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If people sat outside and
looked at the stars each night,

I’ll bet they’d live a lot differently.

— Bill Watterson
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K U R Z FA S S U N G

Die Erzeugung hoher Harmonischer ist ein vielseitig nutzbarer Prozess, der
einerseits atomare und molekulare Strukturen während der Erzeugung selbst
untersucht und andererseits eine Quelle heller, kurzer sowie kohärenter, extrem-
ultravioletter Strahlung ist. Hierbei kann die harmonische Strahlung durch die
Form des antreibenden Lasers hinsichtlich ihrer Polarisation oder Frequenzen
kontrolliert werden. Die neusten Fortschritte zeigen, dass Laguerre-Gaußsche
Strahlen, die zusätzlich zu ihrem Spin- auch Bahndrehimpuls tragen, ebenso für
die Erzeugung hoher Harmonischer genutzt werden können.
In der vorliegenden Arbeit analysieren wir die Erzeugung hoher Harmonischer
mit Laguerre-Gaußschen Strahlen im Rahmen der Starkfeld-Approximation und
zeigen, dass hierzu sowohl die Betrachtung der Wechselwirkung eines einzelnen
Atoms mit dem antreibenden Laser sowie die Überlagerung aller Beiträge der
einzelnen Atome notwendig ist.
Zunächst untersuchen wir die Erzeugung hoher Harmonischer mit linear polar-
isierten Laguerre-Gaußschen Strahlen. Wir zeigen, wie der Bahndrehimpuls des
antreibenden Lasers auf die erzeugten Harmonischen übertragen wird. Hierzu
haben wir anschauliche Photonendiagramme entwickelt, um die Erhaltung des
Bahndrehimpulses darzustellen. Im Anschluss untersuchen wir die Phasenanpas-
sung der erzeugten Harmonischen, um die Umwandlungseffizienz zu erhöhen.
Wir betrachten dazu insbesondere die Kohärenzlänge an verschiedenen Positionen
des erzeugenden Lasers. Wir zeigen zum Beispiel, dass die Kohärenzlänge vor
dem Fokus größer ist als hinter dem Fokus des Lasers.
Des weiteren untersuchen wir die Erzeugung hoher Harmonischer mit einem
Paar von gegenläufig zirkular polarisierten Laguerre-Gaußschen Strahlen. Dazu
leiten wir Auswahlregeln her, die die Energieerhaltung sowie die Erhaltung des
Spin- und Bahndrehimpulses berücksichtigen. Zusätzlich zeigen wir, dass der
Bahndrehimpuls der erzeugten Harmonischen genau durch den Bahndrehimpuls
des erzeugenden Lasers kontrolliert werden kann. Zum Schluss betrachten wir die
zeitliche Entwicklung der hohen Harmonischen und zeigen, dass hierbei helikale
Lichtfedern geformt werden und erklären wie Parameter der Lichtfedern, wie
beispielsweise die Anzahl der Windungen, kontrolliert werden können.
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A B S T R A C T

High-harmonic generation is a versatile process, for one thing useful to explore
the structure of atoms or molecules during the generation itself and apart from
that a source of bright, short, coherent extreme ultraviolet radiation. Thereby the
harmonic radiation can be controlled by the shape of the driving laser with respect
to its polarization or frequencies. Recent advances show that Laguerre-Gaussian
beams, which carry in addition to their spin also orbital angular momentum, can
be utilized for high-harmonic generation.
In this thesis, we analyze high-harmonic generation with Laguerre-Gaussian beams
in the framework of the strong-field approximation and show that this requires
both the interaction of a single atom with the driving laser and the macroscopic
superposition of all single atom contributions.
We first investigate high-harmonic generation with linearly polarized Laguerre-
Gaussian beams. There, we show how the orbital angular momentum of the
driving laser is transferred to the generated harmonics. Here, we developed vivid
photon diagrams to explain the conservation of orbital angular momentum. We
then consider phase matching of the generated radiation in order to increase the
conversion efficiency. In particular, we analyze the coherence length at different
positions in the generating beam. We show, for example, that the coherence length
is increased if the target is placed behind the focus plane compared to a target
before the focus plane.
Furthermore, we investigate high-harmonic generation with a pair of counter-
rotating circularly polarized Laguerre-Gaussian beams. Here, we derive selection
rules that take account of the conservation of energy, spin and orbital angular
momentum. In addition, we show that the orbital angular momentum of the gener-
ated harmonics can be precisely controlled by the orbital angular momentum of the
driving beam. Finally, we investigate the temporal evolution of the high-harmonic
signal, and show that it forms helical light springs. We also explain how to control
parameters of the light spring, such as the number of coils.
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1
I N T R O D U C T I O N

1.1 a brief history of attosecond physics

It has always been fascinating for people to keep memories in terms of pictures.
In early times the only possibility was to paint or draw pictures. A big step was
made in 1822 when Joseph Nicéphore Niépce successfully took photographs with
his camera obscura. However, it was only possible to take photographs of static
objects and not of moving animals or people. In order to take photographs of mov-
ing objects, it is required to have a small period of exposure. Generally, it must be
shorter than the time it takes the object to move a characteristic length. Of course,
this length determines the blur of the image.
In 1872, the American governor Leland Stanford requested the photographer Ead-
weard Muybridge to find out whether a galloping horse is ever completely aloft.
Muybridge was able to reduce the period of exposure to less than a tenth of a sec-
ond and was thus able to resolve this open question with the answer yes [1]. One of
his photographs is shown in the left part of Fig. 1.1. His success can be seen as the
beginning of chronophotography, which terms the photographic documentation of
moving objects. Within the last century the exposure times dropped by several or-
ders of magnitude. Nowadays exposure times of about 25ns are achievable with
stroboscope light sources [2] and it is possible to observe and capture motion at
this timescales with for example applications in slow motion photography.
But is it possible to capture the motion of an electron? If we consider an electron
moving classically on the first Bohr’s orbit, it takes about 150 as1 to travel once
around the nucleus, as illustrated in the right part of Fig. 1.1. In order to observe
electronic motion it is therefore required to have exposure times in the attosecond
range, which means using light pulses that have duration of less than a femtosec-
ond2.
A typical Titan:sapphire laser has a wavelength of about 800nm, which corresponds
to a cycle length of 2.5 fs [3]. Physically it is not possible to have light pulses that
are shorter than one cycle. New light sources were therefore required to observe
such ultrafast processes.

1 1 as = 10−18 s

2 1 fs = 10−15 s

1
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Figure 1.1: Left: Horse in motion from [4], which takes place in timescales of approximately
a tenth of a second. Right: Illustration of an electron on first Bohr’s orbit. Elec-
tronic motion usually happens on sub-femtosecond timescales.

In 1987, the first observations of high-harmonic generation (HHG) in rare gases
were made [5, 6]. The research group around L’Huillier aimed to observe the flu-
orescence of excited atoms, whereas they measured that the atoms emitted highly
energetic radiation. The frequencies of the radiation were (high) odd multiples of
the frequency of the driving laser, which were therefore called odd harmonics. It
has been fascinating that many of these harmonics have been emitted at similar
intensities over a wide spectral range and form the so-called plateau in HHG [7].
Corkum explained these observations within his simple-man’s model: During the
short time, where the laser interacts with the atom there is not only single ioniza-
tion but the electron may also come back to the parent ion, recombine and therefore
a high energetic photon is emitted [8]. About one year later the first complete theo-
retical description of HHG has been provided by Lewenstein and Corkum [9].
At this time, it was not yet known that the emitted radiation forms attosecond
pulses. It took another seven years until the group of Ferenc Krausz was able to
measure the duration of such a pulse [10]. A single attosecond pulse is generated if
the driving infrared pulse is very short, about or less than 5 fs. If the driving beam
consists of multiple cycles, a so-called attosecond pulse train is generated [11, 12].
Until the present the HHG reveals a table top source for coherent radiation in the
extreme ultraviolet (10− 100nm) and even up to the soft X-Ray regime (1− 10nm)
[13]. These pulses can be used to probe matter at fundamental timescales [14–17].
Moreover, multiple studies have proven that the driving infrared beams can be
used to control the HHG and therefore have a significant impact on the generated
harmonic signal [18–20].
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Figure 1.2: Illustration of the generation of twisted light with a spiral phase plate.

1.2 the orbital angular momentum of light

It is well known that light, as an electromagnetic wave, carries energy. Often less
attention is paid to the different forms of momentum of light. For example, light
carries in addition to energy also linear momentum, which becomes apparent in
terms of radiation pressure [21, 22].
In the beginning of the 20th century, it was Poynting who came up with the idea
that light fields, whose electric field vector is spinning, should have some form of
angular momentum [23]. This type of angular momentum was named spin angu-
lar momentum (SAM) and is associated with the polarization of the light. In 1936,
the angular momentum of light was experimentally detected by Holburn [24] and
Beth [25]. Moreover, it was shown that the SAM is quantized, such that the SAM of
a single photon can only be ±h, where h = 1 in atomic units [26]. Thereby, left
circularly polarized light has SAM of +h and right circularly polarized light of −h.
Less known is the third form of momentum of light, the orbital angular momen-
tum (OAM). It was a pioneering work by Allen et al. that connected an azimuthally
varying phase eiℓφ in the electric field to its OAM [27]. This azimuthal phase in-
duces a phase singularity together with a zero intensity region on the beam axis.
Moreover, it causes helical phase fronts, which is a fundamental difference to plane
wave phase fronts. Due to the helical phase fronts light beams with OAM are often
referred to as twisted light or optical vortices.
Nowadays, these beams can be routinely generated in the lab with for example
cylindrical mode converters [27], pitchfork holograms [28] or spiral phase plates
[29]. The latter one is shown in Fig. 1.2. Here the thickness of the plate varies az-
imuthally but is radially constant. As the fundamental beam passes through the
plate it undergoes a phase-change which introduces the helical phase front.
Twisted light beams paved new ways for light-matter interaction. Recent theoretical
and experimental results show that atomic transitions can be induced beyond the
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plane wave selection rules [30–32].
In addition, the single photon ionization of atoms by twisted light modifies the
electron wave packet and gives rise to a large variety of dichroism signals that are
different from the the well-known circular dichroism [33, 34].
Furthermore, optical vortices have been used to trap particles [35] or as a tool to
detect spinning objects [36] and show potential use in optical telecommunication,
so-called OAM multiplexing [37].
The wide range of applications of twisted light beams, indeed stimulated extensive
research on the generation of vortex beams up to the extreme ultraviolet region.
Within the last years HHG has been found a versatile source of extreme ultraviolet
vortex beams, which has also been the ignition key for the work presented in this
thesis.

1.3 short overview of the thesis

In Ch. 2, we will start with the theoretical description of plane wave light beams,
continue with Gaussian beams and finally consider the description of twisted light
beams. We here consider a special class of twisted beams, so-called Laguerre-
Gaussian (LG) beams.
We devote Ch. 3 to the theory to compute high-harmonic signals. This chapter is
subdivided into two parts. In the first part we present HHG on the single atom
level. We start with the simple-man’s model and some classical considerations. We
then continue with the quantum mechanical model for HHG based on the well-
know strong-field approximation (SFA). In the second part of this chapter we deal
with the coherent nature of HHG. We show how to compute the experimentally
measurable signal, which arises from a coherent summation of many single atom
contributions.
Then, in Ch. 4, we introduce HHG with linearly polarized LG beams and show that
the conservation of OAM is fulfilled. Moreover, we introduce photon diagrams to
explain the conservation laws. In particular, we apply these diagrams to more so-
phisticated scenarios of HHG that arise from the superposition of two LG beams.
Next, we analyze phase matching in HHG with LG beams and optimize the posi-
tion of the atomic target with respect to the focus of the driving beam in order to
achieve a high conversion efficiency.
In Ch. 5, we investigate HHG with driving beams with circular polarization. Thereby,
we introduce bicircular beams. After a short discussion about their symmetry, we
show that harmonics can be generated with these beams. In a next step, we analyze
how the OAM of the driving beam is transferred to the generated harmonics and
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we derive selection rules that follow from the simultaneous conservation of energy,
OAM and SAM. We furthermore show that we can precisely control the OAM of the
generated harmonics. Afterwards, we examine the temporal evolution of the high-
harmonic signal and analyze the shape of the so-called light springs.
Finally, we summarize our results in Ch. 6 and conclude with an outlook for possi-
ble future work.
Atomic units are used throughout the thesis unless stated otherwise:

e = h = me = 4πε0 = 1.





2
T W I S T E D L I G H T B E A M S

2.1 plane waves

Generally, electromagnetic waves in vacuum can be described by a second-order
linear partial differential equation, the homogeneous wave equation. In this thesis,
we will focus on the electric field and ignore the magnetic field, since the electric
field predominantly determines the driving field for HHG. We can write the wave
equation for the electric field as [38]

∇2E(r, t) −
1

c2
∂2

∂t2
E(r, t) = 0, (2.1)

where c is the speed of light. For monochromatic fields, wen can separate the time
dependent part from the spatial part as

E(r, t) = u(r)e−iωt. (2.2)

The spatial amplitude u(r) is then a solution to the Helmholtz equation(︂
∇2 + k2

)︂
u(r) = 0, (2.3)

where k = ω
c denotes the wave number. If we consider waves that propagate in

z-direction, we can write the wave vector as k = kez. A solution to the Helmholtz
equation is given by

u(r) = êu0eikz. (2.4)

Here u0 is the amplitude of the wave and ê is a polarization vector. For linear
polarization along x-direction we have ê = êx, while for left (ê+) or right (ê−)
circular polarization we have

ê± =
1√
2

⎛⎜⎜⎜⎝
1

±i

0

⎞⎟⎟⎟⎠ . (2.5)

7



8 twisted light beams

Figure 2.1: (a) Phase fronts of a plane wave that propagates in z-direction. (b) Intensity
profile of a plane wave perpendicular to the propagation direction shows a
uniform distribution.

The wavefronts of these solutions are characterized by eikz = const, which describes
planes perpendicular to the propagation direction, as shown in Fig. 2.2a. Therefore
these solutions to the Helmholtz equation are also called plane waves. Another char-
acteristic property of plane waves is a uniform intensity profile perpendicular to
the propagation direction, also called transverse profile. This intensity profile is
shown in Fig. 2.2b.

2.2 paraxial approximation

For plane waves the amplitude u0 is independent of the spatial coordinate r. How-
ever, this is only true for a very limited selection of beams. Generally the amplitude
is position-dependent u0 = u0(r), which makes is more difficult to find solutions to
the Helmholtz equation. Nevertheless, if the z-derivative of the spatial amplitude
u(r) varies sufficiently slowly with z, such that⃓⃓⃓⃓

∂2u0(r)
∂z2

⃓⃓⃓⃓
<<

⃓⃓⃓⃓
k
∂u0(r)
∂z

⃓⃓⃓⃓
and

⃓⃓⃓⃓
∂2u0(r)
∂z2

⃓⃓⃓⃓
<<

⃓⃓⃓⃓
∇2

⊥u0(r)
⃓⃓⃓⃓

(2.6)

the Helmholtz equation (Eq. 2.3) can be rewritten in its paraxial approximation

∇2
⊥u0(r) + 2ik

∂u0(r)
∂z

= 0. (2.7)
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We can rewrite this equation in cylindrical coordinates as(︃
1

ρ

∂

∂ρ
+
∂2

∂ρ2
+
1

ρ2
∂2

∂φ2
+ 2ik

∂

∂z

)︃
u0(r) = 0. (2.8)

2.2.1 Gaussian beams

Gaussian beams are a solutions to Eq. 2.8. Analytically, we can express the ampli-
tude as

u0(ρ, z) = u0
w0
w(z)

e

(︃
−ρ2

w(z)2

)︃
e
i

(︃
k ρ2

2R(z)+ψ(z)

)︃
. (2.9)

The transverse profile of a Gaussian beam has a Gaussian shape, where the waist
or more precisely the radius at which the amplitude of the beam reaches a fraction
of 1e of its on axis value at the focus z = 0 is given by w0. Along the beam axis the
waist is given by

w(z) = w0

√︄
1+

(︃
z

zr

)︃2
. (2.10)

The Rayleigh range zr is the distance from the focus, where the cross section of the
beam has doubled

zr =
π ·w20
λ

. (2.11)

The phase front radius R(z) is given by

R(z) = z

(︃
1+

(︂zr
z

)︂2)︃
, (2.12)

which is infinite at the focus, respectively the phase front is a plane at z = 0. Gener-
ally, Gaussian beams do not have plane wave phase fronts, however the phase front
radius is large compared to the waist. Thus for many applications it is reasonable
to approximate Gaussian beams as plane waves. The beam has the smallest phase
front radius at the Rayleigh range, where R(zr) = 2zr. The Gouy phase

ψ(z) = − arctan
(︃
z

zr

)︃
(2.13)

was discovered experimentally in 1890 by Louis Georges Gouy [39] and describes
a phase shift of π across the focus of the beam.
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Figure 2.2: Visualization of geometrical parameters in a Gaussian beam that propagates in
z-direction. Here, w0 is the waist of the beam at the focus z = 0, R(z) is the
phase front radius and zr is the Rayleigh range.

For many experiments in strong-field physics Ti:sapphire lasers with a wavelength
of λ = 800nm are used. Here, the waist is usually in the order of 30µm and the
Rayleigh range is approximately 3.5mm [40].

2.2.2 Laguerre-Gaussian beams

A complete set of solutions to Eq. 2.8 are Laguerre-Gaussian (LG) beams, which can
be expressed as

uℓ,p(ρ,φ, z) = u0
w0
w(z)

(︄√
2ρ

w(z)

)︄|ℓ|

e

(︃
−ρ2

w(z)2

)︃
Lℓp

[︃
2ρ2

w(z)2

]︃
(2.14)

×e
i

(︃
ℓφ+ kρ2

2R(z)+(2p+|ℓ|+1)ψ(z)

)︃
. (2.15)

Here Lℓp
[︂
2ρ2

w(z)2

]︂
are the generalized Laguerre polynomials [41]. The intensity pro-

files of LG beams show concentric rings, where the number of rings is determined
by the radial quantum number p, more precisely by p+ 1. Several transverse in-
tensity profiles of LG at z = 0 are shown in the upper row of Fig. 2.3. The az-
imuthal mode index ℓ is an eigenvalue of the amplitude with respect to the opera-
tor L̂z = −i ∂∂φ , and is related to the OAM of the beam. This parameter induced the
azimuthal phase dependence, which can be seen in the lower row of Fig. 2.3. LG

beams with OAM ℓ exhibit a phase shift of ℓ · 2π along the azimuth. The radius of
the first maximum in the transverse intensity profile increases with the OAM for a
constant number of radial nodes, respectively a constant p.
Notably, a LG beam with p = ℓ = 0 is a Gaussian beam, which also can be seen by
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Figure 2.3: Transverse intensity profiles of various LG beams at z = 0 (upper row) and their
corresponding phase profiles (lower row). The peak intensity was normalized
to 1.

a comparison of Eq. 2.9 and Eq. 2.14. The phase profile of the LG0,0 beam, respec-
tively the Gaussian beam, shows the phase profile of a plane wave.
The azimuthal mode index also causes the corkscrew like structure for the planes
of constant phase. Fig. 2.4 shows the planes of constant phase for a Gaussian beam
(LG0,0) and LG beams with nonzero OAM ℓ, which clearly show the helical phase
fronts. Especially, for ℓ = 2 there are two intertwined helicoids. Throughout the
thesis we will use the notation LGℓ,p in order to describe a LG beam with OAM ℓ

and radial node index p. The notation LGℓ implicitly assumes that p = 0.

2.2.3 Divergence of Laguerre-Gaussian beams

For Gaussian beams the waist of a beam is defined as the value, where the inten-
sity decreases to 1

e2
of its on axis value. For large values of z the waist w(z) is

proportional to z. Therefore for Gaussian beams the divergence can be defined as
the limit

βdiv = lim
z→∞ arctan

(︃
∂w(z)

∂z

)︃
= arctan

(︃
λ

πw0

)︃
≈ λ

πw0
, (2.16)

where the last step is justified since λ ≪ w0. For some characteristic values of
λ = 800nm and w0 = 30µm, we obtain a divergence of approximately 8mrad.
However, this definition cannot be applied to LG beams, since their intensity on axis
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Figure 2.4: Planes of constant phase for a Gaussian beam (left) and LG beams with nonzero
OAM.

is zero. Here, it is more appropriate to consider the radius of maximal intensity and
its angular spread as the beam propagates. For monochromatic beams, we write

I(ρ, z) ∼
1

w(z)2

(︄√
2ρ

w(z)

)︄2|ℓ|
e
− 2ρ2

w(z)2 . (2.17)

The radius of maximal intensity can be found by calculating ∂I(ρ,z)
∂ρ = 0 and is given

by

ρmax =

√︃
|ℓ|

2
w(z). (2.18)

With this definition, we get

βdiv = lim
z→∞ arctan

(︃
∂ρmax

∂z

)︃
= arctan

(︄√︃
|ℓ|

2

λ

πw0

)︄
≈
√︃

|ℓ|

2

λ

πw0
. (2.19)

However, for Gaussian beams with ℓ = 0 the radius of maximal intensity ρmax = 0,
which makes Eq. 2.18 not feasible for a general approach to describe the angular
spread of LG beams.
Another approach to the divergence of LG beams is to consider the standard devi-
ation of the spatial distribution, respectively the square root of the mean squared
radius of the normalized transverse intensity profiles Ĩ(ρ, z) [42]:

ρsd = 2π

∫︂∞
0
ρ2Ĩ(ρ, z)ρdρ (2.20)

=

√︃
|ℓ|+ 1

2
w(z). (2.21)
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With this definition, we finally get

βdiv = lim
z→∞ arctan

(︃
∂ρsd

∂z

)︃
= arctan

(︄√︃
|ℓ|+ 1

2

λ

πw0

)︄
≈
√︃

|ℓ|+ 1

2

λ

πw0
(2.22)

for the divergence of LG beams. Notably, for large1 values of ℓ that we usually face
in HHG, the values for the divergence from Eq. 2.19 and Eq. 2.22 approach each
other.

1 ℓ ≈ 10





3
T H E O R E T I C A L A P P R O A C H T O H I G H - H A R M O N I C
G E N E R AT I O N

In this chapter, we introduce theoretical models for HHG. In particular, we will
consider the two opposing sides of HHG and their interplay. On the microscopic
side, HHG arises from the interaction of a single atom with an intense laser field,
whereas on the macroscopic side, the harmonic signal, which can be measured at
the detector, is a coherent superposition of all single atom responses to the intense
laser field. Therefore a theoretical investigation of HHG requires the analysis of both,
the microscopic and the macroscopic side.
High-harmonics can be generated from atomic [5, 6], molecular [43], ionic [44]
targets and even from solids [45] and crystals [46]. We focus on HHG with atomic
gas targets. For brevity and simplicity, we will call our target atom.

3.1 microscopic picture

The microscopic picture of HHG describes the interaction of a single atom with
the intense near-infrared laser field. Here, intense usually means in the order of
1014 W/cm2. This picture helps to analyze for example which harmonics are gener-
ated and moreover provides information about the polarization of the harmonics.
In order to explore the microscopic picture we will first explain in Sec. 3.1.1 two dif-
ferent ionization mechanisms. Then, we introduce the vivid simple-man’s or three
step model in Sec. 3.1.2. In Sec. 3.1.3 we consider semi-classical aspects of HHG

and continue in Sec. 3.1.4 with a quantum mechanical description in terms of the
Lewenstein model in the framework of the SFA.

3.1.1 Multiphoton and tunnel ionization

Generally, if a laser, whose frequency is smaller than the binding energy of the va-
lence electron, ionizes an atom, we face two different mechanisms of ionization. The
distinction between these two mechanism finds its origin in the work of Keldysh

15
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[47]. He introduced a dimensionless parameter to distinguish between the multi-
photon and tunneling regime. The Keldysh parameter can be defined as

γ =

√︄
Ip

2Up
, (3.1)

where Ip is the binding energy of the electron and Up, the ponderomotive energy,
is the cycle averaged kinetic energy of the electron in the laser field. For a linearly
polarized laser with the electric field amplitude amplitude E0 and frequency ω, we
get

Up =
E20
4ω2

. (3.2)

We generally distinguish between:

γ≫ 1: Multiphoton ionization, which assumes that the electron absorbs multi-
ple photons to overcome the ionization threshold (Fig. 3.1a).

γ≪ 1: Tunnel ionization, which assumes that the strong electric field of the
laser suppresses the atomic potential, such that a barrier is formed
where the electron can tunnel through (Fig. 3.1b).

Of course, this sharp distinction is only true for limiting cases. This can be further
illustrated by the dependencies of the Keldysh parameter to the frequency and the
amplitude of the electric field:

γ ∼
ω

E0
. (3.3)

Intuitively, tunneling is favored if the field becomes more static, which implies that
the electron has more time to tunnel through the barrier. Similarly we can argue
that the electron is more likely to tunnel if the barrier is stronger suppressed. Thus
we can summarize that the probability for the electron to be released via tunnel
ionization can be increased by decreasing the frequency and increasing the field
amplitude.

3.1.2 Simple-man’s model

An intuitive explanation and by far most vivid and powerful picture of various
processes in strong fields, such as HHG, was provided by Corkum [8]. He divided
these processes in three separate steps, as illustrated in Fig. 3.2. Generally we can
consider these three steps as follows:
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Figure 3.1: Illustration of (a) multiphoton and (b) tunnel ionization. In the multiphoton
regime the electron (blue) is released due to the absorption of several photons.
In the tunneling regime, the strong laser field suppresses the atomic potential,
which enables the electron to tunnel.

1. The strong laser field suppresses the atomic potential, which forms a barrier.
An electron can tunnel through this barrier and thus be released via tunnel
ionization.

2. The released electron is driven and accelerated by the strong oscillating laser
field. After half1 a cycle, the electric field changes its sign and therefore causes
an acceleration of the electron in the opposite direction.

3. The electron may come back to its parent ion. As the electron comes back, it
may:

• scatter elastically from the ion (rescattering), which gives rise to photo
electrons with very high momentum, up to 10Up [48, 49],

• scatter inelastically and release a second electron (non-sequential double
ionization) [50, 51]

• recombine under the emission of a high energetic photon, which is
known as HHG [52, 53].

In the context of this thesis we will focus in particular on the latter, respectively
HHG.

3.1.3 Semi-classical aspects of HHG

The ionization of the atom, respectively the release of the electron is typically de-
scribed as a tunnel ionization through the suppressed barrier of the atomic poten-
tial. There are several models that approximate the probability for an electron to

1 This is in particular true for linearly polarized laser fields. For fields of different polarization, this
timing might be different.
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Figure 3.2: Sketch of the three step model for HHG: First, an electron is released from the
atom by the strong laser field via tunnel ionization. Subsequently the released
electron is accelerated and driven by the strong external laser field. Finally the
electron may come back to the parent ion and recombine under the emission of
a high energetic photon.

tunnel through the potential barrier at a given time t ′ [54, 55]. One of the most
popular works was published by Ammosov, Delone and Krainov, where they intro-
duced the so-called ADK-rate [56]. Generally the probability for tunneling increases
with the instantaneous field strength of the electric field, which means that the
stronger the barrier is suppressed the more likely is an electron to tunnel through
the potential barrier.
After the the electron tunneled through the potential barrier it can be modeled as
a classical particle that enters the continuum at the tunnel exit r0 ≈ Ip

E0
with neg-

ligible small velocity. For these classical consideration we will set the velocity to
zero. Here Ip is the ionization potential and E0 the amplitude of the electric field.
The tunnel exit is a few (≈ 10) atomic units away from the position of the ion and
will be neglected for these classical considerations. By means of classical physics,
it is possible precisely analyze the motion of electrons in terms of well-defined
trajectories. We write the initial conditions of the electron’s trajectory as

r(t = t ′) = 0 (3.4)

and

ṙ(t = t ′) = 0. (3.5)

Once the electron is released, its motion is governed by the electric field of the laser.
During the acceleration we ignore further interaction with the ion and neglect the
influence the Coulomb potential to the trajectory of the electron. In this chapter, we
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Figure 3.3: Sample of classical electron trajectories in a linearly polarized laser field with
wavelength λ = 800nm (solid colored lines). The dashed black line indicates the
electric field. The electrons start at the position of the parent ion (on the x-axis).
The distance that an electron travels away from the parent ion clearly depends
on the time when the electron starts. Notably, only electrons that start between 0
and 0.25 optical cycles (o.c.) come back to the parent ion. Electrons that start be-
tween 0.25 and 0.5 o.c. are driven away. The trajectories from electrons released
between 0.5 and 0.75 (0.75 and 1.0) o.c. are similar to those between 0 and 0.25
(0.25 and 0.5) o.c., just with an opposed sign of the propagation direction, due
to the symmetry of the laser field.

will address the example of a linearly polarized laser field E(t) = E0 cos(ωt)ex and
write the equations of motion for the free electron as

mer̈ = qE(t), (3.6)

where me is the mass and q = −e is the charge of the electron. Since the elec-
tron is only accelerated in the direction of the electric field, we just consider the
x-component of the electronic trajectory. Integration of the equations of motion
with the initial conditions (Eq. 3.4) and (Eq. 3.5) yields:

ẋ(t) =
eE0
meω

(︁
sin(ωt ′) − sin(ωt)

)︁
(3.7)

x(t) =
eE0
meω

(t− t ′) sin(ωt ′) +
eE0
meω2

(︁
cos(ωt) − cos(ωt ′)

)︁
. (3.8)

The condition for the electron to return to its parent ion at some later time t is
x(t) = 0. Fig. 3.3 shows that only not all of the released electrons will come back
to its parent ion to recombine. More specifically, only electrons released in the first
quarter cycle of the electric field will return to the parent ion. The return condition
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ionization long recombination long

ionization short recombination short

Figure 3.4: Kinetic energies of the classical electron as it returns to the parent ion depending
on the ionization time (blue) and return time (yellow). Notably, there are two
different ionization times with their corresponding recombination times that
lead to the same kinetic energy when the electron returns. These two trajectories
are distinguished by their travel times and called short (dashed) and long (solid)
trajectories. The maximal return energy is 3.17Up.

immediately makes clear why the shape of the electric field has big impact on HHG.
In circularly polarized fields, for example, none of the electronic trajectories will
come back to the ion, which explains why HHG does not take place in these fields.
As the electron recombines a photon is emitted. The energy of the emitted photon

can be calculated by the sum of the return energy of the electron and the ionization
potential. The return energy Ereturn is given by:

Ereturn =
1

2
meẋ(t)

2 (3.9)

under the condition that x(t) = 0. Numerically, we find that the highest possible
return energy for the electron is

Ereturn,max = 3.17
e2E20
2meω2

= 3.17Up. (3.10)

In Fig. 3.4, we show that there are two possible ionization times (blue) in each half
cycle for each return energy below 3.17Up with their corresponding return times
(yellow). These two ionization times give rise to two different trajectories that can
be characterized as short (dashed) and long (solid) trajectories with respect to their
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travel times. Within this model, the highest harmonic order q that can be generated
in linearly polarized laser field is

qω = 3.17Up + Ip, (3.11)

which is also known as the cutoff in HHG. Within this classical model it is not pos-
sible to generate harmonics beyond this cutoff. The simple classical model enables
good insight into the physics of HHG and is helps to understand some fundamen-
tals, such as the high-harmonic cutoff. However, in order to study the process of
HHG in more detail, it is essential to apply quantum mechanical models.

3.1.4 Lewenstein model

There are multiple ways to quantum mechanically compute HHG as a single atom
response. The most direct approach is the exact numerical solution of the time
dependent Schrödinger equation [57–59]. However, the this can be tedious, compu-
tationally demanding, especially if macroscopic effects are considered, c.f. Sec. 3.2.
The analysis of macroscopic effects, such as phase matching, requires that the high-
harmonic signal is computed for multiple2 times. These calculations require shorter
computation times and make the single active electron approximation and applica-
tion of the SFA almost inevitable.
The Lewenstein model has been developed in 1994 [9]. It is an SFA based analyti-
cal and quantum mechanical approach for HHG, which still provides an intuitive
physical picture in terms of the three step model [8]. This model is the underlying
theoretical approach for this thesis.

3.1.4.1 Single active electron approximation

The time dependent Schrödinger equation for a single active electron can be written
as

i
∂

∂t
|Ψ(r, t)⟩ = H0 |Ψ(r, t)⟩ , (3.12)

where H0 = −1
2∇

2 +V(r) is the Hamiltonian that determines the electronic ground
state

H0 |0⟩ = −Ip |0⟩ . (3.13)

2 ≈ 104 and even more often
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For the example of the hydrogen atom the potential is given by V(r) = −1
r and

Ip =
1
2 a.u. ≈ 13.6 eV. The spatial distribution of the ground state is given by

|0⟩1s =
1√
π
e−r. (3.14)

The wave function of the ground state can be expressed as

|Ψ(r, t)⟩ = |0⟩1s e
−iIpt. (3.15)

More generally, we can write the spatial distribution of the ground state wave
function for hydrogen like s-waves as

|0⟩ = α
3
4

√
π
e−

√
αr, (3.16)

where α = 2Ip. If we now consider an atom under the influence of an electric field
E(t) in length gauge, the time dependent Schrödinger equation can be expressed
in dipole approximation as

i
∂

∂t
|Ψ(r, t)⟩ =

(︃
−
1

2
∇2 + V(r) − r · E(t)

)︃
|Ψ(r, t)⟩ . (3.17)

Here the application of the dipole approximation is justified since the extent of the
electron wave packet, which is in the order of a0 = 5.2 · 10−2 nm, is small compared
to 800nm, a typical wavelength of the electric field used for HHG.

3.1.4.2 Strong-field approximation

One of the key assumptions in the SFA is that the electron undergoes a direct tran-
sition from the ground state to the continuum states without hitting any interme-
diate resonances, which is justified for small Keldysh parameters. Therefore, we
only consider the atomic ground state and the continuum states in the derivation.
As pointed out in Sec. 3.1.3, at intensities of 1014 W/cm2 a released electron may
be driven 2nm ≈ 40 a.u. away from the parent ion before it comes back to recom-
bine. Here, the laser field clearly dominates the dynamic of the electron, since the
Coulomb force

Fc ≈
1

402
a.u. ≈ 0.0006 a.u. (3.18)
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is negligible compared to the electric force

Fel = E0 ≈ 0.05 a.u. (3.19)

felt by the electron due to the strong laser field laser. The continuum wave function
for an electron with asymptotic kinetic momentum ν are eigenstates to H0 as

H0 |ν⟩ =
ν2

2
|ν⟩ (3.20)

with |ν⟩ = e−iν·r. If we only consider the atomic ground and the continuum states,
we can write an ansatz for the solution of the time dependent Schrödinger equation
(Eq. 3.17) as

|Ψ(r, t)⟩ = e−iIpt
(︃
a(t) |0⟩+

∫︂
d3νb(ν, t) |ν⟩

)︃
, (3.21)

where a(t) is the amplitude of the ground state and b(ν, t) are the amplitudes of
the corresponding continuum states.

3.1.4.3 Time dependent dipole moment

Within the Lewenstein model it is assumed that the radiation is emitted in terms of
electric dipole radiation. If we calculate the expectation value of the electric dipole
from the wave function Eq. 3.21, we obtain:

D(t) = ⟨Ψ(r, t) |r|Ψ(r, t)⟩

=a2(t) ⟨0 |r| 0⟩+
∫︂
d3νa†(t)b(ν, t) ⟨0 |r|ν⟩

+

∫︂
d3νa(t)b(ν, t)† ⟨ν |r| 0⟩

+

∫︂
d3ν

∫︂
d3ν ′b†(ν ′, t)b(ν, t)

⟨︁
ν ′ |r|ν

⟩︁
. (3.22)

The first term vanishes, since ⟨0 |r| 0⟩ = 0. Additionally, we neglect the continuum-
continuum transitions in the SFA, which are represented by the last term. Now, we
can rewrite the time dependent dipole moment as

D(t) =

∫︂
d3νa†(t)b(ν, t)d∗(ν) + c.c., (3.23)
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where c.c. denotes the complex conjugate and d∗(ν) is the hermitian conjugate of
d(ν). Here,

d(ν) = ⟨ν |r| 0⟩ (3.24)

are the dipole transition matrix elements, which can be calculated analytically for
initial hydrogenic wave functions. For example, for a hydrogenic s-wave, we get

d(ν) = ⟨ν |r| 0⟩ = −i2
7
2α

5
4

ν

π (ν2 +α)
3

. (3.25)

In order to compute the time dependent dipole moment, we are now only left to
find an expression for b(ν, t).

3.1.4.4 Analytical solution of the time dependent Schrödinger equation

In order to compute the continuum state amplitudes b(ν, t), we insert the wave
function (Eq. 3.21) into the time dependent Schrödinger equation (Eq. 3.17) and
solve it for b(ν, t). We thereby obtain [9, 40]

b(ν, t) = −i

∫︂ t
−∞ dt ′a(t ′)E(t ′) · d[ν− A(t) + A(t ′)]

× e
∫︁t
t ′ dt

′′
(︂
1
2 (ν−A(t)+A(t ′′))2+Ip

)︂
. (3.26)

Here, A(t) is the vector potential, which is connected to the electric field by

E(t) = −
∂

∂t
A(t). (3.27)

For few cycle pulses or laser intensities below the saturation intensity, we may
neglect the depletion of the ground state and thus to approximate a(t) ≃ 1.

3.1.4.5 Conservation of canonical momentum

The canonical momentum of an electron in the laser field is a conserved quantity
and in atomic units defined as

p = ν(t) − A(t). (3.28)
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The canonical momentum can be used to further simplify the continuum state
amplitude b(ν, t) to

b(ν, t) = i
∫︂ t
−∞ dt ′E(t ′) · d[p + A(t ′)] e

−
∫︁t
t ′ dt

′′
(︂
1
2 (p+A(t ′′))2+Ip

)︂
(3.29)

Finally, we insert the continuum state amplitude from Eq. 3.29 into the time depen-
dent dipole moment Eq. 3.23

D(t) =i

∫︂ t
−∞ dt ′

∫︂
d3p d∗(p + A(t))E(t ′)

· d(p + A(t ′))× e−iS(p,t,t ′) + c.c., (3.30)

where

S(p, t, t ′) =
∫︂ t
t ′
dt ′′

(︃
1

2
(p + A(t ′′)) + Ip

)︃
. (3.31)

This expression of the time dependent dipole moment has a vivid physical inter-
pretation in terms of the three step model, which we presented in Fig. 3.2. The
term E(t ′) · d(p+A(t ′))eiIpt

′
describes the transition of the electron from a ground

state to the continuum at time t ′ due to its interaction with the external electric
field E(t ′) (Step 1). The exponential term e−i

∫︁t
t ′ dt

′′(12p+A(t ′′))
2

, is phase that the elec-
tron waves accumulates from the ionization time t ′ to the recombination time t
and equal to the classical action of a free electron that propagates during that time
in the laser field (Step 2). This phase is also often called dipole phase. Eventually,
the term d∗(p + A(t))e−iIpt describes the recombination of the electron from the
continuum to its ground state (Step 3).

3.1.4.6 Saddle-point approximation

The numerical integration over the momenta d3p in the time dependent dipole mo-
ment (Eq. 3.30) is computationally expensive, especially if more realistic, extended
atomic gas targets are considered, where the dipole moment has to be computed
104 times or even more often. In order to overcome this computational issue, the so
called saddle-point or stationary phase approximation can be applied. Generally
the stationary phase methods approximates integrals in the form [60]

∫︂
d3xg(x)eif(x) ≈

∑︂
xs

√︄
(2πi)3

det(f ′′(xs))
g(xs)eif(xs), (3.32)
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provided that g(x) changes much slower with x than eif(x). The xs are the stationary
points of f with respect to x such that

∇xf(x)
!
= 0 (3.33)

and

f ′′(xs) =

(︄
∂2f

∂xi∂xj
(x)
⃓⃓⃓⃓
x=xs

)︄
i,j=1,2,3

. (3.34)

is the Hessian matrix of the function f evaluated at the saddle points xs.
Let us now apply this saddle-point approximation to the time dependent dipole
moment (Eq. 3.30). Here, the saddle-point over the intermediate momenta p can be
calculated by

∇pS(p, t, t ′) !
= 0. (3.35)

Luckily, there is always a unique solution for the momentum saddle-point, since
the classical action of the electron in Eq. 3.31 is quadratic in p. The momentum
saddle-point is given by

pst = −
1

t− t ′

∫︂ t
t ′
dτA(τ). (3.36)

Physically, the saddle-point approximation selects exactly the canonical momentum
p for an electron, such that it recombines at time t if it was released earlier at time
t ′. With this approximation, we can reduce the four dimensional integral in the
time dependent dipole moment (Eq. 3.30) to a one dimensional integral:

D(t) =i

∫︂ t
−∞ dt ′

(︃
2πi

(t− t ′ − iϵ)

)︃
d∗(ps + A(t)) E(t ′)

· d(ps + A(t ′))× e−iS(ps,t,t ′) + c.c.. (3.37)

Finally the frequency spectrum of the emitted harmonics can be obtained by the
Fourier transform of the time dependent dipole moment (Eq. 3.37)

D(qω) =i

∫︂∞
−∞ dt

∫︂ t
−∞ dt ′

(︃
2πi

(t− t ′ − iϵ)

)︃
d∗(ps + A(t)) E(t ′)

· d(ps + A(t ′))eiqωt−iS(ps,t,t ′) + c.c., (3.38)
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where q is the harmonic order. The intensity of the generated harmonics are given
by

I(qω) ∝ (qω)4|D(qω)|2. (3.39)

3.1.5 Quantum orbit approach

The basic idea behind the quantum orbit approach is to further apply the saddle-
point approximation to both time integrals in Eq. 3.38. The saddle-point with re-
spect to t ′ is given by

∂

∂t ′
(qωt− S(ps, t, t ′)) = 0

⇒ 1

2

(︁
ps + A(t ′)

)︁2
= −Ip, (3.40)

which physically expresses conservation of energy when the electron is released
from the atom, while the saddle-point with respect to t,

∂

∂t
(qωt− S(ps, t, t ′)) = 0

⇒ 1

2
(ps + A(t))2 = qω− Ip, (3.41)

describes conservation of energy, when the electron recombines with its parent ion.
We now can approximate the harmonic dipole as a summation over the saddle-
points s = (ps, t ′s, ts):

D(qω) = i
∑︂
s

2π√︁
det(S ′′)

(︃
2π

ts − t ′s

)︃3
2

d∗(ps + A(ts)) E(t ′s)

· d(ps + A(t ′s))e
[−iS(ps,ts,t ′s)+iqωts],

where S ′′ is the Hessian matrix of the action S(p, t, t ′), which is given by

S′′(ps, ts, t ′s) =

⎛⎝ ∂2S(ps,t,t′)
∂t2

∂2S(ps,t,t′)
∂t∂t′

∂2S(ps,t,t′)
∂t′∂t

∂2S(ps,t,t′)
∂t′2

⎞⎠
t=tst′=t′s

. (3.42)

To get a more vivid picture, we can interpret t ′ as time of ionization and t as time
of recombination. Notably, these times have to be complex since Ip > 0. Otherwise
Eq. 3.40 would not have any solution.
Each solution s = (ps, t ′s, ts) to the saddle-point equations (Eq. 3.36, 3.40 and 3.41)
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Figure 3.5: The energy of the emitted photons calculated with the quantum orbit formal-
ism. Similarly to the classical approach in Fig. 3.4, there are short and long
trajectories.

defines a unique complex trajectory, a so called quantum orbit [61–63]. Thus it can be
said that the quantum orbit approach approximates and simplifies the integrals to
compute the HHG spectra as a summation over several complex electron trajectories.

3.1.5.1 Quantum orbits in a linearly polarized field

Let us discuss the quantum orbits in the context of a linearly polarized laser field.
Here, we express the electric field as:

E(t) = E0 cos(ωt)ex (3.43)

and therefore the vector potential is given by

A(t) = −
E0
ω

sin(ωt)ex. (3.44)

If we insert the vector potential into the saddle point equations (Eq. 3.36, 3.40 and
3.41), we can calculate the complex ionization and recombination times of the quan-
tum orbits that will contribute to a given harmonic order q. We present the re-
sults in Fig. 3.5. Obviously these results are similar to those presented in Fig. 3.4,
where we considered classical trajectories. As pointed out before, the solution to
the saddle-point equations for the ionization and recombination times are actually
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complex. Therefore, it is important to mention that we just show the real part of the
ionization and recombination times, respectively. Similarly to the classical analysis,
we find for each harmonic order and in each half cycle two different ionization
times with their corresponding recombination times. Here, we also restrict our-
selves to quantum orbits with travel times shorter or equal to one cycle. Thereby
the travel time τ is defined as τ = Re(t− t ′).
For the classical trajectories, we found a maximal return energy of the electron of
3.17Up and thus a maximal photon energy of the generated harmonics of 3.17Up +
Ip. However the quantum orbits theory predicts a slightly higher cutoff for the
photon energy of approximately 3.17Up + 1.32Ip, which was shown by Lewenstein
[9]. In addition, we can also predict harmonic orders beyond this cutoff with the
quantum orbits theory. However, there is only one quantum orbit that contributes
to these harmonics. These harmonics cannot be explained with the classical model.

3.2 macroscopic picture

So far we considered HHG with only a single atom. However, in an experiment a
gas jet or a gas cell with many (≈ 1012) atoms are placed in the interaction region
of the beam to contribute to HHG. Here, we define interaction region as the volume
in the beam with sufficiently high intensity, such that harmonics can be generated.
Since HHG is a coherent process the measured radiation at the detector is a super-
position of all single atom contributions from the interaction region.
Especially for beams with spatially structured intensity profiles, such as LG beams,
it is important to include this macroscopic picture of HHG. Harmonics generated at
different positions in the beam are usually exposed to different local intensities and
therefore are emitted with different phase. This affects, for instance, the conversion
efficiency, which impacts the intensity at which a given harmonic can be measured
at the detector. Furthermore, the OAM induced azimuthal phase shift, which was
introduced in Ch. 2 also causes that harmonics generated at different azimuthal
angles are emitted at different phases. In order to analyze the OAM of the gener-
ated harmonics the coherent superposition of all the single atom contributions is
required as well.
Thereby, we consider two approaches to take macroscopic atomic targets in HHG

into account [64]:

1. Within the Fraunhofer diffraction model, we approximate the atomic gas tar-
get as a layer of atoms perpendicular to the propagation axis.
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2. The numerical propagation of individual radiators to a virtual detector can
be used to simulate more realistic three dimensional gas targets, such as gas
jets from a nozzle or atomic clouds in a cell.

Generally the phase and intensity profiles calculated with the Fraunhofer diffrac-
tion model agree very well with those of the exact numerical propagation [65, 66].
A major advantage of the numerical propagation is that it provides access to the
generated electric field at the detector and automatically takes longitudinal phase
matching into account.

3.2.1 Fraunhofer diffraction

The Fraunhofer diffraction formula [67] can be applied to calculate the phase and
intensity profiles of different harmonic orders in the far-field, respectively at the
virtual detector. In order to make use of this formula, we model the atomic gas
target as a thin layer of atoms that can be displaced with respect to the focus plane
of the beam. A sketch of the geometry is shown in Fig. 3.6, where we indicate the
atoms by the small black dots in the near-field.
In order to make use of this formula, we calculate the harmonic response from each
atom to its local field by means of Eq. 3.38, which gives us the complex amplitude of
each harmonic order in the near-field A(near)

q at position (ρ ′,φ ′, z ′), respectively in
the interaction region. The complex amplitude of the qth harmonic in the far-field
can then be written as

A
(far)
q (β,φ) =

∫︂∞
0

∫︂2π
0
ρ ′dρ ′dφ ′A

(near)
q (ρ ′,φ ′, z ′)

× e
(︂
−i 2πλq ρ

′ tan(β) cos(φ−φ ′)
)︂

(3.45)

where λq = λ/q is the wavelength of the qth harmonic. The angle φ is the polar
angle in the far-field and β is the angle of divergence, cf. Fig. 3.6.

3.2.2 Numerical propagation of the emitted radiation

Another approach has been developed by Hernández-García [68, 69]. This approach
propagates the radiation emitted from every radiator in the target to a virtual de-
tector an thus allows for a simulation of three dimensional gas target. Within this
approach, we decompose the target into a discrete set of single atom contributions
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Figure 3.6: Geometry of the Fraunhofer diffraction formula: The incident near-infrared driv-
ing laser interacts with the gas target in the near-field. The gas target is approx-
imated by a thin layer at the focus of the beam extended over the whole beam,
which is indicated by the black dots. At each point in the gas target harmonics
are emitted. The emitted harmonics contribute to the far-field. The divergence
of the harmonics can be described by the angle β.

(radiators). The electric field at the detector that has been generated by a single
atom at position rj can be calculated by

Ej (rd, t) =
1

c2
qj⃓⃓

rd − rj(0)
⃓⃓ sd ×

[︄
sd × aj

(︄
t−

⃓⃓
rd − rj(0)

⃓⃓
c

)︄]︄
, (3.46)

where aj is the dipole acceleration of the radiator placed at rj, respectively the
second derivative of Eq. 3.30 with respect to time. The vector rd is the vector that
points to the detector and sd = rd

|rd|
. This scheme is illustrated in Fig. 3.7. Note that

we use the dipole approximation and assume rj(t) = rj(0). The physical meaning is
that a released electron stays in the vicinity of the atom and does not experience the
entire structure of the twisted light field. This assumption is reasonable, since the
electron classically only moves about 2nm, which is small compared to the wave
length of the driving beam, as shown in Sec. 3.1.3. Therefore, we consider each
single atom to be just locally exposed to a plane wave field.
In order to compute the harmonic signal at the detector we first discretize the
detector. For a given detector position rd, we have to compute the harmonic signal
from each radiator and propagate it to the detector. Thus, we have to calculate
the time, it takes for the radiation to go from the atom to the detector τ =

|rd−rj|
c ,

where we assume that the radiation travels at the speed of light. Then we calculate
the dipole acceleration starting from t = −τ for a specific number of discrete time
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Figure 3.7: Scheme to compute the numerical propagation of high harmonic radiation. The
driving beam propagates in z-direction. The origin of our coordinate system
is in the focus of the beam. The simulated cloud of atomic targets consists of
multiple atoms placed at different positions rj, as indicated by the blue "atom".
At each detector position rd we compute the electric field as a superposition of
all single atom contributions in the atomic cloud.

steps. Finally, we use these calculated values of the dipole acceleration in Eq. 3.46 to
calculate the electric field at the detector position rd and store these values for the
electric field in an array. We proceed the same way for each radiator in the atomic
gas target and add up the values for the electric field coherently at the detector
position rd. After we calculated the harmonic signal at detector position rd, we step
to the next detector position until we finished the calculation for the whole detector.
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H I G H - H A R M O N I C G E N E R AT I O N W I T H L I N E A R LY
P O L A R I Z E D L A G U E R R E - G A U S S I A N B E A M S

In this chapter we discuss the HHG of atomic targets in linearly polarized fields.
We will first analyze the calculated harmonic spectrum generated by a single atom.
Then, we extend this analysis and take extended target into account. In particular,
we focus on the OAM of the generated harmonics and methods how to control this
OAM. Moreover, we will also analyze phase matching in LG beams and identify
the best positions for the atomic target in order to get the "brightest" signal at the
detector.
Some of the material in this chapter has appeared previously in references

High harmonic generation with Laguerre–Gaussian beams
Paufler, W., Böning, B., Fritzsche, S.
Journal of Optics, 21(9), 094001 (2019)

Coherence control in high-order harmonic generation with Laguerre-Gaussian beams
Paufler, W., Böning, B., Fritzsche, S.
PHYSICAL REVIEW A, 100, 013422 (2019)

4.1 single atom response to a linearly polarized field

Within this section we discuss the HHG of a single atom irradiated by an intense
linearly polarized laser field. Even though, HHG by one single atom has never been
experimentally observed and the emitted radiation would be far too low for any
physical applications, its discussion still provides a qualitatively good insight to
the spectrum of the emitted harmonics.
In Fig. 4.1, we show a typical spectrum of emitted harmonics in a linearly polarized
laser field. Here, we chose a hydrogen 1s wave function, a wavelength of 800nm
and an intensity of 1014 W/cm2. The spectrum shows a broad comb of harmonics
of the driving laser, where notably every second harmonic is suppressed. The odd
harmonics build up an extended plateau, where all harmonics are emitted at similar
intensities. The plateau extends up to the harmonic cutoff, where the harmonic

33
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Figure 4.1: Characteristic spectrum of high-harmonics generated by a linearly polarized
800nm laser with intensity 1014 W/cm2 in an arbitrary logarithmic scale. The
spectrum exhibits the characteristic plateau of several harmonics that are emit-
ted at similar intensities and the subsequent exponential harmonic cutoff
around the 21st harmonic. The calculation has been performed with the rb-
sfa code [70].

intensity drops down exponentially. In this example, the classical harmonic cutoff
(Eq. 3.11) is given by

nmaxω ≈ Ip + 3.17Up ≈ 22ω. (4.1)

The occurrence of only odd harmonics and the suppression of all even ones, respec-
tively can be explained in multiple ways.
First, we may investigate the symmetry of the time dependent dipole moment

(Eq. 3.37), which satisfies

D(t) = −D(t+ T/2), (4.2)

where T = 2π
ω is the cycle length of the driving laser. The left column of Fig. 4.2

shows one cycle of the x-component of the time dependent dipole moment (blue)
combined with the oscillation of a first1 and second harmonic. Thereby the choice
of the first and second harmonic is arbitrary, however, low-harmonic orders make
this example much more vivid than high-harmonic orders. The Fourier transform
of the time dependent dipole moment reveals the spectrum of the contributing

1 Of course, a first harmonics makes no sense, since it would be just the driving beam. However, to
explain the suppression of all even harmonics, it is quite vivid and reasonable.
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Figure 4.2: Illustration of the Fourier transform of the time dependent dipole moment for
an odd (upper row) and an even (bottom row). The time dependent dipole
moment is shown in blue, while the odd (even) function is shown in yellow.
The Fourier coefficients can be computed from the integral over the product of
the dipole moment and the odd (even) function, which is shown as in the right
part as the green curve.

harmonics. Especially, the first Fourier coefficient is the integral over the product of
the time dependent dipole moment and the oscillation of the first harmonic. This
product is shown in the right column (solid green line). It is clearly visible that
the integral over this product will be nonzero. We can apply a similar argument
to the second harmonic, in terms of the second Fourier coefficient. However, the
integral over the product of the dipole moment and the oscillation of the second
harmonic (green dashed line) will be zero. More generally, the Fourier transform of
any function with the symmetry from Eq. 4.2 reveals only odd Fourier coefficients,
which implies that only odd harmonics are generated.
Another explanation can be provided in terms of an intuitive photon picture. Each
photon has a SAM either plus or minus one2, which can be associated with the
polarization. Linearly polarized light can be considered as an evenly distributed
composition of photons with SAM of plus and minus one. If an electron absorbs
several photons, the SAM of the photons add up. Therefore, after the absorption
of an even number of photons, it is not possible to emit the absorbed energy in
terms of a single photon, because this single photon’s SAM could not be plus and
minus one. This only can be achieved after the absorption of an odd number of

2 in atomic units h = 1
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photons. Therefore, only odd harmonics contribute to the spectrum, while all even
harmonic orders are strictly suppressed. This can be summarized by our notation
for HHG that will be used throughout the thesis as:

LGω↔
0,0

HHG−→
ωHq

= q, ω

q = odd.
(4.3)

Here the arrow ↔ indicates the linear polarization of the driving beam and ωHq

denotes the energy of the qth harmonic.

4.2 extended targets in linearly polarized lg beams

4.2.1 Conservation of OAM

The first experiment on HHG with linearly polarized LG beams was done in 2012

by Zürch et al. [71]. Here they used a driving beam with topological charge (or
OAM) of ℓ = 1. Surprisingly, they found that the measured topological charge of
all harmonics was equal to one. This was a contradiction to their expectations from
second harmonic generation [72] and the Lewenstein model [9], which both predict
that the OAM of a qth harmonic order is q times the OAM of the driving field.
Zürch et al. explained this puzzling fact by a decay of the initially generated highly
charged vortices into singly charged vortices as they propagate to the detector.
Thereafter, Hernández-García et al. developed an algorithm to simulate HHG in
atomic gas jets and to propagated the generated radiation at each position in the
gas jet to the detector [68, 69]. Here, they theoretically showed that the highly
charged vortices survive propagation and that a qth harmonic generated by a LG

beam with topological charge ℓ = 1 has OAM of q. In 2014, Gariepy et al. finally
experimentally confirmed these theoretical predictions [73]. We can express the
conservation of energy and OAM in HHG with linearly polarized LG beams as:

LGω↔
ℓ,0

HHG−→

ωHq
= qω,

q = odd,

ℓHq
= q ℓ.

(4.4)

In Fig. 4.3, we show the calculated far-field phase profiles of a 11th and 13th har-
monic. Here we used the Fraunhofer diffraction formula (Eq. 3.45) to calculate the
phase profiles in the far-field. We can obtain the OAM of the generated harmonics
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Figure 4.3: Top: The phase profiles for the 11th and 13th harmonic at the detector gener-
ated by a linearly polarized LG beam with ℓ = 1. The OAM (number of phase
shifts of 2π) is equal the harmonic order. Bottom left: OAM of the 11th (blue)
and 13th (red) harmonic calculated by a Fourier transform along the azimuthal
coordinate.

if we count the number phase shifts of 2π along the azimuth, which is 11 of the
11th and 13 for the 13th harmonic. A more precise way to calculate the OAM of the
harmonics is an azimuthal Fourier transform of the the far-field phase profiles for
a fixed angle of divergence β and afterwards to integrate over all values of β. As
shown in the bottom row of Fig. 4.3, the results obtained by an azimuthal Fourier
transform agree with those from counting the phase shifts of 2π.

4.2.2 Divergence of the harmonics

In addition to the phase profiles, the intensity profiles play an important role for
the analysis of HHG with LG beams. These intensity profiles allow to estimate the
divergence of the generated harmonics.
In Sec. 2.2.3, we reported on different ways to define the divergence of the LG beams.
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However, we showed that the values for the divergence defined by the radius of
maximal intensity and the standard deviation of the intensity distribution approach
each other as the OAM increases. Thus it is reasonable to estimate the divergence
of the harmonics by analyzing the radius of the first maximum in the far-field
intensity profile. Fig. 4.4 shows that the maxima of the 11th and 13th harmonics
occur at similar values of β, which means that their divergence is similar to each
other.
Generally, we can use the Fraunhofer diffraction formula to analyze the radius
of the first maximum in far-field. Within the Lewenstein model for HHG, we can
express the near-field amplitude of a qth harmonic as

A
(near)
q (ρ ′,φ ′) = f(ρ ′)eiqℓφ

′
, (4.5)

where all radial dependencies are included in f(ρ ′). If we insert Eq. 4.5 into the
Fraunhofer diffraction formula (Eq. 3.45), we can evaluate the integral over the
azimuthal angle φ ′ analytically [74] and we obtain the following expression for the
far-field amplitude:

A
(far)
q (β,φ) = 2πiqℓeiqℓφ

∫︂∞
0
dρ ′ρ ′f(ρ ′)Jqℓ

(︃
2π

λq
βρ ′
)︃

. (4.6)

Here λq is the wavelength of the qth harmonic and Jk(x) is a Bessel function of the
first kind. The value βmax for which the far-field amplitude reaches its maximum
can be seen as a measure of the divergence of each harmonic order. From the
Bessel function in Eq. 4.6 we can extract the change of the divergence with the
harmonic order. The order of the Bessel function increases with the harmonic order,
which shifts the value of βmax to larger values. However, the argument of the Bessel
function increases similarly with the harmonic order, which shifts the value of βmax

to smaller values. Roughly speaking, different harmonics are emitted are emitted
with similar divergence [65, 69], which can be seen in the lower left part of Fig. 4.4.

4.3 phase matching

Of course, the harmonic radiation emitted by a single atom is far too low for any
experiment and thus dense atomic targets ∼ 1016 atoms · cm−3 are typically used
to generate high-order harmonics. In order to make HHG efficient, it is required
to analyze the macroscopic interplay of all the individual atomic responses to the
driving laser field. The investigation of the macroscopic superposition of all the
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Figure 4.4: Top: The intensity profiles for the 11th and 13th harmonic at the detector gen-
erated by a linearly polarized LG beam with ℓ = 1. Bottom left: Cut through the
intensity profiles of the 11th and 13th harmonic. The maximum of the intensity
profiles is set to one.

single atom responses helps to determine the phase and intensity profiles at the
detector and also to increase the conversion efficiency. For the latter one, we have
to ascertain especially that the single atom responses to the driving laser fields add
up constructively at the detector and consequently increase the conversion efficiency
of selected harmonics.
A typical size of a driving volume, respectively the area with sufficient intensity, for
HHG in a Gaussian beam is a cylinder with a length of 7mm and a radius of 30µm
and, thus, about 1012 atoms could be placed in the interaction region. Notably, for
LG beams this cylinder would rather be a hollow cylinder.
Generally, the radiation emitted by different atoms in the interaction region is not
in phase. Thus, we have to identify areas in the interaction region, where the har-
monics are emitted in phase. Only then, the radiation adds up constructively at
the detector, which we call good conditions for phase matching. In order to know
whether the harmonics are emitted in phase in a given area in the interaction re-
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Figure 4.5: Phase matching for HHG in a plane wave field. The plane wave driving field
propagates in z-direction. Harmonics emitted from different positions z1 and z2
are in phase if we assume that the radiation propagates at the speed of light and
the wave number of the qth harmonic kq = q · k, where k is the wave number
of the driving beam.

gion, we first have to know the phase of each harmonic as emitted by the target
atoms.
So far, phase matching has been mainly investigated in several studies for Gaus-

sian beams [75–77]. In this section, we will now discuss phase matching for linearly
polarized LG beams. Here, we will focus on two main contributions that determine
the phase of the emitted harmonic field at the various positions of the target:

• the dipole phase due to the response of a single atom to local intensity of the
laser,

• the intrinsic beam phase due to the focusing of the laser beam, such as the
Gouy and focal phase.

In Fig. 4.5, we show a simplified picture for phase matching in plane wave fields.
There are no intrinsic beam phases. In addition, the intensities of plane waves are
constant as they propagate, which results in a constant dipole phase. Harmonics
generated at z1 inherit the dipole phase and q times the local phase of the elec-
tric field due to the absorption of q photons. The dipole phase is the same for
harmonics generated at different positions in a plane wave. Here, we assume that
the harmonic radiation and the driving beam propagate at the speed of light. The
phase of a qth harmonic generated at z1 can be written as

ϕz1 = ϕdipole + qkz1. (4.7)



4.3 phase matching 41

Similarly we express the phase of a qth harmonic generated at z2 as

ϕz2 = ϕdipole + qkz2. (4.8)

If these harmonics then propagate towards the detector, the phases change as

ϕz1(z) = ϕdipole + qkz1 + kq(z− z1), (4.9)

ϕz2(z) = ϕdipole + qkz2 + kq(z− z2). (4.10)

If we use the relation kq = qk, the generated radiation will add up constructively
at a detector placed at zd, since ϕz1(zd) = ϕz2(zd). This results in ideal conditions
for phase matching for plane waves. The intensity of the harmonics measured at
the detector will increase linearly with the size of the atomic target.
However, generally the assumption of a uniform intensity profile is not justified,
therefore the dipole phase will be position dependent. Furthermore, the intrinsic
beam phases, the Gouy and focal phase, also have to be included. Here it becomes
clear, that phase matching is generally a much more complex issue than for the
simple plane wave example.
The total phase for the qth harmonic can be expressed as [40, 77, 78]

ϕq(ρ, z) = ϕq,dipole(ρ, z) − qϕintrinsic(ρ, z). (4.11)

Here, we consider phase matching in the absence of dispersive effects, such as
the change of the refraction index due to the occurrence of free electrons in the
interaction region. We can calculate the change of the phase for each harmonic
order in dependence on the coordinates of the emitting atom, in particular, we
define this phase change in terms of a mismatch of the wave vectors by [76]:

∇ϕq(ρ, z) = ∂ρϕq(ρ, z)eρ + ∂zϕq(ρ, z)ez. (4.12)

Here, we just consider mismatch in transverse and longitudinal direction and omit
the azimuthal mismatch. The change of the azimuthal phase has to be considered
if we want to calculate the far-field phase profiles, as we did in Sec. 4.2.1. However,
here we focus on the conversion efficiency of the harmonics.
Moreover, the length of the spatial interval in the interaction region, where the
generated harmonic radiation adds up constructively, is called coherence length. The
coherence length is generally defined as [76, 77]

Lcoh =
π

|∇ϕq(ρ, z)|
. (4.13)
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4.3.1 Dipole phase

In experiments, the intensity distribution of the driving laser is generally not uni-
form, as assumed for the idealized case of a plane wave beam. As an example,
we show transverse and longitudinal cross sections of the intensity profiles for a
Gaussian and a LG beam with ℓ = 1 in Fig. 4.6. Atoms from an extended gas target
that interact with the laser are therefore exposed to different local intensities at
different positions. Since the intensity affects the dipole phase of a given harmonic
order, atoms at different positions may emit this harmonic with different dipole
phases. Of course, this then also affects phase matching. Therefore it is important
to investigate how the intensity profile of the driving laser affects phase matching
and the coherence length.
If we follow the three step model, a released electron is driven by the electric field
of the laser and may come back to the parent ion to recombine. During its propa-
gation and subsequent recombination the electron accumulates a phase that can be
calculated with Eq. 3.31. This phase is called the dipole phase.
For those harmonics that contribute to the plateau, there are two different quantum
orbits, which are labeled as short and long trajectories with respect to their travel
time. The dipole phase of the short trajectories is different from the dipole phase
of the long trajectories because of their different travel times, respectively time that
they are driven by the laser field. If we decrease the intensity of the driving laser,
a harmonic that contributes to the plateau tends towards the harmonic cutoff. The
more a harmonic approaches the cutoff, the more the dipole phases of the long and
short trajectories approach each other. If the intensity reaches the cutoff intensity
Ic for the qth harmonic, 3.17 Ic

4ω2 + Ip = qω, both the short and long trajectory have
the same dipole phase.
In Fig. 4.7, we show the dipole phase for the long and short trajectories for the
example of a 21st harmonic order as a function of intensity of the driving laser3.
Here, we show both, the phase of the quantum orbits as well as the phase for the
classical trajectories. As seen from this figure, the dipole phase for the short as well
as for the long trajectory increases with the intensity. However, the dipole phase for
the long trajectory is more sensitive to the intensity than the dipole phase for the
short trajectory. For both trajectories, we can find a linear dependence of the dipole
phase on the intensity [65, 79, 80]. We write

ϕq,dipole = αqi · I, (4.14)

3 More precisely, the local intensity at the position of the atom



4.3 phase matching 43

Figure 4.6: Transverse (left) and longitudinal (right) cross sections of the intensity profiles of
a Gaussian beam (upper row) and a LG beam with OAM ℓ = 1 (lower row). Both
beams propagate in z-direction. The Gaussian beam has its transverse intensity
maximum exactly on the axis of propagation. However the transverse intensity
maximum for the LG beam is off-axis and has zero intensity on the beam axis.

where the subscript i = s, l denotes the short and long trajectory, respectively. We
use the slopes from our quantum orbit calculations α21s = 1.5 · 10−14 cm2/W and
α21l = 22 · 10−14 cm2/W.

4.3.2 Intrinsic beam phases

In addition to the inhomogeneous intensity profile of the driving laser, the intrinsic
phases4 of the beam also influence the phase of the generated harmonics. Here we
consider two important contributions to the intrinsic phase ϕintrinsic. The first one is
the Gouy phase. It has been theoretically predicted and experimentally confirmed
by Louis Georges Gouy in 1890 [39, 81]. For a Gaussian beam this phase contributes
a phase shift from π

2 to −π
2 as the beam propagates from negative to positive infinity.

Mathematically it can be approximated by

ϕGouy = − arctan
(︃
z

zr

)︃
. (4.15)

4 also called geometric phases
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Figure 4.7: Dipole phase for an electron depending on intensity for short (dashed) and long
solid trajectories that contribute to the 21st harmonic. We calculated the dipole
phase by means of classical trajectories (yellow) and quantum orbits (blue). The
cutoff intensity Ic for the 21st harmonic is near 1014 W/cm2. For intensities
higher than Ic, the dipole phase for short and long trajectories increases linearly
with intensity.

For LG beams, however, this phase shift increases to

ϕGouy = −(2p+ |ℓ|+ 1) arctan
(︃
z

zr

)︃
(4.16)

and thus contributes a phase shift of (|ℓ|+ 1)π if p = 0.
The second contribution arises from the curved wavefronts of Gaussian and LG

beams [82]. The focal phase, can be expressed as ϕfocal = k
ρ2

2R(z) and is independent
of the OAM of the beam. The azimuthal phase ℓφ only depends on the azimuthal
coordinate and therefore does not affect longitudinal (z-direction) and transverse
(ρ-direction) phase matching.
In Fig. 4.8, we show the transverse and longitudinal cross sections of the phase
profiles for a Gaussian and LG beam with ℓ = 1. The transverse phase profile for
the Gaussian beam shows the plane wave behavior near the focus while for the LG

beam it shows the characteristic phase shift of 2π · ℓ. The longitudinal phase profile
of the Gaussian beam exhibits the phase shift from π

2 to −π
2 on the beam axis due

to the Gouy phase. The focal phase modifies the phase off axis. The phase profile of
the LG beam has a phase singularity on the propagation axis due to the azimuthal
phase. In addition, the phase shift caused by the Gouy phase is increased to a phase
shift from π to −π.
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Figure 4.8: Transverse (left) and longitudinal (right) cross sections of the intensity profiles
of the Gaussian beam (upper row) and a LG beam with OAM ℓ = 1 (lower row).
Both beams propagate in z-direction. For reasons of clarity, we omitted the phase
term kz.

4.3.3 Phase matching on maximum

4.3.3.1 A one dimensional model

A simple model to investigate phase matching for Gaussian beams, is known as
phase matching on axis [83]. Within this model it is assumed that harmonics are only
emitted from the beam axis, since there is the intensity maximum in a transverse
cross section of the beam and therefore the largest contribution to HHG. However,
the intensity of LG beams with nonzero OAM is zero on the beam axis and of course
no harmonics are generated in this region of the beam. This makes phase matching
on axis inapplicable for LG beams. We therefore extend this model and generalize
phase matching on axis from Gaussian beams to phase matching on the (first) trans-
verse intensity maximum for LG beams. We will refer to this model shortly as phase
matching on maximum [84].
The radial coordinate of the first intensity maximum of a LGℓ,0 beam can be calcu-
lated by ∂uℓ,0

∂ρ = 0 and is equal to

ρℓ,max(z) =

√︃
|ℓ|

2
w(z) =

√︃
|ℓ|

2
w0

√︄
1+

z2

z2r
. (4.17)
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Of course, for beams with zero OAM, we get ρ0,max(z) = 0, which coincides with
the beam axis. Notably, the intensity on the maximum is independent of the OAM

and is given by

I(z) =
I0

1+ z2

z2r

, (4.18)

where I0 is the peak intensity in the focus plane. For a Gaussian beam the total
phase ϕq(z) on maximum for the qth harmonic on axis is given by [40]

ϕq(z) = ϕq,dipole(z) − qϕGouy(z)

= αs,lI(z) + q arctan
(︃
z

zr

)︃
. (4.19)

Similarly, we analyze the phase for LG beams with nonzero OAM on the first maxi-
mum. Since the radial coordinate of the first maximum is nonzero, the focal phase,
which arises from the curved wavefronts, contributes to the total phase. The total
phase on the maximum for the qth harmonic for a LG beam can be expressed as

ϕq(z) = ϕq,dipole(ρℓ,max(z), z) − qϕGouy(z) − qk
ρ2ℓ,max(z)

2R(z)

= αs,lI(z) + q(|ℓ|+ 1) arctan
(︃
z

zr

)︃
− q

|ℓ|z

2zr
. (4.20)

Notably, Eq. 4.20 simplifies to Eq. 4.19 if the OAM ℓ is equal to zero. In order to
have perfect phase matching conditions for the qth harmonic, the total phase ϕq(z)
should be constant in spatial regions of the driving volume of the beam. Within
our phase matching on maximum model we write this condition as

∂ϕq(z)

∂z
= 0. (4.21)

Analogously to Eq. 4.12, the left hand side of Eq. 4.21 is also called the mismatch
of the wave vector in longitudinal direction.
However, this condition will be only fulfilled at discrete spatial points in the in-
teraction region. Generally speaking, we have good phase matching conditions if
the longitudinal wave vector mismatch approaches zero or, in other words if the
phase of the emitted harmonics is nearly constant within a large interval in the
interaction region. Still, the solution of Eq. 4.21 is a good approach to find regions
in the beam, where phase matching can be achieved and thus harmonics can be
generated efficiently.
Within this one dimensional model we will extract the coherence length from the
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Figure 4.9: The total phase for the short (left) and long (right) trajectories depending on
the z-coordinate. Different LG beams are denoted by different colors. The peak
intensity at the focus z = 0 is 4 · 1014 W/cm2 and the Rayleigh range is zr =
3.5mm. The results are calculated by means of Eq. 4.19 and Eq. 4.20.

longitudinal wave vector mismatch and define the coherence length at a position
z0 as maximal extent of a target at z0, such that the total phase within this tar-
get changes by less than π. We always choose the target to be symmetric around
the position z0. This definition is different from the commonly used definition (c.f.
Eq. 4.13), but it is a more physical one.

4.3.3.2 Total phase

Let us now discuss the behavior of the total phase of the emitted harmonics within
our one dimensional model. In Fig. 4.9, we show the total phase of the short (left)
and the long (right) trajectories of 21st harmonic for various LG beams with differ-
ent OAM ℓ depending on the z-coordinate. Negative values of z refer to the region
before the focus, z = 0 is exactly at the focus and z > 0 means behind the fo-
cus with respect to the propagation of the beam. Each beam has a peak intensity of
4 ·1014 W/cm2, a wavelength of 800nm and a Rayleigh range of zr = 3.5mm. Within
two Rayleigh ranges before and behind the focus the intensity is high enough, so
that the 21st harmonic still belongs the the harmonic plateau. Outside of this inter-
val, the intensity is too low to efficiently create the 21st harmonic.
At the focus there is the highest intensity and therefore also the highest dipole

phase. If we move away from the focus plane, the intensity on the radial maximum
decreases. Since the dipole phase is proportional to the intensity, the dipole phase
decreases with the distance from the focus plane as well. This implies that the con-
tribution of the dipole phase to the longitudinal wave vector mismatch is positive
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before and negative if the target is placed behind the focus. In contrast to the dipole
phase, the contribution of the Gouy phase to the mismatch is always positive.

short trajectories For the short trajectories, the contribution of the dipole
phase to the total phase is small compared to the contribution of the Gouy phase.
The focal phase vanishes on the beam axis, therefore it does not contribute to the
total phase on maximum for a Gaussian beam. Here the total phase has the shape
of an arc-tangent function with a small offset, where the offset is due to the dipole
phase.
For a LG beam with nonzero OAM, the intensity maximum is off axis, which leads
to a contribution of the focal phase to the total phase. Furthermore, the Gouy phase
shift across the focus increases if the beam has nonzero OAM. However, the sign of
the focal phase is opposed to the sign of the Gouy phase and therefore counteracts
the increasing contribution of the Gouy phase to the total phase. The comparison
of the total phase for the short trajectories of different beams shows that the slope
of the total phase, respectively the longitudinal wave vector mismatch increases
across the focus as the OAM of the beam increases. However, the interplay of Gouy
and focal phase gives rise to regions at z ≈ ±zr, where the total phase is stationary.
In these regions the condition for perfect phase matching (Eq. 4.21) is fulfilled.

long trajectories The total phase of the long trajectories is more affected
by the dipole phase than the total phase of the short trajectories, because αl > αs,
while the Gouy and the focal phase contribute equally to both trajectories. For
the long trajectories, the total phase is dominated by the dipole phase, which is,
on maximum, the same for all LGℓ,0 beams. Therefore the plots of the total phase
have a similar characteristic shape for all four beams, as shown in the right part of
Fig. 4.9. For every beam, the total phase for the long trajectories has a stationary
point behind the focus. At this point the condition for perfect phase matching is
fulfilled. Notably, it moves away from the focus plane as the OAM increases.

4.3.3.3 Coherence length

In Fig. 4.10, we display the coherence length for the example of the 21st harmonic
generated by the short (left) and long (right) trajectories at the first maximum de-
pending on a displacement of the atomic target with respect to the focus plane at
z = 0.

short trajectories The coherence length of the 21st harmonic created by
the short trajectories near the focus plane decreases with the OAM of the driving
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Figure 4.10: Coherence length for the short (left) and long (right) trajectories depending
on the z-coordinate. Different LG beams are denoted by different colors. The
peak intensity at the focus z = 0 is 4 · 1014 W/cm2 and the Rayleigh range is
zr = 3.5mm.

beam, due to the increased Gouy phase shift across the focus. However, about one
Rayleigh range off the focus plane, the contributions of the Gouy phase and the
focal phase cancel each other, which results in a large coherence length.

long trajectories For the contribution of the long trajectories to the 21st

harmonic, we find a large coherence length shortly behind the focus for all beams.
Furthermore, the coherence length slightly increases behind the focus with the
OAM, as expected from the discussion of the total phase.

4.3.3.4 Perfect phase matching

Let us now discuss the positions of perfect phase matching according to Eq. 4.21.
For Gaussian beams these positions can be found analytically as solutions to

z̃2 − 2
αs,lI0

q
z̃+ 1 = 0 (4.22)

whose are given by

z̃ =
αs,lI0

q
±

√︄(︃
αs,lI0

q

)︃2
− 1, (4.23)

where z̃ = z
zr

is the position of the gas target for perfect phase matching in units
of the Rayleigh range. Notably, Eq. 4.23 may have two solutions. However, we just
consider the solution with the smaller modulus of z̃, since the intensity for large
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Figure 4.11: Positions for perfect phase matching along the propagation axis for a gas tar-
get depending on the peak intensity at the focus. The black, dot-dashed line
denotes the transition between the cutoff and plateau region for the 21st har-
monic. The vertical red, dot-dashed line helps to guide the eyes to compare the
results with the Fig. 4.10. The results are calculated by means of Eq. 4.21.

values of z̃ is generally to low to efficiently generate harmonics.
Moreover, Eq. 4.23 requires a minimal peak intensity of I0 >

q
αs,l

to have real
solutions, which means that below this minimal peak intensity a position for perfect
phase matching does not exist. Since the α-coefficient for the short trajectories is
much smaller than for the long trajectories, a much high peak intensity is required
to have perfect phase matching for the short trajectories. For the example of a 21st

harmonic a peak intensity of approximately 15 · 1014 W/cm2 is required for perfect
phase matching of the short trajectories. These intensities are inapplicable for most
of the rare gas atoms5, since they will be completely ionized after a few cycles at
these intensities. For the long trajectories, however, this minimal intensity is in the
order of 1014 W/cm2 which is applicable also to rare gas atoms.

5 Helium with Ip = 24.6 eV is an exception.
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Similarly, the positions for perfect phase matching on maximum for LG beams are
solutions to

−
|ℓ|

2
z̃4 + z̃2 − 2

αs,lI0

q
z̃+ 1+

|ℓ|

2
= 0, (4.24)

which have to be calculated numerically. However, we can still see the behavior of
the solutions for several limiting cases:

• For higher OAM of the incident beam, the optimal position for the gas target
approaches the Rayleigh range.

• For the long trajectories, with large α coefficients, the solution to Eq. 4.24 near
the focus plane can be approximated by 2αs,lI0

q z̃− 1−
|ℓ|
2 = 0, which indicates

that the position for perfect phase matching approaches the focus for higher
intensities.

In Fig. 4.11, we show how the position for perfect phase matching changes with the
peak intensity of the beam, again for the example of the 21st harmonic. The black,
dot-dashed line marks the transition between the plateau and the cutoff region for
the 21st harmonic. In particular, "left" from the black dot-dashed line, the intensity
is not high enough so that the 21st harmonic belongs to the plateau. The vertical
red, dot-dashed line helps to guide the eye for the position for perfect phase match-
ing at a peak intensity of 4 · 1014 W/cm2. The intersection points for the curves for
the position of perfect phase matching with the red line are the stationary points
of Fig. 4.9 and the positions with the highest coherence length in Fig. 4.10, respec-
tively.
In order to understand Fig. 4.11, let us discuss how different phase contributions to
the total phase depend on the peak intensity. The contribution of the dipole phase
to the total phase increases if the peak intensity increases. It contributes positively
before and negatively behind the focus. In contrast, the Gouy phase and the focal
phase are independent of the peak intensity. Furthermore, the contribution of the
Gouy phase to the longitudinal wave vector mismatch is always positive, the focal
phase contributes negatively.
For Gaussian beams, perfect phase matching is achieved if the sum of the deriva-
tives of Gouy and dipole phase cancel each other. Both derivatives are positive
before the focus and thus condition for perfect phase matching cannot be fulfilled
before the focus. Since the sign of the slope of the dipole phase changes behind the
focus it is here possible to satisfy the condition for perfect phase matching. If we
increase the intensity, this position approaches the focus. Notably, there is no posi-
tion for perfect phase matching for the short trajectories from the Gaussian (LG0)
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beam. As discussed before, a high peak intensity is required in order to fulfill the
condition for perfect phase matching. As seen from the left part of Fig. 4.11, an
intensity of 1015 W/cm2 is not sufficient, since there is no dashed blue curve.
For LG beams, there are always two positions for perfect phase matching. If we just
consider the Gouy and the focal phase, we find that these positions are given by

z = ±

√︄
1+

2

|ℓ|
zr, (4.25)

which agrees with the position for perfect phase matching of the short trajectories
for small intensities, where the contribution of the dipole phase is negligible. Gen-
erally, we observe two distinct behaviors. First, for higher OAM the position for
perfect phase matching approaches the Rayleigh range. Second, for high intensi-
ties, the position for perfect phase matching behind the focus approaches the focus
plane, while its moves away from the focus plane before the focus.

4.3.4 Transverse and longitudinal phase matching

In the previous section, where we investigated phase matching on maximum, we ba-
sically just considered harmonics that are emitted at the transverse intensity max-
imum and analyzed only longitudinal phase matching. In order to analyze phase
matching off the intensity maximum, we need to take the change of the dipole and
the focal phase in radial direction into account.
In Fig. 4.12, we show the coherence length of the 21st harmonic for the short (left

column) and long (right column) trajectories for various LG beams with different
values of OAM, similarly as it was presented in [85] for Gaussian beams. The black
dashed line marks the transition from the plateau to the cutoff for a given harmonic
order and the red dashed line follows the radial intensity maximum. We calculated
the wave vector mismatch from Eq. 4.12 and used the coherence length as defined
in Eq. 4.13.
For the short trajectories, we see that the coherence length across the focus de-
creases as the OAM increases. This is due to the large Gouy phase shift across the
focus. However, as already discussed for the one dimensional model, we can see
that especially for the long trajectories that the large phase shift due to the Gouy
phase can be compensated by the dipole phase. In particular, this gives rise to areas
with a coherence length larger than 1mm shortly behind the focus. If we follow the
line of the intensity maximum, we see that these figures for Gaussian beams are
in good agreement with the results from phase matching on the maximum from
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Figure 4.12: Maps of the coherence length for the 21st harmonic in and perpendicular to
the propagation direction of the beam. The results are shown for a Gaussian
(LG0,0), for a LG1,0, for a LG2,0 and for a LG5,0 beam (from top to bottom). The
left panel presents results for the short while the right panel presents results for
the long trajectories. The coherence length has been calculated from Eq. 4.13.
The peak intensity at the focus z = 0 is 4 · 1014 W/cm2, the Rayleigh range
is zr = 3.5mm and the beam waist is 30µm. The black line marks the cutoff
intensity for each beam. Inside the black line, the harmonic contributes to the
harmonic plateau. The red line marks the transverse intensity maximum.

the previous subsection. For LG beams the agreement is worse than for Gaussian
beams, since the change of the intrinsic phase in radial direction is cannot be con-
sidered in the one dimensional model.
In Fig. 4.13, we display the same phase matching maps as Fig. 4.12 but for the
35th harmonic. This harmonic can be created in a much smaller active volume com-
pared to the 21st harmonic owing to the increase of the cutoff intensity with the
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Figure 4.13: Same as Fig. 4.12, but for the 35th harmonic.

harmonic order. For our calculations of the dipole phase of the 35th harmonic we
used αs = 2.5 ·10−14 cm2/W and αl = 21.5 ·10−14 cm2/W, which have been obtained
from quantum orbit calculations.
Similar to Fig. 4.12, the coherence length for the short trajectory decreases in the
driving volume with the OAM. However, again we find areas in the interaction re-
gion with high coherence length behind the focus for the long trajectories.
Let us compare the coherence length for the long trajectory contributions to the
35th harmonic from Fig. 4.13 with those to the 21st harmonic of Fig. 4.12. We see
that for both harmonic orders, there are regions with coherence length larger than
1mm behind the focus. However, for the 21st harmonic the most favorable condi-
tions occur for ℓ = 5, while for the 35th they arise for ℓ = 2. This indicates that there
is an optimal OAM for the long trajectory contributions for each harmonic order,
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Figure 4.14: HHG with a superposition of two linearly polarized LG beams with the same
photon energy but different OAM as proposed in [86]. The photon diagrams
for the fifth harmonic show that there are multiple pathways to generate this
harmonic.

which may help in particular to study and identify long trajectory contributions to
HHG and may be even extended to beams with higher wavelengths in the infrared
regime.

4.4 controlling the oam of harmonics by multi-mode hhg

So far, we investigated HHG with only a single linearly polarized LG beam and
for example showed that the OAM of the generated harmonics increases with the
harmonic order. However, the OAM of the generated harmonics, in these cases, is
only controllable in a very limited manner. In this section we will present three
possible scenarios of HHG with linearly polarized LG beams that show how the OAM

of the harmonics can be further manipulated and controlled [86–88]. The basic idea
of these three scenarios is the superposition of two linearly polarized LG modes, so
called mode mixing.
In the first scenario, we consider a superposition of two linearly polarized LG

beams with the same frequency but different OAM. In the original work by Rego et
al. [86] they used a

LGω ↔
1,0 ⊕ LGω ↔

2,0 .

superposition, where both beams have a wavelength of 800nm. Generally, an elec-
tron has to absorb q photons to contribute to the generation of a q harmonic. Since
both beams have the same frequency, respectively photon energy, there are multiple
photon pathways that contribute to a qth harmonic. More precisely, if the electron
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Figure 4.15: HHG with a non-collinear superposition of a strong Gaussian beam with a
weaker LG beam. The photon diagrams for the fifth harmonic show that there
are multiple pathways to generate this harmonic. The harmonics are spatially
separated at the detector according to their OAM due to the non-collinear setup.

absorbs n photons from the LGω ↔
1,0 beam it has to absorb q− n photons from the

LGω ↔
2,0 beam, to generate a qth harmonic. This gives rise to q+ 1 different photon

pathways for a qth harmonic. We illustrate some of the possible pathways for the
simple example of a fifth harmonic in Fig. 4.14.
However, HHG is a non-perturbative process, which means that the qth harmonic
can be also generated, for example, by the absorption of more than q photons from
the LGω ↔

1,0 beam and subsequent emission of photons from the LGω ↔
2,0 beam. Such

an example is also shown in Fig. 4.14, where the fifth harmonic can also carry an
OAM of four. By means of the photon picture, this can be achieved if the electron
absorbs six photons from the LGω ↔

1,0 beam and emits one LGω ↔
2,0 photon. In par-

ticular, it shows that the generation of a fifth harmonic can also be a seventh order
process and shows the non-perturbative picture of HHG. Similarly, if the electron
absorbs six photons with ℓ = 2 and emits one photon with ℓ = 1, the fifth harmonic
carries an OAM of ℓH5

= 11.
This argumentation can be easily extended to higher photon orders (9th, 11th).
However, the probability for the HHG along pathways of higher photon orders de-
creases with the number of photons that are involved in the generation. A cutoff
law has been derived in [86].
In the first scenario, all generated harmonics carry multiple values of OAM. This
becomes apparent at the detector, where each harmonic is a superposition of sev-
eral LG modes with different OAM. Kong et al. developed a scenario to spatially
separate the generated harmonics with respect to their OAM at the detector [87].
They used a non-collinear geometry of the two driving beams, which means that
the beams are superimposed under a small angle of ∼ 1◦ − 2◦. In the original work,
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Figure 4.16: HHG with a non-collinear superposition of a strong Gaussian with its second
harmonic that carries a well defined OAM. Similar to Fig. 4.15 we get spatially
separated XUV-vortices that carry a well defined OAM as well. In addition,
within this superposition it is also possible to generate even harmonic orders

they considered the non-collinear superposition of a strong Gaussian beam with a
weaker LG beam, where both beams have the same frequency:

LGω ↔
0,0 ⊕ LGω ↔

1,0 .

The intensity ratio of the two beams was approximately 100 : 1. In Fig. 4.15, we
show some possible pathways for the example of a fifth harmonic. Since the LGω ↔

0,0

beam is more intense than the LGω ↔
1,0 , it is more likely for the electron to absorb

photons from the Gaussian beam. Nevertheless, the electron can absorb photons
from the weaker LG beam, then the generated harmonics carry OAM. The harmonics
are spatially separated at the detector with respect to their OAM due to conservation
of linear momentum. It gives rise to XUV radiation into direction of kq = n1k1 +
n2k2, where k1 (k2) and n1 (n2) are the wave vectors and the number of absorbed
photons from the LGω ↔

0,0 (LGω ↔
1,0 ) driving beam. Since their wave vectors are not

parallel to each other, harmonics generated by different combinations of photons
from the two driving beams will be spatially separated.
In a last scenario, we discuss the non-collinear superposition of a strong Gaussian

with a weaker LG mode that has two times the frequency of the Gaussian beam

LGω ↔
0,0 ⊕ LG2ω ↔

1,0 ,

which was proposed by Gauthier et al. [88]. In their experiment they used an inten-
sity ratio of approximately 5 : 1. The left photon diagram of Fig. 4.16 shows two
possible photon pathways for the fifth harmonic. Since the frequency of the second
beam is twice the frequency of the first beam a fifth harmonic does not necessarily
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require that five photons are absorbed. The left path shows the absorption of five
photons with frequency ω and the right one the absorption of one photon with
frequency ω and two photons with frequency 2ω. Both of these pathways lead to
different OAM in the fifth harmonic. Similarly to the previously discussed scenario,
the harmonics are spatially separated at the detector. Notably, the absorption of
three photons from the LGω ↔

0,0 beam and one photon from the LG2ω ↔
1,0 photons

does not contribute to the fifth harmonic, since the total number of involved pho-
tons has to be an odd number. In contrast to the first two scenarios, this superpo-
sition of beams gives rise to a sixth harmonic as well, which is shown in the right
photon diagram of Fig. 4.16.



5
H I G H - H A R M O N I C G E N E R AT I O N W I T H B I C I R C U L A R
L A G U E R R E - G A U S S I A N B E A M S

In this chapter, we discuss the HHG of atomic targets in bicircular LG beams. We
will first introduce these bicircular fields and analyze them with respect to their
symmetry. Then, similarly to the previous chapter we discuss the single atom re-
sponse to these bicircular fields. Afterwards we analyze the HHG by macroscopic
targets and explain the conservation of OAM. Finally, we will consider the temporal
evolution of the high-harmonic signal and how it is affected by the OAM of the
driving beam.
Some of the material in this chapter has appeared previously in references

Tailored orbital angular momentum in high-order harmonic generation with bicircu-
lar Laguerre-Gaussian beams
Paufler, W., Böning, B., Fritzsche, S.
PHYSICAL REVIEW A, 98, 011401(R) (2018)

High harmonic generation with Laguerre–Gaussian beams
Paufler, W., Böning, B., Fritzsche, S.
Journal of Optics, 21(9), 094001 (2019)

5.1 high-harmonic generation in circularly polarized fields

HHG is a versatile tool to explore atomic structure on the ultra fast time scale. If
high harmonics are generated by linearly polarized driving beams, the generated
harmonics also exhibit linear polarization, c.f. Ch. 4. Similarly, one may expect to
generate circularly polarized harmonics with circularly polarized driving beams.
However, HHG in circularly polarized beams is strongly suppressed.
We can explain this suppression by means of semi-classical physics. From a semi-
classical viewpoint, the HHG arises from the recombination of the released electron
with the parent ion after the electron was accelerated by the driving laser field. In
circularly polarized laser fields, however, the electron, which moves on its classical
trajectory, will not come back to the parent ion. Therefore HHG is strongly sup-
pressed in circularly polarized fields.
Moreover, we can understand this suppression in terms of the conservation of SAM.

59
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Each photon has SAM of either plus or minus one that corresponds to its polariza-
tion. In a circularly polarized beam all photons have the same SAM. If an electron
absorbs more than one photon from a circularly polarized beam, their SAM add up.
However, the SAM of the emitted photons can only be plus or minus one as well.
Therefore it is not possible to emit high harmonic radiation after the absorption of
several photons, where all photons have the same SAM.
However, the availability of circularly polarized harmonics becomes important to
probe for example chiral matter [89]. Luckily it is possible to manipulate the driv-
ing field in such a way that circularly polarized harmonics can be generated. For
example, it is possible to use a non-collinear setup of two counter-rotating circu-
larly polarized beams with the same frequency to generate circularly polarized
harmonics [18]. Another way is the use of so-called bicircular driving beams.

5.2 bicircular modes

5.2.1 Composition of bicircular modes

As a bicircular beam we will denote a superposition of a circularly polarized beam
with its counter-rotating second harmonic. In the literature there are different deno-
tations for these fields. Some papers use two color counter-rotating circularly polarized
fields [90, 91], while others use bichromatic circularly polarized fields [92]. However,
we will refer to bicircular fields, similarly to [93, 94]. Although it is possible to con-
sider a general superposition of two counter-rotating circularly polarized beams
with frequencies rω and sω, where r and s are arbitrary integers, we will always
refer to the ω− 2ω superposition unless stated otherwise.
In Fig. 5.1, we show how the electric field of a bicircular beam arises from two

counter-rotating circularly polarized beams. Here both beams have the same in-
tensity, respectively magnitude of the electric field. The effect of the intensity ratio
between the two counter-rotating beams to the electric field is illustrated in Fig. 5.2.

5.2.2 Symmetries in bicircular LG modes

These bicircular fields have rotational symmetry that is of special interest, especially
when we consider HHG with twisted bicircular fields. But let us start with a plane
wave bicircular field. We can express the electric field of the bicircular beam as

E(φ1,φ2, t) = Eω ⟲(φ1, t) + E2ω ⟳(φ2, t), (5.1)
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Figure 5.1: The composition of a bicircular field out of a superposition of a circularly po-
larized field with its counter-rotating second harmonic. For circularly polarized
fields the electric field vector rotates in the Ex −Ey-plane, as shown top left and
top right. For bicircular fields we add the electric field vectors, as shown for
t1, t2 and t3, which results in this Lissajous figure or bicircular trefoil for the
electric field.

where the left and right circularly polarized components are given by

Eω ⟲(φ1, t) =
Eω√
2
(cos (φ1 −ωt) ex − sin (φ1 −ωt) ey) (5.2)

and

E2ω ⟳(φ2, t) =
E2ω√
2
(cos (φ2 − 2ωt) ex + sin (φ2 − 2ωt) ey) , (5.3)

respectively. Here Eω and E2ω are the field amplitudes. So far, the variables φ1 and
φ2 are two phase terms without explicit physical meaning, but we will attach some
to them in terms of twisted beams later in this section. If we set both phase terms
to zero, the electric field has the shape of the Lissajous figure as shown in Fig. 5.3a.
The black dot shows where the electric field vector will point to at t = 0. The color
scale indicates the evolution of the electric field with time. If we set φ1 = π

2 , the
Lissajous figure is rotated through an angle of θ1 = −2

3φ1 around the z-axis [95, 96],
as shown in Fig. 5.3b. Notably, it rotates clockwise. In contrast, if we set φ2 = π

2 , the
Lissajous figure is rotated counter-clockwise through an angle of θ2 = 1

3φ2, which
we show in Fig. 5.3c.
Interestingly, for both changes of φi the vector of the electric field will be shifted
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Figure 5.2: Visualization of the electric field of bicircular fields for various intensity ratios
of the circularly polarized incident beams in the Ex − Ey-plane.

in time such as t ′ = t− φi
3ω , which can be seen by the shift of the black dot. We can

express the electric field in Eq. 5.1 for arbitrary phases φ1 and φ2 as

E(φ1,φ2, t) = R
(︃
φ2 − 2φ1

3

)︃
E
(︃
0, 0, t−

φ1 +φ2
3ω

)︃
, (5.4)

where the rotation matrix is given by

R(φ) =

⎛⎝ cos(φ) − sin(φ)

sin(φ) cos(φ)

⎞⎠ . (5.5)

Let us now apply these findings to LG beams. We can express bicircular LG beams
as a superposition of two LG beams with frequencies ω and 2ω and opposing
polarization:

LG(φ, t) = LGω ⟲
ℓ1,p1

(φ, t) + LG2ω ⟳
ℓ2,p2

(φ, t). (5.6)

The circularly polarized LG beams can be expressed as

LGω ⟲
ℓ1,p1

(φ, t) =
Eω(ρ, z)√

2
(cos (ℓ1φ−ωt) ex − sin (ℓ1φ−ωt) ey) (5.7)

and

LG2ω ⟳
ℓ2,p2

(φ, t) =
E2ω(ρ, z)√

2
(cos (ℓ2φ−ωt) ex + sin (ℓ2φ−ωt) ey) . (5.8)

Here we hide the exact shape of the spatial dependent amplitudes, which have
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Figure 5.3: Visualization of the electric field of bicircular fields for depending on the phase
terms in Eq. 5.4 in the Ex − Ey-plane. Left: φ1 = φ2 = 0, the Lissajous figure
shows up as presented before. Middle: φ1 = π/2 and φ2 = 0, the Lissajous
figure rotates through π/3 and the electric field is shifted in time as t ′ = t− φi

3ω .
Right: φ1 = 0 and φ2 = π/2, the Lissajous figure rotates through π/6 opposed
to the case in the middle figure and the electric field is shifted again in time as
t ′ = t− φi

3ω .

been presented in Eq. 2.14, in Eω(ρ, z) and E2ω(ρ, z).
Interestingly, Eq. 5.7 and Eq. 5.8 have a similar structure to Eq. 5.2 and Eq. 5.3,
respectively. However, there are important differences. First, for LG beams, the am-
plitude is spatially dependent. Second, the initially introduced phase terms φ1 and
φ2 have a physical meaning as they are rewritten as ℓ1φ and ℓ2φ, where ℓ1 and ℓ2
denote the OAM of the LG beams and φ is the azimuthal coordinate.
Now, Eq. 5.4 helps to understand how the Lissajous figure at different azimuthal
angles has to be transformed compared to φ = 0. If we change the azimuthal
coordinate from φ = 0 to φ = φ0, the Lissajous figure will rotate through an
angle of ℓ2−2ℓ1

3 φ0. In addition, the electric field will be shifted in time such as
t ′ = t− ℓ1+ℓ2

3ω φ0, as shown in Fig. 5.4. We can rewrite the local electric field of a
bicircular LG beam as

LG(φ, t) = R (γφ)LG(0, t− τφ), (5.9)

where

γ =
ℓ2 − 2ℓ1
3

(5.10)
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Figure 5.4: Orientation of the Lissajous figures for various azimuthal angles φ in a bicircu-
lar LG beam (LGω ⟲

1,0 + LG2ω ⟳
1,0 ). The background shows the the cycle averaged

intensity distribution of the two superimposed LG beams with the characteris-
tic singularity in on the beam axis. For φ = 0 the Lissajous figure has the same
orientation as in Fig. 5.3a. The black dot helps to guide eyes and shows the
position of the electric field vector at t = 0.

is the OAM dependent rotational and

τ =
ℓ1+ ℓ2
3ω

(5.11)

is the OAM dependent time delay parameter [97]. We will need these symmetries to
understand the temporal evolution of the harmonic radiation, which is considered
in Sec. 5.6.

5.3 single atom response to a bicircular field

Let us now discuss the harmonic response of a single atom to a bicircular laser
field. HHG with these bicircular fields has been proposed already a few years ago
by Milošević [98] and experimentally confirmed by Fleischer et al. [99].
The characteristic spectrum of emitted harmonics in bicircular fields, as shown in
Fig. 5.5, has fundamental differences to the spectrum of HHG in linearly polarized
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Figure 5.5: Characteristic spectrum of high harmonics generated by a bicircular (ω− 2ω)
field with equal intensities of 1014 W/cm2 in an arbitrary logarithmic scale.
The spectrum exhibits the characteristic plateau of several harmonics that are
emitted at similar intensities and the subsequent exponential harmonic cutoff
around the 21st harmonic. Different colors indicate different polarization of the
generated harmonics. The calculation has been performed with the rb-sfa code
[70].

fields. Here, every third harmonic is suppressed and the contributing harmonics
exhibit alternatingly left and right circular polarization. The 3n+ 1 harmonics (red)
have the same polarization as the fundamentalω driver, while the 3n+2 harmonics
(blue) exhibit the same polarization as the 2ω beam.
Similarly to HHG with linearly polarized beams, the plateau, which is followed by
an exponential cutoff in the harmonic intensity, is characteristic for the harmonic
spectrum. However, the cutoff for HHG in bicircular fields, with equal intensities of
the two circularly polarized components, is given by [98]

nmaxω =
1√
2
3.17Up + 1.2Ip, (5.12)

where the ponderomotive potential is defined by Up =
E2ω
4ω2 +

E22ω
16ω2 . We can explain

HHG with bicircular beams in terms of intuitive photon diagrams [100] as shown in
Fig. 5.6. Within this picture of photon diagrams

• photons from the fundamental, red, left circularly polarized, ω beam have a
SAM of plus one,
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• photons from the second harmonic, blue, right circularly polarized, 2ω beam
have a SAM of minus one.

Figure 5.6: Candidates for photon pathways to generate a sixth (left) or seventh (right) har-
monic. Photons from the ω-beam with SAM of one are indicated by red arrows,
while those of the 2ω-beam with SAM minus one are denoted by blue arrows.
The SAM of the harmonic is shown on the x-axis. (a), (b), (c), (d) and (e) are
forbidden since the SAM of the generated harmonics has to be plus of minus
one. (f) and (g) as an extension of (e) contribute to the generation of a seventh
harmonic. Furthermore (g) shows the non-perturbative nature of HHG.

In the left part of Fig. 5.6, we show possible candidates (a-c) for photon pathways
that could contribute to a sixth harmonic. However, none of these shown pathways
for the sixth harmonic ends up at a projection of the SAM of plus (vertical red
line) or minus one (vertical blue line). For example, the absorption of three 2ω-
photons (blue) leads to a SAM of minus three, thus HHG is forbidden from this
pathway. Moreover, since there is no combination of blue and red photons, which
corresponds to the sixth harmonic and ends up at SAM plus or minus one, this
harmonic is strongly suppressed in the spectrum. This also agrees with Fig. 5.5.
In the right part of Fig. 5.6, we show pathways for the seventh harmonic. Here,
the photon paths (d) and (e) do not contribute to HHG. However, pathway (f) ends
up at SAM plus one after the absorption of three red and two blue photons, which
results into the emission of a left circularly polarized seventh harmonic. In addition,
pathway (g), which is an extension to pathway (e) also contributes to the generation
of the seventh harmonic. Notably, pathway (g) is similar to (f) and just differs by
the additional absorption and emission of two red photons. Briefly speaking, the
net absorption of photons for pathway (f), three red and two blue photons, and
pathway (g), 5− 2 = 3 red and two blue photons, is the same. However, pathway
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(g) is a pathway of higher photon order. These higher order pathways are allowed
and have significant contributions to HHG, since it is a non-perturbative process.
For simplicity, we will treat both paths as the same. Generally, we will refer to net
absorption of photons if we speak about absorption.
It can be easily seen from the photon diagrams that only paths where the number
of net absorbed red and blue photons differs by one can contribute to HHG. This
simple rule gives rise to the selection rules for HHG in bicircular fields:

LGω⟲
0,0 ⊕ LG 2ω⟳

0,0
HHG−→

ωHq
= qω = mω+n2ω,

m−n = ±1,
(5.13)

where m is the number of absorbed red and n the number of absorbed blue pho-
tons.

5.4 extended targets in bicircular lg beams

In the previous section, we discussed HHG with bicircular plane waves, respectively
the single atom response to a bicircular field. However, in order to investigate HHG

with bicircular LG beams, we have to take the coherent nature of HHG into account.
The measured harmonic radiation at the detector is a result of the superposition of
all single atom responses in the interaction region of the driving laser. The results
in this section were calculated by means of the Fraunhofer diffraction model, which
we presented in Eq. 3.45.

5.4.1 Conservation of SAM and OAM

In Fig. 5.7 we show the calculated far field phase profiles for the 11th and 13th

harmonic. We used a bicircular LG driving field that can be expressed as

LGω⟲
1,0 ⊕ LG 2ω⟳

1,0 , (5.14)

or to put it in other word, both LG beams have the same OAM ℓ = 1. For our sim-
ulations, we choose that both beams have a waist of 30µm and a peak intensity of
1014 W/cm2 at the focus. The far-field phase profiles for the 11th harmonic reveals
seven phase shifts of 2π along the azimuth, which implies that the 11th harmonic
carries an OAM of ℓH11

= 7. This is also confirmed by the computation of the az-
imuthal Fourier transform (bottom left). Similarly, the 13th harmonic carries an
OAM of ℓH11

= 9.
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At first glance, this result seems to be unexpected, since it does not reveal the lin-
ear scaling of the OAM with the harmonic order as it does for linearly polarized LG

beams. In Sec. 5.3, we showed there is only one photon path for each harmonic in
these bicircular fields. Locally each atom is irradiated by a bicircular field. There-
fore the photon pathway that contributes to a given harmonic order is well defined.
For example, in order to generate an 11th harmonic, the electron has to absorb three
red and four blue photons, since 3ω+ 4 · 2ω = 11ω. Within the paraxial approxi-
mation SAM and OAM are well separated quantities, thus both of them have to be
conserved simultaneously [101]. The polarization of the 11th harmonic has to be
the same as the polarization of the LG 2ω⟳

1,0 , due to the conservation of SAM. For the
conservation of OAM we need to consider the OAM of all absorbed photons. Since
both beams carry an OAM of ℓ = 1, the OAM of the 11th harmonic can be computed
as ℓH11

= 3 · 1+ 4 · 1 = 7. Analogously, we get for the 13th harmonic that ℓH13
= 9.

We can summarize the simultaneous conservation of SAM and OAM with the fol-
lowing selection rules [102]:

LGω⟲
ℓ1,0 ⊕ LG 2ω⟳

ℓ2,0
HHG−→

ωHq
= qω = mω+n2ω,

m−n = ±1,

ℓHq
= mℓ1 +nℓ2,

(5.15)

where again m is the number of absorbed red and n the number of absorbed blue
photons. Note that the upper two equations are the same as for bicircular plane
wave fields, while the last equation accounts for the conservation of OAM. The
latter one also implies that the OAM of the harmonics can be manipulated by the
OAM of the incident beams.
Similarly to HHG linearly polarized LG beams, we can write the amplitude of the
qth harmonic in the near-field as

A
(near)
q (ρ ′,φ ′) = f(ρ ′)eiℓHqφ

′
. (5.16)

This is a more general expression than that in Eq. 4.5, since the OAM of the qth

harmonic is not necessarily qℓ. However, we can evaluate the azimuthal integral in
Eq. 3.45 analogously, which gives

A
(far)
q (β,φ) = 2πiℓHqeiℓHqφ

∫︂∞
0
dρ ′ρ ′f(ρ ′)JℓHq

(︃
2π

λq
βρ ′
)︃

, (5.17)

where again λq is the wavelength of the qth harmonic and Jk(x) is a Bessel function
of the first kind. From Eq. 5.17, we can see that the divergence of the harmonics
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Figure 5.7: Top: The phase profiles for the 11th and 13th harmonic at the detector generated
by a bicircular LG beam, LGω⟲

1,0 ⊕ LG2ω⟳
1,0 . The OAM (number of phase shifts

of 2π) for the 11th harmonic is equal to seven, while for the 13th harmonic it
is equal to nine. Bottom left: OAM of the 11th (blue) and 13th (red) harmonic
calculated by a Fourier transform along the azimuthal coordinate.

increases with the OAM but decreases with the harmonic order. Since we can ma-
nipulate the OAM of the harmonics by the OAM of the incident beam, it is possible
to to manipulate the divergence as well [66, 100].
In particular, the divergence for the 11th and 13th harmonic are quite similar to
each other, as shown in Fig. 5.8. In Fig. 5.9 we present photon diagrams for HHG

with bicircular LG beams. Notably, we only selected these pathways that contribute
to HHG, respectively these pathways where the number of red and blue photons
differs by one. In contrast to these diagrams in Fig. 5.6, where we focused on the
SAM, we now focus on the OAM of the emitted harmonics (x-axis). We show the
photon pathways by way of example for the fifth and seventh harmonic for two
different superposition of LG beams. In the left part, we use the superposition

LGω⟲
1,0 ⊕ LG 2ω⟳

1,0 , (5.18)
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Figure 5.8: Top: The intensity profiles for the 11th and 13th harmonic at the detector gen-
erated by a bicircular LG beam, LGω⟲

1,0 ⊕ LG2ω⟳
1,0 . Bottom left: Cut through the

intensity profiles of the 11th and 13th harmonic. The maximum of the intensity
profiles is set to one.

which we also considered for the calculations of Fig. 5.7 and Fig. 5.8. In the right
part, we consider the superposition

LGω⟲
1,0 ⊕ LG 2ω⟳

−1,0 . (5.19)

In particular, the latter superposition is interesting, since all generated harmonics
will carry the same modulus of OAM. More precisely all left circularly polarized har-
monics carry an OAM of ℓ = 1, while all right circularly polarized harmonics carry
an OAM of ℓ = −1. From the Fraunhofer diffraction formula, we can deduce that
the divergence will decrease with the harmonic order if harmonics are generated
by this superposition of LG beams.
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Figure 5.9: Photon diagrams for the generation of a 5th and 7th harmonic by (a) LGω⟲
1,0 ⊕

LG2ω⟳
1,0 and (b) LGω⟲

1,0 ⊕ LG2ω⟳
−1,0 superpositions. Different arrows denote ab-

sorption of photons from different beams. Here we just show photon pathways
that contribute to the generation of harmonics. On the x-axis we can read of the
OAM of the generated harmonics.

5.4.2 Tailored OAM

In Sec. 5.4.1, we found selection rules for HHG in bicircular LG beams, c.f. Eq. 5.15.
These selection rules show that the OAM of the harmonics depends on the OAM of
the incident LG beams. It is possible to control the OAM the the harmonics precisely
by the incident beams. Moreover, for a given harmonic order q, it is always possible
to find values for the OAM ℓ1 and ℓ2, such that the OAM takes the value ℓHq

. In order
to prove this, we will analyze the selection rules in more detail. For a qth harmonic,
we can find the number of absorbed red photons by

m =
q± 2
3

(5.20)

and the number of absorbed blue photons by

n =
q∓ 1
3

. (5.21)

Notably, for each harmonic order, these equations have two solutions. However,
only one of them is integer valued. The other solution can be discarded, since
fractional photons do not exist. For example, for an 11th harmonic order, we get

m =
11± 2
3

and n =
11∓ 1
3

.
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Here m = 3 and n = 4 are the significant solutions. Moreover, for harmonic orders
that are divisible by three, we cannot find integer solutions. This is in agreement
with the suppression of every third harmonic in bicircular driving fields..
Once we have determined the number number of red (m) and blue (n) photons
that have to be absorbed to generate a qth harmonic, we are still left to verify that
we can always find integer values for ℓ1 and ℓ2, such that

ℓHq
= mℓ1 +nℓ2. (5.22)

Noteworthy, Eq. 5.22 is a linear Diophantine equation [103]. These equations are
solvable if and only if ℓHq

is divisible by the greatest common divisor of m and
n. However, m and n differ exactly by one, due to the conservation of SAM. This
implies that their greatest common divisor must be equal to one. Therefore the
condition to find solutions is always fulfilled.
Let us now construct the set of solutions for ℓ1 and ℓ2. First, we solve the homoge-
neous part of Eq. 5.22. As a second step, we find one particular solution. Finally,
we can express the set of solutions as a superposition of the homogeneous and
particular solution. The homogeneous equation is given by

0 = mℓ1 +nℓ2. (5.23)

This equation is fulfilled for

ℓ1 = a ·n (5.24)

ℓ2 = −a ·m, (5.25)

where a is an arbitrary integer. We are now left to find a particular solution. Here
we have to distinguish between two cases.

1. m − n = 1
Here the qth harmonic has the same polarization as the incident LGω⟲

ℓ1,0 beam.
The particular solution is given by

ℓ1 = ℓHq
and ℓ2 = −ℓHq

, (5.26)

which can be easily verified by means of Eq. 5.22. Finally, we can write the set
of solutions as

ℓ1 = ℓHq
+ a ·n and ℓ2 = −ℓHq

− a ·m (5.27)
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with an arbitrary integer a.

2. m − n = −1
Here the qth harmonic has the same polarization as the incident LG 2ω⟳

ℓ2,0 beam.
The particular solution is given by

ℓ1 = −ℓHq
and ℓ2 = ℓHq

. (5.28)

Similarly we express the set of solutions as

ℓ1 = −ℓHq
+ a ·n and ℓ2 = ℓHq

− a ·m. (5.29)

Again a is an arbitrary integer.

Notably, there are infinitely many solutions for each set (ℓ1, ℓ2). However, com-
monly for experimental applications small values for the OAM are chosen, since
beams with small OAM are much easier to generate than those with large OAM.

5.4.3 Generalization to rω+ sω

So far, we just considered ω− 2ω bicircular fields. However, this analysis can be
generalized to rω− sω bicircular fields. We illustrate the electric field for rω− sω

bicircular fields for various values of r and s in Fig. 5.10.
Of course, the harmonics that contribute to the spectrum change according to the
frequencies that compose the bicircular field. We can adapt the photon diagrams
that we developed for ω− 2ω bicircular fields to find the contributing harmonics
for general bicircular driving fields. For example, a ω− 3ω gives rise to only odd
harmonics, while a 2ω− 3ω suppresses all harmonics, except of all (5n± 2) har-
monics. However, even for general rω− sω bicircular fields, it is always possible
to tailor the OAM of each harmonic in a precise manner as described in Sec. 5.4.2.
In Tab. 5.1 we present the parameters for the incident beams to generate a qth

harmonic with tailored OAM ℓHq
.

5.5 generation of near-circularly polarized attosecond pulse

trains

In the previous sections our main focus was to find which harmonic orders are gen-
erated and how we can control individual harmonics with respect to their polariza-
tion (SAM) and their OAM. However, in experiments usually several harmonics are
superimposed and form an attosecond pulse [104] or pulse train [105]. HHG with
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Figure 5.10: Visualization of the electric field of general rω− sω bicircular fields for various
intensity values of r and s in the Ex − Ey -plane.

linearly polarized beams generates linearly polarized harmonics and thus linearly
polarized attosecond pulses. As we showed, HHG with bicircular beams generates
alternatingly left and right circularly polarized harmonics. However, the resulting
attosecond pulses are still linearly polarized, since neighboring harmonics exhibit
different polarization. Here, three linearly polarized attosecond pulses, each ro-
tated by 120◦, are emitted per cycle, as illustrated in Fig. 5.13a. In this section we
will discuss two ways to manipulate the polarization of the generated attosecond
pulses.

5.5.1 Spatial separation with OAM

We discussed the possibilities to tailor the OAM of the harmonics precisely by the
OAM of the driving beams. Since the divergence of the harmonics is affected by the
OAM, the divergence of the harmonics can be controlled similarly.
In Fig. 5.11, we show the intensity distributions for several harmonics from the
plateau (10th − 17th). Here we compare three different superpositions of LG beams:

(a) LGω ⟲
1,0 ⊕ LG2ω ⟳

1,0 ,

(b) LGω ⟲
1,0 ⊕ LG2ω ⟳

−1,0 ,

(c) LGω ⟲
2,0 ⊕ LG2ω ⟳

−1,0 ,

where in our simulations each driving beam has a peak intensity of 1014 W/cm2.
In Fig. 5.11a, we display that the harmonics generated by superposition (a) are
emitted at similar divergence. This is the same superposition, which we used in
Fig. 5.7.
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Figure 5.11: Intensity distributions of generated harmonics for three different incident bicir-
cular LG beams. Different colors indicate different polarization of the emitted
harmonics. The intensity distributions show that the divergence of the harmon-
ics can be controlled by the OAM of the driving beam. (a) All harmonics, left
(red) and right (blue) circularly polarized harmonics, are emitted with simi-
lar divergence. (b) The divergence decreases as the harmonic order increases,
since all harmonics have the same modulus of OAM. (c) Left and right circu-
larly polarized harmonics can be spatially separated at the detector, by proper
choosing of the OAM of the incident beams [66].

As indicated earlier in Fig. 5.9b, all harmonics generated by superposition (b) carry
the same modulus of OAM. This implies that divergence decreases for each har-
monic order, as shown in Fig. 5.11b.
In Fig. 5.11c, we show that left (red) and right (blue) circularly polarized harmonics
have a significantly different divergence if they are generated by superposition (c).
This leads to a spatial separation of left and right circularly polarized harmonics
at the detector. As a result, we obtain right circularly polarized twisted attosecond
pulse trains for low angles of divergence, around β ≈ 1mrad, and left circularly
polarized twisted attosecond pulse trains for β ≈ 2.5mrad. This has been theoreti-
cally predicted and experimentally confirmed by Dorney et al. [66].

5.5.2 Relative intensity ratio and polarization control

Until the present, the relative intensity ratio between the two circularly polarized
driving components in bicircular beams has been utilized as an easily accessible
parameter in theory and experiments in order to control various strong-field pro-
cesses with plane-wave beams. These include, for example, above threshold ioniza-
tion [106], non-sequential double ionization [91, 107] and also HHG [108, 109]. For
HHG, in particular, it was shown that it is possible to enhance the generation either
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Figure 5.12: Intensity distributions of generated harmonics for three different intensity ra-
tios of the driving beams. Different colors indicate different polarization of
the emitted harmonics. For all calculations we used a LGω ⟲

1,0 ⊕ LG2ω ⟳
1,0 super-

position. (a) Same plot as Fig. 5.11a. Intensity distribution for (b) a dominat-
ing ω-beam (1.5 · 1014 W/cm2:0.5 · 1014 W/cm2) and (c) a dominating 2ω-beam
(0.5 · 1014 W/cm2:1.5 · 1014 W/cm2).

left or right circularly polarized harmonics by adjusting the relative intensity ratio
of the ω and 2ω beam. The basic idea is that a suppression of all harmonics of
a given polarization gives rise to the generation of circularly polarized attosecond
pulses.
In this section, we show that the same scheme can be applied to bicircular LG beams.
In Fig. 5.12, we displays the intensity distributions in the far-field for three different
intensity ratios of the incident ω and 2ω beams in a LGω ⟲

1,0 ⊕ LG2ω ⟳
1,0 superposi-

tion. If both incident beams have the same intensity, as shown in Fig. 5.12a, left and
right circularly polarized harmonics are emitted with similar intensities and there-
fore the emitted attosecond pulses will also be linearly polarized. In Fig. 5.12b the
incident ω beam is dominant and, therefore, harmonics with the same polarization
as theω beam are preferably emitted. In contrast, Fig. 5.12c shows the intensity dis-
tributions when the 2ω beam dominates. Interestingly the latter case not only leads
to the preferred emission of harmonics with the same polarization as the 2ω beam,
but also to the formation of several maxima in the far-field intensity distribution.
We would briefly remind that a LGℓ,0 beam has only one radial maximum, since its
radial quantum number p equals zero. However, here the harmonics are not pure
LGℓ,0 modes, but a superposition of modes with different radial quantum numbers.
The appearance of higher order radial modes has already been observed in HHG

with linearly polarized LG1,0 beam. Géneaux et al. displaced the atomic target with
respect to the focus plane [110]. They explained the occurrence of additional rings
to the contributions of the long trajectories [111]. These are more pronounced if
the target is placed before the focus, which is also in agreement with our calcu-
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Figure 5.13: Attosecond pulse train generated with a bicircular driving beam. (a) The high
harmonic signal consists of three linearly polarized attosecond pulses, each
rotated by 120◦, per cycle of the driving beam. (b) The envelope (blue) shows
the modulus squared of the driving field, while the black curve resembles the
modulus squared of the attosecond pulse, respectively the dipole acceleration.
For the high-harmonic signal we only considered the harmonics from the 13th

to the 23th order.

lations from Sec. 4.3 (c.f. Fig. 4.12 second row). A detailed analysis of the radial
intensity profile in HHG with bicircular LG beams in connection with a quantum
orbit analysis is still to be made in some forthcoming work [112].

5.6 attosecond light springs in hhg

Let us now discuss the temporal evolution of the high-harmonic signal in bicircular
LG beams. As stated in the previous section, HHG with bicircular beams generates
three linearly polarized attosecond pulses per cycle, each rotated by 120◦ as shown
in Fig. 5.13a. The oscillation of the electric field, which is proportional to the dipole
acceleration, is maximal if the instantaneous field strength of the driving beam is
maximal as well, c.f. Fig. 5.13b.
If we consider extended targets, the harmonics will be generated at different az-
imuthal positions in the interaction region. Due to the azimuthal phase in LG beams,
the electric field is virtually shifted in time at different azimuthal positions. This
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Figure 5.14: Temporal evolution of the high-harmonic signal generated by bicircular LG
beams with different combinations of OAM. The three dimensional plot shows
a contour at 80% of the maximum electric field of the generated signal. For the
high-harmonic signal we only considered the harmonics from the 13th to the
23th order.

has been discussed when we considered the symmetry of bicircular LG earlier in
Sec. 5.2.2. The azimuthal time delay implies that the attosecond pulses are generally
not generated simultaneously at all azimuthal positions. Therefore the temporal
evolution of the harmonic signal typically has the shape of a light spring. This has
been initially reported by Hernández-García et al. [69], when they considered HHG
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with linearly polarized LG beams and meanwhile confirmed in different articles [88,
113].
Light springs were also reported in a different context by Pariente et al. [114]. Here,
the authors superimposed several LG beams of different frequencies, spaced by
δω, where the OAM of each mode was correlated to its frequency. More precisely,
the OAM was increased by δℓ as the frequency increases by δω. In particular, they
showed that the number of coils in the light spring was affected by the ratio of
δℓ and δω. Thereby they showed that they can produce "first-order" and "second-
order" light springs, respectively light springs with one and two coils.
In this chapter, we will consider the temporal evolution of the high harmonic signal
generated by bicircular LG beams and especially how it depends on the OAM of the
driving beam.
In Fig. 5.14, we show the temporal evolution of the high-harmonic signal driven
by different bicircular LG beams. We used the numerical propagation of the dipole
acceleration, which we introduced in Sec. 3.2.2 to calculate the signal at the detector.
The three dimensional surface is a contour at 80% of the maximum intensity.
In the upper row, we show the temporal evolution of the high-harmonic signal that
has been generated by a LGω ⟲

1,0 ⊕ LG2ω ⟳
1,0 superposition. It shows a light spring

with two coils, which has also been found in HHG with a linearly polarized LGω↔
1,0

beam, where both driving beams have a peak intensity of 1.5 · 1014 W/cm2. Interest-
ingly, a LGω ⟲

1,0 ⊕LG2ω ⟳
−1,0 superposition does not form a light spring in the temporal

evolution, c.f. Fig. 5.14b. Here we get some donut-like shape for the harmonic sig-
nal. Finally, Fig. 5.14c shows a light spring with three coils that has been generated
by a LGω ⟲

2,0 ⊕ LG2ω ⟳
1,0 superposition. The illustrations of the temporal evolution

clearly indicate that its shape strongly depends on the incoming LG beams, espe-
cially on the OAM. An interesting characteristic of these light springs is that we
always observe three attosecond bursts per cycle of the near-infrared beam at every
azimuthal position, potentially only delayed in time.
Let us now analyze the origin and shape of these light springs in more detail.

In the left part of Fig. 5.15, we show the intensity distribution of the driving
LGω ⟲

1,0 ⊕ LG2ω ⟳
1,0 beam near the focus and how the orientation of the local bicir-

cular field changes along the azimuth. The black dot indicates the electric field at
t = 0. The right part shows the modulus of the electric field as a function of time for
different azimuthal angles. For φ = 0, the electric field is maximal at t = 0, which
is also shown by the black dot in the left part at φ = 0. At different azimuthal an-
gles the electric field will have different values at t = 0. This is also demonstrated
by the fact that the position of the black dot in the Lissajous figure changes along
the azimuth. As explained in Sec. 5.2.2 a change of φ0 in the azimuthal direction
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Figure 5.15: Left: Orientation of the Lissajous figures for various azimuthal angles φ in a
bicircular LG beam (LGω ⟲

1,0 + LG2ω ⟳
1,0 ) with the cycle averaged intensity distri-

bution in the background. Right: Modulus of the electric field as a function of
time at three different azimuthal positions.

causes a time shift of ℓ1+ℓ2
3ω φ0 in the time domain. Let us, for simplicity, assume

that harmonics are only emitted when the modulus of the electric field is maximal.
Generally, HHG with bicircular beams leads to three attosecond bursts per cycle,
where the maxima of the bursts are separated in time by

△tburst =
T

3
=
2π

3ω
. (5.30)

If we change the azimuthal angle in a LGω ⟲
1,0 ⊕LG2ω ⟳

1,0 superposition by 2π, we get
a time shift of

△t(1,1)azimuth = τ · 2π =
2

3ω
· 2π, (5.31)

where τ = 2
3ω , c.f. Eq. 5.11. There will be exactly two maxima along the azimuth,

since

△t(1,1)azimuth
△tburst

= 2. (5.32)

At these two maxima attosecond pulses are simultaneously emitted. This ensures
that the light spring has two coils.
Similar to Fig. 5.15, we show the local orientation of the bicircular field of a
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Figure 5.16: Same as Fig. 5.15 but for a LGω ⟲
1,0 + LG2ω ⟳

−1,0 superposition.

LGω ⟲
1,0 ⊕LG2ω ⟳

−1,0 superposition in Fig. 5.16. Interestingly, at t = 0 the electric field is
maximal at all azimuthal positions, even though the electric field vector is pointing
in different directions. Here, the attosecond pulses are emitted simultaneously at
all azimuthal positions. As a result, we observe the attosecond pulse trains at the
detector without time delay between different azimuthal positions. Therefore the
temporal evolution has the donut-like shape instead of a light spring, c.f. Fig. 5.14b.
We can easily generalize these findings to LGω ⟲

ℓ1,0 ⊕ LG2ω ⟳
ℓ2,0 superpositions. Again,

a change of the azimuthal coordinate of φ0, causes a time shift in the driving field
of ℓ1+ℓ23ω φ0. Thus a change of 2π induces a time shift of

△t(ℓ1,ℓ2)
azimuth =

(ℓ1 + ℓ2)

3ω
· 2π. (5.33)

The maxima of the driving field, respectively the maxima of the attosecond bursts
are separated by

△tburst =
2π

3ω
. (5.34)

Therefore, there are always

△t(ℓ1,ℓ2)
azimuth

△tburst
= ℓ1 + ℓ2 (5.35)
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maxima along the azimuth. Since each maximum corresponds to one coil in the
light spring, we get ℓ1 + ℓ2 coils that form the temporal evolution of the high-
harmonic signal.





6
S U M M A RY A N D C O N C L U S I O N S

In this summary, we will shortly mention the keystones of each chapter. However,
we will put more emphasis on possible future work and how it relates to the results
presented in this thesis.
We started with a theoretical description of light beams in Ch. 2. After a short in-
troduction to plane waves, we considered Gaussian and LG beams, where the latter
ones carry in addition to their SAM a well defined OAM. Moreover, we showed that
both are solutions to the paraxial wave equation. For paraxial beams, OAM and
SAM are simultaneously well defined. This unique property allows to find precise
selection rules for the generation of high harmonics. However, there are also other
classes of twisted light beams, such as Bessel beams [115]. These non-diffracting
beams fulfill the full wave equation and they do not have a well defined OAM and
SAM. Here only the total angular momentum, the sum of SAM and OAM, is well
defined. Basically this implies that SAM and OAM are coupled to each other. Inves-
tigations of HHG with those Bessel beams will help to understand the transfer of
SAM and OAM in nonlinear processes. In particular it shall be interesting to analyze
for example the polarization, far-field intensity and phase profiles of the generated
harmonics and how they are affected by experimentally accessible parameters such
as the opening angle of the Bessel beam. These harmonics could be a new tool for
light-matter interaction at the ultra fast time scale.
In Ch. 3 we presented the underlying theory for the analysis of HHG with twisted
light beams. We mainly divided this chapter into two parts that address the micro-
scopic and macroscopic side of HHG, respectively.
For the microscopic side, we began with some classical considerations of HHG in-
cluding the well-known three step model. This simple picture is crucial and builds a
great intuition to understand this process. We subsequently presented the so-called
quantum mechanical Lewenstein model in the framework of the SFA and showed
its relation to the classical picture.
Typically, the continuum states in the SFA are described by Volkov states, which
describe an electron in the external laser field, while the Coulomb potential of
the parent ion and magnetic (non-dipole) effects are neglected. We therefore de-
veloped general Volkov states for spatially structured light fields, such as Bessel
and LG beams, in order to account for non-dipole contributions [116]. This might
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considerably affect the spin polarization of outgoing and returning electron wave
packet, when twisted light fields are applied. It will be interesting to apply these
Volkov states to HHG with LG beams and compare these results to those of the com-
monly used Lewenstein model. Here we hope to see some signature of the OAM in
the generated harmonics even in the single atom regime.
Another point for improvements is the proper description of the electronic wave
functions. Here, most studies apply analytical, hydrogenic single-electron wave
functions. It will be interesting to explore how the spectra of the emitted harmonics
are affected if realistic orbital wave functions from many-electron approaches are
applied. An implementation in the framework of jac, the Jena Atomic Calculator,
shall be realized soon [117].
In order to take the macroscopic side of HHG into account, we introduced two
different models that consider the superposition of all single atom contributions to
HHG at the detector. The first, simpler, model is based on the Fraunhofer diffraction
formula. It can be used to approximate a very thin layer of atomic targets parallel to
the focus plane. The second model uses the numerical propagation of the emitted
harmonic radiation and can be also applied to simulate three dimensional gas jets.
This model also automatically takes care of longitudinal phase matching.
We then, in Ch. 4, applied the Lewenstein model in combination with the Fraun-
hofer diffraction model to linearly polarized LG beams. We first reproduced the
known rules for the conservation of OAM, which briefly says that the OAM of a qth

harmonic equals q times the OAM of the incident beam. In addition, we introduced
our photon diagrams and presented how the OAM of generated harmonics changes
if a superposition of two different LG beams are used for the driving laser. We have
also analyzed phase matching for linearly polarized LG beams, which has to fulfill
two distinct tasks. First, phase matching, basically the summation of harmonic sig-
nals from atoms at different positions, in the azimuthal direction accounts for the
phase profiles in the far-field that can be associated to the OAM of the harmonics.
This has been discussed in the beginning of the chapter. Second, phase matching in
longitudinal and transverse direction affects the conversion efficiency and helps to
investigate whether harmonics from a certain extended gas target add up construc-
tively or annihilate at the detector. Here, we distinguished between phase matching
for short and long trajectories separately. We used a quantum orbit approach to cal-
culate the dipole phase for short and long trajectories. Moreover, we also took the
intrinsic phases, the Gouy and the focal phase, of the driving beam into account. In
particular, we investigated how the OAM of the driving beam affects the coherence
length. We generally found a decreased coherence length for the short trajectories
for beams with OAM compared to Gaussian beams, which has been explained due
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to the increased phase shift of the Gouy phase across the focus. However, we also
showed that the OAM of the driving beam can be adjusted such that the phase shift
of the Gouy phase compensates the dipole phase for long trajectories behind the
focus. This gives rise to a large coherence length for the long trajectories and may
help to identify signatures of these trajectories in HHG, potentially also beyond the
near-infrared regime.
For further studies, these predictions could be supported by calculations with
experiment-like three dimensional targets, for example gas jets. Here the harmonic
signal can be computed for different positions of the gas jet with respect to the
focus of the beam. This might help to understand phase matching in more detail.
For even higher intensities than those studied in this thesis, ionization and disper-
sive effects due to free charges have to be considered as well. For example, a highly
ionized gas forms a plasma. Since the beams intensity distribution is not uniform,
the plasma density will also be spatially dependent. Of course, the plasma density
reaches its highest value near the intensity maximum of the beam. Moreover, the
index of refraction will change according to the plasma density. In further studies,
it should be analyzed how this plasma affects the conversion efficiency in HHG with
OAM carrying beams.
At the end of Ch. 4 we presented three ways to enhance control over the OAM in
HHG with superpositions of linearly polarized LG beams. We showed, for example
that given harmonics can carry multiple values of OAM and that the harmonics can
be spatially separated at the detector with respect to their OAM. However, there are
still other possible scenarios to manipulate the generated harmonics. For example,
a collinear superposition LGω ↔

0,0 ⊕LG2ω ↔
2,0 should give rise to radially varying OAM

in the far-field.
In Ch. 5 we investigated HHG with bicircular beams. These beams are a superposi-
tion of a circularly polarized beam with its counter-rotating second harmonic. In a
short discussion about the single atom response, we showed that every third har-
monic is suppressed, while the remaining harmonics exhibit alternatingly left and
right circular polarization. We then investigated how the OAM of the circularly po-
larized driving field components is transferred to the generated harmonics. Here,
we found simple selections rules to explain HHG with bicircular LG beams. These
selection rules demonstrate that the OAM of each harmonic is exactly determined
by the OAM of the incident beams. Moreover, we proved that and how we can uti-
lize the OAM of the incident beams to precisely tailor the OAM of the harmonics to
an arbitrary integer. After a detailed analysis of the conservation of OAM in ω− 2ω

bicircular LG beams, we generalized our findings to rω− sω bicircular fields.
All these studies have been performed for ideal long and exactly circularly po-



88 summary and conclusions

larized beams. Generally, if HHG is performed with few cycle driving pulses, the
harmonic spectrum smears out, which is an immediate consequence of the Heisen-
berg’s uncertainty principle. This implies that for HHG with few cycle bicircular
pulses also frequencies occur in the harmonic spectrum that are absent for long
driving beams. Here future studies may reveal how the OAM is transferred to these
initially forbidden harmonics. It can be expected that these harmonics would not
be pure LG modes, with a well defined ℓ, but are a superposition of different LG

modes. Moreover, we expect a depolarization of the initially purely circularly polar-
ized harmonics, similar to a recent publication that considered plane wave beams
[92].
Another way to disturb the symmetry of long, exactly circularly polarized beams is
to change the polarization from circular to slightly elliptical. HHG for bichromatic
elliptical beams without OAM has been experimentally analyzed by Fleischer et al.
[99] and theoretically investigated by Milošević [118]. Two main differences to HHG

with bicircular beams have been found. First, no harmonics are suppressed and
second there are several possible pathways leading to each harmonic order. There-
fore it is promising to investigate the conservation OAM in HHG with bichromatic
elliptical LG beams and its intensity distributions in the far-field. Moreover, the
OAM affects the divergence of the generated harmonics. This might open up new
possibilities to control the generated attosecond pulses. In Sec. 5.5, we discussed
two ways to generate (near-)circularly polarized attosecond pulses. The first, which
was proposed by Dorney et al. [66], takes advantage of the fact that the divergence
of the harmonics increases with their OAM. If, for instance, left circularly polarized
harmonics have significantly smaller OAM than the right circularly polarized har-
monics, they will be separated at the detector by their divergence. In this sense,
significantly means that the OAM of neighboring harmonics should differ by at
least three. Within the second approach, we varied the intensity ratio between the
two circularly polarized drivers to generate circularly polarized attosecond pulse
trains. Here, we found in addition a rich annular structure in the far-field intensity
profiles, c.f. Fig. 5.12c. A similar annular structure has been reported in HHG with
linearly polarized LG beams by Genéaux et al. [110], which has been explained by
the interplay of short and long trajectories in HHG. Moreover, they showed that it
is possible to control this annular structure by a displacement of the atomic target
with respect to the focus plane. Here we suggest to investigate this annular profile
by an analysis of quantum orbits in bicircular fields [112].
Finally, we discussed the temporal evolution of the high-harmonic signal gener-
ated by bicircular LG beams. Here we found that the temporal evolution gives rise
to a structure of a so-called light spring. Moreover, we showed possibilities to con-
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trol the shape of the light springs. In particular, the number of coils can be easily
accessed by the OAM of the driving beams.
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field ionization of homonuclear diatomic molecules by a bicircular laser
field: Rotational and reflection symmetries.” In: Physical Review A 95.3 (Mar.
2017), p. 033411. doi: 10.1103/PhysRevA.95.033411.

[96] A. Jiménez-Galán et al. “Time-resolved high harmonic spectroscopy of dy-
namical symmetry breaking in bi-circular laser fields: the role of Rydberg
states.” In: Optics Express 25.19 (Sept. 2017), p. 22880. doi: 10.1364/OE.25.
022880.

[97] E. Pisanty et al. “Conservation of Torus-knot Angular Momentum in High-
order Harmonic Generation.” In: Physical Review Letters 122.20 (May 2019),
p. 203201. doi: 10.1103/PhysRevLett.122.203201.

https://doi.org/10.1038/ncomms14970
https://doi.org/10.1038/ncomms14970
https://doi.org/10.1038/ncomms14971
https://doi.org/10.1038/ncomms14971
https://doi.org/10.1088/0953-4075/49/2/02LT01
https://doi.org/10.1103/PhysRevA.91.031402
https://doi.org/10.1103/PhysRevLett.117.133202
https://doi.org/10.1038/s41467-018-07151-8
https://doi.org/10.1103/PhysRevLett.120.263203
https://doi.org/10.1103/PhysRevA.98.033405
https://doi.org/10.1103/PhysRevA.95.033411
https://doi.org/10.1364/OE.25.022880
https://doi.org/10.1364/OE.25.022880
https://doi.org/10.1103/PhysRevLett.122.203201


bibliography ix
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