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Abstract

Confident identification of small molecules remains a major challenge in untargeted
metabolomics, environmental science, natural products research and related fields. Small
molecules are important for biomarker research, screening of pollutants, the elucidation
of metabolic networks of organisms, drug development and many further applications.
Mass spectrometry is the predominant technique for the high-throughput analysis of
small molecules and can detect thousands of different compounds in a biological sample.
Mass spectrometry measures the mass of a compound. Tandem mass spectrometry
subsequently fragments the compound and measures the mass of its fragments. The
automated interpretation of the resulting tandem mass spectra is highly non-trivial. Hence,
many studies are limited to re-discovering known compounds by searching mass spectra in
spectral reference libraries. But these libraries are vastly incomplete and a large portion
of measured compounds remains unidentified. This constitutes a major bottleneck in the
comprehensive, high-throughput analysis of metabolomics data.

In this thesis, we present two computational methods which address different steps in the
identification process of small molecules from tandem mass spectra. One method searches
mass spectra in a structure database. The other identifies the molecular formula without
the need of any database. Both methods share the Bayesian idea to capture dependencies.

To overcome the limitations of small spectral libraries, recent methods search instead
in much bigger structure databases. For an unknown compound, CSI:FingerID predicts
a molecular fingerprint, which encodes the presence or absence of each property of a set
of molecular properties. Then, this predicted fingerprint is used to search in a molecular
structure database by scoring it against deterministic fingerprints of candidate structures.
For this, current scorings assume independence between the molecular properties.

We introduce a novel scoring for CSI:FingerID which models dependencies between
different molecular properties via Bayesian networks. The scoring is interesting from a
theoretical perspective since we apply a novel strategy to estimate conditional probabilities.
The marginal probabilities of random variables come from the predicted fingerprint, and
hence, change for each compound. For random variables connected in the network, we
compute expected covariances and use these to estimate the conditional probabilities.
Modeling dependencies improves identification rates of CSI:FingerID by 2.85 percentage
points.

Annotating the molecular formula of a compound is the first step in its structural
elucidation. However, confident annotation remains challenging, in particular for large
compounds above 500 Daltons. ZODIAC is a novel method for de novo — that is, database-
independent — molecular formula annotation in complete datasets. It exploits similarities
of compounds co-occurring in a sample to find the most likely molecular formula for each
individual compound. ZODIAC takes molecular formula candidates as input and reranks
these candidates by considering joint fragments and losses. We use Gibbs sampling and
Bayesian statistics to estimate posterior probabilities. We evaluate on five diverse datasets
and find that ZODIAC considerably improves molecular formula annotations. For one
dataset from plant extract, ZODIAC reduces incorrect annotations 16.5-fold. Furthermore,
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the ZODIAC score allows to assess the confidence in each annotation which enables to select
high-quality annotations in an automated fashion. We show that de novo molecular formula
annotation is not just a theoretical advantage: We discover multiple novel molecular
formulas absent from PubChem, one of the biggest structure databases.

Both methods have been integrated into the SIRIUS software for small molecule
identification.



Zusammenfassung

Die zuverléssige Identifizierung kleiner Molekiile bleibt eine grofe Herausforderung in der
Metabolomik, Umwelt- und Naturstoff-Forschung und verwandten Forschungsgebieten.
Kleine Molekiile sind von zentraler Bedeutung fiir die Suche nach Biomarkern, das
Schadstoff-Screening, die Aufkldrung von metabolischen Netzwerken von Organismen,
Medikamentenentwicklung und fiir viele weitere Anwendungen. Massenspektrometrie ist
die vorherrschende Technik fiir die Hochdurchsatzanalyse kleiner Molekiile und kann
tausende unterschiedliche chemische Verbindungen in einer biologischen Probe detektie-
ren. Massenspektrometrie misst die Masse einer chemischen Verbindung. Anschliefsend
fragmentiert Tandem-Massenspektrometrie die chemische Verbindung und misst die Masse
der Fragmente. Die automatisierte Auswertung der resultierenden Tandem-Massenspektren
ist hoch kompliziert. Daher beschranken sich die meisten Studien darauf, bereits bekannte
chemische Verbindungen wiederzuentdecken, indem sie Massenspektren in Referenzspek-
trendatenbanken suchen. Allerdings sind diese Datenbanken erheblich unvollstdndig und
ein grofser Teil der gemessenen chemischen Verbindungen bleibt unidentifiziert. Das stellt
ein grofses Problem fiir die umfassende Hochdurchsatzanalyse von Metabolomikdaten dar.

In dieser Dissertation présentieren wir zwei computergestiitzte Methoden, die sich
mit unterschiedlichen Schritten in der Identifizierung kleiner Molekiile mit Hilfe von
Tandem-Massenspektren beschéftigen. Eine Methode sucht Massenspektren in einer
Molekiilstrukturdatenbank. Die andere identifiziert Molekiilformeln ohne die Verwendung
jeglicher Datenbanken. Beide Methoden teilen die bayessche Idee zur Erfassung und
Beschreibung von Abhéngigkeiten.

Um Einschrédnkungen kleiner Spektrendatenbanken zu iiberwinden, suchen aktuelle
Methoden stattdessen in den viel groferen Molekiilstrukturdatenbanken. Fiir eine
unbekannte chemische Verbindung sagt CSI:FingerID einen molekularen Fingerabdruck
vorher. Dieser Fingerabdruck kodiert das Vorkommen oder Fehlen von jeder einzelnen
Molekiileigenschaft aus einer Menge von Molekiileigenschaften. Dieser vorhergesagte
Fingerabdruck wird dann in einer Molekiilstrukturdatenbank gesucht, indem man ihn gegen
deterministische Fingerabdriicke von Kandidatenstrukturen vergleicht und bewertet. Dafiir
nehmen aktuelle Scorings Unabhéngigkeit zwischen den einzelnen Molekiileigenschaften
an. Wir stellen ein neues Scoring fiir CSI:FingerID vor, welches Abhéngigkeiten zwischen
unterschiedlichen Molekiileigenschaften mit Hilfe von bayesschen Netzen modelliert.
Das Scoring ist aus theoretischer Sicht interessant, da wir eine neue Strategie zur
Schitzung der bedingten Wahrscheinlichkeiten anwenden. Die Randwahrscheinlichkeiten
der Zufallsvariablen ergeben sich aus dem vorhergesagten Fingerabdruck. Fiir im Netz
verbundene Zufallsvariablen berechnen wir erwartete Kovarianzen und verwenden diese,
um die bedingten Wahrscheinlichkeiten zu schétzen. Das Modellieren der Abhé&ngigkeiten
verbessert die Identifikationsrate von CSI:FingerID um 2,85 Prozentpunkte.

Die Identifizierung der Molekiilformel einer chemischen Verbindung ist der erste
Schritt in ihrer Strukturaufklarung. Allerdings bleibt die sichere Identifizierung weiterhin
anspruchsvoll, insbesondere fiir grofe chemische Verbindungen iiber 500 Dalton. ZODIAC
ist eine neue Methode fiir die de novo — also, datenbankunabhéngige — Identifizierung
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von Molekiilformeln in vollstandigen Datensétzen. ZODIAC macht sich die Ahnlichkeit von
gemeinsam auftretenden chemischen Verbindungen zu Nutze, um die wahrscheinlichste
Molekiilformel fiir jede einzelne Verbindung zu finden. ZODIAC bekommt Molekiilfor-
melkandidaten als Fingabe und sortiert diese neu nach ihrer Wahrscheinlichkeit, indem
gemeinsame Fragmente und Molekekiilverluste einbezogen werden. Wir verwenden Gibbs-
Sampling und bayessche Statistik, um A-posteriori-Wahrscheinlichkeiten zu schitzen. Wir
evaluieren auf fiinf vielfaltigen Datensétzen und stellen fest, dass ZODIAC die Identifikation
von Molekiilformeln erheblich verbessert. Auf einem Datensatz eines gemessenen Pflan-
zenextraktes reduziert ZODIAC falsche Identifizierungen auf ein sechzehntel. Aufserdem
ermdglicht der ZODIAC Score, die Verlésslichkeit einer Identifizierung abzuschétzen,
was die gezielte Auswahl von hochqualitativen Identifizierungen in automatisierter Weise
ermoglicht. Wir zeigen, dass de movo Molekiilformelidentifizierung nicht ausschliefslich
ein theoretischer Vorteil ist: Wir entdecken mehrere neue Molekiilformeln, die nicht in
PubChem, einer der grofiten Molekiilstrukturdatenbanken, vorkommen.

Beide Methoden sind in der SIRIUS-Software fiir die Identifizierung kleiner Molekiile
integriert.



Acknowledgements

Finally, my PhD time is coming to an end. Here, I want to take the opportunity to thank
all the people who made this thesis possible. First of all, I want to thank my supervisor
Sebastian Bocker. He is a source of lots of ideas and insightful discussions. He gave me
the confidence and freedom to accomplish this work and also provided me with guidance.

I am grateful to the people I met on this journey. I was in the lucky position to attend two
Dagstuhl seminars on computational metabolomics. I had great discussions and insights.
Many discussions were continued until late at night, accompanied by a pleasant game of
pool; and people still played pool with me patiently, even though I was really bad at it. The
list of all people I met at Dagstuhl would be to long to put it here. But Michael Witting,
Corey Broeckling and Emma Schymanski certainly taught me about some curiosities of
mass spectrometry, which I did not know as a computer scientist. And thank you, Nicola,
for your advice.

I was also able to visit Juho Rousu’s group at Aalto University in Espoo twice. They
are the machine learning experts that laid the foundation for CSI:FingerID, on which I am
working in this thesis. It was amazing to see how much can be accomplished for example
by linear algebra and matrix multiplications. I am grateful for their hospitality.

This thesis also would not have been possible without the people from Pieter Dorrestein’s
group in San Diego. They provided the data to develop and evaluate my algorithms. Louis-
Félix Nothias invested a lot of time to perform manual annotation on the data and helped
with the evaluation. I met many great people from Pieter’s lab on a short visit. Thank
you, Louis and Mélissa, that I could stay with you.

And I want to continue giving thanks to the people which provide the precious (reference)
datasets: thanks to the GNPS community, MassBank, Agilent and NIST. The NIST
spectral library really is a treasure of mass spectrometry knowledge, hidden in all the
manually annotated spectra.

This work certainly would not have been possible without the many preceding years of
research in Sebastian’s and Juho’s groups. The concept of fragmentation trees now is over
ten years old. Florian Rasche invented it together with Sebastian Bocker; and Kai Diihrkop
improved it in an outstanding fashion, implementing fragmentation tree computation in
what now is the SIRIUS software. The machine learning ideas of CSI:FingerID, predicting
molecular fingerprints from a tandem mass spectrum using kernel support vector machines,
originated from Juho’s group with contributions most notably from Markus Heinonen.

I am grateful to my colleagues and friends. It is an amazing work atmosphere, teasing
each other in the most kind way. It is great to be a part of all these amazing projects
which will have a real impact on computational metabolomics, and seeing our software
SIRIUS mature in this process. And thank you for proofreading parts of this thesis. Since
we are currently a small group, luckily I can name all of them: Thank you Kai Diihrkop,
Markus Fleischauer and Martin Hoffmann. And, of course, a special thanks goes to Kathrin
Schowtka who steadily navigates us through the jungle of bureaucracy.

vil



viii

I gratefully acknowledge the funding received through the Friedrich Schiller University
of Jena and the Deutsche Forschungsgemeinschaft (DFG) within the project “Identifying
the Unknowns: Fragmentation Trees and Molecular Fingerprints”.

And mostly, I want to thank my wife, even though writing this down makes me feel a
little old. Thank you for your support, thank you for bearing with me. And of course I
want to thank my family, you provided me with the support to pursue my studies and this

PhD.



Contents

|2 Background in Biochemistry and Mass Spectrometry|

2.2.1 Molecular Fingerprints| . . . . . . ... ... ... ... ... ... ..
2.3 Mass Spectrometry| . . . . . ...
2.4 Tandem Mass Spectrometry| . . . . . . . . . ... L
2.5  Chromatography| . . . . . . . . . . . .. .

[3 Statistics and Graph Theory|

3.1 Graph Theory|. . . . . . . . . . ..
[3.2  Bayesian Statistics| . . . . . . . ... o
3.3 Bayesian Inference| . . . . . . . ... L o
3.4 Gibbs Sampling| . . . . . . ...
3.5 Bayesian Networks| . . . . . . . . . . . . ...

|4 Computational Mass Spectrometry|
4.1 Data Processing|. . . . . . . . . .

4.2.1 Isotope Pattern Analysis|. . . . . . ... ... .. ... ... .....
4.2.2  Fragmentation Trees| . . . . . . . . .. ... ...
4.3 Spectral Library Search| . . . ... .. ... ... 0000000

441 CSLFingerID| . . . 0 00 0 0o

5_ZODIAC: De Novo Molecular Formula Annotation|
5.1 A Similarity Model for Molecular Formula Assignments| . . . ... ... ..
[5.1.1  Posterior Probability of an Assignment|. . . . . . . .. ... ... ..
[b.1.2  Graph-theoretical Formulation| . . . . .. ... ... ... ......
b.1.3  Complexity of the Problem| . . . . . ... ... ... ... ... ...
b.1.4  Likelihoods, Prior Probabilities and Graph Topology| . . . . . . . ..
[p.1.5  (Faster) Gibbs Sampling| . . . . . . .. .. ... ... ... .. ...

5.2 Evaluation on five Biological Samples|. . . . . . . . ... ... ... ... ..

17
17
18
19
20
21

25
25
26
26
27
28
29
32

37
38
38
39
40
41
42
44
45
46
46
50
o1
52

1X



Contents

[z Conclusion|

63
65
68
70
70
71

75

99



1 Introduction

What we are concerned with here is the fundamental
interconnectedness of all things.

Dirk Gently

The Earth Biogenome Project aims to sequence and annotate 1.5 million species over
a period of ten years [I17]. This sounds rather ambiguous, but analytical chemistry has
made tremendous progress in the last decades to measure the molecules of living organisms.
DNA and RNA sequencing has become fast and efficient. Proteins can be measured
high-throughput and protein identification greatly benefited from the increased amount
of genomic data. The distinct fields of study which are concerned with a specific pool of
molecules, with their characterization and quantification, is referred to as “-omics” sciences.
Genomics focuses on the exploration of the genome, the organism’s complete set of DNA;
transcriptomics focuses on the RNA, all transcripts of the DNA; and proteomics on all
proteins, which includes the reaction-catalyzing enzymes. Each field aims at measuring
the molecules of interest in a comprehensive fashion and discovering and characterizing
functionality.

However, to provide a comprehensive picture of a living organism, we also have to
consider metabolites, the entirety of small molecules which are intermediates or products
of metabolism. The metabolome provides a direct signature of biochemical activity and
thus, metabolites are closely linked to phenotype [1506, [I87]. The recent years showed the
importance of metabolomics to understand complex biological interactions and phenomena.
For example, the microbiome, the set of all the microorganisms living on and inside us,
produces metabolites that affect the chemistry of the host [I64]. Such interactions cannot
be inferred from the genome. Here, the genome presents a rather static view of a highly
dynamic system. The metabolome, on the other hand, changes with what we drink and
eat, and even with the skin care products we are using [27].

Metabolomics aims to give a snapshot of the cellular state and can be used to
answer diverse biological questions. Biomarker discovery describes the process of
identifying measurable indicators for a biological condition, such as the diagnoses of
certain health conditions. Metabolomics identifies biomarkers and can reveal novel
insights on causes of diseases and therapeutic targets [01, 225]. In precision medicine,
metabolomics may be useful to select optimal therapies and monitor individual drug-
response [225]. Natural products research investigates all small molecules isolated from
natural sources. Their economic importance includes fragrances, herbicides, pesticides
and food supplements [102]. Many drugs are natural products or derived from a
natural product [I44]. Currently, too few novel drug candidates are being identified and
investigated; in particular, there is a lack of novel antibiotics: “Declining private investment
and lack of innovation in the development of new antibiotics are undermining efforts to
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combat drug-resistant infections” (World Health Organization, QOZO)E It is likely that
microorganisms produce many still uncharacterized antibiotics [46]. However, we need
novel methods to facilitate their discovery.

The identification of small molecules also plays an important role in many related fields
of research. Environmental science screens soil or water for pollutants and toxins [I81].
Nutrition and food products are continuously monitored for the sake of food safety and
quality assessment [5]. And drug and toxicology screenings are commonly administered in
forensics [38] and doping control [200].

Metabolomics studies can be distinguished in targeted and untargeted experiments.
Targeted experiments analyze a selected set of known molecules. However, by design,
these experiments cannot find anything novel. In order to find novel drugs or biomarkers,
unknown compounds have to be structurally elucidated. When screening for pollutants
and contaminants, targeted approaches are able to recognize a list of expected molecules;
but clearly, transformation products and yet uncharacterized contaminants cannot be
identified [181].

Many metabolites remain unknown to us [I8, [48]. One reason that makes their
identification rather difficult is that metabolites are not composed of simple building blocks
— as opposed to DNA, RNA and proteins. In fact, small molecules are structurally highly
diverse. Furthermore, structural information of metabolites cannot be directly derived
from the genome, as it is possible for RNA and proteins. Metabolic gene clusters allow
the prediction of metabolite structures to some extend, but this is limited to a very small
fraction of all metabolites [17, 140, [I88].

There exist two predominant techniques to measure small molecules: nuclear magnetic
resonance (NMR) and mass spectrometry (MS). NMR is the method of choice for full
structural elucidation of molecules. Unfortunately, it requires high amounts of purified
compound and is less suited for high-throughput analysis. MS is highly sensitive and
can measure thousand of metabolites from a single biological sample. However, analysis
of the data is far from trivial. Mass spectrometry does not provide direct evidence of
the molecular structure of a molecule. Instead, mass spectrometry measures the mass
of a compound. Tandem mass spectrometry subsequently fragments the compound and
measures the mass of its fragments; the resulting data are called tandem mass spectra.

These tandem mass spectra can be used to draw inferences about the molecular structure.
The manual interpretation of mass spectra is cumbersome and requires a great amount of
expert knowledge. The usual way to identify compounds is to search the mass spectrum in
a spectral library of references. However, these libraries are highly incomplete. Depending
on the organism, up to 98 % of the measured compounds might not be contained in
the reference library and thus remain unidentified [48]. Hence, it is not surprising
that “compound identification” is consistently named as one of the biggest challenges in
metabolomics to derive biological knowledge from metabolomics studies [135] 209].

Contribution of this Work

I wrote my bachelor and master thesis on topics related to computational mass
spectrometry of small molecules. My bachelor thesis was about finding characteristic
substructures which are shared between a set of molecular structures [123]; given a list

"https://www.who.int/news-room/detail/17-01-2020-1ack-of-new-antibiotics-threatens-
global-efforts-to-contain-drug-resistant-infections
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of candidate structures for an unknown molecule, this would help to establish a starting
point for elucidation. In my master thesis, I developed a method to automatically detect
isotope patterns in electron ionization spectra to improve fragmentation tree computation.
Later, I helped to develop SIRIUS 4 [63]. Recently, Louis-Félix Nothias and I investigated
the prevalence of non-sodiated fragment ions in sodiated ion tandem mass spectra [126] —
one example of the many peculiarities of mass spectrometry. I also contributed to further
methods for the analysis of small molecules from mass spectrometry data [60} (64 148, 201].

In this thesis, I focus on two important problems related to the structural elucidation of
small molecules from tandem mass spectra: firstly, molecular formula annotation [125] and
secondly, searching a tandem mass spectrum in a structure database [124]. I developed
these methods in collaboration with my supervisor Sebastian Bocker and great input from
my colleagues, in particular Kai Diihrkop. I approach both problems using Bayesian
methods. Furthermore, I build upon established methods: SIRIUS 4 [63] is arguably the
best-performing tool for molecular formula annotation; CSI:FingerID [6I] and its related
approaches IOKR [29H31] and ADAPTIVE [I146] are currently the best-performing methods
for structure database search.

Determining the molecular formula of a compound is the first step in its structural
elucidation; and this step can already be challenging. Molecular formulas cannot be
unambiguously annotated by mass alone, not even when searching in a database and using
mass spectrometers with sub-ppm mass accuracy [104]. Besides, if we want to overcome the
limitations of searching molecular formulas in a (spectral or structure) database in order
to find novel compounds, molecular formula annotation has to be performed de nowo;
that is, we consider all possible molecular formulas. Here, the number of candidates
strongly increases with increasing compound mass and when considering elements beyond
carbon, hydrogen, oxygen and nitrogen. I present a method called ZODIAC [125], which
takes a “holistic” approach to the molecular formula annotation problem: Metabolites
co-occur in a network of derivatives; and to annotate one compound, it is helpful to
consider similar compounds in the data. ZODIAC uses the top-scoring molecular formula
candidates of each compound from SIRIUS and reranks them by considering joint fragments
and losses between fragmentation trees. I use Bayesian statistics and Gibbs sampling to
estimate posterior probabilities for all molecular formula assignments. Since the number of
considered variables can be relatively high, I engineer the algorithm to create a swift Gibbs
sampler in practice. I evaluate ZODIAC on five diverse datasets of biological samples. I
show that ZODIAC enables confident molecular formula assignment and greatly facilitates
the discovery of novel molecular formulas absent from the biggest structure databases.

Next, I present a novel scoring method for CSI:FingerID [124]. CSI:FingerID searches
a tandem mass spectrum in a structure database: it predicts a molecular fingerprint from
the mass spectrum and compares this against molecular fingerprints of structures in the
database. A molecular fingerprint encodes the structure of a molecule: it is a binary vector
where each position indicates the presence or absence of a specific molecular property
(usually a substructure).

IOKR is another approach strongly related to CSI:FingerID that omits the intermediate
step of predicting a molecular fingerprint. IOKR was able to outperform CSI:FingerID [30].
However, molecular fingerprints predicted by CSI:FingerID can be utilized even for
applications beyond structure database search, such as compound class prediction [64].
Besides, the predicted fingerprint can be extended with novel properties to improve
performance; and the predicted probabilities in the fingerprint can indicate the quality
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of prediction. Thus, both approaches are interesting for automated small molecule
identification and worth considering for further research.

The molecular fingerprints of CSI:FingerID describe thousands of potential molecular
properties. Some properties might be more important than others to establish the
molecule’s structure, and clearly, many of these properties are highly correlated. Current
scorings assume that all properties in the fingerprint are independent of each other. I use
Bayesian networks to model dependencies between different substructures. On the one
hand, this should capture, how much a (predicted) molecular property contributes as new
evidence, given we already know other properties of the fingerprint. On the other hand,
this aims to capture and reduce mutual errors made by the predictors. I apply Bayesian
networks in a non-standard fashion, where the marginal probabilities of the random
variables are different for each predicted fingerprint. Here, it is not straightforward to
establish the conditional probabilities which are necessary to define the Bayesian network.
A substantial part of this scoring deals with how to properly estimate these probabilities.
Furthermore, I found that molecular structures that have the same molecular formula,
often share the presence or absence of multiple substructures in their fingerprints. With
this in mind, I extend the scoring to use individual Bayesian networks for each molecular
formula. The novel Bayesian network scoring significantly outperforms the currently best
scoring.

I presented ZODIAC at the Metabolomics conference 2017 in Brisbane and the annual
conference of the American Society of Mass Spectrometry (ASMS) 2018 in San Diego. I
gave a talk on the Bayesian network scoring at the annual international conference on
Intelligent Systems for Molecular Biology (ISMB) 2018 in Chicago [124]. Both of these
methods are implemented in the SIRIUS software for small molecule identification.

Before I describe the methods in Chapter [5] and [6] I give an introduction to the field
of research. Chapter [2] introduces basic chemical knowledge and the analytical technique
mass spectrometry. Chapter 3]shortly introduces graph theoretical notations and describes
statistical concepts related to Bayesian statistics and sampling methods. In Chapter [4]
I give an overview of methods in computational mass spectrometry. I focus on high-
resolution, high mass accuracy tandem mass spectrometry data of small molecules.

For the remainder of this thesis, I use “we” as the first person pronoun, as it is common
in scientific literature.



2 Background in Biochemistry and Mass
Spectrometry

In this chapter, we introduce basic knowledge on small molecules and mass spectrometry
which is required to understand this thesis. Firstly, we explain properties of molecules and
will focus on small molecules in particular. Secondly, we introduce mass spectrometry as
an analytical platform to measure and examine small molecules. The descriptions are a
simplification of the chemical and physical background and do by no means attempt to
be a comprehensive overview. We refer readers interested in metabolomics to Weckwerth
[215]; and for mass spectrometry to Gross [75].

2.1 Molecules

A molecule is a group of two or more atoms connected by bonds. Every atom is composed
of a central nucleus surrounded by one or more electrons. The nucleus contains neutrons
and protons. The number of protons determines the chemical element of an atom. In
many notations the element is represented by the element symbol, e.g. C for carbon,
H for hydrogen, O for oxygen and N for nitrogen. Isotopes are variants of an element
and differ in the number of neutrons. Atoms of different isotopes of the same element
have the same chemical properties. The total number of neutrons and protons is called
mass number. By notation, this is specified at the upper left of the element symbol. For
example, the most abundant isotope of carbon contains six neutrons and six protons and
is represented as '2C. Molecules that only differ in their isotopic composition are called
1sotopologues. The molecular mass of a molecule is specified in unified atomic mass units
(u) or equivalently in Dalton (Da). One Dalton is defined as & of the mass of a *C
isotope, which is approximately 1.660 539067 x 10727 kg. The nominal mass is the total
number of protons and neutrons of a molecule and is given in Da (u) — in contrast,
the mass number is unit-free. The calculated exact mass of a molecule is the sum of
masses of all its atoms. The mass defect is the difference between nominal and exact
mass. This difference exists mainly due to the different binding energies within the nuclei.
Because of the (arbitrary) choice of 2C as reference, it is the only isotope with equal exact
and nominal mass. The mass of a molecule with all its atoms being isotopes with the
lowest mass is called monoisotopic mass [23|. Note, this definition differs from the IUPAC
definition that the monoisotopic mass is the mass of the most abundant isotopologue. It is
reasonable from a computational point of view to consider the lowest mass as monoisotopic
mass; in particular to determine the elemental composition based on mass spectrometry.
For most small molecules the lowest-mass isotopologue is also the most abundant. Most
biomolecules are composed of the elements CHNO, sulfur and phosphorus, but may also
contain halogens or other uncommon elements. See Table for elements and isotopes
occurring in living organisms.
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Table 2.1: Isotopes of elements found in biomolecules. The most common elements are carbon,
hydrogen, nitrogen, oxygen, phosphorus and sulfur. Additionally, halogens (bromine, chlorine,
fluorine and iodine) are reported. Listed are the elements and their stable isotopes with mass and
relative abundance. Values taken from [12].

element symbol isotope mass (Da) abundance (%)

12¢ 12.0 08.93
carbon C 3
Bc 13.003355 1.07
q 1.007825 09.9885
hydrogen H )
H 2.014102 0.0115
_ 4N 14.003074 99.636
nitrogen N 15
N 15.000109 0.364
160 15.994915 99.757
oxygen O 170 16.999132 0.038
180 17.999160 0.205
phosphorus P slp 30.973761 100.00
329 31.972071 94.99
33g 32.971459 0.75
sulfur S .
349 33.967867 4.25
36g 35.967081 0.01
, By 78.918338 50.69
bromine Br 3
1Br 80.916291 49.31
35
Cl 34.968853 75.76
chlorine Cl
37 36.965903 24.24
fluorine F DR 18.998403 100.00
iodine I 1277 126.904468 100.00
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The number of electrons determines the charge of an atom (and molecule): Electrically
neutral atoms have equal numbers of protons and electrons. Positively or negatively
charged atoms and molecules are referred to as ions. Bonds between atoms can be formed
by sharing or transferring electrons. This brings the atoms in an energetically favorable
state. Electrons that can participate in the formation of bonds are called valence electrons
and are located in the outer shell of an atom. When atoms share pairs of electrons, they
form a covalent bond. The electrons positioned between the two atoms’ nuclei attract these
nuclei (the positively charged protons within), resulting in a chemical bond. Atoms that
have a large difference in electronegativity may form an ionic bond. Here, an electron is
transferred from one atom to the other, which leads to a positive and a negative ion which
attract each other by their opposite charges. A typical example is sodium chloride: The
sodium loses an electron and becomes a cation, a positively charged ion. The chlorine gains
an electron and becomes an anion, a negatively charged ion. Atoms or molecules that have
unpaired valence electrons are radicals. These are chemically very reactive and are likely
to react and form bonds with other atoms or molecules to reach a chemically stable state.
Radicals are intermediates in many chemical reactions.

The molecular formula (elemental composition) indicates the number of atoms of each
element in a molecule. The constitution of a molecule is the number, kind and connectivity
of atoms. Molecules with the same molecular formula but different connectivity are called
structural isomers. Molecules with equal constitution but different three-dimensional
orientation of atoms are considered stereoisomers. A structural formula describes the
constitution and may include orientation in space. Take for example the two amino
acids leucine and isoleucine: both have the molecular formula CgH;3NO,, but different
constitutions (Fig. . On the other hand, L-leucine and D-leucine are different
stereoisomers. In this thesis, we usually consider only the constitution and do not
distinguish between stereoisomers since mass spectrometry generally cannot differentiate
stereoisomers. We will refer to the constitution of a molecule as structure.

A chemical substance consisting of identical molecules composed of atoms of two ore
more elements is called compound. We will use the words “molecule” and “compound”
interchangeably throughout this thesis. Mass spectrometry cannot detect single molecules
but only compounds.

Multiple text-based formats exist for the representation of molecules which are optimized
for machine-readability and storing the molecules in databases. SMILES [216] and
InChI [85] both represent the molecule as a string. The same molecule can be represented
by many different SMILES which makes it difficult to compare molecules for identity.
Canonical SMILES where introduced to define a unique SMILES representation for each
molecule, but for some molecules the algorithm failed this task [I41 150]. Different
implementations try to overcome this problem [I50], but there is no official standard
of canonical SMILES. The IUPAC international chemical identifier (InChl) overcomes
this problem by using graph isomorphism algorithms to produce a unique ordering of
atoms [85]. In contrast to SMILES it is less human-readable. It organizes information
in layers. The first layers specify molecular formula and constitution. Additional layers
specify stereochemistry, charges and isotopes. The InChIKey was introduced as a compact
identifier for fast comparison and database search. It is a hashed code derived from
InChl and is exactly 27 characters long. It is organized in layers, too. The first 14
characters encode for the molecule’s constitution. Stereochemical and isotopic information
are encoded in the second layer. The third layer encodes protonation or deprotonation.
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Figure 2.1: Different molecule representations of leucine and isoleucine. (a) Both molecules have
the same molecular formula. Structural formulas of (b) isoleucine without stereochemistry and (c)
L-leucine and (d) D-leucine with stereochemistry information are displayed. The solid wedged bond
points above-the-plane, the dashed wedged bond points below-the-plane. Isoleucine and leucine
have different constitutions. L-leucine and D-leucine have the same constitution but different
stereochemistry. Different string representations depict L-leucine as (e¢) SMILES, (f) InChI and
(g) InChIKey.

Throughout this thesis, we will use the first 14-character block of InChIKeys to test two
molecules for equality (based on their constitution).

SMILES arbitrary target specification (SMARTS)E] is an extension of SMILES which
allows to specify substructural patterns. These patterns can be used to search substructures
in molecules. For example “[CX4|” matches any carbon connected to exactly four atoms
(including hydrogen).

2.2 Metabolites

Metabolites are considered all molecules in the cells of living organism which are
intermediates or products of metabolism. Usually the term is restricted to small molecules
— that is molecules below 1000 Da. In contrast to DNA, RNA or proteins, metabolites
are not comprised of repetitive structures or simple building blocks. Despite there small
size, metabolites are remarkably diverse and exhibit a broad range of chemical properties,
covering a great range of different classes such as flavonoids, glycosides, amino acids, nucleic
acids and lipids. The term metabolome refers to the complete set of metabolites in a cell,
tissue or organism. The metabolome is the closest representation of phenotype [187] and
provides a direct snapshot of biochemical activity.

Metabolites are divided into primary and secondary metabolites. Primary metabolites
are directly involved in growth, development and reproduction processes. They are
generally present in many organisms. Secondary metabolites are not directly involved in
these central processes but allow important ecological functions such as defense or signaling.

"http://wuw.daylight.com/dayhtml/doc/theory/theory.smarts.html
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Secondary metabolites are much more specific to an individual species or a restricted set
of organisms. Many secondary metabolites remain uncharacterized with respect to their
function and structure |8, 48|, [156].

Natural products are organic compounds isolated from natural sources. Typically this
term refers to secondary metabolites. Their economic importance includes fragrances,
herbicides, pesticides and food supplements [102]. Natural products remain a major source
of novel drugs [144].

The lipidome as a subset of the metabolome refers to the set of all lipids. Lipidomics
is a distinct field of research due to the lipids functional specificity. Lipids have a much
more regular structure compared to the set of all metabolites. Because of their chemical
properties, lipids can be measured and investigated in a more tailored fashion.

2.2.1 Molecular Fingerprints

Molecular fingerprints are a common way of encoding molecular structures for compu-
tational processing. A fingerprint can be seen as bit vector: Every position encodes for
the presence or absence of a specific molecular property, such as a substructure of the
molecule. This is not a bijective relationship, meaning that different molecules can have the
same fingerprint. For this reason, a molecule cannot be reconstructed from its fingerprint.
Substructure properties can be described by SMARTS patterns.

One reason for the popularity of molecular fingerprints is that they allow for an efficient
way to compare structures. This is of particular interest in virtual screening where one
or multiple query molecules are searched against a database of millions of molecular
structures [221I]. The screening usually selects a small subset of candidates for further
analysis. This can be either additional computational analysis, such as substructure search
or the calculation of the largest common substructure shared between molecules. Especially
the second task is too complex to be performed on the whole database [I68]. But also
additional analytical analysis, such as assays to test bioactivity, are too expensive and
time-consuming to be applied to all available molecules.

The classification of molecular structures which exhibit similar biological effects or
physicochemical properties, has been widely adopted in drug discovery [13]. In ligand-based
screening, a structure database is searched for molecular structures similar to a molecule
with known bioactivity, in order to select a set of molecules which is enriched for this
desired activity [128]. This is based on the assumption of the similar properties principles:
molecules with similar structures are likely to have similar properties [26, 06, 100, 219].
Quantitative structure—activity relationship (QSAR) modeling is used to directly predict
biochemical properties based on the molecular structure. Early works have been reported
since the 1970s [1, 222]. For an overview on QSAR modeling see Dudek et al. [59].

A widely adopted function to compare molecular fingerprints is the Tanimoto coefficient
(also known as Jaccard index) [220]:

ANB
Tanimoto(A, B) = ASB}’

where A and B are the sets of substructures present in the fingerprints of two molecules.
Other measures are the cosine similarity and Dice coefficient, which often perform similarly
in ranking tasks [7]. For comparisons of different similarity measures see Bajusz et al. [7]
and Cereto-Massagué et al. [39].
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Many different types of fingerprints exist, most of which are based on substructures
without stereochemical information (2D fingerprints). Numerous types are implemented in
popular chemistry software toolkits, such as CDK [194], 223], OpenBabel [152] and RDKitE|7
or specialized libraries [88]. There are fingerprints which consist of a fixed (sometimes hand-
curated) set of structure properties. This includes PubChem CACTVS [212], MACCS
and Klekota-Roth [I00] fingerprints. In contrast, combinatorial fingerprints define how
to systematically generate substructure properties. The generated substructures differ
based on the underlying set of molecules. The number of potential substructures of a
fingerprint can be infinite. Representative combinatorial fingerprints are path and shortest
path fingerprints, which enumerate all possible (shortest) paths between pairs of atoms in
a molecule [88] 219]. Circular fingerprints such as the extended connectivity fingerprints
(ECFP) [173| define and enumerate substructures based on atoms and their proximity. A
parameter specifies the “radius”. Small substructures can be generated by considering each
atom and its connected neighbors. A larger radius includes also the neighbors’ neighbors.
This is an iterative approach and each iteration considers a further range of neighbors. See
Fig. 2.2 for an illustration of a fingerprint. For a comparison of different fingerprint types
see Bender et al. [I4], Duan et al. [58], Willett and Winterman [222] and O’Boyle and Sayle
[151].

In the means of making virtual screening more efficient, “folded” fingerprints where
introduced [80]. Here, the set of all molecular properties are hashed onto a fixed-size
bit vector with usually 1024 or 2048 bits. As a consequence, unrelated substructures
are encoded by the same position in the fingerprint vector. This may be appropriate if
the workflow performance is not overly afHlicted by false positive hits. But one should
refrain from using these fingerprints to train machine learning models for QSAR. Folding
introduces “collisions”™: different molecular properties are assigned to the same fingerprint
position. An “active” position in one fingerprint vector might correspond to a completely
different property than in another fingerprint vector. Because of this, fingerprint positions
become harder to interpret; predictive models may perform worse.

2.3 Mass Spectrometry

Mass spectrometry (MS) is one predominant technique to measure small molecules. It
can measure many different molecules at the same time which enables high-throughput
analysis. Furthermore, it is high-sensitive — orders of magnitude more sensitive than
nuclear magnetic resonance (NMR).

In order to measure a molecule it needs to be ionized first. Mass spectrometers measure
the mass-to-charge ratio (m/z) of ionized molecules. Ions can be multiple charged. A
single charged ion with a weight of 100 Da has the same m/z as a double charged ion with
a weight of 200 Da. Throughout this thesis we will assume that ions are single charged.
This is usually true for most small molecules. Hence, the m/z can be interpreted as the
mass of a molecule. Multiple charged molecules can be easily recognized by their isotope
pattern (Section and removed from the data. Depending on the context, we will refer
to the measured ions as molecule, ion or compound. Mass spectrometry does not measure
single molecules, but a signal produced by many ions of the same molecular entity.

The output of mass spectrometry is a mass spectrum: a two dimensional plot reporting
ion signal intensity as a function of m/z. The signal of a molecule is called peak. Important

2RDKit: Open-source cheminformatics; http://wuw.rdkit.org
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(c) SMARTS: clcccccl [CH3] [CX3](=0)[0OX2H1] clnc2cnenc2nl clcnencl

Figure 2.2: Molecular structure of caffeine and fingerprint representations. (a) Molecular
structure with highlighted examples of combinatorial fingerprints. (b) Illustration of a fixed-
size fingerprint with a set of substructures that are contained / not contained in caffeine. The
pyrimidine ring property (rightmost illustrated structure) is a substructure of the heterocyclic
purine to its left; every structure containing purine must also contain a pyrimidine ring. The
SMARTS patterns in (c) can be used to match the substructures. Examples of a path (blue) and
the proximity of an atom (orange circles) are indicated in (a) as representatives of all possible
substructures of path fingerprints and ECFPs, respectively. Combinatorial fingerprints can be
used to generate fixed-size fingerprints given a training dataset of molecules.
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Figure 2.3: Schematic illustration of a mass spectrometer with electrospray ionization (ESI) as
ion source and a time-of-flight (TOF) mass analyzer. The mass spectrometer consists of three basic
parts. From left to right: the ion source produces charged molecules. These are separated in the
field-free drift region of the TOF analyzer and measured by the detector. The signal is converted
into a mass spectrum. Further data processing steps may follow (Section .

instrumental parameters are mass accuracy and resolution. The mass accuracy indicates
how precisely the mass of a molecule can be measured: it is the ratio of m/z measurement
error to true m/z and is specified in parts per million (ppm). High-accuracy instruments
have mass errors below 20 ppm. The resolution specifies the ability to distinguish two peaks
of highly similar m/z. One measure to specify resolution is the m/z divided by the closest
distance Am/z of two peaks of equal height that are still clearly distinguishable [I38]. High
resolution is important for high accuracy since it limits errors resulting from overlapping
signal peaks. Signal intensity can be interpreted as a function of molecule abundance. But
the relation is very complex and depends on the ionization efficiency of the molecule and
also ion suppression between different molecules. Thus, it is non-trivial to infer abundance
from intensity.

Functional principles Conceptionally, a mass spectrometer consists of three components
(Fig. : The ion source which ionizes the molecule, the mass analyzer which separates
the molecules according to their m/z and the mass detector which detects the ions and
records signal intensity. Different types of ion sources, mass analyzers and detectors exist.

Ion sources can be categorized into soft and hard ionization sources. The first technique
only ionizes the molecule, the second additionally fragments it. A popular hard ionization
technique is electron ionization (EI) [229]. Here, a beam of energetic electrons interacts
with the molecule. The fragmentation is highly-reproducible and well understood [69].
However, it is often difficult to determine the m/z of the unfragmented molecular ion. EI
is frequently used in combination with a separation technique called gas chromatography
(Section [2.5)). A common soft ionization technique is electrospray ionization (ESI). Here,
a liquid solvent containing the analyte is pressed through a tiny capillary held at a high
electric potential. The molecules form small, charged droplets. The solvent evaporates, the
droplets become smaller and the charged analyte molecules repel each other to eventually
break up the droplets.
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A mass analyzer separates the ionized molecules according to their m/z. The mass
analyzer greatly determines the quality of the data, that is, the mass accuracy, sensitivity
and resolution. In a time-of-flight (TOF) analyzer all ions are accelerated through the
same electric potential by an electric field. Molecules with the same charge receive the
same kinetic energy. Molecules with higher mass need more energy to accelerate, thus
velocities depend on the ions’ m/z. After acceleration ions travel trough a field-free drift
region. Travel time is proportional to the square root of m/z which separates ions of
different m/z before they reach the detector. Time-of-flight instruments are comparatively
simple in design and achieve high acquisition rates [71]. They can have high mass accuracy
and resolution.

Other instruments, such as Fourier-transform ion cyclotron resonance (FTICR) MS
instruments or Orbitrap, follow a quite different design principle. Here, mass analyzer
and detector are not separated. Ions are trapped by an electric or magnetic field. In
FTICR-MS a Penning trap traps the ions and an oscillating electric field excites them to a
larger cyclotron radius. The ions’ m/z is inversely proportional to the cyclotron frequency.
The Orbitrap traps ions cycling around an electrode. Both instruments rely on the Fourier
Transform to translate the ions’ frequencies into m/z values. FTICR-MS instruments
have very high mass accuracy and resolution; they can reach below 1 ppm mass error [24].
Orbitraps also have high resolution and mass accuracy of around 2 to 5 ppm [24]. Both
instruments measure the ions in an non-destructive manner.

lonization mode and adducts Many mass spectrometry instruments can be operated in
either positive ionization mode to produce positively charged ion species or in negative
tonization mode to produce negatively charged ion species. KESI commonly produces
protonated ions (|M + H|") in positive ionization mode — that is, a proton is added
to the molecule. In negative ionization mode it frequently produces deprotonated ions
(IM — H]") — that is, the molecule loses a single proton [75]. Here, “M” represents the
neutral molecule. Apart from that, different ionic species might attach to a molecule to
form an adduct ion. Common adduct ions in positive ionization mode are ammonium
adduct ions ([M + NH,]"), sodium adduct ions ([M + Na|"), and potassium adduct ions
(IM + K]") [I10]. Common adduct ions for negative ionization mode are chlorine adduct
ions ([M + Cl1] ") [233]. The ratio of different adduct ions strongly depends on the used
ionization technique and analytical setup. For example, a high salt concentration in the
sample may favor [M + Na|™ and [M + Cl]~ ions. In the following we will call adduct ions
“adducts” for short.

2.4 Tandem Mass Spectrometry

In tandem mass spectrometry (MS/MS) two mass analyzers are coupled together with
a fragmentation cell in between. The first mass analyzer selects ions in a certain m/z
range. Subsequently, these ions are fragmented. And finally, the fragments are recorded
by the second analyzer. The resulting tandem mass spectrum (MS/MS spectrum) provides
additional information about the measured molecule. This aids the discrimination of
isobaric compounds (molecules with identical nominal mass) and structural isomers.
While isobaric compounds might also be distinguishable by the first level of mass
spectrometry (MS1), structural isomers have the same molecular formula and need MS/MS
for discrimination. Stereoisomers are usually indistinguishable by mass spectrometry.
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Collision induced dissociation (CID) is a common fragmentation technique coupled with
soft ionization. Here, the ions pass through a collision cell containing a collision gas.
On their trajectory the ions collide with the gas which converts some kinetic energy into
internal energy. This triggers a chemical reaction and the ions get fragmented into two
(or more) pieces and the charge is passed on to one of the pieces. The ion that is being
fragmented is called the precursor ion; the fragmented part that carries a charge is called
product ion or fragment; and the neutral part is called loss. Only the ionized fragments can
be measured by the subsequent mass analyzer; this produces the MS/MS spectrum. Since
not only a single ion but many identical ions of the same molecular entity are fragmented
at once, many fragments are recorded. Consequently, the same substructure can be both,
fragment and loss. The velocity at which ions pass through the collision cell can be
regulated; this changes the transferred collision energy. Higher collision energies result
in smaller fragments, whereas lower collision energies may leave ions unfragmented. To
obtain a higher number of different fragments, multiple MS/MS scans may be measured
at different collision energies and combined.

2.5 Chromatography

Biological samples are usually too complex to be measured directly by mass spectrometry.
Highly abundant ions would interfere too much with the detection of less abundant ions.
Furthermore, tandem mass spectrometry would not be able to select single ion species
but mixtures for MS/MS. This makes the interpretation of MS/MS spectra challenging.
Thus, mass spectrometry is often coupled to a prior separation step. Chromatography
is a technique for the separation of a mixture of different molecules based on their
chemical or physical properties. The chromatography system consist of a stationary
phase and a mobile phase. The mobile phase carries analyte molecules through a column
containing the stationary phase. Molecules bind to the stationary phase with different
affinities. Thus, different molecules pass through the column at different speeds and
separate. Chromatography can be coupled with ion-mobility spectrometry to enhance
separation [132].

The most prominent chromatography techniques coupled with mass spectrometry are
gas chromatography (GC) and liquid chromatography (LC). Gas chromatography-mass
spectrometry (GC-MS) has been around for many decades and often uses EI as ion
source [68]. Molecules have to be — or made be — volatile. Due to the high temperatures
necessary for GC, this is not applicable for larger molecules, such as peptides, which would
denature. Liquid chromatography-mass spectrometry (LC-MS) based metabolomics often
uses ESI as ion source. LC can be performed with a diverse set of molecules, including
many secondary metabolites [67]. Even with LC separation tens to hundred of different
molecules can elute at the same time [I58].

In untargeted mass spectrometry experiments, first an MS1 scan is performed to detect
the m/z values of all currently eluting molecules. Now, one or more high-intensity peaks
are individually selected and MS/MS scans are performed. This is done in an alternating
fashion to cover the whole LC-MS/MS run with MS1 and MS/MS spectra. Still, many
compounds might not be covered by MS/MS. The time at which a molecule elutes is called
the retention time. This can be used as orthogonal information, in addition to a molecule’s
m/z and MS/MS spectrum, to assist identification. Whereas GC retention times can
be standardized to a system-independent number called the Kovats retention index, LC
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systems produce retention times with much greater variation [227]. The LC retention time
of a molecule differs between setups and can even change from run to run on the very
same instrument. Nevertheless, retention times can be utilized as orthogonal information
to confirm the identity of a compound: A known reference compound can be spiked into
the sample to check if it elutes at the same retention time as the unknown compound of
interest.






3 Statistics and Graph Theory

In this chapter, we provide graph-theoretical notations and definitions. Then, we give a
short introduction to Bayesian statistics and Bayesian inference. We refer readers who
are less familiar with graph theory to one of the many graph theory textbooks such as
Diestel [54]. For a more comprehensive view on Bayesian statistics in general see Koch
[107] and Liu [120] for Monte Carlo methods in particular.

3.1 Graph Theory

Graphs are a mathematical concept to model pairwise relations between objects. Here, we
introduce the basic terminology from graph theory.

A graph G = (V, E) consists of a set of nodes V and a set of edges E. Edges depict
relations between nodes; each edge connects two nodes. Graphs can be either directed or
undirected. In undirected graphs, edges are unordered pairs of nodes E C (‘2/), where (‘2/)
is the set of all two-element subsets of V. Directed edges are two-element tuples (u,v) of
nodes u,v € V. Thus, for directed graphs the edge set is F C V x V. Two nodes u,v € V
are adjacent to each other if they are connected by an edge. A path is a sequence of edges
such that consecutive edges share exactly one node and each edge is used at most once; in
directed graphs, the ending node of one edge must be the starting node of the next edge in
the sequence. A path with the same node as start and endpoint is called cycle. A directed
graph that does not contain any cycle is called directed acyclic graph (DAG). For a directed
edge (u,v) € E in a DAG we call u the parent and v the child. A tree T'= (V,E) is an
undirected graph in which any two nodes are connected by exactly one path. A rooted
tree has a designated vertex r called root. All directed edges point away from this root.
A graph G’ = (V', E’) is a subgraph of G if and only if V' C V and E' C E. A clique in
an undirected graph G is a subset of nodes S C V, such that every two nodes in S are
connected by an edge in G.

Graphs can be colored and labeled to categorize nodes or edges, or to assign them a
certain feature. In fragmentation graphs and fragmentation trees, which are introduced in
Section the nodes and edges are labeled with molecular formulas in order to explain
fragments and losses in a spectrum. Colors are usually introduced to assign nodes to a
common origin. Different nodes with the same color can correspond to different hypotheses
assigned to the same origin. A graph is colorful if every node has an unique color. This
allows to formulate optimization problems which decide between different hypotheses by
finding an optimal colorful subgraph. For example, a peak in a mass spectrum could be
explained by multiple molecular formula candidates. Here, the candidates are nodes and
the peak is represented by a color. When selecting a colorful subgraph, only one valid
candidate may be retained.

Nodes and edges can be weighted to associate some measure of cost or importance.
Edge-weighted graphs have a scoring function wg : E — R. Analogously, vertex-weighted
graphs have a scoring function wy : V. — R.

17
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3.2 Bayesian Statistics

Bayesian statistics is a fundamental theory in the field of statistics in which probability
quantifies the belief in a hypothesis or the certainty of an event. Probabilities do not have
to be based solely on observations. Instead, Bayesian statistics allows to incorporate prior
information and express this in form of probabilities. This prior information can be derived
from many different sources. It may be expert knowledge: here, the probabilities express
a measure of plausibility that a hypothesis is indeed true. It may also be a summary of
prior experimental results, or a hypothesized generic distribution over events in the sample
space.

Suppose we want to estimate the distribution of body heights of people in, say, Germany.
The distribution of body heights of the general world population offers a good estimate
of body heights in Germany. This prior knowledge tells us that adult humans rarely have
heights below 1 or above 2.5 meters. If we do not have any data specifically for Germany,
then this is a good estimate. We could now conduct an experiment and measure people
from Germany. If we select two random German people and measure their heights, this
will give a bad approximation of German body height distribution. Hence, the world-wide
population is still the better estimate. However, if we measure 100,000 German people, we
may end up with an even better estimate. Now, at what number do we trust our sample
statistic more than the prior information? After 10 samples? Or after 100 samples? With
Bayesian statistics we do not have to decide for an arbitrary threshold. Rather, it enables
us to combine the prior knowledge with the data, thus making best use of all available
information.

Let us define this more formally: Given are the data D (our samples), and we want to
estimate the unobserved model parameters M. Then, the prior probability is a probability
distribution P(M) over all possible model parameters. The likelihood P(D|M) is the
conditional probability that our sample data was produced under the given parameter set.
This enables us to calculate a posterior probability P(M|D) using Bayes’ theorem:

P(DIM)P(M)

BMID) = =5

(3.1)

Now, back to our example. Assume that body heights are normally distributed and we
observed body heights of German people D € D. The unobserved parameters of our
model are the mean y and standard deviation o of normal distribution A (u,0?). Given
a sample statistic of the world population, we can estimate prior probabilities of these
parameters — this is P(M). Furthermore, we can calculate how likely specific parameters
would generate the data D — this is P(D|M). When we combine all this information,
we can estimate the model parameters. Finding the most probable model parameters
based on P(M|D) corresponds to a maximum a posteriori (MAP) estimate. If we do not
have any prior knowledge of the model parameters M, we usually assume a flat prior
— all parameter realizations are equally probable. This results in a maximum likelihood
(ML) estimate: the model which most likely generates the data is the most likely model.
To calculate P(D), we would need to marginalize over all possible parameter realizations
of M. However, this is not necessary in order to find the most probable parameters based
on P(M|D). The denominator in equation is the same for all model parameters.
Since P(M|D) x P(D|M)P(M) we can ignore P(D) and only maximize P(D|M)P(M).
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3.3 Bayesian Inference

Bayesian inference is a method to infer the probability of a hypothesis using the Bayes’
theorem. This can be as simple as weighing the hypothesis “the die is fair” against “the die
is biased”. But it can also be used to assign posterior probabilities to all possible parameter
realizations of a highly-dimensional model. ML or MAP estimation essentially become
optimization problems that predict a single point in parameter space. However, this is
not appropriate for all applications. Especially, if the posterior probability is not a regular
unimodal distribution with most probability being “concentrated” in one high peak. Here,
Bayesian inference can help and estimate the whole posterior probability distribution. For
example, assume a game of dice is played, but the casino frequently switches between
fair and biased dice. Thus, both models, “dice are fair” and “dice are biased”, are true
and coexist with different probabilities. Another example is about risk assessment: based
on the weather forecast, we predict if the wind will become a hurricane in the coming
days. The MAP estimation might predict wind speeds of exactly 39km/h. Using Bayesian
inference we might come to the conclusion that there is still a 20 % chance that wind speeds
will exceed 120 km/h. Both statements are correct. However, Bayesian inference provides
the more relevant information in this example. This illustrates the inherent difference
between these methods. There also exists a range of approaches in between single-point
estimates and the calculation of the whole posterior probability distribution which are not
covered in this thesis.

The posterior probability distribution can often not be solved analytically. Monte Carlo
methods can be used to generate a representative sample of the underlying distribution.
From this, the distribution can be approximated and statistics can be derived. Monte
Carlo sampling was initially used to solve physics-related problems [130]. Nowadays many
applications for statistical inference are based on the concept.

What does “sampling from a probability distribution” imply formally? Conducting a
random experiment results in a single outcome from a set of possible outcomes. Random
variables are functions that map outcomes to some measurable space. In this way they
group possible outcomes to events and give them some meaning. A probability distribution
assigns probabilities to the possible events of a random variable. Take for example a six-
sided die. Rolling the die will result in one out of six possible outcomes of 1,2,3,4,5
and 6. A random variable X may divide outcomes into the two events zy = “the
number of pips is even” and x; = “the number of pips is odd”. This can be defined
by the mapping {2,4,6} — xo and {1,3,5} — z;. In the discrete case the probability
distribution can be described by a probability mass function p: px(xg) = P(X = z9) = 1/2
and px(z1) = P(X = 21) = 1/2. We may refer to px as p for short if it is obvious which
random variable is considered. Continuous random variables that map outcomes to an
uncountable infinite number of events can be described by probability density functions
instead. Sampling a random variable X yields a realization z, that is, an event of the
random variable chosen according to P(X).

Generating independent samples from a target probability distribution p(z) in such a
way to closely resemble the underlying distribution is often infeasible. This is especially
the case for high-dimensional parameter spaces, where most parameter realizations have
very low — close to zero — probability and do not considerably contribute to the
probability distribution. Importance sampling was suggested to sample from a different
distribution which focuses on the regions of “importance”, where the target distribution
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is meaningful non-zero [127]. Alternatively, Markov chain Monte Carlo (MCMC) can be
used to generate a sequence of random samples. All MCMC methods are governed by
the Markov property which states that the probability of each event only depends on the
state of its preceding event; all previous states are irrelevant. For a sequence of random
variables X, X@ . x(+1) and corresponding realizations W 2@ 2D this can
be formalized as:

P(XHD = gD X0 = o) x0-1) _ 40-1 51 _ 51y
_P(X D) = gD X0 — 50y,

A stochastic process that satisfies this property is called Markov chain (or Markov process
in the continuous case). It is uniquely described by its transition function T(x,x’) which
defines the probability of transitioning from one state x to any other state z/. A distribution
p(z) is said to be invariant with respect to the Markov chain if the transition function
leaves p(z) unchanged:

() =Y T(x,a)p(x). (3.2)

Two properties are commonly desired for a given Markov chain:

1. irreducibility: A chain is irreducible if it is possible to get from any state to any other
state (not necessarily in one step).

2. aperiodicity: A state x is k-periodic if every sequence of states which starts with x
and ends in x has a number of steps which is a multiple of k. If £ = 1, then the state
x is aperiodic, otherwise it is periodic. A Markov chain is aperiodic if every state is
aperiodic.

If a Markov chain is irreducible and aperiodic, then the chain will become stationary at a
unique invariant distribution. Various algorithms exist for constructing Markov chains,
most notably the Metropolis-Hasting algorithm [82]. MCMC methods are frequently
applied to bioinformatics problems [92]. Popular applications include sequence-based
approaches such as finding DNA binding motifs [I16] and phylogenetic inference [230].

3.4 Gibbs Sampling

Gibbs sampling is a suitable MCMC method if the conditional distributions of the variables
are known and easy to sample from. Gibbs sampling, in its basic version, is a special case
of the Metropolis-Hastings algorithm [82], [I31]. Metropolis-Hastings in general defines
transition probabilities based on a proposal function g(z'|z) and an acceptance probability
A(z,2’). The proposal function generates a new state based on the current one. Then,
this new state is accepted proportional to the acceptance probability; if it is rejected,
the state remains unchanged. Recall, that in order to generate samples from the target
distribution p(x), the distribution needs to be invariant to the transition function 7'(z, z').
The proposal function does not ensure appropriate transition probabilities. Rather, the
acceptance probabilities are chosen, such that the combination of proposal and acceptance
probabilities results in the desired transition probability. Thus, the actual transition
function is T'(x,2') = g(a'|z)A(z,2"). However, poorly chosen proposal functions may
lead to low acceptance rates and thereby to an inefficient sampling procedure. Gibbs
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sampling uses the conditional probabilities of the target distribution which directly results
in the desired transition probabilities. Hence, it does not require an acceptance-rejection
step. It can produce samples with smaller variance and enable efficient sampling.

The algorithm can be described as follows: Suppose, we want to generate samples from
the n-dimensional random variable X = (X1,...,X,,). In an initialization step, a random
realization is chosen for the first sample z(!). Then, new samples are generated based on
their preceding sample. To generate 2z we sample each component a;;i) of this vector
conditioned on all previous components. The iteration step is described by the following:

Let () = (mgi), ey x,(f)) be the sample for iteration . Then z(t1) is generated by updating

each $§-i+1) according to
p(x§-i+1)|acgi+1), . ,xg-ijll),xgé)rl, cey ng)), for each j =1...n.

The joint probability distribution p(x) is invariant with respect to this updating procedure:

1) (i+1 i+1) (i i i+1 i+1) (i i
p(af VLYl D) pat Yl D)
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Hence, once the stationary distribution is reached, Gibbs sampling generates samples from
the target distribution.

We give a simple example of a Gibbs sampler in Fig. [3.I] Here, a Markov chain
for two correlated variables is constructed. Directly after initialization, the conditional
probabilities are “flat”. After some steps, the Markov chain converges to the area of higher
probabilities. This illustrates two important properties of the Markov chain: Firstly, the
samples from the beginning do not follow the stationary probability distribution and have
to be omitted for estimation. Secondly, as a consequence of the sampling process, samples
are autocorrelated: successive samples are highly correlated.

3.5 Bayesian Networks

A Bayesian network is a type of a probabilistic graphical model and is described by a
directed acyclic graph G = (V, E) (Section whose nodes represent random variables
Xy,v € V. Edges represent conditional dependencies. The graph structure specifies a
factorized representation of the joint probability distribution and enables an efficient way
to compute probabilities and perform inferences on the random variables.

Bayesian networks satisfy the local Markov property: each node in the graph is
independent of its non-descendants given its parents. In general, the joint probability
can be expressed by conditional probabilities using the chain rule:

P(X1, Xa,..., Xn) =P(X1|Xo, ..., Xp) - P(X0, X5,..., Xp) = [[ PG| [ X)) (3.3)
k=1 j=k+1

Because of the local Markov property, equation (3.3) can be transformed into:

P(X1, Xo,..., Xp) = H P(Xy| ﬂ Xj),
veV j€parent(v)
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Figure 3.1: Gibbs sampling with two random variables of a multivariate normal distribution.
Displayed are multiple steps of a single Markov chain. The numbers indicate the current iteration
step. The ellipses illustrate the target distribution which we intend to estimate; this unimodal
probability distribution has its maximum at the central ellipse. The blue curve represents the
samples. The current sample is indicated with a blue dot. Gibbs sampling begins by choosing
a random realization as start. Then, the value of one variable is fixed and the other is sampled
based on the conditional distribution. We indicate the fixed parameter value by the gray dashed
line. The conditional distribution, which is used to sample from, is either displayed on top or at
the right, depending on which variable is currently sampled.

where parent(v) denotes the set of all parent nodes of node v. This allows for an efficient
factorization of the joint probability because the number of parents per node is usually low.
In this way, Bayesian networks offer a good compromise between assuming full dependence
and assuming full independence of variables. Besides for the efficient computation of the
joint probability, Bayesian networks can be used to infer unobserved variables given a set
of observed variables. Exact inference is NP-hard [44] and heuristics or approximations
may be applied [79]. Bayesian networks are used in many different domains including
risk assessment [231], managing and planning [139)], community modeling [25] and disease
diagnosis [35] [159]; for more details, see Chen and Pollino [42].
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Figure 3.2: Illustration of a Bayesian network with four random variables. The nodes represent
the variables and the edges conditional dependencies. Probabilities are expressed as contingency
tables. Variables are abbreviated with the underlined character. Variable realizations are either
true (T) or false (F). Given the probability for a “severe weather warning” and conditional
probabilities for the remaining variables, joint probabilities can be estimated.

A simple example of a Bayesian network is illustrated in Fig. The network enables
easy computation of the joint probability. For example, the probability, that there is a
weather warning for black ice and I am still riding the bike is

PW=T,I=T,T=F,B=T)
=PW =T) - PU=TW=T)-PT=FW=T)-P(B=T|I=T,T=F)
=0.05-0.9-0.85-0.7 ~ 2.68%.
Furthermore, unobserved variables can be inferred from a set of observed variables.

Given that there is black ice, but no tornado, the probability of riding the bike
P(B=T|I =T,T =F) is always 0.7, independent of the variable severe weather warning.






4 Computational Mass Spectrometry

In this chapter, we give an overview of computational methods for small molecule
mass spectrometry. We focus on high mass accuracy, high-resolution LC-MS/MS data
in particular. We do not cover methods related to the chromatography part of the
analysis, such as retention time prediction [227]. Elucidation of stereochemistry is usually
not possible solely based on mass spectrometry [51]. This rather requires orthogonal
information, such as NMR measurements. Thus, structure elucidation and identification
refers to the determination of the constitution of a molecule: that is, the identity and
connectivity of the atoms including bond multiplicities, but no spatial (stereochemistry)
information.

Our novel methods that we present in Chapter [5| and @ build upon SIRIUS [63] and
CSIL:FingerID [61]. SIRIUS combines isotope pattern matching (Section [£.2.1)) and MS/MS
spectra analysis using fragmentation trees (Section [4.2.2). CSI:FingerID searches MS/MS
spectra in a structure database (Section [4.4.1)).

In general, we give a short overview of the data processing, and describe computational
methods for de novo molecular formula annotation, spectral library search and structure
database search. For a recent list of software tools and resources for metabolomics see
[155]. Interested readers can obtain a more detailed overview of computational methods
and databases for structure elucidation from relevant reviews |16 18] [93].

4.1 Data Processing

Before performing qualitative or quantitative mass spectrometry analyses, such as
compound identification, the data needs to be preprocessed first. The raw data consists of
spectra in so called profile mode: here, a molecule’s signal peak does not correspond to a
single m/z value but a distribution due to measurement inaccuracies. Peak picking detects
the peaks and transforms them into single m/z values. This step is also called centroiding,
although not necessarily the centroid of a peak is reported but a different value such as
the maximum.

Subsequent processing steps of LC-MS data may include noise removal [I80 224],
baseline correction [10, 210], feature detection and feature grouping [50, 10T} 112} 137, [197],
and retention time alignment [113], 114}, 119 232]. As a result of the processing, all isotope
peaks and adduct peaks (often called features) that correspond to the same compound
are grouped; and the same compound is also detected and matched over multiple LC-
MS runs. This is necessary e.g. for quantitative analysis. In addition to the software
of mass spectrometry vendors, there are multiple free, open-source software packages for
these tasks, including OpenMS [175], MZmine 2 [I61] and XCMS [15, [199].

Methods for compound identification, which are presented in the following, usually
expect centroided spectra. They do not necessarily need further processing, although
it might improve performance. Generally, these methods do not directly make use of the
established adduct groupings. Thus, the MS/MS spectrum of, for example, the protonated

25
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ion and the sodium adduct ion of a compound are analyzed individually. However, confident
adduct assignment can still be beneficial. Furthermore, different isotope patterns or
MS/MS spectra of the same adduct of a compound which were measured in different
runs, can be merged to improve spectrum quality.

4.2 De Novo Molecular Formula Annotation

Annotating the molecular formula of a compound is the first step in its structural
elucidation: It often allows us to deduce important information about its likely structure;
knowing it improves the subsequent search in molecular structure databases [63, [177];
and finally, it guides data interpretation based on atoms and unsaturation degree for full
structure elucidation via NMR or X-ray crystallography. Annotation of molecular formulas
is far from trivial, especially if executed de novo, that is, without the use of a database and
without artificially restricting candidate elements: here, the number of molecular formula
candidates grows rapidly with compound size and elements beyond carbon, hydrogen,
nitrogen and oxygen [19]. Heuristic constraints for “permissible” molecular formulas will
counter this growth [105], but can again prevent the annotation of true molecular formulas.

Molecular formula annotation can be performed by first selecting possible molecular
formula candidates and subsequently scoring these candidates. Many methods select
molecular formula candidates from a database, but efficient algorithms exist to enumerate
all possible molecular formulas, thus enabling de novo annotation. Given the compound’s
mass (accounting for a certain mass error) and an alphabet of considered elements, all
molecular formulas can be enumerated via dynamic programming [22) 60]. Scoring (or
filtering) of the candidates can be based on the isotope pattern (MS1 only) |4l 2], 23] 105,
1221 153, 204], or combined with analyzing the MS/MS spectrum [19] 20}, (63, 129] (162, 196].

Instead of considering compounds individually, a complete LC-MS run can be annotated
at once, utilizing co-occurrence of molecular formulas differing by a predefined set of
biotransformations [47, (50} [52) [174]. These approaches select molecular formula candidates
from a structure database; thus, implicitly, they try to identify molecular structures (or
their isomers) from a restricted structure database, and cannot annotate novel molecular
formulas.

4.2.1 Isotope Pattern Analysis

Chemical elements can have multiple isotopes (Section . The most common elements
found in biomolecules — carbon, hydrogen, nitrogen and oxygen — each have multiple
stable isotopes. Thus, one compound produces multiple peaks in a spectrum based on its
different isotopologues. Isotopologues with identical nominal mass are usually measured
as a single peak. Because of the mass defect, the mass difference of the lightest isotope to
the other isotopes is different for each element. These mass differences, combined with the
different natural abundances of isotopes, are the reason why we can distinguish elemental
compositions based on mass spectrometry. However, mass spectrometry cannot resolve
all different isotopologues but measures a superposition of these. The monoisotopic peak
represents the isotopologue with lowest mass. The M+1 peak represents all isotopologues
that include exactly one isotope that has an additional neutron; the M+2 peak represents
all molecules that include either one isotope that has two additional neutrons or two
isotopes that have one additional neutron; and so on. For single charged molecules, the
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isotope peaks differ by approximately m/z = 1. Some high-resolving mass spectrometer
can resolve isotopologues to some extend which (partially) reveals the isotopic fine
structure [122]. Isotope patterns can be simulated via polynomial expansion [33, 204]
and Fourier transform [170]204]. Merging isotopologues with similar mass enables efficient
isotope pattern simulation [23, [I11]. Molecular formula candidates are scored by simulating
an isotope pattern for each candidate and comparing it against the measured isotope
pattern [23], (63, 122]. SIRIUS 4 considers both, relative and absolute, mass and intensity
errors and models these as normally distributed random variables. SIRIUS 4 achieves more
than 60 % correct molecular formula annotations based on the isotope pattern alone. The
isotope pattern also allows to detect elements [63] [133]. This primarily improves efficiency,
since the set of considered elements can be limited and not all molecular formula candidates
have to be scored.

Isotope patterns enable easy distinction of different charges: isotope peaks of single
charged compounds differ by m/z = 1, double charged differ by m/z = 1/2. Unfortunately,
for some compounds we only detect the monoisotopic peak since other isotope peaks have
too low intensity.

4.2.2 Fragmentation Trees

A fragmentation tree annotates peaks in the fragmentation spectrum with molecular
formulas and identifies likely losses between the fragments — similar to “fragmentation
diagrams” created by experts. The calculated tree must not be understood as ground truth
but can be used to derive information about the measured compound’s fragmentation [165].
Fragmentation trees are also used to identify the molecular formula of an unknown
compound. For every molecular formula candidate of the precursor ion, a separate
fragmentation tree is computed which best explains the spectrum, as evaluated by a
maximum a posteriori estimator [I9]. This estimation takes into account information
such as mass deviations, intensities, common losses and loss sizes. The overall best-scoring
fragmentation tree corresponds to the most likely molecular formula explanation.

A simplified example of a fragmentation tree is presented in Fig. [£.1] A fragmentation
tree is computed from the fragmentation spectrum given the (candidate) molecular formula
of the precursor ion. Initially, a fragmentation graph is constructed in the following
way: For every fragment peak, all possible molecular formula explanations are computed.
These explanations must be subformulas of the precursor molecular formula — a fragment
only looses, but never gains new atoms. Every such molecular formula is a node in the
graph. Nodes are connected by an edge if one node is a subformula of another node
— this represents a potential loss. Using combinatorial optimization, the best scoring
fragmentation tree is computed which explains every peak at most once. Unexplained
peaks are considered noise.

Computing the fragmentation tree from a fragmentation graph requires to solve an NP-
hard [167] problem named the MAXIMUM COLORFUL SUBTREE problem [20]. In practice,
many instances can be solved swiftly using Integer Linear Programming (ILP) [167, 217].
Additionally, heuristics can be applied to speed up computations and restrict solving the
exact problem to the top-ranked candidates. Fragmentation trees can also be computed
from MS" data [I78]. Fragmentation tree alignments [166] can be used to compare and
cluster similar compounds. This enables the search for structurally similar compounds in
spectral reference libraries if the true hit is missing. CSI:FingerID, which searches MS/MS
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Figure 4.1: Example of a fragmentation tree computed from a fragmentation graph in (a), given
the spectrum in (b). The molecular formula of the neutral precursor is assumed to be CqH;,NO,.
Molecular formulas are computed for all fragment peaks and serve as the nodes of the graph;
nodes with the same color indicate molecular formulas corresponding to the same peaks. Nodes
are connected by edges if one node is a subformula of another, thereby creating the fragmentation
graph. A fragmentation tree is a connected subgraph which explains each color (peak) at most once
and has no cycles. The best-scoring fragmentation tree, corresponding to a maximum a posteriori
estimator, is computed by combinatorial optimization. The optimal fragmentation tree is indicated
by solid lines; nodes which are not used are grayed out. These computations are repeated for each
molecular formula candidate explaining the precursor mass, and the best such fragmentation tree
is reported.

spectra in a structure database, uses fragmentation trees to predict molecular fingerprints

(Section [4.4.1)).

4.3 Spectral Library Search

A well established method to identify compounds based on fragmentation spectra is to
search these in a spectral reference library. EI spectra are highly reproducible [69]. Since
GC-MS has been established for a long time, spectral reference libraries have been collected
extensively and are comparably large [191]. Tandem mass spectra are less reproducible,
in particular across different types of instruments [149, 191]. Nevertheless, reliable hits
can be obtained using instruments under similar conditions [40] and if the correct hit is
contained in the reference library [179]. The number of reference compounds in public
spectral libraries has grown over the past years [90, 198, 209, 21T, 226]. Still, only few
percent of all detected compounds can be identified [48].

When searching an MS/MS spectrum in a reference library, candidate spectra are
selected that match the precursor ion’s mass. Spectra are compared using the cosine
similarity. To do so, the spectra are represented as vectors; peaks are usually binned by
m/z. The cosine similarity is the dot product of the normalized vectors. The similarity
ranges between 0 for spectra without common peaks, to 1 for identical spectra. To
reduce false positive hits, a minimum number of common peaks may be required [211].
Furthermore, the transformation of intensities was suggested to reduce the impact of high
intense peaks [90, 193]. But conversely, this can increase the influence of noise peaks.
Additionally, the mirrored spectrum can be considered [I5, 192]: to mirror a spectrum
with precursor mass M, we replace peak m/z value m by M — m. Averaging the score
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of spectrum and mirrored spectrum can reduce errors caused by systematic mass shifts.
Instead of binning spectra by m/z, the mass error can also be included into the scoring,
e.g. by using a probability product kernel [83]. Further similarity measures have been
tested [193] but the cosine similarity performed best.

The mirrored spectrum can also be used for analogue search. Here, we do not aim for
exact matches but try to find structurally similar compounds. Hence, we do not limit search
to compounds with the same precursor mass but search either within a larger mass window,
select masses that match some common biotransformation [I18] or use the entire reference
library. Alternatively, spectral alignments [211] or fragmentation tree alignments [166] can
be used.

To overcome the problem of false positive hits, Scheubert et al. [I79] developed a false
discovery rate estimation for spectral library search. In a target-decoy approach [65] a
decoy database is created based on fragmentation trees. The principal idea is, that the
decoy database consists of artificial spectra that will never be measured but are still highly
similar to the real spectra in the target reference library. All query spectra are searched in
the target database to find promising hits. Additionally, the query spectra are searched in
the decoy database to estimate the chance that the hits in the target database are in fact
false positives.

Recently, the concept of molecular networks emerged to visualize similarities between
compounds in a dataset [136, 211], 214]. Here, compounds are represented as nodes in a
graph and edges depict the similarity between compounds (usually the cosine similarity
between the MS/MS spectra). Hypothetical biotransformations can be derived from mass
differences between compounds [203]. Furthermore, spectral library hits can be included
into the network. This facilitates dereplication and allows to generate hypotheses about the
structure of a compound that does not have a spectral library match, based on compounds
that have been annotated with a structure. Additionally, annotations of MS2LDA [205] can
be combined with such networks. MS2LDA is an unsupervised machine learning method
that extracts common spectral patterns from a collection of MS/MS spectra. These spectral
patterns can be manually annotated with structural properties. Thus, all compounds which
contain an annotated spectral pattern will have a partial structure annotation.

Open data repositories, which share reference MS/MS spectra, include GNPS [211],
MassBank [90] and HMDB [226]. Further spectral reference libraries are METLIN [7§],
the mass spectral libraries provided by the National Institute of Standards and Technology
(NIST), and the “MassHunter Forensics/Toxicology PCDL” library (Agilent Technologies,
Inc.) which we will use to evaluate the Bayesian network scoring. Additionally to reference
spectra, GNPS also contains a large number of public datasets and provides several
workflows to analyze data. For more information on spectral reference libraries see Stein
[191], Yang et al. [229].

4.4 Structure Database Search

The expansion of spectral libraries is driven by the availability of standards [I83]. In
particular, the large number of secondary metabolites is not covered by spectral libraries,
and this will likely not change any time soon [I8|, [70]. This is a major obstacle to
structure elucidation by MS/MS. Molecular structure databases, on the other hand,
are orders of magnitude larger. Spectral libraries are limited to tens of thousands
of different compounds, whereas structure databases contain millions. For example,
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PubChem [103] contains over a hundred million different compounds. Even if we only
consider compounds of known biological interest, we end up with hundreds of thousands of
structures [9, [63]. Moreover, novel candidate structures can be generated in silico; either
systematically by enumerating all possible structures [77], limited to biotransformations of
known structures [56l 95], or generated using autoencoders [32], 163].

However, it is not straightforward to deduce structural information solely from a mass
spectrum. Early attempts at generating structural information from mass spectrometry
data have been made since the 1970s as part of the DENDRAL project [34]. Unfortunately,
they could not accomplish their ambitious goals and the project was discontinued [72].
Recent methods which search mass spectra in a structure database can be divided into
three main categories [18]:

Simulating MS/MS spectra from structures. This approach may seem the most
intuitive to chemists, who are used to searching in spectral libraries. Here, a library
of artificial reference spectra is created by simulating spectra based on a database of
structures. This only has to be done once for each structure in the database. Then,
query spectra can be searched in the simulated spectral library (Section .

Quantum chemistry models can be used to simulate spectra ab initio. However, this
has been applied mainly to EI [I1], 190], and less to CID [109] [I54]. This is not surprising
since EI is much better understood and reproducible compared to CID. These methods
demand considerable computational resources. Thus, usually only very small molecules are
analyzed. Quantum chemical approaches can be useful to study fragmentation mechanisms
an pathways [189].

Machine learning methods and stochastic models can be much faster. CFM-ID was
first introduced to identify structures based on CID spectra [2] and later modified for
EI spectra [3]. CFM-ID uses fixed-length Markov chains to predict the fragmentation of
molecules. Fragments are generated by systematically breaking bonds; this process also
considers hydrogen rearrangements. The probability that a fragment is generated is based
on the break tendency of the bonds. This break tendency is predicted from a vector of
chemical features describing a bond’s proximity. The probabilistic process enables the
prediction of peak intensities. In the current version of CFM-ID, the Markov chains’
transition function is based on a neural network. Expectation-maximization is used to
perform a maximum likelihood estimation of the parameters. Although the simulated
spectra are not extremely similar to measured spectra, these seem well suited for the task
of compound identification. In comparison to current quantum chemical models, CFM-ID
performed similarly [190] but is considerable faster.

Rule-based methods simulate a spectrum by applying specific fragmentation rules to the
molecule to generate a set of fragments. The rules are hand-curated from the literature.
These methods usually compute “bar code” spectra, meaning that no peak intensities are
predicted. Hill et al. [87] suggested to use the commercial software Mass Frontier to search
in a structure database. However, “bar code spectra are not sufficient when many molecules
generate the same fragment ions. In these instances, only the relative ion intensities will
aid the correct identification.” [08]. Furthermore, rule-based methods will always struggle
with compounds which exhibit novel fragmentation mechanisms.

Comparing MS/MS spectra and structures. Combinatorial fragmentation methods
systematically break bonds to generate a set of all possible fragments. These methods
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are not designed to simulate spectra. But the fragments are used to explain peaks in
a measured spectrum. Initially, methods were intended for the guided interpretation of
spectra where the compound structure is already known [83] [86]. Later, MetFrag [176 228]
used combinatorial fragmentation to search in a structure database. Fragment enumeration
is usually not performed exhaustively. It can, for example, be confined by the number of
consecutive fragmentation steps. Wolf et al. [228] found that this not only reduces running
times, but also prevents the generation of too many false positive hits (fragments generated
from incorrect structure candidates that match a peak in the measured spectrum). MetFrag
uses bond dissociation energies to assign costs to the bonds. The cost of breaking a
molecule into fragments is the sum of costs of the cleaved bonds. Ridder et al. [169]
developed MAGMa, which is applicable to MS/MS and MS™. It uses more simplistic costs:
1, 2 and 3 for single, double and triple/aromatic bonds respectively; with an additional
modifier for carbon-carbon bonds. With this scoring it outperformed MetFrag [61], [147].
Clearly, an even improved scoring for predicting bond cleavage may be found or learned
from the data [2, 08]. MAGMa+ [208] is a wrapper script for MAGMa: it runs
MAGMa with one of a set of predefined parameter settings chosen based on the predicted
metabolite class. MIDAS [213] uses simplistic bond costs as well. Resulting fragments
are scored against the measured spectrum based on the relative intensity of the peaks
and a fragment plausibility score; this plausibility score favors fragments whose direct
parent fragment was assigned to a peak as well. MIDAS resolves hydrogen rearrangements
simply by searching in the spectrum not only for a fragments’ m/z, but additionally also
for the m/z of the fragment modified by one or two hydrogen. Tsugawa et al. [202]
proposed nine rules of hydrogen rearrangement during bond cleavage, implemented in MS-
FINDER. DEREPLICATOR+ [I34] limits fragmentation to N-C, O-C, and C-C bonds.
Furthermore, it introduces a false discovery rate estimate: this is a target-decoy approach
and decoy spectra are generated by sampling peaks from a spectral library. However,
it has not been shown how well these estimates resemble the true false discovery rate.
MetFusion [74] combines MetFrag with spectral library search in MassBank [90] to take
advantage of both approaches.

Predicting structural properties from spectra. Instead of simulating spectra from
molecular structures, structural information can be generated directly from the measured
MS/MS spectrum. Full de novo structure elucidation is not possible [51]. Rather molecular
fingerprints describing a set of substructure features are predicted. These fingerprints can
be directly used to characterize the measured compound. Moreover, fingerprints can be
searched in molecular structure databases. Early methods for predicting substructure
features from mass spectra targeted GC/MS and EI fragmentation [34, 206, 207]. In
2012 Heinonen et al. [84] developed FingerID which predicts a molecular fingerprint from
an MS/MS spectrum using kernel-based support vector machines (SVMs). Kernels are
similarity functions that are used to compare feature vectors of the data (here, the MS/MS
spectra); for more information see Section m FingerID uses a probability product
kernel [I08] to compare two spectra. Shen et al. [I84] integrated fragmentation trees with
FingerID: multiple kernel learning was applied to combine spectrum and fragmentation
tree kernels into a single kernel which can be used by the SVM. Diihrkop et al. [61]
improved the scoring and added additional fingerprints; this resulted in CSI:FingerID.
Input Output Kernel regression (IOKR) [29H31] is a modification of these approaches which
does not perform the intermediate step of predicting fingerprints. Instead, a mapping
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between the MS/MS spectra and molecular structures is learned. Additional methods
followed which were inspired by the CSI:FingerID and IOKR approaches [145] [146].
ChemDistiller combines fingerprint prediction with combinatorial fragmentation [115].
Besides, other tools exist which predict substructure features but do not search in a
structure database [121].

4.4.1 CSl:FingeriD

CSI:FingerID searches MS/MS spectra in a structure database [61]. It combines advantages
of combinatorial optimization and machine learning approaches. The MS/MS spectrum is
transformed into a fragmentation tree using SIRIUS (Section — this part is based on
combinatorial optimization. It is rather difficult for machine learning methods to pick up
the same structured information as contained in the fragmentation tree, solely based on the
spectrum. This is particularly true because the number of training examples (compounds
in spectral reference libraries) is very limited. This is in contrast to other research areas
such as image recognition where the availability of millions of training examples allows for
better utilization of deep learning approaches.

CSIL:FingerID predicts a molecular fingerprint using kernel SVMs. Firstly, it computes
multiple kernels based on the spectrum and fragmentation tree of the query compound.
These are then combined into a single kernel using multiple kernel learning. Kernel support
vector machines predict each property of the fingerprint. Finally, this predicted fingerprint
is searched in a structure database. The general workflow is illustrated in Fig. In the
following, we describe the CSI:FingerID structure database search. But first, we give a
short introduction to the concept of kernels.

A very short introduction to kernels. In classification tasks, a supervised machine
learning method predicts labels (classes) y € ) for each input instance. Instances are
described by feature vectors x from a feature space X. In binary classification, a method
aims to separate two possible classes ) = {—1,1}. The machine learning method learns a
function f : X — ), based on training examples, that assigns labels to feature vectors. In
case of a linear classifier, f is a linear combination of the input features.

Kernels can enable linear classifiers to solve a non-linear problem: by transforming the
input space X into another, usually high-dimensional, space H, the data may become
linear separable. However, computations in the high-dimensional space can also be much
more time-consuming. Kernels provide a solution to this problem. It can be shown, that
if a function K : X x X — R fulfills all properties for being a kernel, then there exists
some transformation into an Hilbert space H such that K computes the inner product
of this Hilbert space [6]. Thus, if a classifier function uses the input feature vectors
only to compute inner products, this inner product function can be replaced by a kernel.
This concept is called kernel trick. Calculating the kernel function can be much more
efficient than performing calculations in the high-dimensional space H. For some kernels
the corresponding Hilbert space even has an infinite number of dimensions. In practice,
the space H does not have to be specified. It is sufficient to show that a function is a kernel
to apply this machine learning trick. Kernel SVMs are one kind of classifier which make
use of this kernel trick. See Fig. for an example of a path kernel.

Multiple kernels can be combined into a new, single kernel; one possibility is adding
up individual kernel values. This intends to increase the prediction performance.
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Figure 4.2: Common path counting kernel between fragmentation trees [I84]. Two paths are
considered equal if they have the same sequence of edge labels (losses). All common paths between
the left and right fragmentation tree are displayed in the middle. The number of common paths is
counted and normalized by the maximal possible number of common paths of each tree.

CSIL:FingerID computes different kernels based on the spectrum, and on the nodes, edges
or paths of the fragmentation tree. Each kernel gives a different perspective of the data and
hence might be useful for predicting certain properties. However, simply adding up kernel
values might not produce a kernel with good prediction performance. Multiple kernel
learning selects appropriate weights to combine the different kernels. Diihrkop et al. [63]
use ALIGNF [45] and ALIGNF+ [I85] to compute kernel weights. For more information
on kernel methods see Hofmann et al. [89).

Searching in a structure database. In the following, we assume that the molecular
formula of the query compound is known. In case it is unknown, fragmentation trees
for all possible molecular formula candidates are computed and ranked by score; then,
all top-ranked candidates can be searched individually in the structure database using
CSI:FingerID [63].

CSIL:FingerID predicts the molecular fingerprint and subsequently searches it in a
molecular structure database. Molecular fingerprints encode the structure of a molecule:
Most commonly, these are binary vectors of fixed length where each bit describes the
presence or absence of a particular, fixed molecular property, usually the existence of a
certain substructure (Section . Formally, let 1,...,n be the molecular properties;
then, a (binary) fingerprint is a vector from {0,1}". Each molecular structure has a (not
necessarily unique) fingerprint assigned to it.

Given a query compound and its molecular formula, the fragmentation tree is computed
from the MS/MS spectrum. Next, for each molecular property in the fingerprint the
presence or absence of this property is predicted. Each property is predicted by a separate
SVM; all SVMs use the same kernel. When searching in a structure database such as
PubChem, first a set of molecular structure candidates is extracted that has the same
molecular formula as the query compound. Each structure candidate is deterministically
transformed to a binary fingerprint. Then, predicted and binary fingerprints are compared
in order to rank the candidates.

Different scorings have been proposed to compare the predicted fingerprint with the
binary fingerprints in the database. Unit scores simply count the number of differences
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Figure 4.3: CSL:FingerID workflow. In the training phase MS/MS spectra of reference compounds
are used. (1) Fragmentation trees (FTs) are computed from the spectra. (2) Different kernels are
computed based on spectra and FTs. (3) These kernels are combined using multiple kernel learning
(MKL). (4) True fingerprints of reference compounds are deterministically computed. (5) One SVM
is trained for each molecular property in the fingerprint. In prediction phase the structure of the
query compound is unknown; we assume the molecular formula (MF) is known. (6) The FT is
computed, (7) kernel values against training compounds are computed, and (8) a probabilistic
fingerprint is predicted. (9) Deterministic fingerprints of structures in the database (DB) with the
query MF are selected and (10) compared against the probabilistic fingerprint. (11) Structures are
ranked by their scores.

between the predicted fingerprint and each candidate fingerprint. Heinonen et al. [84]
used the accuracy of individual SVMs to weight the scoring, but this does not perform
better than unit scoring [61]. Diihrkop et al. [61] suggested and evaluated different scoring
variants, and found that two variants consistently outperformed all others in evaluation:
Namely, the “Platt” score and the “modified Platt” score.

Both scores use Platt probabilities [160] for fine-grained predictions: Instead of a binary
prediction of a SVM, a sigmoid function is used to predict the posterior probability for the
presence of the molecular property, with parameter estimated from the training data to
predict this probability. Let D = (p1,...,pn) € [0,1]™ be the Platt probability estimates,
and let M = (x1,...,2,) € {0,1}" be a candidate fingerprint; assuming independence
between all molecular property pairs, the posterior probability of the fingerprint candidate
M can be estimated as

{pi
L —p;

This has been referred to as “Platt score” in [61]; maximizing this score corresponds to a
maximum a posteriori estimator, and results in about 3.5 percentage points more correct
identifications than unit scores. In contrast, the “modified Platt” score from [61] was found

lfﬂjl = 1,

4.1
if T; = 0. ( )
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by trial and error, combines Platt probabilities and sensitivity / specificity estimates of
the binary predictors in a counterintuitive fashion: Namely,

)™ (1 — sens;)0% if p; > 0.5 and z; =
ﬁ (1 —p;)07 if p; >0.5and z; =0 (4.2)
Pl pg'75 if p; < 0.5 and z; = .

(1 —p;)%™ - (1 — spec;)*? if p; < 0.5 and z; =

where sens; is the sensitivity and spec; the specificity of the ¢th binary predictor. While this
score has no known statistical interpretation, modified Platt consistently outperforms
the Platt score by a margin of about 1.5 percentage points. In Chapter |§| we present
an improved scoring for CSI:FingerID based on Bayesian networks.






5 ZODIAC: De Novo Molecular Formula
Annotation

In this chapter, we present ZODIAC (ZODIAC: Organic compound Determination by
Integral Assignment of elemental Compositions) for confident, de novo molecular formula
annotation in LC-MS/MS datasets [125]. ZODIAC takes advantage of the fact that
metabolites co-occur in a network of derivatives. Thus, annotations of each individual
compound can be improved by considering similar compounds in the dataset.

Other methods have utilized similar concepts, as discussed in Section and
Network visualization approaches which connect compounds by hypothetical
biotransformations and indicate pairwise similarities, facilitate manual interpretation and
have gained popularity recently [136] 203, 211, 214]. Moreover, automated approaches to
annotate molecular formulas for a complete LC-MS run use Gibbs sampling and Bayesian
statistics, utilizing co-occurrence of molecular formulas differing by a predefined set of
biotransformations [47, 50] 52, [174]. However, these approaches suffer from a database
bias since, implicitly, molecular structures (or their isomers) from a restricted structure
database are considered. Besides, they cannot annotate novel molecular formulas.

ZODIAC builds upon SIRIUS [63]. Both methods determine molecular formulas
de novo. Thus, they are not limited by any database but consider all possible formulas.
SIRIUS considers each compound individually and ranks molecular formula candidates
based on fragmentation tree scores. ZODIAC uses the top-scoring candidates of each
compound from SIRIUS and reranks these, now considering relations between compounds
in the dataset. The probability model considers fragmentation tree scores as likelihoods.
Prior probabilities are derived from fragmentation tree similarities between candidates of
different compounds within an LC-MS/MS dataset. In this way, similar candidates support
each other’s plausibility. ZODIAC does not rely on a predefined set of biotransformations.
We apply Gibbs sampling to estimate the posterior probabilities as illustrated in Fig.
Thorough algorithm engineering ensures fast processing in practice.

In the next section, we present the method. On the theoretical side, we show that finding
an optimal assignment of candidates is NP-hard. We describe the estimation of likelihoods
and prior probabilities based on fragmentation trees and how to implement a swift Gibbs
sampler for the problem. Furthermore, we explain how to include spectral library hits into
the ZODIAC network. Then, we perform an evaluation on five diverse datasets and find
that ZODIAC can increase the number of correct molecular formula annotations on each
dataset. We proof the practical advantage of de novo annotation by discovering several
compounds that have novel molecular formulas not present in any structural databases;
we verify two of these.

37
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Figure 5.1: Illustration of the Gibbs sampling process. Left: During each epoch compounds
are iterated in random order. For each compound one new active molecular formula candidate
is sampled based on prior probabilities and active candidates of all other compounds. Right:
Sampling step for one compound. This illustrated sub-network with four compounds is based on
the dendroides evaluation dataset from Section[5.2] Each circle corresponds to a molecular formula
candidate. The size depicts the rank estimated by SIRIUS. Orange rings mark active candidates.
Edge width depicts fragmentation tree based similarity between candidates. The set of candidates
from which a new active candidate is sampled in this step is colored cyan.

5.1 A Similarity Model for Molecular Formula Assignments

5.1.1 Posterior Probability of an Assignment

We use a probabilistic view on the molecular formula assignment problem [174]: For each
hypothetical compound in the LC-MS run, we are given data such as an isotope pattern
and a fragmentation pattern. This allows us to determine, for each compound ¢ € C, a
set of candidate molecular formulas that may explain the observed data. Let V be the
set of all molecular formula candidates, such that V(c) C V is the subset of molecular
formulas for compound ¢ € C. It is possible that different compounds share an identical
molecular formula explanation, but we ignore this in our presentation, solely for the sake
of readability. An assignment is a mapping a : C — V where a(c) € V(c¢) is the molecular
formula assigned to compound ¢. The posterior probability of an assignment a is

P(a|D):]P’(DIL?1))-)]P’(a)

where D is the observed MS1 and MS/MS data. Let D(c) be the observed data for
compound ¢ € C, that is, the isotope pattern and fragmentation pattern of c. We assume
that the likelihoods of molecular formulas for different compounds are independent, and
that the likelihood of any compound ¢ only depends on its data D(c); so,

o« P(D | a) - P(a) (5.1)

P(D | a) = [[P(D(c) | alc)).

ceC
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Next, we define the prior probability of an assignment as the product of priors for pairs of
compounds:

P(a) H H HIP’uv|a sa(d) = ).

c,c' €C e ueV () veV(c)

Here, P(u, v | “true”) is the prior probability that two compounds with molecular formulas
u, v co-occur in the dataset; analogously, P(u, v | “false”) if u, v do not co-occur. To simplify
our calculations, we introduce a mapping ¢ : V' — C that maps any molecular formula to
the compound it belongs to: ¢(v) = ¢ for all v € V(c), for ¢ € C. Note that ¢(a(c)) = ¢ for
all c € C. Now,

P(a| D) x [[P(D(c) | a(c)) - II Plwola(e(w)=ua(cw)=v). (52)

ceC u,veV,c(u)F#ce(v)

Different from Rogers et al. [174], we are able to formulate the posterior probability of an
assignment in closed form. A natural question is if we can find a maximum a posteriori
estimate for ; unfortunately, we will see that this is not easy, as the underlying
computational problem is NP-hard. Another natural question is how to sample from the
posterior distribution; this will be addressed below.

5.1.2 Graph-theoretical Formulation

We now give a graph-theoretical formulation of the problem; this will allow us to establish
its computational complexity, but also to come up with a more efficient algorithm. Let
V', the molecular formula candidates, be the nodes of an undirected graph G = (V, E)
with edge set £ C (‘2/) We will write uv as shorthand for a tuple {u,v} € (‘2/) We use
¢:V — C as a node coloring with color set C. Now, an assignment is a subset A C V
such that each color from C appears exactly once; in this case, A is also called multicolored.
Using the notation of the previous section, we have A = a(C); recall that c¢(a(c)) = ¢ for
all ce C. Let w:V UFE — R be weights for all nodes and edges of the graph. The weight
of the assignment A is

w(A) = ZveA w(v) + ZWEEMGA w(uw) . (5.3)

This corresponds to the node plus edge weights of a node-induced subgraph of G, for node
set ACV.
We consider the following optimization problem:
Maximum Multicolored Subgraph problem. We are given a graph G = (V, E), a
node coloring ¢ : V' — C and weights w : V.U E — R. We search for an assignment A C V
of maximum weight, that is, a node-induced multicolored subgraph of maximum weight.
How does this problem correspond to our probabilistic problem from the previous
section? Setting E = E* := {uv | u,v € V,e(u) # ¢(v)} (the set of all node pairs
with different colors) and

w(v) :=logP(D(c(v)) | v) and w(uv) :=logP(u,v | “true”) —logP(u,v | “false”) (5.4)

we can show that these problems are in fact equivalent: We have logP(a | D) = w(a(C))+«
for some constant o € R. Here, we assumed that £ = E* contains all possible edges; we
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call (V, E*) a complete assignment graph. But we can encode any edge set £ C E* using
zero edge weight for all e ¢ E, so both problems are equivalent. Hence, it is natural to ask
for an optimal solution of the problem, which would correspond to a maximum a posteriori
estimator.

5.1.3 Complexity of the Problem

For the decision version, we ask if there is an assignment with weight above some threshold
7 € R. In its simplest form, all edges have weight one and all nodes have weight zero,
w|g =1 and w|y = 0.

Lemma 5.1. The MULTICOLORED SUBGRAPH problem is NP-complete, even for unit edge
weights and zero node weights.

Proof. 1t is clear that the MULTICOLORED SUBGRAPH problem is in NP. We show that
the problem is NP-hard by reduction from CLIQUE [99]: Let G = (V, E) be an undirected,
simple graph, is there a clique of size k in G? Clearly, k < n := |V|.

We construct a graph H := GO K, as the Cartesian graph product of G and the empty
graph K}, with k nodes and no edges: That is, for every node v € V we generate k copies
(v,1),...,(v,k) in H, and there is an edge {(u, 1), (v,j)} with ¢ # j in H if and only if
there is an edge uv in G. Now, k < n implies that H contains at most n? nodes. We define
node colors 1, ..., k such that c((v,i)) =4 forve V and 1 <i < k. We assign zero node
weights and unit edge weights for all nodes and edges in H. Now, any assignment in H
corresponds to a k-node induced subgraph in G, and the weight of the assignment equals
the number of edges in the node-induced subgraph; to this end, an assignment of weight

(g) would correspond to a k-clique in G. O

The Multicolored Subgraph problem is a generalization of the Multicolored Clique
problem; to this end, Lemma[5.]] can also be inferred from the complexity of Multicolored
Clique, which is W|[1]-hard [57]. Assuming zero node and unit edge weights, the above
construction implies that for any € > 0, there is no polynomial time algorithm that
approximates the maximum assignment weight to within a factor better than O(n!~¢),
unless P = NP [234]. Furthermore, finding an assignment of weight k cannot be done in
time n°®) unless the exponential time hypothesis fails [41] ©4]. Finally, we noted above
that we can encode an arbitrary edge set E C E* using zero edge weight for all e ¢ E, so:

Corollary 5.1. The MULTICOLORED SUBGRAPH problem is NP-complete, even for a
complete assignment graph, binary edge weights and zero node weights.

Finally, we consider two problem variants: First, we may allow that some colors from
C are absent from A; in this case, A is called colorful. We can encode this variant in
the original problem, by adding a dummy node for each color which is connected to no
other node. Second, we may assume that only edges carry weight. We can encode the
MULTICOLORED SUBGRAPH problem in this variant, by adding a dummy color for each
color and a dummy node for each node, such that if a node has a certain color, then the
dummy node has the corresponding dummy color. We connect each node to its dummy
node, and transfer the weight of the node to the corresponding edge. Hence, our complexity
results also hold for these variants.

On the algorithmic side, it is easy to see that the MULTICOLORED SUBGRAPH problem
can be solved by a simple Integer Linear Program (one variable per edge and one variable
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per color). We omit the straightforward technical details. We will not proceed in this
direction, as this approach results in a single optimal solution, whereas we want to consider
suboptimal solutions and marginal probabilities, which allow us to judge our individual
confidence when assigning molecular formulas to compounds.

5.1.4 Likelihoods, Prior Probabilities and Graph Topology

The likelihood P(D(¢(v)) | v) of a molecular formula candidate v can be computed from
the posterior probability of the fragmentation tree and the isotope pattern analysis as
estimated by SIRIUS 4.0 [19, [63]. For the Gibbs sampler, we treat these probabilities as
likelihoods, although the analysis SIRIUS 4.0 also integrates certain priors [19]. To avoid
proliferating running times, we usually limit further computations to the, say, 50 best-
scoring molecular formulas for each compound. For each compound, we also introduce
a node representing “molecular formula not identified” which receives likelihood from the
remaining molecular formulas, and is not connected to any other nodes.

Furthermore, we assume that some compounds were identified by searching in a library
of MS/MS spectra, plus potentially by comparison of retention times. We refer to these
compounds and the corresponding molecular formulas as “anchors”. Such library search
results can also be wrong, so we do not exclude other molecular formula explanations, but
rather give a bonus to the likelihood of the identified molecular formula. The “quality” of
a spectral library hit can, to a certain extend, be evaluated using its score, usually the dot
product (cosine score) between query and reference. Hence, the bonus may be dependent
on the corresponding library search score. Given the library search score s; € [0, 1] and a
minimum score to consider a library hit min;, we multiply the candidate’s likelihood by

max(s;, min;) ). (5.5)

Wty ming) = 6lﬁp()\l — max(s;, ming)
Candidates which disagree with the library hit or without any library hit are scored using
s; = min;. Note, that any "perfect match® with score of 1.0 will be chosen in any case. We
remove any other candidate for this compound. We refrain from normalizing the ¢ to one.

For estimating priors, we will consider similarity of fragmentation patterns [136, 214]:
More precisely, we use similarity between fragmentation trees that were computed by
SIRIUS in the previous step. For each pair of compounds, we have to compare up
to 50 times 50 fragmentation trees: For swift computations, we refrain from using
fragmentation tree alignments [I66] but instead, simply count the number of common
fragments and precursor (root) losses in the two trees [166]. Root losses can be directly
derived from fragments by subtracting the fragment molecular formula from the precursor
molecular formula. Evaluations indicate that this method, while performing worse
than fragmentation tree alignments, is still able to detect structural similarity between
compounds [I66]. When counting common root losses, the empty root loss is ignored.
We introduce two modifications to the score from [I66]: Let ni,ng be size of the two
fragmentation trees, defined by the number of fragments and root losses. Instead of
normalizing the number of common fragments plus root losses s by the size of the smaller
tree min{ny, na}, we use

s/ni+ s/ng (5.6)

as the normalized score; by this, we slightly penalize large trees, as having common
fragments or root losses is more likely against a large than a small tree. But this score
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favors small trees and, hence, inferior molecular formula candidates. To this end, we use
the size of the largest fragmentation tree, among all candidate molecular formulas, for the
normalization of each compound; this is the maximum number of explainable peaks in the
MS/MS data of the compound. Fragments and root losses can be weighted by importance
t. The weight of two common fragments or root losses m; and mg is ¢(my)c(msz). The

weighted size of a tree is
nw =y _(1g)) + Y (u(h)) (5.7)
geF heR

with fragments F' and root losses R. For two molecular formulas u,v € V we denote the
resulting score as s(u,v).

How can we transform this count into a prior probability? Natural choices include
significance estimates such as p-values and posterior error probabilities. We do not have a
reasonable model for the score distribution of “true” edges; in fact, it is not know how to
clearly distinguish between “true” and “false” edges in such a model. To this end, we resort
to a simple prior based on p-value estimation:

fs(u,0)) if s(u,v) > 7,

5.8
(1) otherwise, (5:8)

P(u,v | “true”) = f(r) and P(u,v | “false”) = {

where 7 € R is a thresholding parameter, and f : R — [0, 1] is a monotonically decreasing
function. We introduce threshold 7 because scores below a certain threshold are practically
uninformative and should not be considered in our estimations. For f(z) we estimate the
p-value of score x, under the null model that scores follow a certain distribution. Note
that prior probabilities do in fact depend upon the (mass spectrometry) data.

We now assign node and edge weights according to . Clearly, many of these edges
have zero weight and can be removed from the graph. To avoid that nodes are isolated,
we want to keep some edges incident to any node. This can be formulated by individual
thresholds 7. € R for each color ¢ € C and, for an edge uv, edge weight

w(w) := max{0, —log f(s(u,v)) + log f(Tuv) } (5.9)

for threshold 7, := min{7,(y), T¢(y)}. This will change the weight of any assignment by an
additive constant and, hence, posterior probability by a multiplicative constant.

5.1.5 (Faster) Gibbs Sampling

We say that a node v is active in an assignment A if v € A, and that an edge uv is active
if both u € A and v € A; then, the weight of an assignment is the sum of weights of all
active nodes and edges.

Gibbs sampling is a Markov chain Monte Carlo algorithm for obtaining a sequence of
observations approximated from a multivariate probability distribution [73]. Sampling
assignments according to can be seen as an archetype application of a Gibbs sampler:
We start with some assignment, such as the highest likelihood node (molecular formula)
for each compound (color). Each epoch of the Gibbs sampler consists of |C| steps, where
we iterate over all colors ¢ € C in random order: We update the active node with color ¢ by
drawing a node with color ¢ according to its posterior probability, conditional the current
assignment of all nodes with color different from c. At the end of the epoch we output the
current assignment, and repeat until we have reached a sufficient number of samples. This
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generates a Markov chain of samples converging to the posterior probability distribution
of assignments. In practice, we discard samples from the beginning of the chain (burn-in
period), and to avoid correlation between nearby samples, we output only every, say, 10th
sample.

Assume that u € A with color ¢ := ¢(u) is to be (potentially) replaced by a new node
v with the same color. Such update results in the new assignment A — {u} U {v}. The
probability of v € V(c¢), conditional all other nodes z € A with ¢(z) # ¢, can naively be
computed as

P(v | A—{u}) oxexp (w(v) + ZzeszeE w(vz)) . (5.10)

Computing all conditional probabilities for drawing a node v, requires time proportional
to the sum of node degrees for all nodes from V'(¢). That means running time for one step
is of order O(|V(¢)| - |[V|) and, hence, ©(|V|?) for certain graph families.

To apply Gibbs sampling in practice, the critical point is to quickly reach a large number
of samples, so that probability estimates become reliable. To further decrease running time,
we assume that we have, at any step, knowledge about all (log) conditional probabilities,
for all nodes v € V/(¢) and all colors ¢ € C. We assume that conditional probabilities are not
normalized; to sample a new active node, we uniformly draw a random number between
zero and the sum of conditional probabilities, over all nodes with this color. To improve
the sampling speed, we want to estimate conditional probabilities without performing a
full calculation using . Hence, we update conditional probabilities from , which
were calculated in a previous step, by only adding or removing specific edge weights based
on nodes added or removed from A.

Lemma 5.2. One step of the Gibbs sampler, replacing some node u by another node v
with the same color ¢ := ¢(u) = ¢(v) in A, can be carried out in O(|V (c)|+deg(u)+deg(v))
time.

Proof. Firstly, we update the active node of color ¢. Secondly, we update conditional
probabilities of all z € V' by accounting for the replaced active node of color ¢ in A.

Let A C V be the current assignment with u € A. Firstly, we want to choose a new
node v € U from the set of candidate nodes U := V(¢) for color ¢ := ¢(u). We assume
that the conditional probabilities P(v | A — {u}) have been calculated for all v € U. We
sum up the conditional probabilities, then uniformly choose a random number between
zero and this sum and, finally, use this random number to select one v € U. This can be
carried out in time O(|U]), because we sum up conditional probabilities of all candidates
in U. Selecting one candidate can be performed in O(log|U|) using a binary search on the
cumulative probabilities of these candidates. If u = v then we can stop at this point.

Second, we have to estimate conditional probabilities for all nodes z € V. From ,
we infer that the conditional probability only changes for those nodes z where there is a
change in the neighborhood N (z) of z, and remains constant for all others. To this end, we
iterate over all z € N(u), and decrease the log conditional probability of z by w(uz); then,
we iterate over all z € N(v), and increase the log conditional probability of z by w(vz).
Finally, for any node z € N(u) U N (v), we recompute its conditional probability using the
exponential function. This can be carried out in time O(deg(u) + deg(v)); afterward, all
conditional probabilities are correct for the new assignment A — {u} U {v}. O

Comparing a naive graph-based implementation of a Gibbs sampler with one that uses
Lemma we can estimate that the speedup is of order O(|V(c)|).
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For the first iteration, we use an arbitrary assignment, then compute all conditional
probabilities using (5.10). The method requires O(|V| + |E|) memory for storing the
graph, and O(|V]) memory for storing (log) conditional probabilities. The probability
of a particular molecular formula v to be correct, can now be estimated as its marginal
probability: that is, the ratio of assignments in the output that contain v.

5.1.6 Faster network creation

Sampling assignments requires calculated edge weights w(uv) for all u,v € V. These
calculations are performed once, prior to the sampling. Roughly |V\2 candidate pairs have
to be scored (candidates of the same color are not compared). Although, we do not obtain
a better upper bound on the running time, we can greatly reduce the number of pairwise
candidate comparisons in practice.

We establish lower bounds on pairwise scores s(u,v) on a per-compound (color) basis.
Thus, if ¢(u) and ¢(v) are highly dissimilar, we can refrain from computing s(u,v), since
w(uv) will be 0 as can be seen in (5.9). Lower bounds lb(c,c) for ¢,/ € C and ¢ # ¢ are
calculated as follows: For each compound ¢ € C, we assign (and group) all fragments of all
candidates u € V (¢) to their corresponding peak; for root losses we do this analogously, but
instead of considering the peak m/z we use the root loss m/z. Now we can score compounds
in the same way as candidates: by counting common fragments plus root losses using .
Given two compounds, we compare peaks between these compounds pairwise. We count
a match if the peaks share at least one common fragment (or root loss).

Lemma 5.3. By considering lexicographical orderings of peaks and fragment molecular
formulas, the scoring of two compounds can be performed in linear time in the number of
peaks (biggest tree size of the compound) and linear in time in the number of fragments or
root losses per peak (which corresponds to |V (c)|).

Proof. Let F} and Fy be totally ordered sets of fragments. Such an ordering can be
achieved by considering fragment molecular formulas as strings. We can count common
pairs of fragments f; = fo with fi € F1, fo € F5 in linear time. To do so, we start to
compare the first fragment f; of Fy and fo of Fs. If fi = fo we count a match and set
f1, f2 to the next fragments in Fy and F>. If fi < fo we set f1 to the next fragment in F1,
else fi > fo and we set fa to the next fragment in F,. In each step, we update at least
one new fragment. Hence, counting common pairs requires O(|Fy| + |F3|). A fragment
set is generated from fragment explanations of one specific peak. These explanations are
based on fragmentation trees of candidates of the corresponding compound. Let F; and
F5 be fragment sets generated for a specific peak of compounds ¢, co € C. Each candidate
explains each fragment at most once. Thus, |Fi| < |V(c1)| and |Fa| < |V(eg)|. For
[V (c1)] < |V(e2)| we obtain O(]V (c2)|). Clearly, testing sets for at least one common pair
between F} and Fb, instead of counting common pairs, can be carried out in the same
time.

Analogously, we can compare sets of root losses. For comparing peak sets (spectra) Sp
and Sy of different compounds (based on shared fragments or root losses) we use the peak
mass (the mean mass of corresponding fragments) to establish an order. Furthermore, we
assume that the masses of different peaks of one compound differ by at least the maximum
allowed mass accuracy. This ensures that if fragment sets F; € S; and F» € Sy share
common fragments F; N Fy # (), the corresponding peaks are always counted as match and
cannot be missed because there is an F| € S; with mass closer to F. O
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In total, compound comparisons can be carried out in time

0 (X, .omaxt V(L V)] -n) = O(V]n-[C]),

where n is the maximum fragmentation tree size, which corresponds to the maximum
number of explained peaks per spectrum. This is considerably faster than the total running
time of all pairwise comparisons of candidates which are performed in O(|V|? - n). Note,
that in general |C| is much smaller than |V|. Moreover, in practice, pairwise compound
comparisons are rather efficient: firstly, most compounds do not share many peaks, and
fragments or root losses have to be compared only for shared peaks; secondly, peaks do
usually not have |V (c¢)| different fragment explanations but instead some candidates explain
a peak with the same molecular formula.

For two candidates u,v we can refrain from calculating s(u,v) iff 1b(c(u),c(v)) < 7.
When using individual thresholds, which can only be established on the basis of known
edge scores, only pairs with Ib(¢(u), ¢(v)) < 0 can be ignored.

5.2 Evaluation on five Biological Samples

We evaluate ZODIAC on five diverse LC-MS/MS datasets representing samples from plants
(dendroides, tomato), human plasma (NIST1950), marine microalgae (diatoms) and mice
fecal sample (mice stool). Throughout this evaluation, the entities of interest consist of
signals detected by mass spectrometry for which one or more MS/MS spectra have been
recorded by the instrument. It is understood that not all of these signals correspond to
compounds in the biological sample; but clearly, only those signals that do correspond to
compounds are of interest for our analysis. It is also understood that we usually cannot
ultimately decide whether a certain signal stems from the protonated molecule [M + H| "
or, say, the protonated molecule with a water loss [M—H,O + H|" or an ammonia adduct
[M + NHy + H]". This is not a problem of our method but rather a general problem
of mass spectrometry. For the sake of readability, in the following we will use the term
“compound” instead of “hypothetical compound”, “feature”, “adduct” or “ion”. In contrast,
our methods decide for each compound if it is protonated [M + H|", a sodium adduct
[M + Na| " or a potassium adduct [M + K| "; in evaluation, compounds that are assigned a
wrong adduct are also assigned a wrong molecular formula and, hence, are always counted
as misannotations. We process the LC-MS/MS runs of each dataset with OpenMS [175]
to obtain a set of “good quality” compounds. These compounds are all unknowns, and
we first have to establish a “ground truth” to evaluate against. For this, we use manually
annotated molecular formulas and spectral library search. ZODIAC runs on all compounds,
but evaluation is only performed on the set of ground truth compounds.

Arguably the best-performing computational method for molecular formula annotation
is SIRIUS 4 [63], combining isotope pattern matching (Section and fragmentation
trees (Section [4.2.2)). But even SIRIUS has problems annotating molecular formulas for
compounds above 500 Da: Bocker and Diihrkop [19] found that the percentage of correctly
identified molecular formulas dropped substantially for larger masses.

Two questions are specifically interesting to evaluate: Does ZODIAC increase the
number of correct annotations compared to SIRIUS 47 And can the ZODIAC score
differentiate between correct and incorrect annotations? If so, we could easily select
confident assignments from any dataset. To answer the first question, we limit evaluation
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to compounds for which the correct answer is contained in the list of best-scoring molecular
formula candidates from SIRIUS 4. Remember, this list is input to ZODIAC and if the
correct molecular formula is not contained, ZODIAC cannot recover it. To answer the
second question, we deliberately include all ground truth compounds for evaluation. In
the best-case scenario ZODIAC assigns a low score to compounds that do not have the
correct molecular formula in the SIRIUS 4 result list, thereby expressing low confidence
in these inevitably wrong annotations. Additionally, we evaluate ZODIAC against the
Seven Golden Rules molecular formula filters and GenFormfl| a non-commercial software
for MS/MS-based molecular formula annotation.

5.2.1 Datasets

The “dendroides” dataset is an extract of Fuphorbia dendroides plants; “NIST1950” is
human plasma reference material (SRM 1950); “tomato” are tomato seedling samples of
Solanum lycopersicum; “diatoms” are extracts of the intra- and exo-metabolomes of a single
diatom genus; and the “mice stool” dataset is from a microbiome study including germ free
and colonized mice, measured by Quinn et al. [164]. Dendroides was measured on an LTQ-
XL Orbitrap; NIST1950, tomato and diatoms on a Q@ Exactive Orbitrap; and mice stool
on a maXis QTOF mass spectrometer. All data was acquired in positive ionization mode.

All these datasets are biological samples and no reference datasets. Hence, we have
to establish a ground truth which we can evaluate against. For one dataset (dendroides)
201 compounds have been manually annotated by Louis-Félix Nothias with molecular
formulas [125]. For four other datasets the ground truth was established by spectral
library search (Section . Note, that library search does not guarantee a 100 % valid
ground truth. However, we evaluate molecular formulas and not structures. The number
of incorrect ground truth molecular formula annotations should be very low, since incorrect
matches to structural isomers still result in the same molecular formula.

Four datasets were chosen because we expect a reasonable number of hits using spectral
library search, as required for the evaluation: In detail, we obtained manual annotations
for dendroides; tomato is a model organism; NIST1950 is reference material; whereas
mice stool [164] was previously analyzed manually. To this end, the discovery of novel
molecular formulas in these datasets is less likely. In contrast, diatoms have been studied
less comprehensively and compounds often contain uncommon elements; hence, we expect
to find novel compounds in this dataset. For more details on the measured data see Ludwig
et al. [125]. The number of compounds per dataset after processing the data can be found
in Table We could establish a ground truth of overall 703 compounds. Annotation
of high-mass compounds is particularly challenging. For dendroides, 75 % of the ground
truth compounds have an m/z of 605 or higher (Fig. . The mice stool dataset poses
a challenge because of the selected measurement setup. MS/MS spectra where measured
using an isolation window of at least 4 m/z. This greatly increases the chance of chimeric
spectra; fragments of multiple compounds in the same spectrum may interfere with the
similarity estimation between MS/MS spectra as performed by ZODIAC .

5.2.2 Preprocessing

Input mzML/mzXML files are processed with OpenMS [I75] and low-quality MS/MS
spectra were discarded. The workflow described below is visualized in Fig. [5.3

"https://sourceforge.net/projects/genform/
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Figure 5.2: Distribution of compound masses. Distribution of precursor ion m/z of the
compounds used as ground truth for the evaluation of the molecular formula annotation on the
five datasets. Bins of width 100 are centered at 100, 200, ..., 800 m/z

OpenMS. We used OpenMS 2.4.0 [I75] to process the mzML/mzXML files. We
performed minor modifications on the OpenMS source code by removing 12 lines and
adding 78 lines. This allowed to detect more isotope peaks, to match MS/MS to
MS1 features based on the actual isolation window and to add functionality to the
SIRIUSAdapter to directly output SIRIUS file format including retention time information.
These numbers are based on the patch file, see Code availability, and include lines with
comments and blank lines; the modification of a line corresponds to the removal and
insertion of a new line.

Feature finding and clustering of isotopic mass traces was performed using the Feature-
FinderMetabo module. Next, adducts were detected with the MetaboliteAdductDecharger
module.  Finally, spectra were exported to the SIRIUS specific format using the
SIRIUSAdapter module. OpenMS parameter files are provided as part of the virtual

Table 5.1: Statistics on compounds with annotated ground truth molecular formulas. Given is
the number of total compounds, the number of compounds with a ground truth molecular formula
and the number which are in the top 50 of SIRIUS ranked candidates. The median m/z and 25
(Q1) and 75 percentile (Q3) considers only candidates in the top 50.

dataset # compounds ground truth # in top 50 Q1 m/z median m/z Q3 m/z

dendroides 792 201 197 605.310 705.274 759.353
NIST1950 071 94 94 286.390  373.800 477.335
tomato 2902 271 270 207.814  271.713 334.526
diatoms 2472 93 93 253.195  301.216 349.237

mice stool 398 44 43 373.274 454.292 516.298
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Figure 5.3: ZODIAC processing and evaluation workflow. 1) Each LC-MS/MS run is processed
individually; input mzML/mzXML files are processed using OpenMS, performing feature and
adduct detection and producing files in SIRIUS input format. Resulting features combine MS1,
MS/MS and adduct information. 2,3) Filtering is performed on feature, MS/MS and peak level.
4) Similar features are merged between different runs using hierarchical clustering; MS/MS are
combined and a best isotope pattern is selected per feature. 5) Missing isotope peaks are searched
in MS1 spectra to extend isotope patterns. 6) A final feature filtering step is performed; the
remaining features are considered as compounds. 7) SIRIUS is executed. 8) Compounds with few
explained peaks are discarded, since a badly explained MS/MS spectrum indicates low quality.
9) ZODIAC is run on the remaining compounds. 10) SIRIUS and ZODIAC are evaluated on the
same set of compounds.

machine. Parameters were chosen by manual inspection; in particular, we used a small
noise intensity threshold to increase chances that isotope peaks of a compound are picked.

Discarding features and MS/MS spectra. We excluded m/z features which eluted over a
very long time during chromatography and did not produce desired mass traces in a limited
time window, as such traces are considered chemical noise. To do so, we binned MS1 peaks
with a bin size of 0.006 m/z. Each MS1 was normalized by the most intense peak. Each
peak was counted if its relative intensity was 0.01 or higher. If a m/z bin contained peaks
of more than 20 % of MS1 the m/z was considered chemical noise. Because these spurious
chemical noise features have rather high mass deviation we removed all MS1 features within
30 ppm.

Next, we performed blank removal using blank samples from the corresponding datasets.
Features within 15 ppm and 20 s of a blank feature were removed if intensities were lower
than 2-fold of the blank feature intensity. We did not perform blank removal on the mice
stool dataset, because this resulted in a low number of remaining compounds.

Third, we removed features from the beginning and end of the chromatography run and
features with low relative or absolute intensity; and we removed MS/MS spectra which
could not be assigned to an MS1 feature, MS/MS of a precursor peak with low absolute
or relative intensity, and chimeric MS/MS. See Table for dataset-specific parameter
values. Chimeric spectra contain fragments of multiple precursor ions; we detected chimeric
spectra as follows: All peaks within the isolation window, excluding isotope peaks, were
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considered to contribute their intensity to the measured MS/MS. We estimated the relative
intensity that the target precursor ion contributes to the MS/MS; if the target precursor
ion contributed to less than 50 % of the MS/MS intensity or if a second precursor ion
contributed more than 33 % of the target precursor ion intensity, the MS/MS was marked
as chimeric and excluded. The Isolation window width for the Orbitrap mass spectrometer
used for the dendroides, NIST1950, tomato and diatoms is 1 Da; for the mice stool dataset
analyzed on a QTOF mass spectrometer an isolation window of 3 Da width and shifted by
1 Da to the right, centered at the +1 isotope peak, was assumed.

Filtering MS/MS spectra. In each MS/MS spectrum, we filtered peaks using an intensity
threshold of two times the median noise intensity, see Table[A 1] The median noise intensity
of a dataset was estimated from peaks which had no molecular formula decomposition
within a 40 ppm window considering elements C, H, N, O, and P plus those elements
predicted from the isotope pattern, see below. Isotope peaks were removed from MS/MS
spectra of the mice stool dataset.

The SIRIUSAdapter OpenMS module combines MS/MS which are associated with the
same MSI feature. In addition, complete linkage hierarchical clustering was conducted to
merge features over different LC-MS/MS runs. Features were merged using 15 ppm mass
accuracy and a 15 sec retention time window. Features with different adduct annotations
or features from the same run were not merged. Feature similarity was computed by the
cosine product of the MS/MS (see below), and the similarity threshold for clustering was
set to 0.8. When multiple features were merged into a single one, where each feature has
an assigned isotope pattern, then the isotope pattern with the highest number of isotope
peaks was kept. In case multiple isotope patterns had the same number of isotope peaks,
the one with the most intense monoisotopic peak was kept. After merging, features were
discarded if the summed MS/MS intensity was below a threshold, see Table Features
with precursor mass above 850 Da are discarded: Whereas ZODIAC is clearly capable of
processing such features, we found that there are no spectral library hits above this mass
that can be used for evaluation, see below. Only 2.72 % of features across all datasets have
m/z above 850 Da, so we obtained library hits over a large portion of the mass range.

Extending isotope patterns. OpenMS often misses low-intensity isotope peaks. To
recover those peaks, we post-processed OpenMS results as follows: For each isotope pattern
detected by OpenMS, we try to extend it using isotope peaks from the corresponding MS1
spectra chosen by OpenMS. Isotope pattern peaks were picked using the SIRIUS 4 isotope
pattern picking subroutine. If an additional isotope peak is present in at least 66 % of the
corresponding MS1, the peak was added to the isotope pattern. Subsequently, features
with less than two isotope peaks are discarded.

Discarding low-quality merged MS/MS spectra. Even when considering all MS/MS
spectra for some features, we sometimes have insufficient information for both spectral
library search and molecular formula annotation; to this end, such “low-quality features”
were discarded. A feature is discarded if it produces less than 5 fragment peaks, estimated
after merging peaks within 10 ppm or 0.0025 m/z from all corresponding MS/MS spectra;
and if no fragmentation tree in the top 50 candidate list can explain at least 5 peaks
accounting for at least 80% of total spectrum intensity, see SIRIUS analysis below.
Filtering “low quality” features decreased the number of features for dendroides from 1,078



50 5. ZODIAC: De Novo Molecular Formula Annotation

to 784, for NIST1950 from 568 to 400, for tomato from 3,583 to 2,584, for diatoms from
3,227 to 2,075 and for mice stool from 577 to 377.
For brevity, we will refer to the features detected by OpenMS as compounds, see above.

5.2.3 SIRIUS Analysis and Establishing a Ground Truth

SIRIUS 4 was run with the default alphabet of elements CHNO, at most 5 phosphorus
atoms, and one iodine atom; automatic element detection from the isotope pattern [133]
was enabled for sulfur, chlorine, bromine, boron, and selenium. For the dendroides,
NIST1950, and tomato datasets we used 15 ppm maximum mass deviation for SIRIUS; for
diatoms and mice stool datasets we used 10 ppm. The SIRIUS default Ring Double Bond
Equivalent (RDBE) value to filter molecular formula candidates was lowered from —0.5 to
—1.0, to account for undetected ammonium adducts. Isotope patterns were not used to
filter molecular formula candidates before computing fragmentation trees.

e If OpenMS provided an ionization adduct type (such as protonation, sodium adduct,
potassium adduct) for a compound, only this ionization was used. We export the 50
best-scoring molecular formula candidates from SIRIUS.

e In cases where no ionization adduct type was provided by OpenMS, we selected
one or more adducts from [M + H]", [M + Na|", and [M + K| by searching for
characteristic mass differences, using the MS1 that contained the most intense peak of
the precursor ion. Peaks below 5 % relative intensity were discarded for this decision.
For each compound, we export the 50 best-scoring molecular formula candidates; we
simultaneously ensure that for each considered ionization adduct type, at least 10
candidates are considered.

We will refer to this candidate list as the top 50.

To evaluate the performance of SIRIUS and ZODIAC, we had to annotate a subset
of compounds with “correct” molecular formulas, to serve as our ground truth. For
this, we combined manual annotation and spectral library search, as follows: For the
dendroides dataset, we use 201 compounds that have been manually annotated with
molecular formulas by Louis-Félix Nothias [I125]. For the remaining datasets, we performed
spectral library searches against multiple libraries, but did not add manual annotations.
We searched compounds in a spectral library combining GNPS [211], MassBank [90],
NIST17 database (National Institute of Standards and Technology, v17) and “MassHunter
Forensics/Toxicology PCDL library” (Agilent Technologies, Inc.) [63]. We compute a
similarity score assuming peaks as Gaussians, with the centroided peaks’ m/z as the mean
and the standard deviation being the maximum of a relative mass error of 20 ppm and
an absolute mass error of 0.005 m/z Precursor ion masses are permitted to differ by 10
ppm or 0.0025 m/z at maximum. Only library hits with a similarity score of 0.7 or higher
and with at least 6 shared peaks are considered as being valid. We compute the score as
the mean of the cosine score of the sample spectrum and the cosine score of the mirrored
spectrum; to mirror a spectrum with precursor mass M, we replace peak m/z value m by
M — m. This resulted in 94 annotated compounds for NIST1950, 271 for tomato, 93 for
diatoms and 44 for mice stool.

We evaluate SIRIUS and ZODIAC against these “ground truth” molecular formulas, but
we stress that beside the molecules that were isolated in Fuphorbia dendroides samples
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and correspond to level 1 of the Metabolomics Standard Initiative ranking system, not
all of these are necessarily correct. In particular, we refrain from ranking these according
to the Metabolomics Standard Initiative ranking system, where level 4 corresponds to an
“unequivocal molecular formula”. An evaluation is nevertheless meaningful because we
expect only few errors on the molecular formula assignment level.

In few cases, the correct molecular formula was not ranked in the top 50 SIRIUS
candidates; we also dropped these from our evaluation, as it is not possible that ZODIAC
can find the correct molecular formula in our evaluation. We discarded four compounds
for dendroides, zero for NIST'1950, one for tomato, zero for diatoms and one compound for
mice stool because of this criterion.

See Table for details, and see Fig. for the mass distribution of the “ground truth”
compounds. Compounds in the dendroides dataset with reference annotations have high
mass, and 75 % of all reference annotations have an m/z of 605 or higher. The NIST1950
dataset resulted in library hits over a broad range of m/z values. The diatoms library hits
have a median m/z of 301 but the sample itself is highly complex, as described above. Only
few compounds remain in the mice stool dataset after filtering chimeric and low quality
compounds, see above.

5.2.4 ZODIAC Parameters

We use identical parameters for all five datasets, see equation : We weight fragments
and root losses when comparing fragmentation trees of molecular formula candidates. Here,
we use the SIRIUS 4 noise intensity scoring as importance ¢ in . The probability that a
peak p that corresponds to a fragment and root loss is not noise is ¢ = 1—par(int(p)), where
par is the Pareto cumulative distribution function with z,,;, = 0.002, Zedian = 0.015 and
int(p) € [0,1] the relative peak intensity, see reference [19]. To establish a threshold on
the minimal similarity of fragmentation trees, we decrease score s and tree sizes n1 and no
each by 1.0, see (5.6)).

The empirical score distributions resemble a log-normal distribution, see Fig. [A-3]in the
appendix, so we use its Cumulative Distribution Function to estimate p-values for . For
the robust estimation of parameters p and o2, we sampled 100,000 non-zero scores for each
dataset, and used the median score as parameter p and the median absolute deviation as
parameter o2. We naturally expect most edges to be false edges and chose score threshold
7 so that 95% of the non-zero scores are smaller than this threshold. Finally, we use
individual thresholds for each compound (color) so that at least 10 molecular formulas of
this color are incident to 10 or more edges.

Each molecular formula candidate of some compound receives a score si, ..., S, Where
Smaz 18 the largest score. We transformed SIRIUS scores to probabilities using the softmax
function, where p; = exp(sj; — Smaz) are normalized to sum to one. To adjust for the fact
that the correct molecular formula may not be in the top 50, we added a dummy node
receiving the combined probability of all unconsidered candidates. Dummy nodes are not
connected to any other node. SIRIUS does not report the score of all candidates, as one
compound may have tens of thousands of candidates. Hence, we estimated the probability
of all unconsidered candidates by multiplying the number of unconsidered candidates with
the lowest probability of the top 50 candidates.

Finding and scoring ZODIAC anchors. ZODIAC can use (potentially incorrect) spectral
library hits as anchors to improve annotations. To find a reasonable number of anchors,
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we perform spectral library search in analogue mode — that is, we do not only search for
exact matches but also match compounds to library spectra with differing precursor mass.
Resulting molecular formula annotations are not considered ground truth identifications
but are sufficient as anchors. Only those hits were considered that have mass differences
between query and reference corresponding to a frequent biotransformation. We use the
following molecular formula mass differences as valid biotransformations [118] [124] [174]:
C,H,, C,H,0, C,H3NO, CyH50,, CoHy, Cy0,, C3Hy045, C3H;NO, C3H;NO,, C3H;0,
C,H,N,0, C4H3N;, C,H,0,, CsH,, CsH,NO, C;HgNO, CH,, CH,ON, CH3N,0, CHO,,
CO, CO,, H,y, H,O, N, NH, NH,, NH;, O, H;O, and HgzOs.

We use identical parameters for all five datasets: When scoring anchors according to
, we use the mazimum of the cosine score between the spectrum and the cosine score
of the mirrored spectrum as the similarity measure, and min; = 0.5 as the score threshold
parameter and A = 1,000 as the weighting parameter. For anchors found by spectral
library match in analogue mode (that is, non-identical m/z), spectral similarity is reduced
by 0.1 to account for increased uncertainty.

Searching for anchors as described above resulted in 96 anchors for dendroides, 254
anchors for NIST1950, 749 for tomato, 372 for diatoms and 176 for mice stool. All spectral
hits described in the previous section are anchors, too; recall that for dendroides, the
ground truth was established manually and those annotations do not serve as anchors.

Burn-in and number of Gibbs sampling epochs. We determined a reasonable number of
Gibbs sampling iterations using the dendroides dataset. One iteration, also called epoch, is
defined as one round in which each compound is updated once by choosing a new “active”
molecular formula candidate. We run 10 independent Markov chains, see Fig. The
total score summed over all active candidate at a specific epoch increases swiftly over the
first 500 epochs. Similarly, the number of correct annotations at a specific epoch increases
quickly for most Markov chains until the chain seems to stay in a local optimum. We
note that this number of correct molecular formula is determined at each epoch whereas
ZODIAC scores are computed from the average over many epochs. From this data, we
estimated a burn-in of 1,000 epochs and sampling of 2,000 iterations. Larger values increase
running times but should never worsen results.

In application, we use 10 Markov chains in parallel, a burn-in of 1,000 epochs, and sample
2,000 epochs; we keep only every 10" sample, resulting in a total of 10 x 200 = 2,000
samples.

5.2.5 Parameters of Competing Methods

Seven Golden Rules. We analyze if molecular formula annotations adhere to the Seven
Golden Rules by Kind and Fiehn [105]. To do so, we apply the valency filter rules (LEWIS
and SENIOR check), the common range of element ratios (hydrogen/carbon element ratio
check and heteroatom ratio check) and the element probability check. We use the Seven
Golden Rules as a filter based on the molecular formula, ignoring the measured isotope
pattern.

Exact mass search and GenForm. We evaluate ZODIAC against annotation by
exact mass and GenForm (Fig. in the appendix). GenFornE] is an open-source

2https://sourceforge.net/projects/genform/
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Figure 5.4: Molecular formula annotation error rates. Left: Error rate on five datasets. The
rate of incorrect molecular formula annotations is displayed for SIRIUS and ZODIAC, with and
without anchors. For number of compounds and other statistics, see Table ZODIAC reduces
error rates on all datasets. See Fig. in the appendix for other methods. Right: Error rates vs.
mass on dendroides dataset. Error rates for SIRIUS and ZODIAC without anchors are binned by
compound m/z; bins of width 100 are centered at 300, 400, ..., 800 m/z.

implementation of MOLGEN-MS/MS [129]. For all methods we assume the same adduct
candidates as described for SIRIUS and ZODIAC. We require molecular formulas from
exact mass annotation to have an RDBE value of —1 or greater. Additionally, exact mass
search was combined with filtering based on the Seven Golden Rules. For GenForm, we
enable the RDBE filter (“exist” option) and set the “rej” and the “ppm” parameters to the
same mass errors as assumed for SIRIUS computation. GenForm only supports the adducts
[M + H]" and [M + Na|", but not [M + K]". This results in a slight evaluation advantage
over all other methods that consider [M + K|, because no ground truth compound has
adduct [M + K] ™.

5.2.6 Results

For all five datasets, we observe that ZODIAC outperforms SIRIUS (Fig. left)
and all other publicly available methods (Fig. in the appendix), often substantially
decreasing molecular formula annotation error rates. Improvements are most distinctive
for the dendroides dataset containing many larger compounds: 75% of the ground truth
compounds have an m/z of 605 or higher (Fig. |5.2). Hence, this dataset is particularly
challenging for molecular formula assignment. Out of the 201 ground truth compounds,
the preprocessing assigned an incorrect adduct to three; for these, the correct molecular
formula is not contained in the candidate list considered by ZODIAC. For one compound,
the corrected molecular formula was not ranked into the top 50. For the remaining
197 compounds, SIRIUS incorrectly annotated 50.25% (99), compared to 3.05% (6) for
ZODIAC without anchors. This represents an 16.50-fold decrease in error rate. Error rates
improve for compounds over the whole mass range, see Fig. [5.4] (right).
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On the NIST1950 and tomato datasets, SIRIUS already showed excellent performance,
with less than 10 % incorrectly annotated molecular formulas. ZODIAC further decreased
error rates, from 9.57% to 6.38% for NIST1950 and 4.81% to 1.48 % for tomato. The
diatoms dataset is rather complex, and compounds may contain halogens. Here, SIRIUS
reaches an error rate of 12.90 %, which is reduced two-fold to 6.45 % by ZODIAC.

Mice stool MS/MS spectra were measured with a broader isolation window, and
the dataset contains numerous chimeric and low quality spectra, most of which were
discarded before running ZODIAC. Consequently, ZODIAC has a much smaller network
of interdependent compounds than for the other datasets. But even spectra that were
not discarded often have substantially worse quality than spectra from other datasets: For
example, these spectra often contain isotope peaks of fragments or are undetected chimeric
spectra. Our evaluation shows that even for this extremely challenging dataset, ZODIAC
improves annotation results, decreasing the error rate from 32.56 % for SIRIUS to 18.60 %
for ZODIAC.

Some compounds in an LC-MS/MS run can result in high-scoring hits when searching
in a MS/MS spectral library. ZODIAC’s stochastic model allows us to integrate these
hits as anchors, assuming that we can trust assigned molecular formulas to a high degree.
We performed a 10-fold cross-validation to assess the improvement using anchors. We
ensured structure-disjoint evaluation on the library hits, as multiple “compounds” in the
dataset may correspond to the same structure; see Diithrkop et al. [61] on the importance
of structure-disjoint evaluation. We find that ZODIAC with anchors does not improve the
error rate.

For four datasets (NIST1950, tomato, diatoms, mice stool), ground truth molecular
formulas were established by library searching only. We tested if there is a distinct
difference between the cosine score of ZODIAC’s correct and incorrect molecular formula
assignments, but did not find such a difference (Fig. in the appendix).

We find that differentiating between adducts [M + H]" and [M + Na|' is sometimes
challenging for ZODIAC. This is observable for the dendroides dataset, where all six
incorrect ZODIAC annotations show an incorrect adduct annotation, mistaking [M + H|"
for [M + Na|® or vice versa. In all six cases, the molecular formula of the best
ZODIAC hit and the ground truth differ by exactly two carbon minus two hydrogen
atoms (21.984349 Da), with mass difference highly similar to that between |[M + H|"
and [M + Na|]™ (21.981944 Da). Sodium-ionized compounds can produce protonated
fragments, making the interpretation of these spectra challenging. We reran ZODIAC on
the dendroides dataset, assuming we knew the correct adduct for each reference compound.
For all 201 compounds, the correct hit is contained in the SIRIUS top 50 candidate list.
SIRIUS correctly annotated 66.17 % (133) and ZODIAC 99.50 % (200) of the compounds,
corresponding to a 68-fold decrease of the error rate. The other four datasets contain fewer
sodium adducts.

ZODIAC implicitly tries to estimate the probability that an annotated molecular formula
is correct; we find these estimates to be imprecise, see Fig. [5.5] But the ZODIAC score
can be used to differentiate between true and incorrect annotations: For each dataset, we
sort molecular formula annotations by the ZODIAC score, and calculate the rate of correct
annotations for any subset of top-scoring annotations. We find that high-scoring ZODIAC
annotations are more likely to be correct, see again Fig. [5.5] For this evaluation, we also
considered previously discarded compounds for which SIRIUS did not rank the correct
molecular formula in the top 50; for these compounds, ZODIAC cannot find the correct
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Figure 5.5: Percentage of correct annotations and number of compounds in relation to ZODIAC
score. Left: Percentage of correct molecular formula annotations for different ZODIAC score
thresholds for five datasets. We sort compounds by ZODIAC score and calculate the rate of
correct annotations for all compounds above the given thresholds. Right: Percentage of total
compounds with a ZODIAC score above different thresholds on five datasets. Here, we consider
all compounds, with and without established ground truth. Note that scores on the x-axis are not
equidistant.

molecular formula but at best, the incorrect molecular formula should receive low ZODIAC
scores. Selecting a ZODIAC score threshold of 0.9 results in more than 93.94 % correct
annotations while keeping 52.23 % to 88.51 % of the compounds of each dataset (Fig. [5.5)).
In comparison, spectral library search allowed us to annotate between 3.78 % and 16.55 %
of a dataset, see Table

Filters are commonly applied to exclude “exotic” molecular formulas; this improves
annotation performance unless the true molecular formula is “exotic”. Most notably,
Kind and Fiehn [I05] introduced the Seven Golden Rules in 2007, which are frequently
used in the metabolomics community. Rules were empirically established from molecular
structure databases, but are nowadays sometimes used as if they represented a biological
ground truth. We checked ZODIAC molecular formula annotations against the Seven
Golden Rules, see Fig. 5.6 We find that all but one molecular formula in the dendroides
dataset adhere to the Seven Golden Rules; this is not surprising as molecular formulas
are mainly comprised of CHNO for this dataset. In contrast, diatoms and tomato samples
contain many compounds with “uncommon elements” (phosphorus, sulfur, halogens). Here,
numerous molecular formulas do not adhere to the Seven Golden Rules; this includes
molecular formulas with high ZODIAC score. We argue that using heuristic filters to
exclude “exotic” molecular formulas, will in practice often exclude valid molecular formulas
and may ultimately result in fewer correct annotations.

Novel molecular formulas.

We now concentrate on novel molecular formulas discovered by ZODIAC in the five
datasets; recall that such discoveries are possible because ZODIAC does not rely on any
molecular structure databases such as PubChem [103] and ChemSpider [I57], but rather
considers all chemically feasible formulas. For a molecular formula to be novel, we require it
not to be present in PubChem and in case it corresponds to a protonated ion, also that the
molecular formula obtained by adding NHj5 is not contained either. The second constraint
ensures that we do not treat an undetected ammonium adduct as a novel molecular formula.
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Figure 5.6: Seven Golden Rules applied to annotated molecular formulas. For each ZODIAC
molecular formula annotation, we test whether it meets the Seven Golden Rules (7GR). Each dot
represents one annotated compound; molecular formulas are sorted by ZODIAC score.

To cut down the number of reported formulas, we use strict filters for the ZODIAC score,
the quality of the underlying MS/MS data, and the support by other molecular formulas
in the dataset. We report molecular formula annotations from all five datasets with
a) minimum ZODIAC score of 0.98, b) at least 95 % of the MS/MS spectrum intensity being
explained by SIRIUS, and c) at least one molecular formula of the compound is connected
to 5 or more compounds in the ZODIAC similarity network. The third criterion discards
compounds where ZODIAC’s results are basically identical to SIRIUS’s. This results in 15
novel molecular formulas in tomato, 15 in diatoms, one in NIST1950 and one in the mice
stool dataset, see Table table in the appendix. Filtering less restrictively (ZODIAC
score at least 0.95, at least 90 % of the MS/MS spectrum intensity being explained by
SIRIUS), we annotate 32 novel molecular formulas in tomato, 26 in the diatoms dataset,
three in NIST1950 and one in mice stool. Recall that we did not expect many novel
molecular formulas in any dataset but diatoms.

ZODIAC allows the user to select a few, potentially highly interesting compounds
(molecular formulas) from a set of hundreds or thousands with low effort. Next, we show
that some top-scoring annotations from Table[A:2]in the appendix are presumably correct.

Manual evaluation of novel molecular formulas.

We now concentrate on one particular compound in the diatoms dataset (m/z 588.230,
retention time 503.97 sec): The compound is protonated and was annotated with molecular
formula CyyH,,BrNOgP, which is indeed absent from the structure databases [103], 157].
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We chose this compound because of its perfect ZODIAC score of 1.0 and many library
search hits in analog mode. Furthermore, the occurrence of bromine agrees with our
expectation that marine organisms can be prolific sources of organohalogens [66]. In
retrospect, this molecular formula may appear “straightforward” as the underlying structure
is presumably a halogenated phosphatidylcholine; but this fact was unknown to us when
choosing the compound, and is also not known to ZODIAC.

We found multiple lines of evidence that this molecular formula annotation is correct,
both in the measured isotope pattern and the three MS/MS spectra measured for m/z
588.230 (monoisotopic peak of the isotope pattern), 590.228 (M+2 peak) and 592.325 (M+4
peak), see Fig. [5.71 To annotate fragments with molecular formulas, we used SIRIUS to
compute a fragmentation tree for the MS/MS spectrum of the monoisotopic peak at m/z

588.230 (Fig. [b.7k).

1. We compared MS/MS spectra for m/z 588.230, 590.228 and 592.325 (Fig. |5.7a) and
found them to be highly similar, confirming that these peaks are indeed isotope
peaks of one compound. One peak “moves” between MS/MS spectra (nominal m/z
570, 572 and 574): This peak corresponds to the fragment with molecular formula
CyH5sBrNO,P, which is the only annotated fragment containing bromine.

2. The measured isotope pattern agrees well with the theoretical isotope pattern of
|Cy4Hy7 BrNOGP + H| " (Fig. [5.7¢). The M+2 peak of the measured isotope pattern
has a relative intensity of 106.0 % of the monoisotopic peak, which is characteristic
for the presence of a bromine atom.

3. The MS/MS spectrum for m/z 588.230 contains a precursor loss of 79.925 Da, and
the only possible molecular formula explanation of this loss is BrH, considering a
mass error of 100 ppm and elements CHNOPSFICIBrNaKSi.

4. We can simulate an MS/MS spectrum of the M+2 peak that includes isotope patterns
of fragments: We use peak intensities from the MS/MS spectrum of the monoisotopic
peak, and simulate isotope patterns of fragments as described by Rockwood et al.
[I71]. This allows us to verify whether the isotope patterns of fragments agree with
our theoretical expectations. Indeed, simulated and measured MS/MS spectra of the
M+2 peak show very high similarity, see Fig. [5.7f. The MS/MS spectrum of the
M+4 peak must be treated with caution, as the precursor’s intensity is much lower
and a second compound of higher intensity is present within the isolation window,
see Fig. in the appendix. With regards to the moving peak, we can observe
matching peaks in the simulated spectra, too.

5. We do not find peaks in the MS1 spectrum at m/z plus 18.01 (indicating water loss),
plus 43.99 (carbon dioxide loss) or minus 17.03 (ammonium adduct); similarly, we
do not find molecular formulas in PubChem or ChemSpider that correspond to the
novel molecular formula plus H,O, plus CO4 or minus NH;. To this end, the reported
molecular formula indeed corresponds to the protonated molecule, not an adduct or
fragment.

6. The spectrum matches to multiple NIST17 library spectra with different m/z, all of
which are phosphatidylcholines. The top 18 matches have a cosine score above 0.9 and
share a set of characteristic peaks which match to the query spectrum: See Fig. [5.7b
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for the best hit, and Fig. and Fig. [A-0] in the appendix for additional hits. For
the set of shared peaks, the molecular formula annotations of the NIST reference
spectrum (as provided by NIST) are identical to those of the SIRIUS fragmentation
tree computed for the query compound (Fig. |5.7).

Considering the matching NIST reference spectra, we propose that the query compound
is a brominated phosphatidylcholine. Marine algae are known producers of halogenated
compounds |36 195]. Moreover, diatoms possess the biosynthetic pathways to produce
halogenated lipids [2I8]. Based on the fragmentation tree analysis and supported by
biosynthetical considerations, we propose that the bromine atom is located on the fatty
acid tail [53],[I72]. The putative structure and their mass fragments are shown in Fig. [5.7d.

Finally, note that there is another novel molecular formula in the diatoms dataset
annotated with high confidence, namely Cy,H,gBrNOgP, which differs from the molecular
formula Cy,H,;7BrNOgP by one degree of unsaturation. The corresponding compounds
have m/z 590.246 and retention times 523.39 sec and 539.29 sec.

A second example of a novel molecular formula found in the diatoms dataset is the
ZODIAC-annotated sodium adduct with molecular formula C;;H;,ClIO; (m/z 475.072,
retention time 579.16 sec). The ZODIAC score of this annotation is 0.999 and both
the MS1 isotope pattern (Fig. [5.8b) as well as the SIRIUS computed fragmentation tree
(Fig.|5.8p) instills high confidence in the ZODIAC molecular formula annotation. The ion
was correctly annotated as [M + Na| ", as can be seen by the correlating chromatographic
peak of the protonated ion in the same dataset (Fig. ). The isotope pattern is consistent
with the presence of chlorine, and several neutral losses contain chlorine and iodine: HI
(127.912 Da), CII (161.873 Da) and HCI (35.977 Da) losses are detected with less than 2
ppm mass error (Fig.|5.8d). This provides strong evidence for the presence of chlorine and
iodine in the molecular formula. As a consequence, all SIRIUS top 5 molecular formulas
include chlorine and iodine. However, the remaining candidates can be excluded based on
unlikely fragment and loss annotations; for further details see Ludwig et al. [125]. This
leaves C5H3,ClIO5 as only plausible explanation.

Such manual evaluation is clearly possible for all novel molecular formulas from Table[A2]
in the appendix; but this is beyond the scope of this thesis.
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Figure 5.7: Annotation of a novel bromine-containing compound in the diatoms dataset.
(a) MS/MS spectra for m/z 588.230, 590.228 and 592.325, corresponding to the monoisotopic,
the M+2 and M+4 peak. The “moving” peak at m/z 570, 572 and 574 corresponds to the same
molecular formula but different isotopes. This annotated fragment molecular formula is based on
the fragmentation tree in (e) and is the only one containing bromine in these MS/MS spectra.
(b) Partial match to 1-Palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine in the NIST library. The
mirror plot compares the MS/MS spectrum of the monoisotopic peak at m/z 588.230 (top) to
the NIST library spectrum (bottom). Displayed molecular formulas were annotated using the
fragmentation tree of the query compound (e), and are identically annotated in the NIST reference
spectrum. The substructure of the NIST reference compound which corresponds to the annotated
peaks is highlighted. (c¢) Mirror plot of measured against simulated isotope pattern. The top
part displays m/z 587 to 595 of the MS1 spectrum with retention time 503.97 sec, measured prior
to the MS/MS spectrum for precursor m/z 588.230. The bottom part is the simulated isotope
pattern for [Co H,,BrNOgP + H|". (d) Putative structure and fragmentation pathway of the
novel compound. (e) Fragmentation tree computed by SIRIUS. Nodes correspond to fragments,
edges to neutral losses. Nodes are annotated with the (neutralized) molecular formula, peak m/z,
mass deviation in mDa and relative intensity. (f) Mirror plot of measured (top) against simulated
(bottom) MS/MS spectrum for precursor M+2.
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Figure 5.8: Annotation of a novel chlorine- and iodine-containing compound in the diatoms
dataset. (a) Fragmentation tree for [C,5Hz,ClIO5+Na| " computed from the corresponding MS/MS
spectrum in (d). (b) Mirror plot of the measured against simulated isotope pattern. The top part
displays the measured isotope pattern, extracted as described in Section[5.2.2] The bottom part is
the simulated isotope pattern for [C,5Hs,ClO; + Na] ™. (c) Extracted ion chromatograms for m/z
475.0721 and m/z 453.0902 around retention time 579.16 sec with a 5 ppm mass error window. The
mass difference of 21.9819 suggests that m/z 475.0721 is the sodiated ion and m/z 453.0902 the
protonated ion of the same compound. (d) Merged MS/MS spectrum. The indicative neutral losses
for chlorine and iodine as annotated by the fragmentation tree in (a) are displayed. (e) Top 10
SIRIUS molecular candidates. Displayed is the fragmentation tree (FT) score, isotope pattern (IP)
score and the total explained intensity of fragments in the MS/MS spectrum for each candidate.
Only the top 2 candidates have a ZODIAC score greater than zero.
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Running times and stability.

In practice, application of Gibbs sampling can be limited by high time demand for burn-
in and for sampling a reasonable number of epochs. To avoid this problem, we have
used extensive algorithm engineering to reduce running times, as detailed in Section [5.1.5
Running times were measured on a computer with 40 cores (2x Intel XEON 20 Core E5-
2698). We used ten parallel chain, a burn-in of 1,000 epochs and sampling of 2,000 epochs.
ZODIAC required between 1 and 19 min per dataset, whereas SIRIUS required between
3 and 53 min per dataset, see Fig. [5.9] SIRIUS required most time for the dendroides
dataset, which contains many high mass compounds. For dendroides, NIST1950 and mice
stool, ZODIAC computation did not add much to the total running time whereas for
tomato and diatoms, ZODIAC accounts for roughly one-third of the total running time.
In all cases, ZODIAC running time is governed by constructing the similarity network of
molecular formula candidates, whereas running the Gibbs sampler has a negligible impact.
We did not evaluate our optimized Gibbs sampler against a naive version but based on
theoretical considerations in Section [5.1.5] we proved that in order to update conditional
probabilities we only need to consider edges of two candidates — the new and the previous
active candidate. Comparing this against a naive computation of probabilities for the top
50 candidates, we estimate that the achieved speedup is about 25-fold.

In practice, we can speed up the construction of the similarity network, which depends
quadratically on the total number of candidates: Here, we used the top 50 candidates
for each compound; this conservative approach avoids the exclusion of correct molecular
formulas, and also demonstrates the swiftness of our Gibbs sampling method. But
running times can easily be reduced by considering fewer candidates, in particular for
low mass compounds where SIRIUS usually ranks correct molecular formula much higher.
Consequently, ZODIAC can be integrated into existing pipelines without substantial
increase in running times.
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Figure 5.9: Running time comparison of SIRIUS and ZODIAC on five datasets. We run
SIRIUS and ZODIAC on 2x Intel XEON E5-2698 with 40 cores total. “ZODIAC total” running
time includes estimation of the edge score distribution, construction of the similarity graph and
computation of ZODIAC scores via Gibbs sampling; the later running time is also given separately.
ZODIAC requires SIRIUS results as input, and total processing time is SIRIUS time plus ZODIAC
time.
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Figure 5.10: Total assignment score of the molecular formula candidate network (left) and rate of
correct annotations over the course of epochs (right) for Gibbs sampling on the dendroides dataset.

With regards to stability and required number of epochs, we see that in the beginning
both, the total network score and the number of correct molecular formula annotations,
are increasing, see Fig. After 500 to 1,000 epochs the 9 out of 10 Markov chains
reach their different local optima. Estimating the most likely candidates from each chain
individually results in 96.95 % correct molecular formula annotation in 7 of the 10 cases.
In practice, we run 10 parallel Markov chains to allow for parallelization and to make
sampling more robust.



6 Bayesian Network Scoring for Molecular
Structure Search

In this chapter, we introduce a novel scoring for CSI:FingerID based on Bayesian networks.
The method was initially presented at the annual international conference on Intelligent
Systems for Molecular Biology (ISMB) 2018 in Chicago and is published [124].

CSLFingerID searches MS/MS spectra in a molecular structure database (Section [4.4.1)).
Elucidation of stereochemistry is currently beyond the power of automated methods. Thus,
CSI:FingerID aims to recover the constitution of a molecule, which we refer to as structure.
It uses the fragmentation tree computed by SIRIUS to predict a molecular fingerprint. The
predicted molecular fingerprint is a probabilistic fingerprint; that means, each position
in the fingerprint specifies the probability that a specific molecular property is present.
The predicted fingerprint of the query compound is searched in a molecular structure
database by comparing it against the deterministic fingerprints of candidate structures.
Diihrkop et al. [61] suggested two statistical scores which perform best in evaluations:
“Platt” score and the “modified Platt” score. Both scores implicitly assume independence
between molecular properties. However, it is obvious that molecular properties do not have
to be independent; in particular, a substructure which defines a molecular property can be
completely contained in another substructure (Fig. .

Here, we present a scoring which no longer assumes independence. We model
dependencies between molecular properties using a Bayesian network. The molecular
properties are represented by binary random variables with the possible outcomes
“presence” and “absence”; these variables are the nodes in the Bayesian network.

An atypical Bayesian network. Multiple reasons make our problem different from a
“standard” Bayesian network. The total number of random variables in our model
is relatively high: the molecular fingerprint contains 2,881 molecular properties. In
comparison to this, the number of training examples is small, especially to establish the
network structure: there are less than 17,000 reference spectra and even less different
structures.

We use predicted fingerprints from CSI:FingerID as basis for our model. CSI:FingerID
uses a separate kernel SVM for the prediction of each molecular property in the fingerprint.
However, instead of a binary classification, CSI:FingerID uses a sigmoid function to predict
the posterior probability (Platt probability) for the presence of the molecular property.
These predictions “define” the marginal probabilities of the random variables in our model.
For each query compound, CSI:FingerID predicts an individual molecular fingerprint with
individual probabilities; and thus, the marginal probabilities change. In a “standard”
example of Bayesian networks, such as illustrated in Section the model parameters
remain fixed once they have been estimated. Since the probabilities of the random variables
in our model change for each new instance, it is also not obvious how to establish conditional
probabilities.

63
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CSIL:FingerID trains each SVM independently to predict the probability of a molecular
property. However, the predictions are clearly not independent. Firstly, the molecular
properties themselves are not independent. The molecular fingerprint is not optimized
to contain a set of complementary, uncorrelated properties. Instead, properties were
selected if they could be predicted with decent quality from the training data. As a
result of this selection process, some properties might be overemphasized. For example, a
subset of properties might be almost identical to each other and thus their occurrence in
different molecular structures is highly correlated. Such properties should be downweighted
when scoring candidate structures. Secondly, we expect dependencies in the prediction of
properties: For example, assume that predictions for molecular properties that contain a
hydroxy group produce many false positives; an overly confident estimate for one property
may also result in an overly confident estimate for another property. We also want to
capture these mutual prediction errors with our model.

Relation to Matthews correlation coefficient. It is acknowledged that correlation is a
meaningful measure to assess the performance of binary classifiers: The Matthews cor-
relation coefficient (MCC) measures the correlation between observations and predictions
of a binary classifier. The MCC has advantages over other common measures such as
accuracy or F1 and results in fewer misleading interpretations [43]. Observation and
prediction of a binary classifier can also be regarded as random variables. Thus, the
connection to our problem becomes more clear. The MCC is used to assess how well
binary predictions and observations agree. We, on the other hand, want to know to
what extend one random variable can explain the other. We consider the probabilities
of outcomes assigned to the random variables and want to relate the predicted probability
of one molecular property to the predicted probability of another property. To draw a
connection between our approach and the MCC: a predicted probability of 0.99 can also be
interpreted as meaning that out of 100 fingerprints which all assigned a probability of 0.99
to a property, we expect 99 “presence”’ outcomes and one “absence” outcome. Here, instead
of having one prediction with a given probability, we have many binary predictions. This
interpretation using frequencies shows that it can be reasonable to consider correlations
between predicted probabilities of two random variables. For our model we use covariances,
the “unnormalized” correlation, as it fits well into our optimization model.

Workflow summary. We implement the Bayesian scoring in the following way: Firstly, to
ease calculations, we assume that the network is a tree. This is clearly an oversimplification;
however, it must be understood, that there is not only one “true” network structure but
any network which improves the scoring is a valid network. The preceding step of the
CSIL:FingerID pipeline estimates the probability of each molecular property via individually
trained kernel SVMs; we use these as marginal probabilities of the random variables in the
Bayesian network. Secondly, we estimate the tree topology of the Bayesian network using
the mutual information between molecular properties. Here, to have enough training data
and to reduce overfitting, we will use deterministic molecular fingerprints from structures
in a structure database. Thirdly, we estimate “desired” covariances between random
variables connected in the tree. Finally, for each edge we estimate joint probabilities that
simultaneously satisfy the marginal probability constraints and the estimated covariance
values. Now, the joint probability of the complete evidence is used as a score. Our
model takes into account both dependencies of molecular properties from deterministic
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Figure 6.1: Workflow of Bayesian network estimation and candidate scoring. (1) The tree
structure is determined using deterministic fingerprints (FPs) of structures and comparing mutual
information between molecular properties. Different variants of the scoring use either one Bayesian
network for all candidates (1a) or one network per molecular formula (1b). (2) For each edge in
the tree, covariances of random variables are estimated prior to scoring candidates (“training”
phase) using a set of reference compounds (here, the cross-validation (CV) library). Four different
covariances are estimated per edge, one for each possible outcome combination X; = s, X; =t
for s,t € {0,1}. This step uses predicted and deterministic FPs. In the scoring phase, firstly,
for each edge the joint probabilities P(>)(X;, X;) are computed using the covariance and the
marginal probabilities from a predicted FP. (3) Secondly, the prepared network is used to score
this predicted FP against candidates from the structure database. Compounds from the CV library
are used to estimate covariances (“training” phase) and are used in evaluation (scoring phase). The
independent dataset is only used for evaluation.

fingerprints, and dependencies from fingerprint prediction. The workflow is illustrated in

Fig. [6.1]

6.1 Tree-based Posterior Probability Estimation

The Platt score from equation can be rewritten as follows: Assume that X; is a binary
random variable such that P(X; = 1) = p;. Then, P(X = z) with X = (X1,...,X,,) is the
posterior probability of the model z := M; and P(X = z) = [[, P(X; = ;) if all random
variables are independent.

We want to modify the posterior probability estimate to take into account dependencies
between molecular properties. We model dependencies between random variables X;, X;
(molecular properties i, j) as a rooted tree T = (V,E) with V ={1,...,n} and E CV xV,
such that edges (i,7) € F describe conditional dependencies between random variables X
and Xj; this is the simplest case of a Bayesian network. Let r be the root of T'; all edges
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in T point away from 7, which is also called “arborescence”. Then, the joint distribution

can be written as
P(X1,...,Xn) =P(X,)- [ P(X;1X)

(3,7)EE (6 1)
]P)(X,L,Xj) ’
Rt e rom
(i,5)EE

where P(X;, X;) is the joint distribution of X; and X;. In Bayesian network analysis,
relationships between adjacent nodes would usually be specified via conditional probability
tables for P(X; | X;). But for the problem at hand, we cannot estimate these conditional
probabilities directly; to this end, we use the indirect estimation procedure via the joint
distribution P(X;, X;).

How do we estimate P(X; = x;, X; = x;)7 We know the marginal probabilities P(X; =
1) = piand P(X; = 1) = p; (Platt estimates of posterior probabilities) from the data D. As
X; and X are binary, we have to consider exactly four cases: Set ¢11 :=P(X; =1, X, =1),
q10 ‘= ]P’(XvZ = 1,Xj = 0), qo1 ‘= IP(XZ = O,Xj = 1), and qoo ‘= P(Xl = O,Xj = 0) As
the marginal probabilities are known, q11 + q10 = p; and ¢11 + go1 = p; must hold. We
also know q11 + q10 + go1 + goo = 1. This means that we have one degree of freedom for
choosing q11, q10, 901, goo-

We decided to use this degree of freedom, to ensure that the covariance of X;, X;
equals some predetermined value cov;; € R, as specified in Section @ This models
our observation that certain molecular properties are correlated. The covariance of the
binary random variables X;, X; is

COV(XZ‘,X]‘) = E(XZX]) — E(XZ)E(XJ) = q11 —pipj,

since clearly E(X;) = p; and E(X;) = p;. In total, we have reached four linear equations
for the four unknowns q¢11, q10, o1, oo, namely:

Q11 + q10 = Pi, q11 + qo1 = Py,
q11 + q10 + qo1 + qoo = 1
qi1 = cov;j + pip; (6.3)

(6.2)

Unfortunately, solving (6.2]) and (6.3) may result in a solution that does not satisfy the
obvious requirement qi1,q10,q01,900 € [0,1]. Whereas we think of equation (6.2)) as
inevitable requirements, (6.3]) is a somewhat more subjective choice; to this end, we modify

(6.3) accordingly:
g1 = max{0,p; + p; — 1, min{p;, pj, cov; j + pip;} } (6.4)

It is straightforward but cumbersome to check that choosing qi1, ¢10, o1, goo according to
and does indeed satisfy q11, q10, g1, 900 € [0, 1], and that the established bounds
are tight: For example, choosing ¢11 < p; + p; — 1 will violate gop > 0. The covariance
cov(X;, X;) of the resulting random variables does not necessarily equal cov; j, but if not,
it is chosen “as large” or “as small” as possible. See the Lemmas below for details.

We can now determine joint probabilities P(X; = z;, X; = x;) for every edge (3, ),
and use to estimate the probability of evidence X = x, that is, the joint probability
P(X; = z1,..., X, = x,); we use this estimate as the new score. To avoid numerical
instabilities, we apply Laplace (additive) smoothing to probabilities P(X;) and P(X;, X;)
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when computing . Computing P(X; = z;, X; = z;) can be carried out in constant
time, so computing P(X = x) requires O(n) time.

We now give formal proofs that choosing q11,q10, qo1, qoo as described above results in
probabilities from [0,1] (Lemma [6.1]); and that choosing a larger (Lemma or smaller
q11 (Lemma is not possible in case we deviate from the target value cov; ; + p;p;.

Lemma 6.1. Given p;,p; € [0,1] and cov;j € R. Then, qi1 = max{O,pi + pj —
1, min{p;, p;, covij + pipj}} from (64), qro == pi — q11, gqn = pj — qu1, and qoo =
1 — (q11 + q10 + qo1) all satisfy qi1, q10,q01, Qoo € [0, 1].

Proof. Assume q11, q10, 901, qoo have been chosen as described. We first infer ¢;; < max{p;+
pj — 1,pi} < max{p;,p;} = pi, and analogously ¢11 < max{p; +p; — 1,p;} < p;. This
implies ¢11 € [0,1] as ¢11 > 0 is clear, and ¢11 < p; < 1. Now, ¢11 < p; implies ¢19 =
pi —quu > pi —pi = 0, and g1 < p; implies go1 = pj — gu1 = pj — p; = 0. Furthermore,
qu1 > pi+pj—1implies 10 = pi —q11 < pi—(pi+p;j—1) =1—p; < Tand go1 = pj —qu1 <
1 — p; < 1. Hence, we have established ¢i9, o1 € [0,1]. Finally, ¢11 > p; + p; — 1 implies
qu1 + qio +qo1 = pi +pj —qu < pi +p; — (pi +p; —1) = 1 and, hence, goo > 0. With
qoo = 1 — (q11 + q10 + qo1) < 1 we infer goo € [0, 1]. [

Lemma 6.2. Given p;,p; € [0,1], cov; j € R, and g1 from (6.4) such that g11 < cov, j +

pipj. Then, any gy > qu1 with q19 := pi—qy1, dor = Pj— 411, and Goo = 1—(q11+d10+301)
cannot simultaneously satisfy q11, 310, Qo1- oo € 10, 1]

Proof. We do a case distinction, based on the maximum calculation of ¢i1:

(i) If g11 = 0 then p;,p; > 0 implies cov; ; + p;p; < 0 = ¢i1, in contradiction to our
assumptions.

(i) If g1 = pi + p;j — 1 then ¢u1 < cov;; + pip; implies min{p;,p;} < p;i + p; — 1.
Assume w.l.o.g. that p; < p;, then p; < p; + p; — 1 and, hence, p; = 1. We infer
d11 > qu = pi +pj —1 = p; and, hence, g9 = p; — q1; <O0.

(iii) If g11 = min{p;, pj, cov; ; + pip;} then ¢g11 = min{p;,p;} < cov; ; + pip;. Hence,
g1 > min{p;, p;}, and either g;o = p; — ¢;; < 0 or Go; = pj — Gy; < 0 must hold.

O

Lemma 6.3. Given p;,pj € [0,1], cov;j € R, and qi1 from (6.4) such that g11 > cov, j +

pipj- Then, any g1 < qu1 with @19 := pi—q11, Qo1 = Pj—q11, and oo = 1—(q11+q10+G01)
cannot simultaneously satisfy q11, 310, Qo1 oo € 10, 1]

Proof. We again do a case distinction:
(1) If q11 = 0 then qll < 0.

(ii) If g11 = pi +p; — 1 then gy < p;+p; —1 and, hence, qy; +q19+qo1 = Pi+pj —q11 >
pi+pj— (pi+pj—1)=1,50 gy <O.

(iii) If g11 = min{p;, p;, cov; j + pip;} then qi1 < cov;; + pip; in contradiction to our
assumptions.

O
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6.2 Finding the Tree and Estimating Covariances

It must be understood that in principle, every tree can be used for our computations, and
there are no “incorrect” trees; our obvious goal is to reach an improved identification
rate. In view of the superexponential number of trees with n nodes, we restrict our
evaluation to trees that “turn up naturally” from the data. We show how to estimate
the tree structure, and the desired covariance values for every edge of the tree. The tree
structure is estimated solely from molecular structure data; for covariance estimation, we
take into account the training data and, in particular, dependencies between predictions
between molecular properties. We distinguish two cases: In the first case, we estimate
one “global” fixed tree structure and desired covariance values, which is then used to
score candidates for any query. In the second case, we take into account that for each
query, only candidates with a particular molecular formula are considered. We compute
an individual tree for this molecular formula, and also consider the molecular formula when
estimating covariances. Note that molecular structure candidates of the same molecular
formula are also structurally similar. As a consequence, molecular properties can be non-
informative, as all structure candidates either do or do not have the property. Computing
individual trees prevents that non-informative properties can “block” the path between
informative properties in the Bayesian scoring tree: Non-informative properties will have
mutual information zero, and will be inserted as leaves in the individual tree.

Fixed tree structure. To prevent overfitting, we do not search for a tree that maximizes
identification rates. Instead, we estimate the tree structure using all molecular structures
from some structure database. Mutual information is a natural choice to measure how much
information we gain from one molecular property about another molecular property. We
use mutual information between molecular properties from a molecular structure database
as a proxy for the interdependence between random variables (predictions). For each
structure in the database, we (deterministically) compute the corresponding molecular
fingerprint, resulting in a multiset F of fingerprints. For any two molecular properties
i,7 we consider the corresponding binary random variables I,J; estimation of (joint)
probabilities for I, J is straightforward by counting in F. We then compute the mutual
information between I and J, quantifying the “amount of information” obtained about [
through J. This results in a complete graph G with nodes {1,...,n}, where every pair
of nodes (molecular properties) is connected by an edge with weight equal to the mutual
information. The tree structure is computed as a maximum spanning tree in this graph, in
O(|V|? -log|V]) time using Prim’s algorithm (with a binary heap) or Kruskal’s algorithm.
Finally, we arbitrarily root this tree, as the choice of the root does not influence our
computations. Some edges of the tree may have weight (mutual information) zero; this is
an artifact of computing a spanning tree which connects all nodes.

Let T = (V, E) be the tree; we now estimate desired covariance values. Here, we consider
all compounds in the training data; only for these, we can estimate if wrong predictions of
one molecular property, result in wrong predictions of another property. Each compound
from the training data consists of a true fingerprint (y1,...,y,) € {0,1}" and a predicted
(Platt) fingerprint (p1,...,pn) € [0,1]™.
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Consider edge (i,7) € FE from molecular property i to j. We partition compounds from
the training data into four batches (0,0), (0,1), (1,0) and (1,1), such that a training
compound with true fingerprint (yi,...,yn) is sorted into batch (y;,y;) € {0,1}%:

PZ.(;’t) = {(pi,pj) s (i) = (s,t)}

We compute four covariance estimates cov(sj’t) one for each batch P(S’t) with (s,t) € {0,1}2.

Set P := P(‘; ) for brevity; these are our observations used to estimate the covariance. To
avoid empty batches and prevent overfitting, we add four pseudo-observations (0, 0), (0,1),

(1,0) and (1,1) to the observations P. We again interpret Platt probabilities p; as the
probability that a binary random variable X; satisfies X; = 1. The normalized number of
observations Na,b] € (0,1) for a,b € {0,1} is

1

NI1,1 /
[1,1] = P Z ep PP
(6.5)
1
NT0,0 1—p)(1—9p
0,01 = 57 DINPMCESOCES )
We then estimate the desired covariance as
t
cov == N1,1] — (WL, 1] + NTL,0]) - (ML, 1] + A0, 1]).
Given a candidate fingerprint (z1,...,2,) € {0,1}", we want to compute its joint
probability P(X; = z1,...,X,, = x,) according to (6.1). For every edge (i,j) € E,
we set cov;; = covl(-fjt) for s := x; and t := x;, and proceed to estimate P(X;, X;)

as described in the previous section. Hence, every candidate fingerprint has individual
covariance estimates; in the previous section, we omitted this technical detail for the sake
of readability.

Finally, for artifact edges with mutual information zero, we also assume covariance

(s t) —0.

cov
7‘7

Individual trees. Next, we want to compute the tree and desired covariances for each
query individually. Regarding the tree, we use all fingerprints from PubChem that have
the molecular formula of the query when computing the mutual information. For the
covariance, we proceed as described above, but again only consider those compounds from
the training data that have the molecular formula of the query. But there are potentially
only few such training compounds, so the method is prone to overfitting. We use the
following two modifications to overcome this issue: Firstly, when estimating the observation
matrix for the query molecular formula, we add the normalized observation matrix (6.5
estimated from all training data as “pseudocounts”. We give this global “pseudocounts” a
weight of 14 if there are at least 10 global observations (and the 4 pseudo instances); for
fewer global observations, we use the number of global observations (plus pseudo instances)
as weight. Secondly, we do not only use compounds from the training data with identical
molecular formula as the query; instead, we allow that training compound and query
molecular formula differ by some biotransformation, such as the addition of a water HyO.
The resulting scores with and without using biotransformations will be referred to “Bayesian
(individual tree)” and “Bayesian (biotransformations)”, respectively.
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6.3 Evaluation on Cross-validation and Independent Dataset

CSIL:FingerID and its Input Output Kernel Regression variant [29] are currently the best-
performing methods for searching with MS/MS data in molecular structure databases.
This has been demonstrated in two blind competitions, namely the Critical Assessment for
Small Molecule Identification (CASMI) contests 2016 and 20177} CASMI 2016 (category 2)
provided data for 127 compounds in positive ion mode, of which CSI:FingerID correctly
identified 70 [I82], more than twice the number of the best non-CSI:FingerID method:
In detail, MS-FINDER [202], CFM-ID [2], MAGMA+ [208] and MetFrag2.3 [176], 228]
had 32, 27, 16 and 15 correct identifications, respectively. In CASMI 2017 (category 4),
CSIL:FingerID identified six-fold the number of compounds of the best non-CSI:FingerID
method. This is in agreement with finding by Diihrkop et al. [61) 63] who found that
CSIL:FingerID outperforms the runner-up 2.5-fold. To this end, we refrain from evaluating
against other methods.

We follow the evaluation setup of Diithrkop et al. [6I]. In our evaluation, we make sure
that all evaluated structures are novel: That is, no MS/MS data from a compound with the
same structure is present in the training data. For example, for D-threonine to be novel,
the training data must not contain any MS/MS spectra for D-threonine, L-threonine, or
(D or L)-allo-threonine. We use 10-fold cross validation when predicting fingerprints for
the training data; no two folds contain the same structure. For the independent dataset,
we ensure novel structure evaluation by using, for each query, the cross-validation model
which does not contain the query structure; in case the query structure is not present in
the training data, we use a model trained on all training data.

We extracted 91 molecular formulas of biotransformations from Li et al. [I18], Rogers
et al. [174]; we excluded large modifications above 100 Da and modifications not composed
from CHNO, resulting in 29 modifications used here: namely, CyH,, C;H,0, CyH3NO,
C,H;30,, CyH,, C,0,, C3H,04, C3H;NO, C3H;NO,, C3H;0, C,H,N,O, C,H3N;,
c,H,0,, C;H,;, C;H,NO, C;H4NO, CH,, CH,ON, CH3N,O, CHO,, CO, CO,, H,, H,O,
N, NH, NH,, NH3, and O. These biotransformations are used to increase the number of
specific compounds used to compute the covariances for individual trees.

6.3.1 Datasets and Databases

Next to spectra from MassBank [90] and GNPS [211] we trained CSI:FingerID on data
from the NIST 2017 database (National Institute of Standards and Technology, v17). As
evaluated here, CSI:FingerID 1.12 is trained is trained on 13,766 structures and 16,865
measurements in positive ion mode. For one compound, a library may contain several
MS/MS spectra, which are merged by SIRIUS 3.6 into a single spectrum [19]. As described
in previous publications [19, 611, 62], we discard certain instances based on strong deviation
of the precursor mass etc; we leave out the tedious details, as these are not important
here. As an independent dataset, we use the commercial “MassHunter Forensics/ Toxicology
PCDL” library (Agilent Technologies, Inc.) with 3,451 spectra.

Tree structures are computed from molecular structures, without taking into account
MS/MS data. To compute the fixed tree structure we use 236,656 molecular structures
from databases of biological interest, namely KNApSAcK [186], HMDB [226], ChEBI [81],
KEGG [97], BioCyc [37], UNPD [76], and MeSH-annotated compounds from PubChem

"http://casmi-contest.org/
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Figure 6.2: Left: Identification rates using different CSI:FingerID scores, for cross-validation.
We report the percentage of instances where the correct structure was identified in the top k, for
varying k. Scores are Platt, modified Platt, Bayesian (fixed tree) and Bayesian (individual tree)
and Bayesian (biotransformations). Note the zoomed y-axis. Right: Percentage point differences
in identification rates against the Platt score, for cross-validation.

[103]. In contrast, the individual tree structures specific for one query are computed from
all PubChem structures with the same molecular formula (or the molecular formula plus
corresponding biotransformation). We use a local copy of PubChem from August 13, 2017
containing 93,859,798 compounds and 73,444,774 structures.

6.3.2 Results

CSI:FingerID reached 31.8% correct identifications in cross-validation on the GNPS
dataset [61], which was 2.6-fold higher than the runner-up method. Since then, numerous
methodical improvements (for example, novel kernels) as well as additional training data
have further improved the performance of CSI:FingerID. On the other hand, PubChem,
the database we search in, has greatly increased in size which, in turn, makes it harder to
identify the correct molecular structure. We evaluate on 16,865 cross-validation compounds
and the independent dataset from Agilent. For each method, we report the ratio of
instances where a method ranked the correct structure in its top k output, for k =1, ..., 10.
We evaluate the new scores — termed “Bayesian (fixed tree)”, “Bayesian (individual tree)”
and “Bayesian (biotransformations)” — in addition to the Platt and modified Platt scores
from [61]. All new scores are derived from the standard Platt score, which makes it the
baseline method. Still, “modified Platt” is the currently best-performing score to beat.

method top 1 top 5 top 10

Bayesian (individual tree) 43.62 £ 1.53 77.67 £ 0.90 85.23 + 1.05
Bayesian (biotransformations) | 42.92 + 1.52 76.68 + 0.82 84.39 £+ 0.97
Bayesian (fixed tree) 41.51 +£1.10 74.91 £ 0.88 83.19 + 1.18
modified Platt 40.77 £0.92 7491 £ 1.35 83.02 £ 1.35
Platt 39.72 £ 144 73.62 £1.33 82.19 +1.34

Table 6.1: Identification rates with standard deviations using different CSI:FingerID scores on
10-fold cross-validation. We report the percentage where the correct structure was identified in
the top k.
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Figure 6.3: Left: Identification rates using different CSI:FingerID scores, for Agilent. We report
the percentage of instances where the correct structure was identified in the top k, for varying k.
Scores are Platt, modified Platt, Bayesian (fixed tree) and Bayesian (individual tree) and Bayesian
(biotransformations). Note the zoomed y-axis. Right: Percentage point differences in identification
rates against Platt score, for Agilent.
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Figure 6.4: Left: Identification rates and differences using different CSI:FingerID scores, for
Agilent (known structures). Right: Identification rates and differences using different CSI:FingerID
scores, for Agilent (unknown structures). For legend and further details see Fig. [6.3

We find that all new scores outperform Platt and modified Platt in cross-validation, see
Fig. and Table Bayesian (individual tree and biotransformations) achieve highest
identification rates of 43.62 % and 42.92 %, respectively. This is an improvement of 3.20
to 3.89 percentage points to the baseline, and improves modified Platt by 2.85 percentage
points.

Identification rates on Agilent are all slightly lower than on cross-validation. Bayesian
(biotransformations) achieves the best top 1 rate with 39.86 % (Fig. . Both Bayesian
(biotransformations) and Bayesian (individual tree) improve on the modified Platt’s
identification rate by more than 1.28 percentage points.

Predicting fingerprints of Agilent compounds, we ensured to use CSI:FingerID models
not trained on this specific structure. Nevertheless, we used all cross-validation compounds
to compute covariances for the three Bayesian scores. We want to asses how this influences
the performance on the Agilent dataset. To this end, we split the dataset in two groups:
Agilent (known structure) with 1868 compounds and Agilent (unknown structure) with



6.3 Evaluation on Cross-validation and Independent Dataset 73

Statistical test ‘ vs. Platt  vs. mod. Platt
Cross validation, Welch’s t-test (ten folds) 6.4-107° 8.0-107%
Cross validation, sign test on wins (N = 16865) | 1.5-107%0  3.1.10-2
Agilent, sign test on wins (N = 3451) 241071 0.57
CASMI 2016, sign test on wins (N = 127) 8.4-107 0.0017

Table 6.2: P-values of method comparison for Bayesian (biotransformations) vs. Platt and
modified Platt. Using a one-tailed Welch’s t-test, we test if variations in correct identifications
are significantly larger between methods than between folds. For the one-tailed sign test, a “win”
means that method A reaches a better rank than method B; ties for the top rank are removed
(no method can outperform the other method for these seemingly simple instances), other ties
are equally distributed between the two methods (conservative approach). For Agilent, wins of
Bayesian (biotransformations) vs. modified Platt, no method performs significantly better than
the other.

1583 compounds. The first group contains those compounds with structure contained
in the cross-validation dataset; the second contains completely novel compounds not
even used for estimating covariance. See Fig. [6.4f On Agilent with known structure,
Bayesian (biotransformations) and Bayesian (individual tree) clearly outperform all other
methods. On Agilent with unknown structure, Bayesian (individual tree) loses its
performance edge over modified Platt, but still clearly outperforms Platt. Bayesian
(biotransformations) consistently outperforms both, Platt and modified Platt, on all
datasets, even on completely novel compounds. We stress that all three new scores improve
on their baseline method in every case. We argue that all three Bayesian scores only have
minor tendencies to overfit, as they still beat their baseline method on novel structures.
Actually, Bayesian (biotransformations) generalizes good enough to beat modified Platt
on all datasets.

Finally, we evaluated the 127 instances in positive ion mode from CASMI 2016 [182],
again ensuring that all structures are novel when predicting fingerprints. All Bayesian
scores outperform Platt and modified Platt: Bayesian (biotransformations) and Bayesian
(individual tree) reach 36.61 %, Bayesian (fixed tree) reaches 35.04 % correct identifications.
In comparison, Platt and modified Platt identify 26.38 % and 30.31 % correctly.

Are the reported improvements statistically significant? We evaluated significance using
the one-tailed Welch’s t-test for cross validation, and the one-tailed sign test for wins (one
method reaches a better rank than the other method) for all datasets. We test Bayesian
(biotransformations) against Platt and modified Platt. Against Platt, all p-values are
highly significant (below 6.4 - 107°). Against modified Platt, all p-values except for “wins
on Agilent dataset” are significant (below 0.0017). See Table for details.






7 Conclusion

In this thesis, we presented two novel computational methods for the automated analysis
of MS/MS spectra of small molecules. Both methods take a Bayesian perspective on
the underlying problems; and both improve on state-of-the-art methods, SIRIUS and
CSI:FingerID.

ZODIAC is a Gibbs sampling-based approach for the de novo assignment of molecular
formulas in biological samples analyzed by LC-MS/MS. Using ZODIAC, we observed a
substantial increase in the number of correct molecular formula annotations. In particular,
on one dataset with large compounds, error rates decrease by 16-fold. Furthermore, the
ZODIAC score allows to select the most confident annotations. Different from many
other approaches, ZODIAC is not limited to molecular formulas present in any (spectral
or structural) databases. We have seen that this is not only of theoretical interest:
We confirmed two novel molecular formulas discovered by ZODIAC. One was added to
PubChem just recently by automatically processing the annotated spectrum we uploaded
to GNPS. The other molecular formula is still absent from PubChem.

We found that adduct annotations are very important for molecular formula assignment,
as it is challenging to deduce this information from isotope pattern and MS/MS data.
Hence, high-quality adduct annotations should be established during preprocessing. In
contrast, we observed that anchors (library hits) have only a small effect on molecular
formula annotations.

The mouse stool dataset was particularly challenging. We had to discard many MS/MS
spectra because these did not meet our quality standards. This does not imply, that
spectral library search, which is typically used as a default method, is more robust and can
even identify compounds from low quality spectra. Rather, it is acknowledged that only a
small portion of the data will be annotated with spectral library matches; hence, low quality
spectra likely remain unrecognized. We, on the other hand, aim for a more comprehensive
annotation. Unfortunately, we had to exclude many MS/MS spectra from this dataset;
either because these contained too few peaks or were chimeric. Nevertheless, the chimeric
filtering which we applied was not overly strict. It is likely, that many MS/MS spectra
that were not discarded still contained isotope peaks or peaks from interfering compounds.
As a result of the filtering, the mouse dataset contained the lowest number of compounds
— another potential hindrance to the ZODIAC model which requires co-occurring, similar
compounds to optimize annotations. We found that SIRIUS had difficulties with this
dataset as well. We argue, that spectrum quality is a crucial factor for the automated
analysis of mass spectrometry data. On the remaining datasets, the number of correct
molecular formula assignments from ZODIAC was greatly increased.

ZODIAC is the first tool which combines de novo molecular formula annotation with
high identification rates and a score that allows to asses the confidence in assignments.
Confident annotations are a requirement for the automated screening of datasets in large
scale.

Molecular formula analysis is usually not the final step in small molecule analysis.
Searching an unknown compound with novel molecular formula in a structure database will
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always result in an incorrect hit, and this will often go unnoticed. In contrast, a metabolite
identification workflow which makes use of de movo annotation methods facilitates the
identification of highly interesting, new metabolites. Here, ZODIAC constitutes a major
step in the discovery and structural elucidation of novel metabolites, natural products, and
other molecules of biological interest.

As a second computational method, we have introduced a novel scoring for CSI:FingerID
that does not only outperform previous scorings for searching in molecular structure
databases, but also allows for a statistical interpretation. The scoring interprets the
problem as computing the probability of evidence in a Bayesian network. This problem
has the unusual property, that the marginal probabilities differ for each predicted query
fingerprint. In order to create the scoring, we apply Bayesian networks in a novel and
unexpected way; estimating the conditional probabilities from covariances and marginal
probabilities has, to the best of our knowledge, not been suggested before in the literature.

To create a scoring adapted to the compound at hand, we compute many individual
trees, one for each molecular formula. We have observed a slight tendency for overfitting
in our method; we conjecture that this is due to estimating the covariance from prediction
dependencies on the training data. We included biotransformations to overcome this
effect. We stress that 2 percentage points of additional correct identifications represent
a significant advancement: As a back-of-the-envelope calculation, we estimate that
CSIL:FingerID would require 1,400 to 3,000 novel reference compounds (with structures
currently not contained in the training data) to reach this improvement via additional
training data. Finally, we hope that simultaneously reaching improved identification rates
plus a statistical interpretation may pave the way toward significance measures such as
false discovery rates.

Both methods contribute to the ultimate goal of fully automated, high-throughput
analysis and structure annotation of small molecules from LC-MS/MS data. Both methods
are integrated into SIRIUS 4.

Ongoing research and future work

For the Bayesian network scoring, we have modeled dependencies between properties as a
tree. This naturally raises the question, how we can extend the Bayesian network model
to use a more complex structure. Different from the scoring presented here, the “modified
Platt” score from Diihrkop et al. [61] has no statistical interpretation and is in fact slightly
counter-intuitive; it is noteworthy that this score consistently performs so well. It remains
an open question why this is the case, and how we can formalize this effect.

ZODIAC greatly improves the rate of correct molecular formula annotations. Neverthe-
less, it leaves room for improvement. Clusters of almost identical compounds interfere with
the global similarity estimation. These clusters contain isomers or replicate measurements
of the same compound in different LC-MS/MS runs which were not combined due to large
differences in retention time. Reciprocal scoring bonuses during Gibbs sampling yield a
self-enforcing dynamic. As a result, the high inner-cluster similarities dominate similarities
to other compounds and annotations within the cluster are primarily based on the cluster
compounds. A possible solution would be to forbid edges between compounds with the
same mass. Alternatively the probability estimation could be reformulated in a way that a
large number of edges to similar compounds does not result in exaggerated confidence. An
expectation maximization approach could re-estimate conditional probabilities after each



7

epoch [142]. ZODIAC struggled with unresolved adduct annotations. There are natural
ways to include adduct assignment directly into the Gibbs sampling.

The next big effort will be to develop a method similar in idea to ZODIAC for the
structure identification task. Methods have already been published which take advantage of
compound similarities in an LC-MS/MS run to re-rank structure candidates [49]. However,
these may be prone to database biases. Molecular structures in databases are highly
non-uniformly distributed: for some structures, the database will contain many similar
structures differing by a biotransformation. These will be favored over more “isolated”
structures. In order to overcome this bias we have to correct for expected random
similarities of a structure candidate to other structures in the database; and simultaneously
estimate the probability that the true hit is indeed contained in the database. Alternatively,
structure database search may be completely avoided on the whole-dataset level. Co-
occurring compounds in a dataset might help to correct wrongly predicted properties in
the molecular fingerprints. This can improve a subsequent structure database search; but
it also aids other approaches which use predicted fingerprints but do not search in structure
databases.

There is ongoing research to complement the existing methods and solve some of
the discussed issues of mass spectrometry-based metabolomics. Diihrkop et al. recently
developed CANOPUS [64] to predict compound classes [55] from MS/MS spectra. It takes
the molecular fingerprint predicted by CSI:FingerID as input and annotates the compound
with a subset from over 1,200 compound classes; thus, overcoming the limitations of
database search.

Martin Hoffmann is developing a confidence score for CSI:FingerID results which
distinguishes true from bogus identifications. This provides another important step towards
fully automated structure identification workflows. A confidence score for CSI:FingerID
structure identification strongly depends on the applied scoring method. Here, the
confidence score will presumably profit from the Bayesian network score. Both novel
methods benefit from an accurate molecular formula assignment provided by ZODIAC
as a preceding step.

As we aim for comprehensive annotation of whole datasets, spectrum quality and
compound coverage become increasingly important. Compound similarity estimations,
such as performed by ZODIAC or in molecular networking, work best for MS/MS spectra
with a reasonable number of fragment peaks and are impaired by chimeric spectra.
Improved quality assessment should be integrated in all workflows [143]. Moreover,
experiments with increased compound coverage will provide a better data basis [28)].

Another topic worth considering is a better quantification and depiction of uncertainty
in structure identifications. Mass spectrometry does not provide enough information to
perform structure elucidation for all compounds. A structure database hit might be highly
similar to the true structure but still “incorrect” because a hydroxy group moved by one
position. Nevertheless, such bogus annotations are useful for interpretation. The question
is: how can we detect uncertain parts in our structure annotation and what is the best
way to communicate these uncertainties?

Computational methods for small molecule mass spectrometry are continuously
improving and will transform the way metabolomics experiments are going to be conducted
in the coming years. Particularly for methods that specifically analyze complete biological
datasets, we will need increased effort to establish proper gold standard datasets to evaluate
against, because standard reference libraries might not be applicable. Combined effort of



78 7. Conclusion

open data repositories and method developers will provide the foundation for improved
compound annotation and knowledge generation based on metabolomics experiments. We
proved that ZODIAC identifies multiple compounds with novel molecular formula by
considering only five datasets. We anticipate many more such findings, when we apply
all our novel methods large-scale to hundreds and thousands of biological datasets.
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Figure A.1: Molecular formula annotation error rates. Error rates on five datasets. Methods are
SIRIUS; ZODIAC (without anchors); exact mass over elements carbon, hydrogen, nitrogen and
oxygen (“CHNQO”); exact mass over elements CHNO plus phosphorus and sulfur, molecular formulas
filtered using the Seven Golden Rules (“CHNOPS + 7GR”); exact mass over elements CHNOPS
plus chlorine, iodine, bromine and boron filtered by the Seven Golden Rules (“CHNOPSCIIBrB
+ 7GR”); and GenForm [129]. GenForm is the only publicly available tool for molecular formula
inference besides SIRIUS, and considers both the isotope pattern and the fragmentation spectrum
[129]. GenForm was restricted to elements CHNOPS; to this end, only SIRIUS, ZODIAC and
exact mass (CHNOPSCIIBrB + 7GR) are capable of annotating the two novel molecular formulas
Cy,H,7,BrNOgP and C,;H;,ClO; reported here. Error rates are based on all compounds with
established ground truth. For number of compounds and other statistics, see Table For
evaluation details see Section
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Figure A.2: ZODIAC assignments vs. cosine scores of the ground truth. For four datasets, we
can only evaluate ZODIAC against a “ground truth” established by spectral library searching.
Potentially, some ground truth molecular formula are wrong, and ZODIAC might have found the
correct molecular formula which we wrongly assign as incorrect. We expect that database hits with
relatively low cosine score are incorrect more often. We have plotted the cosine score for correct
and incorrect ZODIAC molecular formula assignments for NIST 1950 (a), diatoms (b), tomato (c),
and mice stool (d). We do not observe a noteworthy difference in the two distributions; instead,
correct and incorrect annotations appear to be distributed across all cosine scores. This does not
mean that all library hits are correct, but that incorrect library hits are most likely to be found
both for ZODIAC correct and incorrect assignments.

Table A.1: Parameters used to process and filter LC-MS/MS runs. Features were filtered by
retention time (min RT, max RT) and minimum relative and absolute intensity of the precursor
peak. MS/MS peaks below an intensity threshold were removed. MS/MS spectra were merged
over different LC-MS/MS runs and discarded if total intensity was below an intensity threshold.

dataset min RT max RT precursor  precursor MS/MS peak min total intensity
(in sec) (in sec) min rel int min abs int intensity threshold  merged MS/MS
dendroides 150 2,400 0.01 10,000 524.1 50,000
NIST1950 200 750 0.01 10,000 2,231.7 50,000
tomato 100 900 0.01 10,000 2,380.6 50,000
diatoms 100 700 0.01 50,000 2,167.8 400,000

mice stool 100 750 0.01 5,000 400.0 10,000
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Figure A.3: Distribution of fragmentation tree similarity scores. For each dataset, kernel
densities were estimated using 100,000 sampled scores. Scores s(u,v) were computed as described

in equation (5.6) in Section
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Figure A.4: Spectra of a novel bromine-containing compound in the diatoms dataset. (left) Mirror
plot of measured against simulated isotope pattern for the novel molecular formula C,,H,,BrNOgP
in the diatoms dataset. The top part displays m/z 587 to 595 of the MS1 spectrum at retention time
505.18 sec. It was measured prior to the MS/MS spectrum targeting precursor m/z 592.325 and
different from the MS1 in Fig. , which the predecessor MS1 to the MS/MS spectrum targeting
precursor m/z 588.230. The bottom part is the simulated isotope pattern for [CyH,;BrNOGP +
H]+. We see that close to the M+4 isotope peak, there is a more intense peak, presumably from
a coeluting compound. Clearly, this coeluting compound can substantially affect the MS/MS
spectrum. (right) Mirror plot of measured (top) against simulated (bottom) MS/MS spectrum for
precursor M+4. Its intensity is one order of magnitude lower compared to the MS/MS spectrum
of the M+2 peak and simulated intensities should be treated with caution.
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Figure A.5: Structures of 21 NIST compounds matching to a novel compound in diatoms dataset.
Structures are sorted left to right and top to bottom by cosine score to the query spectrum.
All structures are phosphatidylcholines. Corresponding spectra are displayed in Fig. in the
appendix.
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Figure A.6: Spectra of 21 NIST compounds matching to a novel compound in diatoms dataset.
Spectra are sorted left to right and top to bottom by cosine score to the query spectrum, with the
lowest cosine score being 0.893. All spectra share a characteristic set of peaks; peaks matching to
the query spectrum are displayed in black. The corresponding structures are displayed in Fig.

in the appendix.



Table A.2: Novel molecular formulas.

All molecular formulas are absent from the largest

molecular structure databases PubChem [103] and ChemSpider [I57]. Only molecular formula
annotations with a minimum ZODIAC score of 0.98 are reported such that at least 95% of the
MS/MS spectrum intensity is being explained by the SIRIUS fragmentation tree, and at least
one molecular formula of the compound is connected to 5 or more compounds. There may be
more than one hypothetical compound in an LC-MS run being annotated with one molecular
formula, potentially corresponding to different isomers. For such cases, ‘# comp.’ is the number
of hypothetical compounds being annotated with the given molecular formula, and ‘max score’ is
the maximum ZODIAC score among these annotations.

dataset

molecular formula

# comp. max score

NIST1950
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
diatoms
mice stool
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato
tomato

C15H33N909P2
C24H47BrNOS8P
C24H49BrNOSP
C24H49INOS8P
C25H41Cl1011
C12H24ClI04
C15H30CIIO5
C16H34N305
C19H43CIN10010
C19H43NO3P2
C21H41INO8P
C21H43INOS8P
C22H48N507P
C25H4507PS
C25H49INOS8P
C9H19BN404
C16H45N1006
C11H10N4013
C8H23N2015P5
C11H14N4015
C6H14N2016P4
C6H16N2013P4
C10H20N6016P2
C20H34NO20P
C20H51N7038
C4H13N406P
C6H16N2011P4
C8H12N309P3
C8H15N2014P3
C8H20NO17P5
C8H21IN708
C9H16N2012

1

el e i e e e i B R S IO I S R e e e e e i e N L R’ U =)

0.982
1.0

1.0

1.0

1.0

1.0
0.999
1.0
0.992
1.0
0.9995
0.9965
0.991
0.996
0.996
1.0
0.9915
1.0

1.0

1.0

1.0
0.9985
0.9955
0.9925
1.0

1.0

1.0
0.995
0.9935
0.9885
0.9995
0.98
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