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Kurzfassung

Die Lorentzkraftanometrie (LKA) ist eine Technik zur Messung der Geschwindigkeit
von elektrisch leitfähigen Flüssigkeiten. Sie ist eine nicht-invasive Messtechnik, die
besonders vorteilhaft für heiße, opake und aggressive Elektrolyte ist. Die LKA wurde
für Salzwasser als Modellelektrolyt erfolgreich mit Dauermagnetanordnungen (DM)
ohne magnetischen Rückschluss, aber mit gezielter Flussführung (Halbach-Array) und
hochpräzisen Kraftmesssytemen (KMS) auf Basis der interferometrischen Messung
der Auslenkung des Magnetsystems und der elektromagnetischen Kompensation der
Auslenkung demonstriert.
Jedoch sind die DM-Systems begrenzt hinsichtlich der magnetischen Oberflächen-

flussdichte auf 0.5 T trotz der Nutzung des zurzeit energiereichsten Dauermagnetwerk-
stoffes (Nd-Fe-B) sowie der Masse auf 1 kg aufgrund der verwendbaren KMS. Weiterhin
waren bei den LKA-Experimenten die DM nur 3 mm vom fließenden Salzwasser ent-
fernt, wodurch eine effektive Wechselwirkung der vom DM erzeugten magnetischen
Flussdichte mit dem Durchflussvolumen erreicht wurde. Bei heißen und aggressiven
Elektrolyten (z.B. Säuren, Laugen, Salzschmelzen und Glasschmelzen) ist eine solche
enge Ankopplung an den Strömungskanal aufgrund der dicken thermischen Isolier-
wände nicht möglich. Darüber hinaus betragen die Leitfähigkeiten solcher Elektrolyte
von σ < 10 S m−1 und ihre üblichen Strömungsgeschwindigkeiten sind u < 1 m s−1.
Um die LKA für schwach leitfähige Elektrolyte zu erweitern, ist eine Magnetfelderzeu-

gung von > 1 T erforderlich. Ein Hochtemperatursupraleiter-Bulk (Bulk-HTS) kann
ein Magnetfeld von mehreren Tesla erzeugen und somit die LKA-Leistung deutlich
verbessern und die bisher genutzten DM ersetzen.
Diese Arbeit zielt deshalb darauf ab, Bulk-HTS’s in der LKA unter Berücksichtigung

der kritischen Verbindungen zwischen der Funktionalität von Bulk-HTS’s und dem
KMS einzusetzen und ein LKA-System mit Bulk-HTS’s zu entwerfen, herzustellen
und zu testen.
Wie Bulk-HTSs in ein LKA-System implementiert werden können und welche Her-

ausforderungen damit verbunden sind, wurde experimentel untersucht und die notwendi-
gen Bedingungen fixiert. Anschließend wurde erstmals die Einsetzbarkeit von Bulk-
HTS’s für die LKA mit einer vereinfachten Flüssigstickstoffkühlung experimentel nach-
gewiesen. Zusätzlich zum Experiment wurde ein numerisches 3D-Modell entwickelt um
die notwendigen einzufrierenden magnetischen Flussdichten BT für ein Modellelek-
trolyt mit (σ · u) = 10 S s−1 zu berechnen.



Die Ergebnisse wurden für die Entwicklung eines neuartigen LKA-System auf Basis
eines Bulk-HTS als Magnetfeldquelle und einer Torsionswaage als Kraftmesssystem
genutzt. Dieses System - Superconducting High-precision Lorentz Force Measure-
ment System (Super-LOFOS) - wurde dann erfolgreich aufgebaut und getestet.
Die Neuerung des Super-LOFOS besteht in der integrierten Kühlung von Bulk-HTS

und KMS sowie im modularen Aufbau. Die integrierte Kühlung löst das bisherige
Problem der Beschränkung und des Einflusses der Magnetsystemmasse der bisherigen
LKA-Systeme und gewährleistet eine berührungslose Kühlung des KMS.
Die integrierte Kühlung des Super-LOFOS wurde experimentell getestet. Bei Küh-

lung mit flüssigem Stickstoff bzw. Helium werden auf der Stirnfläche des Super-LOFOS
magnetische Flußdichten von BT = 100 mT bzw. BT = 1,2 T erzeugt. Weitere Super-
LOFOS-Experimente zeigen, wie kryogene Temperaturen und die Magnetisierung die
Funktionalität des KMS beeinflussen. Bei einer Neukonzeption des Super-LOFOS soll-
ten insbesondere die optoelektronische Positionsmessung bei kryogenen Temperaturen
und Magnetfeldern > 1 T abgesichert sein, sowie das KMS beim Magnetisieren des
Bulk-HTS ausreichend starr fixiert werden können.
Damit erweitert die vorliegende Arbeit die Einsetzbarkeit der LKA für gering elek-

trisch leitende und langsam strömende Fluide auf (σ · u) = (1-10) S s−1, sowie macht
hochpräzise Kraftmessungen bis 1 nN unter kryogenen Bedingungen möglich. Darüber
hinaus stellt das entwickelte Messsystem Super-LOFOS einen tragbaren Magnetfeld-
generator dar, der für NMR- und MRT-Technologien, Drug Targeting, und magnetis-
che Trennungsverfahren einsetzbar ist.



Abstract

Lorentz Force Velocimetry (LFV) is a technique to measure the velocity of electri-
cally conducting fluids. The advantage of LFV is that this non-invasive measurement
method is particularly well suited for use on hot and opaque liquids as well as aggressive
electrolytes. LFV for saline water - the model electrolyte - was successfully demon-
strated using permanent magnet (PM) configurations without an iron yoke magnetic
flux guide, but with targeted magnetic flux guidance (Halbach-array) and a high-
precision force measurement system (FMS) based on interferometric measurements of
magnet system (MS) deflection and electromagnetic force compensation balance.
Still, PMs are limited with regard to the surface magnetic flux density to 0.5 T,

despite using the strongest currently available PM compound (Nd-Fe-B), and a mass
of 1 kg due to the FMS specifications. In the LFV experiments, PMs were placed at
3 mm distance to the flowing saline water, thereby achieving an effective interaction
of the generated magnetic field with the flowing saline water. In the case of hot and
aggressive electrolytes (e.g. acids, lyes, molten salts, and glass melts) placing a PM
close to the flow channel is not possible due to the thick insulation walls. The electrical
conductivity of these electrolytes are σ < 10 S m−1 and their inherent flow velocities
are u < 1 m s−1.
To extend the LFV for weakly conductive electrolytes, it is required to generate a

magnetic field over 1 T. A bulk high-temperature superconductor (HTS) can gener-
ate the magnetic field of several teslas and therefore can significantly enhance LFV
performance, replacing previously used PMs.
This thesis aims to integrate the bulk HTS into the LFV considering the critical

links between the functionality of bulk HTSs and the FMS with the end goal to design,
manufacture, and test a novel LFV system using bulk HTS.
How bulk HTSs can be implemented into the LFV and which challenges are accom-

panied by this was experimentally investigated. Initially, the bulk HTS feasibility for
the LFV application was demonstrated, for the first time, using a simplified liquid
nitrogen cooling. In addition to the experiment, a 3D numerical model as a fast and
accurate tool was developed to calculate the necessary trapped magnetic flux densities
BT for LFV measurements of the model electrolyte with (σ · u) = 10 S s−1.



The obtained results were used to develop a novel LFV system using bulk HTS
as magnetic field generator and a torsion balance as FMS. This LFV system - Su-
perconducting High-precision Lorentz Force Measurement System (Super-LOFOS) -
was then successfully designed, manufactured, and tested.
The Super-LOFOS novelty lies in using an integrated cooling for the bulk HTS and

FMS as well as in the modular cryostat structure. Using integrated cooling solved
the FMS mass limitation to carry the bulk HTS magnet system. Furthermore, inte-
grated cooling enabled for contact-free refrigeration of bulk HTS and FMS, thereby
excluding FMS constrains due to the direct thermal coupling. The modular cryostat
structure allowed us to use the available facility and makes it possible to adapt future
modifications (e.g. alternative cooling solution).
The Super-LOFOS integrated cooling solution was validated experimentally. Using

nitrogen and helium cryogenic liquids, the magnetic flux density of BT = 100 mT and
BT = 1.2 T were generated at the Super-LOFOS front surface, respectively. Further
Super-LOFOS experiments revealed how cryogenic temperatures and magnetization
affect the functionality of FMS - an integral part of the Super-LOFOS. For a new
Super-LOFOS concept one has to address the opto-electronic position measurement
at cryogenic temperature and magnetic field > 1 T as well as protect the FMS from
magnetic field influence during bulk HTS magnetization.
This thesis also extends the LFV applicability for weakly-conducting and slow-

flowing electrolytes (σ · u) = (1-10) S s−1 as well as enabling high-precision force
measurements up to 1 nN under cryogenic temperatures. Furthermore, the developed
Super-LOFOS provides a portable magnetic field generator, which can be used for
NMR and MRI technologies, magnetic separation, and drug targeting applications.
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1 Introduction

1.1 Motivation

The world is making a transition toward the fourth industrial revolution (Industry 4.0),
which aims to automate, control, and optimize industrial processes. It is crucial to
accurately measure process variables such as temperature, pressure, or flow rate to
improve the reliability of accounting for the amount of material and resource usage
and consumption, facilitate stricter control of production processes, and ensure energy
as well as cost savings.
Flow rate measurements through an opaque wall or in an opaque fluid as well as

in hot or chemically aggressive fluids present a technical challenge, since classical flow
measurement techniques are restricted or cannot be applied.
LFV was introduced in the framework of the Deutsche Forschungsgemeinschaft DFG

funded project Research Training Group (RTG) №1567 “Lorentz Force Velocimetry
and Lorentz Force Eddy Current Testing” and has shown significant potential as a
non-invasive technique for flow rate measurements in liquid metals, which are highly
electrically conductive (σ = 1× 106 S m−1) as well as hot and agressive fluids [1, 2].
The LFV working principle relies on measuring the force, namely the Lorentz force,
that is generated by the relative motion of an electrically conductive fluid through
a transversely applied magnetic field. The LFV flowmeter consists of two integral
parts: a magnet system (MS) generating a magnetic field in the fluid as well as a FMS
carrying this MS and measuring the resulting force.
LFV was successfully used under laboratory and plant conditions for continuous

casting of liquid metals such as steel [3], aluminum [4–6], sodium [7], and tin [8]. Using
LFV, it was possible to precisely determine, control, and dose the amount of hot molten
metal, thereby increasing production quality and reducing energy consumption [5].
LFV was also applied to the flow rate measurement in saline water as a model

electrolyte [9–11]. In contrast to liquid metals, electrolytes have a significantly lower
electrical conductivity ranging from 1 S m−1 to 100 S m−1 and slow velocity in the range
of 0.2 m s−1 to 3 m s−1. Although saline water was used as a model fluid, LFV technol-
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4 1 Introduction

ogy is promising for applications on aggressive electrolytes such as acids, lyes, molten
salts, and glass melts, where direct flow rate measurements during the production pro-
cess have received scant attention due to the harsh process conditions. For instance, in
the case of glass melts, process control is realized via model-based in-situ temperature
measurements [12–14] or by determining the weight of the final product [15].
Transitioning LFV from liquid metals to electrolytes required using a high-precision

(>1 µN) FMS based on interferometric measurements of MS deflection and electromag-
netic force compensation balance as well as Halbach-array PM system [11, 16] with
targeted magnetic flux guidance. A concern, however, is that a PM has two limita-
tions: the first is that even the strongest available Nd-Fe-B PMs provide a limited
magnetic field up to 0.5 T [17], the second is a mass constraint of 1 kg imposed by the
FMS [18]. In LFV experiments the PMs were placed at 3 mm distance to the flowing
saline water, thereby providing effective interaction of the magnetic flux density with
the flow volume. However, in the case of aggressive electrolytes (e.g. glass melts),
the realization of close magnetic interaction with the fluid is not possible due to the
large isolation walls and slow flow velocity of such fluids (� 1 m s−1) [19]. Therefore,
pragmatic improvements are required:

1) use a stronger magnetic field source with magnetic flux densities over 0.5 T,

2) deploy a novel FMS with a force measurement resolution below 1 µN.

A bulk HTS can generate a magnetic field which is one order of magnitude stronger
than a PM [20, 21] and therefore is a suitable candidate to improve LFV performance.
However, the use of bulk HTS is underpinned by the cryogenic cooling, vacuum, and
magnetization technology, which must also comply with the FMS (another integral
part of the LFV system). A new FMS based on torsion balancing was developed in a
parallel Ph.D. work by Na Yan [22] and achieved the force measurements resolution of
2 nN at room temeprature (RT).

1.2 Thesis aims and layout

The main purpose of this dissertation is to integrate bulk HTS into the LFV experi-
mental setup considering requirements regarding cooling and magnetization as well as
predict the critical links between the functionality of bulk HTSs and the FMS with the
end goal to design, manufacture, and implement a novel and improved LFV system
for application on low-conducting and slow-flowing electrolytes.
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1.2 Thesis aims and layout 5

Chapter 2 explains how bulk HTS can be used as a strong magnetic field source and
which challenges are accompanied by this. It also discusses the recent technological
achievements and challenges of current bulk HTS applications.
Chapter 3 introduces LFV including the fundamentals and the achieved state of

the art. This chapter also describes how LFV has evolved over the three RTG phases
and how bulk HTS can be used to increase LFV performance.
Chapter 4 presents, for the first time, the experimental proof-of-principle of using

bulk HTSs for the LFV application. In addition to the experiment, a 3D numerical
model was developed as a fast and accurate tool to predict the LFV performance.
Chapters 5-6 contain the major part of this work, focusing on designing and manu-

facturing a novel LFV system using bulk HTS, which is called Super-LOFOS. The
main issues regarding Super-LOFOS requirements, assembling, and implementation
tests are discussed in detail.
Chapter 7 summarizes the obtained results and provides recommendations for fu-

ture scientific development and research.
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2 Strong and compact magnetic
sources

2.1 Superconductivity: history and basic definitions

2.1.1 Discovery of superconductivity

In the year 1908, Heike Kamerlingh Onnes was the first person able to liquefy helium,
spurring intense investigations on electrical properties of materials in the newly ac-
cessible low-temperature range1. The most remarkable finding of Leiden’s laboratory
appeared in 1911, when Onnes2 and his co-workers observed that the dc resistance of
an ultrapure mercury wire vanished at about 4.2 K to a value below the resolution of
the measuring device [25]. It was noteworthy that the resistance vanished abruptly as
the temperature was lowered, rather than monotonically approaching zero. This fact
implies that the sample undergoes a new extraordinary state, which Onnes called Su-
perconductivity. The temperature at which the transition to superconductivity emerges
is termed the critical temperature, Tc.
In successive experiments, the Leiden group also found other metal elements to be

superconducting. Moreover, it was observed that very high currents can pass through
the sample until a certain current density value [25], which nowadays is termed as
critical current density, jc. Onnes demonstrated that a persistent current flows in
the closed-loop coil as long as it remains below its Tc. Therefore, Onnes aspired to
design a very powerful magnet that can generate magnetic fields of 10 T [23]. However,
this plan failed due to the loss of the superconductivity at fields less than 50 mT [26].
Continued investigations [27] at Onnes’s laboratory revealed that superconductivity in
pure metals suddenly disrupted when an external magnetic field reaches certain value
- critical magnetic field Bc.

1Helium is liquefied at about 4.2 K, however Onnes was able to extend temperature range down to
1.7 K by reducing the vapor pressure of the helium bath [23].

2In 1913, H. K. Onnes received Nobel prize "for his investigations on the properties of matter at low
temperatures which led, inter alia, to the production of liquid helium" [24].
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2.1.2 Importance of magnetic properties

Meissner effect. It was believed that the superconductor is a ’perfect conductor’
and its properties are defined only by the disappearance of the dc resistance below
the critical temperature. Meissner and Ochsenfeld [28] observed that when a super-
conducting bulk is cooled below its Tc in a magnetic field, it expels the magnetic flux.
Figure 2.1a) illustrates their observation - Meissner effect - using a field-dependent
magnetic polarization, J :

J = BA − Bin, (2.1)

where BA is the applied magnetic flux density and Bin - internal magnetic flux density
in the superconductor. The polarization is equal and opposite to BA up to the critical
magnetic field, BC (this also means Bin = 0). For larger fields, superconductivity
disrupts and the sample returns to the normal conductive state. For instance, the
metallic element lead (Pb) exhibits the Meissner behavior with the critical magnetic
field of Bc = 0.05 T (see Figure 2.1 a) [29].

BA 

Shubnikov 
state 

b) 

J 
Bc1 Bc2 

Meissner 
state 

Normal 
state 

Bc J 

BA 

Meissner 
state 

a) 

Normal 
state 

0.05 T 0.02 T 
0.24 T 

Figure 2.1: Field-dependent polarization of the superconductors at 4.2 K as a function of
the applied magnetic filed: a) - Type I superconductors (pure Pb); b) - Type II
superconductors (PbIn alloy). Data of critical fields are used from [29].

Shubnikov’s experiments. Since then, great experimental and theoretical efforts
were devoted to studying the magnetic properties of continuously emerging super-
conducting metals and alloys. In this context, the most prominent experimental work
was performed by Shubnikov et al [30, 31] in preparing ultra-pure specimens3 and

3Shubnikov group prepared single-crystal metals and single crystals of single-phase alloys Pb-Tl and
Pb-In of high quality, e.g. without defects [30, 31].
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precisely controlling the alloying [32], which enabled them to identify a new magnetic
state where the superconductivity preserves at the magnetic field.
Figure 2.1 b) shows the magnetic behavior of a ultra-pure alloy (for example Pb-In):

the magnetic flux is zero in the interior of the sample until a first critical magnetic
field, Bc1. Then, a certain portion of the magnetic flux density penetrates the sample
and magnetization monotonically decreases as the field is applied, before reaching a
second critical magnetic field, Bc2, above which the superconductivity vanishes. Shub-
nikov et al concluded that an alloy behaves quite differently in comparison to a metal
element, for example, lead.
Today, the field interval Bc1 < BA < Bc2 is called mixed or Shubnikov state, but

V. Ginzburg mentioned4 that Shubnikov’s experiments were "a factual discovery of
Type II superconductors" [33].

2.1.3 Type II superconductors

Much later, a partial interpretation of Shubnikov’s experimental results was provided
by Abrikosov5 [29], who discerned that based on the Ginzburg-Landau theory [34, 35]
all superconductors can be divided into two types, depending on the ratio:

κ = λp/ξ (2.2)

where κ is the Ginzburg-Landau parameter, λp is the penetration depth of the mag-
netic field and ξ is the coherence length between electrons in Cooper pair. It should
be stressed that κ depends on the sign and value of the surface energy σns at the
interface between normal and superconducting state. The threshold value used for
superconductor classification is as follows [34, 35]:

κ = 1/
√

2. (2.3)

Thus, for Type I superconductors κ < 1/
√

2 and the surface energy is positive. In case
of Type II superconductors, κ > 1/

√
2 and σns < 0. As a rule, Type I superconductors

are pure metallic materials, whereas Type II superconductors are metallic alloys or
other complex matter.
However, a remarkable insight of Abrikosov’s work was a detailed elaboration of

4V. Ginzburg, who shared a Nobel prize together with A. Abrikosov and A. Leggett in 2003, explained
Shubnikov’s contribution at Conference in 2004 [33].

5In 2003, A. Abrikosov received Nobel prize "for pioneering contributions to the theory of supercon-
ductors and superfluids" [24].
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10 2 Strong and compact magnetic sources

the magnetic properties for defect-free Type II bulk superconductors. Author deduced
that for the Shubnikov state the magnetic flux density penetrates in to the interior of
the superconductor in a form of quantized vortices. Figure 2.2 a) shows the schematic
of an isolated Abrikosov vortex in an isotropic superconducting material. Each vortex
consists of a supercurrent loop with an effective radius of λp, surrounding a normal
filament with a radius of ξ, which confines a quantum of the magnetic flux:

Φ0 = hp
2e = 2.1× 10−15 T m2, (2.4)

where hp and e are fundamental physical constants - the Planck constant and the
electron charge, respectively. The magnetic flux density is maximum within the normal
filament and exponentially decreases with distance, as sketched in Figure 2.2 b).

Φ0 

2λP 

2ξ 

filament 

Supercurrent 
loop, js 

2λP 

2ξ 

B 

r 

b) a) 

Figure 2.2: a) Schematic representation of an isolated Abrikosov vortex in an isotropic su-
perconductor. Φ0 is quantum of the magnetic flux, λp is the penetration depth
of magnetic field and ξ is the coherence length. b) Distribution of the magnetic
flux density B within the vortex.

2.1.3.1 Phase diagram of Type II superconductors

Figure 2.3 shows a field-temperature phase diagram of the Type II superconductors.
It comprises a Meissner phase, where the magnetic field is fully expelled from the bulk
superconductor at low applied magnetic fields BA < Bc1. Above Bc1, a magnetic flux
density penetrates the superconductor in a form of the Abrikosov vortices: each one
confines a quantum of the magnetic flux, Φ0 (see Eq. 2.4). With a further increase
of BA, the number of vortices n also increases, determining an internal magnetic flux
density:

Bin = n · Φ0 . (2.5)
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Finally, when BA approaches Bc2, the vortex nearest-neighbor separation becomes
less than 2ξ. This means that the superconducting region between vortex filaments
vanishes and the superconductor returns the normal state.

Tc 

BA 

Bc1 

Bc2 

T 

Meissner state 

Shubnikov 
state 

Normal 
state 

Birr 

Figure 2.3: Phase diagram of Type II superconductor in B − T coordinates, where Bc1 and
Bc2 is first and second critical field, respectively, Tc is a critical temperature,
BA is an applied field, and Birr is a irreversibility field.

Note, Abrikosov considered the mixed state in a context of an equilibrium: the
distribution of vortices complies with a uniform internal field. Thus, in order to achieve
a uniform Bin, vortices distribute themselves in a regular lattice called the vortex lattice
due to the repulsive interaction between each vortex supercurrent and the magnetic
field induced by other vortex supercurrents [36]. The vortex distribution, in particular,
has been confirmed by various experimental techniques. For example, Figure 2.4a)
shows the vortex lattice of the ultra-pure NbSe2 single crystal at 4.0 K for applied field
of 0.1 mT and 0.3 mT obtained by magneto-optical imaging [37]. The evidence clearly
indicates that separation of the vortex lattice is inversely proportional to the applied
field.
In general, any variation of the magnetic flux within a superconductor is accompa-

nied by energy loss. Fortunately, the flux pinning (e.g. interaction of the Abrikosov
vortices with imperfections/defects in a superconductor) can resist this motion and
sustain an induced current, jc without loss. However, jc depends on the applied flux
density BA and the temperature T . Thus, when the induced current density exceeds
the jc, the vortex lattice (or part of it) begins to move, thereby inducing losses [38].
The magnetic field value at which j > jc is called the irreversibility field Birr and gen-
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10 μm 10 μm 
b) a) 

Figure 2.4: a) Magneto-optical images of vortex lattices in a NbSe2 single crystal at 4.0 K
under field cooling condition: a) BA = 0.1 mT and b) BA = 0.3 mT [37].

erally increases with decreasing temperature [39]. Birr at given temperature presents
so-called irreversibility line Birr − T (schematically delineated in Figure 2.3), which
determines the upper limit of magnetic or current currying applications.

2.1.3.2 Irreversible magnetic behavior and field trapping

The vortex motion, which arises as a result of the equilibration process or varying of
the applied field, is driven by the Lorentz force:

~fL = ~j × n · Φ0 = ~j × ~B, (2.6)

where ~j is the induced current density, which is perpendicular to the applied magnetic
field ~B. If there is no restraining force, vortices move unimpeded through the sample
generating a flux flow resistance [40]. Moreover, after the applied field is removed,
vortices also leave the sample and no magnetic flux density remains therein. Such a
scenario occurs only in defect-free specimens. Accordingly, one expects a reversible
magnetic behavior. For instance, an ultra-pure Nb-Ta alloy exhibits the reversible
magnetic polarization ~J [41], shown in Figure 2.5.
However, the polarization of the Nb-Ta alloy that contains some distortions in the

crystal structure6 becomes irreversible: Figure 2.5 compares both cases. The irre-
versible behavior of the latter sample is a consequence of the interaction of vortices
with crystal distortions.
At first, the higher applied field is required to let vortices penetrate the sample: thus,

the polarization of distorted Nb-Ta alloy has a lower minimum. Secondly, positive
polarization even when the applied field BA is completely removed indicates that a
certain portion of the magnetic flux density is trapped at the crystal distortions, which

6The distortions in the crystal structure appear, in general, as a results of processing.
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Figure 2.5: Magnetic polarization J of the ultra-pure Nb-Ta alloy (solid line) and Nb-Ta
alloy with distortions (dashed line) as function of an appplied magnetic flux
density BA. Data is reproduced from [41].

act as pinning centers. This trapped magnetic flux density hereinafter is referred to
as trapped field BT .

2.1.3.3 Critical state models

The irreversible magnetic behavior and trapped magnetic fields were also observed
in many other experiments on Type II superconductors. It inspired Bean [42, 43] to
propose a model which provides a phemenological understanding of such experimental
findings. Bean made several assumptions:

1) critical current density jc flows in a macroscopic region of the superconductor,
where the penetrated field is presented,

2) this critical current density is independent of the applied field,

3) in regions without the penetrated field jc = 0,

4) it considers only the Shubnikov state disregarding the Bc1 and the Meissner state,

5) superconductor has the magnetic permeability of free space µ0.
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14 2 Strong and compact magnetic sources

Thus, the magnetic behavior of a Type II superconductor in an alternating mag-
netic field can be described using the Maxwell relation (Ampere’s Law), where critical
current density jc and magnetic field B are coupled as follows:

∇× ~B = µ0 · ~jc. (2.7)

Accordingly, ~B and ~jc are mutually perpendicular and either one can be determined
knowing the value of the other. In one-dimensional cylindrical coordinates, Eq. 2.7
simplifies to

dB
dr = µ0 · θjc (2.8)

In a case of an infinitely long cylindrical superconductor with the radius R the inte-
gration of Eq. 2.8 gives the maximum value of the trapped field along the z-axis:

Bz
max = µ0 · θjcR. (2.9)

This field is called a full penetration field Bp.
Figure 2.6 illustrates the emblematic example of the magnetic flux density and the

current density profiles upon the gradually alternating applied field:

a) with the increasing of the applied field BA, internal field Bin (see Eq. 2.5) pen-
etrates from the superconductor periphery and approaches the center; it has a
slope consistent with jc,

b) at BA = Bp, Bin reaches the superconductor center,

c) larger BA leads to further increase of Bin,

d) upon removal of BA, Bin is inverted and the current changes its sign.

At BA = 0, certain portion of Bin with a characteristic triangular distribution remains
in the superconductor.
In summary, Bean model is the simple and convenient way to describe the electro-

magnetic behavior of Type II superconductors. It has been successfully applied by
many researchers to interpret their experimental data, though it has several limita-
tions:

1) Bean model does not consider the Meissner state,

2) it does not explain the microscopic origin of pinning and it disregards effect of
flux creep (vortex flux motion caused by thermal activation),
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Figure 2.6: The current density (top) and magnetic flux density (bottom) profiles upon
the gradually alternating applied field: a) as the applied field BA increases,
internal field Bin (see Eq. 2.5) penetrates from the superconductor periphery
and approaches the center, it has a slope consistent with jc. b) at BA = Bp,
Bin reaches the superconductor center. c) larger BA leads to further increase of
Bin. d) upon removal of BA, Bin is inverted and the current changes its sign.
At BA = 0, certain portion of Bin with a characteristic triangular distribution
remains in the superconductor.

3) it assumes a constant jc, although jc strongly depends on the applied magnetic
flux density BA.

More realistic models of the magnetic behavior of a Type-II superconductor consider
jc, including its strong dependence on a magnetic field and temperature [44–46]. Hence,
based on experimental observations, Kim et al [46] proposed an empirical equation:

jc(B) = jc0

1 + B
B0

, (2.10)

where jc0 is the magnitude of critical current density without an applied magnetic field,
and B0 is the magnetic flux density when jc reduces to half of jc0 . The modification
of Eq. 2.10 considering temperature dependence can be expressed as:

jc(B,T ) = jc0 (T )
(1 + B

B0
)β
, (2.11)

where T is the temperature and β is a material-dependent constant [44].
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The material-dependent constants can be estimated using the trapped field profile of
the bulk or by fitting the experimental jc(B,T ) curves, which must be measured from
a small sub-sample of the bulk superconductor. Although the latter approach delivers
accurate data of jc(B,T ) and allows for more precise prediction of the bulk super-
conductor magnetic performance, experimental efforts as well experimental equipment
needed are greatly increased.

2.1.4 High-temperature superconductors (HTSs) and their
application

High-temperature superconductors. The industrial application of superconductors
still had a barrier: the superconducting characteristic, such as [Tc, jc, Bc2] required a
liquid helium as coolant and a complex fabrication technology. In this sense, only
niobium-based alloys with critical temperature up to Tc = 18 K [36] were considered
for a solenoid design due to the relatively high value of Bc2 = 22 T at 4.2 K. Actually,
Kunzler et al [47] demonstrated that superconductivity in Nb3Sn is preserved under
jc = 100 A m−2 at 8.8 T and 4.2 K. Later, niobium-based superconductors will find
their niche for various types of solenoid designs, for instance NMR [48] and fusion
magnets [49, 50].
The landmark publication of Alex Müller and Georg Bednorz7 [51] drastically changed

the development of superconductive science and technology. Müller and Bednorz syn-
thesized a ceramic perovskite of Ba-La-Cu-O to be superconducting at 35 K. This work
triggered worldwide enthusiasm for research on copper-containing oxides with the aim
to raise the critical temperature. Thus, the groups of Paul Chu at the University of
Houston and Maw-Kuen Wu at the University of Alabama at Huntsville obtained Tc
of 52 K for Ba-La-Cu-O by applying an external pressure. The most remarkable ex-
perimental results were obtained by the Houston group when they "pressurized" the
sample internally by substituting yttrium for lanthanum, achieving superconductivity
at about 92 K. This allows the use of the liquid nitrogen (LN2) for cooling, which is far
less expensive and also less complicated than the use of the liquid helium. Later, other
copper-containing oxides containing Bi, Tl or Hg were found to superconduct with a
record of 134 K in Hg-Ba-Ca-Cu-O at ambient pressure and 164 K at 30 GPa [52, 53].
Scientists are keen on developing a superconductor, which functions well at room

temeprature (RT), however we are still waiting for the breakthrough research, although

7In 1987, A. Müller and G. Bednorz received Nobel prize "for their important break-through in the
discovery of superconductivity in ceramic materials" [24]
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Figure 2.7: Evolution of the Tc for selected superconductors. Dashed arrow is guide for eyes.
Data are collected from [36, 40].

a few exotic discoveries are being made on the way there, such as metallic hydrogen [54].
Nevertheless, in the superconductivity community a material that superconducts at
temperatures higher than LN2 temperatures is referred to as high-temperature super-
conductor (HTS).
An impressive leap of the the critical temperature for selected copper-containing

oxides is illustrated in Figure 2.7. It also compares how the Tc has evolved among
other technically important superconductors8. Of these, iron-pnictides, for example,
Sm-Fe-As-(OF) or (Ba-K)-Fe-As have been considered for a applications using mag-
netic fields due to their high critical fields, low anisotropy, and large grain boundary
angle to sustain high jc [55, 56]. However, commercial manufacture of iron-pnictides

8Extended compilation of superconductors and their Tc can be found in [36, 40].
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is currently not available.
Remarkably, the unexpected discovery of superconducting MgB2 with Tc = 39 K

appears to offer an alternative to Nb-based and copper-containing oxide systems due
to its simple and inexpensive fabrication [57]. Furthermore, the availability of MgB2 in
the form of multifilamentary round wire is promising for companies which manufacture
cables. For example, industrial developments of MgB2 applications are summarized
in [58].

Application of HTSs. The emergence of HTSs, especially the copper-containing ox-
ides, encourages engineers and scientists to study the fundamental physical aspects
as well as explore the practical applications. Developing commercially profitable HTS
systems and devices greatly motivates further research, which in turn introduces the
principles of superconductivity to various fields of applications. High-speed electronics,
logic, microwave circuits, and generators are just a few examples of applications incor-
porating thin film HTS technology. Please also refer to the textbooks [36, 40, 41, 59]
for further examples.
Using HTSs technology to develop high-field solenoids and manufacture power trans-

mission cables are still the main applications, which is why HTS must be provided as
wires and tapes. Since copper-containing oxides are ceramic, a major difficulty lies in
the manufacturing of a long-length and flexible wire or tape from this brittle material.
Apart from being researched under laboratory conditions, the currently most prof-

itable industrial markets for superconductor-based solenoids and transmission cables
(mainly Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O) are health care, particle accelerators, and
fusion and power transmission. Please also refer to [26, 40, 60] for more information
on wire and tape fabrication as well as other engineering aspects.

2.2 Trapped Field Magnet (TFM)

2.2.1 Introduction

Though being somewhat in the shadow of long-length superconductors, bulk HTSs
found their own market across magnetic-force-based applications [61, 62]. In par-
ticular, these applications owe the remarkable progress in material fabrication and
readiness of ancillary technologies, e.g. refrigeration, vacuum, and magnetization.
Among superconductors available in a bulk form, the light rare-earth LRE-Ba-Cu-O
(Light rare earth elements (LRE) = Y, Sm, Nd, Gd) promises to be a much better

Dissertation Oleksii Vakaliuk



2.2 Trapped Field Magnet (TFM) 19

work material than bismuth compounds or a magnesium diboride [61, 63]. For this
dissertation we choose to discuss only the superconductor type Y-Ba-Cu-O, because it
is a most studied system.
There is a vast amount of literature available on bulk HTSs and their applications

(useful publications are [38, 61, 62, 64–69]). These application are based on following
properties:

- large current-carrying capability and low thermal conductivity allow for super-
conducting magnetic-energy storage (SMES) and fault current limiters [61],

- diamagnetic or hysteretic behavior allow for magnetic shielding [61, 62], levita-
tion [61, 70], magnetic bearing [61, 64, 65, 71], electrical rotary machines [69],
etc.,

- high field-trapping capability allow for the portable and strong magnetic field
generator, NMR and MRI technologies [62, 72, 73], drug targeting [62], magnetic
separation [67], etc.

Recently, Durrell et al revised ongoing research and application developments of
bulk superconducting technology. Considering a good market and feasibility potential,
Durrell et al discerned the most relevant applications and discussed the aspects of
current and future challenges. These applications are:

- magnetic shielding for high-field equipment,

- ultra-light superconducting rotating machines with high torque,

- portable high-field systems for medical devices,

- portable and compact high-field magnets.

The application using portable and compact high-field magnets revitalizes Onne’s
idea of strong magnet systems. In fact, the magnetized bulk HTS represents the
Onnes’s "closed-loop coil"9 without a directly coupled power supply. After appropri-
ate cooling and magnetization,HTSs can serve as (portable) strong quasi-permanent
magnets and are referred to as Trapped Field Magnets (TFMs).

2.2.2 Examples of TFM

Early TFM prototypes were built in Japan. For example, a schematic of a TFM is
shown in Figure 2.8 a) [74]. It consists of a Y-Ba-Cu-O bulk, which is encapsulated

9Note, so far there is no technology to produce a closed-loop coil out of HTS wire/tapes
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Cold stage 
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Figure 2.8: TFM system consisting of Y-Ba-Cu-O bulk, vacuum vessel and cryocooler: a)
Schematic and b) photograph [74]. Bulk HTS has diameter of 35 mm and thick-
ness of 14 mm. After the magnetization, trapped field of 0.8 T was generated
and attract iron balls.

within the vacuum vessel and is refrigerated by a cryocooler. This TFM generates a
field of 0.8 T on the outer surface of the vacuum vessel at 30 K. To demonstrate this,
Figure 2.8 b) shows a photograph of the top section of the TFM prototype, where
ferromagnetic balls are attracted by the magnetized bulk HTS.
Oka [67] modified TFMs to make them viable for industrial applications. Of these,

the largest and most profitable potential industrial use will be for portable [75, 76] or
desktop [77, 78] TFMs. Currently, such systems continue to be improved considering
various technical aspects:

- enhancement of the trapped magnetic field by improving HTS materials and
arrangements,

- miniaturization (volume and mass) of the equipment,

- adopting commercial cooling technology (e.g. cryocooler),

- the developing a compact magnetization system - pulse magnetization.

A brief survey of the recent state-of-the-art TFMs with the main parameters is pre-
sented in Table 2.1. In 2009, Saho et al [76] developed a portable TFM system and
achieved a peak trapped field of 5.2 T outside the vacuum vessel from the 45 mm di-
ameter Gd-Ba-Cu-O bulk. Saho et al used a Stirling-cycle cryocooler for cooling below
40 K and quasi-statically magnetized the TFM by applying 6 T from a superconduct-
ing solenoid. Later, Yokoyama et al [78] reported trapped field of 3 T at the surface
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Table 2.1: Comparison of the main parameters for the different portable and desktop TFM.
Parameters/TFM portable TFM-I portable TFM-II desktop TFM
References Saho et al [76] Zhou et al [75] Yokoyama et al [78]

Peak BT , (T)
outside vessel 5.2 1.7 1.3
Peak BT , (T)
at bulk surface 7.2 3.0 3.2
Isolation gap, (mm) 2.8 4 3.8

Bulk HTS Gd-Ba-Cu-O Gd-Ba-Cu-O Gd-Ba-Cu-O
Diameter, (mm) 45 60 30
Thickness, (mm) 90 15 12

stack of bulks single bulk single bulk

Cryocooler Stirling-cycle Stirling-cycle Stirling-cycle
Operating T , (K) 36 51 55.6

Magnetization static single-pulsed multi-pulsed

Mass, (kg) 9.5 (w/o compressor) n.k. 26

of the 60 mm diameter Gd-Ba-Cu-O bulk, yet utilizing a compact Stirling cryocooler
(CryoTel® CT, Sunpower Inc.) and a single-pulse pulse field magnetization (PFM). In
addition, Zhou et al [75] also obtained the peak trapped field of about 3 T using the
same type of cryocooler, yet magnetizing a 30 mm diameter Gd-Ba-Cu-O bulk with
multi-pulse, multi-temperature PFM [75].
Nevertheless, although high BT can be reached at the surface of the bulk HTS

surface, it rapidly decreases (up to 30-60 %) with distance. Therefore, it is important to
ensure the small magnetic distance ("isolation gap", see Figure 2.8 a) when engineering

a) b) 

Figure 2.9: Two examples of the portable TFM: a) TFM exploiting static magnetization
developed by Hitachi [76], b) TFM utilizing pulse-field magnetization developed
by Cambridge Bulk Superconductivity Group [62, 75].
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a vacuum vessel [61].
Figure 2.9 shows examples of two portable TFMs, developed by Saho et al [76] and

Zhou et al [75]: both TFMs are light enough that one person can carry it. Still, while
different circumstances have to be considered when comparing those systems to each
other, it is immediately clear that TFM establishes a novel type of a magnetic field
generator which is drastically different from a permanent magnet or solenoid.

2.2.3 Comparison of magnetic field generators

Figure 2.10 qualitatively compares different magnetic field generators: PM, solenoid,
and bulk HTS. The advantages of bulk HTS are outlined with regard to performance
and compactness. Here, each field generator is considered in detail.
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Figure 2.10: Comparison of the magnetic field generators. Graph is adapted from [79].

Permanent magnets (PM). In case of the permanent magnet (PM), the magnetism
is based on domains, which arise due to intrinsic magnetic moments (spins). The
magnetism of PM is therefore limited by the atomic properties, which means that
the magnetic polarization of PMs is independent of the volume and depends only on
material properties.
Usually, large remanent polarization J , high Curie temperature Tcurie and strong

anisotropy field HA are prerequisites for an ideal permanent magnet. Hence, a large
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magnet moments of 3d-elements (e.g. Fe, Co) combined with high anisotropy fields
of rare-earth elements (e.g. Nd, Dy, Sm) are beneficial for PM production [17, 20].
However, the performance of a magnetized permanent magnet significantly depends
on the fabrication process and topological microstructure. One thus characterizes the
PM by extrinsic parameters, such as a coercive field J Hc, remanence Br and the energy
density (BH )max [17]. So far, RE-Fe-B (RE = Nd, Dy, Pr, where Nd-Fe-B is the most
common compound) represents a strongest permanent magnet with:

(BH )max ≈ 400 kJ m−3. (2.12)

This value, however, approaches the technical limit of this compound [17]:

(BH )max ≈ 720 kJ m−3, (2.13)

whereas a theoretical limit is:

(BH )max ≈ 960 kJ m−3. (2.14)

It implies that for even stronger permanent magnets, novel materials with better ex-
trinsic properties are required. However, less progress in the improvement of (BH)max
is expected [17] for the near future.

Bulk HTS vs. PM. The magnetism of bulk HTS originates from the supercurrents
circulating macroscopically throughout the sample (see Section 2.1.3). In other words,
the bulk HTS operates like a coil: a current, once induced, flows through the length
scale of the sample and is equal to the superposition of supercurrents - critical current
density, jc. When bulk HTS is fully magnetized, jc flows over the entire volume of the
sample, producing a characteristic conical distribution of the magnetic flux density. It
also means that the bulk HTS polarization increases with the sample volume, which
is in contrast to the permanent magnet.
Due to the different origin of the magnetism, it is difficult to compare a perma-

nent magnet and the bulk HTS using intrinsic or extrinsic magnetic parameters.
For instance, the volume magnetic polarization J or magnetization M (defined as
M = µ0×J) is easy to define for PM, while defining the magnetic moment of a macro-
scopic current loop for a superconductor is somewhat confusing [39]. It would be more
reasonable to compare the factual engineering parameters - surface magnetic flux den-
sity of PM and bulk HTS. Hence, off-the-shelf products - Nd-Fe-B permanent magnet
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(MagnetWorld®, Jena) and Y-Ba-Cu-O bulk HTS (ATZ®, Torgau) - were selected for
this purpose.

a) b) 

BT (T) 
z z 

BT (T) 

Figure 2.11: Comparison of the z-component surface magnetic flux density By for a) Nd-
Fe-B permanent magnet (MagnetWorld, Jena) and b) Y-Ba-Cu-O bulk HTS
(ATZ®, Torgau). The activation of the bulk HTS was performed following a
field cooling magnetization with BA = 1.5 T at 77 K.

Figure 2.11 presents theBT magnetic flux density10 measured 1 mm above the surface
of each magnet. Both magnets have comparable dimensions: Nd-Fe-B (N48) is a cube
with a side of 30 mm and mass of 200 g, while Y-Ba-Cu-O is a disc with diameter of
46 mm and 60 mm and thickness of 16 mm and 60 mm and mass of 160 g. The bulk
HTS was activated following a FC magnetization with BA = 1.5 T at 77 K.
It is immediately clear that the maximum magnetic flux density of the Y-Ba-Cu-O

bulk HTS exceeds that of Nd-Fe-B. When appropriately cooled and magnetized, bulk
HTS is capable of trapping magnetic fields which are an order of magnitude stronger
than those which a PM can provide. (records trapped magnetic fields are debated in
Section 2.2.8).

Bulk HTS vs. solenoid. In contrast to conventional or superconducting solenoids,
bulk HTSs are much more compact and do not require a direct, continuous powering.
Furthermore, the generation of a strong magnetic field appears in a free space, unlike
being confined within a solenoid bore [62, 68, 80].

Conclusion. Comparison of permanent magnet, solenoid, and bulk HTS can be sum-
marized when laying out a diagram of the generated field as a function of size and
cost [67], as shown in Figure 2.12. Bulk HTSs, acting as TFMs, are advantageous
10Hereafter BT indicates the Bz - component of vector B
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Figure 2.12: Oka’s diagram for industrial market position of HTS bulk magnet among other
magnetic field generators [67]. Bulk HTSs, acting as TFMs, are advantageous
magnet sources over conventional counterparts, if the high field generation, size
and cost are prioritized requirements.

magnet sources over convectional counterparts, if the high field generation (> 1 T),
size and cost are prioritized requirements.

2.2.4 Fabrication

In pioneering years, Y-Ba-Cu-O bulk was synthesized using a common ceramic pro-
cessing called solid state reaction or sintering. However, the polycrystalline materials
obtained were of poor quality, because randomly oriented grains within the material
limit jc, which greatly narrows the range of practical applications. The latter fact was
disappointing and scaled down ambitions of practical utility. A high jc flowing in a
large current loop is primary requirements for profitable magnetic application using
bulk material [63].
A breakthrough in the fabrication of Y-Ba-Cu-O bulk occurred after introducing a

melt texturing growth (MTG) [81]. In order to produce Y-Ba-Cu-O the material was
melted and then allowed to recrystallize, which still gives us the term "melt-textured"
to describe the crystalline structure of Y-Ba-Cu-O as opposed to the structure obtained
using metallurgical or ceramic texturing techniques [38]. Later, significant contribu-
tions to this process were made by Salama et al [82] and Murakami et al [83]. Over
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the last decades, the MTG underwent a number of modifications and now has many
variants. The main goal of all processing methods was to obtain large and well-aligned
grains to increase the value of the critical current density jc.
Today, a large single-grain Y-Ba-Cu-O bulk is produced using a top-seeded melt

growth (TSMG) [84], which is outlined in Figure 2.13. This method has been in-
tensevely studied and improved in several research groups: a summary of processing
details and properties can be found in [38, 63, 85]. To date, several companies (see Ta-
ble 2.2) commercially produce standard bulk HTSs with a capacity over 1000 samples
per year [62].

Figure 2.13: Schematic of the top seed melt technique (TSMG) with the delineated location
of the seed, grain sectors, and boundaries. Courtesy of F. Werfel [86]

Admittedly, TSMG takes advantage of an extraordinary feature of the Y-Ba-Cu-O
material phase diagram [60]. The superconducting YBa2Cu3Ox (Y123) phase lies
within the non-superconducting Y2BaCuO5 (Y211) phase. As a result, the latter
composition forms first during the thermal annealing. One could argue that this is
a serious drawback. However, the Y211 concentration scales with the critical current
density [87]. A Y211 particle is of slightly greater dimension than ξ (radius of the
vortex filament), which makes Y211 particles ideally suited to pin the magnetic flux
quantum. Still, further refining and homogeneous distribution of Y211 within the Y123
matrix [38] can lead to even better pinning performance due to a short coherence length
in Y-Ba-Cu-O. Hence, one introduces Pt or CeO additions to reduce Y211 size [38].
In brief, TSMG comprises two stages: melt-textured growth and oxygenation. At

first, a seed is placed on the top of the pressed precursor powders, which are a mixture
of the superconducting Y123 phase and non-superconducting Y211 phase. Then, this
pressed powder is heated up to the melting points of the powders with subsequent
slow cooling with prescribed temperature gradient. The main requirement for the
seed is a higher melting point regarding the precursor powder and compatible struc-
tural/chemical parameters [88, 89]. In case of Y123, single crystals (or thin films) of
Sm123 or Nd123 are used. Figure 2.13 depicts usual TSMG setup with seed, four

Dissertation Oleksii Vakaliuk



2.2 Trapped Field Magnet (TFM) 27

growth sectors, and growth boundaries. It is important to align the c-axis of the bulk
orthogonally to the sample surface. Then, the seed acts as a heterogeneous center and
promotes the epitaxial crystallization of a single crystal (single grain). In the following
stage, textured bulk is annealed in an oxygen atmosphere: This modifies the oxygen
stoichiometry and makes Y-Ba-Cu-O superconducting. The critical temperature of
the samples thus obtained varies from 90 K to 93 K depending on various factors, e.g.
quality of the precursor powders, melt-processing, and oxygenation.
Meanwhile, other LRE systems attract attention due to better magnetic properties

at 77 K [85, 91, 92], although they require additional efforts in fabrication. Thus,
Fuchs et al [90] compared the trapped field capability of LRE-Ba-Cu-O down to 77 K
using Birr as criterion. It is shown in Figure 2.14. When BA is applied along the
bulk c-axis, Y-Ba-Cu-O yield a modest Birr ∼ 5 T at 77 K, while higher Birr are
documented for (Sm,Nd, Gd)-Ba-Cu-O. Still, their fabrication requires an appropriate
seed technology [63]. It is important because the use of single crystal seeds like Nd123
or Sm123 is challenging due to the limited temperature window during the melting
process. Secondly, an additional control of solid solution formation is needed, because
of a substitution of LRE-element with Ba lattice sites and vice versa [38]. Thus, an
oxygen controlled melt growth (OCMG) was developed [93, 94] followed by a significant
improvement [91, 92] and commercialization by Nippon Steel® [95]. The company

B
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r 
(T

) 

T (K) 

Figure 2.14: The irreversivility field Birr as function of temperature (down to 77 K) for
different LRE-Ba-Cu-O systems [90].
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Ø 150 mm 

Ø 60 mm 

Figure 2.15: Photograph of two Gd-Ba-Cu-O bulk discs with diameter of 150 mm and 60 mm
grown using oxygen controlled melt growth (OCMG) by Nippon Steel® [91, 92].

produces large single-grain Y-Ba-Cu-O and Gd-Ba-Cu-O bulks with diameters up to
150 mm. Figure 2.15 shows an example of Gd-Ba-Cu-O bulk discs with diameters of
150 mm and 60 mm [91, 92].
Note, the fabrication of the single-grain LRE-Ba-Cu-O with diameters above 80 mm

demands a material-controlled peritectic temperature gradient to prevent the parasitic
nucleation and an unnecessary grain growth [63]. Since the latter treatment is cost-
and time-consuming, the diameter of a standard LRE-Ba-Cu-O varies from 30 mm to
60 mm. Still, an increase in size of a single-grain bulk HTS does not automatically
lead to the increase of BT [63, 96] as it is predicted by the Bean formula (see Eq. 2.9).
Nevertheless, the choice of a suitable LRE123 system for large-scale applications

might depend not only on the magnetic properties and the size. Werfel et al [61]
and Hlacek et al [97] pay attention to the economic factors, considering the prices
for raw materials, their recycling, fabrication time, efforts, and logistics. Therefore,
the Y-Ba-Cu-O system remains preferred for large-scale applications due to its price-
performance ratio. Table 2.2 overviews the price and typical trapped field for off-the-
shelf products among companies to date.

Table 2.2: Overview of the standard off-the-shelf bulk HTSs.
LRE-system Dimension BT at 77 K Price Effective price∗

Ø/thickness
Company (mm) (T) (e) (Tg−1e−1)

ATZ®, Germany [86] Y-Ba-Cu-O 30/10 1.1 300 0.07

CAN Superconductors®, Y-Ba-Cu-O 28/10 0.8-1 280 0.05-0.07
Czech Republic [98] Y-Ba-Cu-O 56/16 1.2-1.4 650 0.03-0.04

Nippon Steel®, Gd-Ba-Cu-O 60/20 2 5000 0.3
Japan [95] Gd-Ba-Cu-O 100/20 n.k. 12600 n.k.
∗With ρHT S = 6,38 g/mm3 [99].
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2.2.5 Trapped field mapping

To characterize the magnetic potential of bulk HTSs two non-invasive characterization
methods are known:

1) the levitation force measurement [97],

2) the trapped field mapping [100].

The trapped field mapping is fast, cheaper (because it requires less cooling) and has a
long tradition for levitation applications [97]. However, it depends on the experimental
setup and the quality of the permanent magnet system used. In contrast, trapped field
mapping - measurement of the trapped magnetic flux density distribution - has been
identified as reliable and reproducible method to characterize bulk HTSs [100]. Usually,
liquid nitrogen is deployed for refrigeration, whereas an electromagnetic coil [63] such
as the Weiss magnet is used for magnetization.
An exemplary equipment for the trapped field mapping is schematically shown in

Figure 2.16. It includes electromagnetic coils for magnetization Figure 2.16 a), a LN2

cooling bath and a scan Hall-probe facility. The latter can be either a system with 3D
step-scanning or a system with a rotating array of Hall probes, Figure 2.16 b) [100] and
Figure 2.16 c) [96] respectively. As a result, the distribution of the trapped magnetic
flux density can be measured in the xy-plane at fixed z-distance. An example of
BT,y(x,z) in shown in Figure 2.11 b).

b) a) 

Electromagnetic 
coil 

LN2 bath 

Bulk HTS 

Hall probe 

Bulk HTS 
c) 

Hall array 

Bulk HTS 

z 

z 

x 

Figure 2.16: Schematic equipment of the trapped field mapping showing: a) a magnetization
of the bulk HTS, following by the 3D scanning of the trapped magnetic flux
density BT either with b) 3D step-scanning system and one Hall-probe or c)
a rotating array of Hall probes.

2.2.6 Magnetization

Static magnetization. As a rule, a large-bore superconducting solenoid is useful to
magnetize the TFM. In this case, the applied magnetic field increases and decreases
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slowly, thereby ensuring a quasi-static regime with constant temperature. Therefore,
magnetization using the superconductive solenoid is called a static magnetization.
The static magnetization can be done in so-called field cooling (FC) and zero-field

cooling (ZFC) regimes, where the applied field is directed along the superconductor’s
c-axis. Figure 2.17 sketches both regimes. In the case of ZFC, the superconductor is
cooled below its Tc and then the external magnetic field 2BA is applied. In FC, BA

is applied at first, and then the superconductor is cooled below its Tc. Both regimes
can magnetize a superconductor to its theoretical maximum magnetization. However,
in case of FC, the magnitude of the applied field is equal to the target trapped field,
whereas for the case of ZFC the required field that is applied is twice the strength [42].
Thus, FC is more favorable from a practical point of view [62, 101].
The static magnetization enables the sample exploration of the field trapping capa-

bility, but it is very expensive for the magnetization in high magnetic fields (> 2 T).
Furthermore, such a facility (magnet) is available only at specialized laboratories,
e.g. National High Magnetic Field Laboratory (NFMFL), Tallahassee, USA [102] or
Tsukuba Magnet Laboratory, Tsukuba City, Japan [103]. Furthermore, it is time-
consuming because the applied field is removed at a low ramp rate to avoid thermal
instabilities [38]. A ramp rate of 0.1 T min−1 or less has proven to be most effec-
tive [21, 104].

Pulse field magnetization. An alternative to the static magnetization is the pulse
field magnetization (PFM). Here, the pulsed magnetic field on the order of milliseconds
is applied to a bulk by discharging the energy stored in a capacitor bank through a
copper magnetizing coil [101]. PFM is fast, compact, relatively inexpensive and offers
in-situ or portable magnetization of TFM. The rapid dynamic motion of the magnetic
flux induces significant heat, which warms up the bulk HTS and affects the trapped
field [101] Thus, trapped fields obtained by PFM are usually lower than those obtained
by a static magnetization. The current record of 5.2 T at 29 K has been reported by
Fujishiro et al [105].
Current research on PFM optimization continues to be carried out. It focuses on

various PFM parameters, such as the environmental temperature [106, 107], pulse du-
ration, amplitude of the applied field [108], thermal conductivity of the bulk HTS [101,
109], the type of the magnetizing coils used [110, 111], etc. Several novel PFM ap-
proaches have been suggested: sequential pulsed field application (SPA) [112], an
iteratively magnetizing pulsed field method with reduced amplitude (IMRA) [113],
and a modified multi-pulsed technique with stepwise cooling (MMPSC) [105, 114–
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Figure 2.17: Distributions of the magnetic flux density B(r) in the bulk HTS during and
after magnetization using Bean model [42, 43]. a) Zero field cooling: for a
superconductor, which is cooled below its Tc, magnetic field of magnitude equal
to a full penetration field, Bp is applied (top panel). Then this field is increased
to 2Bp (middle panel) following its decrease to zero. As a result, fieldBT =Bp is
trapped by the bulk HTS (bottom panel). b) Field cooling: the superconductor
is kept above Tc in the presence of an applied magnetic field BA (top panel).
Then, the bulk HTS is cooled below its Tc followed by slow decreased of the
applied field BA (middle panel shows the case with of 0.5 BA). Ultimately, the
trapped field is also equal to the applied field BT = Bp (bottom panel).
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116]. Recently, Cambridge Bulk Superconductivity Group [75] using portable TFM
(see Section 2.2.2) [75] achieved the trapped magnetic field of 3 T exploiting a "flux
leap phenomenon" induced by heat generation [117]. An extensive review about the
magnetization of the TFM, including PFM and its modifications is given in [101].

2.2.7 Cooling

2.2.7.1 Cooling with cryogenic liquid

A straightforward way to cool bulk HTS is to immerse it into the open liquid nitrogen
(LN2) bath. Indeed, such a simple method continues to be utilized in many demon-
stration experiments. However, this method consumes a huge amount of LN2 owing to
tremendous heat losses and is fairly impractical for application. Moreover, the direct
contact of the bulk HTS with the LN2 may degrade its superconducting properties:
frost and moisture that form as a result of thermal cycling can penetrate into the holes
and cracks in the near-surface of the bulk, potentially causing damage [61].

Thermal conductor 

vacuum 

Cryogenic  

liquid 

Bulk HTS 
Bulk HTS 

Cold head  

a) b) 

vacuum 

Figure 2.18: Schematics of the cooling systems of the TFM system: a) cooling with a cryo-
genic liquid, b) cooling with cryocooler.

A pragmatic way of cooling and maintaining the bulk HTS at desired cryogenic
temperature is to use a solid conductive cooling. In this case, the bulk HTS is enclosed
in a vacuum cryostat and is attached to the cold stage of a cooling source, e.g. cryogenic
liquid tank or cryocooler cold head. Figure 2.18 presents schematics for both cases: the
cryogenic liquid tank has been utilized in MagLev cryostats [118], where the cryogenic
liquid is LN2. The cryocooler cold head is used in portable and desktop TFMs [75–78].
There is a long tradition in laboratory research of cooling with cryogenic liquids,

where latent vaporization heat fuels the main heat transfer process. The main advan-
tages are large cooling power and simplicity in cryogenic design. However, it requires
availability or regular supply of cryogenic liquids and learning to handle them.
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Liquid helium (LHe) and liquid nitrogen (LN2) are common cryogenic liquids, al-
though other cryogenic liquids can be used. For example, liquid hydrogen with a high
latent vaporization heat is a suitable coolant at temperatures below 20 K, especially
for transport applications where H2 is major fuel [119]. Neon is very well suited to
cool rotating machines operating around 27 K [120]. Table 2.3 lists common cryogenic
liquids, identifying their main properties.

Table 2.3: Properties of common cryogenic liquids. Data is taken from [99]
Cryogenic Boiling Point, Latent heat of Cost per liter
liquid vaporization at B.P.,

B.P. (K) (kJ l−1) (el−1)
4He 4.23 2.59 9.50 [121]
N2 77.36 160.60 0.58 [121]
Ne 27.10 103.50 not known (n.k.)

H2 (para) 20.26 31.54 n.k.

2.2.7.2 Cryocooler

The use of a cryocooler11 excludes risks and efforts associated with cryogenic liquids
and is more attractive for practical applications [66, 67]: Instead of using evaporating
cryogenic liquids, the cryocooler uses electricity [123]. Thus, the deployment of the
cryocooler offers a user-friendly "plug-and-play" configuration. However, cryocoolers
are usually restricted to net cooling power and, therefore, require accurate cryogenic
design.
So far, there is no customized cryocooler for direct application in bulk supercon-

ductivity, but cryocoolers are well-established and thoroughly tested for use in space
technologies and military industries [124, 125]. A useful article explaining a basics of
cryocoolers and related thermodynamic systems is given in [125], whereas an exten-
sive review about cryocooler applications is described in [124]. The review [126] is
restricted to cryocoolers for superconducting devices.
In fact, Stirling, Gifford-McMahon, and pulse tube cryocoolers were already used

for TFM systems [75–78, 127], but the choice of a suitable cryocooler strongly depends
on the specifications of a particular application.

11Cryocooler (cryogenic cooler) is a standalone device that actively cools a sample down to cryogenic
temperatures [122].
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Stirling. The long history of the Stirling refrigerators in cooling infrared equip-
ment has resulted in great advancement. Today, high-efficient Stirling cryocoolers are
available in a small size and convenient geometry [125]. A standard Stirling cryocooler
includes a pressure wave generator and a cold head. Optionally, the pressure wave
generator can be connected directly to the cold head, forming a so-called integral cry-
ocooler. However, often the pressure wave generator is separated by a so-called split
hollow line and cryocoolers are called split croycoolers [123]. The advantage of integral
cryocoolers lies in their compactness and efficiency, although they also strongly vibrate
and are noisy. Generally, a lower vibration level is attributed to the split configura-
tion. Also, the split cryocooler allows for several options regarding the cold head and
compressor orientation. This is crucial because a cryocooler’s cooling performance will
often diminish unless it is positioned with the cold end pointing downward [128]. The
examples of both configuration are presented in Figure 2.19 a-b).

a) 

b) 

c) 

d) 

10 cm 

30 cm 

b) 

Figure 2.19: An example of a close-cycle cryocoolers: a) integral Stirling (CryoTel® CT,
Sunpower Inc., USA) [129], b) split Stirling cryocooler (AIM®, Germany) [130],
c) pulse tube (Thales®, France) [131], d) Gifford-McMahon [123].

Commercial Stirling cryocoolers with a mass up to 5 kg usually have a cooling power
in the range of 1-10 W at 77 K. They are able to reach temperatures from 40 K to 65 K
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and mostly operate at frequencies corresponding to the electric line 50 or 60 Hz [123,
124, 132].

Pulse tubes. The pulse tube refrigerator is in some ways similar to the Stirling
cooler, but it does not use moving components. Figure 2.19 c) shows an example
of a light pulse tube manufactured by Thales®, France. The nature of this device is
reviewed elsewhere [133–135]. With the introduction of the orifice concept by Mikulin
et al [136] the relocation of the orifice [137] and other improvements allowed to achieve
an efficiency, comparable to Stirling cryocoolers. The separation of the cooling and
heating cycle is realized via a slug of helium gas that acts as the displacer. Thus, the
pulse tube cryocooler has an inherent potential to increase of the lifetime of a cryogenic
device, reliability and reduce of the vibration level.

Gifford-McMahon. The operating principles of the Gifford-McMahon (GM) cold
head is the same as for the Stirling cryocooler. However, the GM cryocooler operates
at much lower frequencies ranging between 1-5 Hz. These cryocoolers are always split
cryocoolers and consist of a compressor package and a cold head package. The com-
pressor package consists of a hermetic compressor to pump helium in circuit, an air or
water cooler to absorb the heat of compression and a complex oil rejection system in
order to avoid oil and oil vapor inside the cold head. The cold head package includes
the working cylinder with the displacer, the regenerator, and a valve system [123].
The main downside of GM is that they are about 10 times larger and heavier than the
Stirling and pulse tube coolers (see Figure 2.19). However, they provide much higher
cooling powers at 80 K and or lower temperatures, e.g. 2-20 K.
Lightweight cryocoolers whose mass is not larger than 5 kg12 are good candidates

for TFM refrigeration.
Table 2.4 lists suitable crycoolers and compares their main characteristics such as

mass, heat lift Qc, vibration level, and price. Nevertheless, all cryocooler have different
limitations on the allowable magnetic field interface. For the split type cryocooler, the
cold head is almost unaffected by the magnetic field, while compressor might operate
improperly due to the harm of the permanent magnetic materials in the motor [138,
139]. It may cause some level of worse vibration performance [140].

The effect of magnetic field on cryocooler. The operation and efficiency analysis
of the cryocooler exposed to magnetic fields were considered in [131, 138]. It was
12The mass limitation of 5 kg is a compromise to ensure that the entire TFM systems remains portable.
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Table 2.4: Overview selected cryocoolers with the mass of 5 kg [141].
Manufacturer: AIM® CryoTel® CryoTel® Thales®

Model SL150 DS 1.5 MT LPT 9510
Type Stirling Stirling Stirling Pulse tube
Qc, (W) 1.5 1.4 5 1.4
Mass, (kg) 2.3 1.6 2.1 2.1
Vibration, (g, rms) 9.5 4.5 n.k. 0.5
Price, (ke) 15.0 18.4 22.8 20

revealed that the magnetic induction in order of 20-50 mT is critical. In addition, the
integral cooler (CryoTel® CT, Sunpower Inc.) and its controller was tested in uniform
magnetic fields suggesting that the performance was only moderately influenced by up
to 45 mT [129].
Manufacturers thus recommend to either increase the distance between the cold head

and the compressor or to shield the compressor. However, shielding the compressor
would reduce the efficiency by 20 % as compared to the nominal efficiency [129–131,
140]. The cryocooler of the portable TFM is paused during the PFM and is therefore
not affected. For static magnetization, the cryocooler can be placed at a greater
distance to the cold head.

Vibration. Another drawback of cryocoolers are vibrations, which can not be cor-
rectly predicted because they can not be accurately modeled. Vibrations can be re-
duced by selecting a suitable cryocooler type and configuration as well as the ap-
propriate mechanical connection to the cold object. Pulse tubes vibrate less (e.g.
Thales®, France, see Table 2.4) and are favorable when choosing a cryocooler, whereas
cooling with a liquid cryogen is the better choice for precise force measurements in
LFV when vibrations must be avoided.

2.2.8 Record trapped fields

A number of high trapped field experiments were reported in the literature. Particu-
larly, Nariki et al [142] reported the trapped field of 4.30 T between two Gd-Ba-Cu-O
bulk samples at 77 K. Furthermore, by lowering the temperature, Gruss and collab-
orators [143] achieved the trapped magnetic field of 16 T at 24 K in the middle of
the Y-Ba-Cu-O double-sample-stack combining effects of intrinsic reinforcement, i.e.
Zn- and Ag-dilution, and external thermal compression by a steel tube. Later, Tomita
and Murakami [144] reported a trapped field of 17.24 T at 29 K in a similar stack of
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pristine Y-Ba-Cu-O bulks, but impregnated with the resin and Wood’s metal13 as well
as wrapped with carbon fiber. A current record of the trapped magnetic field of 17.60 T
(at 26 K in the middle of double-sample-stack Gd-Ba-Cu-O bulks) was achieved by the
Cambridge Bulk Superconductivity Group [21].
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Figure 2.20: a) Record trapped field BT for double-sample stack samples as function of the
temperature. Dashed arrow is guide for eyes. b) Temperature dependence
of the trapped magnetic field for the a single bulk HTS. Data is reproduced
from [20].

The discussed trapped field values were obtained between the assembly of two bulk
HTS samples. However, the magnetic field generated at the surface of one bulk HTS
is a desirable requirement of the TFM for many practical applications, such as LFV,
NMR, MRI, and drug targeting. As a rule, a trapped field ranges from 1.0 T to 3.1 T
at liquid nitrogen temperatures [38, 142]. Again, with reducing the temperature BT

is remarkably enhanced. For instance, Ikuta et al [85] demonstrated 8 T at 40 K for
Sm-Ba-Cu-O bulk HTS, whereas 11.4 T at 17 K for Y-Ba-Cu-O bulk HTS was achieved
by Dresden group [20, 104].
Figure 2.20 a) collects the trapped field as a function of the temperature for double-

sample stack configurations, despite different samples and applied conditions. Fig-
ure 2.20 b) plots temperature dependence of the trapped field at the surface of the
single Y-Ba-Cu-O bulk reported by Müller et al [20].
However, the maximum trapped field for double-sample stacks or single bulk HTSs is

not limited by the superconducting and magnetic properties of the material, rather by
the poor mechanical properties due to their brittle behavior [21, 61]. Many experimen-
tal works reported the fracturing of bulk HTS during magnetization [104, 146, 147],
13Wood’s metal is a eutectic, fusible alloy consisting of of 50 % bismuth, 26.7 % lead, 13.3 % tin, and

10 % cadmium by weight with a melting point of approximately 70 ◦C [145].
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especially, "record" experiments [21, 143, 144].

2.2.9 Limitations of TFM at low temperature

Mechanical stability. The bulk of LRE-Ba-Cu-O is ceramic and has low tensile
strength σB. Typically, σB of unreinforced LRE-Ba-Cu-O bulk lies in the range of
20 MPa to 50 MPa [63, 66] and depends on the fabrication process. During MTG pro-
cesses many detrimental macro-defects such as cavities, voids and cracks are formed.
These formations have a positive effect on fabrication, because they significantly re-
duce the time required for an oxygenation procedure [148]. However, formed defects
also result in a wide variation of performance from sample to sample and experiment
to experiment [21]. Thus, the sample fracturing during the magnetization has been
reported in many works [104, 146, 147]. In some cases, mechanical damage at the
surface of the bulk HTS was directly observed. In other cases, degraded or irregular
distribution of the trapped magnetic flux density was reported. This means that the
sample underwent some internal damage (e.g. crack inside the volume). An example
of Y-Ba-Cu-O bulk with a crack after high field measurements is shown in Figure 2.21.

The fracture behavior occurs when bulk HTS is magnetized and subsequently cooled
from RT down to cryogenic temperatures. Thermally induced stress can either generate
new cracks or worsen existing ones [147]. It is especially important to discern cracks
as they occur upon the initial cool-down process, since the magnetization process
further stresses the material, impacting mechanical stability. The material stress is
caused by Lorentz forces that arise when an induced supercurrent interacts with an
externally applied magnetic field. In fact, these forces act on the flux lines, which
are anchored to the pinning centers within a crystal lattice. Hence, an equally large
force is transferred to the crystal lattice and the collective effect of these forces causes
the mechanical deformation [38, 147]. Moreover, as the applied field magnitude is
increased or decreased, Lorentz forces can exceed the tensile strength of the material,
causing mechanical failure.
For cylindrical bulk, however, a simple estimation of maximum trapped field can be

found using the following relation [144]:

σB

(MPa) = 0.282 · B2
T

(T2) . (2.15)

According to Eq. 2.15 fracturing is expected at fields of 7-13 T. Therefore, mechanical
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Figure 2.21: a) Distribution of the trapped magnetic flux density BT after high field mea-
surements. b) sketch of the bulk HTS illustrating the crack and two regions
with supercurrent loops j [38].

stabilization is an issue to be resolved. Generally, there are several strategies to avoid
sample fracturing during magnetization:

- internal reinforcement (increasing the fracture toughness by extra processing),

- external reinforcement, e.g. banding with metal ring,

- combination of the two.

Internally, the mechanical strength of the bulk HTSs can be improved by resin
impregnation [149] and adding silver [150, 151]. These treatments reduce the number
and size of microcracks and increase the fracture strength of bulk LRE-Ba-Cu-O from
30 MPa up to 70 MPa [149–151]. However, a different thermal contraction between the
bulk HTS and resin may disturb the near-surface of the bulk during thermal cycles
and/or magnetization. In addition, Floegel-Delor et al [152] proposed to combine
resin impregnation with copper deposition technique, wherein copper atoms diffuse
into the holes and cracks in the near-surface of the bulk. Alternatively, mechanical
properties of the bulk Y-Ba-Cu-O were improved after a two-step, buffer-aided top
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seeded infiltration and growth (BA-TSIG) technique [153] instead of TSMG. In this
case the Ag-dilution or resin impregnation are unnecessary, which in turn considerably
reduces the cost of bulk HTS fabrication.

BT (T) 

σ
B
 (

M
P

a)
 

Figure 2.22: Dependence of the tensile stress σB on the trapped field BT in bulk HTS
unreinforced and reinforced with a steel tube. Due to the compressive pre-
stress much higher trapped fields are achievable without fracturing. Data is
taken from [38].

An external action of reinforcement is to encapsulate the bulk HTS within a metal
tube [104, 143] or to wrap it with carbon fiber [144]. In this case, the sample is
compressed in ab - plane at the interface between the bulk and metal owing to the
thermal contraction difference during cooling from RT to the prescribed cryogenic
temperature. Figure 2.22 illustrates the effectiveness of the metal tube reinforcement
with the regard to tensile stress, σB of the bulk HTS as function of the trapped
field, BT . It is assumed that a critical tensile strength is 30 MPa. Thus, in case of
unreinforced bulk, σB scales with squared trapped field in accordance with Eq. 2.15.
However, when a metal tube is used, negative stress compresses the bulk as it is cooled
down to cryogenic temperature at the absence of a trapped field. As the trapped field
is increased, this negative stress decreases, changing the sign at prescribed BT and
crosses σB(0) at considerably higher fields [38]. Compression can be further improved
by shrink-fitting [21] or enforcing with Fe-Mn-Si shape memory alloys [154].
A good candidate for the tube reinforcement is a non-ferromagnetic metal, which has

a coefficient of thermal expansion higher than bulk HTS, while large enough stiffness
and yield strength to withstand strong mechanical forces. Thus, the best choice is an
austenitic stainless steel alloy, such as American Iron and Steel Institute (AISI) 30414.
14In Germany AISI 304 steel is defined by designations given in Euronorm EN 10088. This designation

follows the the material number (Werkstoffnummer) 1.4301.
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The AISI 304 steel has high Young’s modulus (i.e. E = 200 GPa [99]) and low mag-
netic susceptibility at low temperature (i.e. χ ≈ 10−3 at 77 K [99]). Also, it readily
available in a form of thin-wall tube, however, the AISI 304 is sensitive to the cryogenic
temperature cycling (also welding) and can transform into a martensitic phase, which
is ferromagnetic.
In addition to the experimental efforts on bulk HTS reinforcement, there is con-

siderable progress to the problem using analytic and numerical methods. Early re-
ports [146, 147, 155, 156] mainly considered the electromagnetically induced stress on
bulk HTS during magnetization, while in the later works [157–162], numerical models
are continuing to improve (e.g. include temperature influence) and remedy reinforce-
ment approaches. However, to realistically model the problem more information is
necessary regarding the real thermal and mechanical properties of bulk HTS (and also
reinforcement metal) at low temperatures.

Flux jumps and thermal instability. Nonetheless, if the bulk HTS remains mechan-
ically holistic during magnetization, it may undergo a thermo-magnetic instability,
which can lead to a partial or complete suppression of BT [38]. This instability occurs
because of the flux reconfiguration (or flux jumping) towards the equilibrium and is
accompanied by sudden heating of a superconductor[38]. Such scenario is a frequent
phenomenon of Type II superconductors. For example, the experimental visualization
of flux jumping has been demonstrated in magneto-optical imaging experiments [163].
The origin of flux jumps has been explained in a frame of the adiabatic model [164],
which compares the thermal diffusivity Dth and magnetic diffusivity Dm. In case of
Dm > Dth the heat generated in the superconductor due to the motion of the magnetic
flux cannot be effectively cooled and results in the abrupt reduction of jc. This, in
turn, leads to the reduction of the Bin upon ramping the BA to zero.
Nevertheless, record experiments of the high trapped field [143, 144] have been

conducted using the static FC magnetization. This means that the adiabatic model
(assuming instant conversion of the magnetic energy change into the released heat)
cannot be applied. Mints and Brandt [165] developed a dynamic model (Dm < Dth)
concerning a thin slab in the transverse magnetic field and determined the criterion of
the first flux jump:

Bj1 ∝
√
jch

ḂA

, (2.16)

where jc is a critical current density, h is heat transfer coefficient to the coolant and
ḂA is the field ramp rate at which the applied field is reduced to zero. Thus, the
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remedy to the flux jumping problem was to slowly reduce the applied field during
the FC magnetization and to improve the "cryo-stability" of the superconductor, e.g.
impregnated with the Wood’s metal [144].
Later, the Krabbes group experimentally elaborated the flux jump phenomenon in

Y-Ba-Cu-O bulk HTSs under conditions of the high magnetic field and low tempera-
ture. Their results are illustrated in Figure 2.23, which presents the measured BT of
the 4-mm-diameter Y-Ba-Cu-O bulk as function of temperature T . At temperatures
below 20 K BT is limited by flux jumps (Bj1 are presented as single data point). It
is also shown that Bj1 decreases with decreasing temperature. However, in these ex-
periments comparable diffusivity Dm ≈ Dth were documented suggesting that neither
adiabatic or dynamic model cannot describe the experimental data.

B
T
 (

T
) 

T (K) 

- BT (T) 

•   Bj1 (T) 

Figure 2.23: Temperature dependence of trapped field BT in the 4-mm-diameter Y-Ba-Cu-O
bulk. Flux jumps with the first flux jump field Bj1 occur below 20 K. Data is
adopted from [38].

Summarizing, bulk HTSs are capable of trapping fields over 16 T [21, 104, 144],
but the tendency of mechanical fracturing during magnetization and magneto-thermal
instability is a severe challenge to their practical applications. Furthermore, record
trapped fields were achieved on specially processed and best-performing samples. The
latter fact inevitably leads to high costs (see Table 2.2). For practical applications,
however, a standard off-the-shelf and highly-reproducible bulk HTS is highly desired.
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3 Lorentz Force Velocimetry: state of
the art

This chapter introduces Lorentz Force Velocimetry (LFV) - a contactless method of
flow rate or velocity measurement technique, which was thoroughly researched within
the Deutsche Forschungsgemeinschaft DFG funded project Research Training Group
(RTG) №1567 "Lorentz Force Velocimetry and Lorentz Force Eddy Current Testing"
and ran nine years from 2010 - 2018. After shedding light on the working principle
and possible industrial applications, the focus is then laid on LFV with regard to
electrolytes1 and various associated technical issues. In particular, the evolution of
LFV key sub-systems with a primary emphasis on magnet system (MS) development
is discussed in detail.

3.1 Fundamentals
The LFV working principle relies on measuring the Lorentz force that is generated by
the relative motion of an electrically conductive medium through a transversely applied
magnetic field. The theory of LFV was formulated in [1] and expressed through the
scaling law:

FL ∝ σuB2V, (3.1)

where the Lorentz force FL depends linearly on electrical conductivity σ, mean flow ve-
locity u, magnetic flux density B and a characteristic volume V , which determines the
interaction of the magnetic field with the flowing and electrically conductive medium.
By measuring the resulting reaction force for a prescribed magnetic flux density and
known electrical conductivity, it is possible to determine the mean flow velocity of the
fluid. It should be stressed that Eq. 3.1 holds for stationary flow or for the steady state
motion of a solid conductor of a constant cross section [1, 2]. The principle of LFV
is illustrated in Figure 3.1: The primary magnetic field is generated by a magnet and

1Electrolyte is defined as a nonmetallic electric conductor in which current is mainly carried by the
movement of ions [166].
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Figure 3.1: Lorentz force velocimetry principle illustrating the interaction of the magnetic
field and the liquid flow with electrical conductivity σ and velocity u.

when the electrically conducting liquid passes through magnetic field of the magnet,
the interaction between induced eddy currents and the primary magnetic field causes
a retarding force to act on the flow [1]. In accordance with Newton’s third law, a force
(shown by the FL vector) with a magnitude equal to the retarding force (−FL), but in
the opposite direction, acts on the magnet along the flowing direction.

3.2 LFV application and categorization

Figure 3.2 shows a map of the LFV applications in terms of the resulting Lorentz
force, FL with respect to the product (σ · u) as applied to various weakly and strongly
conducting fluids.
Here, FL was calculated according to Eq. 3.1, assumingB = 0.1 T and V = 1× 10−3 m3.

Thus, taking into account a significant difference in the electrical conductivity σ and
flow velocity u, LFV is categorized into three project areas: liquid metal, solid metal
and electrolytes. These projects are represented as patterned rectangles on the LFV
map (see Figure 3.2) and are briefly reviewed below.

Liquid metal. It has been shown that LFV works well for liquid metals due to
their relatively high electrical conductivity (σ ≈ 1× 106 S m−1) and flow velocity
(u ≈ 10 m s−1). It quickly progressed from the technical demonstration on a Ga-In-Sn
eutectic alloy, which is liquid at room temperature, toward the LVF demonstrators
and prototypes for continuous casting of steel [3], liquid aluminum [4–6], sodium [7],
and tin [8] under laboratory and plant conditions. Notably, above-mentioned prac-
tical LFV investigations on liquid metals at elevated temperatures were consistent
with magnetohydrodynamic numerical simulations [167, 168] and the experimental
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Figure 3.2: Application overview of the LFV for relevant fluids or solid metals. Gener-
ated Lorentz force, FL is calculated according to Eq. 3.1 (with B = 0.1 T and
V = 1× 10−3 m3) using reported value of electrical conductivity, σ and mean
flowing velocity, u .

dry-calibration [169].
Dry-calibration is done by replacing a fluid flow with the controlled motion of a

solid metal where the geometry is fixed and the conductivity is known. Thus, dry-
calibration is a straightforward way of carrying out LFV measurements. Other factors
to consider are the choice of equipment and a thorough understanding of the critical
links between fundamental LFV theory [1] and practical applications. For example,
Sokolov et al studied the influence of high magnetic Reynolds numbers2, Rem by vary-
ing the velocity and applied magnetic field [170]. It was found that linear dependence
in Eq. 3.1 is preserved for the Rem ≤ 4. This means that, in case of higher Rem (i.e.
mean velocity of the conductor changes faster than magnetic diffusion time), measured
Lorentz forces are suppressed, leading to errors in the velocity measurements.

Solid metal. LFV also comprises Lorentz force eddy current testing (LET) [171, 172],
where the focus lies on inspecting non-destructive defects or flaws in moving metal,
e.g. a specimen of a layered aluminum. Further investigations on LET were continued

2Magnetic Reynolds number is defined as the ratio between advection and magnetic diffusion
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in several Ph.D. works using numerical simulations [173, 174], experiments [175, 176]
and inverse calculation to re-construct the defects [177]. Useful review about LET
technique can be found in the text books [178, 179] and recent papers [180–182].
For these two areas it is sufficient to use PM MS, since (σ · u) ∼1× 106 S s−1,

which consequently results in FL > 1 N. Furthermore, these PMs as well as force
sensors are commercially available and can be easily combined to measure the force of
a corresponding measuring range.

Electrolytes. The world’s first LFV laboratory demonstrations on electrolytes were
performed in [9–11, 16]. In these works, the saline water modeled the electrolytes with
the product of electrical conductivity and mean flowing velocity of (σ · u) = 1 S s−1.
This, in turn, led to the force measurements below 1 µN and required special high-
precision force measurement techniques. Force measurements with this type of resolu-
tion set a strict limitation on the dead load, which is needed to carry a MS. A more
detailed account of LFV on electrolytes and associated technical challenges are given
in the following Section 3.3.

3.3 LFV on electrolytes: technical issues

LFV on electrolytes focused on developing of the experimental setup that includes
three main sub-systems (see insert of Figure 3.3):

1) channel facility containing a fluid, the velocity of which is to be determined,

2) MS generating a magnetic field in the channel,

3) FMS measuring a resulting Lorentz force and carrying the MS.

Each sub-system was developed within an autonomous Ph.D. project of DFG-funded
RTG №1567. Beginning in the year 2010, three Ph.D. projects [183–185] - the first gen-
eration - dealt with the question of whether or not LFV can be applied to electrolytic
flows. The second generation [18, 186, 187] continued to optimize the corresponding
sub-systems, while the aim of the third generation – current generation – is to further
extend the LFV measuring range. How the LFV research evolved and which line of
questioning each sub-system developed is discussed below.
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Figure 3.3: Insert Schematics of the LFV experimental setup comprising three sub-systems:
channel, force measurement system (FMS) and magnet system (MS). The main
part of the LFV setup for the first a) and second b) generations of the RTG.
Both setups have (1) the channel with saline water, whereas the first setup
consists of (2a) permanent magnet blocks [183] and (3a) Pendulum Force Mea-
surement System (PFMS) (tungsten wires and inteferometer [184]). The second
setup consists of (2b) Halbach MS [183], and (3b) off-the-shelf force sensor [16].

3.3.1 Channel facility

A horizontally aligned channel facility with the controlled flow of saline water as model
fluid was developed and built in [185]. This type of facility was chosen because it is the
typical setup in industry, while saline water was chosen for experimental convenience.
Further details about the channel facility can be found among Ph.D. theses [183, 185,
186, 188].
The first generation was able to numerically show and experimentally verify that

a turbulent flow of saline water can be effectively approximated with a motion of
the solid conductor with identical geometrical parameters, electrical conductivity, and
prescribed velocity [183]. Later, Wiederhold et al [189] tested the LFV with saline
water with σ < 20 S m−1 at different flow profiles and regimes reporting insignificant
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influence of the laminar to turbulent transition to the LFV measurements. This result,
however, means that although the electrolyte flow is laminar or turbulent, it can be
effectively modeled or experimentally represented using the motion of a solid conductor.

3.3.2 Force measurements

Thus, Lorentz forces were measured in the horizontal direction. The use of LFV
for electrolytes was demonstrated by Wegfrass et al [10] during the first generation.
Authors utilized a Pendulum Force Measurement System (PFMS), as shown in Fig-
ure 3.3 a). Here, the PM blocks were suspended by parallel tensioned tungsten wires,
which were mounted on an aluminum frame. The PFMS was adapted to the channel
with controlled saline water flow and the force was measured in terms of a displacement
using a laser interferometer.
Later, Diethold et al [190] replaced the PFMS with a single state-of-the-art weighing

cell, the working principle of which relies on the Electromagnetic Force Compensation
Balance (EMFC). This extended the force resolution down to 1 µN within the range
of ± 100 µN. However, the environmental disturbances such as temperature, seismic
noise, vibration, and related other errors significantly affected the LFV measurements.
During the second generation, two identical EMFC weighing cells were proposed to

form a Differential Electromagnetic Force Compensation Balance (DEMFC) [18, 191].
Figure 3.3 a) shows both EMFCs mounted on an aluminum frame and adapted to the
electrolyte channel: The first EMFC carried the MS, while the second one carried a
non-magnetic copper dummy (with a similar geometry, but identical weight). Accord-
ingly, one EMFC measures both the Lorentz force and the cumulative errors, whereas
the second measures only the errors. The difference between them indicates the target
Lorentz force. The resolution in this case was ameliorated down to 20 nN [191].
Nevertheless, the force resolution using the DEMFC is significantly affected by the

temperature, mechanical vibrations, and tilting effects of the mechanical structure.
Another serious drawback of DEMFC is the mass limitation of the dead load [184, 192].
In fact, the EMFC consists of a mechanical and an electromagnetic part (i.e. the voice
coil actuator) comprising permanent magnets [184]. The mechanical part is made
of aluminum and has a complex inner structure. The mechanical properties of this
structure determine the dead load - the allowable mass of the MS. The mechanical
properties of the EMFC’s were analyzed in [184, 192]. Authors calculated the maximum
permissible dead load of 3 kg. However, this value was reduced to 1 kg due to a
compromise between the MS mass and required force resolution.
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3.3.3 Permanent magnet system

The first generation [183] performed the selection, design, and optimization of MS
simultaneously with the FMS developments [184]. Werner [183] provided a compre-
hensive analysis of the suitable magnetic sources for LFV on electrolytes, where MS
mass was limited to 1 kg: Author compared the magnetic networks both of the PM
and current-carrying coils and found that PMs are rather favorable because of their
compactness and low weight. PMs do not require power supplies or external heat
dissipation (e.g. water cooling), which are further advantages.
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Figure 3.4: MS configurations: a) - Cubic, b) - Halbach. Comparison of the distributions of
magnetic flux density: c), d) along z-axis and e), f) along y-axis .

As a result, cubic and Halbach configurations of the MS without an iron yoke as
magnetic circuit for the magnetic field return were proposed in [183] and are shown in
Figure 3.4 a-b). Cubic MS consists of double cubic Nd-Fe-B magnets that are arranged
opposite to each other through the yoke. Halbach MS is built from double Halbach
arrays arranged opposite to each other, where one side consists of five rectangular
Nd-Fe-B magnet blocks. Both MSs were designed and manufactured based on numeri-
cal simulations in combination with a special algorithm [193], that considered the ratio
between the Lorentz force and MS weight (force-to-mass ratio) as an optimization pa-
rameter. It was revealed that the lightweight carbon fiber yoke is more efficient than
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the iron yoke3 due to the force-to-mass ratio [183].
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Figure 3.5: Comparison of the Lorentz force generated when using Cubic and Halbach MS,
measured with flowing saline water of σ = 6 S m−1. Data reproduced from [11].

The magnetic flux distribution B (along z-axis and y-axis ) between the magnetic
poles of each MS with the same mass of 1 kg are compared in Figures 3.4 c-f). As
anticipated, B(z) yields a pronounced minimum in the middle for both MSs, but the
minimal magnetic flux density of the cubic MS is lower than the magnetic flux density
for the Halbach MS. The reason is the larger stray field of the cubic MS. Furthermore,
two qualitatively different dependencies are observed for B(y): The cubic MS has
a broad peak, while Halbach MS exhibits one positive peak at the middle and two
negative minimums at the sides. Such a Halbach configuration significantly mitigates
the stray fields and concentrates the magnetic flux density three times in alternating
directions through the channel.
Although the peak magnetic flux density of the cubic MS is higher than that for

the Halbach, the Halbach MS is more efficient for LFV, because the B(y) of Halbach
MS generates five vortices of eddy currents in the fluid, whereas the B(y) of Cubic MS
only generates two vortices. Moreover, numerical simulations by Werner and Halbe-
del [193] and consequent experimental validation by Halbedel et al [11] demonstrated
that utilizing the Halbach MS led to the enhanced the FL by a factor of 2.8. Figure 3.5
compares an effect of the magnetic field generation using cubic and Halbach MSs, when
LFV measurements with σ = 6 S m−1 and varying velocity were carried out [11].

3The iron yoke is commonly used to guide the magnetic flux.
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3.3.4 Discussions

The LFV technique for electrolytes was demonstrated to be a feasible measurement
method using the special channel facility with saline water and continually improving
the magnet and force measurement systems. Specifically, the limited range of the
electrical conductivity from 0.06 S m−1 to 10 S m−1 and flow velocity from 0.2 m s−1 to
2.5 m s−1 was tested using saline water.

However, for practical applications on the relevant electrolytes, it is required to ex-
tend the LFV measuring range to the lower electrical conductivity and slower velocity.
Table 3.1 lists electrolytic liquids, where LFV is highly favorable, with reported values
of σ, u and calculated FL. In addition, Figure 3.2 (see page 45) shows several examples
of these electrolytic liquids together with the solid metals, liquid metals, and saline
water [10, 11, 16] on the LFV application map. In contrast to the saline water, some
liquids flow more slowly and have an even smaller electrical conductivity, e.g. blood
and ultra-pure water. Other electrolytes (e.g. glass melt, acids, base, lye, and molten
salt) not only share a low value of (σ ·u), they are hot, opaque and aggressive, thereby
impeding the close location of the magnet at the channel. Since the magnetic field
rapidly decays with increasing distance between the magnet and the outer channel
wall, a larger gap between the MS and the channel results in smaller magnetic flux
densities in the fluid. This, in turn, is a serious challenge for LFV applications, when
aggressive fluids with low values of (σ · u) are matter of interest.

Bulk HTSs, acting as portable TFM (see Chapter 1 and Table 1.3), exhibit a po-
tential to provide magnetic flux densities an order of magnitude higher than con-
ventional permanent magnets and are, therefore, highly attractive for the LFV on
electrolytes [196]. The prospective idea to employ TFMs has been proposed in several
previous works on LFV [9, 10, 16, 200? ].

Table 3.1: Classification of aggressive and opaque fluids with respect to the measurement
forces resulting from Eq. 3.1 (with B = 0.1 T and V = 1× 10−3 m3)
Industrial sector Fluid type σ (S m−1) u (m s−1) FL (N)

Solar power plants Molten salts 102 [194] 103 [195] 1
Chemistry Acid, base, lyes 102[196] 1 [196] 10−3

Glass/Semiconductor Glass melts 101 [19, 197] 10−2 [19] 10−6

Medicine Blood, lymph 10−1 [198] 10−2 [198] 10−8

Pharmacy/Food Ultra pure water 10−6 [199] 1 [199] 10−11
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3.3.5 Prior consideration of Bulk HTSs for LFV

In order to gain an understanding of a practical utilization of TFM and their potential,
Halbedel et. al. [? ] considered commercial Y-Ba-Cu-O bulks4 to form MS for LFV.
Authors experimentally measured the trapped fields following a FC magnetization.
This involved applying a field of 2 T and cooling to 77 K with LN2. Figure 3.6a)
shows the experimental equipment for magnetization [201] consisting of a supercon-
ducting magnet with 300-mm-room-temperature bore (CYOGENICS Ltd., London,
UK) [202] and the open styropol bath with LN2. The distribution of the magnetic

a) b) 300 mm 

1 

2 

3.1 

3.2 

Figure 3.6: a) Experimental equipment for magnetization of bulk HTSs. It includes (1) a
superconducting solenoid with 300-mm-room-temperature bore and (2) the LN2
bath styropol box containing bulk HTS [201]. b) The Hall mapping setup, which
consists of (3.1) a three-axis motorized positioner and (3.2) the cryogenic Hall
probe.

flux densities, BT,exp of the magnetized HTS bulks were scanned using a Hall mapping
setup, which includes a cryogenic Hall probe (Arepoc s.r.o., Slovakia), a three-axis mo-
torized positioner (Standa Ltd., Lithuania) and Labview® software (see Figure 3.6 b).
The obtained data was used to evaluate the anticipated Lorentz forces using nu-

merical simulation, developed in master thesis by Klaiber [201]. Admittedly, Klaiber
adopted the previous model of LFV for electrolytes developed during the first gener-
ation by Werner [183], but replaced a permanent magnet with a bulk superconductor
customizing the Bean model [42] to a form of

jc = c · BT ,sim + d (3.2)
4Y-Ba-Cu-O bulks in form of cylindrical discs and rectagular blocks were purchased from ATZ®,
Torgau [86] and CAN Superconductors®, Prague [98].
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where jc is the critical current density, BT,sim - the simulated trapped field, whereas c
and d are fit variables to satisfy

BT ,exp − BT ,sim = min. (3.3)

It was found that using bulk HTSs nearly double the FL as compared to the Nd-Fe-B
counterparts with the same mass. This result was significant, because it does help to
recognize the potential of bulk HTSs for LFV application. Furthermore, simulation
studies [201, 203] promise even superior FL, when bulk HTS is magnetized below 77 K
and traps the field one order of magnitude higher.
Consequently, the second generation [187] of the MS-project endeavored to imple-

ment bulk HTSs into the LFV experimental setup. At that time, a project strategy
assumed development of the bulk HTS MS as an independent sub-system. This con-
cept involved placing the bulk HTS into the compact and light cryostat, which can be
attached to the EMFC in the same manner as Halbach MS. It also means that the
cryostat must meet two main requirements:

1) cooling and retaining the bulk HTS at temperatures below 77 K;

2) a weight of less than 3 kg (see Section 3.3.2).

However, after consulting with various companies that produce cryogenic equipment5,
it became apparent that engineering and building a cryostat which satisfies both re-
quirements is greatly challenging, requiring a compromise between two options:

a) cryostat of 3 kg operating within 300 K - 77 K temperature range

or

b) cryostat of 10 kg, but operating within the 300 K - 5 K temperature range.

To better understand the trapped field behavior at temperatures below 77 K and
other associated technical issues, e.g. magnetization and maintenance, Weidner [187]
continued the experimental investigations on the bulk HTSs using two of the heavy
cryostats.
Specifications, manufacturing, and testing of these cryostats have been contracted

out to ILK Dresden [204], who designed a LHe/LN2 bath cryostat for LFV application.
5The design concept for the cryostat for LFV application was discussed with three companies spe-
cialized in cryostat design and manufacturing. These are ATZ® (Torgau), ILK (Dresden) and
VOSKAM® (Oldenburg).
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10 cm 

2 

3 

1 

Figure 3.7: (1) Two LHe/LN2 cryostats arranged face-to-face. ILK Dresden [204] was com-
missioned to manufacture the cryostats as depicted. The cryostats are mounted
on the (3) optical bank which is fixed to the (3) table.

This cryostat is capable of cooling down one bulk HTS to 80 K using LN2 and main-
taining this temperature for 2 h [204]. Temperatures below 77 K are achieved using
LHe, but this requires a continuous LHe supply [204].

Figure 3.7 shows two LHe/LN2 cryostats purchased from ILK Dresden [204]. Each
cryostat weighs approximately 10 kg and resembles a portable TFM with conductive
cooling (cf. Figure 2.18, Section 2.2.7), but instead of cryocooler, the tank with liquid
coolant is used for the refrigeration.

As a result, a maximum trapped field of about 1.4 T following FC magnetization
(BA = 5 T at 22 K) was achieved with 46 mm diameter Y-Ba-Cu-O bulk HTS [187].
Much lower trapped field, in comparison to other portable TFMs (see Table 2.1, Sec-
tion 2.2.2) is due to the large isolation gap of 12 mm between bulk HTS surface and
the outside wall of the vacuum vessel.

Nevertheless, the research during the second generation was limited to several trapped
filed measurements on bulk HTSs, but without considering the practical integration
of bulk HTS with the actual FMS (EMFC), since the allowable EMFC dead load and
the excessive cryostat mass contradict each other.
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3.4 Chapter summary
This chapter reviews the LFV state-of-the-art, specifically focusing on LFV on elec-
trolytes. It is directly followed by the evolution of the LFV key sub-systems with
a primary focus on MS. Particularly, after introducing the MS based on PMs it is
argued that for the product of 10 S s−1 > (σ · u) > 1 S s−1 a stronger magnetic source
is required. Thus, the bulk HTS is considered as a potential candidate to replace the
actual Halbach MS. Nevertheless, the presented studies were limited to:

1) the experimental investigations on Y-Ba-Cu-O bulks, mainly focusing only on
measurements of the trapped field distribution,

2) the Lorentz force using the bulk HTS was calculated using the adopted numer-
ical model, but the prove of the working principle of the LFV setup was not
experimentally verified and

3) the presented numerical model does not properly exploit the critical state model,
instead it makes use of linear fit of the experimental data by varying fit param-
eters.

Therefore, the further course of this thesis verifies the idea of using bulk HTSs for
application in LFV and set initial requirements for an advanced LFV system.
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4 Proof-of-principle: LFV using bulk
HTS

4.1 Introduction
A bulk HTS, acting as strong TFM, is a promising MS to be integrated to the LFV
techniques on electrolytes. It is important, however, to examine the feasibility of bulk
HTSs as a substitute for existing Nd-Fe-B PMs in LFV applications: The bulk HTS
magnet has a characteristic feature of generating a conically-shaped trapped magnetic
flux density, BT , distribution, that has a sharp field gradient [42]. Whether this feature
adequately replicates the LFV theory [1] (Eq. 3.1) is an issue to be answered.
This chapter presents, for the first time, the realization of LFV using bulk HTS. To

eliminate technical challenges associated with mass excess and handling, LFV experi-
ments were performed utilizing:

1) dry calibration facility (see Section 3.2),

2) MS, assembled from two bulk HTSs with simplified cooling,

3) off-the-shelf load cell as FMS.

4.2 Experimental

4.2.1 Experimental facility: dry-calibration

Figure 4.1 shows a schematic diagram and photograph of the experimental setup used
to test LFV using the bulk HTS MS. The setup consists of five main components:
(1) bulk HTS MS, (2) load cell, (3) metal rod, (4) linear drive and (5) aluminum rack.
The experimental procedure is fully automated: an IBA-Automation environment con-
trols the linear drive and is used for data acquisition [3]. The linear drive executes
a repetitive motion of the metal rod with a prescribed constant velocity. At first, it
moves downwards, then reverses its direction and moves back to its initial position.
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Figure 4.1: a) Schematic of the LFV proof-of-concept. b) Photograph of the realized LFV
experimental setup, which consists of five main components: (1) HTS MS,
(2) force sensor, (3) metal rod, (4) linear drive and (5) aluminum rack.

The cylindrical long metal rods have a length of 1000 mm and a diameter of 40 mm.
Two types of metal rods were used: copper with an electrical conductivity of
σCu = 58.96 MS m−1 and aluminum alloy (AlMgSi) with σAl = 19.43 MS m−1 [3]. The
mean velocities of the copper rod were u = [54; 64; 76; 81] mm s−1. For the aluminum
rod, FL-measurements with only two velocities of u = [70; 81]mm s−1 were possible, due
to its lower conductivity and limitations related to the resolution of the present LFV
measurement system. Note, the metal rod starts its motion being d = 165 mm distant
from the center of the bulk HTS MS, whilst the distances between the surfaces of the
bulk HTS and the metal rod is z = 12 mm on both sides, as shown in Figure 4.1 a).

4.2.2 Force measurement set-up

A commercial load cell (Model PW6D, Hottinger Baldwin Messtechnik GmbH) com-
bined with an analogue measuring amplifier (SOEMER Messtechnik GmbH) was used
for force measurements. The force is measured in terms of a voltage with the accu-
racy class C3. In-situ force-voltage calibration was performed using E2 class certified
calibration masses of 5, 10, 20 and 100 g.
It should be stressed that the choice of this particular load cell instead of actual

EMFC was favored, because of its robustness, dead load limit and simple structure.
The later fact, indeed, was crucial for fast mounting the bulk HTS MS to the load cell
upon LFV measurements.
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4.2.3 Bulk HTS magnet system (MS)

The bulk HTS MS consists of two Y-Ba-Cu-O samples in the form of a cylindrical
disc with a diameter of 46 mm and a thickness of 16 mm, provided by ATZ® [86]. The
Y-Ba-Cu-O bulks were encapsulated in an aluminum holder and arranged opposite
each other with a distance of 64 mm between. The aluminum holders were wrapped
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Figure 4.2: a) The peak trapped magnetic flux density BT for each bulk HTS as a function
of distance (along the z-axis) with a maximum field of 1.08 T (left) and 0.8 T
(right) at the bulk surfaces. b) The magnetic flux density distribution BT (x, z)
in the bulk HTS MS gap. The drawn circle indicates the location of the metal
rod. Firstly, this was measured for each bulk HTS separately, then for the gap
between the two bulks in the HTS MS.

in styrofoam and radiation shielding tape, in order to reduce warming to RT. A plate
of fiberglass laminate (type G-10) with a thickness of 10 mm was used to prevent heat
transfer from the HTS MS to the load cell.
The bulk HTS MS must be magnetized before coupling with the force sensor. The

magnetization was carried out in the RT bore of 5TCFM using FC magnetization: at
first, an applied field of BA = 1.5 T was generated; then, the bulk HTS MS was cooled
down to 77 K. Cooling was achieved by immersing the entire HTS MS in an open
styrofoam container with LN2, which was refilled periodically, due to the evaporation
of LN2. Afterwards, BA was ramped down at a ramp rate of 0.092 T min−1. When BA
reduced to zero, the BT distribution was measured using the Hall mapping.
At first, BT was measured for each bulk HTS separately, then for the gap between
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the two magnetized bulks in the HTS MS. The trapped magnetic flux density1 BT for
each bulk HTS as a function of distance (along the z-axis) is shown in Figure 4.2 a).
A maximum field of 1.08 T (left) and 0.8 T (right) at the bulk surfaces was recorded
for each bulk HTS, respectively. The magnetic flux distribution BT (x, z) in the gap
of the bulk HTS MS is presented in Figure 4.2 b). It is qualitatively consistent with
data reported in [205–208], where a similar bulk HTS face-to-face arrangement was
employed. The relatively large gap between the bulk HTSs in this study was required
to enable the unobstructed motion of the metal rod through the bulk HTS MS (see
Figure 4.1). In future studies, this gap should be minimized for the proper utilization
of the magnetic field, since the maximum trapped magnetic flux density exponentially
decreases with increasing distance (cf. Figure 4.2 a). To achieve this, a novel cooling
system for the bulk HTS MS must be developed.

4.2.4 Lorentz Force Measurements

When the bulk HTS MS is coupled with the load cell and mounted to the LFV setup,
continuous cooling in a LN2 bath is not possible, because of the mass and volume
restriction of the load cell. Hence, it was necessary during the force measurements to
extract the bulk HTSMS from its LN2 bath. The bulk HTSMS holds a trapped field for
a specific period of time until it begins to warm up to RT due to the large heat capacity
and the sufficiently low thermal losses of this simple constructed bulk HTS MS. During
this time, however, the magnetized MS is used only for the LFV measurement with
one assigned velocity and require re-magnetization for other velocities. In addition, the
temperature of the system during LFV measurements was monitored with a Cernox®

sensor.
An example of the periodic rod motion L(t) for a velocity of u = 54 mm s−1 and

the corresponding time sequence of the Lorentz force measurements is depicted in
Figure 4.3 a). The experimental procedure is as follows:

1. [t0 = 0; t1 = 5 s] - extraction of the magnetized bulk HTS MS from the LN2 bath;

2. [t1 = 5 s; t2 = 23 s] - coupling with the force sensor and beginning motion of the
rod;

3. [t2 = 23 s; t3 = 500 s] - Lorentz force measurements;

4. [t3 = 500 s] - stopping the rod motion and decoupling of the bulk HTS MS.

1As indicated in Section 2.2.3, BT indicates the Bz - component of vector ~B.
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Figure 4.3:
a) An example of the periodic rod motion L(t) with a velocity of u = 54 mm s−1.
The time sequence of the experiments is indicated as follows: [t0 = 0; t1 = 5 s] -
extraction of the bulk HTS MS from the LN2 bath; [t1 = 5 s; t2 = 23 s] - coupling
with the force sensor and start of the motion of the rod; [t2 = 23 s; t3 = 500 s] -
LFV measurements, [t3 = 500 s] - stop of the motion and decoupling of the bulk
HTS MS.
b) Trapped field BT at a distance of 7 mm from the surface of one bulk HTS
as function of time t. The field was recorded by a Hall probe right after the
HTS MS was pulled out from LN2 container. In addition, the time dependent
temperature behavior of the load cell T (t) (see the arrow, different scales are
used) is included.
c) The Lorentz force FL as a function of time t which acts on HTS MS upon
repetitive movement of the metal rod.
Inset: Measured data for F (t) for the second period.
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Figure 4.3 b) shows the time dependent data for BT (t) and T (t) (see the arrow,
different scales are used) in the gap of the MS in the vicinity (z ≈ 25 mm, equivalent
to 7 mm from the bulk surface) of the one bulk HTS. BT (t) remains almost constant
up to 240 s, and then gradually reduces to zero due to warming at RT and flux creep.
Although, the direct temperature measurement of the bulk HTS during the FL(t)
experiments was not performed, its influence on the HTS bulks is indirectly included
in the measured BT (t) dependence. Still, in order to obtain a correct force signal, the
temperature of the load cell was measured: T (t) drops at the beginning from RT down
to 240 K and remains constant.
Figure 4.3 c) shows an example of the measured Lorentz force FL(t) for the pre-

scribed velocity of 54 mm s−1. FL(t) exhibits a periodic step function behavior with
anticipated attenuation due to the above effects. At the beginning, a steep decrease
of the amplitude of FL(t) is attributed to the temperature drop, while gradual atten-
uation is consistent with the change in BT (t). Obtaining experimental data under the
conditions of constant BT (t) and T (t) is important, since any changes strongly influ-
ence the FL measurements [16]. Therefore, the estimation of the Lorentz force was
calculated for the second period of metal rod motion (see Figure 4.3 c) and its inset),
where BT (t) and T (t) are nearly constant.
The detailed FL(t) response of the metal rod for the second period is presented

in the inset of Figure 4.3 c). Initially, the force is zero, when the metal rod is not
moving. Then the metal rod approaches the bulk HTS MS resulting in an increase in
FL. Stationary motion of the metal rod through the bulk HTS MS results in a plateau-
like FL(t). Afterwards, the metal rod reverses the direction, yielding an analogous but
negative force. Admittedly, some asymmetry between the positive and negative force
signals arises because of asymmetric up- and down-movement (i.e. along z-axis) and
off-axis alignment (i.e. along x-axis and/or y-axis), as was stressed in [209].

4.3 Numerical Model

Numerical modelling is a powerful tool to validate and interpret experimental results
and is useful for predicting the performance of bulk superconductors in practical appli-
cations [101]. To validate the experimental results in this work, a fully 3D model based
on the finite-element method (FEM) was implemented using the AC/DC module of
COMSOL Multiphysics® 5.3a. The geometry of the model is shown in Figure 4.4, with
the same dimensions as the experimental setup described in Section 4.2. The elec-
tromagnetic properties of the bulk HTS magnets and the metal rod are implemented
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Figure 4.4: a) Fully 3D model for the numerical simulation of the fundamental LFV proof-
of-concept. The bulk HTS magnets are assumed to be fully magnetized, carrying
a constant Jc corresponding to the trapped field measurements of each bulk (see
Figure 4.2 a). The movement of the metal rod through the magnets is simulated
by applying a velocity (Lorentz term) to the rod subdomain. b) Magnetic flux
density within the rod cross-section aligned with the center of the bulk HTS MS.
The calculated magnetic flux density is consistent with the experimental results
shown in Figure 4.2 b).

using the AC/DC module’s Magnetic and Electric Fields (mef) interface, satisfying
Ampere’s law:

∇× ~H = ~j (4.1)

and current conservation, such that

∇ ·~j = 0 (4.2)

The bulk HTS magnets are assumed to be fully magnetized, utilizing the ’External
Current Density’ node to assume a current density of constant Jc [210]. The value of
jc for each magnet is determined from the experimental trapped field measurements of
the bulks (see Figure 4.2 a), where BT,1 = 1.08 T and BT,2 = 0.8 T, and the following
equation based on the critical state model presented by Bean [42, 43] and application
of the Biot-Savart law [210] (see also Section 2.1.3.3):

BT = kµ0 jcR. (4.3)

In contrast to Eq. 2.9 this equation includes k, which is the correction factor to the
simple Bean (slab) approximation due to the finite thickness, t, of a disc-shaped bulk
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superconductor:

k = t
2R ln (R

t
+

√
1 + (R

t
)2) (4.4)

This results in an average, in-field Jc for the two bulks of jc,1 = 9.9× 107 A m−1 and
jc,2 = 7.33× 107 A m−1. The resultant magnetic flux density within the rod cross-
section across the center of the bulk HTS MS is shown in Figure 4.4 b). The calculated
magnetic flux density is consistent with the experimental results shown in Figure 4.2 b).
The movement of the metal rod through the magnets is simulated by applying

a "Velocity (Lorentz term)" condition to the metal rod sub-domain in COMSOL
Multiphysics®, such that

~J = σ( ~E + ~u× ~B) (4.5)

Finally, the force is calculated by

~FL =
∫
V
Fy · dV =

∫
V

(BxJz −BzJx) · dV (4.6)

The calculated force for the two rods for different rod velocities is compared with the
experiments in the following section (see Figure 4.5 a).

4.4 Results and Discussion

With the aim to scale the force and the velocity according to Eq. 3.1, a set of LFV mea-
surements with prescribed mean velocities u were carried out. In the case of the copper
rod, u = [54; 64; 76; 81] mm s−1, while for the aluminum rod: u = [70;81] mm s−1.
The results of the Lorentz force measurements obtained experimentally with those
calculated numerically are plotted against the velocity for the aluminum and copper
rods in Figure 4.5 a). FL is linearly dependent on the velocity and the electrical con-
ductivity of the moving metal rods, which is consistent with theory (see Eq. 3.1) [1].
Additionally, the FL values obtained with same-sized copper and aluminum rods for
one prescribed velocity, e.g. u = 81 mm s−1, scales as σCu/σAl. Unfortunately, in case
of aluminum, the induced Lorentz force approaches the resolution limit of the current
simple LFV setup and therefore can result in significant measurement errors.
Furthermore, it is shown that the experimental and simulation results agree well,

validating the numerical model (time independent, 3D) as a fast and accurate tool to
predict the LFV performance. Thus, the expected FL with respect to the electrical
conductivity of relevant fluids, e.g. solid metals, acids/base and glass melts can be
estimated in accordance with Eq. 3.1. It should be noted that the FL values are valid
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Figure 4.5: a) Lorentz Force FL as function of a velocity u for the copper and aluminum rods.
Open circles indicate the experimental results, and the solid circles indicate the
simulation results. The dashed lines indicate the linear fit to the experimental
results. b) Expected Lorentz forces as function of electrical conductivity for
relevant fluids, e.g. solid metals, acids/base and glass melts.

only for our particular design of the proof-of-principle LFV setup (see Figure 4.1 a) and
may vary for each individual system differently. In particular, the spatial distribution
of the magnetic flux density within the interaction volume of the moving conductor.
Figure 4.5 b) shows the expected FL as a function of the electrical conductivity. With
use of present proof-of-principle LFV setup (bulk HTS trap BT = 0.94 T, i.e. the
average of 1.08/0.8 T), the generated forces for weakly-conducting and slow-flowing
fluids are in the range of µN and below. In particular, FL ≈ 1× 10−6 N for acids/bases
and FL ≈ 1× 10−7 N for glass melts. It is immediately clear that the use of the bulk
HTS MS with higher trapped fields of 3 T and 5 T enhance the resultant FL over an
order of magnitude and thereby the FL-resolution. This provides evidence that the
bulk HTS MS is feasible and serves as a starting point for the future development of
a new LFV demonstrator with improved performance.

Still, for practical LFV application to electrolytes, a high-precision force measure-
ment in combination with the bulk HTSs is required.
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4.5 Chapter summary
This chapter verifies the use of a bulk HTS MS in LFV using an experimental setup,
where the Lorentz force, acting on the moving metal rod, is measured by a load cell
that carries the bulk HTS MS. The important conclusions are summarized as follows:

1) The obtained experimental and numerical simulation results agree well, exhibit-
ing the linear relationship between the Lorentz force and product of the electrical
conductivity and velocity, in accordance with LFV theory [1].

2) A simple, time-independent 3D numerical model has been developed as a fast and
accurate tool to predict the LFV performance. In contrast to the previous model
of the second Ph.D. generation, it determines jc using well-established Bean
formulation with the correction factor due to the finite thickness. Nevertheless,
dynamic model should be developed in the future that can consider more detailed
superconducting properties, including different magnetization process and flux
creep effects,

3) To measure velocity of low-conducting electrolytes with (σ ·u) = 10 S s−1, trapped
magnetic flux densities BT = 3 T is required.

Hence, these results serve as a starting point for the future development of a new
LFV system with improved performance.
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5 Design of new LFV system using
bulk HTS

5.1 Introduction and initial specifications

The previous chapter successfully verified the use of bulk HTS technology for LFV
applications using simplified LN2 cooling, but a designer of the improved LFV system
must to:

1) generate a stronger trapped field using bulk HTSs,

2) replace the used load cell with the actual FMS – Torsion Force Measurement
System (TFMS) [22].

3) integrate the bulk HTS technology with the TFMS considering appropriate bulk
HTS magnetization and cooling as well as complying with the TFMS require-
ments.

To achieve above requirements, the detailed specifications of bulk HTSs and the de-
veloped TFMS are considered in the next sections.

5.1.1 Bulk HTSs

Generating high trapped fields and being able to reproduce them (in repeated ex-
periments on the same sample without failure) was a vital next step in using bulks
HTS in LFV applications. Despite the long history of developing multi-tesla bulk
HTSs [21, 104, 144, 147] (see also Chapter2), it was required to explore the trapped-
field capability of bulk HTSs, refining their operating parameters as well as tailoring
it to the LFV needs.
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Commercial off-the-shelf Y-Ba-Cu-O bulk HTSs from ATZ® [86] were selected for
testing and final construction of the bulk HTS-based MS1. A series of experiments
were conducted at the NFMFL at Florida State University, Tallahassee, USA [102] to:

1) define the mechanical stability and reproducibility of used bulk HTSs and the
design required reinforcement,

2) determine the maximum trapped field, identifying the required applied magnetic
field BA and an operating temperature Top

Reinforcement. As introduced in Section 2.2.9, the mechanical stability, rather than
superconducting properties is a severe problem for realizing the practical high-field
bulk HTSs applications. Among reinforcement strategies [21, 104, 144, 153], an ex-
ternal encapsulation with a stainless steel (AISI 304) tube is a simple and forceful
technique [21, 104], whereas other approaches [144] require extra processing and higher
production costs.
Still, a record BT values were achieved once, but were not reproduced with the same

sample due to the failure during re-magnetization [21]. The failures were caused by
crystal defects (e.g grain boundaries, crystalline defects, voids, cavities, etc.) that
emerged in the bulk Y-Ba-Cu-O material during TSMG. These defects are randomly
distributed in the volume and can act as weak points during mechanical stresses. An-
other weak point, however, is imperfect mating between the bulk HTS side surface
and the steel tube wall [21, 211]. This implies that the steel tube reinforcement de-
mands a high-precision machining of the bulk HTS and steel tube to provide perfect
circumferential interface between them.
Furthermore, using AISI 304 steel has a complementary adverse effect: during first

and cycling cooling or upon welding AISI 304 steel can transform into a martensitic
phase, which is ferromagnetic [99]. For high-field applications therefore, it is advanta-
geous to use AISI 3162 steel, since it is less sensitive to ferromagnetic transition during
cooling and welding [99]. However, AISI 316 steel is less readily available and is hard
to machine.
An aluminum alloy is an alternative choice when machinability is a concern. Fur-

thermore, it has even lower magnetic susceptibility (i.e. χ ≈ 1× 10−5 at 77 K [99])
than AISI 304/316 steels (cf. Table 5.3). The thermal expansion coefficient of alu-
minum is comparable with AISI 304/316 steel, although it has lower yield strength.

1Provided bulk HTSs were grown using TSMGmethod and typically exhibitBT = 1.1 T at 77 K [118].
2In Germany 316 steel has the material number (Werkstoffnummer) 1.4401.
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Admittedly, aluminum has only about one third of the weight of stainless steel, which
is a clear benefit for the light bulk HTS MS design, in particular, for those to be used
in LFV.

Reinforcement experiments. Using the same measurement procedure, separate mea-
surements of trapped fields were carried out on an individual Y-Ba-Cu-O bulk HTS,
reinforced with aluminum (sample-AL) and steel (sample-SS) tubes, respectively. Each
sample was encapsulated within the corresponding seamless metal tube with a wall
thickness of 2 mm using shrink-fitting. Both tubes were commercially available, but
were re-machined to provide precise inner diameter tolerance (up to 10 µm). Then, the
tubes were heated to the Tshrink allowing samples to fit inside. Table 5.1 summarizes
further geometrical and physical parameters of both samples.

Table 5.1: Geometrical and physical parameters of the bulk HTS and and reinforcing tubes.
sample-AL sample-SS

Y-Ba-Cu-O
Diameter (mm) 28.08 28.09
Thickness (mm) 15.01 19.40
BT at 77 K (T) 1.10 1.13

Reinforcement tube
Material aluminum stainless steel
Alloying EN AW 7075 AISI 316
Inner diameter (mm) 28.01 28.03
Tube thickness (mm) 1.60 2.00

Shrink-fitting
Tshrink (◦C) 100 300
Expansion (mm) /RT – Tshrink 0.06 0.10
Compression
σ (T=4 K) (MPa) - 160 - 650

The experimental procedure involved the FC magnetization, applying BA with suc-
cessive cooling to an operating temperature Top < Tc (details about BA and Top are
denoted in Figure 5.1). To measure the magnetic field and temperature, both samples
were equipped with an array of Hall sensors (HGT-2101, Lakeshore®)3 and one tem-
perature sensor (CX-1030-SD, Cernox®/Lakeshore®), as shown in the corresponding
inserts of Figure 5.1 a)-b), respectively. To stabilize the temperature, a Manganin

3Sample-SS has five Hall probes and was separated from the sample surface with a G-10 2.5-mm-thin
plate, while Sample-Al has only three Hall sensors, but is glued with Stycast® epoxy directly at
the surface.
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wire-wound heater radially enveloped the sample. The ramp rate during the BA ramp
up was 0.3 T min−1, whereas during ramp down it was 0.1 T min−1.
Figure 5.1 compares obtained BT -distributions for sample-SS and sample-Al, respec-

tively. Obtained trapped fields in both cases achieved peak values of about 6 T and
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Figure 5.1: The trapped magnetic flux density BT distributions of the Y-Ba-Cu-O bulk HTS
sample followed FC magnetization withBA = [5 T; 9 T], which was reinforced: a)
with AISI316 steel tube, b) EN AW 7075 aluminum tube. Insert: corresponding
photographs of the sample with Hall probes and Cernox® sensors.

demonstrated clearly that encapsulation with either aluminum or stainless steel tube is
equally effective reinforcement for this magnetization parameters. Nonetheless, mea-
sured BT exhibited plane profiles for both samples, suggesting BT performance can be
markedly enhanced when lowering and/or applying higher BA.

Maximum BT . To realize a complete flux-trapping capability, measurement on the
sample-AL was continued applying higher BA. Separate trapped field measurements
using different FC (BA; Top) were conducted as follows:

(1) BA = 7 T, Top = 40 K,

(2) BA = 7 T, Top = 35 K,

(3) BA = 9 T, Top = 25 K,

As a result, Figure 5.2 a) shows that the BT -distribution evolution followed men-
tioned magnetization sequences. The maximum trapped field of 7.7 T was achieved
withBA = 9 T at Top = 25 K. However, during successive magnetization withBA = 13 T,
the abrupt temperature spike ∆ T = 30 K occurred upon removing BA. It caused the
corresponding drop of the measured field at 12 T, as shown in Figure 5.2 b). Such
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Figure 5.2: a) The trapped magnetic flux density BT evolution of the Y-Ba-Cu-O bulk HTS
sample reinforced with EN AW 7075 aluminum tube followed FC magnetization
with [BA, Top] = [(7 T, 40 K); (7 T, 35 K); (9 T, 25 K)]. b) An attempt to trap
higher BT followed the [BA, Top] = [12 T, 17 K] showing measured magnetic field
Bmeas as a function of BA for three Hall probes mounted at the surface: solid
line - (2) middle Hall probe, dotted lines (1,3) peripheral Hall probes. Upon BA
ramping down, a drop of the measured field occurred at Bj1 = 12 T. c) Measured
Top as a function of BA shows an abrupt temperature spike ∆T = 30 K occurred
simultaneously with the Bj1.

a scenario is the hallmark of the flux jumping phenomenon [21, 147] (see also Sec-
tion 2.2.9).
In order to identify whether this flux jump had any aftermath, the sample was

immediately re-magnetized using aBA = 12 T at Top = 16 K, but the flux jump occurred
again at about 1 T. The visual inspection that followed did not indicate any obvious
damage.

Summary. The used commercially available Y-Ba-Cu-O bulk HTSs with relatively
simple reinforcement can trap the magnetic field up to 7.7 T at its surface at Top = 25 K.
Higher trapped fields were limited by the mechanical and thermo-magnetic stability. In
comparison, the Y-Ba-Cu-O samples that are grown according to the optimal thermo-
dynamic approach [212] and exclude any post-treatment for mechanical stabilization
were able to trap BT = 5 T. The record BT = 11.2 T was achieved only once (but not
reproduced) for specially processed Y-Ba-Cu-O bulk HTSs (e.g. doped with Zn and
alloyed with silver) [20].
The encapsulation with either an aluminum or stainless steel tube is an equally

effective reinforcement. The utilized bulk HTSs were able to generate the reproducible
field in the range of 6 T to 7 T. However, operating temperature Top = 20-50 K must

Dissertation Oleksii Vakaliuk



72 5 Design of new LFV system using bulk HTS

be achieved.

5.1.2 Torsion Force Measurement System (TFMS)

During the second RTG generation, the developed FMS – DEMFC – reached the force
resolution of 20 nN. However, due to mass and construction limitations, it cannot be
integrated with bulk HTS MS (cf. Section 3.3.5). Therefore, the third RTG generation
aimed to further develop the FMS that:

1) enables the force resolution of 1 nN,

2) and is compatible with the bulk HTS technology.

A general strategy to fulfill the stated aim was to measure force using a torsion balance
technique. The first step was to develop a Torsion Force Measurement System (TFMS),
which can achieve the force resolution of 1 nN at RT.

Initial design and working principle. The TFMS design and technical aspects were
proposed in [213] and were developed in a parallel Ph.D. project by Na Yan [22].
Figure 5.3 a) shows the CAD-model of the TFMS adopted for LFV measurements.

It consists of (1) MS (e.g. Halbach PMs), (2) plane-wheel, (3) dummy counterweight,
(4) flexure bearing, (5) conical couplings, (6) position sensor, (7) base plate, and
(8) channel.
For LFV measurements, the Lorentz force (shown as FL) acts on the MS that is

mounted onto the plane-wheel. This causes the wheel to rotate, which is then detected
by the position sensor, the working principle of which will be presented in Section 5.2.4.

Specifications. The TFMS has a rotating structure, where the plane-wheel carries
MS and dummy counterweight. The counterweight has similar geometry and identical
mass as the MS. Furthermore, the arm length of the dummy counterweight L1 is equal
to the MS arm length L2, as schematically indicated in Figure 5.3b). It is expressed
as:

m1 · L1 = m2 · L2, (5.1)

where m1 and L1 are mass and arm length of dummy counter weight, whereas m2 and
L2 - measures of the MS. Eq. 5.1 claims that TFMS’s center of gravity goes through
the rotational axis (y-axis). In this sense, TFMS is insensitive against the tilt. It is
drastically different from the weighting cells (e.g. EMFC, cf. Section 3.3.2), where
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Figure 5.3: a) Proposed CAD-model of the TFMS - third generation of FMS - and its ar-
rangement at the channel. It consists of (1) MS (e.g. Halbach PMs), (2) plane-
wheel, (3) dummy counterweight, (4) flexure bearing, (5) conical couplings,
(6) position sensor, (7) base plate, and (8) channel. b) Front view of TFMS,
where length of lever arms as well as mass for dummy counterweight and MS
are indicated. CAD-model is adopted by permission of Na Yan [22].

tilting effects in a combination with the dead load induce significant measurement
errors [22, 214].

Geometrical parameters (i.e. arm length of L1,2 = 180 mm) and choice of the bearing
were determined to provide the low value of the TFMS effective stiffness, and to achieve
desired force resolution of 1 nN [22]. Thus, a commercial flexure bearing (C-Flex pivot
bearing, D-10) [215] with the stiffness of 1.17× 10−2 N m rad−1 was selected. Further
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details of the flexture bearing will be discussed later in Section 5.2.4. Furthermore,
this bearing was encapsulated within (5) conical couplings to avoid possible eccentric
overloads and ensure the rotation around the y-axis without friction, inclination, and
misalignment.
The flexure bearing can sustain the maximum axial (along y axis) load of about

10 kg (101 N), according to its specifications [215]. This implies that the mass limit
for carrying the MS is reduced even further because besides the MS the bearing also
carries the dummy counterweight and plane-wheel. Ultimately, the maximum mass
for carrying the MS remained in the range of 1-3 kg [22].
Conclusively, TFMS was designed and manufactured in a parallel project [22]. The

TFMS feasibility and its components (e.g. positioning sensor) was demonstrated
achieving the force resolution of 2 nN under laboratory conditions at RT and with-
out magnetic field influence.

5.2 Super-LOFOS concept

Despite the developed TFMS extends a force resolution, the maximum mass (m < 3 kg)
for carrying the MS is still limited [22]. The bulk HTS-based MS, on the contrary,
requires a heavyweight vacuum cryostat4 to ensure a practical, robust and long-term
operation.

5.2.1 Conflict of mass

In order to integrate the bulk HTS technology with the TFMS, a novel concept –
integrated cooling – was proposed and developed. To achieve integrated cooling, the
standard bulk HTS (which weighs 150-500 g) is mounted to the TFMS and both are
placed within a cryostat. In this case, the bulk HTS and TFMS are cooled and
magnetized together.
The integrated cooling is a principally different to the previous concept pursued

by the second RTG generation (see Section 3.3.5), where the bulk HTS and FMS
are considered as independent sub-systems, and solves the problem of "conflict of
mass", enabling the cooling and retaining the bulk HTS at temperatures below 77 K.
Hereafter, the integrated cooling concept is referred to as a Superconducting High-
precision Lorentz Force Measurement System (Super-LOFOS).

4As discussed in Section 2.2.2, a vacuum cryostat for the bulk HTS weighs about 10 kg, due to
heavyweight vacuum vessel and a cooling device (see also Table 2.1).
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Figure 5.4: The concept of a new, improved LFV system in the vicinity of the electrolyte
channel.

The idea of Super-LOFOS was patented by the author et al [216] and its concept is
presented in Figure 5.4. Instead of Halbach MS, the bulk HTS is attached to the one
side of the TFMS lever, while a counterweight, whose mass is equal to the mass of the
bulk HTS with comparable geometrical dimensions, is attached on the opposite side.
Both systems, bulk HTS and TFMS, are placed in the integrated cryostat, cooled and
magnetized simultaneously. Once magnetized, the bulk HTS acts as the TFM, whose
BT is arranged transversely to the measuring channel. Then, force measurements are
performed in the same manner as described in the previous section.
However, in the case of integrated cooling (when the bulk HTS is attached to the

sTFMS) the solid conductive cooling presents a challenge: A direct thermal connection
of the bulk HTS with a cold head of a cryocooler or cryogenic liquid tank contradicts
with the working principle of sTFMS (i.e. restriction of the rotation) and required an
alternative thermal coupling.

5.2.2 Cooling Super-LOFOS: solid-plus-gas conduction

To alleviate the cooling challenge, the solid conductive cooling (cf. Section 2.2.7) was
modified to include a gas conduction, which is an effective method to refrigerate the
irregularly shaped devices [99]. In this case, TFMS with bulk HTS was placed in a
closed single-walled vessel which was filled with thermally-conducting exchange gas.
The vessel was then thermally anchored to the cold surface of the cryogenic liquid
tank, thereby forming a solid-plus-gas conduction.
Alternatively to the cryogenic liquid tank, cooling with cryocoolers was also con-
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sidered. However, cryocoolers introduce vibrations which are harmful for the force
measurements in the nano-newton range. Furthermore, cryocoolers might operate
improperly in high magnetic field (cf. Section 2.2.7.2). Thus, the solid-plus-gas con-
duction for the LFV system used the cryogenic liquid for refrigeration.
The solid-plus-gas conduction of Super-LOFOS was realized as a modular structure,

which includes:

1) a cooling cryostat storing a liquid coolant, for example LHe,

2) a measuring cryostat housing the HTS and the TFMS.

The simplified schematic of such a modular structure is displayed in Figure 5.5. The
cooling cryostat represents the cryogenic liquid tank (cf. Section 2.2.7) with the LHe,
which is thermally joined with the measuring cryostat via the solid conduction. The
measuring cryostat contains the bulk HTS/sTFMS and is filled with an exchange gas
to provide contactless cooling of the bulk HTS. Both cryostats are placed in a vacuum
to ensure thermal isolation.
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Figure 5.5: The concept of a solid-plus-gas conduction for Super-LOFOS, which includes
cooling cryostat with LHe and measuring cryostat with an exchange gas.

5.2.3 Magnetizing Super-LOFOS

A superconducting magnet (5TCFM) [202] available at TU Ilmenau was utilized for the
FC/ZFC magnetization of the bulk HTS. Figure 5.6 a) shows the 5TCFM, which has
the room-temperature bore of 300 mm in diameter and 400 mm in length. The 5TCFM
is capable of providing a maximum field of 5 T in the middle of the bore meaning that
the maximum trapped field of Super-LOFOS can reach the value of nearly the same
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or slightly lower than BT ≈ BA = 5 T. This value is below the maximum trapping
capacity (i.e. BT = 7.7 T, Section 5.1.1) of used bulk HTS and therefore allows for
a robust and reliable generation of the magnetic field for the LFV. Furthermore, the
bulk HTS of a cylindrical form can be embedded with the aluminum tube, thereby
reinforcing it and serving as the sample holder.
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y z 

z 

r 

b) a) 

Bore: 
Ø  = 300  mm 
 L  = 400  mm 
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zBA 

rFL,HTS zF ∇B,fb 
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200  mm 

Figure 5.6: a) The 5TCFM superconducting magnet [202], which has the room-temperature
bore of 300 mm in diameter and 400 mm in length and provides the maximum
field of 5 T in the middle of the bore. b) The schematic of (2) the magnetic
bore in the r-z plane, where the (1) bulk HTS integrated with the (3) TFMS
is placed in the middle of the bore. During the magnetization, electromagnetic
forces FL,HTS in the radial direction are exerted on the (1) bulk HTS, and
magnetic vector gradient forces F∇B,fb are exerted on the (4) flexure bearing in
the z-direction.

During magnetization, the TFMS is placed in the 5TFCM bore, as shown in Fig-
ure 5.6 b). Consequently, following magnetic forces are exerted:

1) Lorentz force ~FL,HTS on the bulk HTS at T < Tc
5,

2) magnetic vector gradient force ~F∇B,fb on the flexure bearing, since it is made of
ferromagnetic material [215].

5For the case T>Tc, the magnetic gradient force ~F∇B,HT S is neglected due to the low magnetic
susceptibility of the Y-Ba-Cu-O bulk HTS due to the low gradient of the magnetic field BA in the
middle of the room temperature bore.
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Bulk HTS Lorentz force. The Lorentz forces acting on bulk HTS at T < Tc can be
calculated as:

~FL,HTS = (~jc × ~BA)V, (5.2)

where ~jc is the induced critical current density in the bulk HTS, ~BA is the applied
magnetic flux density, and the V is the volume of the bulk HTS.
To estimate the Lorentz force, it was assumed that the bulk HTS is located within the

homogeneously applied magnetic flux density ~BA (i.e. BA = zBA). It was furthermore
assumed that the bulk HTS current density θjc is determined by Eq. 2.9 (according
to the Bean model, see Section 2.1.3.3). In this case, the maximum Lorentz force has
only the radial component and is expressed as:

rFL,HTS = θjc · zBA · V . (5.3)

Using Eq. 5.3, the calculated rFL,HTS as function of the applied magnetic field BA are
presented in Table 5.2 for the bulk HTS with the diameter of 48 mm and the thickness
of 15 mm.

Table 5.2: Calculated Lorentz forces acting on the utilized bulk HTS with the diameter of
48 mm and the thickness of 15 mm during magnetization at T < Tc.

BA (T) θjc (A m−2) rFL,HTS (N)

1 8.5× 107 2.3× 103

2 1.7× 108 9.2× 103

3 2.5× 108 2.1× 104

4 3.4× 108 3.7× 104

5 4.2× 108 5.7× 104

Magnetic vector gradient force. Magnetic vector gradient forces are exerted on the
flexure bearing (C-Flex pivot bearing, D-10 [215]), since it is made of the martensitic
AISI 420 stainless steel. The D-10 flexure bearing has a mass of mfb = 1 g [215] and
its geometrical parameters are shown in Figure 5.7. The AISI 420 stainless steel is
highly ferromagnetic and has a magnetic volume susceptibility of χ = 950 [217].
During magnetization, the flexure bearing – the key TFMS component – is located

in a part of the room-temperature 5TFCM bore, where the applied magnetic field
BA is inhomogenous [218] (see Figure 5.6). This, in turn, leads to a magnetic vector
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Figure 5.7: Exploded CAD model of the flexure bearing (C-Flex pivot bearing, D-10) [215]
with its main parameters. Adopted from [22].

gradient force ~F∇B,fb acting on the flexure bearing:

~F∇B,fb = mfb (χ
ρ

) (( ~B · ∇) ~B)
µ0

, (5.4)

where mfb is the flexure bearing mass, χ is the volume magnetic susceptibility and ρ is
the density of the material, (( ~B ·∇) ~B) is the magnetic vector gradient of the magnetic
field, ~B is the magnetic flux density, and µ0 is the permeability of free space.
To estimate the magnetic vector gradient forces, it is assumed that the bulk HTS is

located exactly in the middle of the 5TCFM bore (as delineated in Figure 5.6), whereas
the flexure bearing is located concentrically (at the z-axis), but 135 mm distant from
the middle of the magnetic bore. For this situation, the magnetic vector gradient has
only a z-component and can be approximated:

F∇B,fb = zF∇B,fb. (5.5)

The magnetic gradient force zF∇B,fb acting on the utilized AISI 420 steel flexure
bearing was then calculated using the available data for the magnetic vector gradi-
ent [218, 219] for this particular 5TCFM when 5 T is applied6. The result is presented
in Table 5.3, which also summarizes the data for magnetic susceptibility and material
density. In order to reduce zF∇B,fb acting on the flexure bearing, the flexure bearing
must be manufactured from an alternative material with a low magnetic susceptibility
(χ << 1 ), e.g. austenitic steel or titanium (see Table 5.3). The manufacture using
low-magnetic material, however, will change the flexure bearing’s primary parameters,

6For this particular 5TCFM when 5 T is applied, the z((B ·∇) B)/µ0 = 56.01 N cm−3 was determined
using experimental and numerical simulations in [218, 219].
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Table 5.3: Magnetic vector gradient forces acting on the flexure bearing during 5 T magne-
tization.

Material χ at 293 K ρ, (kg m−3) zF∇B,fb,(N)

used flexure bearing
AISI 420 steel 9.50× 102 [217] 7.80× 103 [215] 6.82× 103

alternative material for flexure bearing
AISI 304 steel 2.70× 10−3 [99] 7.86× 103 [99] 1.92× 10−2

AISI 316 steel 3.00× 10−3 [99] 7.85× 103 [99] 2.14× 10−2

Titanium 1.78× 10−4 [99] 4.00× 103 [99] 2.22× 10−3

such as stiffness, rotation angle, and load [215]. Therefore, further investigations of
the non-magnetic flexure bearing are being considered for future Super-LOFOS devel-
opment.

Summary. By comparing the results presented in Table 5.2 and Table 5.3, both mag-
netic forces xFL,HTS and zF∇B,fb exceed the bearing axial load capacity of 101.1 N [215]
and can lead to damage or TFMS functional restriction. Therefore, it was necessary to
develop a safety inset of the flexure bearing, which prevents the flexure bearing from
overloading during magnetization
In addition, the volume and surface area of the developed TFMS7 must both be

minimized. Otherwise, it would greatly contribute to the cryogenic cryogenic system
heat load.
Thus, the TFMS was re-designed and scaled down from the wheel-plane struc-

ture to the lever-type structure. The scaled-down Torsion Force Measurement Sys-
tem (sTFMS) retained its key components and the prescribed arm length. The sTFMS
design was accompanied by frequent and direct communications between two projects:
the current project related to the Super-LOFOS development and the parallel project
related to the TFMS development [22].

7The rotation part of the TFMS has a diameter of about 250 mm.
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5.2.4 TFMS re-design

When the sTFMS was conceptualized due to issues discussed in Section 5.2.3, its
manufacture and calibration were performed by Na Yan [22]. This allowed the par-
allel sTFMS development along with the development of Super-LOFOS vacuum and
cryogenic components.
Figure 5.8 shows the CAD model and photograph of a new sTFMS, which consists of

(1) bulk HTS and its holder, (2) lever, (3) counterweight, (4) flexure bearing, (5) conical

1 2 3 4 5 6 8 7 

a) 

b) 

9 
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Figure 5.8: The scaled-down Torsion Force Measurement System (sTFMS): a) CAD model
and b) photograph. It consists of (1) bulk HTS and its holder, (2) lever,
(3) counterweight, (4) flexure bearing, (5) conical couplings, (6) positioning sen-
sor, (7) support platform, (8) safety limiter for the flexure bearing and (9) screws
for fixation. The design, manufacture, and calibration of the sTFMS were done
by Na Yan [22].
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couplings, (6) positioning sensor, (7) support platform, (8) safety limiter for the flexure
bearing and (9) screws for fixation.
The new sTFMS, similar to the previous TFMS, consists of machined components

and commercially available off-the-shelf components (i.e. flexure bearing, positioning
sensor, and bulk HTS). The former components are made of the aluminum alloy
(EN AW 7075), because of the ease of machining. Another important argument for
aluminum was its low magnetic susceptibility, which is a strict demand in high-field
applications. Also, manufacturing the mechanically complex structure of sTFMS from
one material negates a problem related to the difference in thermal contraction upon
cooling.

Safety inset of the flexure bearing. In order to secure the bearing from damage due
to the magnetic forces (cf. Section 5.2.3), sTFMS was equipped with the (8) safety
limiters, which are designed to separate the flexure bearing from the lever. Figure 5.9
sketches the sTFMS and explains the action of safety limiters. When sTFMS is in
the measuring position (see Figure 5.9 a) the (2) lever is settled on the (4) bearing
and is mechanically decoupled from the (8) safety limiter. In this case, the (2) lever
rotates freely around the x-axis according to the expected sTFMS operation. However,
when sTFMS is inverted 180° around the z-axis (see Figure 5.9 b), the (2) lever is
mechanically anchored via the (8) safety limiter and is separated from the bearing.
In this position, the flexure bearing is secured from overloading due to the magnetic
forces and can be safely magnetized.
Summarizing, the bearing safety inset during magnetization implies that the sTFMS

has to be arranged 0° and 180° regarding the z-axis:

a) measuring mode: the sTFMS is in the initial position enabling the free rotation
of the sTFMS lever (cf. Figure 5.9 a),

b) magnetization mode: the sTFMS is inverted 180° related to its initial position to
secure the flexure bearing from damage (cf. Figure 5.9 b).
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Figure 5.9: The the sketch of the flexure bearing safety inset. a) measuring mode: the
sTFMS is in the initial position enabling the free sTFMS rotation. b) magne-
tization mode: the sTFMS is inverted on 180° related to its initial position to
secure flexure bearing from damage. Labeling of the components correspond
with the CAD-model (cf. Figure 5.8).

Positioning sensor. An optical positioning sensor is a compact solution to measure
the position with the high precision in state-of-the-art torsion balances. Figure 5.10
shows the optical positioning sensor used in sTFMS. The position sensor consists of an
(6.1) infrared light-emitting diode (LED), (6.2) two-segment differential photodiode,
(6.3) aluminum frame, which hold both diodes, and (6.4) aperture, which is fixed to
the sTFMS counterweight.
The LED and the differential photodiode are arranged face-to-face to each other and

are mechanically fixed at a distance of 2 mm. The LED is excited by applying an exci-
tation current Iex = 10 mA, thereby illuminating the differential photodiode through
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Figure 5.10: Position sensor of the TFMS consists of (6.1) infrared LED, (6.2) two-segment
differential photodiode, (6.3) aluminum frame, which hold both diodes, and
(6.4) aperture, which is fixed to the TFMS counterweight.

the movable aperture, which is fixed on the counterweight of sTFMS. The output
voltage ∆Vph of the differential photodiode is then proportional to the displacement of
the aperture.
In the case of the sTFMS, the displacement of the aperture is the rotation of the

(2) lever around its center of gravity, as sketched in Figure 5.8 a). Upon the sTFMS
operation to measure forces, one measures an output voltage ∆Vph of the positioning
sensor, which represents the rotation angle θ8. The rotation angle θ is expected to
be calibrated into the force F . The F– θ – ∆Vph calibration is performed using the
controllable step-wise rotation and actuating applied force Fa in the horizontal plane
(cf. Figure 5.8, y − z plane). Further calibration details are available in [22].
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Figure 5.11: Example of an oscillating and damped ∆Vph signal.

8The maximum rotation angle of θmax = ±15° enables force measurements in µN range [22].
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When the sTFMS lever is perturbed (e.g. by applying a force), the sTFMS lever
starts to rotate with the subsequent attenuation. This resembles a second-order mass-
spring-damper and is reflected as a damped oscillating ∆Vph signal, see Figure 5.11.

5.2.5 Super-LOFOS requirements

This section paid attention to the design of a novel LFV system using bulk HTS -
Super-LOFOS addressing the operational and technical issues, such as:

1) bulk HTS specifications,

2) sTFMS specifications,

3) cooling below 77 K,

4) magnetization,

5) integration as a holistic system.

As a result, Table 5.4 summarizes Super-LOFOS requirements. In addition, it is
also desired that the Super-LOFOS operates for 2 h, is portable (m < 50 kg), and with
a design that is flexible enough to adjust to any available facility or to any future
modifications.

Table 5.4: Summary of the requirements for the Super-LOFOS based on bulk HTSs and
sTFMS.

Requirements Metric

General Operation duration > 2 h
Portable < 50 kg
Easy maintenance/handling

bulk HTS Commercial Y-Ba-Cu-O
Reinforcement encapsulation in

aluminum tube
Maximum field generation BT = 5 T
Magnetization bore Ø = 300 mm
FC/ZFC magnetization BA < 5 T
LN2 pre-cooling Top = 77 K
LHe cooling Top = 50 K

developed sTFMS Force resolution 1 nN
T -range operation T < 300 K
B-range operation B < 5 T
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5.3 Super-LOFOS design and manufacture issues
The Super-LOFOS design started with the solid-plus-gas concept, followed by the ma-
terials/components selection, and mechanical and manufacture considerations. Sec-
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Figure 5.12: a) The exploded CAD model of the Super-LOFOS comprised of (1) cooling
cryostat, (2) Viton® O-ring, (3) flange adapter, (4) aluminum thermal link, (5)
copper seals, (6) He-line, (7) blind flange (8) sTFMS, (9) bulk HTS, (10) cryo-
genic force cell, (11) mechanical support and (12) outer vacuum vessel. b) Pho-
tograph of the assembled Super-LOFOS, which is fixed to the (13) transport
table with (16) four swivel feet and fastened with the (14) security clamp and
is firmly fixed to an (15) optical slab.
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tion 5.3.1 outlines the structure of the Super-LOFOS, while Sections 5.3.2-5.3.3 de-
scribe its main components in detail.

5.3.1 Super-LOFOS outline

Figure 5.12 a) shows the exploded CAD model of Super-LOFOS that includes (1) cool-
ing cryostat, (2) Viton® O-ring, (3) flange adapter, (4) aluminum thermal link, (5) cop-
per seals, (6) He-line, (7) blind flange (8) sTFMS, (9) bulk HTS, (10) cryogenic force
cell, (11) mechanical support, and (12) outer vacuum vessel.
Retaining the previous mounting system, Super-LOFOS was fixed at the (13) trans-

port table as shown in Figure 5.12 b). The mounting here means that Super-LOFOS
is fastened with the (14) security clamp and is firmly fixed to an (15) optical slab. The
hight of the transport table can be regulated, whereas the level is adjustable using
(16) four swivel feet.

5.3.2 Cooling cryostat

One previously mentioned LHe/LN2 bath cryostat, used in the previous studies on
bulk HTS for LFV (cf. Section 3.3.5), was utilized as the cooling cryostat for the
Super-LOFOS. This cryostat was designed and manufactured by ILK Dresden [204]
and is shown in Figure 5.13. It consists of (1) the outer vessel for vacuum isolation,
(2) the inner vessel containing cryogenic liquid (V = 1.5 l), (3) the multi layer isolation,
(4) three ISO-KF ("Kleinflansch") vacuum ports, (5) the filling line, and (6) the blind
flange.
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Figure 5.13: Front a) and Rear view b) of the Cooling Cryostat consisting of (1) outer
vessel for vacuum shroud, (2) inner vessel containing cryogenic liquid
(V = 1.5 l), (3) multilayer isolation, (4) filling line, (5) three CF ports
and (6) front blind flange.
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The blind flange is a ConFlat® (CF) flange [220]. Two of three ISO-KF ("Kleinflan-
sch") [221] vacuum ports are used for a vacuum pumping and electrical feedthrough,
while one remained redundant. Both types of flanges have a sexless design, whereas
their sizes are determined by the nominal internal diameter of the largest tube that
can be welded to a bored flange [220]9. CF flanges operate in a wider pressure range
and, more importantly, are qualified for cryogenic temperatures [99, 220, 221].
Arguments for accommodating the LHe/LN2 cryostat into the Super-LOFOS in-

cluded:

1) opportunity of cooling down to 5 K using LHe,

2) possibility of thermal joining with measuring cryostat,

3) available redundant CF port allowing for the exchange gas supply and auxiliary
wire leads,

4) savings on manufacture time and cost implications.

The LHe/LN2 cryostat was docked on to the measuring cryostat. The vacuum-tight
connection was possible via the CF flange, while thermal connection was done via
the solid conduction. To realize these, the (3) flange adapter and the (4) aluminum
thermal link (see Figure 5.12) were deployed. Additionally, the redundant CF port
allowed for an exchange gas supply using a thin tube, which was threaded through the
vacuum isolation.
Since the LHe/LN2 cryostat cooling capacity10 was not provided by the manufac-

turer [204] and was not investigated in previous studies, the latent heat vaporization Lv
of a relevant cryogenic liquid (cf. Table 2.3) at its nominal atmospheric boiling temper-
ature was considered as cooling cryostat capacity. In this case, the LHe/LN2 cryostat
cooling capacity depends on the cryogenic liquid, whereas the duration is restricted
to the volume of the inner vessel (i.e. 1.5 l [204]). Fortunately, the cooling capacity
can be significantly magnified by connecting the LHe/LN2 cryostat to a storage dewar
(e.g. 100 l), thereby realizing the so-called liquid-flow refrigeration system [99, 204].

9In Europe, the nominal internal diameter is represented in mm with prefixing DN. The principal
difference of KF and CF flanges are their gaskets: KF uses an elastomeric O - ring (e.g. rubber
or Viton®), while CF uses soft metal gaskets (e.g. indium or OFHC®).

10Here, the LHe/LN2 cooling cryostat capacity is the measure of a cooling cryostat’s ability to remove
heat.
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5.3.3 Measuring cryostat

As outlined in Figure 5.12, the measuring cryostat consists of the (9) bulk HTS
mounted on the (8) sTFMS, the (10) cryogenic force cell and (12) outer vacuum ves-
sel. The measuring cryostat layout is defined by the sTFMS dimensions, since the
given length of sTFMS lever is crucial for the force measurements (cf. Section 5.1.2).
Further important considerations for the measuring cryostat are the thermal sizing
(heat load), the mechanical sizing, the materials/components selection, manufacture
compatible with the imposed restrictions (i.e. magnet bore Ø = 300 mm), as well as
vacuum and cryogenic issues.
Before presenting the main components of the measuring cryostat, the short note on

heat transfer relevant at cryogenic temperatures and cryostat design is surveyed and
will be used in later sections.

Heat transfer at cryogenic temperatures. The heat transfer relevant for the mea-
suring cryostat include radiative heat, a conduction through gases/vacuum, and a solid
conduction,
Radiative heat transfer. The radiative heat transfer is the major contribution to the

cryostat heat load [99] and is calculated using an idealized formula [122]:

Q̇r = ε

(N + 1)σsbA(T 4
RT − T 4

op), (5.6)

where σsb is the Stefan–Boltzmann constant, A is the surface area, TRT and Top are
the RT and operating temperature, respectively, ε is a factor for the reflectivity and
geometry of the material, and N is the number of intermediate surfaces between the
RT and Top.
In practice, a multilayer insulation (MLI)11 is used realizing a full potential of Eq. 5.6,

thereby providing effective radiation shielding [122]. In this case, the MLI manufac-
turer characterizes an MLI performance by a given heat flow density q̇MLI , which
depends on the number of layers N , temperature, and the level of vacuum.
Conduction through gases/vacuum. There are two different regimes of heat con-

duction through gas which depend on pressure of the gas [99]. The first one is
called hydrodynamic regime and is applied for the gas pressures near the atmosphere
(p ≈ 1× 103 mbar). The hydrodynamic regime is utilized in the solid-and-gas con-
duction concept (cf. Section 5.2.2) providing contactless bulk HTS cooling via the
11Multilayer insulation is a stack of a reflective films consisting of a µm-thin vapor-depositing layer

of aluminum separated by the insulating Mylar® or Kapton® interlayers [122].
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exchange gas. The gas heat conduction in this regime is estimated as:

Q̇g = λA∆T
d

, (5.7)

where A is surface area of two plates where gas is enclosed, d is separation between
plates, ∆T is temperature difference, whereas λ is the mean value of the temperature-
dependent gas thermal conductivity.
Another regime is called free-molecular regime and is applied to the low pressure. In

this regime, the gas heat conduction is independent of the gas heat conductivity and
the separation between two surfaces [99], but depends on the gas species (for gaseous
helium (GHe) k = 2.1), the vacuum level p, and the temperature difference ∆T . It is
given as:

Q̇v = 1
2kP∆T. (5.8)

In the free-molecular regime, lowering gas pressure (achieving higher vacuum
p < 1× 10−3 mbar) in a cryostat results in a small Q̇v, providing better thermal isola-
tion.
Finally, the heat transfer via solid conduction contributes mainly to the heat load

of the supporting system (i.e. ring-and-six-rods and cryostat feedthrough). It can be
expressed via Fourier’s law:

Q̇c = A

L

∫ Top

TRT
λ(T )dT, (5.9)

where A is a cross-section, L is the length, and
∫ Top
TRT

λ(T )dT is the thermal conductivity
integral with strong λ(T ) dependence over temperature TRT − Top.

Bulk HTS: final structure and mounting on sTFMS. A standard off-the-shelf
Y-Ba-Cu-O bulk HTS with typical parameters as presented in Table 5.1 was selected
for the final construction and is shown in Figure 5.14 a). Before mounting it on sTFMS,
the bulk HTS was characterized via Hall mapping following the FC magnetization at
77 K. Figure 5.14 b) shows the distribution of the magnetic flux density scanned across
the 30 mm × 30 mm pitch with the peak BT = 1.26 T at 1 mm distance.
Then, the bulk HTS was machined accurately to the form of a cylindrical disc with

a diameter of 48 mm and a thickness of 15 mm. Afterward, the bulk HTS was glued
with a StycastATZ® epoxy into the 3-mm-thin-walled aluminum holder to position and
reinforce the bulk HTS.
The final weight of the bulk HTS excluding the aluminum holder is 150.2 g. To
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Figure 5.14: The Y-Ba-Cu-O bulk HTS used in the system: a) The bulk HTS with a
diameter of 48 mm and a thickness of 15 mm is fixed in the aluminum holder
using Stycast® epoxy. b) The distribution of the magnetic flux density with
the peak trapped field of 1.26 T at 1 mm distance. Hall mapping is performed
on the 30 mm × 30 mm pitch followed the FC magnetization at 77 K.

counterbalance this mass, the equivalent bronze cylinder12 was glued into the aluminum
holder with a StycastATZ® epoxy at the opposite site of the sTFMS lever.

Cryogenic force cell. The cryogenic force cell (CFC) was a realization of the closed
single-walled vessel introduced for the solid-plus-gas conduction (see Section 5.2.2 and
Figure 5.5). The solid-and-gas conduction was proposed to cool the bulk HTS (inte-
grated with sTFMS) conforming the proper operation of the sTFMS. Furthermore, the
solid-and-gas conduction concept performs several further functions, which are listed
in Table 5.5.

Table 5.5: Required functions of the solid-and-gas conduction concept.
Number Function

1) housing and positioning bulk HTS and sTFMS
2) contactless cooling the bulk HTS
3) shortest thermal connection between the cooling and the measuring cryostats
4) providing the exchange gas-tight (inside) and vacuum-tight (outside) environment
5) access to the bulk HTS/sTFMS for their maintenance
6) allowing for electrical feedthrough and an exchange gas supply

12The weight of bulk HTS is 150.2 g. In order to obtain the same mass of the counterweight from
bronze (ρ = 8.47 g cm−3), a cylinder with a diameter 45 mm and a height of 11 mm was used.
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Figure 5.15 b) shows CFC, which consist of (1) cylindrical vessel, (2) DN100 CF
blind flange, (3) copper gasket, (4) 15-pin-plug electrical feedthrough, (5) bolts, and
(6) the exchange gas line. CFC has the inner diameter of 90 mm and the length
of 280 mm resulting in a CFC’s surface area to be about of 0.1 m2, which was the
crucial for the radiative heat load. The radial wall thickness is 6 mm, while the wall
thickness in front of the bulk HTS is only 2 mm. The 2-mm-thin front wall was a
compromise to provide sufficient mechanical strength of the aluminum vessel under
pressure, manufacturability of aluminum, and the need to minimize the distance from
the bulk HTS surface to the Super-LOFOS warm wall surface (see insert of Figure 5.16).
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Figure 5.15: CAD models of the cryogenic force cell (CFC): a) illustrates the housing of the
sTFMS within CFC; b) shows its components: (1) cylindrical vessel, (2) CF
blind flange, (3) copper gasket, (4) electrical feedthrough, (5) bolts and (6) ex-
change gas supply line.
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The selection of the material and components depended on multiple factors:

1) low magnetic susceptibility to operate in a high magnetic field,

2) vacuum sealing in a cryogenic environment,

3) machinability, manufacturability or commercial availability to remain flexible
when combined with other components of Super-LOFOS,

4) degassing, permeation and thermal conductivity of the exchange gas with the
regard to other component material.

The CFC was machined of aluminum alloy (AluVac®, Vacom, Jena [222]), has the
form of a closed vessel from the one side (where the bulk HTS is located) and ends
with the DN100 CF flange from the opposite side13. It is sealed with a mating (2) CF
blind flange via (3) the copper gasket.
The ConFlat® utilization in the CFC was an important decision to satisfy all func-

tions (cf. Table 5.5) of the solid-and gas concept. Alternatively, a standard Swagelock®

system is also suitable for the cryogenic sealing, but it requires more space, especially
along the z-axis, which is in contrast with a need to minimize the thermal contact
between the cooling and measuring cryostats.
The (2) CF blind flange was made of AISI 316 stainless steel and includes (4) elec-

trical feedthrough and (6) exchange gas line. The commercial electrical feedthrough
and customized exchange gas line were manufactured also from AISI 316 stainless steel
and, therefore, were welded14 with the (2) CF blind flange. The vacuum compatible
welding and cryogenic environment were arguments for the off-the-shelf (2) CF blind
flange made from a steel, rather than an aluminum, although a customized CF blind
flange made of aluminum would provide better thermal coupling between the cooling
cryostat and the measuring cryostat.
The last concern was the choice of the exchange gas and condition to manage it.

Among cryogenic gases, a gaseous helium (GHe) has the lowest condensation temper-
ature and highest thermal conductivity (λHe = 0.5 W m−1 K) in the hydrodynamic
regime (cf. Eq. 5.7), which makes it suitable for the solid-and-gas concept in the
temperature range of interest. This, in turn, required the CFC to be helium-tight
(inside) and vacuum-tight (outside) as well as to maintain the GHe at the atmosphere
p ≈ 1× 103 mbar.
13The DN100 CF flange is an optimal size to fit the Super-LOFOS.
14The tungsten-inert-gas (TIG) welding of the AISI 316 stainless steel ensures the vacuum-tight joint.
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Vacuum vessel and mechanical support. Similar to the CFC, the design of the
vacuum vessel followed multiple trade-offs and resulted in a circular structure shown
in Figure 5.16. It consists of the (1) DN200 CF flange to mate with the cooling cryostat,
(2) DN200 tube (with length of 324 mm and thickness of 5 mm) and (3) a lid plate. All
parts were made of the AISI 316 stainless steel and are joined using tungsten-inert-
gas (TIG) welding. The (4) ring-and-six-rods was used to concentrically align and
mechanically fix the CFC within the vacuum vessel. Another function of the ring-and-
six-rods was to reduce the conduction heat leak (cf. Eq. 5.9), therefore the ring-and-
six-rods (cf. Figure 5.16) was made of G10-CR fiberglass with the thin diameter of the
rods and has an inherent low thermal conductivity of about 0.2-0.4 W m−1 K−1 in the
temperature range 40-100 K [99].
The vacuum vessel was vacuum-tightly connected with the measuring cryostat via

the CF DN200 flange and was sealed with the Cu-gasket. This configuration ensured
an access to CFC and allowed it to be flexible to adopt an alternative cooling solution
in the future (e.g. closed-cycle refrigerator systems).
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Figure 5.16: The outer vacuum vessel is composed of (1) CF flange, (2) tube and (3) lid plate.
To mechanically fix the vacuum vessel on the CFC one uses the (4) ring-and-
six-rods, which is made of G10-CR fiberglass. Cutout: drawing presentation of
the area near the bulk HTS to demonstrate the isolation gap between the bulk
HTS and the outer front Super-LOFOS surface.

As mentioned in Section 2.2.2 and also in the proof-of-principle experiment (cf. Chap-
ter 4) it was vital to minimize the distance between the bulk HTS surface and the
cryostat outer warm wall. In the case of the Super-LOFOS, this distance includes
GHe/vacuum gaps and lid thickness of the two vessels, namely CFC and outer vac-
uum vessel. On the one hand, the thickness of vessels must be enough to withstand
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the pressure load and allow for welding and machining. On the other hand, the vac-
uum gap must be large enough to provide the thermal isolation. Taking all of these
factors into account resulted in the distance of 6.5 mm, as delineated in the cutout of
Figure 5.16.

Thermal insulation. A primary vacuum vessel function was to thermally insulate
the CFC, minimizing the heat transfer (cf. Section 5.3.3) between the RT and desired
cryogenic Top. Therefore, the vacuum vessel used the advantage of the free-molecular
regime (cf. Eq 5.8) enabling the pressure level of p = 1× 10−5 mbar to reduce the gas
heat transfer.
To reduce the radiative heat transfer, the 10-layer MLI (RUAG®, Coolant 2) was

wrapped around the CFC. According to manufacture specifications [223], the MLI
heat flow density of q̇MLI = 1 W m−2 is given under condition of p = 1× 10−5 mbar
and temperatures ranging from 300 K to 77 K.
The thermal insulation of the measuring cryostat was estimated using a one dimen-

sional and stationary methodology described in [99, 224, 225]. The solid conduction
heat load of the bulk HTS and sTFMS as well as ring-and-six-rods were neglected.
Figure 5.17 shows the simplified thermal schematic of the measuring cryostat, which

includes the CFC and the vacuum vessel. The temperature at the vacuum vessel
outer wall is TRT = 300 K. The temperature at the interface between the cooling and
measuring cryostat is constant and corresponds to the boiling points of LN2 and LHe
(cf. Table 2.3), whereas the operating temperatures are Top = 50 K and Top = 80 K
according to the requirements (cf. Table 5.4).
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Figure 5.17: A thermal insulation schematic of the measuring cryostat.

Table 5.6 tabulates the calculated thermal insulation input for the stationary case,
when the measuring cryostat is cooled down to the operation temperature. Among
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vacuum isolation Q̇v and gaseous helium thermal (or more correctly cold) transfer
from the cooling cryostat to the bulk HTS along z-axis Q̇g, the radiation heat transfer
Q̇MLI degrades the thermal insulation the most. Table 5.6 also shows the amount of
the required coolant (e.g. LN2 and LHe)15 to sustain the measuring cryostat in the
stationary state for two hours.

Table 5.6: The thermal insulation of the measuring cryostat.
LN2 LHe

Radiation, Q̇MLI(W) 1.50× 10−1 1.00× 10−1

Vacuum, Q̇v(W) 6.60× 10−3 7.50× 10−3

Gas conduction, Q̇g(W) 4.36× 10−3 6.66× 10−3

Sum, Q̇(W) 1.61× 10−1 1.64× 10−1

Required
coolant amount, (l) 0.01 0.45

Cryogenic liquid consumption during cool-down. The stationary state is reached
when the CFC containing bulk HTS/sTFMS within the measuring cryostat is already
cooled down to the operating temperature. To determine how much cryogenic liquid
is required to refrigerate the CFC with the bulk HTS and sTFMS, the Debye model
approach described by Ekin [99] was used. This approach allows us to estimate the
molar energy change ∆U upon refrigeration using the Debye relation of the volume
specific heat CV :

∆U
T

= (URT − Uop)
T

= 1
T

∫ TRT

Top
CV dT. (5.10)

Tabulated data represented by Eq. 5.10 is available from [99] and can be applied to
calculate the amount of LN2 or LHe that will be consumed to cool down a material
with the mass m from the TRT to Top. In our case, the CFC with bulk HTS/sTFMS
is made mainly of aluminum16 and weighs 3 kg.
Table 5.7 presents the molar energy change, total energy, and required LN2 or LHe

amount necessary to refrigerate the CFC with bulk HTS/sTFMS to a corresponding
operation temperature.
In practice, to reduce LHe consumption and to speed up the cool-down process, LN2

precooling is commonly used, since LN2 has almost sixty times the amount of latent
15Calculation is made based on the Latent heat of vaporization values (see Table 2.3).
16The aluminum molar mass M = 26.98 [99].

Dissertation Oleksii Vakaliuk



5.3 Super-LOFOS design and manufacture issues 97

Table 5.7: Estimation of required cryogen amount necessary to refrigerate the CFC
with bulk HTS/sTFMS to a corresponding operation temperature.

300 K to 77 K 77 K to 50 K
Molar energy change
URT − Uop (kJ mol−1) 4.30 4.47
Total energy (kJ) 478.2 497.1
Required LN2 (l) 3
Required LHe (l) 185 8

vaporization heat as compared to LHe (cf. Table 2.3). In the case of CFC with bulk
HTS/sTFMS refrigeration, precooling from 300 K to 77 K consumes 3 l of LN2, instead
of 185 l of LHe, and 8 l of LHe is required to continue cooling from 77 K to 50 K.
Besides the CFC with bulk HTS/sTFMS, Super-LOFOS contains more components

(e.g. inner vessel of cooling cryostat, support system, etc.) which increase the mass
and integrated specific heat to be cooled down. This requires more cooling capacity
and consequently cryogenic liquid amounts. The concern of the Super-LOFOS cool-
down time and consumed cryogenic liquids will be investigated experimentally in the
next Section 5.4 as well as in implementation experiments (cf. Section 6).
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5.3.4 Measurement instrumentation

The cooling cryostat was equipped with a 16-pin-plug feedthrough. This allows us to
thread out fifteen wires through Super-LOFOS and provide electrical service for the
sTFMS and install temperature sensors.
The sTFMS requires five lead wires for supplying the positioning sensor, where

two wires are used for the excitation current Iex and three lead wires for measuring
the ∆Vph. The rest of the wires serve for two temperature sensors, using four-point-
probe connection. Figure 5.18 a) illustrates the position of temperature sensors in the
Super-LOFOS: the Cernox® (CX-1070) sensor is mounted at the aluminum thermal
link, which is located between cooling and measuring cryostat. The Pt-1000® sensor
is mounted at the sTFMS platform in the vicinity of the bulk HTS.

a) 

b) c) 

Figure 5.18: a) The location of temperature sensors in the Super-LOFOS. b) the Cernox®

(CX-1070) sensor is mounted at the aluminum thermal link, which is located
between cooling and measuring cryostat. c) the Pt-1000® sensor is mounted at
the sTFMS platform in the vicinity of the bulk HTS.

In order to provide convenient and flexible system assembly, plug-and-socket termi-
nals were also installed.
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5.4 Initial assembly
The manufacturing of components was distributed between several companies depend-
ing on the required competencies and schedule considerations. However, the initial
assembly of the Super-LOFOS took place at ATZ®, Torgau [86] and was dedicated to
the validation of the system integrity and testing of the vacuum and cooling perfor-
mance. Note, during the initial assembly bulk HTS/sTFMS were excluded from the
system. Referring to Figure 5.12 the assembly sequence was to:

a) fasten the (3) flange adapter to the front flange of the (1) cooling cryostat,

b) install temperature sensors and wiring,

c) fasten the (4) thermal link to the cooling interface of the (1) cooling cryostat,

d) thread the He-line with the (7) blind flange through the (1) cooling cryostat,

e) fasten the (7) blind flange with the (10) CFC,

f) evacuate the (10) CFC and perform its leak test,

g) put the (11) ring-and-six-rods mechanical support on the (10) CFC,

h) wrap the (10) CFC and (4) thermal link with multilayer isolation foils,

i) put on the outer (12) vacuum vessel and tighten it with the (3) adapting vacuum
flange,

j) perform leak test of the entire system,

k) perform a cooling test.

The initial assembly revealed some violations in manufacturing and tolerance issues
of several components (e.g. aluminum thermal link, outer vacuum vessel, ring-and-
six-rods mechanical support) and required re-work and subsequent machining. When
those issues were fixed, Super-LOFOS passed the leak test with results documented in
Table 5.8.
The cooling test comprised LN2 refrigeration of the Super-LOFOS cooling cryostat.

Thus, LN2 was periodically poured manually into vertically standing Super-LOFOS,
as illustrated in Figure 5.19 insert. Furthermore, Figure 5.19 shows the temperature T
and cooling speed dT

dt
= 0 as a function of time t, where temperature T was monitored

at the (4) aluminum thermal link at the cooling cryostat bottom (cf. Figure 5.12). It
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Table 5.8: Results of the leak test of the Super-LOFOS after the initial assembly at
ATZ®, Torgau.

Cryogenic Force Cell Vacuum isolation
Pressure 5× 10−5 mbar 4× 10−5 mbar
Pumping time 2 h 12 h
Leak rate 1× 10−10 mbar l s−1 1× 10−9 mbar l s−1

took about 3 h to reach 93 K and stationary state (dT
dt

= 0). Most of the cool-down
time was needed to achieve T ≈ 100 K, because the integrated specific heat of the
Super-LOFOS cooling cryostat decreases slowly with temperature.
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Figure 5.19: First Super-LOFOS cooling with LN2 during the initial assembly at ATZ®,
Torgau.
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6 Implementation of Super-LOFOS

6.1 Experimental

After the initial assembly, Super-LOFOS was disassembled and transported to Tech-
nische Universität Ilmenau for the final validation. Super-LOFOS was re-assembled
to include its key sub-systems - the bulk HTS and sTFMS. In order to validate
Super-LOFOS, several experiments were designed, each of which following the steps
summarized Table 6.1:

Table 6.1: The experimental sequence for the validation of Super-LOFOS.
Number Steps

(0) assembling and preparatory work
(1) pre-cooling
(2) magnetization
(3) LFV measurements

Assembling and preparatory work. After the sTFMS was calibrated and adjusted
at the RT by Na Yan, the process of Super-LOFOS re-assembling was augmented to
include placing the bulk HTS/sTFMS into the CFC and anchoring the sTFMS with
screws to ensure it is properly fixed (see Figure 5.8). The CFC is then sealed with
the CF blind flange, evacuated, and flushed several times with GHe. As a result, the
CFC remains filled with the GHe under the normal atmosphere (p ≈ 1× 103 mbar).
The last assembly step is to dock the cooling cryostat on to the outer vacuum vessel
and evacuate the outer vessel to p = 1× 10−4 mbar or lower in order to ensure good
thermal isolation.

Magnetization. As stressed in Section 5.2.3, the 5TCFM is deployed for the bulk
HTS magnetization, during which Super-LOFOS is brought to the magnetization mode
(sTFMS is inverted on 180°) and inserted into the magnet bore. Figure 6.1 a) shows
the position of Super-LOFOS during magnetization. Note, Super-LOFOS is placed
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eccentric (∆x = 42 mm) in the magnet bore, since it is mounted on the optical slab of
the transport table (see Figure 6.1 b).
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Figure 6.1: a) Magnetization set-up of (1) Super-LOFOS in the (2) magnet bore of the
5TCFM with the continuous liquid-flow cooling using (3) shipping dewar (with
LN2 or LHe). b) Eccentric positioning of Super-LOFOS in the magnet bore.

The magnetization can follow the FC or ZFC procedures with the ascent and de-
scent ramp rate Ḃ = 0.092 T min−1. The refrigeration can be done using LN2 or LHe.
However, in the case of LHe, the equipment is pre-cooled with LN2. After reaching
corresponding temperatures, LN2 is purged with the GHe and the last bit of cool-
ing is performed with LHe. The LN2 pre-cooling accelerates the process, since LN2

has almost sixty times the amount of latent vaporization heat as compared to LHe
(cf. Table 2.3). It also reduces LHe consumption and subsequent costs.

LFV measurements. If the bulk HTS is magnetized, then the Super-LOFOS is
turned around the z-axis, whereby sTFMS is brought to the measuring mode followed
by the precise alignment in the horizontal plane (y-z plane).
Afterward, Super-LOFOS is arranged for the LFV measurements using the dry cali-

bration setup, which is shown in Figure 6.2. In contrast to the previous case (cf. Chap-
ter 4), the dry calibration setup accommodates force measurements in a horizontal di-
rection because of typical industrial demand [16]. The dry calibration setup consists of
(1) Super-LOFOS, an (2) aluminum rod (used in previous dry-calibration)1, (3) linear
drive, and a (4) transport table.
The (2) aluminum rod is attached to the (3) linear drive, which enables a repetitive

motion with a prescribed constant velocity. One LFVmeasurement includes the motion
1The aluminum rod with an electrical conductivity σAl = 19.43 MS m−1 has a length of 1000 mm
and a diameter of 40 mm [3].
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Figure 6.2: The experimental setup for the validation of Super-LOFOS. It includes
(1) Super-LOFOS, (2) aluminum rod, (3) linear drive, and (4) support table.

of the (2) aluminum rod during t = 40 s with a given delay of t = 30 s before and after
the start of the motion. The velocity in this experiment is limited by 3.3 mm s−1 due to
the construction properties of the linear drive [22]. Thus, velocities are approximately
one order of magnitude lower as compared to the prior proof-of-principle experiment
(cf. Chapter 4), but it is sufficient to measure the force in the range of interest.
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6.2 Results and discussion

Results of LFV measurements using Super-LOFOS are presented in chronological order
below.

6.2.1 Experiment-1: Cooling with LN2

Motivation. The experiment-1 was designed to give a first run and validate the
working principle of Super-LOFOS. Apart, it was crucial to:

1) train personnel how to safely handle the system,

2) verify the solid-plus-gas cooling,

3) magnetize the bulk HTS,

4) provide means of improvement for the future implementation with LHe cooling.

Cooling. After the Super-LOFOS was assembled, CFC was filled with the GHe and
maintained at normal atmosphere (p ≈ 1× 103 mbar). Preceding the LN2 liquid-flow
cooling, the Super-LOFOS was evacuated to the p = 1.4× 10−4 mbar. Figure 6.1 shows
a storage dewar with LN2, which was connected to the Super-LOFOS, thereby provid-
ing the continuous cooling with the LN2 flow regulation2. Figure 6.3 a) shows temper-
ature as a function of time and indicates the experimental steps, while Figure 6.3 b)
delineates the Super-LOFOS horizontal arrangement and position of sensors.
It took about 15.5 h to reach temperatures below Tc. Such a long cool-down time is

attributed to the large cumulative Super-LOFOS specific heat and degraded vacuum.

Magnetization. ZFC magnetization with BA = 2 T was applied due to the continuous
need of cooling to the desired Top < Tc. When the BA was reduced to zero, operating
temperature reached Top = 88.8 K and the maximum trapped field zBT = 20 mT was
recorded. This trapped field zBT was measured at the front surface of Super-LOFOS
using a three-axis Hall probe (Magnet-Physik®, FH 36) and is 6.5 mm distant from the
bulk HTS’s surface (cf. Figure 5.16). Obtained zBT reduced to zBT = 15 mT at about
one hour and is shown in the cutout of Figure 6.3 together with Top(t).
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Figure 6.3: a) The LN2 liquid-flow cooling, followed by the ZFC magnetization with BA
= 2 T. b) The location of temperature sensors in the Super-LOFOS. c) The
cutout enlarges time-dependent temperature behavior and indicates the mea-
sured trapped field BT , when the BA was reduced to zero.

LFV measurements. Super-LOFOS was disconnected from the LN2 continuous liquid-
flow cooling and brought to the measuring mode. Furthermore, it was placed at
18 mm distance from the aluminum rod surface. It was necessary to ensure that re-
sultant Lorentz forces FL remain within the measuring range of sTFMS. Afterward,
Super-LOFOS was adjusted to perfectly align sTFMS in the horizontal plane (y-z
plane).
LFV measurements were performed for two given velocities u1 = 3.2 mm s−1 and

u2 = 1.55 mm s−1, as displayed in Figure 6.4 a). Unfortunately, further LFV mea-
surements were not possible because of obtained zBT vanished (Top>Tc). Thus, it is
important to preserve the continuous liquid-flow cooling during LFV measurements.
Figure 6.4 b) shows the obtained output voltage ∆Vph(t) of the positioning sensor,

which exhibits a stepwise signal for both velocities. In the case of u1 = 3.2 mm s−1,
∆Vph(u1) diminished down to zero when the aluminum rod stopped. However, in the
case of u2 = 1.55 mm s−1, ∆Vph(u2) is almost equal to ∆Vph(u2) and it does not shift
back to the zero.
In principle, the expected ∆Vph(u2) should be about two times lower than ∆Vph(u1)

since given velocities differ by almost a factor of two. Such a scenario was simu-
lated using the developed model (cf. Section 4.3), which was adopted to the rel-

2To control the LN2 flow the pressure in the storage dewar is manually regulated using a pressurized
valve in a range between 0.5 bar to 1 bar.
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Figure 6.4: LFV measurement results: a) given velocities u1 = 3.2 mm s−1 and
u2 = 1.55 mm s−1. b) Obtained output voltage ∆Vph(t) of the positioning sen-
sor. c) Lorentz force FL as function of time: solid lines indicate the experimental
results and dashed lines indicate the simulation results.

evant LFV experimental setup with the Super-LOFOS. The value of bulk HTS’s
jc = 4.33× 106 A m−2 was determined from the experimentally obtained zBT = 20 mT
using Eq. 4.3 and Eq. 4.4. The simulated FL(u) are compared with the experimental
data in Figure 6.4 c). In the case of u1, FL(u1) obtained experimentally is consistent
with the simulated result. However, in the case of u2, experimental FL(u2) quantita-
tively deviates from the simulation result. This rather contradictory result is likely to
be related to mechanical or electrical disturbance of the sTFMS and can be revealed
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only after warming and disassembly the Super-LOFOS.
When Super-LOFOS was warmed up to RT, the sTFMS was inspected, revealing no

deviance and no defects. Following, sTFMS was newly calibrated and prepared for the
next LFV measurements using LHe to achieve a lower temperature and thus a larger
trapped magnetic flux density.

6.2.2 Experiment-2: Cooling with LHe

Experiment-2 was designed to let the bulk HTS trap a stronger BT using LHe cooling.
This required to exploit a modified dry calibration setup with a model electrolyte3 of
σ = 20 S m−1 instead of the aluminum rod.
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Figure 6.5: LHe liquid-flow cooling, followed by the FC magnetization with BA = 4 T and an
attempt of LFV measurements, which failed due to sTFMS failure. Cutout en-
larges time-dependent temperature behavior and indicates the measured trapped
field zBT , when the BA was reduced to zero.

Pre-cooling and magnetization. The Super-LOFOS was evacuated to the
p = 1.1× 10−4 mbar4 followed by LN2 pre-cooling. As in the previous case, CFC was
filled with the GHe and maintained at normal atmosphere (p ≈ 1× 103 mbar).

3Plexiglas® vessel with fully filled saline water is used to model the electrolyte. The vessel has
a cylindrical form with a length of 1000 mm, an outer diameter of 50 mm and a wall thickness
of 2 mm.

4Achieved vacuum reduced to p = 1.0× 10−5 mbar before magnetization due to cryo-pumping.
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Figure 6.5 shows a time-dependent temperature Top(t) monitored during the exper-
iment. At first, Super-LOFOS was pre-cooled using LN2 down to to the Top < Tc.
Afterward, LN2 dewar was replaced with LHe shipping dewar and Super-LOFOS was
further cooled using LHe continuous liquid-flow refrigeration5. In order to sustain bet-
ter thermal vacuum insulation, the Super-LOFOS was evacuated continuously during
entire cooling maintaining the pressure of p = 1.0× 10−5 mbar. Relatively long cool-
down time of about 26 h was deliberately performed setting slow rate of continuous
liquid-flow refrigeration.
The magnetization followed FC process involving the application of BA = 4 T and

subsequent cooling to Top. When BA = 0 T, operating temperature reached Top ≈ 46 K
and the trapped field of zBT = 1.2 T at the front surface of Super-LOFOS was doc-
umented. By regulating the LHe mass flow, the temperature at the bulk HTS was
maintained below the reached value of Top ≈ 46 K. This enabled the trapped field
to persist. The cutout of Figure 6.5 plots Top(t) superimposed with zBT (t) when
BA = 0 T, showing the nearly constant trapped field zBT = 1.2 T over two hours.

LFV measurements and sTFMS failure. The sTFMS adjustment failed when the
Super-LOFOS was arranged for the modified dry calibration setup. The signal of the
positioning sensor yielded a constant ∆Vph, which was sensitive only to the manual
disturbances (see Figure 6.6 a). This observation suggested that the sTFMS operation
is disturbed. In particular, it was suspected that the rotation movement of the lever
with the respect to the flexure bearing is blocked.
Repeated attempts to release the blockage of sTFMS by rotating and inclining the

Super-LOFOS brought no success. Moreover, it was verified that neither the acquisi-
tion program nor the electrical contact/connections were the problem.

Failure investigation. To understand what caused the sTFMS failure (blocked rota-
tion), Super-LOFOS was warmed up and opened for sTFMS inspection. Upon opening
the CFC, two deviances were discovered and are shown in Figure 6.6 b)-c):

1) tangled wires hampered the electrical connections between the sTFMS and the
cooling cryostat, despite careful fixation and alignment with the Capton® band
during assembly,

2) a bent movable aperture of the positioning sensor.

5Similar to the LN2, the LHe flow was manually regulated using a pressurized valve.
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Figure 6.6: a) Output signal ∆Vph of positioning sensor during LFV measurements. Ob-
served deviance after disassembly of the Super-LOFOS: b) electrical connection
between the sTFMS and the cooling cryostat, c) the bent movable aperture of
the positioning sensor.

The tangled wires can partially limit the sTFMS rotation, rather than block it
completely. Therefore, the bent movable aperture was identified as the root cause for
blockage. This interpretation was proved in the subsequent test at RT after aligning
the movable aperture to its original shape. As result, sTFMS operation was restored:
The lever rotates freely, yielding the oscillating ∆Vph signal (see Figure 6.7).
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Figure 6.7: A periodical ∆Vph signal of sTFMS, which was achieved after the movable aper-
ture was aligned to its original shape.

The most probable reasons for the bent aperture were identified as follows:

1) routinely tilting and inclining the Super-LOFOS when rotating (around the z-axis)
during assembly as well as before and after magnetization,

2) magnetic forces that emerge during magnetization (cf. Section 5.2.3) due to ec-
centric positioning of the bulk HTS in the magnet bore (see Figure 6.1 b).
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Corrective actions and repeated LFV measurements. A number of corrections and
improvements of Super-LOFOS and its components were performed:

1) Wiring: (1) wires between the sTFMS and the cooling cryostat were shortened,
better aligned, and fixed (see Figure 6.8 a),

2) Controlled rotation: a (2) security clamp and (3) rotation bearings were added
at Super-LOFOS to provide smooth rotation around the z-axis and are shown in
Figure 6.8 a),

3) Concentric insertion: the way in which Super-LOFOS is mounted to the op-
tical slab was reworked in order to minimize the eccentric positioning. (see
Figure 6.8 b).
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within the Super-LOFOS  

Center of the magnet bore 5TCFM  
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y 

Figure 6.8: Visualization of the realized improvements. a) Wiring: (1) wires between the
sTFMS and the cooling cryostat were shortened and better aligned. Controlled
rotation: the rotation of Super-LOFOS was improved by adding (2) the security
clamp and (3) four rotation bearings. Such a configuration minimizes undesired
inclinations and provides smooth rotation of Super-LOFOS around the z-axis.
b) the way in which Super-LOFOS is mounted to the optical slab was reworked in
order to minimize the eccentric positioning from 42 mm to 18 mm (cf.Figure 6.1
and Figure 6.8.)

When the improvements were completed, sTFMS was assembled, adjusted, and
again calibrated at RT. Afterward, another attempt to conduct LFV measurements
using Super-LOFOS was made. Similar to the experiment-2, Super-LOFOS was refrig-
erated with the LHe liquid-flow cooling. This time FC magnetization was done with
BA = 5 T to achieve the maximal trapped magnet flux density zBT . Furthermore,
the output voltage of the positioning sensor ∆Vph(t) as well as temperature Top(t) was
monitored during the entire experiment.
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However, during the cooling process from T > Tc to Top under BA = 5 T, the
output signal ∆Vph of the sTFMS positioning sensor disappeared. This can be seen in
Figure 6.9 and its insert, which show the time-dependent temperature Top(t) and the
output voltage ∆Vph(t), respectively. An immediate inspection revealed an interrupted
electrical connection with the position sensor LED.
Troubleshooting continued by first ramping down the applied field to BA = 0 T.

Upon then thoroughly inspecting the outside electrical connections and the cable be-
tween Super-LOFOS and the measurement equipment, it became clear that the elec-
trical signal for the LED was interrupted inside the Super-LOFOS itself. In order to
investigate the exact failure source, the LFV measurements were aborted, then the
Super-LOFOS was warmed up and opened.

Failure investigation. The failure investigation revealed that there was a broken
wire between the vacuum feedthrough and the LED inside the CFC. Additionally, the
movable aperture of the positioning sensor was bent again in spite of the controlled
rotation around the z-axis, see Figure 6.10 a).
The interrupted electrical contact was an annoying but manageable failure. However,

the repeated damage to and displacement of the sensor aperture was a severe issue
requiring further investigations.
Figure 6.10 b)-c) shows the simplified structure of the sTFMS outlining the posi-
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Figure 6.9: The second LHe liquid-flow cooling, followed by the FC magnetization with
BA = 5 T. Insert Disappearance of the ∆Vph during magnetization.
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Figure 6.10: a) sTFMS photograph showing the repeated bending of the movable aperture
of the positioning sensor, Cutout: CAD model of the aluminum frame of the
positioning sensor. Simplified sTFMS structure outlining the positioning sensor
with its (1) aperture, (2) the gap in the aluminum frame, (3) the safety limiter,
(4) the flexure bearing, and (5) the lever in b) measuring and c) magnetization
mode. d) sTFMS photograph showing a new aluminium frame design for the
positioning sensor. Cutout: CAD aluminum frame model for the positioning
sensor with an extended 4 mm-gap.

tioning sensor including the (1) aperture and (2) the aluminum frame as well as (3) the
safety limiter in measuring and magnetization mode, respectively. Apparently, bend-
ing occured when sTFMS was rotated to the magnetization mode: The gap, at which
the safety limiter is sunk, does not match the gap provided by the aluminum frame of
the positioning sensor.
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6.2.3 Experiment-3: Position sensor re-design and the sTFMS
verification.

To ensure that the aperture does not bend, the positioning sensor was redesigned by
Na Yan and is shown in Figure 6.10 d). The gap in the aluminum frame was widened
from 2 mm to 4 mm.
The next steps were to adjust and calibrate the sTFMS. However, before assembling

the Super-LOFOS and beginning with the LFV measurements, the decision was made
to verify the sTFMS using an electrostatic force balancing (EFB) at room and LN2

temperatures.

Electrostatic force balancing (EFB). The EFB was introduced by Yan [22] by em-
bedding a capacitor into the sTFMS construction. Figure 6.11 a) highlights the em-
bedded sTFMS capacitor, while Figure 6.11 b) shows further capacitor details.

1 
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3 

Bulk HTS 

Fes 

b) a) 

Voltage 
source 

-       +  Va 

Figure 6.11: Electrostatic force balancing with the embedded capacitor. a) photograph and
b) the capacitor schematics, which includes (1) a cathode (a part of whole
conducting sTFMS structure), (2) an anode (a copper rectangular plate that is
firmly attached to the safety limiter), (3) G-10 substrate for electrical isolation.
An electrostatic voltage Va can be applied using a dc voltage source.

The capacitor consists of (1) a cathode, which is a part of whole conducting sTFMS
structure, (2) an anode, which is formed from a copper rectangular plate that is firmly
attached to the safety limiter and is electrically isolated from it via the (3) G-10

Dissertation Oleksii Vakaliuk



114 6 Implementation of Super-LOFOS

substrate. Thus, a plate-shaped capacitor is engineered for two close electrodes that
are separated by air at RT and gaseous He, when sTFMS is placed in the CFC.
The idea of the sTFMS verification using EFB is to excite a deliberate electrostatic

force Fes, which is then measured as ∆Vph by the sTFMS. The control of the force
Fes is managed by applying an electrostatic voltage Va across the engineered capacitor.
The calibration of the Fes(Va) dependency was carried out by Yan [22] and is expressed
as:

Fes = Kes · V 2
a (6.1)

where Kes ≈ 0.04 µN V−2.
A sequence of twelve EFB measurements at RT were conducted by applying a step-

wise electrostatic voltage Va = [0; 10; 0]V between the capacitor electrodes to monitor
the positioning sensor’s ∆Vph(t). A separate EFB measurement is displayed as a set of
the positioning sensor operating temperature Top(t), the applied electrostatic voltage
Va(t), and the output voltage ∆Vph(t) in Figure 6.12 a)-c), respectively. By comparing
obtained results, it is clear that stepwise applying of Va leads to the stepwise function
of ∆Vph(t). This implies that sTFMS operates properly, particularly:

1) imposed force Fes leads to the anticipated elastic rotation of sTFMS lever, which
is reflected as oscillating ∆Vph(t),

2) sTFMS is sensitive to Fes force in µN range.
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Figure 6.12: electrostatic force balancing results at RT as a set of a) operating temperature
Top(t), b) applied electrostatic voltage Va(t), and c) the positioning sensor
output voltage ∆Vph(t).
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Afterward, the sTFMS was assembled into the Super-LOFOS following two first
steps listed in Table 6.1 and prepared for the EFB measurements at LN2 temperature.
During LN2-cooling, however, the output signal ∆Vph of the sTFMS positioning

sensor dropped from −1.25 V to −20 V at Top = 202 K and finally disappeared at
Top = 230 K, as documented in Figure 6.13. An immediate troubleshooting revealed
an interrupted electrical LED connection analog to the second attempt of experiment-2
(cf. Section 6.2.2). Therefore it was suspected that the electrical contact was somehow
detached.
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Figure 6.13: electrostatic force balancing results at LN2 temperature as a set of a) oper-
ating temperature Top(t), b) applied electrostatic voltage Va(t), and c) the
positioning sensor output voltage ∆Vph(t).

Failure investigation. Surprisingly, the examination revealed that all electrical con-
tacts were intact without any visible damage. Subsequently, the LED was subjected
to a V − I inspection. Applying Iex = 3 mA it was indicated that a forward voltage
VLED = 16.4 V significantly exceeds a typical value VLED = 1.25 V to 1.45 V according
to manufacture specifications [226]. Furthermore, V − I characteristics were measured
on three identical, but separate LED (L9337-02, Hamamatsu) at RT and 77 K6. Ta-
ble 6.2 summarizes the obtained results indicating that the LED (used in experiment-3 )
is defective. It was necessary to examine if the LED failure was due to the cryogenic
temperature.
In general, manufacturers of diodes provide information about the operation param-

eters of their components at about 230 K to 240 K [226, 227]. Diode-based systems
6Each LED was just immersed into the vessel with LN2.
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Table 6.2: V − I inspection of the used LED (L9337-02, Hamamatsu) and comparison
to other LEDs at RT and 77 K. Data is represented as a forward voltage
VLED after applied excitation current Iex = 3 mA.

LED VLED, (V) comment
(L9337-02, Hamamatsu) RT 77 K

used 16.14 16.13 defected
(1) 1.3 1.7 o.k.
(2) 1.3 1.7 o.k.
(3) 1.3 1.7 o.k.

have been utilized in cryogenic environment in space and medical applications [228], as
well as in nuclear and particle physics [229–232]. These works identified the advantages
and feasibility of using diodes, but also warned about anticipated barriers.
Yang et al [232] investigated large-area silicon avalanche photodiodes and deter-

mined that at a given excitation current, the gain voltage increased with decreasing
temperature. Such a tendency is consistent with the fact that the carriers mobility
increases with lowering temperature, thus reducing phonon scattering [233]. Moreover,
Yang et al [232] also determine a critical temperature of Tfreeze = 40 K, at which light-
dependent diodes no longer function properly due to the so-called "freeze-out effect".
The adverse influence of the thermal cycling has been reported for some commercial
diodes in [228, 231].
Because of the three issues discussed above, the sTFMS positioning sensor, in par-

ticular the utilized LED and differential photodoide, were validated at cryogenic tem-
peratures, which is discussed in the next section.

Verification of the position sensor at LN2 temperature. The positioning sensor,
the working principle of which was presented in Section 5.2.4, includes two off-the-
shelf diodes: LED (Infrared LED L9337, Hamamatsu) [226] and photodiode (Silicon
differential photodiode SFH221S, Siemens) [227]. Both light-dependent diodes have a
hermetically sealed metal housing with a glass window (BPX65) or respectively a glass
lens (OD880F). This results in a good protection against environmental influences at
RT [234].
Figure 6.14 a) sketches the verification experimental setup. It includes (1) SFH221S

photodiode and (2) L9337 LED, which were fixed at the (3) aluminum frame of sTFMS
position sensor, as sketched in Figure 6.14 a). In this configuration, an excitation
current Iex was applied to the LED to illuminate the photodiode and resultant volt-
ages VLED as well as Vph were then measured. Figure 6.14 b)-c) indicates the circuit
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diagrams for both cases. It should be stressed that V − I characteristics for each
light-dependent diode were taken at RT and 77 K.

Obtained data is shown in Figure 6.15. It can be seen that the measured volt-
ages VLED(77K) and ∆Vph(77K) at the same excitation current are higher that those for
RT. This is consistent with the data reported in [228, 229]. The results of V − I

characterization revealed that tested light-dependent diodes can be used at cryogenic
temperatures and reliably serve for the sTFMS position sensor, but the Iex-regulation
of the LED must be attenuated in order to avoid the saturation of the forward voltage.
Accordingly, one has to consider the correction to the calibration.

Repeated EFB measurements at RT. The positioning sensor was assembled to the
sTFMS and subjected to repeated EFB measurements following the identical procedure
as in previous case. Figure 6.16 displays obtained result at RT yielding the oscillating
and stepwise behavior of the output signal ∆Vph(Va, t). This result was considered
as successful, indicating that sTFMS and its component (i.a. positioning sensor and
flexure bearing) operate properly.

The next step of the sTFMS verification was to perform LFV measurement accompa-
nied with EFB measurements during LN2 pre-cooling to attain additional information.

2 

3 

1 

x 

z 

a) b) c) 

Figure 6.14: a) Schematic of the verification experimental setup, which includes
(1) SFH221S photodiode and (2) L9337 LED, which are fixed at the (3) alu-
minum frame of sTFMS position sensor. The circuit diagram for the V − I
measurements with b) LED and c) photodiode at RT and 77 K.

.

Dissertation Oleksii Vakaliuk



118 6 Implementation of Super-LOFOS

b) a) 

0 20 40 60 80
1.0

1.2

1.4

1.6

1.8

2.0

 Room temperature

 77 K

 

 

V
L

E
D

 (
V

)

I
ex

 (mA)

0 20 40 60 80
0

5

10

15

20

25

Room temperature 

 77 K

 

 


V

p
h
 (

V
)

I
ex

 (mA)

Figure 6.15: a) V − I curves of the LED (VLED) and b) the photodiode (Vph) at prescribed
Iex of the LED at RT and 77 K.

6.2.4 Experiment-4: EFB and LFV measurements at LN2.

The sTFMS was assembled into the Super-LOFOS followed by the preparation steps
listed in Table 6.1. During LN2 pre-cooling EFB measurements were conducted to
monitor the behavior of sTFMS followed by the LFV measurements with the alu-
minum rod. Figure 6.17 shows the temperature as a function of time and indicates the
experimental steps.
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Figure 6.16: Repeated electrostatic force balancing results at RT as a set of a) operating
temperature Top(t), b) applied electrostatic voltage Va(t), and c) the position-
ing sensor output voltage ∆Vph(t).
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Figure 6.17: LN2 liquid-flow cooling, followed by the ZFC magnetization with BA = 2 T.
Insert shows obtained ∆Vph right after sTFMS is brought to the measuring
mode.

EFB measurements. The EFB measurements were performed in the identical man-
ner as in the previous measurements applying Va = [0; 10; 0]V down to 100 K (cf. Fig-
ure 6.13). The ∆Vph(t) increased with deceasing temperature, which is consistent with
the observation of Yang [232] and results of V − I measurements on light-dependent
diodes (cf. Section 6.2.3).
A counterintuitive effect was encountered, whereby the stepwise function of Va led

to the upshift of ∆Vph(t) in contrast to the anticipated downshift. It is shown in Fig-
ure 6.18, which presents an example of EFB measurement upon cooling from T = 177 K
to 168 K. The observed effect indicated that sTFMS was not operating properly. On
the one hand, the oscillating ∆Vph(t) signal indicates that the sTFMS lever period-
ically rotates, but on the other hand, the upshift of ∆Vph(t) might suggest that the
elasticity of the flexture bearing is affected.
It is important to stress that the "∆Vph(t) upshift" effect was noticed not during

EFB measurements, rather after them as well as after LFV measurements.

Magnetization and LFV measurements. The magnetization followed the FC pro-
cess involving the application of BA = 2 T and subsequent cooling to Top ≈ 85 K. As
a result, the field of zBT = 100 mT at the front surface of Super-LOFOS was trapped.
When the Super-LOFOS was brought to the measuring mode, the positioning sensor
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Figure 6.18: Repeated electrostatic force balancing results at LN2 temperature as a set of
a) operating temperature Top(t), b) applied electrostatic voltage Va(t), and c)
the positioning sensor output voltage ∆Vph(t).

displayed an abnormal and irregular ∆Vph signal, as shown in the inset of Figure 6.17.
Since such a signal can imply that the sTFMS lever is blocked and not rotating freely,

immediate steps were taken to release the lever in order to achieve the periodically
oscillating ∆Vph signal. However, all attempts to resolve the problem did not bring
the desired results, so that all LFV measurements were halted before beginning the
failure investigation.

Failure investigation. The examination revealed no damage or deviance of the po-
sitioning sensor or its components. Moreover, all electrical connections were intact.
Figure 6.19 a) shows that upon opening CFC, the movable aperture is located in the
gap between the aluminum frame and the positioning sensor and moves freely. This
shows that re-designing the positioning sensor (i.e. extending of the gap from the 2 mm
to 4 mm) prevented the bending of the aperture.
Afterward, the sTFMS was placed and adjusted in the horizontal plane (see Fig-

ure 6.19 b) to test whether it operates properly at RT. After engaging the sTFMS
lever, it rotated again abnormally and stopped. The positioning signal showed irregu-
lar oscillations of ∆Vph followed by the finite ∆Vph signal, as recorded in Figure 6.19 c).
Such behavior was a clear sign that sTFMS rotation was adversely degraded. Impor-
tantly, this time no mechanical bending of the positioning sensor aperture, nor effects
related to the diodes at cryogenic temperatures led to the failure.
The sTFMS rotation degradation could be attributed to the ferromagnetic and
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Figure 6.19: The results: a) A photograph of the movable aperture immediately after open-
ing the CFC. It is shown that the aperture can move freely in the gap between
positioning sensor’s aluminum frame. b) sTFMS adjustment at RT showing
b) irregular ∆Vph signal.

thermal properties of the flexure bearing which is made from AISI 420 steel. At
first, AISI 420 steel’s high magnetic susceptibility (χ = 950) is the reason of tremen-
dous magnetic forces exerting on the sTFMS flexure bearing during magnetization
(cf. Chapter 5). Although the sTFMS safety inset was developed to mitigated this
force impact, the martensitic AISI 420 steel is metastable and can undergo structural
transition when thermally strained, deformed, or welded [99]. This, in turn, can lead
to geometry and mechanical (e.g. elasticity, stiffness) changes which result in flexure
bearing degradation.
An alternative to the AISI 420 steel for the flexure bearing construction would be

austenitic AISI 304/316 stainless steels (a common material for high-field and cryogenic
temperature measurements) and titanium, which have a magnetic susceptibility at
least five orders of magnitude smaller, see Table 5.3. In addition to the magnetic
properties, the thermal characteristics such as reproducibility on thermal cycling, long-
term thermal drift are vital issues for the flexure bearing material selection.
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6.3 Chapter summary

This chapter described a number of experiments to validate Super-LOFOS. The im-
portant obtained results and conclusions are summarized as follows:

1) Using the integrating cooling concept the bulk HTS and sTFMS were effectively
refrigerated together down to Top enabling bulk HTS to be magnetized so that
magnetic flux density zBT at the Super-LOFOS outer front surface was generated.
The obtained results are presented in Table 6.3.

Table 6.3: Super-LOFOS test results on achieved operating temperature Top, trapped
magnetic flux density zBT at the Super-LOFOS outer front surface using
LN2 or LHe refrigeration.

Experiment Cryogenic Top Magnetization/ zBT

liquid BA

1) LN2 88.8 K ZFC/2 T 0.02 T
2) LHe 46 K FC/4 T 1.2 T
3) LHe <70 K FC/5 T failed
4) LN2 85 K FC/2 T 0.1 T

2) The modular Super-LOFOS cryostat structure allowed us to use the available
LHe/LN2 cooling cryostat manufactured by ILK Dresden [204]. Although this
LHe/LN2 cryostat was initially developed to cool only a single bulk HTS, con-
necting the LHe/LN2 cryostat with an either LN2 or LHe storage dewar enabled
a continuous liquid-flow cooling of the Super-LOFOS measuring cryostat (con-
taining bulk HTS and sTFMS) down to required operating temperatures, see
Table 6.3.

3) Time of 5-15 h was needed to cool bulk HTS below T < 100 K and is attributed
to the cumulative Super-LOFOS specific heat and unoptimized regulation of the
continuous liquid-flow cooling. In principle, such a cooling resembles a simplified
closed-cycle refrigerator system. In the future, the optimized closed-cycle refrig-
erator system can be easily adapted to the Super-LOFOS measuring cryostat,
thereby increasing cooling effectiveness.

4) Using electrostatic force balancing (EFB) and LFVmeasurements the Super-LOFOS
functionality has been tested.
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4.1) Using LN2 cooling and aluminum rod dry calibration, the LFV measure-
ments for two velocities were performed. The obtained results were antic-
ipated, but not reproducible. Further attempts to conduct LFV measure-
ments using either an aluminum rod or a model electrolyte dry calibration
failed. The failures were caused by different reasons which were thoroughly
examined and corrected.

4.2) Using electrostatic force balancing (EFB) measurements and separate posi-
tion sensor examination enabled us to elucidate and deepen the understand-
ing of sTFMS functionality under cryogenic temperature and magnetic field
conditions.

4.2.1) Separate examination of the position sensor light-dependent diode com-
pounds, namely, LED (Infrared LED L9337, Hamamatsu) [226] and
photodiode (Silicon differential photodiode SFH221S, Siemens) [227]
revealed their proper function at 77 K if the light-dependent diode ex-
citation current is accordingly attenuated.

4.2.2) The light-dependent diodes were assembled to form sTFMS position
sensor and the sTFMS functionality was then investigated from RT
down to 77 K.

4.2.3) Using EFB measurements the proper sTFMS functionality at RT and
down to 77 K was confirmed: the oscillating ∆Vph(t) signal measured
by the positioning sensor indicated that the sTFMS lever periodically
rotates, as anticipated.

4.2.4) However, the sTFMS dysfunction was detected after FC magnetization
(a part of LFV measurements) followed applying BA = 2 T and cool-
ing to Top ≈ 85 K. An immediate examination at 85 K and followed
examination at RT indicated that the flexure bearing does not rotate
freely.

4.3) sTFMS functionality was clearly affected in a result of the cryogenic tem-
perature and magnetic field. In particular, the sTFMS rotation malfunction
could be attributed to the ferromagnetic and thermal properties of the flex-
ure bearing which is made from AISI 420 steel.

4.3.1) AISI 420 steel’s high magnetic susceptibility (χ = 950) is the reason
of tremendous magnetic forces acting on the sTFMS flexure bearing
during magnetization (cf. Chapter 5). Although the sTFMS safety
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inset was developed to mitigated this force impact, the martensitic
AISI 420 steel is metastable and can undergo structural transition when
thermally strained, deformed, or welded [99].

4.3.2) This, in turn, can lead to geometry and mechanical (e.g. elasticity,
stiffness) changes which result in flexure bearing degradation.

4.3.2) An alternative to the AISI 420 steel for the flexure bearing construc-
tion would be austenitic AISI 304/316 stainless steels (a common ma-
terial for high-field and cryogenic temperature measurements) and ti-
tanium, which have a magnetic susceptibility at least five orders of
magnitude smaller, see Table 5.3. In addition to the magnetic prop-
erties, the thermal characteristics such as reproducibility on thermal
cycling, long-term thermal drift are vital issues for the flexure bearing
material selection.

Dissertation Oleksii Vakaliuk



125

7 Summary and Outlook

7.1 Summary

In order to use Lorentz Force Velocimetry (LFV) for velocity measurements of low-
conducting (σ < 10 S m−1) and slow-flowing (u < 1 m s−1) electrolytes, high-precision
force measurements below 1 µN and the magnetic field generation over 1 T are required.
A bulk HTS can generate a magnetic field of several teslas and therefore was proposed
for use in LFV.
The present thesis investigates the possibility of integrating bulk HTS into the LFV

considering requirements regarding refrigeration and magnetization as well as enabling
the synergistic functionality of the bulk HTS and the FMS, which is the other integral
LFV part. The end goal is to design, manufacture, and test a novel and improved LFV
system for velocity measurements of low-conducting and slow-flowing electrolytes.
The approach used in the investigations as well as important results and conclusions

are summarized as follows:

1. It was experimentally proven, for the first time, that bulk HTS using simplified
liquid nitrogen cooling is feasible for LFV applications. This was a vital intermediate
step indicating that bulk HTS can potentially generate magnetic flux densities over
1 T for LFV applications. In addition to the experiment, a 3D numerical model was
developed. The obtained experimental and numerical simulation results agreed well,
exhibiting the linear relationship between the Lorentz force and product of the electri-
cal conductivity and velocity in accordance with LFV theory. The developed numerical
model was used to calculate necessary trapped magnetic flux densities BT for future
LFV measurements of the model electrolyte with (σ · u) = 10 S s−1.

2. Commercial off-the-shelf Y-Ba-Cu-O bulk HTSs were investigated to define their
mechanical stability and reproducibility, as well as the trapped field capability.
High-field measurement tests revealed that encapsulating the bulk HTS with either

an aluminum or stainless steel tubes are both equally suitable and effective reinforce-
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ments. The used bulk HTSs trapped the reproducible magnetic flux density in the
range of 6 T to 7 T at the bulk HTS surface.

3. The obtained results were then used to develop a novel LFV system which is
referred as to Superconducting High-precision Lorentz Force Measurement System
(Super-LOFOS) comprised of the bulk HTS as magnetic field generator and scaled-
down Torsion Force Measurement System (sTFMS) as the FMS. The Super-LOFOS
novelty lies in using an integrated cooling of the bulk HTS and sTFMS as well as in
the modular cryostat structure.

3.1. Using integrated cooling eliminated the FMS mass limitation to carry the
bulk HTS magnet system and enabled the contacless cooling of the bulk HTS and
sTFMS, thereby excluding sTFMS constrains due to the direct thermal coupling. The
Super-LOFOS integrated cooling was validated experimentally. Using nitrogen and
helium cryogenic liquids, the magnetic flux density of BT = 100 mT at Top ≈ 85 K
and BT = 1.2 T at Top ≈ 46 K were generated on the Super-LOFOS front surface,
respectively.

3.2. The modular Super-LOFOS cryostat structure allowed us to use the available
LHe/LN2 cooling cryostat. Connecting the LHe/LN2 cryostat with either an LN2 or
LHe storage dewar enabled a continuous liquid-flow cooling of the bulk HTS integrated
with sTFMS) down to required operating temperatures.
Bulk HTS cool-down time below T < 100 K lasted 5-15 h and is attributed to the

cumulative Super-LOFOS specific heat and unoptimized regulation of the continuous
liquid-flow cooling, which resembles a simplified closed-cycle refrigerator system. In or-
der to improve and optimize Super-LOFOS cooling the closed-cycle refrigerator system
can be further developed in the future.

Dissertation Oleksii Vakaliuk



7.1 Summary 127

4. Using electrostatic force balancing (EFB) and LFVmeasurements, the Super-LOFOS
functionality as well as the functionality of its components were tested.

Using LN2 cooling and aluminum rod dry calibration, the LFV measurements,
were performed for two velocities. The obtained results were anticipated, but not
reproducible. Further attempts to conduct LFV measurements using either an alu-
minum rod or a model electrolyte dry calibration failed. The failures were caused by
different reasons which were thoroughly examined and corrected. Failures related to
the sTFMS position sensor functionality and the sTFMS flexure bearing functionality
were identified as the most important:

sTFMS position sensor The functionality of the sTFMS position sensor, which
is based on light-dependent diodes, was investigated under cryogenic temperatures.
Separate investigations of the position sensor light-dependent diode compounds (LED
and photodiode) revealed their proper function at 77 K if the light-dependent diode
excitation current is accordingly attenuated. Furthermore, when LED and photodiode
were re-assembled to the sTFMS position sensor, temperature-dependent tests showed
that the utilized sTFMS position sensor can reliably serve at cryogenic temperatures.

sTFMS flexure bearing sTFMS dysfunction was detected after FC magnetization
followed applying BA = 2 T and cooling to Top ≈ 85 K. An immediate examination
at 85 K and following examination at RT indicated that the flexure bearing does not
rotate freely. Influences of cryogenic temperatures and magnetization were identified
as primary challenges hampering proper sTFMS functionality.

The sTFMS rotation malfunction could be attributed to the ferromagnetic and ther-
mal properties of the flexure bearing which is made of AISI 420 steel. AISI 420 steel’s
high magnetic susceptibility (χ = 950) is the reason for the tremendous magnetic forces
exerted on the sTFMS flexure bearing during magnetization.

Although the sTFMS safety inset was developed to mitigate this force impact,
the martensitic AISI 420 steel is metastable and can undergo structural transition
when thermally strained, deformed, or welded [99]. This, in turn, can lead to geom-
etry and mechanical (e.g. elasticity, stiffness) changes which result in flexure bearing
malfunction.
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7.2 Outlook

The present thesis addresses the challenge of integrating bulk HTS into the LFV pursu-
ing the goal to generate a magnetic flux density over 1 T and develop the improved LFV
system for velocity measurements of low-conducting and slow-flowing electrolytes. Al-
though such an LFV system was designed manufactured, and tested, its applications for
velocity measurements were hampered by the sTFMS dysfunction under the cryogenic
temperatures and magnetic field. On this basis, suggestions for future investigations
are classified as follows:

1) The important short-term milestone is to verify the flexure bearing functionality
under a magnetic field. At first, one can continue investigations with the utilized
flexure bearing made from AISI 420 steel. In order to understand the magnetic
field influence on the flexure bearing and sTFMS functionality, the EFB mea-
surements at RT with the sTFMS (not enclosed in the CFC) must be performed
within the 5TCFM at various applied magnetic field from 0 T to 5 T.

Later, one can repeat magnetic field investigations of the flexure bearing made
of low-magnetic material such as AISI 304/316 steel or titanium.

This will facilitate the understanding of how the magnetic field impacts the
flexure bearing as well as helping to diagnose and find remedies for any failures
that might occur in the future.

2) The next short-term milestone is to verify the sTFMS at cryogenic temperatures
using EFB and LFV measurements. It is crucial to understand how the flexure
bearing behaves at cryogenic temperatures, especially also after thermal cycling.
It might be helpful to use temperature control by means of a Manganin wire-
wound heater, which radially envelops the CFC.

3) It is necessary to find a safety method in order to eliminate the action of the
Lorentz and magnetic vector gradient forces on the bulk HTS during magnetiza-
tion.

4) The middle-term milestone is to optimize and improve the magnetic field gener-
ation using bulk HTS. There is a number of factors to improve magnetic field
generation, but the most straightforward way is to increase the bulk HTS vol-
ume using larger or multi-seeded bulk HTS or even configurating bulk HTS from
several samples.
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5) The long-term milestone is to optimize or re-design the Super-LOFOS cooling
cryostat, adapting the closed-cycle refrigerator system or a continuous-flow cryo-
stat. In contrast to a mechanical cryocooler, both cooling systems do not vibrate
and are therefore more suitable for high-precision force measurements.

6) Another long-term milestone is to magnetize the bulk HTS using the PFM in-
stead of FC magnetization in order to make the Super-LOFOS more commercially
attractive: a flow-meter which is faster, more compact, and portable.
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λ Mean value of the temperature-dependent gas thermal conductivity

λp penetration depth of the magnetic field

λ(T ) Tempeture-dependent thermal conductivity

ξ Coherence length

ρ Density

σ Electrical conductivity

σB Tensile strength of a bulk HTS

σns Surface energy at the interface between normal and superconducting state

χ Magnetic susceptibility

Constants
Kes sTFMS calibration constant (0.04 µN V−2)

Φ0 Quantum of the magnetic flux (2.1× 10−15 T m2)

hp Planck constant (6.6× 10−34 m2 kg s−1)

e Electron charge (1.6 C)

k gaseous helium species (2.1)

µ0 Magnetic permeability of vacuum (1.2× 10−6 N A−2)

σsb Stefan–Boltzmann constant (5.7× 10−8 W m−1 K−4)

Dissertation Oleksii Vakaliuk





Abbildungsverzeichnis 161

List of Figures

2.1 Field-dependent polarization of the superconductors at 4.2 K as a function
of the applied magnetic filed: a) - Type I superconductors (pure Pb); b) -
Type II superconductors (PbIn alloy). Data of critical fields are used from [29]. 8

2.2 a) Schematic representation of an isolated Abrikosov vortex in an isotropic
superconductor. Φ0 is quantum of the magnetic flux, λp is the penetration
depth of magnetic field and ξ is the coherence length. b) Distribution of the
magnetic flux density B within the vortex. . . . . . . . . . . . . . . . . . . 10

2.3 Phase diagram of Type II superconductor inB−T coordinates, where Bc1 and
Bc2 is first and second critical field, respectively, Tc is a critical temperature,
BA is an applied field, and Birr is a irreversibility field. . . . . . . . . . . . 11

2.4 a) Magneto-optical images of vortex lattices in a NbSe2 single crystal at 4.0
K under field cooling condition: a) BA = 0.1 mT and b) BA = 0.3 mT [37]. 12

2.5 Magnetic polarization J of the ultra-pure Nb-Ta alloy (solid line) and Nb-Ta
alloy with distortions (dashed line) as function of an appplied magnetic flux
density BA. Data is reproduced from [41]. . . . . . . . . . . . . . . . . . . 13

2.6 The current density (top) and magnetic flux density (bottom) profiles upon
the gradually alternating applied field: a) as the applied field BA increases,
internal field Bin (see Eq. 2.5) penetrates from the superconductor periphery
and approaches the center, it has a slope consistent with jc. b) at BA = Bp,
Bin reaches the superconductor center. c) larger BA leads to further increase
of Bin. d) upon removal of BA, Bin is inverted and the current changes
its sign. At BA = 0, certain portion of Bin with a characteristic triangular
distribution remains in the superconductor. . . . . . . . . . . . . . . . . . 15

2.7 Evolution of the Tc for selected superconductors. Dashed arrow is guide for
eyes. Data are collected from [36, 40]. . . . . . . . . . . . . . . . . . . . . 17

2.8 TFM system consisting of Y-Ba-Cu-O bulk, vacuum vessel and cryocooler:
a) Schematic and b) photograph [74]. Bulk HTS has diameter of 35 mm
and thickness of 14 mm. After the magnetization, trapped field of 0.8 T was
generated and attract iron balls. . . . . . . . . . . . . . . . . . . . . . . . 20

Dissertation Oleksii Vakaliuk



162 Abbildungsverzeichnis

2.9 Two examples of the portable TFM: a) TFM exploiting static magnetiza-
tion developed by Hitachi [76], b) TFM utilizing pulse-field magnetization
developed by Cambridge Bulk Superconductivity Group [62, 75]. . . . . . . 21

2.10 Comparison of the magnetic field generators. Graph is adapted from [79]. . . 22
2.11 Comparison of the z-component surface magnetic flux density By for a) Nd-

Fe-B permanent magnet (MagnetWorld, Jena) and b) Y-Ba-Cu-O bulk HTS
(ATZ®, Torgau). The activation of the bulk HTS was performed following a
field cooling magnetization with BA = 1.5 T at 77 K. . . . . . . . . . . . . 24

2.12 Oka’s diagram for industrial market position of HTS bulk magnet among
other magnetic field generators [67]. Bulk HTSs, acting as TFMs, are ad-
vantageous magnet sources over conventional counterparts, if the high field
generation, size and cost are prioritized requirements. . . . . . . . . . . . . 25

2.13 Schematic of the top seed melt technique (TSMG) with the delineated loca-
tion of the seed, grain sectors, and boundaries. Courtesy of F. Werfel [86] . . 26

2.14 The irreversivility field Birr as function of temperature (down to 77 K) for
different LRE-Ba-Cu-O systems [90]. . . . . . . . . . . . . . . . . . . . . . 27

2.15 Photograph of two Gd-Ba-Cu-O bulk discs with diameter of 150 mm and
60 mm grown using oxygen controlled melt growth (OCMG) by Nippon Steel® [91,
92]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.16 Schematic equipment of the trapped field mapping showing: a) a magnetiza-
tion of the bulk HTS, following by the 3D scanning of the trapped magnetic
flux density BT either with b) 3D step-scanning system and one Hall-probe
or c) a rotating array of Hall probes. . . . . . . . . . . . . . . . . . . . . 29

2.17 Distributions of the magnetic flux density B(r) in the bulk HTS during and
after magnetization using Bean model [42, 43]. a) Zero field cooling: for a
superconductor, which is cooled below its Tc, magnetic field of magnitude
equal to a full penetration field, Bp is applied (top panel). Then this field is
increased to 2Bp (middle panel) following its decrease to zero. As a result,
field BT = Bp is trapped by the bulk HTS (bottom panel). b) Field cooling:
the superconductor is kept above Tc in the presence of an applied magnetic
field BA (top panel). Then, the bulk HTS is cooled below its Tc followed by
slow decreased of the applied field BA (middle panel shows the case with of
0.5 BA). Ultimately, the trapped field is also equal to the applied field BT =
Bp (bottom panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.18 Schematics of the cooling systems of the TFM system: a) cooling with a
cryogenic liquid, b) cooling with cryocooler. . . . . . . . . . . . . . . . . . 32

Dissertation Oleksii Vakaliuk



Abbildungsverzeichnis 163

2.19 An example of a close-cycle cryocoolers: a) integral Stirling (CryoTel® CT,
Sunpower Inc., USA) [129], b) split Stirling cryocooler (AIM®, Germany) [130],
c) pulse tube (Thales®, France) [131], d) Gifford-McMahon [123]. . . . . . . 34

2.20 a) Record trapped field BT for double-sample stack samples as function of the
temperature. Dashed arrow is guide for eyes. b) Temperature dependence
of the trapped magnetic field for the a single bulk HTS. Data is reproduced
from [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.21 a) Distribution of the trapped magnetic flux density BT after high field mea-
surements. b) sketch of the bulk HTS illustrating the crack and two regions
with supercurrent loops j [38]. . . . . . . . . . . . . . . . . . . . . . . . 39

2.22 Dependence of the tensile stress σB on the trapped field BT in bulk HTS
unreinforced and reinforced with a steel tube. Due to the compressive pre-
stress much higher trapped fields are achievable without fracturing. Data is
taken from [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.23 Temperature dependence of trapped fieldBT in the 4-mm-diameter Y-Ba-Cu-O
bulk. Flux jumps with the first flux jump field Bj1 occur below 20 K. Data
is adopted from [38]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Lorentz force velocimetry principle illustrating the interaction of the magnetic
field and the liquid flow with electrical conductivity σ and velocity u. . . . . 44

3.2 Application overview of the LFV for relevant fluids or solid metals. Generated
Lorentz force, FL is calculated according to Eq. 3.1 (with B = 0.1 T and
V = 1× 10−3 m3) using reported value of electrical conductivity, σ and mean
flowing velocity, u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Insert Schematics of the LFV experimental setup comprising three sub-
systems: channel, force measurement system (FMS) and magnet system
(MS). The main part of the LFV setup for the first a) and second b) gen-
erations of the RTG. Both setups have (1) the channel with saline water,
whereas the first setup consists of (2a) permanent magnet blocks [183] and
(3a) PFMS (tungsten wires and inteferometer [184]). The second setup con-
sists of (2b) Halbach MS [183], and (3b) off-the-shelf force sensor [16]. . . . . 47

3.4 MS configurations: a) - Cubic, b) - Halbach. Comparison of the distributions
of magnetic flux density: c), d) along z-axis and e), f) along y-axis . . . . . 49

3.5 Comparison of the Lorentz force generated when using Cubic and Halbach
MS, measured with flowing saline water of σ = 6 S m−1. Data reproduced
from [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Dissertation Oleksii Vakaliuk



164 Abbildungsverzeichnis

3.6 a) Experimental equipment for magnetization of bulk HTSs. It includes (1)
a superconducting solenoid with 300-mm-room-temperature bore and (2) the
LN2 bath styropol box containing bulk HTS [201]. b) The Hall mapping
setup, which consists of (3.1) a three-axis motorized positioner and (3.2) the
cryogenic Hall probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 (1) Two LHe/LN2 cryostats arranged face-to-face. ILK Dresden [204] was
commissioned to manufacture the cryostats as depicted. The cryostats are
mounted on the (3) optical bank which is fixed to the (3) table. . . . . . . . 54

4.1 a) Schematic of the LFV proof-of-concept. b) Photograph of the realized
LFV experimental setup, which consists of five main components: (1) HTS
MS, (2) force sensor, (3) metal rod, (4) linear drive and (5) aluminum rack. . 58

4.2 a) The peak trapped magnetic flux density BT for each bulk HTS as a func-
tion of distance (along the z-axis) with a maximum field of 1.08 T (left) and
0.8 T (right) at the bulk surfaces. b) The magnetic flux density distribution
BT (x, z) in the bulk HTS MS gap. The drawn circle indicates the location
of the metal rod. Firstly, this was measured for each bulk HTS separately,
then for the gap between the two bulks in the HTS MS. . . . . . . . . . . . 59

4.3 A time-dependent characteristics during LFV measurements: a) peri-
odic rod motion L(t), b) Trapped field BT (t), c) the Lorentz force FL(t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 a) Fully 3D model for the numerical simulation of the fundamental LFV
proof-of-concept. The bulk HTS magnets are assumed to be fully magnetized,
carrying a constant Jc corresponding to the trapped field measurements of
each bulk (see Figure 4.2 a). The movement of the metal rod through the
magnets is simulated by applying a velocity (Lorentz term) to the rod sub-
domain. b) Magnetic flux density within the rod cross-section aligned with
the center of the bulk HTS MS. The calculated magnetic flux density is
consistent with the experimental results shown in Figure 4.2 b). . . . . . . . 63

4.5 a) Lorentz Force FL as function of a velocity u for the copper and aluminum
rods. Open circles indicate the experimental results, and the solid circles
indicate the simulation results. The dashed lines indicate the linear fit to
the experimental results. b) Expected Lorentz forces as function of electrical
conductivity for relevant fluids, e.g. solid metals, acids/base and glass melts. 65

Dissertation Oleksii Vakaliuk



Abbildungsverzeichnis 165

5.1 The trapped magnetic flux density BT distributions of the Y-Ba-Cu-O bulk
HTS sample followed FC magnetization with BA = [5 T; 9 T], which was
reinforced: a) with AISI316 steel tube, b) EN AW 7075 aluminum tube. In-
sert: corresponding photographs of the sample with Hall probes and Cernox®

sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 a) The trapped magnetic flux density BT evolution of the Y-Ba-Cu-O bulk
HTS sample reinforced with EN AW 7075 aluminum tube followed FC mag-
netization with [BA, Top] = [(7 T, 40 K); (7 T, 35 K); (9 T, 25 K)]. b) An
attempt to trap higher BT followed the [BA, Top] = [12 T, 17 K] showing
measured magnetic field Bmeas as a function of BA for three Hall probes
mounted at the surface: solid line - (2) middle Hall probe, dotted lines (1,3)
peripheral Hall probes. Upon BA ramping down, a drop of the measured
field occurred at Bj1 = 12 T. c) Measured Top as a function of BA shows an
abrupt temperature spike ∆T = 30 K occurred simultaneously with the Bj1. 71

5.3 a) Proposed CAD-model of the TFMS - third generation of FMS - and its
arrangement at the channel. It consists of (1) MS (e.g. Halbach PMs),
(2) plane-wheel, (3) dummy counterweight, (4) flexure bearing, (5) conical
couplings, (6) position sensor, (7) base plate, and (8) channel. b) Front view
of TFMS, where length of lever arms as well as mass for dummy counterweight
and MS are indicated. CAD-model is adopted by permission of Na Yan [22]. 73

5.4 The concept of a new, improved LFV system in the vicinity of the electrolyte
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 The concept of a solid-plus-gas conduction for Super-LOFOS, which includes
cooling cryostat with LHe and measuring cryostat with an exchange gas. . . 76

5.6 a) The 5TCFM superconducting magnet [202], which has the room-temperature
bore of 300 mm in diameter and 400 mm in length and provides the maximum
field of 5 T in the middle of the bore. b) The schematic of (2) the magnetic
bore in the r-z plane, where the (1) bulk HTS integrated with the (3) TFMS
is placed in the middle of the bore. During the magnetization, electromag-
netic forces FL,HTS in the radial direction are exerted on the (1) bulk HTS,
and magnetic vector gradient forces F∇B,fb are exerted on the (4) flexure
bearing in the z-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Exploded CADmodel of the flexure bearing (C-Flex pivot bearing, D-10) [215]
with its main parameters. Adopted from [22]. . . . . . . . . . . . . . . . . 79

Dissertation Oleksii Vakaliuk



166 Abbildungsverzeichnis

5.8 The scaled-down Torsion Force Measurement System (sTFMS): a) CAD
model and b) photograph. It consists of (1) bulk HTS and its holder,
(2) lever, (3) counterweight, (4) flexure bearing, (5) conical couplings, (6) po-
sitioning sensor, (7) support platform, (8) safety limiter for the flexure bear-
ing and (9) screws for fixation. The design, manufacture, and calibration of
the sTFMS were done by Na Yan [22]. . . . . . . . . . . . . . . . . . . . . 81

5.9 The the sketch of the flexure bearing safety inset. a) measuring mode: the
sTFMS is in the initial position enabling the free sTFMS rotation. b) magne-
tization mode: the sTFMS is inverted on 180° related to its initial position to
secure flexure bearing from damage. Labeling of the components correspond
with the CAD-model (cf. Figure 5.8). . . . . . . . . . . . . . . . . . . . . 83

5.10 Position sensor of the TFMS consists of (6.1) infrared LED, (6.2) two-segment
differential photodiode, (6.3) aluminum frame, which hold both diodes, and
(6.4) aperture, which is fixed to the TFMS counterweight. . . . . . . . . . 84

5.11 Example of an oscillating and damped ∆Vph signal. . . . . . . . . . . . . . 84

5.12 a) The exploded CAD model of the Super-LOFOS comprised of (1) cooling
cryostat, (2) Viton® O-ring, (3) flange adapter, (4) aluminum thermal link,
(5) copper seals, (6) He-line, (7) blind flange (8) sTFMS, (9) bulk HTS,
(10) cryogenic force cell, (11) mechanical support and (12) outer vacuum
vessel. b) Photograph of the assembled Super-LOFOS, which is fixed to
the (13) transport table with (16) four swivel feet and fastened with the
(14) security clamp and is firmly fixed to an (15) optical slab. . . . . . . . . 86

5.13 Front a) and Rear view b) of the Cooling Cryostat consisting of (1)
outer vessel for vacuum shroud, (2) inner vessel containing cryogenic
liquid (V = 1.5 l), (3) multilayer isolation, (4) filling line, (5) three CF
ports and (6) front blind flange. . . . . . . . . . . . . . . . . . . . . . . 87

5.14 The Y-Ba-Cu-O bulk HTS used in the system: a) The bulk HTS with a
diameter of 48 mm and a thickness of 15 mm is fixed in the aluminum holder
using Stycast® epoxy. b) The distribution of the magnetic flux density with
the peak trapped field of 1.26 T at 1 mm distance. Hall mapping is performed
on the 30 mm × 30 mm pitch followed the FC magnetization at 77 K. . . . 91

5.15 CAD models of the cryogenic force cell (CFC): a) illustrates the housing
of the sTFMS within CFC; b) shows its components: (1) cylindrical vessel,
(2) CF blind flange, (3) copper gasket, (4) electrical feedthrough, (5) bolts
and (6) exchange gas supply line. . . . . . . . . . . . . . . . . . . . . . . 92

Dissertation Oleksii Vakaliuk



Abbildungsverzeichnis 167

5.16 The outer vacuum vessel is composed of (1) CF flange, (2) tube and (3) lid
plate. To mechanically fix the vacuum vessel on the CFC one uses the
(4) ring-and-six-rods, which is made of G10-CR fiberglass. Cutout: draw-
ing presentation of the area near the bulk HTS to demonstrate the isolation
gap between the bulk HTS and the outer front Super-LOFOS surface. . . . 94

5.17 A thermal insulation schematic of the measuring cryostat. . . . . . . . . . . 95

5.18 a) The location of temperature sensors in the Super-LOFOS. b) the Cernox®

(CX-1070) sensor is mounted at the aluminum thermal link, which is located
between cooling and measuring cryostat. c) the Pt-1000® sensor is mounted
at the sTFMS platform in the vicinity of the bulk HTS. . . . . . . . . . . . 98

5.19 First Super-LOFOS cooling with LN2 during the initial assembly at ATZ®,
Torgau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 a) Magnetization set-up of (1) Super-LOFOS in the (2) magnet bore of the
5TCFM with the continuous liquid-flow cooling using (3) shipping dewar
(with LN2 or LHe). b) Eccentric positioning of Super-LOFOS in the magnet
bore. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 The experimental setup for the validation of Super-LOFOS. It includes
(1) Super-LOFOS, (2) aluminum rod, (3) linear drive, and (4) support table. 103

6.3 a) The LN2 liquid-flow cooling, followed by the ZFC magnetization with BA
= 2 T. b) The location of temperature sensors in the Super-LOFOS. c)
The cutout enlarges time-dependent temperature behavior and indicates the
measured trapped field BT , when the BA was reduced to zero. . . . . . . . 105

6.4 LFVmeasurement results: a) given velocities u1 = 3.2 mm s−1 and u2 = 1.55 mm s−1.
b) Obtained output voltage ∆Vph(t) of the positioning sensor. c) Lorentz
force FL as function of time: solid lines indicate the experimental results and
dashed lines indicate the simulation results. . . . . . . . . . . . . . . . . . 106

6.5 LHe liquid-flow cooling, followed by the FC magnetization with BA = 4 T and
an attempt of LFV measurements, which failed due to sTFMS failure. Cutout
enlarges time-dependent temperature behavior and indicates the measured
trapped field zBT , when the BA was reduced to zero. . . . . . . . . . . . . 107

6.6 a) Output signal ∆Vph of positioning sensor during LFV measurements. Ob-
served deviance after disassembly of the Super-LOFOS: b) electrical con-
nection between the sTFMS and the cooling cryostat, c) the bent movable
aperture of the positioning sensor. . . . . . . . . . . . . . . . . . . . . . . 109

Dissertation Oleksii Vakaliuk



168 Abbildungsverzeichnis

6.7 A periodical ∆Vph signal of sTFMS, which was achieved after the movable
aperture was aligned to its original shape. . . . . . . . . . . . . . . . . . . 109

6.8 Visualization of the realized improvements. a) Wiring: (1) wires between
the sTFMS and the cooling cryostat were shortened and better aligned.
Controlled rotation: the rotation of Super-LOFOS was improved by adding
(2) the security clamp and (3) four rotation bearings. Such a configuration
minimizes undesired inclinations and provides smooth rotation of Super-LOFOS
around the z-axis. b) the way in which Super-LOFOS is mounted to the op-
tical slab was reworked in order to minimize the eccentric positioning from
42 mm to 18 mm (cf.Figure 6.1 and Figure 6.8.) . . . . . . . . . . . . . . . 110

6.9 The second LHe liquid-flow cooling, followed by the FC magnetization with
BA = 5 T. Insert Disappearance of the ∆Vph during magnetization. . . . . . 111

6.10 a) sTFMS photograph showing the repeated bending of the movable aperture
of the positioning sensor, Cutout: CAD model of the aluminum frame of the
positioning sensor. Simplified sTFMS structure outlining the positioning
sensor with its (1) aperture, (2) the gap in the aluminum frame, (3) the
safety limiter, (4) the flexure bearing, and (5) the lever in b) measuring and
c) magnetization mode. d) sTFMS photograph showing a new aluminium
frame design for the positioning sensor. Cutout: CAD aluminum frame model
for the positioning sensor with an extended 4 mm-gap. . . . . . . . . . . . . 112

6.11 Electrostatic force balancing with the embedded capacitor. a) photograph
and b) the capacitor schematics, which includes (1) a cathode (a part of
whole conducting sTFMS structure), (2) an anode (a copper rectangular
plate that is firmly attached to the safety limiter), (3) G-10 substrate for
electrical isolation. An electrostatic voltage Va can be applied using a dc
voltage source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.12 electrostatic force balancing results at RT as a set of a) operating temper-
ature Top(t), b) applied electrostatic voltage Va(t), and c) the positioning
sensor output voltage ∆Vph(t). . . . . . . . . . . . . . . . . . . . . . . . . 114

6.13 electrostatic force balancing results at LN2 temperature as a set of a) oper-
ating temperature Top(t), b) applied electrostatic voltage Va(t), and c) the
positioning sensor output voltage ∆Vph(t). . . . . . . . . . . . . . . . . . . 115

6.14 a) Schematic of the verification experimental setup, which includes (1) SFH221S
photodiode and (2) L9337 LED, which are fixed at the (3) aluminum frame
of sTFMS position sensor. The circuit diagram for the V − I measurements
with b) LED and c) photodiode at RT and 77 K. . . . . . . . . . . . . . . 117

Dissertation Oleksii Vakaliuk



Abbildungsverzeichnis 169

6.15 a) V −I curves of the LED (VLED) and b) the photodiode (Vph) at prescribed
Iex of the LED at RT and 77 K. . . . . . . . . . . . . . . . . . . . . . . . 118

6.16 Repeated electrostatic force balancing results at RT as a set of a) operat-
ing temperature Top(t), b) applied electrostatic voltage Va(t), and c) the
positioning sensor output voltage ∆Vph(t). . . . . . . . . . . . . . . . . . . 118

6.17 LN2 liquid-flow cooling, followed by the ZFC magnetization with BA = 2 T.
Insert shows obtained ∆Vph right after sTFMS is brought to the measuring
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.18 Repeated electrostatic force balancing results at LN2 temperature as a set of
a) operating temperature Top(t), b) applied electrostatic voltage Va(t), and
c) the positioning sensor output voltage ∆Vph(t). . . . . . . . . . . . . . . 120

6.19 The results: a) A photograph of the movable aperture immediately after
opening the CFC. It is shown that the aperture can move freely in the gap
between positioning sensor’s aluminum frame. b) sTFMS adjustment at RT
showing b) irregular ∆Vph signal. . . . . . . . . . . . . . . . . . . . . . . 121

Dissertation Oleksii Vakaliuk





Tabellenverzeichnis 171

List of Tables

2.1 Comparison of the main parameters for the different portable and desktop
TFM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Overview of the standard off-the-shelf bulk HTSs. . . . . . . . . . . . . . . 28
2.3 Properties of common cryogenic liquids. Data is taken from [99] . . . . . . 33
2.4 Overview selected cryocoolers with the mass of 5 kg [141]. . . . . . . . . 36

3.1 Classification of aggressive and opaque fluids with respect to the measurement
forces resulting from Eq. 3.1 (with B = 0.1 T and V = 1× 10−3 m3) . . . . 51

5.1 Geometrical and physical parameters of the bulk HTS and and reinforcing
tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Calculated Lorentz forces acting on the utilized bulk HTS with the diameter
of 48 mm and the thickness of 15 mm during magnetization at T < Tc. . . . 78

5.3 Magnetic vector gradient forces acting on the flexure bearing during 5 T mag-
netization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Summary of the requirements for the Super-LOFOS based on bulk HTSs and
sTFMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Required functions of the solid-and-gas conduction concept. . . . . . . . . . 91
5.6 The thermal insulation of the measuring cryostat. . . . . . . . . . . . . 96
5.7 Estimation of required cryogen amount necessary to refrigerate the CFC

with bulk HTS/sTFMS to a corresponding operation temperature. . . . 97
5.8 Results of the leak test of the Super-LOFOS after the initial assembly

at ATZ®, Torgau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 The experimental sequence for the validation of Super-LOFOS. . . . . . . . 101
6.2 V −I inspection of the used LED (L9337-02, Hamamatsu) and compar-

ison to other LEDs at RT and 77 K. Data is represented as a forward
voltage VLED after applied excitation current Iex = 3 mA. . . . . . . . . 116

Dissertation Oleksii Vakaliuk



172 Tabellenverzeichnis

6.3 Super-LOFOS test results on achieved operating temperature Top, trapped
magnetic flux density zBT at the Super-LOFOS outer front surface using
LN2 or LHe refrigeration. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Dissertation Oleksii Vakaliuk



Erklärung 173

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Be-nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet
Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend

aufgeführten Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

1) Die fachliche Betreuung der Arbeit erfolgte durch Prof. Thomas Fröhlich.

2) Hilfreiche fachliche Diskussionen wurden zudem mit Dr. Bernd Halbedel geführt.

3) Die numerische Modellierungen in Kapiteln 4.3 wurden von Dr. Mark Ainslie
(Cambridge University, UK) durch fachliche Hinweise unterstützt.

4) Die Experimente in Kapitel 5.1 haben Dr. FrankWerfel (ATZ®, Torgau, Deutsch-
land) und Dr. Jan Jaroszynski (Florida State University, Tallahassee, USA)
durch fachliche Hinweise unterstützt

5) Die Experimente in Kapitel 6 wurden von Dr. Na Yan (TU Ilmenau) durch
fachliche Hinweise unterstützt.

6) Zu einigen Messungen haben Studierende der TU Ilmenau Georg Langhof und
Lulas Kellmann (Kapitel 4.2) im Rahmen ihrer Anstellung als studentische As-
sistenten unter meiner Betreuung beigetragen.

7) Zu einigen CAD Konstruktionen haben Studierende der TU Ilmenau Christian
Dresler und Jonathan Ehrmann (Kapitel 5.3) im Rahmen ihrer Anstellung als
studentische Assistenten unter meiner Betreuung beigetragen.

8) Cindy Karcher (TU Ilmenau) hat diese Dissertation im rein redaktionellen Sinn
(Sprache, Grammatik, Rechtschreibung) Korrektur gelesen.

Dissertation Oleksii Vakaliuk



174 Erklärung

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden
Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen) in
Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leis-
tungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher

Form einer Prüfungsbehörde vorgelegt.
Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erk-

lärung als Täuschungsversuch bewertet wird und gemäß § 7 Abs. 10 der Promotion-
sordnung den Abbruch des Promotionsverfahrens zur Folge hat.

Ilmenau, den 01. 12. 2019 Oleksii Vakaliuk

Dissertation Oleksii Vakaliuk


	Introduction
	Motivation
	Thesis aims and layout

	Strong and compact magnetic sources
	Superconductivity: history and basic definitions
	Discovery of superconductivity
	Importance of magnetic properties
	Type II superconductors
	Phase diagram of Type II superconductors
	Irreversible magnetic behavior and field trapping
	Critical state models

	High-temperature superconductors (HTSs) and their application

	Trapped Field Magnet (TFM)
	Introduction
	Examples of TFM
	Comparison of magnetic field generators
	Fabrication
	Trapped field mapping
	Magnetization
	Cooling
	Cooling with cryogenic liquid
	Cryocooler

	Record trapped fields
	Limitations of TFM at low temperature


	Lorentz Force Velocimetry: state of the art
	Fundamentals
	LFV application and categorization
	LFV on electrolytes: technical issues
	Channel facility
	Force measurements
	Permanent magnet system
	Discussions
	Prior consideration of Bulk HTSs for LFV

	Chapter summary

	Proof-of-principle: LFV using bulk HTS
	Introduction
	Experimental
	Experimental facility: dry-calibration
	Force measurement set-up
	Bulk HTS magnet system (MS)
	Lorentz Force Measurements

	Numerical Model
	Results and Discussion
	Chapter summary

	Design of new LFV system using bulk HTS
	Introduction and initial specifications
	Bulk HTSs
	Torsion Force Measurement System (TFMS)

	Super-LOFOS concept
	Conflict of mass
	Cooling Super-LOFOS: solid-plus-gas conduction
	Magnetizing Super-LOFOS
	TFMS re-design
	Super-LOFOS requirements

	Super-LOFOS design and manufacture issues
	Super-LOFOS outline
	Cooling cryostat
	Measuring cryostat
	Measurement instrumentation

	Initial assembly

	Implementation of Super-LOFOS
	Experimental
	Results and discussion
	Experiment-1: Cooling with LN2
	Experiment-2: Cooling with LHe
	Experiment-3: Position sensor re-design and the sTFMS verification.
	Experiment-4: EFB and LFV measurements at LN2.

	Chapter summary

	Summary and Outlook
	Summary
	Outlook

	Bibliography
	Glossary of Acronyms and Symbols
	List of Figures
	List of Tables
	Erklärung

