
TU Ilmenau | Universitätsbibliothek | ilmedia, 2020
http://www.tu-ilmenau.de/ilmedia

Hildenbrandt, Regina:

The k-server problem with parallel requests and the compound work function
algorithm

Original published in: Baltic journal of modern computing. - [S.l.]. - 8 (2020), 1, p. 1-20.
Original published: 2020
ISSN: 2255-8950
DOI: 10.22364/bjmc.2020.8.1.01
[Visited: 2020-05-06]

This work is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International license. To view a copy of this
license, visit
http://creativecommons.org/licenses/by-sa/4.0/

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.22364/bjmc.2020.8.1.01
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/

Baltic J. Modern Computing, Vol. 8 (2020), No. 1, pp. 1–20
https://doi.org/10.22364/bjmc.2020.8.1.01

The k-Server Problem with Parallel Requests
and the Compound Work Function Algorithm

R. HILDENBRANDT

Institute of Mathematics, Ilmenau Technical University,
PF 10 06 65, 98684 Ilmenau, Germany

r.hildenbrandt@tu-ilmenau.de

Abstract. In this paper the compound work function algorithm for solving the generalized k-
server problem is proposed. This problem is an online k-server problem with parallel requests
where several servers can also be located on one point. In 1995 Koutsoupias and Papadimitriou
have proved that the well-known work function algorithm is competitive for the (usual) k-server
problem. A proof, where a potential-like function argument is included, was given by Borodin
and El-Yaniv in 1998. Unfortunately, certain techniques of these proofs cannot be applied to show
that a natural generalization of the work function algorithm is competitive for the problem with
parallel requests. Values of work functions, which are used by the compound work function algo-
rithm are derived from a surrogate problem, where at most one server must be moved in servicing
the request in each step. We can show that the compound work function algorithm is competitive
with the same bound of the ratio as in the case of the usual problem.

Keywords: Server problems, compound work function algorithm, competitive analysis, dynamic
programming

1 Introduction

This paper deals with a generalized online k-server problem. We want to present a new
algorithm, the ”compound work function algorithm”, and show its qualities for solving
this problem.

In Hildenbrandt (2014) we have introduced a generalized k-server problem with
parallel requests where several servers can also be located on one point. The investiga-
tion of the generalized k-server problem was initiated by an operations research prob-
lem which consists of optimal conversions of machines or moulds (see Hildenbrandt
(1993)). We are given initial locations of k servers in a metric space. Requests Rt for
service at several points come in over time. It is sensible in the case of such requests to

2 Hildenbrandt

distinguish the surplus-situation where the request can be completely fulfilled by means
of the k servers and the scarcity-situation where the request cannot be completely met.
Immediately after the t-th request is received, a sufficient number of servers must be
moved from theirs current locations to the request points. The choice of which servers
are moved, in the case of the surplus-situation or the choice of requests which should
be fulfilled, in case of the scarcity-situation, respectively, must be made based only on
the current servers configuration and on the requests seen so far; that is, the requestsRu

for u ≤ t. Moving servers costs the distances the servers are moved, and the goal is to
minimize the total cost. Firstly, we have proposed the (compound) Harmonic k-server
algorithm in the cases of unit and general distances, respectively (see Hildenbrandt
(2014 and 2016)) and proved the competitiveness of these algorithms. The main subject
of this paper are work function algorithms.

In online computation, an algorithm must decide how to act on incoming re-
quests without any knowledge of future inputs. In contrast, an offline procedure would
be allowed to know the entire sequence of requests in advance, before it makes any
decisions. We want online algorithms whose cost compares favorably to the cost of an
optimal offline algorithm. A deterministic online algorithm is c-competitive if there ex-
ists a function α of the initial configuration so that for every finite input sequence the
cost incurred by the algorithm is bounded by α plus c times the minimum cost of pro-
cessing the input sequence (see Sleator and Tarjan (1985)). c is called the competitive
ratio of the algorithm. The competitive ratio is a measure of how much better we could
do if we knew the future.

The (usual) k-server problem (where at most one server must be moved in
servicing the request in each step) was introduced by Manasse, McGeoch and Sleator
(1988, 1990). Meanwhile it is the most studied problem in the area of competitive online
problems. Historical notes on k-server problems can be found in the book by A. Borodin
and R. El-Yaniv (1998) (Sections 10.9 and 11.7) or also in the paper by Y. Bartal and
E. Grove (2000). There two important results are ”competitiveness” of the determinis-
tic work-function algorithm (see E. Koutsoupias and C. Papadimitriou (1995)) and of
the randomized Harmonic k-server algorithm against an adaptive online adversary (see
Y. Bartal and E. Grove (2000)). The idea for an online work function algorithm was
implicitly introduced by Borodin, Linial and Saks (1992) in connection to ”metrical
task systems”. A work function algorithm for the (usual) k-server problem has been
proposed by several researchers (for more detail, see E. Koutsoupias and C. Papadim-
itriou (1995), p. 974). The competitiveness of the work function algorithm in any metric
space was proved by Koutsoupias and Papadimitriou (1995). In the present paper we
use the proof by Borodin and El-Yaniv (1998) (see Theorem 10.9 and its proof). This
proof is based on Koutsoupias’s dissertation (1994) and on a presentation of this proof
due to Bartal that offers a simpler potential-like function argument (see A. Borodin and
R. El-Yaniv (1998), pp. 178, 179). There are also existing k-server problems which, on
the one hand, are generalizations of the usual problem and otherwise include specific
properties. Such problems and corresponding work function algorithms was described

The k-Server Problem with Parallel Requests ... 3

by R. Sitters (2013) (for example).

Unfortunately, certain techniques of the above-mentioned proofs from literature
cannot be applied to show that a natural generalization of the (usual) work function al-
gorithm (see Section 4.) is competitive for the problem with parallel requests. Therefore
we will develop the ”compound work function algorithm” for the generalized k-server
problem (in the case of the surplus-situation) in Section 5. Values of work functions,
which are used by the compound work function algorithm are derived from a surrogate
problem, where at most one server must be moved in servicing the request in each step.
We will prove that the compound work function algorithm is competitive with the same
bound of the ratio as in the case of the usual problem. In order to prove the competitive-
ness we also need the optimal solution of the corresponding offline problem. For this
we introduce generalized work functions in Section 3.

2 The formulation of the model

Now, we want to describe the usual k-server problem (a)) and the generalized prob-
lem with parallel requests (b)).1 We are given initial locations of k servers in a metric
space (M,d). Several servers can be located on one point (b)). Requests

a) rt

b) Rt

for service
a) at points {pt}
b) at finite multisets of points {Pt} (”parallel requests”)

come in over time. Let
a) σ = r1, r2, · · · , rn
b) σ = R1, R2, · · · , Rn

such a sequence of requests. Immediately after the t-th request is received,
a) one of the servers must be moved from its current location to pt.
b) a sufficient number of servers must be moved from theirs current locations to the

points of the multiset Pt. The choice of which
a) server is moved
b) servers are moved, in the case of the surplus-situation or the choice of requests

which should be fulfilled (by means of the k servers), in case of the scarcity-situation,
respectively (in more detail see below)
must be made based only on the current servers configuration and on the requests seen
so far; that is, the requests

a) rt for u ≤ t.
b) Ru for u ≤ t.

Moving servers costs the distances the servers are moved.
Our goal is to find a deterministic online algorithm for solving the generalized k-server
problem (b)) with the same bound of the ratio as the well-known work function algo-

1 See also Hildenbrandt (2014 and 2016).

4 Hildenbrandt

rithm (for solving the usual problem (a)), where the bound is 2k − 1.

A server configuration of the algorithm is viewed in this paper as a multiset of k
(not necessarily distinct) points representing the locations of the servers. A request can
also be viewed as a multiset, but with a arbitrary number of (not necessarily distinct)
points.

We denote multisets by capital letters and points of M by small letters. For any
(finite) multiset C with points from M we use the notation C = {p1, p2, ..., pm} where
pj , j = 1, 2, · · · ,m are (not necessarily distinct) points from M .

For multisetsC1 andC2 we letC1+C2 denote the multiset union; similarly,C1−C2

denotes multiset exclusion. For a point p and configuration C, we abbreviate C + {p}
by C+p, C−{p} by C−p, C+{p, p} by C+2p and so on. So, for example, if p ∈ C
then the configuration C+p contains at least two copies of p and C−p+p = C+p−p
contains p. However, if p /∈ C then C − p = C and C − p + p 6= C + p − p. (See
A. Borodin, R. El-Yaniv (1998), p. 164.) Let C(p), p ∈ C be the subset of C with
p /∈ C − C(p). We set C(p) = ∅ if p /∈ C.

Finally, |C| denotes the number of elements of a finite multiset C.
For every two finite multisets X and Y with elements from M and |X| = |Y |, we
define D(X,Y) the set distance as the value of the minimum weight matching between
X and Y (see Appendix A.).

Then the inequality |R| ≤ k describes the surplus-situation. The request R can
be completely fulfilled. We say a requestR = {p1, p2, ..., pm} is served if at least |R(p)|
servers are at point p, p ∈ M . In contrast, |R| > k means the scarcity-situation. The
request cannot be completely met, however it should be met as much as possible. The
request R is served if at most |R(p)| servers are at point p, p ∈M .

For any request sequence σ and any k-server algorithm ALG, ALG(σ) is de-
fined as the total distance moved by the ALG’s servers in servicing σ.

Analogous to A. Borodin, R. El-Yaniv (1998), p. 152 working with lazy algo-
rithms ALG is sufficient. This means, servers are not moved in a step if they are not
needed to fulfil requests in this step. For that reason we define the set of feasible servers’
configurations with respect to the previous servers configuration S and the request R in
the following way

Âk(S,R) =
{
S̄ ∈ S(k)

∣∣ |R(p)| ≤ |S̄(p)| ≤ max{|S(p)|, |R(p)|}, p ∈M
}
, (1)

where

S(k) =
{
S̄ | |S̄| = k

}
, (2)

in the case of the surplus-situation and

Âk(S,R) =
{
S̄ ∈ S(k)

∣∣min{|S(p)|, |R(p)|} ≤ |S̄(p)| ≤ |R(p)|, p ∈M
}

(1a)

The k-Server Problem with Parallel Requests ... 5

in the case of the scarcity-situation.
The metric d implies that (S(k), D) is also a metric space (see R. Hildenbrandt

(1995), Lemma 3.6)2.

3 Generalized work functions and the solution of the offline
problem

Next we want to generalize the definition of the work functions, which are used in
the work function algorithm applied to the usual k-sever problem (see A. Borodin and
R. El-Yaniv (1998), p. 164, 165 or S. O. Krumke and J. Rambau (2005), p. 74, 75 for
example). We will use this generalization to solve the problem with parallel request.

Fix a request sequence, σ = R1, R2, · · · , Rn, and use σt to denote the prefix,
R1, R2, · · · , Rt, of σ. Use ∅ to denote the empty request sequence. Work functions are
defined in terms of an initial configuration S0 and a request sequence. Specifically, for
each configuration S0, configuration S, the k-server work function wt(S) = wσt(S) =
wσt(S

0, S) is defined as the optimal offline cost (sequentially) servicing all requests
in σt, starting from the initial configuration S0 and ending at configuration S. Notice
that the configuration S does not necessarily contain the last request Rt of σt (or any
requested points in σt). (Thus, wt : S(k) → R+ for given S0 and σt.)

Work functions can be computed recursively as follows. For each configuration S,
the initial work function w∅(S) is simply the configuration distance between S0 and S.
That is

w∅(S) = D(S0, S). (3)

Assume that the value wt(S) is known for any configuration S. Given the next request
Rt+1 and a configuration S, the value of wt+1(S)(= wσt,Rt+1(S)) is computed as
follows. If Rt+1 ⊆ S (surplus-situation) or S ⊆ Rt+1 (scarcity-situation), respectively,
then clearly wt+1(S) = wt(S). Otherwise, the optimal offline algorithm that must
first serve the request Rt+1 (as much as possible in the case of the scarcity-situation)
before ending up in configuration S can first process the sequence σt, Rt+1 ending up
in some configuration S̃ ⊇ Rt+1 (surplus-situation) or S̃ ⊆ Rt+1 (scarcity-situation),
respectively and then move to configuration S. Thus, it follows

wt+1(S) = min

S̃:

 S̃ ⊇ R
t+1 if |R| ≤ k

S̃ ⊆ Rt+1 if |R| > k

{wt+1(S̃) +D(S̃, S)}

= min

S̃:

 S̃ ⊇ R
t+1 if |R| ≤ k

S̃ ⊆ Rt+1 if |R| > k

{wt(S̃) +D(S̃, S)}.
(4)

The second equality in the above equations is due to the fact that
S̃ ⊇ Rt+1 (surplus-situation) or S̃ ⊆ Rt+1 (scarcity-situation), respectively. (3) and

2 The proof of Lemma 3.6 remains valid in case of an inifinite metric space.

6 Hildenbrandt

(4) provides the means for computing the work functions.
From the definition of the work functions follows the property

w∅(A) ≤ w∅(B) +D(A,B) and
wt(A) ≤ wt(B) +D(A,B) for t = 1, 2, · · · , n (5)

for any server configurations A and B.
The proof of (5) is simple. Ifwt(B) = wt(B̃

∗)+D(B̃∗, B), where B̃∗ is an optimal
solution of (4), then also wt(A) ≤ wt(B̃∗) +D(B̃∗, A). Subtracting the equation from
the inequality, together with the triangle-inequality D(B̃∗, A)−D(B̃∗, B) ≤ D(A;B)
we get (5). �

Using (5) and the triangle-inequality, (4) can be simplified a little:
In case of the surplus-situation it is sufficient to consider S̃ = S−X+Rt+1 which

differs from S by at most |Rt+1 − S| points. Then, we can compute the work functions
as

wt+1(S) = min
X⊆S,|X|=|Rt+1|

{wt+1(S −X +Rt+1) +D(Rt+1, X)}

= min
X⊆S,|X|=|Rt+1|

{wt(S −X +Rt+1) +D(Rt+1, X)}
(6)

or as

wt+1(S) = min
X̂⊆Ŝ, |X̂|=|R̂t+1|

{wt+1(S − X̂ + R̂t+1) +D(R̂t+1, X̂)}

= min
X̂⊆Ŝ, |X̂|=|R̂t+1|

{wt(S − X̂ + R̂t+1) +D(R̂t+1, X̂)},
(7)

where
R̂t+1 := Rt+1 − S, Ŝ := S −Rt+1. (8)

If X is a solution of (6) then there exists a solution X̂ of (7), and vice versa, so that

X = X̂ + X̃ with X̃ = S ∩Rt+1. (9)

If we set S̃ = X then (4) has the representation:

wt+1(S) = min
X⊆Rt+1,|X|=k

{wt+1(X) +D(S,X)}

= min
X⊆Rt+1,|X|=k

{wt(X) +D(S,X)}
(10)

in the case of the scarcity-situation. However, it is sufficient to consider S̃ = X̂ + (S ∩
Rt+1) which differs from S by at most |S −Rt+1| points. Then it follows:

wt+1(S) = min
X̂⊆R̂t+1,|X̂|=|Ŝ|

{wt+1(X̂ + (S ∩Rt+1)) +D(Ŝ, X̂)}

= min
X̂⊆R̂t+1,|X̂|=|Ŝ|

{wt(X̂ + (S ∩Rt+1)) +D(Ŝ, X̂)},
(11)

with R̂t+1 and Ŝ as above.
If X is a solution of (10) then there exists a solution X̂ of (11), and vice versa, so that

X = X̂ + X̃, with X̃ = S ∩Rt+1. (12)

The k-Server Problem with Parallel Requests ... 7

Given any initial configuration and any request sequence σ, we can use work func-
tions to compute the optimal offline cost to serve σ, which is

OPT (σ) = min
S
wσ(S). (13)

Obviously, each different point of an optimal configuration S is an element of M̄ ⊆M ,
where

p ∈ M̄ if and only if p ∈ S0 or p ∈ Rt, t ∈ {1, 2, · · · , n} . (14)

Remark 1 Let S be any configuration.
Work functions can be computed by means of dynamic programming, which pro-

ceeds backward in time. This leads to a sequence of configurations

S =: St+1, St, · · · , S2, S1, (S0)
and a sequence of multisets

X∗t , X∗t−1, · · · , X∗2 , X∗1 ,

with S t̄ = S t̄+1 −X∗t̄ +Rt̄ ⊇ Rt̄ and |X∗t̄ | = |R
t̄| in case of the surplus-situation

or S t̄ = X∗t̄ ⊆ Rt̄ in case of the scarcity-situation, respectively, for t̄ = 1, 2, · · · , t.
Note that it is possible that S1 /∈ Âk(S0, R1).

On the other hand, it is simple to show that a sequence of configurations

U0 = S0, U1, · · · , U t−1, U t, (S =: U t+1)
and a sequence of multisets

Y ∗1 , Y ∗2 , · · · , Y ∗t−1, Y ∗t ,

exist so that U t̄ = U t̄−1 − Y ∗t̄ + Rt̄ ⊇ Rt̄ and |Y ∗t̄ | = |Rt̄| in case of the surplus-
situation or U t̄ = Y ∗t̄ ⊆ Rt̄ in case of the scarcity-situation, respectively, for t̄ =
1, 2, · · · , t and where wt(S) = wt(U

t) +D(U t, S). 3

Clearly, that U t̄ and S t̄, t̄ ∈ {1, 2, · · · , t} can be different and that

wt(S) =
t∑̄
t=0

D(St, St+1) =
t∑̄
t=0

D(U t, U t+1).

The generalized work functions are quasi-convex. We say that a work function
w(= wσt) is quasi-convex if for any configurations X and Y and any subset X̃ ⊆ X ,

min
Ỹ⊆Y,|Ỹ |=|X̃|

{w(X − X̃ + Ỹ) + w(Y − Ỹ + X̃)} ≤ w(X) + w(Y). (15)

Lemma 1. (Quasi-convexity lemma)
All generalized work functions are quasi-convex.

This Lemma is shown in analogue to the proof of Lemma 10.4 in A. Borodin, R. El-
Yaniv (1998). The case of the scarcity-situation must be considered in addition. The
complete proof can be found in Appendix B.

3 Pay attention to the fact that working with lazy algorithms is sufficient.

8 Hildenbrandt

4 Considerations concerning the natural generalization of the
work function algorithm

The work function algorithm (WFA) applied to the usual k-server problem can be
found in A. Borodin, R. El-Yaniv (1998), p. 166 for example. A natural generalization
of this algorithm, adapted to the k-server problem with parallel requests, is the follow-
ing:

Let σt be the request sequence thus far and let S′t be the configuration of the WFA
algorithm after servicing σt. Then, given the next request Rt+1.

In the case of the surplus-situation algorithm WFA servesRt+1 with serversX∗W ⊆
S′t satisfying

X∗W = arg min
X⊆S′t,|X|=|Rt+1|

{wt(S′t −X +Rt+1) +D(Rt+1, X)}.

S′t+1 = S′t −X∗W +Rt+1
(16)

is then the configuration at the end of step t+ 1. According to (7), we can also use the
equivalent formulas

X̂∗W = arg min
X̂⊆Ŝ′t, |X̂|=|R̂t+1|

{wt(S′t − X̂ + R̂t+1) +D(R̂t+1, X̂)} (16a)

S′t+1 = S′t − X̂∗W + R̂t+1.

In the case of the scarcity-situation algorithm WFA chooses servers X∗W ⊆ S′t

satisfying
X∗W = arg min

X⊆Rt+1,|X|=k
{wt(X) +D(X,S′t)}.

Then S′t+1 = X∗W .
(17)

(An equivalent representation according to (11) would also be possible.)
Clearly, the cost of algorithm WFA to serve the request Rt+1 is D(Rt+1, X) (=

D(R̂t+1, X̂)) in both cases.
Next we want to give an example that the WFA algorithm is not competitive in

general (where the case |R| > k is allowed).

Example 1 Let ε ∈ (0, 1) and let h = 1, 3, · · · be a sequence of positive integers
with h1 = 1 and ht+1 = ht + t + 1 for t = 1, 2, · · · . We focus on a number of
similar examples E2, E3, · · · , Ej , · · · with k = 1, S0 = {0} and request sequences
σnj = R1, R2, · · · , Rnj , nj ∈ {2, 3, · · · , j} with Rt = {−t− ε, ht} for t = 1, 2, · · · .
Finally, the usual metric of the reals is used in all examples.

Then, w∅({−1− ε}) = 1 + ε, w∅({h1}) = 1,
wt({−t− ε}) = t+ ε, wt({ht}) = ht for t = 1, 2, · · · , nj , j = 2, 3, · · · ,
wt({−1− t− ε}) = 1 + t+ ε, wt({ht+1}) = ht+1 for t = 1, 2, · · · , nj − 1,
j = 2, 3, · · · .

The minimum costs of the corresponding offline problems are
cost(offline) = min

S
wσ(S) = wnj ({−nj − ε}) = nj + ε for j = 2, 3, · · · , where

Snj = {−nj − ε} are the optimal solutions.

The k-Server Problem with Parallel Requests ... 9

Now, we show by mathematical induction that algorithm WFA yields S′t = {ht}
for t = 1, 2, · · · , nj , j = 2, 3, · · · .
Base case. Obviously, S′1 = {h1} = {1}.
Induction step. Assume that S′t = {ht}.

According to (17),
X∗W = arg min

X⊆{−1−t−ε,ht+1},|X|=1
{wt(X) +D(X, {ht})}.

Since the definition of h implies
wt({−1− t− ε}) +D({−1− t− ε}, {ht}) = 1 + t+ ε+ 1 + t+ ε+ ht
> wt({ht+1}) +D({ht+1}, {ht}) = ht+1 + ht+1 − ht,
X∗W = S′t+1 = {ht+1} follows.

Then the cost of algorithm WFA to serve all requests is

cost(WFA) = 1 +
nj−1∑
t=1

D({ht+1}, {ht}) =
nj∑
t=1

t =
nj (nj+1)

2 for any example Ej .

From this we get the following equation
cost(WFA)
cost(offline) =

1/2 nj (nj+1)
nj+ε

. Algorithm WFA applied to the k-server problem with
parallel request is not competitive (if the case |R| > k is allowed), since
lim

nj→∞
1/2 nj (nj+1)

nj+ε
=∞.

From now on, we will focus on the surplus-situation.

Remark 2 The definitions of the minimizer, the maximizer and the potential-like func-
tion are used to prove that the WFA algorithm applied to the usual k-server problem
is competitive (see A. Borodin, R. El-Yaniv (1998), Section 10.7). These definitions can
be adapted to the k-server problem with parallel request and the natural generaliza-
tion of the WFA. However, it is not possible to complete a proof for competitiveness
of the natural generalization of the WFA (where only the surplus-situation is allowed)
with success in a similar way as in A. Borodin, R. El-Yaniv (1998). The reason for that
is certain partial results are not valid (in general), for example, an inequality which
corresponds to (10.22) in A. Borodin, R. El-Yaniv (1998), p. 170.

So far, the answer to the question, whether the natural generalization of the WFA is
competitive or not in the case of the surplus-situation is a difficult open problem. Thats
why, we will suggest the new ”compound work function algorithm” in the following
section and prove that this algorithm is also (2k − 1)-competitive.

5 The compound work function algorithm

As a basis for further considerations we introduce the following more specific k-server
problem. The term ”k-server problem with a simple extension” describes a k-server
problem with the following properties:

(i) More than one server can be located on a point.

10 Hildenbrandt

(ii) Requests Rt with Rt(r) 6= ∅ for one r ∈ M and where in addition, |Rt(r)| ≤
min{|Rt−1(r)|+ 1, k} must be fulfilled, are allowed.
Then at most one server must be moved in servicing the request in each step.

Lemma 2. Algorithm WFA applied to the k-server problem with a simple extension is
(2 k − 1)-competitive for any k and any metric space.

This lemma can be shown in analogue to the proof of Theorem 10.9 in A. Borodin, R.
El-Yaniv (1998). Therefore, we do not show the complete proof, but make the follow-
ing comments (see also Remark 2). We define the minimizer configuration A of p with
respect to wt similarly as in A. Borodin, R. El-Yaniv (1998):
A = arg min

X
{wt(X) −

∑
i∈M
|X(i)| d(i, p)}, where wt is the current work func-

tion and p ∈ M . The correctness of an inequality which corresponds to (10.22) in A.
Borodin, R. El-Yaniv (1998), p. 170. can be proved, since D(X̃, R) =

∑
i∈M
|X̃(i)| d(i, r),

where R is a request with R(r) 6= ∅, R(i) = ∅ for i 6= r and X̃ is a multiset with
|X̃| = |R| = |R(r)|.

The compound work function algorithm is based on a surrogate problem, which
is a k-server problem with a simple extension.

In order to construct a surrogate problem we replace the steps of the original
problem (k-server problem with parallel request, where only the surplus-situation is
allowed) by a number of steps in the surrogate problem. In more detail, let Rt =
{p1, · · · , p1, p2, · · · , p2, ..., pm, ..., pm} with pi 6= pj for i 6= j be the request in the
t-th step.

Then we set
m̄ := |{r ∈M | Rt(r) 6= ∅}| (18)

and

ρi := |Rt(pi)|, ρ̄i :=
i∑
l=1

ρl for i = 1, · · · ,m, ρ̄0 := 0, ρ̄ := ρ̄m. (19)

(Note that m̄ and ρ̄, · · · depend on t.)
Furthermore, let j̄ be an integer with j̄ = 1 if m̄ = 1 and with

δ∗ · (j̄ − 1) > ρ̄ · δ∗ = |Rt| · δ∗, if m̄ > 1, respectively,
where δ∗ = min

{r1,r2}⊆Rt,r1 6=r2
d(r1, r2), δ∗ = max

r∈Rt,s∈M̄
d(r, s) (20)

(M̄ as defined in (14)).
((20) is a sufficient condition for the validity of the following Lemma 3 and Lemma 4.)

We replace a step t of the generalized k-server problem by steps
t1,1, · · · , t1,ρ̄, t2,1, · · · , t2,ρ̄, · · · , tj̄,1, · · · , tj̄,ρ̄ with requests R̄1,1, · · · , R̄1,ρ̄,

R̄2,1, · · · , R̄2,ρ̄, · · · , R̄j̄,1, · · · , R̄j̄,ρ̄ in the surrogate problem, where

|R̄j,f (pi)| =

f − ρ̄i−1 for i with Rt(pi) 6= ∅, f ∈ {ρ̄i−1 + 1, ρ̄i−1 + 2, · · · , ρ̄i} ,
and j = 1, · · · , j̄

0 otherwise
.

(21)

The k-Server Problem with Parallel Requests ... 11

Since R̄j,f are independent of j we set

R̄f := R̄j,f for f = 1, 2, · · · , ρ̄. (22)

For example, Rt = {p1, p1, p2, p2, p2} implies that m̄ = 2, ρ̄ = 5 and R̄1 = {p1},
R̄2 = {p1, p1}, R̄3 = {p2}, R̄4 = {p2, p2}, R̄5 = {p2, p2, p2}.

Work functions for the surrogate problem are indexed in correspondence to the
steps and the requirements: wtj,f . In addition, we set

wt := wtj̄,ρ̄ for t = 1, 2, · · · ,m and wtj̄,0 := wtj̄−1,ρ̄
if j̄ > 1. (23)

In the following we characterize the solutions of the surrogate problem considered
first as offline problem, where the entire sequence of requests is known in advance, and
second as online problem.

Lemma 3. (offline). Let (SP) be the surrogate problem for a given k-server problem
with parallel requests. Furthermore, let S be any configuration and z̄ ∈ {1, · · · , ρ̄}. If,
according to (6), wtj̄,z̄ (S) = wtj̄,z̄−1

(S − Y ∗
j̄,z̄

+ R̄z̄) + D(Y ∗
j̄,z̄
, R̄z̄) for a Y ∗

j̄,z̄
⊆ S

with
∣∣∣Y ∗j̄,z̄∣∣∣ = |R̄z̄| then Y ∗

j̄,z̄
satisfies the following property

Y ∗
j̄,z̄
∩Rt = S ∩ R̄z̄. (24)

PROOF. Clearly, if m̄ = 1 then (24) is fulfilled. Now, we want to consider the
case that m̄ > 1: Let Rt(il) 6= ∅ for l = 1, 2, · · · , m̄ and l̄ ∈ {1, · · · , m̄} such that
ρ̄il̄−1

< z̄ ≤ ρ̄il̄ . Further on, let

wtj̄,z̄ (S) = wt−1(S − Y ∗
j̄,z̄

+ R̄z̄ − Y ∗
j̄,z̄−1

+ R̄z̄−1 −+ · · · − Y ∗
j̄,1

+ R̄1

−Y ∗
j̄−1,ρ̄

+ R̄ρ̄ − Y ∗
j̄−1,ρ̄−1

+ R̄ρ̄−1 −+ · · · − Y ∗
j̄−1,1

+ R̄1 −+ · · ·

−Y ∗1,ρ̄ + R̄ρ̄ − Y ∗1,ρ̄−1 + R̄ρ̄−1 −+ · · · − Y ∗1,1 + R̄1)

+D(Y ∗1,1, R̄
1) + · · ·+D(Y ∗1,ρ̄−1, R̄

ρ̄−1) +D(Y ∗1,ρ̄, R̄
ρ̄) + · · ·

+D(Y ∗
j̄−1,1

, R̄1) + · · ·+D(Y ∗
j̄−1,ρ̄−1

, R̄ρ̄−1) +D(Y ∗
j̄−1,ρ̄

, R̄ρ̄)

+D(Y ∗
j̄,1
, R̄1) + · · ·+D(Y ∗

j̄,z̄−1
, R̄z̄−1) +D(Y ∗

j̄,z̄
, R̄z̄)

be a recursive representation, where Y ∗
j̄,z̄
, · · · , Y ∗1,1 are computed according to (6). The

minimum weight matchings between Y ∗
j̄,z̄

and R̄z̄, · · · , Y ∗1,1 and R̄1 yield the optimal
movements of the servers in the steps t1,1, · · · , tj̄,z̄ . Let ς be the number of real move-
ments (with distances greater than 0) from S − Rt in Rt which occur in these steps.
Then the definition of the work functions together with the triangle-inequality imply
that ς ≤ |Rt − S| and that these movements must be executed in the first ρ̄ steps back-
wards. If ς = |Rt − S| then the total cost is not greater than |Rt − S| · δ∗.

If ς < |Rt−S| then at least one real movement of a server fromRt inRt in all sub-
sequences of steps (tj,z̄, · · · , tj−1,z̄+1), 2 ≤ j ≤ j̄ is necessary. The total cost would
in this case be greater or equal to δ∗ · (j̄ − 1). Thus, from condition (20) it follows that
ς = |Rt − S|.

12 Hildenbrandt

The above properties of optimal movements imply that

Y ∗
j̄,z
∩Rt = S ∩ R̄z for z ∈

{
ρ̄i1 , · · · , ρ̄il̄−1

, z̄
}

,

Y ∗
j̄,z

= R̄z for z ∈ {1, · · · , z̄ − 1} \
{
ρ̄i1 , · · · , ρ̄il̄−1

}
,

Y ∗
j̄−1,z

∩Rt = S ∩ R̄z for z ∈
{
ρ̄il̄+1

, · · · , ρ̄im̄(= ρ̄)
}

,

Y ∗
j̄−1,z

∩Rt = (S + (R̄z̄ − S)) ∩ R̄z for z = ρ̄il̄ ,

Y ∗
j̄−1,z

= R̄z for z ∈ {1, · · · , ρ̄} \
{
ρ̄il̄+1

, · · · , ρ̄im̄
}

and

Y ∗j,z = R̄z for j ∈ {1, · · · , j̄ − 2}, z ∈ {1, · · · , ρ̄}.

Thus, the statement Y ∗
j̄,z
∩Rt = S ∩ R̄z for z = z̄ is shown. �

Lemma 4. (offline). Let (SP) be the surrogate problem for a given k-server problem
with parallel requests (OP) and let the entire sequence of requests be known in advance.

(i) If S is the configuration of the offline servers at the beginning of a step t1,1 corre-
sponding to an optimal solution of (SP), then such a optimal solution of (SP)
(∗) includes exactly |Rt − S| real movements in the steps t1,1, · · · , tj̄,ρ̄. All these

movements are movements from S − Rt in Rt, and are executed in the first ρ̄
steps t1,1, · · · , t1,ρ̄.

(ii) The optimal offline costs of (SP) and (OP) are equal.

PROOF.

(i) can be proved in a similar way as Lemma 3 (see also Remark 1).

(ii) follows from (i) and the facts that a feasible solution of (OP) implies a feasible
solution of (SP) which fulfilled properties (*) and vice versa. �

Theorem 1. (online). Let (SP) be the surrogate problem for a given k-server problem
with parallel requests. Then a sequence of online servers’ configurations exists which
can be constructed by the WFA algorithm so that Rt ⊆ S′j̄,ρ̄ for any t, where S′j̄,ρ̄

denotes the online servers configuration at the end of step tj̄,ρ̄.

PROOF. If m̄ = 1 then the proof is obvious. Now, we want to consider the case
m̄ > 1: Let Rt(il) 6= ∅ for l = 1, 2, · · · , m̄. In addition, we set ρ̄i0 := 0 and R̄0 := ∅.
Rt ⊆ S′j̄,ρ̄ is equivalent to R̄ρ̄i1 + R̄ρ̄i2 + · · ·+ R̄ρ̄im̄ ⊆ S′j̄,ρ̄.

For this we prove by mathematical induction that
R̄ρ̄i0 + R̄ρ̄i1 + · · ·+ R̄

ρ̄il̄−1 + R̄z̄ ⊆ S′j̄,z̄ for each z̄ ∈ {1, · · · , ρ̄}, where
l̄(= l̄(z̄)) ∈ {1, · · · , m̄} such that ρ̄il̄−1

< z̄ ≤ ρ̄il̄ .

Base case. Obviously, R̄1(= {i1}) ⊆ S′j̄,1.

Induction step. Assume that R̄ρ̄i1 + R̄ρ̄i2 + · · · ∪ R̄ρ̄il̄−1 + R̄f ⊆ S′j̄,f for
f ∈

{
ρ̄il̄−1

+ 1, ρ̄il̄−1
+ 2, · · · , ρ̄il̄

}
if l̄ ∈ {1, · · · , m̄− 1} or

f ∈
{
ρ̄im̄−1

+ 1, ρ̄im̄−1
+ 2, · · · , ρ̄im̄ − 1

}
, respectively. There S′j̄,f denotes the

online servers’ positions at the end of step tj̄,f . In addition, we notice that |R̄f (il̄)| =
f − ρ̄il̄−1

according to (21).

At first, we consider the case that f < ρ̄il̄ .

The k-Server Problem with Parallel Requests ... 13

Then |R̄f+1(il̄)| = f + 1− ρ̄il̄−1
= |R̄f (il̄)|+ 1 is valid.

We will show that

R̄ρ̄i0 + R̄ρ̄i1 + · · ·+ R̄
ρ̄i
l̄−1 + R̄f+1 ⊆ S′j̄,f+1. (25)

If already R̄f+1 ⊆ S′j̄,f then S′j̄,f = S′j̄,f+1 follows and (25) is true. Now, let R̄f+1 *
S′j̄,f .

Then a S′j̄,f+1 = S′j̄,f − X̂∗W + il̄, which satisfies (25), can be determined by the
WFA algorithm, where X̂∗W ⊆ Ŝ′j̄,f with X̂∗W 6= {il̄} and

∣∣∣X̂∗W ∣∣∣ = 1 is computed
as an element from the argminset of:

wj̄,f (S′j̄,f − X̂ + il̄) +D(X̂, {il̄}) (26)

over X̂ , according to (16a).

Case I:
{
X̂∗W ∩ R̄ρ̄il = ∅ for all l ∈

{
1, 2, · · · l̄ − 1

}}
or{

if X̂∗W = {il} (l ∈
{

1, 2, · · · l̄ − 1
}

) then also R̄ρ̄il + il ⊆ S′j̄,f
}

:

In this case (25) follows immediately.

Case II: X̂∗W = {iλ} (λ ∈
{

1, 2, · · · l̄ − 1
}

) and R̄ϕ + iλ * S′j̄,f

for ϕ = ρ̄iλ :

In this case we will show that then also a X̂∗1(6= il̄) exists which satisfies Case I
and implies the same value of (26) as X̂∗W .

(26) leads to
wtj̄,f (S′j̄,f − iλ + il̄) +D({iλ} , {il̄}) (27)

for X̂∗W = {iλ}. In addition,

wtj̄,f (S′j̄,f − iλ + il̄) = wtj̄,ϕ(S′j̄,f − iλ + il̄), (28)

since R̄u ⊆ S′j̄,f − iλ + il̄ for u = ϕ + 1, ϕ + 2, · · · , f according to the induction
hypothesis and Case II.

Using formula (6) for the recursive computation of work functions yields

wtj̄,ϕ(S′j̄,f − iλ + il̄)

= min
Y⊆S′j̄,f−iλ+il,|Y |=ρiλ

{wtj̄,ϕ−1
(S′j̄,f − iλ + il̄ − Y + {ρiλ})

+D(Y, {ρiλ})},

(29)

where {ρiλ} denotes the multiset which only include a number of ρiλ elements iλ.
Lemma 3 (with S = S′j̄,f − iλ + il̄ and z̄ = ϕ) implies that

Y ∗ ∩Rt = (S′j̄,f − iλ + il̄) ∩ R̄ϕ (30)

for optimal solutions Y ∗ of (29). In Case II this means

14 Hildenbrandt

Y ∗ ∩Rt = {ρiλ − 1} and hence,

Y ∗ = {ρiλ − 1}+ Ŷ ∗ with |Ŷ ∗| = 1 and

Ŷ ∗ 6= {iλ̄} (λ̄ ∈
{

1, 2, · · · , l̄ − 1
}

) if R̄ϕ̄ + iλ̄ * S′j̄,f for ϕ̄ = ρ̄iλ̄ . (31)

Furthermore,
Ŷ ∗ 6= {il̄} (32)

also follows from (30). Hence (29) can be written as
wtj̄,ϕ(S′j̄,f − iλ + il̄) = wtj̄,ϕ−1

(S′j̄,f + il̄ − Ŷ ∗) +D(Ŷ ∗, {iλ}).
This equation (see also (28)) is equivalent to

wtj̄,f (S′j̄,f − iλ + il̄) = wtj̄,f (S′j̄,f + il̄ − Ŷ ∗) +D(Ŷ ∗, {iλ}), (33)

since R̄u ⊆ S′j̄,f − iλ + il̄ for u = ϕ + 1, ϕ + 2, · · · , f according to the induction
hypothesis and (31) and (32).

Now, we want to determine the argminset of (26) where in addition only X̂ with
X̂ 6= {iλ̄} (λ̄ ∈

{
1, 2, · · · l̄ − 1

}
) if R̄ρ̄iλ̄ + iλ̄ * S′j̄,f (see Case I) are allowed. Let

X̂∗1 denote an element of such an argminset.

These conditions are also fulfilled by Ŷ ∗ according to (31), (32) and
R̄ρ̄iλ̄ + iλ * S′j̄,f in Case II. Hence,

wj̄,f (S′j̄,f − X̂∗1 + il̄) +D(X̂∗1, {il̄}) ≤ wj̄,f (S′j̄,f − Ŷ ∗ + il̄) +D(Ŷ ∗, {il̄}).
(34)

(34) and (33) together with the triangle-inequality
−D(Ŷ ∗, {iλ}) +D(Ŷ ∗, {il̄}) ≤ D({iλ}), {il̄}), imply that

wtj̄,f (S′j̄,f + il̄ − X̂∗1) +D(X̂∗1, {il̄}) ≤ wtj̄,f (S′j̄,f + il̄ − iλ) +D({iλ}), {il̄}).

X̂∗W = {iλ} is an element of the argminset in Case II. However, the last inequality
shows that in every case an element X̂∗1 of the argminset exists which satisfies Case I.

In the case that f = ρ̄il̄ (l̄ ∈
{

1, · · · , N̄ − 1
}

) it is |R̄f+1(il̄+1)| = 1. Then
R̄ρ̄i1 + R̄ρ̄i2 + · · · + R̄ρ̄il̄ + R̄f+1 ⊆ S′j̄,f+1 can be shown in analogue to the above
proof (in the case that f < ρ̄il̄), where all il̄ are to be replaced by il̄+1 and all sets of
indices

{
1, 2, · · · l̄ − 1

}
by
{

1, 2, · · · l̄
}

. �

Now we want to suggest the compound work function algorithm (compound
WFA):

(0) Let (OP) be a k-server problem with parallel requests, where only the surplus-
situation is allowed.

(1) Construct a corresponding surrogate problem (SP) according to (18), ..., (23)
(which is a k-server problem with a simple extension).

(2) Solve (SP) by means of the usual WFA.
(3) Skip the movements of servers, which are unnecessary for the original problem

(OP).

The k-Server Problem with Parallel Requests ... 15

In more detail, let σt−1 be the request sequence thus far and let S′t−1 be the config-
uration of WFA after servicing σt−1. Then, given the next request Rt.

Compound WFA, (step t): Apply the (usual) WFA algorithm to the surrogate problem
in the steps t1,1, · · · , t1,ρ̄, t2,1, · · · , t2,ρ̄, tj̄,1, · · · , tj̄,ρ̄, which replace step t of the orig-
inal problem, and construct a sequence of online servers’ configurations
S′1,1, S′1,2, · · · , S′1,ρ̄, S′2,1, S′2,2, · · · , S′2,ρ̄, · · · , S′j̄,1, S′j̄,2, · · · , S′j̄,ρ̄
such that Rt ⊆ S′j̄,ρ̄. Set S′t := S′j̄,ρ̄. 4

Skip movements of servers, which are unnecessary for the original problem, in the
following way: The set of all (real) movements of the servers in the surrogate steps can
be partitioned that if |S′t(n̄)| > |S′t−1(n̄)| then movements of |S′t(n̄)| − |S′t−1(n̄)|
servers exist for each of them as follows. Such a server is located on a point n0 with
|S′t(n0)| < |S′t−1(n0)| at the beginning of step t. In the steps: tjn0

,fn0
, tjn1

,fn1
, · · · ,

tjnī ,fnī (where jn0
≤ jn1

≤ · · · ≤ jnī , nī = n̄ and ρ̄ni−1 < fni ≤ ρ̄ni) the server is
moved from point n0 to point n1 and so on, finally to point nī. Replace these movements
by one. Move the corresponding server directly from point n0 to point n̄.

We want to point out that the condition Rt ⊆ S′t for any t can be fulfilled accord-
ing to Theorem 1. This condition implies that the compound WFA algorithm solves the
original problem (OP) (the k-server problem with parallel requests).

Theorem 2. The compound WFA algorithm is (2 k− 1)-competitive for any k and any
metric space.

PROOF. According to Lemma 2, WFA is (2 k − 1)-competitive for the k-server
problem with a simple extension, thus also for (SP). If the number of movements is
reduced by the compound WFA then the online cost is lower because of the triangle-
inequality. The optimal offline costs of (SP) and (OP) are equal (Lemma 4, (ii)). Hence,
the compound WFA algorithm is also (2 k − 1)-competitive. �

Finally, let us remark that more values of work functions are used by compound
WFA than by WFA from Section 4. Values of work functions are important for the
competitiveness of corresponding algorithms. In Appendix C, at least an example can
be found, where compound WFA yield a better result than WFA.

6 Conclusion

In this paper we have considered a generalized k-server problem with parallel re-
quests. We have defined corresponding work functions. The work functions are quasi-
convex as well in the case of the surplus-situation as in the case of the scarcity-situation.
A corresponding algorithm WFA is not competitive in the case that the scarcity-situation
is allowed. The question, whether this algorithm is competitive or not in the case of the
surplus-situation is a difficult open problem. We have constructed the compound WFA
algorithm which uses more values of work functions than algorithm WFA from Sec-
tion 4. We were able to prove the same bound of the competitive ratio as for the WFA
algorithm applied to the (usual) k-server problem.

4 Clearly, if Rt ⊆ S′j,ρ for j < j̄ or ρ < ρ̄ then S′j̄,ρ̄ = S′j̄,ρ̄−1 = · · · = S′j,ρ+1 = S′j,ρ.
Hence, S′t := S′j,ρ is already the end configuration of step t.

16 Hildenbrandt

References

Bartal, Y., Grove, E. (2000). The Harmonic k-Server Algorithm Is Competive. Journal of the
ACM 47(1), 1 - 15.

Borodin, A., El-Yaniv, R. (1998). Online computation and competitive
analysis. University Press, Cambrigde.

Borodin, A., Linial,N., Saks, M. (1992). An optimal online algorithm for metrical task systems.
Journal of the ACM 39(4), 745-763.

Hildenbrandt, R. (1993). A special stochastic decision problem, Optimization 28, 95-110.
Hildenbrandt, R. (1995; Libri BoD 2000). Methoden aus ganzzahliger Optimierung und Verband-

stheorie zur Behandlung eines stochastischen dynamischen Transportproblems. Habilitation-
sschrift, TU Ilmenau.

Hildenbrandt, R. (2014). A k-server problem with parallel requests and unit distances. Informa-
tion Processing Letters 114(5), 239-246.
doi: 10.1016/j.ipl.2013.12.011

Hildenbrandt, R. (2016). The k-Server Problem with Parallel Requests and the Compound Har-
monic Algorithm. Baltic J. Modern Comp. 4(3), 607-629.

Koutsoupias, E. (1994). On-line Algorithms and the k-Server Conjecture. Ph.D.dissertation, De-
partment of Computer Science and Engineering, University of California, San Diego.

Koutsoupias, E., Papadimitriou, C. (1995). On the k-server conjecture. Journal of the ACM 42(5),
971-983.

Krumke, S. O., Rambau, J. (2005). Online Optimierung. Vorlesungsskript, Technische Universität
Berlin.
www.fsmpi.uni-bayreuth.de/skripten/online optimierung.

Manasse, M.S., McGeoch L.A., Sleator, D.D. (1988). Competitive algorithms for on-line prob-
lems. In: Proceeding of the 20th Annual ACM Symposium on Theory of Computing, 322-333.

Manasse, M.S., McGeoch L.A., Sleator, D.D. (1990). Competitive algorithms for server prob-
lems. J. Algorithms 11(2), 208230.

Sitters, R. (2013). The generalized work function algorithm is competitive for the generalized
2-server problem. SIAM J. Comput. 43(1), 96125.

Sleator, D. D., Tarjan, R. E. (1985). Amortized efficiency of list update and paging rules. Com-
munications of the ACM 28(2), 202-208.

Appendices

A Computation of the set distance

If C is a multiset then let CM ⊆ M denote a set (no multiset) where p ∈ CM if
and only if p ∈ C at least once. The value D(X,Y) of the minimum weight matching
between X and Y (where |X| = |Y |) can then be computed by:

D(X,Y) = min
zp,r,p∈XM ,r∈YM

∑
p∈XM

∑
r∈YM

zp,rd(p, r)

subject to
∑

r∈YM
zp,r = |X(p)| ∀ p ∈ XM ,∑

p∈XM
zp,r = |Y (r)| ∀ r ∈ YM ,

The k-Server Problem with Parallel Requests ... 17

zp,r ∈ Z+ ∀ p ∈ XM , r ∈ YM .

B Proof of the quasi-convexity lemma

Proof. In order to prove the lemma, we show that work functions satisfy a more
general quasi-convexity property.

Property GQ: Let w be a work function and let X and Y be two configurations.
Then there exists a bijection g : X → Y such that for all partitions of X into X̃1 and
X̃2, the following holds

w(X̃1 + g(X̃2)) + w(g(X̃1) + X̃2) ≤ w(X) + w(Y). (A.1)

By setting X̃1 = X− X̃(= X− X̃2) and letting Ỹ = g(X̃)(= g(X̃2)), we can see that
the property GQ implies the quasi-convexity property. We prove that the work function
satisfy the property GQ by relying the following claim.

Claim: If the bijection g satisfies equation (A.1), then there exists a bijection ḡ such
that ḡ(x) = x for all x ∈ X ∩ Y , which also satisfies equation (A.1).

Firstly, the preceding claim is proved. Let g : X → Y be a bijection. Assume
that among all such bijections, g maps the maximum number of elements from X ∩ Y
to themselves. Assume, by contradiction, that there exists some a ∈ X ∩ Y such that
g(a) 6= a.

Define the bijection ḡ : X → Y that agrees with g everywhere but interchanges
the values of g on a and a−1 = g−1(a).
That is, set ḡ(a) = a and ḡ(a−1) = g(a).

By our assumption, ḡ cannot satisfies property GQ.

Let (X1, X2) be any partition of X and assume, without loss of generality, that
a−1 = g−1(a) ∈ X1.

It cannot be the case that, a ∈ X1; if it were the case, then
g(X1) = ḡ(X1) and g(X2) = ḡ(X2) and the inequality (A.1) would be fulfilled.

Given a /∈ X1 (hence, a ∈ X2), we have

w(X) + w(Y) ≥ w((X1 + a) + g(X2 − a)) + w((g(X1 + a) + (X2 − a)),
since g satisfies equation (A.1);

= w((X1 + a) + ḡ(X2 − a)) + w((ḡ(X1 + a) + (X2 − a)),
by the definition of ḡ;

= w(X1 + ḡ(X2)) + w(ḡ(X1) +X2).

Hence, ḡ does satisfy property GQ, which is a contradiction.

Now, we prove the following by induction on the length of the request sequence.

Induction hypothesis: Work functions satisfy the property GQ.

Base case. For t = 0 we have w∅(X) + w∅(Y) = D(S0, X) +D(S0, Y).
Consider two minimum weight matchings MX and MY whose values are D(S0, X)
and D(S0, Y), respectively. Each point sj ∈ S0 is mapped by MX to some point

18 Hildenbrandt

xj ∈ X and byMY to some point yj ∈ Y . It is easy to see that the bijection g(xj) = yj
satisfies equation (A.1).

Induction step. Assume that w satisfies the property GQ and let R be the new request.
We show that w′(= wσt,Rt+1) satisfies the property GQ.

In the case of the surplus-situation there exists some X̃ ⊆ X with
∣∣∣X̃∣∣∣ = |R| ,

so that w′(X) = w(X − X̃ + R) + D(X̃, R), according to equation (6). Similarly,
w′(Y) = w(Y − Ỹ +R) +D(Ỹ , R) for some Ỹ ⊆ Y with

∣∣∣Ỹ ∣∣∣ = |R|.

According to the induction hypothesis, for X− X̃+R and Y − Ỹ +R, there exists
a bijection g : (X − X̃ +R) → (Y − Ỹ +R) that satisfies the property GQ.
We can further assume, from the preceding claim, that g(r) = r for all r ∈ R.

Define the bijection g′ : X → Y :

Case x /∈ X̃ : g′(x) := g(x),
Case x = x̃ ∈ X̃ : g′(x̃) := g(ỹ), where ỹ is determined in the following way.

LetMX̃ andMỸ be the two minimum weight matchings whose values areD(X̃, R)

and D(Ỹ , R), respectively. Each point r ∈ R is mapped by MX̃ to some point x̃ ∈ X̃
and by MỸ to some point ỹ ∈ Ỹ .

To prove that w′ satisfies the property GQ, consider any partition (X1, X2) of X .
This partition implies a partition (X̃1, X̃2) of X̃ , where
X̃1 = {x ∈ X|x ∈ X1 ∩ X̃} and X̃2 = {x ∈ X|x ∈ X2 ∩ X̃}.
Then, X − X̃ +R = X1 − X̃1 +X2 − X̃2 +R follows.

w′(X) + w′(Y) = w(X − X̃ +R) + w(Y − Ỹ +R) +D(X̃, R) +D(Ỹ , R)

≥ w(X1 − X̃1 + g(X2 − X̃2 +R)) + w(g(X1 − X̃1) +X2 − X̃2 +R)

+D(X̃, R) +D(Ỹ , R),
by the induction hypothesis;

≥ w(X1 − X̃1 + g′(X2)− g′(X̃2) +R)

+w(g′(X1)− g′(X̃1) +X2 − X̃2 +R) +D(X̃, R) +D(Ỹ , R),

since g(X2 − X̃2 + R) = g(X2 − X̃2) + g(R) = g′(X2) − g′(X̃2) + R,
≥ w(X1 + g′(X2)− X̃1 − g′(X̃2) +R) +D(X̃1, R

(1)) +D(g′(X̃2), R(2))

+w(g′(X1) +X2 − g′(X̃1)− X̃2 +R) +D(g′(X̃1), R(1)) +D(X̃2, R
(2)),

where D(X̃, R) = D(X̃1, R
(1)) +D(X̃2, R

(2)),
D(Ỹ , R) = D(Ỹ1, R

(1)) +D(Ỹ2, R
(2)) with Ỹ1 = g′(X̃1),

Ỹ2 = g′(X̃2) according to the corresponding
partitionings of the matchings MX̃,R,MỸ ,R;

≥ w(X1 + g′(X2)) + w(X2 + g′(X1)),

using D(X̃1, R
(1)) +D(g′(X̃2), R(2)) ≥ D(X̃1 + g′(X̃2), R),

D(g′(X̃1), R(1)) +D(X̃2, R
(2)) ≥ D(g′(X̃1) + X̃2, R) and (5).

The k-Server Problem with Parallel Requests ... 19

In case of the scarcity-situation there exists some X̃ ⊆ R with
∣∣∣X̃∣∣∣ = k, so that

w′(X) = w(X̃) +D(X̃,X), according to equation (10).
Similarly, w′(Y) = w(Ỹ) +D(Ỹ , Y) for some Ỹ ⊆ R with

∣∣∣Ỹ ∣∣∣ = k.

According to the induction hypothesis, for X̃ and Ỹ , there exists a bijection g :
X̃ → Ỹ that satisfies the property GQ. We can further assume, from the preceding
claim, that g(r) = r for all r ∈ X̃ ∩ Ỹ .

Define the bijection g′ : X → Y in the following way:

Let MX̃,X and MỸ ,Y be two minimum weight matchings whose values are D(X̃,X)

and D(Ỹ , Y), respectively.

Set g′(x) = y (x ∈ X, y ∈ Y), if x is mapped by MX̃,X to x̃ ∈ X̃ , y is mapped by
MỸ ,Y to ỹ ∈ Ỹ and g(x̃) = ỹ.

To prove that w′ satisfies the property GQ, consider any partition (X1, X2) of X .
This partition leads to a partition (X̃1, X̃2) of X̃ by means of the matching MX̃,X ,
where, in more detail, X1 is mapped to X̃1 by MX̃,X .

w′(X) + w′(Y) = w(X̃) + w(Ỹ) +D(X̃,X) +D(Ỹ , Y)

≥ w(X̃1 + g(X̃2)) + w(g(X̃1) + X̃2)

+D(X̃1, X1)+D(X̃2, X2)+D(Ỹ1, Y1)+D(Ỹ2, Y2), by
the induction hypothesis

and where g(X̃2) =: Ỹ2, g(X̃1) =: Ỹ1;

≥ w(X̃1 + Ỹ2) +D(X̃1, X1) +D(Ỹ2, Y2)

+w(Ỹ1 + X̃2) +D(X̃2, X2) +D(Ỹ1, Y1)

≥ w(X1 + Y2) + w(Y1 +X2),
using D(X̃1, X1) +D(Ỹ2, Y2) ≥ D(X̃1 + Ỹ2, X1 + Y2),
D(X̃2, X2) +D(Ỹ1, Y1) ≥ D(X̃2 + Ỹ1X2 + Y1) and (5),
where Y1 = g′(X1), Y2 = g′(X2). �

C Example

Let k = 5 and let the metric space consist of 8 points: M = {p1, p2, · · · , p8}.
The distances between the points are listed in the following matrix

0 41 31 44 43 45 29 27
41 0 51 52 37 53 42 35
31 51 0 53 46 38 47 48
44 52 53 0 40 36 39 28
43 37 46 40 0 30 32 50
45 53 38 36 30 0 49 34
29 42 47 39 32 49 0 55
27 35 48 28 50 34 55 0

.

The initial configuration is given by S0 = {p1, p2, p3, p4, p5} and the request sequence

20 Hildenbrandt

σ = R1, R2, · · · , R5 by R1 = {p6}, R2 = {p7}, R3 = {p8}, R4 = {p6},
R5 = {p4, p5}.

Since |R1| = · · · = |R4| = 1, the algorithms WFA and compound WFA yield the
same costs and the same configurations after servicing subsequences σt, t = 1, 2, 3, 4.
More detailed, S1 = {p1, p2, p3, p4, p6}, S2 = {p2, p3, p4, p6, p7}, S3 = S4 =
{p2, p3, p6, p7, p8}. The costs after servicing the subsequence σ4 are equal to 87.

Finally, WFA (from Section 4) leads to S5 = {p4, p5, p6, p7, p8} and cost equal to
177. The compound WFA is based on a surrogate problem with requests
R̄1,1 = {p4}, R̄1,2 = {p5}, ... in step 5. We get S′1,1 = {p2, p3, p4, p6, p7},
S′1,2 = {p3, p4, p5, p6, p7}. Since R5 ⊆ S′1,2, S′1,2 = {p3, p4, p5, p6, p7} is the end
configuration of compound WFA with cost equal to 152. Thus, the compound WFA
algorithm yields a better result than the WFA algorithm for this example.

A computer was used for the calculations. In addition, we give some selected val-
ues of work functions: w4({p4, p5, p6, p7, p8}) = 102, w4({p3, p4, p5, p6, p7}) = 128,
w4({p2, p3, p4, p6, p7}) = 115 and w4({p2, p4, p6, p7, p8}) = 97. We can observe that
w4(S5) +D(S4, S5) < w4(S′1,2) +D(S′1,2, S4) and
w4(S′1,1) +D(S4, S′1,1) < w4({p2, p4, p6, p7, p8}) +D(S4, {p2, p4, p6, p7, p8}), for
example. This implies the different results of WFA and compound WFA.

Author’s information

R. Hildenbrandt received a PhD degree as well a doctor habilitatus degree from Ilme-
nau Technical University and works now as a Privatdozent in the Optimization Depart-
ment on stochastic dynamic programming and online optimization.

Received January 29, 2019 , revised November1, 2019, accepted December20, 2019

