nine patients and 31 Raman spectra were
acquired. With their classification model, they reached an over-
all accuracy of 93% (28 of 30).51 The work by Horsnell et al.162

included 38 lymph node samples from 17 patients, achieving
sensitivities and specificities of 90% in unsupervised test.
The classification algorithm, as the one applied here described
by Li et al.,164 was able to classify the normal from tumor
biopsies with a sensitivity of 94.9% and a specificity of 93.8%.

During the last 5 years, there have been no further records of
in-vivo studies using Raman spectroscopy for the detection of
early breast cancer.

4.3.3 Digestive and urinary systems

According to the international agency for research on cancer,
one of the most commonly diagnosed cancers worldwide is
colorectal cancer with 1.4 million cases per year. The third
most frequent cause of cancer death is stomach cancer with
0.7 million cases (8.8%),165 while esophageal cancer is the
eighth most frequent cancer (3.2%) and the sixth most common
cause of death (4.9%).166,167 The research group around Huang
has widely performed in-vivo studies with Raman spectroscopy
to differentiate normal and tumor tissue in colon, stomach, and
the esophagus.46,47,119,121,168–172 Early work by this group dem-
onstrated the potential of Raman spectroscopy in the stomach by
differentiating dysplasia from normal tissue. The authors use
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a 785-nm excitation laser and measured 76 gastric tissue sam-
ples from 44 patients, with 55 normal tissue samples and
21 tissue sample exhibiting dysplasia.173 Data were analyzed
by the variation in the band intensity ratio at the band
875 cm−1, i.e., C─C stretching of hydroxyproline, and the
band at 1450 cm−1, i.e., CH2 bending of proteins/lipids, result-
ing in a sensitivity of 85.7% and a specificity of 80%.

Huang and Bergholt174,175 have also performed in-vivo
Raman measurements in the stomach for a label-free diagnostics
of epithelial neoplasia, benign, and malign stomach ulcers. The
results of these studies demonstrated that the diagnostic capabil-
ity is optimized through the combination of near-infrared auto-
fluorescence with Raman spectroscopy. A total of 1098 normal
tissue and 140 cancer gastric tissue samples from 81 patients
were measured with a spectral acquisition time of 0.5 s.
The differentiation between gastric cancer and normal tissue
was achieved with a sensitivity of 97.9% and specificity of
91.5%. The main advantage of combining Raman spectroscopy
with autofluorescence is that the latter provides additional infor-
mation, such as changes in morphological structures, tissue
scattering, absorption, and endogenous fluorophore content of
sample.121 Bergholt et al.119 also performed in-vivo diagnostics
of esophageal cancer with image-guided Raman endoscopy by
combining widefield endoscopic imaging, narrow band imag-
ing, and autofluorescence imaging in 75 esophageal tissue

sites from 27 patients, where 42 Raman spectra were acquired
from normal tissues. It was found that the esophageal cancer
tissue exhibits Raman bands associated with cell proliferation,
lipid reduction, and neovasculation. The LDA-based diagnostic
model allowed differentiating tumor from normal tissue with a
sensitivity of 97% and specificity of 95%. Examples of in-vivo
Raman spectra and Raman difference spectra of normal and can-
cerous esophageal tissue from this publication are plotted in
Fig. 11. The difference spectra between the distal and proximal
esophageal sites of normal tissue show insignificant detectable
biomolecular variability; see Fig. 11(b). Figure 11(c) shows the
difference spectrum between tumor and normal esophageal tis-
sue, which resolves meaningful biomolecular changes that are
related to neoplastic tissue transformation.176,177 Other relevant
studies on the esophagus, although ex vivo but worth mention-
ing, were carried out by the Stone’s group.79,80 Kendall et al.
performed the diagnostics of esophageal cancer using a
Raman probe on 123 esophageal biopsies collected from 49
patients. The authors demonstrated that high levels of sensitivity
(81%) and specificity (98%) can be achieved using the miniature
confocal fiber optic Raman probe at 50 mW, laser excitation of
830 nm, and acquisition times between 2 and 10 s from random
locations on the surface of each sample.36,79

Recently, Wang et al.171 demonstrated that the acquisition of
both the low and the high wavenumber regions of a Raman

Fig. 10 Raman spectra and histopathology of breast lesions with types I and II microcalcifications.
(a) Microcalcifications type I shows bands at 912 and 1477 cm−1, (b) shows the calcium oxalate crystals
(type I), left panel do not bind H&E and right panel viewed under polarized light, (c) Raman spectrum of
type II microcalcifications with bands at 960 cm−1, and (d) calcium hydroxyapatite appear as basophilic
concretions on the H&E stain. Reprinted from A. Saha et al., “Raman spectroscopy: a real-time tool
for identifying microcalcifications during stereotactic breast core needle biopsies” with permission of
Biomedical Optics Express (OSA).160
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spectrum meaningfully enhances the detection of esophageal
neoplasia in vivo in comparison with each region alone. The
authors measured Raman spectra from 48 esophageal patients
under endoscopic examination, with 80% of the data used to
train a model and the remaining data used for testing the
data acquired with a confocal beveled fiber optic Raman
probe.42 The classification was performed using partial least
squares discriminant analysis with cross validation, resulting
in a diagnostic sensitivity of 97% and specificity of 97.4% of
the esophageal squamous cell carcinoma. The changes were
attributed to a reduction of the Raman band intensities at
1078 cm−1, which is associated with a reduction in lipid content
that occurs mainly due to the thickening of the cancerous
esophageal mucosa.178 In a follow-up study, Wang et al.47

also reported an in-vivo investigation into diagnostics gastric
dysplasia, mostly known as a precursor of gastric cancer. The
authors tested the fiber Raman probe system employed in the
previous study45,171 to differentiate normal, dysplastic, and

cancerous gastric tissue, achieving much higher specificity in
comparison with WLR endoscopy, 95.9% and 51%, respec-
tively. The study obtained a total of 5792 Raman spectra of gas-
tric tissue, i.e., 89% normal, 2% high-grade dysplasia, and 8%
adenocarcinoma from 191 gastric patients and 441 tissue sites.
Bergholt et al.179 also reported for the first time depth-resolved
Raman endoscopy as a tool for the in-vivo detection of dysplasia
in Barrett’s epithelium, with a total of 43 patients that were
tested with Raman endoscopy. The fiber optic Raman probe
was used in direct contact with the GI epithelia. The Raman
signal was acquired from a layer of a depth of ∼200 μm, with
a 785-nm excitation trimodal Raman spectroscopic platform,
which allowed the resolution of histopathological features of
endogenous biomolecules in the epithelium.

Lin et al.172 reported diagnosing gastric intestinal metaplasia
(IM) in vivo using the beveled fiber optic Raman probe previ-
ously developed.42,44 The authors acquired 4520 gastric Raman
spectra from 157 gastric patients, i.e., normal 92% and IM 8%.
Relevant differences between normal and IM tissue were reduc-
tions in the band intensities at 875 and 1078 cm−1, which are
associated with collagen and lipid contents, respectively.

Bergholt et al.180 demonstrated in 2015 in an in-vivo study
that specific biomolecular variations picked-up by Raman spec-
troscopy in different anatomical locations within the colorectum
of normal colorectal tissue is negligible compared with cancer
tissue.

The authors acquired Raman spectra from 1129 sites of five
different locations, i.e., ascending colon 16%, transverse colon
22%, descending colon 11%, sigmoid 19%, and rectum 32%, in
50 patients. To complement this work, Ding et al.181 investigated
different physiological factors on biochemical properties of
colon tissue. After measuring 455 Raman spectra from 56 sub-
jects, between 28 and 85 years of age, it was found that ethnicity,
gender, and age in relation with body mass index (BMI) are key
factors of variability in the spectra within the normal tissue,
mainly from contrasting abundance between lipids and proteins.
The authors report that the intensity of Raman bands at 1303,
1445, and 1656 cm−1 increased substantially in obese and
overweighed patients compared with the normal subjects.
In contrast, protein decreased in both groups. It is, therefore,
reasonable to consider the BMI a relevant factor when applying
Raman spectroscopy for label-free in-vivo diagnostics.

Worldwide bladder cancer has become the ninth most
common cancer, with a mortality rate of >60%.182 Early studies
on biopsies demonstrated the potential of Raman spectroscopy
to detect different bladder tumors (CIS, G1 to G3) from normal
bladder tissue.183–186 For instance, it was found that the DNA
content increases for pathologies within the bladder and the
prostate, while in contrast the collagen content decreases. In
addition, a higher level of cholesterol with an increased severity
of the tumor was observed.187 These investigations were com-
plemented by another ex-vivo study that employed confocal
Raman probes acquiring 140 Raman spectra from 28 fresh biop-
sies of 14 patients optimizing the classification algorithm and
achieving a sensitivity of 85.7% and specificity of 100% for
the diagnostic performance.185 Further steps were taken by
Stone and coworkers188 in collaboration with Motz et al.49

The authors reported on a clinical fiber optic Raman system
for the discrimination between benign and malignant snap-
frozen bladder samples with an overall accuracy of 84%.50,188

This initial work allowed the translation of the Raman-based
diagnostic approach from ex vivo to in-vivo bladder cancer

Fig. 11 (a) Mean Raman spectra obtained in vivo and standard devi-
ations of normal and cancerous esophageal tissue, the spectra are
shifted vertically to observe easily the change, (b) The difference
spectrum of the mean normal Raman spectra between the distal
and proximal esophageal tissue, and (c) difference spectrum of the
mean Raman spectra between cancer and normal esophageal tissue.
Adapted with permission from Bergholt et al., “In-vivo diagnosis of
esophageal cancer using image-guided Raman endoscopy and bio-
molecular modeling” with permission of the Journal of Technology in
Cancer Research and Treatment.119
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diagnostics. A highly cited study on in-vivo bladder cancer diag-
nostics was reported by Draga and coworkers,59 who performed
measurements on 38 patients, using a Raman spectroscopic
probe, reported previously by Magee et al.151 For each sample,
a leave-one-out cross validation was used to distinguish cancer
from normal tissue, achieving a sensitivity of 85% and specific-
ity of 79%.

4.3.4 Head and neck

Head and neck squamous cell carcinoma (HNSCC) includes a
variety of tumors in the lip, oral cavity, hypopharynx, orophar-
ynx, nasopharynx, and larynx. HNSCC is the sixth most
common malignancy worldwide,189 with about 85,000 incident
cases and over 50,000 reported deaths from nasopharyngeal
carcinoma (NPC) in 2012.190 As an alternative to the standard
tissue biopsy methods, optical spectroscopy techniques, such as
light scattering, Raman and fluorescence spectroscopies have
been tested for the detection of early-stage NPC.191–193

The application of Raman spectroscopy for cancer
diagnostics of head and neck has been reported for several
cases.191,194–196 For example, Lin et al.82 implemented transnasal
image-guided Raman spectroscopy in the higher wavenumber
region to detect laryngeal tumor tissue with a miniaturized
fiber optical Raman probe in the larynx, acquiring 94 Raman
spectra with 23% normal and 77% tumor sites from 39 patients
that underwent laryngoscopic screening. The measured spectra
presented prominent differences between normal and tumor
tissue in the Raman band intensities at 2845, 2880, and
2920 cm−1 associated with CH2 stretching of lipids, and the
2940 cm−1 band, which is assigned to the CH3 stretching vibra-
tion of proteins. The authors were able to differentiate laryngeal
tumor from normal with a diagnostic sensitivity of 90.3% and
specificity of 90.9%.

Further studies in the nasopharynx and larynx allowed the
first implementation of in-vivo real-time transnasal image-
guided Raman endoscopy,116 where the authors employed
an earlier described Raman probe43 to acquire 874 Raman
spectra of 60% posterior nasopharynx, 18% of the fossa of
Rosenmüller, and 22% true laryngeal vocal cords (LVCs)
from 23 patients without any previous carcinosis. The spectra
provided characteristic information about the composition
and morphology variations in the normal nasopharynx and
larynx tissue. The mean spectra of each intersubject nasal
track are shown in Fig. 12, where each spectrum was acquired
within 0.1 s. The WLR images of the upper (PN), mid (FOR),
and lower (LVCs) nasal track are also shown. In another study,
the in-vivo anatomical variability of the oral cavity was inves-
tigated, and Raman spectra from 26 healthy volunteers and 113
patients registered for medical examination without a history of
malignancy or dysplasia were acquired. The authors performed
unsupervised classification to identify anatomical differences of
the measured sites, whereby the anatomical clustering yielded
an overall accuracy of 95%.197 Wang et al.103 characterized bio-
chemical and morphological changes of clinically relevant loca-
tions of oral tissue, i.e., alveolar process, the floor of the mouth,
and lateral tongue in vivo by combining Raman spectroscopy
with optical coherence tomography (RS-OCT). The study was
carried out on 26 healthy volunteers with 1049 Raman spectra
acquired from alveolar process (31%), lateral tongue (33%), and
floor of mouth (36%). OCT images were acquired to reveal
the inter-anatomical morphological dissimilarities. Partial least
squares discriminant analysis was used to train the dataset

obtained with the RS-OCT, yielding a higher diagnostic sensi-
tivity of 100%, 76.5%, and 51.3% and specificity of 95.1%,
77.6%, and 89.6%, respectively, than obtained by just using
Raman spectroscopy, i.e., sensitivities of 90.2%, 77.5%, and
48.8%, and specificities of 95.8%, 72.1%, and 88.8% for the
differentiation of tumor and normal tissue of alveolar process,
lateral tongue, and floor mouth, respectively.

Huang and coworkers42 investigated a micro-optical Raman
probe for the in-vivo diagnostics of laryngeal cancer, acquiring
2124 Raman spectra, i.e., 62% normal and 38% tumor tissue
from 60 patients under routine endoscopic examination. They
reported that laryngeal tumor differs from normal tissue and
that the changes are associated with the water content in the
larynx, as well as the composition of proteins, lipids, and nucleic
acids. The measured spectra were analyzed with partial least
squares discriminant analysis, achieving a sensitivity of 93.3%
and specificity of 90.1% and diagnostic accuracy of 91.1%.198

In a follow-up publication, the authors also confirmed that
observed Raman bands at 940 cm−1 for proline and valine
and 1078 cm−1 for lipids decrease as a consequence of the thick-
ening of the epithelium associated with cancerous progression,
which obscures the collagen Raman emission from deeper tissue
layers.199 Furthermore, the group also tested the probe for
in-vivo diagnostics of nasopharyngeal in 95 patients, acquiring
3731 spectra, 47% of them from normal tissue, and applying
PCA-LDA together with leave-one-subject-out cross-validation
(LOO-CV), obtaining a diagnostic accuracy of 93.1%.48

4.3.5 Brain

Surgical removal of the entire tumor tissue in brain, even men-
ingiomas (benign tumor), is crucial for optimal treatment of the
affected patient.200 US, PET, CT, and MRI allow defining the
border for tumor excision.201,202 However, despite the extended
use, even intraoperative MRI, US, and PET have several draw-
backs, such as the application of radioactive tracers, spatial
resolution, scanning, and patient transport time.203 A further
complication occurs in the correlation between any imaging

Fig. 12 Mean Raman spectra obtained in vivo of posterior nasophar-
ynx (PN), fossa of Rosenmüller (FOR), and LVCs. The mean spectra
are oriented vertically. In addition, in-vivo fiber optic Raman endo-
scopic acquisitions from upper-, mid-, and lower-nasal track under
WLR and narrow band imaging guidance are presented (Reprinted
with permission of JBO).116
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modality performed before a craniotomy and the true location of
the brain after the craniotomy. A method that can provide
biochemical information to differentiate tumor from nontumor
tissue can provide supplemental information to current
techniques.204 The potential of Raman spectroscopy for intrao-
perative differentiation of brain tumor from normal brain tissue
has been evaluated.205–207 One recent study demonstrates the
potential of Raman spectroscopy for intraoperative brain cancer
detection. The handheld contact Raman probe (EMVision) (see
Fig. 13) was tested on 17 patients by collecting 161 measure-
ments per sample with an integration time of 0.2 s with a laser
power between 37 and 64 mW. The researchers were able to
distinguish normal brain from dense cancer with a sensitivity
of 93% and specificity of 91%, enabling also the detection of
brain cancer cells in patients with grade 2 to 4 gliomas.64,208

The work was partially consistent with previously published
results. The samples with cancer cells in comparison with nor-
mal brain showed differences in the lipid bands at 700 and
1142 cm−1; the additional changes in the 1540 to 1645 cm−1

bands indicate the higher content of nucleic acid in cancer
cells.209 It has to be emphasized that it is crucial to properly cor-
rect the signal when strong background from autofluorescence
or from ambient light is present. In addition to the significant
shot noise level, a convolution of the broad polynomial back-
ground with the filter function can easily result in additional
peaks and can even emulate to some degree Raman spectra,
making the analysis very challenging and the results often mis-
leading. Jermyn and coauthors also demonstrated the potential
of boosted trees109 and artificial neuronal networks (ANN)210 to
distinguish tissue with and without the presence of light
artifacts, concluding that ANN achieves an accuracy of 90%,
sensitivity of 91%, and specificity of 89% when measuring
with light artifacts. In contrast, boosted trees have a lower
accuracy.109 A recent study characterized the SNR of a
Raman probe system for intraoperative brain tissue on 10
patients. The authors proved that by increasing the integration
time from 0.05 to 0.1 s and reducing the CCD camera temper-
ature to −80°C, the SNR increases by 41% and 35%, respec-
tively, in addition they showed that the system response is
linear by relating laser power and integration time with relevant
bands ratios. This study also demonstrated that necrosis can be
distinguish from tumor and healthy brain tissue with an accu-
racy, sensitivity, and specificity above 84%;63 the authors
performed the test with an excitation laser operated between

40 and 60 mW at 0.05-s integration time. The probe was steri-
lized with a STERRAD system in a standard low temperature
procedure that uses plasma gas.

4.3.6 Prostate and cervix

Prostate cancer is one of the leading causes of cancer mortality
among men with 1.4 million reported cases and 293,000 deaths
worldwide in 2013.211 There is a comparable number for cervi-
cal cancer with an estimated 266,000 deaths worldwide in
2012.212 Diagnostic techniques for early detection of cervical
cancer, such as screening methods, e.g., pap smear, visual
inspection with acetic acid (VIA), and excisional biopsy,
have been investigated, but poor sensitivity and specificity
have been reported.213,214 The potential of optical spectroscopic
techniques has been extensively studied; for instance, in-vivo
fluorescence and reflectance spectroscopy have demonstrated
sufficient sensitivity at low cost.215,216 Nevertheless, studies
using Raman spectroscopy demonstrated that in-vivo diagnos-
tics of cervical cancer with higher accuracy is possible.39,217

An early in-vivo high-wavenumber Raman spectroscopy study
on 46 women, using a handheld fiber optic Raman probe
coupled with a ball lens, demonstrated that dysplasia tissue
could be identified with a sensitivity of 93.5% and specificity
of 97%.37 Comparing Raman spectra of normal and dysplasia
cervical tissue, distinct intensity differences were observed at
CH2 stretching bands of lipids (2850 and 2885 cm−1) and at
CH3 stretching bands of proteins (2940 cm−1), respectively.37

The authors evaluated the intensity ratio of protein to lipid
bands, resulting in ratios of 5.05 for dysplasia tissue and
a lower ratio of 4.16 for normal tissue. The differences were
linked to a decrease in content of membrane lipids, combined
with an increase in short-chain fatty acids. Changes induced by
dysplasia led to an increase in the nucleic hyperchromatism and
density.219 In one of the first studies, Duraipandian et al.39

reported an in-vivo investigation on cervical precancer detection,
using Raman spectroscopy, based on the measurement of 105
near-infrared Raman spectra from 57 sites in vivo of 29 patients,
with 65 spectra from normal and 40 from cervical precancerous
sites. The authors employed a genetic algorithm partial least
squares discriminant analysis (GA-PLS-DA-dCV) to identify
seven significant bands associated to lipids, proteins, and
nucleic acids in tissue and were able to differentiate low and
high-grade precancerous lesions with a diagnostic accuracy
of 82.9%. To further increase the diagnostic accuracy, the
authors also incorporated spectral variations linked to con-
founding factors, such as age, race, smoking habits, and meno-
pausal status in cervical Raman spectra from previous studies to
the GA-PLS-DA-dCV model.220 The authors also investigated
variations in the high wavenumber region aimed to improve
the classification accuracy of cervical precancer. The acquired
Raman spectra were stratified based on the menopausal status
of the cervix of 15 patients, increasing the accuracy from
71% to 91%.221 A follow-up study by Duraipandian et al.217

explored the advantages of using both the low- and the high-
wavenumber regions for in-vivo detection of cervical precancer,
acquiring 473 Raman spectra (349 normal) from 35 patients.
The researchers observed intensity increases in the bands at
1001, 1095, and 1313 cm−1 of dysplastic cervical tissue in com-
parison with normal tissue. In a second follow-up study, the
authors investigated composite NIR AF/Raman spectroscopy
for cervical precancer diagnostics. Here, 1240 NIR AF/
Raman spectra were acquired in vivo from 115 normal sites

Fig. 13 Raman handheld probe being used in the operating room at
the Montreal neurological Institute and Hospital by neurosurgeon
Dr. Kevin Petrecca. The sources of ambient light can be observed
including the microscope white-light, operating room overhead lights,
and LCD screens (Reprinted with permission of JBO).230
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of 84 nonpregnant female patients, between 18 and 70 years of
age, undergoing a colposcopy revision linked to abnormal pap
smears. The combination of near-infrared Raman spectroscopy
with autofluorescence yielded a diagnostic accuracy of 84.1%
for in-vivo discrimination of dysplastic cervix. Nevertheless,
the autofluorescence intensity change associated with dysplastic
progression was not significant, which indicated that confocal-
based NIR AF spectroscopy alone is inefficient for precancer
identification.222 In a further investigation using NIR Raman
spectroscopy, the author reported that Raman spectral bio-
markers can be used for monitoring the multistage cervical
precarcinogenesis at the molecular level.223 A semiquantitative
modeling based on the major biochemical macromolecules in
cervical tissue, i.e., DNA, histone, collagen, triolein, and glyco-
gen, contains the stepwise accumulation of biomolecular
changes associated with progressive cervical precarcinogenesis.

The potential of Raman spectroscopy for prostate cancer was
investigated by Crow et al.,224 who developed a diagnostic algo-
rithm to differentiate between pathological groups, i.e., benign
prostatic hyperplasia and adenocarcinoma-Gleason, with an
accuracy of 89%. The authors found reduced glycogen content
and increased nucleic acid content in malignant samples com-
pared with benign pathologies. In a follow-up study, the authors
also tested an NIR fiber optic Raman system to acquire 220
Raman spectra from 29 bladder samples in cystoscopic proce-
dures and 197 Raman spectra from 38 prostate samples.188 The
developed algorithm differentiated benign prostatic hyperplasia
and prostatitis from prostate cancer with 86% overall accuracy.
Further studies using Raman spectroscopy reported accurate
differentiation of benign and malign prostate tissue.225 For
instance, the differences in the band intensities at 782 cm−1

in the cancer samples compared with benign samples can be
interpreted as an increase in the DNA content in cancer prostate
tissue.225 In-vivo investigations in prostate have not been
reported, but the potential of Raman for in-vivo prostate cancer
diagnostics has been demonstrated and should be expanded to
the in-vivo diagnostics of prostate cancer.

4.3.7 Skin

As one of the most exposed organs of the human body, the skin
has been studied and is routinely investigated by various optical
modalities. Clinical routine investigations range from large
screening dermoscopy and whole-body photography to the
assessment of a few atypical and preselected regions that are
investigated by pathologists.70 The gold standard for risk evalu-
ation of skin abnormalities and the diagnosis of skin cancer is
based on biopsy extraction and subsequent histopathology,
which is usually time consuming. The need for real-time and
noninvasive examination of skin abnormalities arises from the
growing number of skin cancer cases. Apart from supporting
on-site evaluation, fast diagnosis can be beneficial as most
skin cancers can be cured if recognized early enough.226

Several spectroscopy methods, such as Raman, reflectance, and
fluorescence spectroscopy, have been widely investigated.227

Lui et al.68 have demonstrated the feasibility of Raman spectros-
copy in combination with multivariate data analysis to distin-
guish cancerous from benign lesions, showing promising results
for skin cancer. The group used a Raman probe that consists of
a 200-μm-core diameter single fiber to collect the generated
Raman signal and one fiber to illuminate a 3.5-mm diameter
skin area. The collected single-point spectra were recorded in
1 s and subjected to principal component with generalized

discriminant analysis (PC-GDA) and PLS for statistical data
evaluation. All together 453 patients were examined, with
abnormalities including melanomas, basal cell carcinomas, squ-
amous cell carcinomas, actinic keratoses, atypical nevi, melano-
cytic nevi, blue nevi, and seborrheic keratoses. The sensitivities
to differentiate skin cancers and precancers from benign skin
lesions, melanomas from nonmelanoma pigmented lesions,
and melanomas from seborrheic keratoses ranged between
95% and 99%. The achieved specificities of about 15% were
still higher than that of studies based on inspections by
clinicians.228 Another probe-based approach was suggested
by the University of Texas (Austin) in collaboration with
EmVision.111 They employed a seven-around-one fiber optic
Raman probe in combination with fluorescence and reflectance
measurements. In a clinical study, the group investigated 137
lesions from 76 patients with cases of MM, nonmelanoma pig-
mented lesion (PL), BCC, actinic keratosis (AK), and SCC.52

The sensitivity was 100% and specificity values ranged between
95% and 71%, depending on the differentiation between indi-
vidual abnormalities. The best classification performance for
nonmelanoma skin cancer was obtained using multiple modal-
ities. The best melanoma classification was evaluated based on
the Raman data alone. To support the data analysis, the group
also analyzed the spectral contributions of individual skin com-
ponents such as collagen, elastin, triolein, nuclei, keratin, ceram-
ide, melanin, and water, by fitting spectra obtained in vitro using
Raman microscopy.229 A probe design using 785-nm excitation
was used in a larger clinical study involving 104 patients being
suspected of having MM (n ¼ 36), BCC (n ¼ 39), and SCC
(n ¼ 29).73 The probe design focuses the excitation beam to
a spot size of 104 μm and 17 mW on a sapphire finishing
lens surface, which results in an asymmetrical detection spot
with dimensions in the range of 500 to 600 μm. The probe
was designed for contact mode, and the backscattered light is
guided by three 100-μm collecting fibers into the spectrometer.
The incorporated lens potentially allows penetration depths of
100 μm or more, which can be crucial to reach the epidermal
site of the basal membrane as a potential site of early cancer
development. NMSC, MM, and pigmented nevi (PN) were
discriminated with high accuracies of 73% for BCC, 85% for
SCC, and 91% for the pigmented cases. There have also been
approaches to combine Raman spectroscopy with OCT as it is
probably the imaging modality that has the best potential to be
used as a routine clinical screening technique. The first in-vivo
experiments were reported in 2011 by the group of Mahadevan-
Jansen.101 The described multimodal setup employs focusing
optics for the Raman excitation with an estimated spot size
of 44 μm at the sample with a depth penetration of ∼530 μm
at an excitation power of 40 mW. The Raman spectra of
normal skin and BCC were compared and showed significant
differences mainly around 1090, 1340, and 1440 cm−1.

5 Summary and Outlook
In-vivo Raman spectroscopy has a great potential to enable non-
invasive clinical diagnostics for a variety of diseases because it
provides label-free information about the biomolecular finger-
print of the sample and can be used to characterize and to
differentiate different disease stages. In the recent years, there
have been significant technological achievements and a consid-
erable number of clinical applications readily performed. This
review provides a comprehensive overview of the different
technical aspects and clinical in-vivo applications. It describes
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instrumentational aspects, starting with the choice of the appro-
priate components, such as excitation source, detector, and spec-
trometer, but it also describes in detail the different fiber optical
Raman probes, which have been shown in different experimen-
tal settings. Any successful in-vivo Raman measurement is
tightly bound by the instrumentation parameters and has to
be carefully assessed by the developer before measurements
can be performed. Instrumentation parameters, such as the line-
width of the laser, the read noise level and dark current of the
detector, and the spectral resolution of the spectrometer unit, are
just a few that have to be carefully evaluated. Although the per-
formance can usually be ensured by high-end scientific devices,
it is also important to emphasize that cost can play a significant
role in moving Raman spectroscopy to the clinical environment.
It is, therefore, highly important to evaluate how parameters,
such as spectral resolution, spatial sampling size, and spectral
SNR, can be sacrificed while maintaining adequate label-free
clinical diagnostics. The simplification of device structure
will ultimately lead to reduction in cost and a wider availability
of the method. In addition to the instruments, it is highly impor-
tant to consider the designs, development, and performance of
the specific fiber optic Raman probes. Here, new designs based
on fiber technologies have to be addressed and tested to reduce
the complexity of constructing Raman fiber probes. This will
result in low-cost, single-use probes, which can further help
to make Raman spectroscopy an invaluable diagnostics tool.
The implementation of Raman-probes tailored to the working
channels of commercially available endoscopes has already
been shown by several groups. The combination with other
spectroscopy and imaging modalities will further expand on
the applicability of the method, and additional multimodal
probe designs will appear in the near future. The clinical appli-
cations outlined in this review clearly demonstrate the great
potential for in-vivo use of biomedical Raman spectroscopy.
Ultimately, as efficiently summarized in Ref. 4, the advantage
of Raman spectroscopy over existing medical devices has to be
demonstrated in large cohort studies based on patient outcomes
and compared with accepted gold standard methodologies.
Overall, in the last several years, there has been significant
progress in moving Raman spectroscopy from a pure scientific
research method to a mature tool, which bears significant prom-
ise to provide label-free in-vivo diagnostics.
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