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The non-real spectrum of a singular indefinite Sturm–Liouville operator
with regular left endpoint

Jussi Behrndt1, Philipp Schmitz2,∗, and Carsten Trunk2

1 Institut für Angewandte Mathematik, Technische Universität Graz, Steyrergasse 30, 8010 Graz, Austria
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We provide bounds on the non-real spectra of indefinite Sturm–Liouville differential operators of the form (Af)(x) =
sgn(x)(−f ′′(x) + q(x)f(x)) on the interval [a,∞), −∞ < a < 0, with real potential q ∈ L1(a,∞). The bounds de-
pend only on the L1-norm of the negative part of q and the boundary condition at the regular endpoint a.
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1 Introduction and main result

We consider the Sturm–Liouville differential operator

(Aαf)(x) = sgn(x)
(
− f ′′(x) + q(x)f(x)

)
, D(Aα) =




f ∈ L2(a,∞)

∣∣∣∣∣∣∣

f, f ′ ∈ AC[a,∞),

− f ′′ + qf ∈ L2(a,∞),

cos(α)f(a) = sin(α)f ′(a)




, (1)

in L2(a,∞) for α ∈ [0, π), where q ∈ L1(a,∞) is a real function and −∞ < a < 0. Here, AC[a,∞) denotes the space
of functions which are absolutely continuous on every compact subset of [a,∞). As the weight sgn changes the sign the
operator Aα is neither symmetric nor self-adjoint in L2(a,∞) with respect to the usual scalar product (·, ·). Hence, Aα may
have non-real spectrum. But, equipped with the inner product [·, ·],

[f, g] =

∫ ∞

a

f(x)g(x) sgn(x) dx, f, g ∈ L2(a,∞),

L2(a,∞) is a Krein space with the fundamental symmetry J : L2(a,∞) → L2(a,∞), (Jf)(x) = sgn(x)f(x), where Aα
is self-adjoint with respect to [·, ·]; for the basic notions in Krein spaces we refer to [1] and [7]. Indeed, while the finite
endpoint a is regular the integrability of q implies the limit point case at the singular endpoint ∞, cf. [13, Lemma 9.37].
Hence, the definite Sturm–Liouville operator JAα on D(JAα) = D(Aα) is self-adjoint in the Hilbert space L2(a,∞) and
due to (·, ·) = [J ·, ·] the self-adjointness of Aα with respect to [·, ·] follows. By [2, Corollary 3.9] the operator Aα has
nonempty resolvent set and its essential spectrum coincides with the essential spectrum of JAα, where σess(JAα) = [0,∞),
see Theorem 9.38 and the note below in [13].

Recently, bounds for the non-real spectra of indefinite Sturm–Liouville operators were developed in [3,8–12] for operators
with two regular endpoints and in [4–6] for operators with two singular endpoints. The result in Theorem 1.1 addresses
singular operators with one regular and one singular endpoint. The proof is based on techniques developed in [5, 6]. In the
following let q = q+ − q−, where q+(x) = max{q(x), 0} and q−(x) = max{−q(x), 0}.

Theorem 1.1 The operator Aα, α ∈ [0, π), in (1) is self-adjoint with respect to the inner product [·, ·]. Let cα = 0 if
α = 0 and cα = cot(α) if α ∈ (0, π). The essential spectrum of Aα equals [0,∞) and the non-real spectrum of Aα is purely
discrete. Every non-real eigenvalue λ of Aα satisfies

|Imλ| ≤ 24
√
3
(
‖q−‖1 + |cα|

)2
and |λ| ≤

(
24
√
3 + 18

)(
‖q−‖1 + |cα|

)2
+ 6|cα|

(
‖q−‖1 + |cα|

)
. (2)

P r o o f. Consider an eigenvalue λ ∈ C \ R of Aα and a corresponding eigenfunction f with ‖f‖2 = 1. Let

U(x) =

∫ ∞

x

|f |2 sgn, V (x) =

∫ ∞

x

(
|f ′|2 + q|f |2

)
, (3)

for x ∈ [a,∞). One can show that f satisfies limx→∞ f ′(x)f(x) = 0, f ′ ∈ L2(a,∞) and q|f2| ∈ L1(a,∞), cf.
[6, Appendix A]. Hence, the functions V and U given by (3) are well-defined on [a,∞) with values in R. Moreover,
limx→∞ U(x) = 0 and limx→∞ V (x) = 0. Integration by parts together with the eigenvalue equation λf = Aαf yields

λU(x) =

∫ ∞

x

(Aαf)f sgn = V (x) + f ′(x)f(x). (4)
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2 of 2 Section 23: Applied operator theory

As f ∈ D(Aα) we have f ′(a)f(a) = cα|f(a)|2 ∈ R. Evaluating (4) at x = a and comparing the imaginary parts we obtain
U(a) = 0 and V (a) = −cα|f(a)|2. Hence,

0 ≤ ‖f ′‖22 = −
∫ ∞

a

(
q+ − q−

)
|f |2 − cα|f(a)|2 ≤

(
‖q−‖1 + |cα|

)
‖f‖2∞. (5)

Furthermore, this implies
∫ ∞

a

q+|f |2 ≤
(
‖q−‖1 + |cα|

)
‖f‖2∞, ‖qf2‖1 ≤ 2

(
‖q−‖1 + |cα|

)
‖f‖2∞. (6)

Here, the norm ‖f‖∞ can be estimated as follows. Since f ∈ L2(R) is continuous there exists a sequence (yn)n∈N in (a,∞)
with yn →∞ and f(yn)→ 0 as n→ 0. Thus,

|f(x)|2 = |f(yn)|2 + 2Re

∫ x

yn

f ′f, ‖f‖2∞ ≤ 2‖f ′‖2,

where we used the Cauchy–Schwarz inequality and ‖f‖2 = 1 in the last estimate. This together with (5) leads to

‖f ′‖22 ≤ 4
(
‖q−‖1 + |cα|

)2
and ‖f‖2∞ ≤ 4

(
‖q−‖1 + |cα|

)
. (7)

Observe, that it is no restriction to consider ‖q−‖1 + |cα| > 0 since otherwise f is constantly zero. We define an absolutely
continuous function g by

g(x) =

{
x
δ if x ∈ (−δ, δ),
sgn(x) if x ∈ [a,−δ] ∪ [δ,∞),

where δ =
1

24
(
‖q−‖1 + |cα|

) .

Here, the interval [a,−δ] is considered to be empty if −δ < a. We have ‖g‖∞ = 1 and ‖g′‖2 =
√

2/δ. Then

∫ ∞

a

g′U =

∫ ∞

a

g|f |2 sgn ≥
∫

(a,∞)\(−δ,δ)
|f |2 = 1−

∫ δ

−δ
|f |2

≥ 1− 2δ‖f‖2∞ ≥ 1− 8δ
(
‖q−‖1 + |cα|

)
≥ 2

3
.

(8)

Further, we obtain with (6) and (7)
∣∣∣∣
∫ ∞

a

g′V

∣∣∣∣ =
∣∣∣∣
∫ ∞

a

g
(
|f ′|2 + q|f |2

)
− g(a)V (a)

∣∣∣∣ ≤ ‖f ′‖22 + ‖qf2‖1 + |cα|‖f‖2∞

≤ 12
(
‖q−‖1 + |cα|

)2
+ 4|cα|

(
‖q−‖1 + |cα|

) (9)

and with (7)
∣∣∣∣
∫ ∞

a

g′ff ′
∣∣∣∣ ≤ ‖f‖∞‖f ′‖2‖g′‖2 ≤ 4

√
2/δ
(
‖q−‖1 + |cα|

) 3
2 ≤ 16

√
3
(
‖q−‖1 + |cα|

)2
. (10)

By (4) we have

λ

∫ ∞

a

g′U =

∫ ∞

a

g′
(
V + f ′f

)
. (11)

A comparison of the imaginary parts and the absolute values in (11) together with the estimates (8)–(10) shows (2).

References
[1] T. Ya. Azizov and I. S. Iokhvidov, Linear Operators in Space with an Indefinite Metric (John Wiley & Sons Ltd., Chichester, 1989).
[2] J. Behrndt and F. Philipp, J. Differ. Equations 248, 2015–2037 (2010).
[3] J. Behrndt, S. Chen, F. Philipp, and J. Qi, Proc. R. Soc. Edinb., Sect. A, Math. 144, 1113–1126 (2014).
[4] J. Behrndt, F. Philipp, and C. Trunk, Math. Ann. 357, 185–213 (2013).
[5] J. Behrndt, S. Schmitz, and C. Trunk, Proc. Amer. Math. Soc. 146, 3935–3942 (2018).
[6] J. Behrndt, S. Schmitz, and C. Trunk, J. Differ. Equations 267, 468–493 (2019).
[7] J. Bognar, Indefinite Inner Product Spaces (Springer, Berlin, 1974).
[8] S. Chen and J. Qi, J. Spectr. Theory 4, 53–63 (2014).
[9] S. Chen, J. Qi, and B. Xie, Proc. Amer. Math. Soc. 144, 547–559 (2016).

[10] X. Guo, H. Sun, and B. Xie, Electron. J. Qual. Theory Differ. Equ. 2017, 1–14 (2017).
[11] M. Kikonko and A. B. Mingarelli, J. Differ. Equations 261, 6221–6232 (2016).
[12] J. Qi and B. Xie, J. Differ. Equations 255, 2291–2301 (2013).
[13] G. Teschl, Mathematical Methods in Quantum Mechanics (Amer. Math. Soc., Providence, RI, 2009).

© 2019 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim www.gamm-proceedings.com




