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Abstract. Surface passivation is a widely used technique to reduce the recombination losses at 
the semiconductor surface. The passivating layer performance can be mainly characterized by 
two parameters: The fixed charge density (𝑄ox) and the interface trap density (𝐷it) which can be 
extracted from Capacitance-Voltage measurements (CV). In this paper, simulations of High-
Frequency Capacitance-Voltage (HF-CV) curves were developed using simulated passivation 
parameters in order to examine the reliability of measured results. The 𝐷it was modelled by two 
different sets of functions: First, the sum of Gaussian functions representing different dangling 
bond types and exponential tails for strained bonds. Second, a simpler U-shape model 
represented by the sum of exponential tails and a constant value function was employed. These 
simulations were validated using experimental measurements of a reference sample based on 
silicon dioxide on crystalline silicon (SiO2/c-Si). Additionally, a fitting process of HF-CV curves 
was proposed using the simple U-shape 𝐷it model. A relative error of less than 0.4% was found 
comparing the average values between the approximated and the experimentally extracted 𝐷it’s. 
The constant function of the approximated 𝐷it represents an average of the experimentally 
extracted 𝐷it  for values around the midgap energy where the recombination efficiency is highest. 

1. Introduction
Surface passivation is used to prevent or reduce the recombination of charge carriers via defect states
related to dangling bonds at the semiconductor surface [1]. Using an insulator layer as a passivating
layer on the semiconductor surface, two types of mechanisms are defined whereby surface passivation
acts.

On the one hand, there is the chemical passivation which is related to the reduction of the interface 
trap density (𝐷it) by decreasing the surface defect states through chemical bonding with the passivation 
material. On the other hand, the field effect passivation is quantified by the fixed charge density (𝑄ox) 
inside the insulator layer and near the insulator/semiconductor interface. These fixed charges repel one 
type of charge carriers from the surface in order to reduce the recombination of remaining trapped 
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charges of the other type [2]. These two passivation parameters (𝑄ox and 𝐷it) can be obtained through 
High-Frequency Capacitance-Voltage (HF-CV) measurements [3]. The presence of fixed charges in the 
passivating layer causes a net shift along the voltage axis in the HF-CV curve, whereas the 𝐷it  causes a 
change in the curve’s slope. Thus, comparing the ideal curve (𝑄ox = 0 and 𝐷it = 0) with the 
experimentally measured one allows the extraction of both parameters assuming that these two effects 
are the only ones present [4]. Additional effects, such as insulator charge instabilities and charge 
injection from the semiconductor or contact side [5], as well as leakage currents [6], are often relatively 
hard to identify and, if not taken into consideration, may considerably alter the resulting passivation 
parameters obtained from the experimental HF-CV curves. Therefore, simulations of HF-CV curves 
offer the possibility to perform a deeper analysis of the passivating layers. Despite the availability of 
many tools [7], most of them only consider a single 𝐷it-value in the midgap of the semiconductor 
bandgap at the interface. This paper presents two methods that introduce a wider range of the 𝐷it-
spectrum into the simulations of the HF-CV curves. 

2. Experimental and simulations

2.1. The capacitance voltage curve 
A MOS (Metal-Oxide-Semiconductor) system based on thermally grown amorphous silicon dioxide on 
crystalline silicon (a-SiO2/c-Si) with (100) orientation was taken as a reference due to its charge stability 
and excellent passivation properties that have been widely studied [8]. A scheme of the MOS system is 
depicted in Figure 1(a). The native, thin SiOx layer formed at the a-SiO2/c-Si interface is crucial for the 
silicon surface passivation. 

 

Figure 1. (a) MOS system scheme which represents the tested device used in order to obtain the HF-CV 
curves. A native oxide layer of SiOx usually is formed at the SiO2/c-Si interface. (b) Experimental and 
theoretical HF-CV curves are depicted. A shift is noticed due to the 𝑄ox. The experimentally extracted 
𝐷it over energy is shown in the inside diagram. 

The experimentally measured HF-CV curve of this MOS system along with the corresponding 
calculated ideal curve is depicted in Figure 1(b). The experimental curve allows to obtain the 
oxide thickness (𝑑ox) = 100.6 nm and the semiconductor doping concentration (𝑁d) = 1.3 × 1015 cm-2. 

(a) (b) 
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Furthermore, the comparison of these experimental and ideal HF-CV curves allows the extraction of the 
passivation parameters 𝑄ox = 9.96 × 1011 cm-2 and 𝐷it within the silicon bandgap energy with reference 
to the valence band energy. The latter is depicted in the inserted graph in Fig. 1(b). A detailed description 
of the method to extract these passivation parameters from the HF-CV curves can be found in [9,10,11]. 

2.2. Models for the 𝐷it simulation

In this part of the paper we focus on the reverse procedure: the calculation and simulation of the HF-CV 

curves based on the modeling of the prior experimentally extracted passivation parameters from the 

reference MOS sample. Thenceforth, the 𝐷it was simulated by means of two models in which the impact

of the interface defect states originating from dangling bonds is taken as a variable added to the tail 

states originating from the strained bonds at the SiO2/c-Si interface. 
The first model is the one most accepted in the scientific community which considers electrically 

active amphoteric defect centers related to the SiO2/c-Si interface [12,13]. Based on this model, the 𝐷it  
at the (100) silicon surface is described mainly by 𝑃b0  and 𝑃b1-type defect centers which in turn can be 
represented by Gaussian functions with two levels: 

𝑃b0
Low,High(𝜖t) =

𝑁t
𝑃b0,Low,High

𝑤Low,High√
𝜋

2

𝑒
−2

(𝐸0;Low,High−𝜖t)2

𝑤Low,High
2

(1) 

𝑃b1(𝜖t) =
𝑁t

𝑃b1

𝑤1√
𝜋

2

𝑒
−2

(𝐸1−𝜖t)2

𝑤1
2

(2) 

Here, 𝑃b0
Low represents the Gaussian function associated to the 𝑃b0  defects centers with an energetic 

level in the lower part of the bandgap between the valence band and the midgap, whereas 𝑃b0
High levels

are located between the midgap and the conduction band. 𝑃b1 is located very close to the midgap and 
can be represented by a single Gaussian function because its two levels are energetically 
indistinguishable. 

Strained bonds at the bandgap edges are represented by exponential functions: 

𝑈T;v,c(𝜖𝑡) = 𝑁v,c𝑒−𝛽v,c|𝐸v,c−𝜖t| (3)

Here, 𝑈T;v is close to the valence band and 𝑈T;c to the conduction band. 
These functions depend on the trap level energy 𝜖t and the associated parameters in total are: 𝑁t

𝑃b0,Low,High,
𝐸0;Low,High, 𝑤Low,High, 𝑁t

𝑃b1 , 𝐸1, 𝑁v,c, 𝛽 and 𝐸v,c, (altogether, 13 parameters) some of them are reduced 
by experimental facts as shown in [9]. 

Then, 𝐷it is modelled by the sum of these functions: 

𝐷it = 𝑈T,v + 𝑃b0
Low + 𝑃b1 + 𝑃b0

High
+ 𝑈T,c (4) 

The second model simplifies que prior model by considering a uniform, constant value for the 
interface defect state density 𝐷it

0 along with the exponential tails used in the first part. Thus, equation (4) 
is reduced as follows: 

𝐷it = 𝑈T,v + 𝐷it
0 + 𝑈T,c (5). 

Subsequently a fit of the experimental HF-CV curve using the Gaussian 𝐷it model and simplified 
constant 𝐷it was performed. 
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3. Results and discussion

3.1. Evaluation of simulated HF-CV curves by applying simulated passivation parameters 
As a first step, 𝐷it has been simulated using the presented model based on Gaussians. The model to best 
fit the experimentally extracted data used the following parameters, summarized in Table 1. 

Table 1. 𝐷it simulation parameters 

Dangling bond 𝑁t
𝑃b0,Low ,  𝑁t

𝑃b1 , 𝑁t
𝑃b0,High  (cm-2) 𝑤Low, 𝑤High, 𝑤1 (eV) 𝐸0,Low, 𝐸1, 𝐸0,High (eV) 

𝑃b0
Low 4.7 × 1010 0.24 −0.375

𝑃b1 1.0 × 1010 0.27 −0.010

𝑃b0
High 2.5 × 1010 0.16 0.325

Strained bond 𝑁𝑣, 𝑁𝑐 (cm-2) 𝛽𝑣, 𝛽𝑐 (eV-1) 𝐸v, 𝐸c (eV) 
𝑈T,v 7.0 × 1015 46 −0.56

𝑈T,c 2.6 × 1014 46 0.56

The experimentally extracted as well as the simulated 𝐷it and the associated functions are depicted in 
figure 2. The extreme points closest to the band edges were not fitted since the values around the midgap 
are more significant for recombination.  

Figure 2. Comparison of the experimentally extracted and 
simulated 𝐷it as the sum of the Gaussian distributions for defect 
centers 𝑃b0 and 𝑃b1 and exponentials 𝑈T for the tail states. 

The resulting HF-CV curve based on the simulated 𝐷it is depicted in Figure 3(a) together with the 
experimental HF-CV data and a simulated curve resulting from 𝐷it = 0. For simplicity, the degeneracy 
factor of 𝑔 = 1 is assumed for the occupancy functions of donors as well as acceptors [8]. By comparing 
the simulated curves to the experimental data, the relative error is calculated and depicted in Fig. 3(b). 
On the one hand, the maximum relative error for the HF-CV curve without 𝐷it is around 8% around the 
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flatband voltage (FB) and the minimum error is found around the midgap voltage. On the other hand, 
the HF-CV curve simulated using the modelled 𝐷it presents a relative error far below 1% at any voltage. 

Figure 3. (a) Measured CV curve compared to 
simulated CV curve with 𝐷it and without 𝐷it 
are shown. The flatband (FB) and the midgap 
(MG) values are indicated. (b) Relative error 
associated to the simulated and measured HF-
CV curves for 𝐷it = 0 and for the simulated 𝐷it 
with Gaussian distributions for the defect 
centers 𝑃b0 and 𝑃b1. 

3.2. HF-CV curve fitting based on a simple U-shape 𝐷it model through HF-CV curve simulations 
The previous results were obtained using a simulated 𝐷it based on the Gaussian and exponential 
functions model which required a relatively large amount of computational power due to the large 
number of parameters. In order to approximate the 𝐷it in a less intricate way and with less computing 
time, the Gaussian functions were replaced by a constant value for 𝐷it as shown already in Equation (5). 
With this model, the fitting parameters could be reduced to only three: The slope of the exponential 
functions (𝑁𝑐 and 𝑁𝑣) and the parameter 𝐷𝑖𝑡

0 . Once appropriated ranges for these parameters were 
selected, three duplets of these parameters are taken into account to compare the mean square error 
(MSE) of the resulting simulated HF-CV curve with the experimental one. Thus, for a number of M 
experimental capacitance-voltage points, a value 𝑆𝑖,𝑗,𝑘, was calculated which is directly proportional to 
the MSE relating the difference between the experimental capacitance at specific m point 𝐶𝑚

𝑒𝑥𝑝 with a 
simulated capacitance 𝐶𝑚

𝑠𝑖𝑚, as can be seen in the following expression: 

𝑆𝑖,𝑗,𝑘 = ∑ (𝐶𝑚
𝑒𝑥𝑝

− 𝐶𝑚
𝑠𝑖𝑚(𝐷𝑖𝑡,𝑖

0 , 𝑁𝑐,𝑗, 𝑁𝑣,𝑘))
2

𝑀
𝑚=1 (6) 

Where the subscripts i, j and k represent a specific combination of the model parameters. The total 
number of points with the optimized curve with minimum MSE is depicted in Figure 4. The 

(b) 

(a)
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corresponded simulated HF-CV curve with minimum MSE is shown in figure 5(a). In contrast to the 
previous Gaussian method, due to the lower computational resources required by this new approach, we 
assumed degeneracy factors of 𝑔 =

1

2
  and 𝑔 = 2 for donors and acceptors, respectively, as suggested in 

[8]. 

Figure 4. Each point represents a 𝑆𝑖,𝑗,𝑘 in selected 
ranges. In line red lies the point with minimum MSE. 

Figure 5. (a) Fitted and simulated HF-CV 
curves comparison. (b) The correspondent 
relative error less than of 1%. 

The relative error depicted in Figure 5(b) is less than of 1% at any voltage when applying this simple 
U-shape model. Finally, the experimentally extracted and the approximated 𝐷it are compared as shown
in Figure 6. From this fitting procedure the following fitting parameters have been obtained: 𝐷𝑖𝑡

0 =
4.54 × 1010 cm−2eV−1, 𝑁𝑐 =  2.43 × 1014 cm−2eV−1 and 𝑁𝑣 = 1.52 × 1015 cm−2eV−1.

(a) 

(b)
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Figure 6. Comparison of the experimentally extracted and 
approximated 𝐷it based on a simple U-shape model. 

Additionally, the average of central values of the 𝐷it around the midgap in the range between 
−0.25 eV to 0.25 eV (𝐷̅it,center) has been calculated, where most of the recombination processes occur
[14]. Finally, a very good approximation is achieved when comparing the average 𝐷it of the experimental
data and the modeled data within the entire band gap. Here, a relative error of around 0.3 % indicates
that this method allows to obtain an acceptable approximation of the 𝐷̅it.

4. Conclusions
High-Frequency Capacitance-Voltage (HF-CV) curves were simulated for different passivation
parameters at the SiO2/c-Si interface using experimental data and different models to describe the
interface defects states. A complex and a simplified method to simulate the HF-CV curves have been
proposed based on different approximations of de 𝐷it distribution: (1) Sum of Gaussians representing
different defect centers and tail states represented by exponential functions, (2) Sum of a constant 𝐷it

value and the tail states. The second approach, which is computationally less complex results in a very
good approximation of the experimental HF-CV curve. This was achieved by an algorithm that looks
for the best fitting parameters that minimize the square error when comparing the experimental and the
simulated curves. Both methods allow a reliable estimation of the passivation parameters and could be
helpful to study other passivation materials that are not as stable or of similar high passivation quality
as thermally grown SiO2 on c-Si.
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