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Abstract 
 

The increasing demand for accurate positioning solutions for highly-automated driving and 

safety-critical applications motivates the use of array-based satellite navigation receivers 

that feature better performance, due to the enhanced diversity gain and the potential 

beamforming capability. The need for improving the robustness of navigation receivers 

against sources of signal distortion such as multipath propagation, atmospheric impact, 

jamming, and spoofing violations requests to extend the receiver to exploit polarization and 

frequency diversities. The resulting design is challenged by the significant rise in hardware 

and software complexity. This complexity increases even more with the trend to 

miniaturize the navigation receiver, to ease the integration in vehicles or mobile systems, 

because mutual coupling rises between the radiating elements of the receiver, and 

deteriorates their radiation efficiencies and polarization purities, and hence degrades the 

system robustness. In this thesis, a compact dual-band dual-polarized array-based 

navigation receiver that uses array diversity, frequency diversity, and polarization diversity 

is studied and designed, to provide robustness against the different types of distortions. The 

main contributions of the presented work include the design of the dual-band dual-polarized 

patch antenna element, the design of the compact antenna array, the study of the cross-

polarization sources in patch antennas, the analysis of the mutual coupling impact on 

radiation efficiency and polarization purity of radiating elements, and the mitigation of both 

impacts using eigenmode-based decoupling and matching networks. Furthermore, the work 

also involves the integration of the antenna system with an RF-IF front-end, developed in 

cooperation with IMMS GmbH, for power amplification, filtering, and down-converting. 

The dissertation covers also the integration with an array-based digital receiver, developed 

in cooperation with RWTH Aachen University and the German Aerospace Center (DLR), 

to implement data acquisition, direction-of-arrival estimation, beamforming, and anti-

jamming algorithms. The feasibility of both the array diversity and the polarization 

diversity was confirmed in automotive-related field measurements, particularly for 

elevations below 40° and 60°, respectively; i.e., at directions far from the main beam 

direction of the even mode of the array (at zenith), and where the impact of multipath 

propagation on strength and polarization of the signal reaches sufficient levels to disturb 

the receiver. Measurements proved the receiver robustness against jamming-to-signal ratios 

up to 85 dB, outperforming several state-of-the-art receivers described in literature. 
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Kurzdarstellung 

 

Die steigende Nachfrage nach präzisen Positionierlösungen für hochautomatisiertes Fahren 

und sicherheitskritische Anwendungen führt zu der Verwendung von Array-basierten 

Satellitennavigationsempfängern, die aufgrund des verbesserten Diversity-Gewinns und 

der potentiellen Strahlformungsfähigkeit eine bessere Leistung aufweisen. Die 

Notwendigkeit, die Robustheit von Navigationsempfängern gegenüber Quellen von 

Signalstörungen, wie Mehrwegempfang, atmosphärische, sowie Jamming- und Spoofing-

Störungen, zu verbessern, verlangt, den Empfänger weiter auszubauen, um beispielsweise 

Polarisations- und Frequenz-Diversity auszunutzen. Das hieraus resultierende Design ist 

durch eine signifikante Zunahme der Hardware- und Softwarekomplexität gekennzeichnet. 

Diese Komplexität steigt noch mit dem Trend, den Navigationsempfänger zu 

miniaturisieren, um die Integration in Fahrzeugen oder mobilen Systemen zu erleichtern. 

Da die gegenseitige Verkopplung zwischen den Antennenelementen eines kompakten 

Antennen- Arrays steigt, verschlechtert sich deren Strahlungseffizienz und 

Polarisationsreinheit und damit die Systemrobustheit. In dieser Arbeit wird ein kompaktes, 

dualbandiges und dualpolarisiertes Antennenarray für einen Navigationsempfänger 

untersucht, schaltungstechnisch entworfen und aufgebaut, womit Array-, Frequenz-, und 

Polarisations-Diversity ermöglicht wird. Dies führt zu einer signifikant verbesserten 

Robustheit gegenüber den bereits oben angesprochenen Störungen. Die Hauptbeiträge der 

vorgestellten Arbeit umfassen das Design des dualbandigen und dualpolarisierten 

Patchantennenelements, das Design des kompakten Antennenarrays, das Studium der 

Kreuzpolarisationsquellen in Patchantennen, die Analyse des Einflusses der gegenseitigen 

Kopplung auf die Strahlungseffizienz und Polarisationsreinheit strahlender Elemente, und 

die Abschwächung beider Auswirkungen unter Verwendung von eigenmodebasierten 

Entkopplungs- und Anpassungsnetzwerken. Darüber hinaus beinhaltet die Arbeit die 

Integration des Antennensystems in ein HF- Frontend, das in Kooperation mit der IMMS 

GmbH entwickelt wurde. Dieses dem Antennenarray nachgeschaltete Frontend ist zur 

Leistungsverstärkung, Filterung und Signalkonvertierung der Satellitensignale 

erforderlich. Die Dissertation umfasst auch die Integration mit einem Array-basierten 

digitalen Empfänger, der in Zusammenarbeit mit der RWTH Aachen Universität und dem 

Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelt wurde, in dem neben der 

Datenerfassung, auch die Richtungsschätzung, das Beamforming und die Anti-Jamming-

Algorithmen implementiert wurden. Die Machbarkeit sowohl der Array-Diversity als auch 

der Polarisations-Diversity wurde in Automotive-related Feldmessungen bestätigt, 

insbesondere für Elevationswinkel unter 40° bzw. 60°, h. in Richtungen, die von der 

Hauptstrahlrichtung des Even-Modus der Array (im Zenit) weit entfernt sind, und wo der 

Einfluss des Mehrwegempfangs gegenüber dem Nutzsignals ausreichend hohe Pegel 

erreicht, um den Empfänger zu stören. Die Messungen bestätigten die Robustheit des 

Empfängers gegenüber Stör- Nutzsignalverhältnissen von bis zu 85 dB und übertrafen 

damit mehrere in der Literatur beschriebene „State-of-the-Art” Empfänger. 
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Chapter 1: 

1.  

Introduction 
 

 

The robustness of global navigation satellite systems (GNSS) against external interferers 

or distortions is a critical parameter that defines the capability of these systems to provide 

location, velocity, and time information with sufficient application-based accuracy and 

reliability, in the presence of the interferers. This is of high importance for real-time and 

safety-critical applications such as highly-automated driving, unmanned aerial vehicles, 

and autonomous maneuvering, where consistent, precise and real-time navigation data are 

prerequisite to avoid collision and ensure traffic safety. 

However, the operation of many of the classical GNSS receivers available in the market 

depends on a single radiating element, usually a patch antenna, with simple hardware or 

software solutions dedicated to enhance the receiver robustness against potential sources 

of signal distortions. Hence, the reliability of these receivers might not be sufficient for the 

afore-mentioned applications. Therefore, improving the receiver robustness against 

different types of signal distortions has become an important research field for forthcoming 

satellite-based navigation receivers, especially in automotive industry [1-7]. 

Besides the common natural phenomena that adversely affect the performance of GNSS 

receivers, such as the multipath propagation and the atmospheric impact, jamming has 

become a growing threat, considering the availability of cheap commercial jamming 

devices that can block the service of classical receivers [1, 8]. Such types of interruptions 

raised the need to use adaptive multi-element antenna arrays, to replace the single element 

at the receive side. Antenna arrays empower the receiver with the ability to implement beam 

steering algorithms, e.g., to desensitize the radiation pattern at the directions of interferers 

or jammers [9-15]. 

Moreover, dual-polarized antennas provide the GNSS receiver with full polarization 

degrees-of-freedom, to compensate for the impact of multipath propagation on the signal 

polarization [7, 8, 16, 17]. Additionally, the dual polarization increases the number of 

degrees-of-freedom for the anti-jamming and null steering algorithms [18, 14, 19, 20]. It is 

proven in this work that dual polarization also increases the maximum jamming-to-signal 

ratio (JSR) that can be overcome by the anti-jamming GNSS receiver (JSR-tolerance). 
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Furthermore, dual- or multi-band GNSS receivers have been developed to improve the 

positioning accuracy and enhance the receiver robustness against atmospheric effects on 

the wave propagation [21-23]. 

In summary, growing efforts have been undertaken to design new generations of robust 

GNSS receivers that use antenna arrays (gain and spatial diversities), with polarization 

diversity, and frequency diversity, in addition to dedicated array signal processing 

techniques, to enable compensation for the atmospheric and multipath impacts on the wave 

propagation, and to maximize the received power at directions of the wanted signals and 

null it at directions of unwanted interferers.  

This work describes the design, testing and evaluation of a robust dual-band and dual-

polarized array-based global satellite navigation receiver, which has been developed under 

the project name “compact satellite receiver systems for robust navigation applications 

KOSERNA”, in cooperation between the afore-mentioned partners TU Ilmenau, DLR, 

IMMS GmbH, RWTH Aachen, and Antennentechnik Bad Blankenburg GmbH. 

The project is a continuation of previous projects where array-based, but single-polarized, 

satellite navigation receivers were developed by some partners of this project, namely the 

dual-band “Galileo Antenna Demonstrator GALANT [24]” developed by DLR, and the 

single-band “Compact Adaptive Terminal Antenna for Interference-Free Satellite 

Navigation KOMPASSION [25]” developed by DLR, TU Ilmenau, RWTH Aachen, and 

IMMS GmbH. 

The new receiver, presented in Fig. 1.1, incorporates a four-element dual-band dual-

polarized compact antenna array, connected to two eigenmode-based decoupling and 

matching networks (DMN) [4, 69, 76], to improve the radiation efficiency and cross-

polarization discrimination degraded by mutual coupling. The resulting eigenmodes of the 

array are carried to a calibration circuit, and then fed to an RF-IF front-end for power 

amplification, frequency filtering, and RF-IF down-converting. Finally, the signals are 

carried to a digital receiver empowered with array-based algorithms to perform data 

acquisition, direction-of-arrival estimation, beamforming, and anti-jamming.  

The antenna with its decoupling and matching networks and its calibration circuit were 

developed by TU llmenau. The front-end was developed by TU Ilmenau and IMMS GmbH. 

The digital receiver was developed in cooperation between RWTH Aachen, DLR, and TU 

Ilmenau. The robustness of the receiver, with its enhanced array and polarization 

diversities, were tested against different automotive-related multipath and jamming 

scenarios, in measurement campaigns run by all partners. 

My responsibilities in this work included the antenna array, the decoupling and matching 

circuits, the calibration circuits, the integration and performance testing of the RF-IF 

circuits, the integration with the digital receiver, the setup and the performing of the 
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measurement campaigns in cooperation with the other partners, the analysis of the results, 

and evaluation of the system. 

 

 

Figure 1.1: A block diagram of the proposed array-based dual-band dual-polarized GNSS 

receiver, showing the main components and the signal flow. 

The automotive-related field measurements proved the usability of the higher-order right-

hand circular-polarized (RHCP) eigenmodes of the array for receiving the navigation 

signals, particularly at low elevations, where the higher order modes have larger gain than 

the even mode (below 40° for the designed antenna array),  and thus to extend the coverage 

angle of the receiver.  

Measurements proved also the usability of the higher-order left-hand circular-polarized 

(LHCP) modes, particularly the odd modes, to receive the navigation signals at elevations 

below 60°, and thus to compensate for the polarization distortion caused by the multipath 

propagation. This, eventually, helps to improve the tracking quality, and hence the 

positioning accuracy of the receiver. It helps also to improve the anti-jamming robustness 

level of the receiver. 

Measurements helped also to decide which left-hand modes should be selected for practical 

dual-polarized receiver, where limited number of RF channels can be processed, to reduce 

the system complexity and costs. 

These results confirm the usability of dual-band dual-polarized antenna arrays to extend 

the scan-angle of GNSS receivers, improve their positioning accuracy, and enhance their 

robustness against polarization distortions and jamming interferers. 
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Comparisons found that the developed receiver outperforms several state-of-the-are anti-

jamming receivers described in literature, particularly in the anti-jamming robustness level 

[3, 6, 26-28]. 

Analyses, to highlight the influence of each part of the analog and digital stages, found that 

all parts of the receiver are relevant to achieve improved robustness, since each stage of the 

system highly depends on the others. While array-based anti-jamming signal processing is 

essential to exploit the array and polarization diversities, a well decoupled and matched 

antenna array, with optimized array and polarization diversities, is a prerequisite for such a 

system. Additionally, a proper RF-IF front-end with low noise figure, gain control, and 

probably the possibility of online calibration, is necessary for the efficient integration of 

the receiver. 

The motivation for the proposed design, together with the state-of-the-art are covered in 

Chapter 2.  

The design of the single dual-band dual-polarized GNSS radiating element, with special 

focus on the polarization characteristics, is covered in Chapter 3.  

Chapter 4 is dedicated to study the performance of radiating elements in compact antenna 

arrays, with focus on the impact of mutual coupling on the polarization purity of patch 

antenna elements. 

Chapter 5 describes the receiver construction in detail, with focus on the hardware part of 

the receiver. The chapter combines the design and layout of the circuits, the circuit-level 

measurements, and eventually the system integration.  

Chapter 6 is devoted to the automotive-related system performance evaluation of the 

receiver, with focus on the robustness against jamming sources, and the feasibility of array 

diversity and polarization diversity. 

The conclusions and main findings of this thesis are finally presented in Chapter 7. 
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Chapter 2: 

2.  

Motivation for Robust Satellite 

Navigation Systems 
 

 

2.1 Global navigation satellite systems (GNSS) 

Acquiring the basic geographical knowledge of the surrounding area, and the possible 

navigation paths towards resources, or other points of interest, played always a significant 

role in the history of human civilization. 

Global Satellite Navigation Systems are used, nowadays, to fulfill this demand and provide 

users with the ability to calculate their position, velocity, and time. Advanced GNSS 

receivers can provide more information such as attitude. GNSS systems may work 

independently or integrate with other sensors (e.g., inertial measurement units) to improve 

accuracy and reliability.  

A GNSS system, illustrated in Fig. 2.1, is a satellite-based broadcasting system, where 

satellites orbiting the earth broadcast dedicated L-band RHCP signals with navigation data 

and ranging codes. The navigation data of each signal contain the position, velocity, and 

clock bias of the related satellite, while the ranging codes are Pseudo-Random Noise (PRN) 

sequences that allow the receiver to calculate the travel time of the signal. The travel time 

and navigation information, if received from at least three satellites, should allow the 

receiver to calculate its relative position. However, due to the time ambiguity, four satellites 

are needed to find the position, time, and subsequently velocity information [29, 30, 31]. 

Several GNSS systems were deployed over the years to respond to the inevitable reliance 

on this service in wide variety of applications including transport, aviation, automotive, 

mapping, farming, disaster management, etc. These systems include GPS, GLONASS, 

Galileo, BeiDou, etc [32, 33]. 
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Figure 2.1: Basic illustration of a GNSS system, depicting the GNSS receiver, several 
GNSS satellites, and the main components of a GNSS signal. 

 

2.2 Sources of signal distortion 

With the low receive power at GNSS receivers (typically around -130 dBm), and the small 

gain of their antennas (typically around 3 dB to 6 dB at the main direction for the widely 

used patch antennas), these devices are vulnerable to several kinds of distortions that either 

directly affect the receivers themselves or distort the propagating navigation signals, 

resulting in positioning errors and decreased reliability, which limits the possibility of using 

these receivers for automotive or safety-of-life applications. 

In addition to possible unintentional interferers from systems working close to the GNSS 

frequencies, sources of distortion include intentional jamming and spoofing devices, 

atmospheric impact, and multipath propagation, as illustrated in Fig. 2.2.  

 

 
 

Figure 2.2: Illustration of a GNSS receiver in operation, with possible sources of 
distortions that may affect the receiver or the navigation signals.  
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These sources are to be covered in detail in the following paragraphs. The solutions to 

mitigate the influence of these sources of distortion are discussed thereafter. 

2.2.1 Propagation effects (multipath and atmosphere) 

Multipath propagation has a strong influence on the performance of GNSS receivers, 

especially in urban environments. Shadowing may block or limit the service. Reflections 

attenuate the strength of the reflected signal. The longer traveled-paths add delays, which 

affect the positioning accuracy. Moreover, instances of the signal coming through different 

paths add to each other destructively or constructively, resulting in fast fading which 

influences the stability of the receiver [7, 17, 34-37].  

Furthermore, reflected instances of the signal may change their polarization from the 

nominal right hand circular polarization to the unwanted left hand circular polarization 

depending on the impinging angle as described in [7, 16, 38]. This phenomenon results in 

a received signal with stronger LHCP component at the receiver side, which introduces a 

polarization mismatch with the RHCP receiver. 

Additionally, the atmospheric layers could have notable influence on the GNSS signal at 

certain frequency bands, depending on the weather condition and the direction of arrival of 

the signal [21, 22, 35, 39]. 

2.2.2 Intended signal modifications (jamming and spoofing) 

One kind of intentional in-band interference is usually referred to as jamming. The jammer, 

usually, transmits high-power signals at the GNSS frequencies to prevent receivers in the 

area from operation. One of the most famous types of jammers is the personal privacy 

device (PPD), which is widely available on the market. The PPD, in the name of protecting 

the privacy of users from being detected, usually affects a wide area around the user, due 

to its high power, preventing other users from accessing the service. PPDs, mostly, transmit 

their signals from low elevations (0°  to 15°), either from static or moving devices [1, 8, 

40-42]. 

Despite the noise-like properties of the GNSS signal which make them robust against 

distortions 20 dB higher than the signal level [26], they fail against greater distortion levels, 

which can easily be reached by commercial jamming sources, if they were at suitable 

distances. A jammer, 100 meters away from the receiver, for example, needs a transmit 

power of only -14 dBm to reach a receive power level of -100 dBm at the receiver and jam 

it with a jamming-it-signal ratio of about 10 dB, assuming a free space loss of about 76 dB 

at the operation frequency of 1.575 GHz, and a receiver gain of only -10 dB at the low 

elevation direction of the jammer. 
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Spoofing is another kind of intentional interference, where the interferer transmits GNSS-

like signals with information of artificial satellites, in order to deceive the receiver to 

calculate wrong positions [5, 43, 44]. Like jammers, spoofers usually transmit from low 

elevations, and can be static or dynamic. 

 

2.3 Array-based robust satellite navigation receivers 

Increasing efforts have been carried out in the last years to enhance the robustness of GNSS 

receivers against the aforementioned kinds of distortions. Proposed solutions mainly use 

antenna arrays and array-based signal processing techniques to compensate for the 

atmospheric and multipath propagation effects, and to improve the immunity from jamming 

and spoofing [2, 3, 6, 9-12]. 

In addition to the spatial diversity achieved by using multi-element antenna arrays, some 

receivers benefit from either frequency diversity, using multi-band radiating elements, or 

polarization diversity, using dual-polarized elements [14, 18-23]. 

In the thesis, in order to acquire all possible degrees-of-freedom, a GNSS receiver that 

exploits antenna arrays, frequency diversity, and polarization diversity is investigated, 

designed, and evaluated. Motivations for the use of such a diversity receiver are explained 

in detail in the following paragraphs.  

Being influenced by automotive prerequisite for compactness, the thesis focuses on the 

design of “compact” antenna arrays, and the impact of the increasing mutual coupling on 

the array eigenefficiencies, and on the cross-polarization discrimination of the radiating 

elements, and how to mitigate that. 

2.3.1 Antenna arrays 

The need for global service coverage, with the limited number of available satellites, and 

the requirement of providing low dilution of precision (DOP), forced to distribute the 

GNSS satellites around the earth so that they appear at various elevations and azimuths in 

the sky-view of a user GNSS receiver. This distribution restricts the usability of the single-

element planar microstrip antennas if their radiation patterns were directed to the zenith 

with poor radiation efficiency and polarization purity at low elevations, which is very 

common.  

This challenge can be partially overcome using radiating elements with patterns of wider 

beams, at the cost of reducing the gain, increasing the fabrication complexity, and probably 

influencing the compactness of the device. However, a multi-element planar antenna array 

empowers the receiver with more degrees-of-freedom, and therefore features higher 
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diversity gain and enables implementing of advanced array signal processing techniques 

such as adaptive linear beamforming [2, 9-12, 45-47]. 

With adaptive beamforming, the receiver may either simply excite the even mode of the 

array (where all radiating elements are excited with the same amplitude and phase) to 

enhance its gain at the zenith and achieve better signal-to-noise ratio, to ensure better 

navigation accuracy, or excite a superposition of its radiation eigenmodes [4, 69, 76], in 

order to acquire navigation data from satellites at different directions [9-12]. This spatial 

diversity empowers the receiver with the capability to compensate for the impact of 

multipath propagation and track satellites at elevations down to 10° [48]. 

Moreover, array-based receivers can estimate the direction of arrival (DoA) of possible 

sources of interference, such as jammers or spoofers, and use beamforming to desensitize 

the radiation patterns at those directions [4, 9, 38]. Such a process, usually referred to as 

null-steering [13, 15, 49, 50], plays a pivotal role to improve the robustness of the receiver 

against unwanted interferers. 

2.3.2 Dual-polarized Antennas 

Classical GNSS receivers use RHCP antenna to cope with the polarization of the GNSS 

signal. However, multipath propagation changes the polarization purity of the signals, 

introducing larger LHCP components at the receiver, which results in polarization 

mismatching, and hence power loss [7, 8, 16, 17]. This phenomenon gives rise to the use 

of dual-polarized antennas, to enable receiving both the RHCP and LHCP signals. 

Moreover, single-polarized RHCP planar antenna arrays suffer from degraded cross-

polarization discrimination at lower elevations, due to mutual coupling, as studied in detail 

in chapter 4. This enables the arrays to, partially, receive the LHCP components. However, 

their LHCP patterns show poor efficiencies. Optimal reception of the signal with minimum 

polarization mismatch can only be achieved by acquiring the two polarization degrees-of-

freedom, using dual-polarized antennas. 

Furthermore, dual-polarized antennas enhance the robustness against jamming sources [14, 

18-20]. Having a linear-polarized jamming source, null-steering algorithms that steer only 

the RHCP patterns can help to eliminate the influence of the jamming signal if a pure RHCP 

receiver is used. Unfortunately, jamming signal arrive usually from low-elevations where 

the receiving planar antennas have notable LHCP gains, e.g., at elevations below 10°, 
where the LHCP radiation modes of a patch antenna array can be comparable to the RHCP 

ones. This allows for the LHCP components of the linear-polarized jamming signal to jam 

the receiver. This challenge emphasizes the need for dual-polarized antennas to empower 

beamforming algorithms with both polarization degrees-of-freedom. It is shown in this 

work that dual-polarized antennas help to enhance the robustness of the designed receiver 

against jamming sources by about 10 dB to 15 dB at elevation of 10°. 
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Additionally, the increasing mutual coupling in compact RHCP antenna array degrades the 

polarization purity of the higher-order radiative modes, resulting in stronger LHCP 

components [51, 52]. This detrimental effect decreases the polarization diversity of the 

antenna array. However, the impact on the receiver performance can be reduced by 

receiving both polarizations using dual-polarized antenna elements [48]. 

2.3.3 Multi-band antennas 

GNSS systems provide the navigation service on several frequency bands. Receivers that 

operate on two or more frequency bands allow for duplicating the navigation date, which 

results, with proper Kalman-filtering, in improved positioning accuracy, and enhanced 

robustness against frequency-dependent atmospheric and multipath propagation influences 

[21-23]. 

The additional resources help also to accelerate the resolving of ambiguities, and then to 

speed up the receiver lock time, which can be critical for real-time applications such as 

mobility [39].  

 

2.4 State of the art 

While GNSS systems have been developed since a few decades, systems robust against 

jamming, spoofing, and multipath propagation have been under increasing focus only in 

the last fifteen years, to serve in applications where reliable and robust navigation data are 

essential, such as in safety-of-life and automotive. 

The global automotive supplier Ningbo Joyson Electronic Corp states that there are four 

core competencies in the research & development areas of automotive industry [53]: 

- Navigation & driver assistance. 

- Tuner & multimedia (Infotainment). 

- Connectivity 

- Telematics & data services 

As confirmed by the list, the development of navigation and driver-assistance systems 

stands as an essential item of the recent and future research fields in automotive. Hence, 

Tier1 companies such as Bosch, Magna, Delphi, and Continental are putting increasing 

effort, nowadays, on the design of new Lidar-based, radar-based and satellite-based driver-

assistance systems, in addition to ultrasonic sensors, cameras, and odometry sensors [54, 

55], to enable cross talk, collision avoidance, and to even fulfill the increasing interest in 

fully-automated driving by OEM companies such as Volkswagen, Daimler, and even non-

OEM companies such as Google. Figure 2.3 shows a photo of the fully-automated google 

car under test, from the google self-driving car project “Waymo” [56]. 
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While the development of advanced driver-assistance systems involves many fields of 

research in hardware and software, the development of satellite-based navigation systems 

focuses more on improving the navigation accuracy through signal processing techniques, 

and not through array-based receivers. One major reason for that is the trend to make all 

sensors in the car as compact as possible to reduce the cost and ease the integration with 

the numerous electronic and mechanic devices in the vehicle. The reliability of GNSS 

receivers is usually improved through integration with inertial measurement units (IMU) in 

inertial navigation systems (INS) [57, 58]. 

 

Figure 2.3: A photo of the google fully-automated car, from the google self-driving car 

project “Waymo” [56]. 

In general, while multi-band receivers are increasingly used, array-based receivers and 

dual-polarized receivers are still not common on the market, and therefore, services such 

as robustness against jamming and multipath propagation are usually not provided, which 

makes this area of research quite promising for exploration. 

Regarding the robustness against jamming, commercial single-element GNSS receivers 

usually provide a JSR-tolerance of only 20 dB or less [26]. Array-based GNSS receivers, 

described in literature, do not usually exploit all possible degrees-of-freedom such as 

adaptive beamforming, frequency diversity, polarization diversity, etc. Furthermore, many 

receiver systems do not provide adaptive gain-control of the front-end or on-line calibration 

of the RF signals. Hence, they provide a JSR-tolerance between 25 dB and 60 dB depending 

on the used techniques [3, 6, 26-28]. 

This thesis and the related project “KOSERNA” are part of the research in this field. The 

team of the project was part of a former project “KOMPASSION”, where a single-band 

single-polarized array-based anti-jamming GNSS receiver was designed and equipped 
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with adaptive beamforming and null-steering technique to achieve a JSR-tolerance of about 

55 dB, which was increased to about 70 dB later, using front-end gain-control.  

In the project “KOSERNA”, we design a dual-band dual-polarized array-based receiver 

that involves the features of “KOMPASSION” in addition to polarization diversity, 

adaptive beamforming, front-end gain control, and RF gain calibration. Results at the 

end of this thesis reveal that the developed system outperforms several state-of-the-art 

systems, with a JSR-tolerance of about 85 dB. The receiver, due to the polarization 

diversity, partially compensates for the multipath propagation impact, and therefore 

features improved performance at low elevation directions, as well, i.e., far from the 

direction of the main beam of the antenna pattern, where the antenna features poor 

performance, while the multipath propagation, on the contrary, has stronger influence. 

The following chapters describe the theoretical and practical challenges towards the full 

design of the receiver, and end with the system performance evaluation under automotive-

related scenarios. The design of the antenna array, and the enhancement of its 

eigenefficiencies and the cross-polarization discrimination of its radiating elements, in 

order to improve the receiver robustness, are the main focus of the thesis. This includes the 

studying of the influence of mutual coupling on polarization purity of the radiating 

elements, and proving the feasibility of the decoupling and matching networks not only to 

enhance the array eigenefficiencies, but also to improve the polarization purity of the 

antenna elements. It also includes proving the feasibility of both the array and polarization 

diversities to enhance the robustness level of the receiver, to outperform element-based 

receivers or array-based single-polarized ones. The thesis also involves the integration 

between the antenna system and the RF-IF front-end, and the role the front-end plays in 

defining the anti-jamming robustness level of the system. Moreover, the thesis describes 

all the parts of the GNSS receiver, including the digital receiver. 
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Chapter 3: 

3.  

Design of Dual-band Dual-polarized 

GNSS Single Antenna Elements 

 

 

3.1 GNSS antenna design 

3.1.1 Application requirements 

Design of the single radiating element plays a key role in the development process of GNSS 

receivers. This importance increases in the case of dual-band dual-polarized robust GNSS 

receivers, since the radiation properties of the antenna at each frequency band and at each 

polarization determine the diversity gain of the receiver, and hence its level of robustness. 

This applies for both element-based [14, 18], and array-based receivers [19, 20]. 

Therefore, in addition to the focus on the classical antenna design parameters such as the 

operation frequency, the bandwidth, the gain pattern, and the co-polarization, the design of 

a radiating element made for dual-polarized GNSS receivers must put a strong focus on the 

cross-polarization discrimination of the antenna. This focus should not only cover the high 

elevations, where the classical approach that focuses on the gain at these elevations results 

usually in a good cross-polarization discrimination (XPD), but it should also cover the low 

elevations, since enhancing the polarization purity of the antenna, and thus the polarization 

diversity of the receiver, improves its robustness against multipath propagation, and 

subsequently extends the coverage angle of the receiver. 

However, in comparison to the classical single-band single-polarized antenna, the 

prerequisite of dual-band and dual-polarization functionality increases the complexity of 

the element design, which rises the need to find compromises between the performance 

demands, the physical limitations, and the challenges of manufacturing technologies.  
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3.1.2 Antenna type 

Due to technical, manufactural, and commercial reasons, most of the recent applications 

that require GNSS receivers prefer compact lightweight printed-circuit-based receivers 

with ease of fabrication and system integration. To fulfill these requirements, antenna 

designers may use planar printed patch, dipole, or monopole antennas. Patch antennas, 

however, are preferred for GNSS systems to enable the excitation of the right hand circular 

polarization, either directly by truncating the patch surface, or by exciting its vertical and 

horizontal polarizations with 90° phase shift. Patch antennas are also preferred for their 

miniaturized sizes, especially if high dielectric materials were used as substrates. Moreover, 

patch antennas are preferred for multi-band antenna systems, since it is possible to 

manipulate their surfaces to excite several bands, which avoids the need for extra space to 

deploy several single-band antennas. 

3.1.3 Design approaches 

A single patch antenna operates, in the nominal case, at a single frequency band. However, 

dual- or multi-band patch antennas were developed since early stages. Dual-band patch 

antennas, in particular, can be classified according to the implementation design into two 

main types; the multi-layer design, where the antenna is designed using several metallic 

layers to resonate at every frequency [59-61], and the single layer design, where the patch 

surface is manipulated to change the surface current distribution in order to excite several 

radiation modes at different frequencies [62-65]. 

The dual-polarization functionality is achieved, usually, using two feeding ports to excite 

two different radiation modes with orthogonal polarizations. The ports feed the patches at 

optimized positions to provide the best possible matching level at both frequency bands, 

and to excite the relevant orthogonal polarizations with minor cross-polarization coupling. 

More details about the design are to be mentioned in the following sections. 

 

3.2 Multi-layer patch antenna element 

In this approach, the dual-band antenna is designed using two patch layers, where a small 

patch is stacked over a larger one, which is stacked, in turn, over a ground layer, and a 

dielectric material is used between the three layers, as depicted in Fig. 3.1. This structure 

provides two cavities, resulting in resonating at two frequency bands. The lower band can 

be determined, mainly, by tuning the dimensions of the larger patch, and the higher band is 

achieved, mainly, by tuning the smaller one. However, each of the two patches influences 

the operation at the two bands, and hence both must be tuned jointly to achieve the 

resonance at both bands. 
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 A single port capacitive feeding is used to excite the two patches at their different 

frequency bands, resulting in dual-band radiation with the same linear polarization. A 

similar feeding port is placed along the orthogonal principal axis to excite the patches with 

the orthogonal linear polarization. 

Eventually, a dual-band dual polarized antenna is achieved. A design of such an antenna 

model was accomplished by our project-partners in the Institut für Kommunikation und 

Navigation (IKN) at DLR, using the Rogers 3010 material [66] as the dielectric substrate.  

 

Figure 3.1: Top-view and cross-sectional view of a multi-layer dual-band dual-polarized 
antenna element 

The single element design together with an array design are presented in detail in [66, 67], 

while the integration of the antenna with the front-end of a GNSS receiver is presented in 

[68, 69]. 

The antenna had a thickness of 8 mm, which was difficult to be manufactured in the 

available printed circuit board (PCB) manufacturing industry in Germany and Europe, 

where, for reasons of financial feasibility, industry focuses on establishing production lines 

for PCBs thinner than 5 mm. Therefore, the layers had to be printed separately, and then 

stacked manually in the lab. Thus, it was difficult, with such a fabrication complexity, to 

propose the antenna for massive production, and therefore it was decided to go for the 

single-layer approach. 
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3.3 Single-layer patch antenna element 

3.3.1 Antenna design 

As mentioned before, a single-layer patch antenna may resonate at two frequency bands 

only if its surface current distribution was modified to excite more radiation modes at 

different frequencies. This, equivalently, means that the antenna surface must be re-

designed to provide acceptable input matching and radiation efficiencies at both frequency 

bands-of-interest. This can be achieved by making slots inside the patch as described in 

[63].  

However, it was found in [63] that, due to the geometrical limitations of the slots and the 

patch surface, which determine the upper and lower resonance frequencies, the ratio of the 

two operation frequencies of a slot-loaded patch antenna cannot drop below 1.6. This 

design limitation creates a major challenge for GNSS receivers, where the commercial 

operation bands are between the GPS L5/Galileo E5a-band centered at 1176.45 MHz and 

the GPS L1/Galileo E1-band centered at 1575.42 MHz, which leads to a ratio of 1.34.  

The 1.6 frequency ratio can be reduced using more slots in asymmetric designs [64]. 

However, this works only for single-polarized antennas. The need to excite two radiation 

modes with orthogonal polarizations and identical gain patterns forces the design to retain 

symmetry, and thus restricts the way how slots can be added. 

In order to get rid of the limitation of adding slots, more spatial degrees-of-freedom can be 

brought by attaching stubs at the outer sides of the patch. This was found to help to 

overcome the ratio problem, without influencing the symmetry. A dual-band circularly-

polarized patch antenna that uses a single square patch with four T-stubs arranged at the 

four edges was proposed in [65]. However, the antenna operated at frequency bands 

centered at 1.531 GHz and 3.050 GHz, which results in a frequency ratio of 1.9 > 1.6. 

The stub-loaded antenna was re-designed in [70], to address the GPS L1- and L2-bands, 

centered at 1176.45 MHz and 1227.6 MHz respectively, with a frequency ratio of 1.284. 

However, the dual-band antenna was single-polarized with asymmetric shapes and 

positions of the T-stubs, in order reduce the axial ratio at the two frequencies. 

The idea of stub-loaded patch antennas was successfully employed in this work, for 

operation at the two L1- and L5-bands, with a symmetric design that excites two orthogonal 

polarizations, as illustrated in Fig. 3.2. Two feeding ports were used to allow for the 

excitation of two orthogonal linear polarizations, namely vertical and horizontal. The 

positions of the two ports were selected based on electromagnetic full-wave simulations of 

the field distribution within the patch, such as to minimize the cross-polarization coupling. 

The RHCP and LHCP polarizations were excited by feeding the two antenna ports using a 

quasi-lumped coupler with a 90° phase shift. 
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The organic laminate Rogers 3010, was used to limit the geometrical dimensions of the 

antenna to about 3 cm × 3 cm, attributed to its high dielectric constant of 10.2. The material 

was also selected for its low dissipation factor of tan � � 0.0022, and its excellent 

dimensional and dielectric constant stability with temperature between -50 and 150 °C [71]. 

Two substrate layers of an individual thickness of 2.54 mm were stacked over each other, 

using a 0.1 mm adhesive layer of Rogers 4450F [72], to enhance the radiation efficiency 

and the bandwidth of the antenna. This results in an antenna of 5.18 mm thickness, or 5.215 

mm thickness if the thickness of the metallic surfaces was counted, which is almost at the 

upper limit recommended for mass production by the printed circuit board industry in 

Europe. 

Adding the adhesive material, with 3.52 permittivity, was found to reduce the equivalent 

permittivity of the substrate from 10.2 to around 9.8, resulting in shifting the two resonance 

frequencies of the antenna by about 32 MHz at the L1-band and 24 MHz at the L5-band. 

The antenna was retuned in the numerical full-wave simulations, to compensate for this 

impact. The design and the simulations were performed using the frequency solver of CST 

Microwave Studio [73]. 

 

 

Figure 3.2: Top-view (upper panel) and side-view (lower panel) of the single-layer dual-
band dual-polarized stub-loaded patch antenna element, with material composition and 

geometrical dimensions as shown 
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3.3.2 Manufacturing challenges 

Numerical simulations of the stub-loaded patch antenna found that the resonance 

frequencies, radiation efficiencies, and polarization purity, at both bands, were strongly 

sensitive to the dimensions of the stubs, the dimensions of their feed lines, and the gaps 

between the stubs and the patch edges. Therefore, in order to reduce the influence of the 

fabrication tolerance of 100 µm, the design was optimized while keeping all dimensions 

greater than five times the fabrication tolerance, i.e., 500 µm. 

The complexity of this optimization process was overcome using the CST built-in genetic 

algorithm, which is a global optimization method suitable for problems with large number 

of parameters. The algorithm searches for the global solution of the problem following the 

principles of the process of natural selection [74, 75]. The optimization parameters of the 

algorithm were the antenna dimensions, while the main targets were: 

- Dual-band operation with a reflection coefficient below -10 dB at both bands. 

- A bandwidth larger than 4 MHz at the L1-band and 20 MHz at the L5-band. 

- Polarization purity with XPD larger than 10 dB over the entire upper sphere. 

- A released gain larger than 2 dB at both bands. 

First manufactured designs showed downward frequency shifts of about 30 MHz from the 

L1-band and L5-band, mainly because of the difference between the nominal and actual 

values of the dielectric constant of the Rogers 3010 substrate. The actual dielectric constant 

was recomputed, based on the frequency shift, and was found to be 10.8 instead of the 

nominal value of 10.2. The antenna was redesigned based on the new value of the dielectric 

constant (basically, all dimensions of the patch layer where miniaturized by the ratio √10.2 

/ √10.8 ≈ 0.97). S-parameter measurements of the corrected design showed a very good 

frequency response, as seen in Fig. 3.3. 

3.4 Single-layer antenna measurements 

3.4.1 Frequency response 

Antenna measurement results of the final design proved the antenna resonance at both 

bands-of-interest, with a reflection coefficient of about -15 dB at the L1-band and -12 dB 

at the L5-band, as depicted in Fig. 3.3. The same performance was measured for both 

polarizations. 

Measurements of antennas from different fabrications showed very good reproducibility, 

with a frequency deviation of about 1.5 MHz and a maximum frequency shift of about 3 

MHz. This shift is quite acceptable for GNSS application as it is still below half the 

bandwidth of the antenna, which is about 6 MHz at the L1-band and 25 MHz at the L5-
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band. The reproducibility can be improved through more accurate manufacturing of the 

patch layer. 

 

Figure 3.3: Reflection coefficient vs. frequency, measured at a single port of the dual-

band dual-polarized antenna element. The other port shows similar measurements. 

Due to the sophisticated geometry, simulations and measurements show that the antenna 

has an additional resonance at 1.5 GHz, which is not wanted by the design specifications. 

However, this resonance is associated with the mode	TM��, which is orthogonal to the 

dominant mode TM
� that resonates at the L1- and L5-bands, and therefore it has minimal 

effect on the receiver operation at these two bands. Moreover, this mode has a radiation 

pattern of two beams, with a null at zenith, which is not desired by the classical GNSS 

antennas, and therefore it was not feasible to retune the antenna to use this mode in a multi-

band GNSS receiver. Furthermore, the mode suffers from a radiation efficiency below 10%, 

which makes it not practical for a multi-mode antenna system too. Therefore, this mode is 

to be filtered out in the GNSS receiver by the antenna matching networks, and the front-

end RF filters. 

3.4.2 Radiation pattern 

The realized-gain patterns were measured for each polarization in the anechoic chamber. 

Measurements confirmed that each of the gain patterns at L1- and L5-bands has one lobe 

directed at zenith, as expected from theory and numerical simulations, and as depicted in 

the normalized θ-cuts illustrated in Fig. 3.4. The maximum measured realized gain was 

about 2.5 dBi at the L1-band and 4 dBi at the L5-band. The patterns were almost constant 

versus azimuth, with changes below 0.2 dB due to fabrication and measurement tolerances. 

As noticed, the maximum measured realized gain values are far from the expected values 

of a single-band patch antenna (5 to 7 dBi). Small part of this limitation is due to the 

difficulty of achieving 50 Ω feed matching at the two closely-spaced frequency bands 
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simultaneously. An input impedance �� of about 30 Ω at the L1-band and 45 Ω and L5-

band was achieved, which results in a reflection coefficient Γ of 0.25 and 0.05, or a 

reflection loss RL of 0.28 dB and 0.01 dB, respectively, as can be calculated from: 

� � �� � ���� � �� 																																																														�3.1� 

 �� � �10. ���
��1 � ���,																																														�3.2� 

where the characteristic impedance �� � 50	Ω. 

The main reason for this limitation is attributed, in fact, to the stubs, which change the 

surface current distribution of the original single-band patch antenna, in order to force the 

patch to resonate at two frequencies, resulting in a radiation efficiency smaller at each band 

than the original radiation efficiency of the single-band patch antenna. Electromagnetic 

full-wave simulations found that the designed stub-loaded patch shows a radiation 

efficiency 2 to 4 dB below that of the single-band patch antenna designed with the same 

material at either L1- or L5-bands.  

 

Figure 3.4: θ-cut of the measured realized-gain patterns, at zero azimuth, at a single port 
for the L1-band (red-dotted curve) and the L5-band (blue-solid curve). The other port 

shows similar measurements. The two patterns are almost constant versus azimuth, with 
changes below 0.2 dB. 

Comparable results were also found in the case of the multi-layer dual-band antennas were 

a realized gain between 2 and 4 dBi was achieved.  

The 3-dB beam-width amounts to about 75° at the L1-band, and to 90° at the L5-band. The 

10-dB matching bandwidth extends over 4 MHz at the L1-band, and over 13 MHz at the 

L5-band. The bandwidth related to 3 dB below the maximum realized-gain is about 6 MHz 

at the L1-band and 25 MHz at the L5-band, which is quite sufficient for GNSS receivers, 
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were nominal bandwidths should be around 4 MHz at the L1-band and 20 MHz at the L5-

band. 

3.4.3 Cross-polarized coupling 

Coupling between two ports describes the excitation of some energy at one port if the other 

port is fed. Quantitatively, it is represented by the scattering parameter	"
�, where |	"
�|� 

tells the ratio of the power received at the coupled-port No. 1 to the original power radiated 

by the coupling-port No. 2. 

If the two ports have different polarizations, then coupling is referred to as cross-

polarization coupling. In dual-polarized antennas, cross-polarization coupling reduces the 

polarization purity of the antenna, and hence its polarization diversity. 

In the designed antenna, to reduce the coupling level between the two feeding ports $
 

and	$�, each port was positioned along the axis where the electrical field excited by the 

other port, between the patch surface and the ground, has zero strength. This is illustrated 

in Fig. 3.5, which shows a cross-section in the �%&-plane (parallel to the patch surface) of 

the strength of the electrical field '()
 excited by the port	$
, which is placed along the oy-

axis. The other port $� is placed along the ox-axis, where '()
 has zero strength. In the same 

way, $
 is placed along the oy-axis where the electrical field	'()�, excited by the port	$�, has 

zero strength. The exact positions of $
 and $� were optimized along the orthogonal oy- 

and ox-axes, respectively, to ensure the best possible matching at both frequency bands. 

  

 

Figure 3.5: A cross section of the strength of the electrical field '()
 excited by the feeding 
port	$
, between the patch surface and the ground. The feeding port $� is placed on the 

ox-axis, where '()
 has zero strength. 
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Figure 3.6: Measured cross-polarization coupling (S-parameter measurements) between 
the two orthogonal-polarized radiation modes exited by the feeding ports $
 and	$�. 

A cross-polarization coupling of only -17 dB at the L5-band, and -24 dB at the L1-band 

was achieved, as depicted in Fig. 3.6.  

Even though, it tells nothing about the direction dependency, cross-polarized coupling is 

easy to be measured, and therefore is used as a first indication of the antenna quality 

regarding polarization. 

3.4.4 Cross-polarization discrimination 

Differently from the cross-polarization coupling, which is simply |	"
�|� between two 

feeding ports of different polarizations, the cross-polarization discrimination describes the 

ratio between the co- and cross-polarized radiated power density of the same feeding port, 

as a function of direction (azimuth and elevation), and defined by: 

*$+�,, -� � .'()/��0, ,, -�.�

.'()/1�22�0, ,, -�.� ,																																						�3.3� 

where '()/��0, ,, -� and '()/1�22�0, ,, -� are the co- and cross-polarized electrical fields, 

respectively, r stands for the distance from the antenna, , stands for the co-elevation, and 

- for azimuth. 

The designed antenna element features a cross-polarization discrimination of better than 15 

dB for the two bands over the entire upper half-space, at all azimuth angles. Fig. 3.7 shows 

a ,-cut of the XPD pattern at the worst case, the L5-band, based on numerical simulations. 
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The XPD for L1-band is 2 to 4 dB larger. This high discrimination level confirms the 

orthogonality between the two excited polarizations, and hence the suitability of the 

antenna for dual-polarized applications. 

 

Figure 3.7: ,-cut of the cross-polarization discrimination of the single element, at zero 
azimuth, at the L5-band, based on numerical simulations. 

 

3.5 Summary 

A dual-band dual-polarized patch antenna was designed and fabricated for satellite 

navigation systems. The design employed a stub-loaded single-layer patch design. S-

parameter and far field measurements confirmed the proper operation of the antenna at both 

bands-of-interest. The suitability of the design for dual-polarized applications was proven 

with a cross-polarization discrimination of better than 15 dB over the entire upper half-

space, and a cross-polarization coupling below -17 dB at both band. In conclusion, the 

design was proven suitable for a miniaturized dual-band dual-polarized radiating element 

for robust and reliable GNSS receivers. The antenna design and the relevant measurement 

results were published in [51]. 
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Chapter 4: 

4.  

Compact Antenna Arrays, and 

Impact of Mutual Coupling on 

Polarization Purity 

 

 

4.1 Motivation for, and definition of, compact antenna arrays 

As mentioned in chapter 2, satellite navigation receiver that features robustness against 

jamming and spoofing must use arrays of radiating elements to exploit their beamforming 

capability to null directions of the interfere sources.  

However, robust satellite navigation receivers intended to be used for applications such as 

highly-automated vehicles, unmanned quadcopters, or secure smartphones, are mostly 

installed in platforms where there is limited space for the receiver, due to the installation of 

many antenna systems and sensors to serve various kinds of applications such as radar-

based safety systems, ultrasonic sensors, cameras, infotainment antennas, WIFI antennas, 

etc.  

This space limitation gives rise to need to use receiver solutions that depend on compact 

antenna arrays integrated with compact RF circuits. While this approach is affordable in 

the above-mentioned applications, for the sake of complexity and cost, it is still not 

common in personal satellite navigation receivers, commercial smartphones, or smart hand-

watches. 

Electrically, an antenna array is considered compact if the electrical distance between the 

radiating elements is smaller than half the free-space wavelength at the operation 

frequency. For such antenna arrays, a strong mutual-element coupling arises between the 

radiating elements, resulting in drawbacks such as: 

- Reduced radiation eigenefficiencies, and hence signal-to-noise ratio [76-79]. 

- Decreased spatial diversity [80]. 
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- Smaller direction-finding resolution [81-84]. 

- Shifted frequency responses, narrower frequency bandwidths, and increased sensitivity 
to dissipative losses [85] 

- Disturbed polarization purity [52, 51], etc. 

This chapter covers the topic of mutual coupling in compact antenna arrays, and its 

influence on the array radiation parameters, with special focus on the impact on polarization 

purity. The study focuses on patch antenna arrays, the common antenna type for GNSS 

receivers. 

4.2 Mutual-element coupling in patch antenna arrays 

4.2.1 Sources of mutual coupling 

Mutual coupling between radiating elements has been studied in literature since more than 

three decades [86-89]. Coupling can be excited by various sources depending on the 

antenna type, and the array structure. The dominant sources of coupling in patch antenna 

arrays are mainly classified into three types, surface-wave coupling, nearfield coupling, and 

far field coupling, as illustrated in Fig. 4.1. 

 

Figure 4.1: Dominating sources of mutual coupling in compact patch antenna array 

 

Surface-wave coupling:  

In this type of coupling, surface waves are guided by the substrate and the ground plane, 

and travel between the radiating elements with a radiation variation of 1/√0, where r is the 

element spacing [89-93]. 

Due to its sources, this coupling is more pronounced for substrates of dielectric constants 

much higher than that of the air. It also increases with the effective electrical 

thickness	5 67⁄ , where 5 is the substrate thicknesses, 67=	 6�/√91 is the effective 
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wavelength, 6� is the free-space wavelength, and 91 is the dielectric constant of the 

substrate. Therefore, literature usually neglects the surface-wave coupling for very thin 

patch antennas [87, 91]. Authors in [91], for example, suggest that this source of coupling 

becomes notable when the effective electrical thickness reaches or exceeds 5%. 

Regarding the proposed GNSS receiver, as described in chapter 3, the attitude towards 

miniaturized antenna elements demands an antenna design that has a high dielectric 

constant of 10.8 to allow for small patch dimensions, and relatively a large substrate 

thickness of 5.18 mm, which makes an effective electrical thickness of 11%, to improve 

the radiation efficiency. Therefore, the influence of this source of coupling cannot be 

ignored for these antennas. 

Nearfield coupling:  

This coupling is caused by the reactive energy stored in nearfield between the radiating 

antenna elements. In some literature, as in [90], it is referred to, as a higher-order wave 

coupling. The field of this type of coupling decays by 1/0� or faster outside the radiating 

element. I.e., it diminishes by 12 dB or higher when the element distance is doubled [94]. 

Nevertheless, this is still not enough to ignore this source of coupling for compact arrays, 

where element distances are below half the free-space wavelength. This source of coupling 

is relatively strong in the antenna array designed in this work, since the element distance is 

about one quarter of the free-space wavelength at the L1-band, and even one fifth of the 

free-space wavelength at the L5-band. 

Far field coupling: 

Since the coupling and the coupled antennas have two metallic surfaces with different 

potentials, an electrical field will be excited between them as well. This field will be 

responsible for carrying some energy between the antennas. Since the field will also radiate 

in the far field, this type of coupling is referred to as far field coupling by some literature 

[90, 94, 95], even though the antennas are in the nearfield of each other. Fields of this 

source of coupling propagate in the free space with a radiation variation of 1/0 [90, 94]. 

This means that they diminish by only 6 dB when the element distance is doubled. Hence, 

as with the other sources of coupling, far field coupling also cannot be ignored for compact 

antenna arrays. 

Other sources: 

Coupling may happen due to other sources such as leaky waves. However, these waves 

diminish exponentially, and thus their impact is negligible, compared to the other sources. 

Summary 

As mentioned, the different sources of mutual coupling have different radial variations. 

While leaky waves diminish exponentially with a radiation variation of :;1, nearfield 

coupling diminishes at a slower rate with radiation variation of 1/0�, far field coupling 
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diminishes with a radiation variation of	1/0, and surface-wave coupling diminishes with a 

radiation variation of only 1/√0. 

Therefore, for all sources of coupling, the strength of the coupled fields depends on the 

distance between the radiating elements, in addition to other parameters. Because of its 

smaller radial variation, surface wave coupling is more dominant for large element 

distances, where nearfield and far field coupling fields diminish faster. However, this does 

not apply to compact antenna arrays where, due to the small element distance, nearfield and 

far field coupling fields are comparable to, or can be even stronger than, the surface-wave 

fields. 

4.2.2 Influence of mutual coupling on radiation eigenefficiencies 

The impact of mutual coupling on radiation efficiencies of antenna elements in compact 

antenna arrays has been intensively studied in literature [3, 49, 67, 69, 76, 80, 96, 97]. A 

comprehensive numerical analysis, described in [76], confirmed that mutual coupling 

increases for smaller element spacing values, as well as for larger number of radiating 

elements in the array. Consequently, it was shown by [77, 79, 80, 98, 99], that mutual 

coupling reduces the eigenefficiencies of the array, especially for the higher-order 

eigenmodes. This, eventually, decreases the beamforming degrees-of-freedom, and thus 

limits the diversity gain of the antenna. 

However, literature focused on the influence of mutual coupling on the co-polarized 

radiation efficiency, considering mostly single-polarized antenna applications. The 

influence of mutual coupling on cross-polarized radiating fields, and hence on polarization 

purity of radiating elements had been rarely under investigation.  

The following section describes how polarization purity changes in compact patch antenna 

arrays. The study starts by explaining how the single patch antenna element radiates, with 

focus on how cross-polarization is excited. The analysis expands to describe how mutual 

coupling arises in compact arrays, and how it affects the co- and cross-polarized radiating 

fields. Subsequently, it describes how coupling affects polarization purity of the radiating 

elements. The cross-polarization discrimination XPD is used as a figure-of-merit for 

determining the polarization purity. 

4.3 Polarization purity of the single patch antenna element 

4.3.1 Modelling of the problem 

The distribution of the electrical field in a patch antenna depends on many parameters so 

that the extraction of its exact analytical description becomes too difficult. However, 

following the approach of the perturbation theory, the problem can be reformulated by 
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introducing some approximations, and thus, solutions that match with real measurements 

can be achieved [100].  

Two widely accepted models, used to describe how patch antennas work are the 

transmission-line model, and the cavity model [90]. While both models give good physical 

insights, the cavity model provides insight into the radiation pattern, which is found to be 

comparable to the measured patterns, and therefore it is commonly used in literature. 

In the cavity model, the patch antenna is modeled as a cavity bound by two electric 

conductors, which are the patch metallic surface above the substrate and the ground below 

it, and surrounded by four perfect magnetic walls, which represent the sides of the dielectric 

material [90].  

The cavity model is also used to describe how mutual coupling arises [87, 88, 101 - 103], 

even though Balanis in [90] sees that it is difficult for both the cavity and the transmission 

line models to model coupling. This thesis uses the cavity model as well, as a basis for 

describing how cross-polarization radiation rises. 

4.3.2 Fundamental mode in rectangular patch antennas 

As described in detail in [90], applying a signal, resonating at the operation frequency, at 

the matched feeding point of a rectangular patch antenna, results in a charge distribution at 

both the bottom surface of the patch and the upper surface of the ground, as illustrated in 

Fig. 4.2.  

 
Figure 4.2. A simplified illustration for a snapshot of the charge distribution on the 

electric conducting surfaces, resulting from exciting the patch antenna at the matching 
feeding point, with a signal at the relevant operation frequency. 

 

According to the Gauss' Law which describes how the electric field behaves around electric 

charges: 
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∇. E(() � >?@1 																																																											�4.1�	
where ∇ is the divergence operator, E(() is the electrical field,  >? is the electric charge density, 

and @1 is the permittivity of the medium, an attractive mechanism rises between the 

opposite charges of the two surfaces, and a repulsive mechanism rises between the similar 

charges of each surface, which pushes them to the opposite edges of the surface. 

Considering a substrate thickness that is too small compared to the patch width, the 

electrical fields that arise between the opposite charges become strong enough to keep the 

charge concentration higher at the bottom side of the patch and the upper side of the ground. 

These electrical fields, directed along the z-direction, dominate within the cavity, and form 

the TMB modes. 

Solving the homogeneous wave equation of the vector potential by applying the boundary 

conditions, it is found in [90] that the vector potential within the cavity can be written as: 

CD � CEFG cos�KL%� cosMKN&O cos�KDP�,																																�4.2� 

where CEFG is the amplitude coefficient of the mode TMQRSB , and the wavenumbers KL, 

KN, and KD satisfy:  

KL � 2T		
67 � UT		

� , U � 0, 1, 2, …																																							�4.3� 

KN � 2T		
67 � WT		

X , W � 0, 1, 2, …																																									 �4.4� 

KD � 2T		
67 � YT		

5 , Y � 0, 1, 2, …																																									 �4.5� 

where 67 is the effective wavelength, �, X are the length and width of the patch, 

respectively, and 5 is the height of the substrate. 

Hence, a mode TMQRS can be excited within the cavity if its dimensions �, X, 5 are equal 

to half the effective wavelength multiplied by the integer numbers m, n, and p, respectively.  

Following the configuration presented in Fig. 4.2, due to the half-wavelength patch 

antenna, the electrical field between the patch and the ground forms sinusoidal standing 

waves along the x-direction, with m=1, while it stays constant along the y- and z-directions. 

Therefore, it forms the radiation mode	TMQRSB � TM
��B , which is illustrated in Fig. 4.3. 

4.3.3 Sources of cross-polarization in the single patch antenna element 

The dominant TM
��B  mode results in a radiated electrical field, with a linear polarization, 

along the x-direction, in the far field. This linear polarization is referred to as the co-
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polarized radiating field. However, due to various sources, orthogonal electrical field, 

usually with smaller strength, is also radiated. This field is referred to as the cross-polarized 

field. The following study will find the possible sources for the cross-polarized radiation. 

 

 
 

Figure 4.3: Electrical field mode	TM
��B , for rectangular microstrip patch antenna. The 
field between the patch and the ground forms a sinusoidal standing wave along the x-

direction, while it stays constant along the y- and z-directions 
 

A- Contribution of the dominant radiation mode 

As mentioned, in the classical case where	� Z X ≫ 5, the dominant mode in the patch 

antenna is	TM
��B . This mode results in the charge distribution shown in Fig. 4.2. 

Subsequently, an electrical field will be excited between the edges of the patch and the 

ground. Top-view of the patch antenna with x- and y-components of the fringing fields in 

the nearfield is illustrated in Fig. 4.4. Fields here are computed on an %&-plane at λ/50 

distance from the antenna surface.  

In this case, since the charges along the opposite short edges of the patch are 180° out-of-

phase, due to the 67/2 length of the patch, the x-components of the fringing fields excited 

between the ground and the short edges share the same phase, and thus add constructively, 

resulting, in the far field, in a radiating electrical field with linear polarization along the x-

direction, and maximum strength along the z-direction, i.e., resulting in the classical single-

beam co-polarized electrical field radiated by classic patch antennas. Nearfield distribution 

of this field is depicted in Fig. 4.5, which shows the two lobes of maximum strength along 

the two short edges.  
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Figure 4.4: (Left): top-view of the fringing electrical fields related to the TM
��B  mode, in 

the nearfield, of a linear-polarized rectangular patch antenna. (Right): simplified 

illustration of the electrical field components for further analysis. The length of the arrow 

represents its magnitude. 

Most literature assume that the antenna excites a pure co-polarization, while it is supposed 

that the unwanted cross-polarized electrical field exited along the y-direction, between the 

long edges and the ground, cancel each other due to the opposite phases. However, this is 

not fully true. These y-components do cancel each other at the &P- and %P-planes that cross 

the patch center, where the components will have the same strength and opposite phases, 

but they do not cancel each other along the planes that cross the center to the four corners 

of the patch, which gives rise to a cross-polarized electrical nearfield, with four lobes of 

maximum strength directed at the odd multiples of 45°, as depicted in Fig. 4.6. 

 

Figure 4.5: Top-view of the co-polarized electrical field strength related to the TM
��B  

mode, of a linear-polarized rectangular patch antenna. 

As shown in Fig. 4.6, the four lobes of the cross-polarized electrical nearfield are out-of-

phase, resulting in a destructive superposition along the principal planes of the patch, and 
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accordingly in a far field radiation pattern of four beams tilted away from the norm-

direction towards low elevations, as illustrated in Fig. 4.9. 

 

Figure 4.6: Top-view of the strength of the cross-polarized component of the electrical 

nearfield that relates to the TM
��B  mode, of a linear-polarized rectangular patch antenna. 

This impact on the surface current distribution, which is a mere consequence of the 

electrical field distribution, is illustrated in Fig. 4.7. The charge distribution shown in Fig. 

4.2, which is related to the dominant TM
��B  mode, resonates at the operation frequency, 

giving rise to the x-component currents that flow along the long edges of the patch with the 

same direction, as illustrated in Fig. 4.7 and Fig. 4.8 (top panel). These x-components of 

the current are a consequence of the co-polarized electrical field presented in Fig. 4.5.  

On the other hand, the surface current turns with the corners giving rise to smaller y-

components along the short edges, with opposite directions. These currents are out-of-phase 

at the opposite sides of the principal planes, and hence they cancel each other, which results 

in cancelling the cross-polarized fields at these planes. However, the currents do not cancel 

each other at the four corners, giving rise to the y-component of the surface current 

distribution shown in Fig. 4.7, and more explicitly in Fig. 4.8 (bottom panel). The y-

components are a consequence of the cross-polarized electrical field shown in Fig. 4.6. 
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Figure 4.7: Linear-polarized rectangular patch antenna, with an illustration of the surface 

current related to the TM
��B  mode, as extracted by electromagnetic full-wave simulations 

in CST microwave studio. The x- and y-components of the current are highlighted with 

red- and blue-colored arrows, respectively. The direction of each arrow represents the 

current flow direction. The arrows with larger widths represent larger linear current 

densities (in A/m). 

 

 

Figure 4.8: x-component (top) and y-component (bottom) of the surface current 

distribution, at the surface of a linear-polarized rectangular patch antenna. 
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Special case of circular patch antennas: 

It is worth to mention that the cross-polarization is not caused due to the corners of the 

rectangular patch, but to y-components of the current. I.e., it is not enough to remove the 

corners to eliminate the cross-polarization, such as in circular patch antennas. It is needed 

to prevent the rise of the y-components of the current, which cannot be accomplished 100% 

in a 2-D surface where part of the current will always flow in x- and y-directions. A zero 

cross-polarization level can only be achieved using ideal 1-D antennas where the electrons 

cannot find a y-direction to flow along. However, it is possible to optimize the 2-D antenna 

to reduce its cross-polarization efficiency, as discussed in section 4.4. 

Cross-polarization discrimination:  

The strong cross-polarized field along the corners, i.e., along the azimuths of odd multiples 

of 45°, reduces the cross-polarization discrimination of the antenna at these directions. 

Accordingly, the resulting XPD pattern has smaller values at azimuths of odd multiples of 

45° and maximum values at azimuths of even multiples of 45°. This behavior is illustrated 

in Fig. 4.9, which shows a ϕ-cut of the co- and cross-polarized gain patterns of a linear-

polarized square patch antenna, together with the resulting cross-polarization 

discrimination. 

 

 

Figure 4.9: ϕ-cut at θ=45° of the co-polarized gain pattern (green curve), the cross-
polarized gain pattern (red-triangles curve), and the XPD (blue-circles curve), of a linear 

polarized square patch antenna 

 

On the other hand, a θ-cut of the co- and cross-polarized gain patterns of the linear-

polarized rectangular patch antenna, with the resulting XPD, is presented in Fig. 4.10.  
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Figure 4.10 shows the classical co-polarized gain pattern of the linear-polarized rectangular 

patch antenna with its main-beam directed at zenith. The depicted θ-cut of the cross-

polarized gain pattern shows two of the four beams seen in Fig. 4.9, with a null at zenith. 

Eventually, the figure shows the cross-polarization discrimination with its greatest value at 

the zenith, and its smallest values at zero elevation. 

 

 

Figure 4.10: θ-cut at ϕ=90° of the co-polarized gain pattern (green curve), the cross-
polarized gain pattern (red-triangles curve), and the XPD (blue-circles curve), of a linear-

polarized rectangular patch antenna 

 
B- Contribution of the higher-order modes: 

The resonance frequency of the dominant mode TM
��B  can be calculated from: 

]
�� � ^
6� � ^

67√91 � ^
2�√91 ,																																									�4.6� 

where ^ is the speed of light in the free space. 

Given a patch antenna with	X Z �/2, which is a widely existing case, the second-order 

mode	TM�
�B , where the electrical field is constant along the ox-axis and forms sinusoidal 

standing waves along the oy-axis, will also be excited according to the conditions explained 

in section 4.3.2. This mode is in depicted in Fig. 4.11, and its resonance frequency ]�
� can 

be calculated from: 

]�
� � ^
2X√91 																																																																	�4.7� 
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Figure 4.11: The second-order mode TM�
�B , in a rectangular microstrip patch antenna, 

where its electrical field is constant along the ox-axis and forms sinusoidal standing 

waves along the oy-axis.  

 

Hence, the ratio between the two resonance frequencies of the two modes TM
��B  and 

	TM�
�B  is: 

]
��]�
� � 	 X
� 																																																																									�4.8� 

This mode results in a radiating field along the y-direction, and hence it forms a second 

source for cross-polarized radiation. However, different cases must be considered here: 

1- For rectangular patch antennas: TM�
�B  reaches its maximum radiation efficiency at its 

resonance frequency ]�
�, which is much higher than the nominal operation 

frequency	]
��. TM�
�B  has smaller radiation efficiency at ]
��. 

2- As the ratio X/� gets closer to 1, the second frequency	]�
� gets closer to	]
��, and 

hence the cross-polarized mode gets a higher radiation efficiency. 

3- When the patch becomes square, the two modes resonate at the same frequency with 

the same radiation efficiency, but with orthogonal polarizations, which means that the 

square patch antenna will have two orthogonal polarizations with the same efficiency, 

even though it has only one feeding port. In fact, this result is true according to the 

cavity model, as this model does not consider the influence of the position of the feeding 

point, or in other words, it ignores the reflection efficiency for each mode, and assumes 

a fully matched patch antenna [90]. 

4- However, due to the position of the feeding point, TM�
�B  is not matched, and 

consequently it radiates with smaller efficiency. 
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As a conclusion, this analysis shows that square patch antennas excite cross-polarized 

TM�
�B  modes with radiation efficiencies higher than those of rectangular patches. 

However, for both types, the total efficiency is smaller than the total efficiency of the co-

polarized modes, due to the smaller reflection efficiency. The following paragraph studies 

the reflection efficiency of the	TM�
�B  mode. 

Further higher-order modes resonate at frequencies much higher than the operation 

frequency, and thus they have minor efficiencies at it. Therefore, the study will focus only 

on the first two modes TM
��B  and	TM�
�B . 

Approximated reflection efficiency for	bcdedf : 

Considering feed techniques that use coaxial probes, microstrip lines, or capacitive 

coupling, a matched rectangular or square patch antenna has a feeding point shifted from 

the center along either x- or y-direction to provide a 50 Ω matching for the dominant mode, 

which would eventually excite a radiating field polarized along the same x- or y-direction. 

Figure 4.2, for example shows a coaxial feeding point shifted along x-direction to match 

the TM
��B  mode, and subsequently to result in a relatively strong co-polarized radiation 

along x-direction and week cross-polarized radiating field along y-direction, as discussed 

before. In the case of perfect matching,	TM
��B  will radiate with a reflection efficiency of 1 

and a total efficiency that equals its radiation efficiency.  

In contrast, the orthogonal mode	TM�
�B , responsible mainly for a cross-polarized radiation 

along y-direction, will not be matched, and therefore it will radiate with a smaller total 

efficiency produced by multiplying its radiation efficiency by its reflection efficiency. 

Having TM
��B 	perfectly matched, with the feeding point placed at coordinates (x =	%g, y = 

0, z =	5), as presented in Fig. 4.2, the reflection efficiency for TM�
�B  is calculated as 

following: 

The Thevenin equivalent circuit of a single-port antenna is shown in Fig. 4.12, where hiF 

is the input voltage,  �2 is the output resistance of the input voltage source, �� is the 

characteristic impedance of the feeding line, ���jk is the input impedance of the antenna, 

hjl is the voltage available at the input of the antenna, and 	"

 is input reflection coefficient 

of the antenna. 

The reflection efficiency is defined by: 

:1 � 1 � |	"

|� � 1 � m���jk � �����jk + ��m� ,																																				�4.9� 

which means that the reflection efficiency is a function of only	���jk, assuming 	�� already 

known (e.g., 50	Ω).  
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Figure 4.12: The Thevenin equivalent circuit of a single-port antenna 

Having the antenna perfectly matched for the mode	TM
��B , means that the reflection 

coefficient satisfies	"

 � 0, and: 

���jk.	qrsttu M% � %gO � 	��																																										�4.10� 

For the mode	TM�
�B , the feeding point is exactly at the center, which means that: 

���jk.	qrtstu �& � 0� � 0	Ω																																										�4.11� 

This leads to a reflection efficiency of: 

:1 � 1 � m0 � ��0 + ��m� � 0																																														�4.12� 

This result means that the accepted power for the second mode 	TM�
�B  is zero, and hence 

the mode is not excited.  

However, this result applies only to a zero-dimension feeding points, which does not exist. 

Physical feeding points have dimensions, no matter if they are coaxial cables, microstrip 

lines, capacitive feeds, or other types.  

Balanis found in [90] that an input impedance at a position 0 v &
 v X of a patch antenna 

is real value, and that its relation to another input impedance at a position 0 v &� v X is: 

���jk�& � &
�
���jk�& � &�� � ^�w� x TX �X2 � &
�y

^�w�� TX �X2 � &��� � wzW�� TX &
��
wzW�� TX &���																		�4.13� 

Now, considering &� � &g as the position of the matched feeding point results in: 

���jk�& � &
� � 50 wzW� x TX &
y
wzW� x TX &gy																																					�4.14� 

To have a practical example, a patch antenna designed for 1.57542 GHz with 28.4 mm x 

15 mm area is considered. The matched feed point for this antenna is at	%� � 2.1	UU. 

Feeding is provided through a coaxial cable with an inner diameter of	{i � 0.7	UU. This 

results in a feed point not exactly at (y = 0) but at y = 0.35 mm (feeding is provided at the 
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skin of the inner). The skin-depth is ignored as it is too small compared to the inner (less 

than 2 µm for L-band in copper). This results in an input impedance of: 

���jk�& � 0,35UU� � ���jk�& � &�� wzW� x TX &
�y
wzW�� TX &��� � 5	Ω 

This impedance yields a reflection efficiency of  

:1 � 1 � m5 � 50
5 + 50m� � 0,33	�or	33	%. � 

This poor efficiency tells how the size of the coaxial cable affects the efficiency of the 

modes, and stresses the need for compact coaxial cables to feed compact antennas.  

However, to be more precise, two different cases must be considered here: 

1- The radiation efficiency of the	TM�
�B  mode for the mentioned rectangular patch 

antennas example is less than 10% at the operation frequency, which results in a total 

efficiency less than 3.3%, which fortunately reduces the need for the compact coaxial 

cables for rectangular patch antennas. 

2- The problem arises for square patch antennas, which is the case of classical GNSS 

antennas, where the	TM�
�B  mode has a radiation efficiency that equals the one of the co-

polarized mode. Here, the total efficiency of the cross-polarized radiating field will be 33% 

of the efficiency of the co-polarized field. As suggested before, compact coaxial cables 

should be considered for these antennas to achieve good cross-polarization discrimination. 

Summary: 

Besides the co-polarized mode	TM
��B 	that is excited in a patch antenna at the operation 

frequency	]
��, other modes 	TMEFGB  can be excited at their respective frequencies	]EFG, 

with smaller radiation efficiencies at the operation frequency. Matching the first mode leads 

to smaller reflection efficiencies of the other modes, and hence to smaller total efficiency.  

Dimensions of the feeding ports may increase the reflection efficiency of the cross-

polarized modes, and hence the total efficiency. This has stronger impact in the case of 

square patch antennas, such as in classical GNSS antennas, where the first cross-polarized 

mode has a radiation efficiency that equals the radiation efficiency of the co-polarized 

mode. 

These simplified approximations apply only for regular square or rectangular patch 

antennas, while they may differ for patch antennas with slits or stubs, where numerical 

solutions are usually used to determine the cross-polarization efficiency.  
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4.4 Optimization of polarization purity of GNSS patch antennas 

4.4.1 Motivation 

The proper design of the single radiating element is a critical step when it is proposed to 

serve in robust satellite navigation receivers, where the polarization purity is essential not 

only for the reception at high elevations, but also for interference cancellation, and for the 

compensation for multipath propagation at low elevations.  

The classical design approaches of GNSS patch antennas usually result in a maximized co-

polarized gain at the zenith, which eventually results in a good XPD at that direction. 

However, this does not always give a good XPD at the other directions. Therefore, in 

addition to the focus on the classical antenna parameters such as the operation frequency, 

the bandwidth, the maximum gain, the beamwidth, and the co-polarization pattern, the 

design of the single antenna element must put a strong focus on the XPD pattern of the 

antenna; especially at directions of strong multipath propagation impact, such as at low 

elevations, as discussed in this section. 

Even though the XPD can be enhanced at some directions using antenna arrays, especially 

with decoupling and matching networks, the following example underlines the importance 

of improving the XPD at the level of the antenna element itself. The example shows that 

the XPD enhancement that can be achieved by improving the design of the single antenna 

element can be significantly larger than the enhancement that can be achieved by using 

more radiating elements in an array-based system to enhance the co-polarized gain of its 

even mode, and eventually its XPD, which gives less than 3dB gain for doubling the 

number of elements, and hence improves the XPD by less than 3 dB.  

This becomes more serious in compact antenna arrays, where XPD patterns show deficient 

performance at low elevations, due to the mutual coupling, as described in section 4.5. Even 

though this can be improved by mitigating the coupling using one of the decoupling 

techniques, the example shows that the XPD enhancement that can be achieved by 

improving the design of the single element can be much larger than the enhancement that 

can be achieved by decoupling the elements, which, for example, for a four-element array 

with element spacing of one quarter of a wavelength, does not enhance the XPD by more 

than 3 dB for any of the array eigenmodes. 

The example, in summary, emphasizes the need for the proper design of the single element 

before building the array, and before using decoupling techniques to compensate for the 

influence of mutual coupling. 

4.4.2 Simulation-based example 

This section considers a study-case of a RHCP square patch antenna that is designed for 

GNSS applications. The antenna operates at the L1-band (1.57542 GHz) with a bandwidth 
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larger than 4 MHz and a realized gain larger than 3 dBi. The section discusses the influence 

of different antenna dimensions on the cross-polarization discrimination of the antenna, and 

recommends optimized dimensions for improving the suitability of the antenna for robust 

GNSS receivers. 

The antenna is designed using a 5.08 mm thick substrate material of Rogers 3010 (with 

10.2 permittivity). The relatively high permittivity is chosen to enable compact antennas, 

while the large thickness is chosen to enable high radiation efficiencies. The non-standard 

5.08 mm thickness is achieved using two 2.54 mm layers with 0.1 mm adhesive material 

of Rogers 4450F (with 3.52 permittivity).  

The excitation of the RHCP pattern is achieved through a single 50 Ω matched feeding port 

at one principal axis, by trimming the patch edges at one of the corners, as illustrated in 

Fig. 4.13.  

 

 

Figure 4.13: General top-view sketch of a GNSS patch antenna element fed and truncated 
to excite RHCP. The orange arrow, rotating counter clockwise, represents the direction of 

rotation of the radiated electrical field when looking from top towards the antenna (i.e., 
from front of the propagating wave) 

 

The truncation breaks the symmetry of the patch allowing not only for the two short edges 

to radiate with a linear-polarized electrical field, but also for the other two edges to excite 

an orthogonal polarized field. The final radiated field is nothing but the superposition of 

both. The truncation was tuned to insure a 90° phase shift between the two polarizations, 

in order to excite a final radiating electrical field of either right-handed or left-handed 

circular polarization, with minor cross-polarization. The antenna polarization was 

optimized in electromagnetic full-wave simulations in CST microwave studio. The 
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polarization depends on the relative positions of the truncation and the feeding point. The 

studied design, shown in Fig. 4.13, results in a RHCP.  

While, for simplicity, the example focuses on optimizing the XPD for only the RHCP, the 

same optimization results apply also for the LHCP, or eventually for the dual-polarized 

antenna, which can easily be achieved by only adding another 50 Ω matched feeding port 

at the orthogonal principal axis of the patch. 

The design process results in an antenna of 26.9 mm x 26.9 mm patch area, with 44 mm x 

44 mm substrate, 200 mm x 200 mm ground plane, and a trimming depth of 2.3 mm. The 

antenna features a realized gain of 6.3 dBi, with a - 22 dB reflection coefficient at the center 

frequency, a 34 MHz bandwidth, and a 15 dB cross-polarization discrimination at the main 

beam direction; everything that would be accepted for a classical RHCP GNSS receiver 

that focuses on the reception from high elevations, and pays no attention for multipath 

propagation, or jamming interferences. 

However, a pure RHCP cannot be achieved for many reasons. A 90° phase shift, if achieved 

at one frequency at one corner or position, cannot be perfectly guaranteed at each frequency 

of the bandwidth, as the phase shift depends on the wavelength. It also cannot be guaranteed 

at each position of the patch, due to its asymmetrical geometry. Therefore, the resulting 

polarization is in fact a combination of the wanted polarization (here, the RHCP) and the 

unwanted one (the LHCP).  

The purity of the RHCP polarization is tested by calculating the ratio between the RHCP 

and the LHCP radiated power, i.e., the XPD as defined in (3.3), with RHCP set as the co-

polarization. The axial ratio (AR), which is defined as the amplitude ratio between the 

maximum and minimum components of the electrical field, i.e., for the studied antenna: 

C��θ, φ� � .E(()L�r, θ, φ�.
.E(()N�r, θ, φ�.																																														�4.15� 

can also be used, keeping in mind that it determines only if the antenna has a pure circular 

polarization (when AR=1) or not, without specifying if the polarization is right-handed or 

left-handed. 

The XPD is a function of elevation and azimuth. A patch antenna usually has its XPD 

maximized at the main beam direction and minimized at low elevation, especially at 

directions pointing from the patch center towards its corners, i.e., at odd multiples of 45° 
azimuth according to Fig. 4.13.  

The designed antenna gives a very good XPD of larger than 15 dB at zenith, and hence it 

is usually considered as a proper antenna for many applications. However, the antenna 

gives only 7 dB XPD at elevation of θ=85° and azimuth of ϕ=0°. This becomes worse at 

θ=85° and ϕ=45° where the XPD drops to as low as -2 dB, as depicted in Fig. 4.14, yielding 

almost a linear-polarized radiation, with the LHCP gain 2 dB higher than the RHCP gain. 

These poor XPD values at low elevations introduce notable polarization mismatch, and 
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consequently reduce the efficiency of the receive antenna. This confirms the need for 

considering the XPD behavior in antennas used for robust GNSS receivers.  

The following paragraphs show how the XPD can be enhanced by tuning the different 

dimensions of the patch antenna, such as the trimming depth, the ground plane area, and 

the substrate area, while fixing the patch surface to avoid changing the operation frequency.  

While the optimization process should consider all the parameters jointly, to find the global 

optimization solution, because they affect each other, the following study considers 

optimizing the antenna for the different parameter separately, in order to understand the 

individual influence of each parameter on the antenna polarization. 

A- XPD versus the trimming depth: 

Electromagnetic full wave simulations of the antenna were performed for different 

trimming depths. The relevant XPD values, at different elevation and azimuth angles, are 

stated in Table 4.1.  

Table 4.1: XPD values (dB) at 1.57542 GHz versus the trimming depth (mm), at different 

directions; for a square truncated patch antenna with a patch size of 26.9 mm x 26.9 mm 

patch, a substrate of 44 mm x 44 mm, and a ground of 200 mm x 200 mm. 

XPD (dB) at 
1.57542 GHz 

Trimming depth (mm) 

1.0 1.5 2.0 2.3 2.5 2.7 2.9 3.1 3.5 4.0 

ϕ=0° θ=0° 2.4 5.2 8.3 15.1 20.4 19.8 33.6 14.1 11.1 7.8 

θ=45° 1.8 3.7 5.9 12.0 14.6 24.7 17.4 22.7 15.2 11.9 

θ=75° 1.4 2.8 4.6 9.2 11.1 16.2 14.0 30.1 23.0 15.8 

θ=85° 1.4 2.8 4.6 8.7 10.6 14.7 13.9 21.8 26.6 14.9 

ϕ=45° θ=0° 2.3 5.2 8.3 15.1 20.4 19.8 33.6 14.1 11.1 7.8 

θ=45° -0.5 2.2 5.1 6.6 7.5 6.9 8.6 6.4 6.3 4.6 

θ=75° -4.7 -3.7 -1.7 0.2 0.9 1.3 1.8 1.9 2.4 2.0 

θ=85° -7.1 -7.2 -5.2 -2.3 -1.4 -0.5 -0.3 0.4 1.2 1.1 

ϕ=90° θ=0° 2.4 5.2 8.3 15.1 20.4 19.8 33.6 14.1 11.1 7.8 

θ=45° 2.2 5.7 9.6 12.3 13.7 10.8 14.2 8.4 7.1 4.4 

θ=75° 2.6 7.0 12.2 13.0 13.1 9.4 11.7 6.9 5.6 3.3 

θ=85° 2.8 7.7 13.8 15.5 14.8 10.1 12.1 7.3 5.8 3.7 

  

The table shows that trimming depths smaller than 2 mm result is poor cross-polarization 

discrimination at all directions, meaning that the antenna is close to be linear-polarized, 

rather than RHCP antenna. Moreover, XPD has a negative value of -7.1 dB at azimuth of 

ϕ=45° and low elevation of θ=85° which identifies a LHCP antenna at that direction.  
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Increasing the trimming depth up to 3 mm enhances the XPD, not only at the main lobe 

direction (θ=0°) but also at low elevations (θ=75° to 85°) and for all azimuth angles. 

Nevertheless, it reaches only -0.3 dB at θ=85° and ϕ=45°, which means that the antenna 

has changed its polarization at that direction from LHCP to linear, but still not to RHCP. 

The poor XPD performance at ϕ=45°, appears along all diagonal directions (i.e., at odd-

multiples of ϕ= 45°), due to the strong cross-polarized electrical field radiated along those 

directions, as describes in section 4.3.3 and shown in Fig. 4.6. This behavior appears for 

every trimming depth.  

Larger trimming depths up to 4 mm slightly enhance the XPD at low elevations when ϕ=0°, 
and ϕ=45°, but dramatically decreases the XPD at the main lobe direction by about 20 dB, 

which is not recommended for GNSS signals. 

A trade-off looking for a very good XPD (larger than 20 dB) at the main lobe-directions, 

with an accepted XPD (about 10 dB) at low elevations for azimuth of 0° and 90°, and at 

least a non LHCP at low elevations for azimuth of 45° ended up with a trimming depth of 

2.9 mm. Additional numerical simulations found that this final choice was still valid when 

changing the side length of the substrate between 30 mm and 50 mm, and of the ground 

between 60 mm and 200 mm. 

The resulting patch antenna is, in fact, what could be achieved through a classical design 

process, where the trimming depth is tuned to get the best circular polarization purity at the 

main lobe direction. 

B- Influence of the ground plane: 

The design, with a trimming depth of 2.9 mm, is now simulated for a ground plane area 

between 60 mm x 60 mm and 200 mm x 200 mm. The XPD values, presented in Table 4.2 

show that designs with ground planes larger than 140 mm x 140 mm provide strong XPDs 

at the main lobe direction, due to the high directivity. However, they suffer from poor co-

polarized gain, and hence poor XPD, at lower elevations. 

On the other hand, ground areas smaller than 140 mm x 140 mm give smaller directivity, 

which results in slightly decreased XPD at the main lobe direction. However, they show 

notably enhanced XPD at low elevations, for all azimuths including the odd multiples of 

45°. A ground planes of 100 mm x 100 mm results in an XPD larger than 12 B at an 

elevation of θ=85°, and larger than 29 dB at the main lobe direction. These results 

emphasize the strong influence the ground area has on the co- and cross-polarization of 

patch antennas. Results show that a proper optimization of the ground area can help to 

mitigate the cross-polarized fields along the diagonal axes. 

However, a ground size as small as 60 mm x 60 mm provides a smaller mirroring effect, 

and hence a smaller radiation efficiency, resulting in an XPD of only 7 dB at the main lobe 

direction and 2.4 dB at low elevations. 
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Table 4.2: XPD values (dB) at 1.57542 GHz versus ground plane size, at different 

directions; for a square truncated patch antenna with a patch size of 26.9 mm x 26.9 mm 

patch, a substrate of 44 mm x 44 mm, and a trimming depth of 2.9 mm. 

XPD (dB) at 
1.57542 GHz 

Side length (mm) of square ground plane 

60 80 90 100 110 120 140 160 180 200 

ϕ=0° θ=0° 7.0 15.7 21.4 29.6 23.5 21.4 20.3 19.8 23.6 33.6 

θ=45° 7.4 14.4 17.7 25.8 25.6 37.4 16.4 31.2 18.3 17.4 

θ=75° 9.7 14.3 14.7 17.0 15.6 15.9 10.7 16.3 17.2 14.0 

θ=85° 10.9 15.6 14.7 15.6 13.5 13.0 8.6 12.1 16.4 13.9 

ϕ=45° θ=0° 7.0 15.7 21.4 29.6 23.5 21.4 20.3 19.8 23.6 33.6 

θ=45° 7.4 13.8 16.5 20.4 18.0 19.3 14.4 10.3 9.7 8.6 

θ=75° 9.2 12.8 13.7 14.8 12.6 12.5 9.1 5.2 2.7 1.8 

θ=85° 9.9 13.0 13.6 14.2 11.8 11.5 8.5 4.7 1.3 -0.3 

ϕ=90° θ=0° 7.0 15.7 21.4 29.6 23.5 21.4 20.3 19.8 33.6 33.6 

θ=45° 6.4 16.7 23.1 20.1 16.9 15.3 21.5 15.3 20.5 14.2 

θ=75° 4.1 16.3 21.0 14.0 11.4 9.6 11.5 10.7 15.2 11.7 

θ=85° 2.4 15.0 20.2 12.8 9.9 8.0 8.8 8.8 13.2 12.1 

 

A trade-off between ensuring very good XPD at the main direction and enhancing the poor 

XPD at low elevations results in an area of 100 mm x 100 mm. 

In summary, Table 4.1, and Table 4.2 show that it was possible to transform the polarization 

of the antenna at low elevations and 45° azimuth form LHCP to linear polarization, by 

optimizing the trimming depth, resulting in enhancing the XPD by about 7 dB. Thereafter, 

optimizing the ground plane area was enough to boost the low elevation XPD by about 13 

dB, resulting in a RHCP even at the azimuths of odd multiples of 45°.  

Note: 

To avoid misunderstanding, the size of the ground plane cannot transform the polarization 

of the antenna from linear to circular if the antenna was not trimmed at first place to 

introduce the 90° phase shift between its two linear-polarized orthogonal radiation modes. 

In other words, optimizing the ground plane of a linear-polarized non-truncated patch 

antenna can only affect its co- and cross-polarized fields resulting in a new linear-polarized 

superposition field. Going from linear to circular polarization is only possible by 

introducing a 90° phase shift between two linear-polarized modes, e.g., by means of 

truncation. 
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C- XPD versus substrate dimensions:  

At this stage, the antenna design was already optimized for its trimming depth and ground 

plane, considering a substrate of 44 mm x 44 mm. Simulations are run now to finally 

optimize the substrate size to improve the XPD, with the trimming depth of 2.9 mm and 

the ground plane are of 100 mm x 100 mm. Simulations will consider substrates between 

34 mm x 34 mm and 54 mm x 54 mm. 

The dielectric material plays a key role in determining the strength of the electrical fields 

between the patch surface and the ground, and ultimately the radiated electrical field [90]. 

Therefore, a substrate slightly larger than the patch area, e.g., 34 mm x 34 mm or smaller, 

results in a poor radiation efficiency of -11 dB, which gives a realized gain of only -5 dBi 

at the main lobe direction. Subsequently, this gives an XPD below 3 dB even at the main 

lobe direction.  

The performance improves with larger substrates. A reliable XPD performance is achieved 

for substrates between 42 mm x 42 mm and 46 mm x 46 mm, as presented in Table 4.3. 

The best XPD values are achieved for 45 mm x 45 mm. 

The XPD performance degrades again for substrates larger than 48 mm x 48 mm. This 
happens because the trimming depth becomes relatively small, comparing to the substrate 
size, so that it features smaller influence on the electrical fields that is excited in the large 
substrate. For designs with such a big substrate, it is probably needed to use larger trimming 
depths, or even three truncations at three corners of the patch, to retain an influence strong 
enough to change the field polarization. 

Table 4.3: XPD (dB) at 1.57542 GHz versus substrate size, at different directions; for a 

square truncated patch antenna with a patch size of 26.9 mm x 26.9 mm patch, trimming 

depth of 2.9 mm and a ground size of 100 mm x 100 mm. Values upper limit is 40 dB. 

XPD (dB) at 
1.57542 GHz 

Side length (mm) of square substrate 

34 38 40 42 44 45 46 48 50 54 

ϕ=0° θ=0° 2.2 10.3 20.5 27.4 29.6 > 40 34.7 19.0 16.1 15.0 

θ=45° 2.7 11.9 24.1 22.2 25.8 23.0 26.5 15.2 13.1 12.4 

θ=75° 3.3 13.5 19.0 15.6 17.0 15.8 17.0 11.5 10.1 9.6 

θ=85° 3.4 13.6 17.4 14.4 15.6 14.6 15.6 10.7 9.5 9.0 

ϕ=45° θ=0° 2.2 10.3 20.5 27.4 29.6 > 40 34.7 19.0 16.1 15.0 

θ=45° 1.5 9.8 17.9 18.3 20.4 20.8 21.9 14.4 12.9 12.0 

θ=75° 0.6 8.7 13.9 13.6 14.8 15.1 15.6 11.4 10.4 9.7 

θ=85° 0.6 8.5 13.4 13.1 14.2 14.5 15.0 11.0 10.1 9.4 

ϕ=90° θ=0° 2.2 10.3 20.5 27.4 29.6 > 40 34.7 19.0 16.1 15.0 

θ=45° 1.8 8.4 15.8 20.6 20.1 24.2 21.3 23.1 19.9 18.0 

θ=75° 1.2 6.3 11.6 14.6 14.0 15.8 14.6 22.0 27.1 23.8 

θ=85° 1.0 5.7 10.7 13.3 12.8 14.4 13.3 19.9 24.8 23.6 
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4.4.3 Summary 

The study shows that an antenna well designed in terms of operational frequency, radiation 

efficiency, and polarization at the main lobe could be useless for systems that require large 

XPD values at low elevations, such as robust GNSS receiver. However, a careful 

optimization may result in up to 16 dB XPD enhancement at low elevations. The main 

optimization steps of the study are summarized in Fig. 4.14.  

 

Figure 4.14: Enhancements of XPD patterns versus elevation, for the azimuth of 45°. The 

black dotted-curve represents the case of the first antenna design (trim depth of 2.5 mm). 

The green dashed-curve is the XPD of the design recommended by Table 4.1, where the 

trimming depth is tuned to 2.9 mm. The blue dash-dotted curve represents the design 

recommended by Table 4.2, where the best size of the ground plane was found (100 mm x 

100 mm). The red solid curve is for the design recommended by Table 4.3 when the 

substrate size is slightly tuned to 45 mm x 45 mm. The asymmetry of the XPD curves 

around zero elevation is due to the asymmetry introduced by the trimmed patch itself, and 

not due to the mesh resolution of the simulated designs. 

The figure shows that tuning the trimming depth, from 2.5 mm to 2.9 mm, helps mainly to 

enhance the XPD at the main lobe direction (from black dotted curve to green dashed 

curve). Moreover, changing the ground plane area from 200 mm x 200 mm to 100 mm x 

100 mm reduces the directivity of the antenna and thus the XPD at the main lobe direction, 

but significantly increases the XPD by about 13 dB at low elevations (from green dashed 

curve to blue dash-dotted curve). Finally, a further tuning of the substrate size enhances the 

XPD again at the main lobe direction with minor impact on low elevations, resulting in the 

red solid curve. This large enhancement confirms that an antenna designed for robust GNSS 
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receivers must be studied differently, compared to normal antennas designs dedicated for 

single-polarized or narrow-beam applications. 

 

4.5 Polarization purity in compact antenna array 

As mentioned before, array-based receivers that use compact antenna arrays suffer from 

strong mutual coupling that affects not only its radiation eigenefficiencies, but also the 

polarization purity of the radiating elements. Therefore, an efficient exploitation of the 

polarization diversity gives rise to extend the polarization analysis to cover the impact of 

mutual coupling. 

The following study explains how mutual coupling affects the co- and cross-polarizations, 

and subsequently the cross-polarization discrimination, of the radiating elements in a 

compact patch antenna array.  

To simplify the discussion:  

- Antennas with circular polarization are targeted, since this is the case of GNSS 

antennas, which are the antennas of interest in this thesis. 

- Since a circular polarization is nothing but a combination of two linear polarizations 

with a 90° phase-shift between them, the study considers the linear polarizations at first, 

to ease the analysis, and the results are generalized to the case of circular polarizations. 

- The study is confirmed by numerical simulations for the case of circular polarization, 

involving an example of a two-element compact patch antenna array. 

- Since it is needed, in antenna arrays, to shift the position of the antenna element to allow 

the other antennas to be added, the influence of this shifting is also considered in this 

work. This influence is usually ignored in the literature of mutual coupling, even though 

it is not minor at all, as shown here. 

- The study is followed by a quantitative analysis of how the influence of mutual coupling 

on XPD changes with the distance between the radiating elements. 

While coupling effect is usually modeled in literature as a change in the apparent driving 

impedance of the antenna elements, referred to as “the mutual impedance variation”, as in 

[86, 90], this model does not consider the geometry of the antenna element, which is the 

main source behind the unwanted cross-polarized fields, and therefore it is not suitable to 

be used to study the mutual coupling effect on the cross-polarized fields, or eventually on 

the cross-polarization discrimination of radiating elements. 

The study starts with the case of coupling between two linear-polarized patch antenna 

elements, where the two antennas are in different parallel E-planes, as shown in Fig. 4.15, 

where each E-plane is defined by the direction of the relevant electrical field and the 

direction of the relevant propagation, and passes across the center of the patch surface. The 

study considers then, the case of the coupling in the same E-plane, as shown in Fig. 4.16.  
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The following assumptions are considered, for simplicity, and to focus only on the coupling 

influence on radiation:  

- All antennas are matched at the same resonance frequency. 

- Distance between the elements { v 6�/2. 

- Coupling influence on the resonance frequency is ignored. This influence causes minor 

shifts of the resonance frequency of the antenna, resulting in reducing the co-

polarization radiation efficiency at the original frequency, and accordingly the XPD at 

that frequency. This impact is easily mitigated by retuning the patch length. Therefore, 

it is ignored here. 

4.5.1 Impact of mutual coupling in parallel E-planes 

Fig. 4.15 represents a patch antenna array of two elements, which have two parallel E-

planes �
%P and ��%P. If the antenna Patch 1 is excited then, as described in section 4.3.2, 

the fundamental mode TM
��B  dominates in the antenna, and results in a charge distribution 

as depicted in Fig. 4.2. A simplified top-view illustration of this charge distribution is also 

presented in Fig. 4.15, where only the x- and y-components of the electrical fields between 

the patch and the ground are presented, since they correspond to the radiation, while the z-

components are ignored. 

Patch 1 radiates a co-polarized electrical field '()L
, and a cross-polarized electrical field 

'()N
, as depicted in Fig. 4.15, and as discussed in 4.3.3. The charge distribution at Patch 1 

results in exciting a mutual coupling electrical field, '()N
,/G
�%, &, P� + '()D
,/G
�%, &, P�   

between these charges and the non-charged metallic surfaces of the second antenna Patch 

2. The z-component of this field does not influence the far field wave propagation and 

hence is ignored here. Since '()N
,/G
�%, &, P� is directed along the oy-axes, it belongs to the 

cross-polarized electrical fields. Eventually, '()N
,/G
�%, &, P� results in charging the 

opposing surface of Patch 2 with opposite charges, as illustrated in the figure.  

Since, for the dominant mode TM
��B , the electrical field between the patch and the ground 

forms sinusoidal standing waves along the ox-axis, then the charge distribution on the 

surface of Patch 1 is sinusoidal as well. Accordingly, the resulting coupling electrical field 

'()N
,/G
�%, &, P� forms a sinusoidal standing wave between the two opposing edges of Patch 

1 and Patch 2, with zero strength along the principal �&P-plane and maximum strength at 

the end of the two opposing edges, as illustrated in Fig. 4.15, and as defined by: 

'()N
,/G
�%, &, P� � C. sin �2T
67 %� . &) ,						z]: � 672 ≤ % ≤ 672 ,														�4.16� 

where																	C � max.'()N
,/G
�%, &, P�.																																			�4.17�  
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Figure 4.15: A simplified top-view illustration of the charge coupling from patch antenna 
1 to patch antenna 2, when the electrical fields are in parallel E-planes. The charges in red 

circles represent the ones generated due to the mutual coupling. The electrical fields in 
red represent the coupled fields. The illustration shows only the top-view projection of the 

excited electrical fields, i.e., only the x- and y-components of the electrical fields, since 
the z-components do not affect the far field radiation. ]1 is the feeding port of patch 

antenna 1. 
 

'()N
, the y-component of the field excited between the patch and the ground, has also a zero 

strength along the �&P-plane, as discussed in 4.3.3. Eventually, this results in a total cross-

polarization electrical field of zero along the �&P-plane, i.e.: 

'()N
,�R	����� � 	 '()N
,/G
 + '()N
 � 0() + 0() � 0(),			along	oyz � plane													�4.18� 

Nevertheless, '()N
,/G
 and '()N
 have non-zero strengths along any plane different from the 

�&P-plane, and especially near the opposing corners of the two patches.  

'()N
,/G
 � 0()							along	planes	different	from	oyz																							�4.19� 

'()N
 � 0()													along	planes	different	from	oyz																							�4.20� 

Moreover, the coupling field '()N
,/G
 is in phase with the original field '()N
, since both are 

originated due to the same charge distribution at Patch 1, i.e.: 

argM'()N
,/G
O � argM'()N
O																																															�4.21� 

 Therefore, these two fields add constructively, resulting in a larger cross-polarized field, 

comparing to the case of the single antenna element: 
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		.'()N
,�R	�����. � .'()N
,/G
 + '()N
. � .'()N
,/G
. + .'()N
. Z .'()N
.																			�4.22� 

Consequently, this results in decreasing the cross-polarization discrimination of Patch 1 in 

the array *$+
,iF	j11jN, comparing to that of the single element case *$+
,2iF7��, i.e.: 

*$+
,iF	j11jN v *$+
,2iF7��																																												�4.23� 

On the other hand, the coupled charges on the second patch excite the first dominant mode 

TM
��B  in Patch 2, as well, which results in exciting two electrical fields at Patch 2, the co-

polarized field '()L
,/G�%, &, P� and the cross-polarized field '()N
,/G��%, &, P�, shown in Fig. 

4.15. 

Since the two antennas are identical, then they have the same cross-polarization 

discrimination in the single element mode, i.e.: 

*$+
,2iF7�� � *$+�,2iF7�� � �.'()L
�%, &, P�.
.'()N
�%, &, P�.�� � � .'()L
,/G�%, &, P�.

.'()N
,/G��%, &, P�.��				�4.24�	 

The coupled charges at Patch 2 are opposite to those of Patch 1, and thus '()L
,/G is directed 

opposite to	'()L
. If �� represents the coupling ratio between the two patches, then 

'()L
,/G�%, &, P� can be written as: 

'()L
,/G�%, &, P� 	 � ��. '()L
�% � {, &, P�,																													�4.25� 

where { is the element spacing. 

Hence, according to (4.24), and considering that '()N
,/G��%, &, P�	and '()N
�%, &, P� have the 

same direction, as shown in Fig. 4.15, '()N
�%, &, P� can be written as: 

'()N
,/G��%, &, P� 	 � �. '()N
�% � {, &, P�																																					�4.26� 

As the element spacing { v 6�/2, then the phase difference cause by the distance { is:  

� � 2T
6� { v T																																																					�4.27� 

which means that the fields '()L
,/G��%, &, P�	and '()L
�%, &, P� add destructively in the space, 

while '()N
,/G��%, &, P�	and '()N
�%, &, P� add constructively, i.e.: 

.'()L
,���j��%, &, P�. � .'()L
,�%, &, P� + '()L
,/G�%, &, P�.															
																																											� .'()L
,�%, &, P� � �. '()L
�% � {, &, P�.															

																																																														v .'()L
,�%, &, P�.,			for			{ v 6�2 																																		�4.28� 
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.'()N
,���j��%, &, P�. � .'()N
,�%, &, P� + '()N
,/G��%, &, P� + '()N
,/G
�%, &, P�.								
																																									� .'()N
,�%, &, P� + �. '()N
�% � {, &, P� + '()N
,/G
�%, &, P�.	

																													Z .'()N
,�%, &, P�.,			for			{ v 6�2 																																	 �4.29� 

This means that coupling the second patch results in decreasing the strength of the co-

polarized fields and increasing the strength of the cross-polarized fields, resulting in 

decreasing the cross-polarization discrimination of the antenna element Patch 1. 

4.5.2 Impact of mutual coupling in the same E-plane 

This case is depicted in Fig. 4.16. The two patch antennas have the same E-plane �%P. Here 

as well, the charges excited at the first patch excite opposing charges at the other patch, 

resulting in a coupling electrical field between the two edges, represented by '()L
,/G
. 

Apparently, it was shown in the case of parallel E-planes that studying how the fields add 

constructively and destructively was enough to show how mutual coupling results in 

increasing the strength of the cross-polarized field and decreasing the cross-polarization 

discrimination, without involving the loss of power due to coupling or dissipation. 

However, in contrast to that, it is not straightforward to find the influence of mutual 

coupling on the XPD patterns in the case of coupling in the same E-plane if the same 

approach was followed, since both co-polarized fields '()N
 and '()N
,/G
are in phase here, 

which for the first instance could mean a total co-polarization electrical field of larger 

strength. Therefore, it must be considered here that coupling does not provide an additional 

source of energy, and hence, if only Patch 1 is fed, then the total radiated power in case of 

no mutual coupling is written as: 

$1jk,2iF7�� � $1jk,�i��	/G + $/G + $ki22 	 Z 	 $1jk,�i��	/G	,																�4.30� 

where $1jk,			2iF7�� is the total power radiated by the single antenna element in the case of 

no coupling, $1jk,�i��	/G is the power radiated by the element in the case of coupling, $/G 

is the power of the coupling field, and $ki22 is the dissipated power. 

Hence, the total radiated power with coupling is always smaller than the one without 

coupling. 

On the other hand, it must be considered that mutual coupling between two patch antennas, 

which have the same E-plane (Case B), is larger than that of the case of parallel E-planes 

(Case A). This is because the opposing edges in Case B have uniform charge distributions, 

as depicted in Fig. 4.16, so that the coupling electrical fields add constructively, while the 

opposing edges in Case A have sinusoidal charge distributions, as depicted in Fig. 4.15, so 

that the coupling fields add destructively. As a quantitative example, S-parameter 

measurements of a four-element GNSS patch antenna array, presented in Chapter 5 in Fig. 

5.3, revealed that coupling in Case B was about 10 dB larger than that of Case A for 6�\5 
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element spacing, and 6 dB larger for 6�\4 element spacing. Since this strong level of 

coupling happens along the x-direction, it reduces the strength of the co-polarized field '()L
 

more than the cross polarized field '()N
, resulting eventually in reducing the cross-

polarization discrimination of the antenna. 

 

 
 

Figure 4.16: A simplified top-view illustration of the charge coupling from patch antenna 
1 to patch antenna 2, when the two antennas have the same E-planes �%P. The charges in 
red circles represent the ones generated due to the mutual coupling. The electrical fields 

in red represent the coupled fields. ]1 is the feeding port of patch antenna 1. 

4.5.3 Influence of element-shifting 

Fig. 4.17 illustrates an example of a two-element RHCP antenna array, operating at the L1-

band, with the optimized antenna dimensions found in section 4.4, a common ground plane 

of 125 mm x 125 mm, and an element spacing of { � 6�/4. 

The study described in sections 4.3 and 4.4 showed that the excitation of the cross-polarized 

electrical fields, and subsequently the XPD pattern, are strongly determined by the 

geometry of the antenna. However, it is needed to extend the study to involve the impact 

of repositioning the single antenna element on its polarization purity. 

Numerical simulations revealed that only shifting the first element away from the center of 
the ground plane, in order to give the place for the other element, as depicted in Fig. 4.17, 
significantly increases the cross-polarized gain pattern at all directions, even before 
introducing the other radiating element. A ϕ-cut of the cross-polarized gain pattern of the 
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first antenna element is shown in Fig. 4.18, before and after shifting by	{/2	 � 6�/8 . The 
resulting XPD patterns for the different cases are depicted in Fig. 4.19. 

 

 

Figure 4.17: Top-view of a two-element RHCP patch antenna array, showing the shifting 
of the single antenna element away from the array center to give place for the other 

element. 

 

 

Figure 4.18: ϕ-cut of the cross-polarized gain pattern of the single antenna element No. 1, 

at θ=45°, before shifting (red-triangles curve), after shifting (green-circles curve), and 

after introducing coupling with of the other antenna element (blue-squares curve). 
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The strong impact of shifting is attributed to the asymmetry it introduces to the ground 

plane geometry, which reduces the possibility for the cross-polarized electrical fields that 

rise between the patch surface and the ground to cancel each other. This influence is 

eliminated only for infinitely large ground planes where shifting does not introduce 

geometrical differences.  

Figure 4.18 reveals that the impact of element shifting on the cross-polarized gain pattern 

can be even larger than the impact of mutual coupling for some geometries. 

Practically, while it is possible to partially mitigate the mutual coupling and reduce its 

impact, the influence of shifting can be partially reduced by extending the dimensions of 

the ground plane, which might not be desired for compact antenna systems, or by shaping 

the ground plane as in [49]. 

 

 
Figure 4.19: ϕ-cut at θ=45° of XPD patterns of the single antenna element (red-triangles 

curve), the single antenna after shifting (green-circles curve), and finally the antenna after 
introducing coupling with the other antenna (blue-squares curve). 

4.5.4 Impact of mutual coupling on circular-polarized patch antennas 

The two square patch antennas are fed to excite the right-handed circular polarization, or 
in other words they excite two linear polarizations (oriented along the x- and y-directions) 
with 90° phase shift. Therefore, the two patch antennas have the same E-plane �&P for the 
linear polarization that is oriented along the y-direction, and two parallel E-planes �
%P and ��%P for the orthogonal linear polarization that is oriented along the x-direction. Hence, the 
impact of mutual coupling on linear polarizations can be generalized to the case of circular-
polarized antennas.  
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Numerical simulations presented in Fig. 4.18 show a ϕ-cut of the cross-polarized gain 
pattern of the Element 1, with and without introducing the mutual coupling with of the 
other antenna element. The cross-polarized gain pattern increases with coupling along both 
x-directions (ϕ= 0°, and ϕ=180°), and along the y-direction towards the coupling element 

(ϕ= -90°). Eventually, this leads to decreasing the XPD at these directions as depicted in 
Fig. 4.19. 

Figure 4.20 and figure 4.21 show how the surface current of the studied RHCP patch 

antenna changes with mutual coupling. The figures are based on numerical simulations 

performed in CST microwave studio. At first, the surface current of the single-element 

mode is illustrated in Fig. 4.20. The animation phase is changed between 0°, 90°, and 180° 
to give the impression of the rotation. 

 

 

 

Figure 4.20: Surface current of the single-element RHCP patch antenna, shown at 

different animation phases, 0°, 90°, and 180° to illustrate the rotation. 

 

Then, the surface current is calculated for the antenna in the array, with element spacing 

of〖 λ〗_0/4, and presented in Fig 4.21, at the same animation phases. The comparison 

between the two figures shows that the maximum amplitude of the surface current of 

Element 1 is reduced by about 3.8 dB in the array mode. Figure 4.21 shows also that the 

coupled surface current excited at Element 2 is rotating opposite to the original current at 

Element 1, which means that this current excites the LHCP, i.e., the cross-polarized field, 
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at the Element 2, resulting in decreasing the cross-polarization discrimination of the 

Element 1. 

 

 

Figure 4.21: Surface current resulting from exciting one patch antenna (the element on 

left), in a two-element array, with element spacing of λ_0/4, at different animation phase. 



 
 
 

 
 

73 

Why does coupling result in a LHCP coupled field, from a RHCP original field? 

The RHCP co-polarization of Element 1 is achieved by exciting the two co- linear-polarized 

fields '()L
 that is presented in Fig. 4.15, and '()N
 that is presented in Fig. 4.16, with '()L
 

delayed by a phase shift of 90°, i.e.,  

Y5�w:	M'()L
O � Y5�w:	M'()N
O � 90°																																										�4.31� 

As seen in Fig. 4.15, '()L
 results in a coupled field '()L
,/G directed to the opposite direction 

of '()L
. On the other hand, Fig. 16 shows that '()N
results in a coupled field '()N
,/G� directed 

in the same direction of '()N
. Hence: 

Y5�w:	M'()L
,/GO � Y5�w:	M'()N
,/G�O � 90°	 + 180° 
� Y5�w:	M'()N
O + 90°																																														�4.32� 

Hence, the phase delay between and x- and y-components of the electrical field is inverted 

at the coupled antenna, which results in exciting a LHCP coupled field. 

Influence of ground edges: 

Numerical simulations revealed that the surface current at the edges of the ground was 

about 50 dB smaller than the maximum surface current at the patch surface, and therefore 

it has a minor influence on the cross-polarization discrimination. One reason for that minor 

influence is that the dimensions of the ground plane in this design were already optimized 

for maximum cross-polarization discrimination, as described in section 4.4. Hence, a 

different influence is expected for other ground plane dimensions. 

 

4.5.5 Impact of coupling versus element spacing - Quantitative analysis 

A quantitative analysis based on electromagnetic full-wave simulations was performed, 

using the frequency solver of CST microwave studio, on the two-element antenna array 

presented in Fig. 4.17, to study the influence of mutual coupling on radiation parameters of 

the array, and how it changes for different values of element spacing.  

The study starts from the design of a single element optimized for the best XPD pattern as 

recommended by section 4.4. The patch has a 26.9 mm x 26.9 mm patch size, a 45 mm x 

45 mm substrate size, a 2.9 mm trim depth, and a 100 mm x 100 mm ground area. 

However, with these dimensions, the element spacing between two elements in the array 

was limited to the interval between 0.246� (the substrates overlap below this value) and 

0.296� (after which the substrate becomes larger than the ground plane). To enable smaller 

and larger values of the element spacing, a ground plane of 125 mm x 125 mm, and a 
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common substrate of the same ground plane size were used. The selected dimensions allow 

to change the element spacing between 0.156�and 0.46�. 
The antenna with the new dimensions gives, in the single-element mode, an XPD pattern 

with values greater than 9 dB at all directions, as shown in Table 4.4.  

Table 4.4: XPD (dB) versus different directions, at 1.57542 GHz, for a square truncated 

patch antenna with a trimming depth of 2.9 mm, a ground and substrate size of 125 mm x 

125 mm, and a patch size of 26.9 mm x 26.9 mm 

 Azimuth ϕ=0° ϕ=45° ϕ=90° 

Elevation 
θ 

0° 45° 75° 85° 0° 45° 75° 85° 0° 45° 75° 85° 

XPD 
(dB) 

29.6 19.4 12.0 10.0 29.6 14.4 9.7 9.2 29.6 29.3 14.3 11.4 

 

A detailed numerical analysis was performed to quantify the influence of array 

compactness on resonance frequency, radiation efficiency, and reflection efficiency, 

realized gain, and XPD. The study involves also the influence of shifting the single element 

before introducing the other element. 

A- Influence of coupling on resonance frequency and radiation efficiency: 

The existence of other radiating or passive metallic elements in the vicinity of the radiating 

element introduces frequency dependent parasitic effects that strongly influence the input 

impedance of the element, which shifts the resonance frequency of the antenna elements. 

Numerical results presented in Table 4.5 describe how the effective resonance frequency 

of one antenna element changes versus different element spacing values in the compact 

antenna array presented in Fig. 4.17.  

Table 4.5: Resonance frequency and reflection coefficient S11 of a RHCP patch antenna, in 
case of single-element, with/without shifting, and in compact array with different degrees 
of compactness 

 Single 
element 

Single 
element 
shifted by 
0.2λ0 from 
center 

Two-element array with different element-
spacing 

0.4λ0 0.35λ0 0.3λ0 0.25λ0 0.2λ0 0.15λ0 

Effective resonance 
frequency (GHz) 

1.575 1.591 1.591 1.591 1.595 1.603 1.621 1.639 

S11 at 1.575 GHz 
(dB) 

-12.0 -6.7 -7.0 -7.0 -6.3 -4.7 -3.3 -1.5 

S11 at the actual 
resonance 
frequency (dB) 

-12.0 -9.3 -9.4 -11.1 -12.7 -12.6 -10.6 -13.1 
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Table 4.5 highlights the need to retune the antenna elements used in compact arrays, to 

compensate for the frequency shift and restore the loss in the reflection efficiency. 

The frequency shift versus the element spacing is highlighted in Fig. 4.22. 

 

Figure 4.22: Resonance frequency shift versus element spacing, in a two-element patch 

antenna array at the L1-band. 

Subsequently, Table 4.6 presents the influence of compactness on the radiation and 
reflection efficiencies of the array. The table 4.6 shows that shifting causes a small loss of 
about 0.7 dB to the radiation efficiency of the antenna element. On the other hand, the 
reflection efficiency, and thus the total radiation efficiency, were significantly reduced by 
the mutual coupling, especially for element spacing values below 0.25λ0. 

Table 4.6: Radiation and reflection efficiencies of a RHCP patch antenna, at the nominal 
resonance frequency of 1.575 GHz, in case of single-element, with/without shifting, and in 
compact array with different degrees of compactness 

 Single 
element  

Single element 
shifted by 0.2λ0 
from center 

Two-element array with different element 
spacing 
 
0.4λ0 

 
0.35λ0 0.3λ0 0.25λ0 0.2λ0 0.15λ0 

Radiation 
efficiency (dB) 

-0.54 -0.48 -0.50 -0.53 -0.59 -0.65 -0.77 -0.61 

Reflection 
efficiency (dB) 

-0.33 -1.04 -1.05 -1.16 -1.56 -2.43 -3.64 -6.87 

Total efficiency 
(dB) 

-0.87 -1.52 -1.55 -1.69 -2.15 -3.08 -4.41 -7.48 

Realized gain 
(dBi) 

5.44 4.37 3.84 4.14 4.12 3.81 2.48 -1.10 
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Since Table 4.6 involves three cases, the single antenna, the shifted single antenna, and the 
compact antenna array mode, Figure 4.23 is presented to highlight specifically the case of 
antenna array, showing the influence of element spacing on the antenna efficiencies. The 
figure confirms similar results found by other works [4, 76]. 

 

 

Figure 4.23 Influence of element spacing on the antenna radiation efficiency (blue-
diamonds curve), reflection efficiency (orange-squares curve), and total efficiency (grey-

triangles curve), of a square patch antenna in a two-element patch antenna array. 

B- Influence of coupling on cross-polarization discrimination 

At this point, simulations were performed to monitor the XPD pattern of the patch element 

1 at the nominal resonance frequency 1.575 GHz, versus different values of element 

spacing. The achieved results are stated in Table 4.7.  

The table shows the following points: 

- Shifting has a strong influence on the XPD, mostly in a negative way, especially at 

directions towards the other element. This is also depicted in Fig. 4.24. 

- Mutual coupling has a small impact on the XPD at element spacing larger than 0.3 λ0, 

since most of the influence is attributed to the shifting. 

- Mutual coupling significantly decreases the XPD values at all directions for element 

spacing below 0.3 λ0. This behavior is illustrated in Fig. 4.24. 
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Table 4.7: XPD values of element 1, at the nominal resonance frequency of 1.575 GHz, 

versus different values of element spacing. 

XPD (dB) at 
1.57542 GHz 

Single 
element 
at center 
of the 
ground 
plane  

Single 
element 
shifted by 
0.2λ0 from 
center 

Two-element array with different element spacing 

 

 

 
0.4λ0 0.35λ0 0.3λ0 0.25λ0 0.2λ0 0.15λ0 

ϕ=0° 
(�� -
plane) 

θ=85° 10.0 19.2 15.9 16.7 13.3 9.9 5.2 -3.1 

θ=45° 19.4 20.6 15.2 17.0 14.4 13.1 8.2 -2.4 

θ=0° 29.6 16.7 10.9 11.7 10.5 11.5 8.4 -0.8 

θ=-45° 21.8 6.5 4.3 4.4 4.7 7.2 6.3 0.3 

θ=-85° 10.5 -4.2 -5.2 -3.9 -1.7 2.0 3.0 1.3 

ϕ=45° θ=85° 9.2 12.2 21.4 16.6 11.8 11.5 11.5 -12.2 

θ=45° 14.4 21.8 13.5 14.3 12.9 13.7 12.7 -7.6 

θ=0° 29.6 16.7 10.9 11.7 10.5 11.5 8.4 0.8 

θ=-45° 16.2 5.6 10.0 8.7 6.4 2.6 -2.0 2.7 

θ=-85° 10.5 4.2 8.9 8.0 6.5 2.6 -3.0 3.5 

ϕ=90° 
(�¡ -
plane) 

θ=85° 11.4 16.1 12.4 12.4 13.3 19.8 15.4 -8.7 

θ=45° 29.3 15.7 11.7 13.8 14.8 21.0 22.9 -5.9 

θ=0° 29.6 16.7 10.9 11.7 10.5 11.5 8.4 0.8 

θ=-45° 23.4 8.7 19.9 22.2 18.1 8.4 -8.8 8.4 

θ=-85° 11.2 12.2 14.5 15.5 17.1 13.2 3.8 10.0 

 
 

 
Figure 4.24: θ-cut at ϕ=0° of the XPD pattern of an antenna element in single-mode and in 

a compact two-element patch antenna array, showing the influence of mutual coupling on 

the XPD at the resonance frequency, for element spacing between 0.15λ0 and 0.4λ0. 



 

 
 

 
 

Design and Testing of Compact Dual-band Dual-polarized Robust Satellite Navigation 

Antenna Arrays 
78 

 

 

  



 
 
 

 
 

79 

 

Chapter 5: 

5.  

Robust Dual-band Dual-polarized 

Compact GNSS Receiver 
 

 

5.1 Receiver architecture 

This chapter describes the architecture of an array-based dual-band dual-polarized GNSS 

receiver that features robustness against jamming, spoofing and multipath propagation. 

This description focuses on the analog part of the receiver, whose block diagram is depicted 

in Fig. 5.1. Later, the chapter covers the integration with an array-based digital receiver that 

performs data acquisition and signal processing, and drives the antenna system to apply 

beamforming and anti-jamming null-steering. 

The analog part of the receiver includes in sequence: 

1- A compact antenna array, which consists of four dual-band dual-polarized patch 

antenna elements, resulting in eight RF receive channels, as following: 

 

o Four L1/E1 + L5/E5a dual-band channels, with linear polarization LP1. 

o Four L1/E1 + L5/E5a dual-band channels, with linear polarization LP2. 

 

The receiver uses either the single-layer or the multi-layer antenna elements described in 

Chapter 3. 

 

2- Eight 90° phase-shift hybrid couplers to excite the two circular polarizations RHCP and 

LHCP. The hybrid couplers provide the following RF channels at their output: 

 

o Four L1/E1 + L5/E5a dual-band channels, with RHCP. 

o Four L1/E1 + L5/E5a dual-band channels, with LHCP. 

 



 

 
 

 
 

Design and Testing of Compact Dual-band Dual-polarized Robust Satellite Navigation 

Antenna Arrays 
80 

3- Two decoupling and matching networks (DMN), one for each polarization, to mitigate 

the influence of the mutual coupling in the array, and restore part of the array radiation 

eigenefficiencies. 

 

4- A calibration network that enables the digital receiver to calibrate the RF output levels 

after matching. 

 

5- An amplifying and filtering stage, which contains RF low-noise amplifiers and 

frequency diplexers. The following channels result from the frequency diplexers: 

 

o Four L1/E1 channels, with RHCP. 

o Four L5/E5a channels, with RHCP. 

o Four L1/E1 channels, with LHCP. 

o Four L5/E5a channels, with LHCP. 

 

6- 16-channel RF-IF front-end, to perform RF-IF down-converting, and provide 16 IF 

channels to the digital receive, as following: 

 

o Four L1/E1–IF down-converted channels, with RHCP. 

o Four L1/E1–IF down-converted channels, with LHCP. 

o Four L5/E5a–IF down-converted channels, with RHCP. 

o Four L5/E5a–IF down-converted channels, with LHCP. 

 

However, due to resource limitations in the FPGA circuit used in the digital receiver, 

only 12 channels could be processed. Therefore, the four L5/E5a–IF channels with 

LHCP polarization were omitted. The omitted channels were selected based on the 

lower importance of the LHCP polarization, considering that the GNSS signal has a 

RHCP, and based on the quality of service provided at the L1/E1 frequency band.  

In summary, the entire receiver is designed to provide access for 12 RF channels, as 

following: 

o Four L1/E1 channels, with RHCP. 

o Four L1/E1 channels, with LHCP. 

o Four L5/E5a channels, with RHCP. 

 

Hence, dual polarization functionality will be provided only for the L1/E1 frequency band. 

The components of the receiver are described in detail in the following sections. 
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Figure 5.1: Block diagram of the analog part of the receiver architecture, with main 
components and signal flow. 
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5.2 Dual-band dual-polarized compact antenna array 

5.2.1 Array design 

Two different antenna arrays, composed of four dual-band and dual-polarized patch 

antenna elements, were designed for the GNSS receiver. For the first array, the multi-layer 

patch antennas described in section 3.2 and in [66] and [67] where used as the radiating 

elements. For the second arrays, the single-layer stub-loaded patch antenna elements 

described in section 3.3 and in [51] were used. The arrays are illustrated in Fig. 5.2 and Fig. 

5.3. 

Both arrays operate at the two frequency bands: L1/E1-band (centered at 1.57542 GHz) 

and L5/E5a-band (centered at 1.17645 GHz). The arrays operate at bandwidths of about 4 

MHz at L1-band and 20 MHz at L5-band, which is required for GNSS data acquisition.  

The antennas were built using the high dielectric permittivity (of 10.2) Rogers 3010 

laminates [23], to reduce the physical sizes at given frequency, and enable the compact 

arrangement. Two or three layers of the 2.54 mm thick laminates were used to increase the 

substrate thickness, in order to enhance the antenna efficiency. The layers were glued 

together using the adhesive material Rogers 4450F [28]. The total thicknesses of the 

antennas were 5.18 mm for the single-layer antenna and 7.82 mm to 9.82 mm for the multi-

layer antenna. 

 

Figure 5.2: A top-view (left) and a side-view (right) of the multi-layer dual-band dual-

polarized antenna array (devolved by the German Aerospace Center DLR) 
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Figure 5.3: A top-view of the single-layer dual-band dual-polarized antenna array, based 

on stub-loaded patch radiating elements (devolved by TU Ilmenau). 

Each array was arranged on an area of 10 cm × 10 cm, making its side-length smaller than 

40% of the free-space wavelength 6�	at the L5-band, and resulting in an element spacing 

of only  6�/5 at the L5-band and 6�/4 at the L1-band.  

While the multi-layer array is designed with an island structure to reduce the surface-wave 

mutual coupling between the elements by about 1 dB, as found by numerical simulations, 

the single layer array uses a common substrate to reduce fabrication costs and ease mass 

production. Nevertheless, the single layer antenna has a level of mutual coupling smaller 

by about 1 to 2 dB, due to different parameters such as the smaller substrate thickness, and 

the less metallic layers. 

5.2.2 Array performance with mutual coupling impact 

a. Realized gain and radiation efficiency: 

Such a degree of compactness, with element spacing of only 6�/4 at the L1-band and 6�/5 

at the L5-band, gives rise to a strong mutual coupling between the radiating elements of 

both arrays, which measures about -8 dB at the L1-band, and -4 dB at the L5-band, as 

illustrated in Fig. 5.4.  

The strong mutual coupling significantly reduces the realized gain of the antenna elements, 

in both antenna arrays, from about 2.5 dBi at the L1-band and 4 dBi at the L5-band to about 

-1 to 0 dBi at both bands; i.e., it reduces the total radiation efficiency of the individual 

antenna elements by more than 44% at the L1-band, and more than 60% at the L5-band. 
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b. Array eigenefficiencies: 

The influence of mutual coupling can also be seen in terms of eigenefficiencies of the array, 

i.e., the radiation efficiencies of the array eigenmodes, which is defined for symmetric 

antenna arrays as following [4, 76, 98]: 

If the covariance matrix of an N-element array is ¢, then for a symmetric antenna, ¢ is 

Hermitian, i.e., 

¢ � ¢£																																																																�5.1� 

Hence, the eigen-decomposition of the matrix decomposes it into its eigenvectors and 

eigenvalues as following: 

¢ � ¤	¥	¤£ ,																																																													�5.2� 

where the N columns of the matrix ¤ form the vector basis {¦i, …, ¦§}of the antenna 

radiation space, which excite the antenna radiation eigenmodes {U�{:
, … , U�{:§}, and 

Λ is a diagonal matrix that contains the eigenvalues of the covariance matrix, i.e.: 

¥ � {z��	{6
, … , 6§}																																																	�5.3� 

Each element 6i quantifies the radiation eigenefficiency of the antenna array when its 

corresponding radiation eigenmode U�{:i is excited. 

Hence, every antenna pattern is a superpositions of the eigenmode patterns, with a radiation 

efficiency of: 

6EiF v 6
 v 6EjL																																																				�5.4� 

For a four-element antenna array, the eigenmode of maximum efficiency 6EjL is referred 

to as the even mode, the eigenmode of minimum efficiency 6EiF is called the Pi-mode, and 

the other two modes are called odd-mode 1 and odd-mode 2. 

The array eigenmodes were not accessible for far field measurements at this phase of the 

design, since an eigenmode-based network is needed to excite modes, as described in 

section 5.5. Hence, the eigenefficiencies were calculated in Matlab using the measured 

radiation patterns of the antenna elements in the array. This method calculates the upper 

possible limits of the eigenefficiencies of the fabricated array regardless of the losses 

introduced by the excitation network.  

Calculations revealed a radiation efficiency of about 58% at the L1-band and 24% at the 

L5-band for the best case, the even mode. The efficiency of the worst case, the Pi-mode, 

was only about 6% at the L1-band and 2% at the L5-band. 

This strong influence of the mutual coupling on the radiation efficiencies of the array forces 

the need to involve low-loss decoupling techniques, such as the decoupling and matching 
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networks used in this work, to mitigate the coupling and partially compensate for the 

reduced radiation efficiencies. More details about this technique are introduced in sections 

5.5 and 5.6. 

c. Frequency response: 

Moreover, numerical simulations of the antenna array revealed a frequency shift of about 

30 to 35 MHz at both bands due to the mutual coupling, which was expected as discussed 

in section 4.6.1.  

This shift in frequency was compensated for by simply enlarging all the dimensions of the 

patch surfaces slightly, and run numerical simulations in the presence of mutual coupling 

until the dual-band resonance at the required frequencies is achieved. 

S-parameter measurements of the fabricated array confirmed that this approach was enough 

to achieve the resonance with a reflection coefficient below -10 dB at both bands. 

d. Cross-polarization coupling: 

As described in sections 3.2 and 3.3, the antenna elements were fed at two feeding positions 

to excite the two orthogonal linear polarizations (LP1, LP2). Measurements of the S-

parameters revealed that the multi-layer array featured a cross-polarization decoupling of 

about 15 dB at the L5-band and 20 dB at the L1-band, between these two ports, as illustrated 

in Fig. 5.4.  

 

 

Figure 5.4: Reflection coefficients (black-triangles curve), co-polarized coupling (blue-

circles curve), and cross-polarization coupling (red-squares curve), in the multi-layer 

antenna array. 
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Likewise, the single-layer array had a cross-polarization decoupling of about 17 dB at the 

L5-band and 24 dB at the L1-band, as shown in section 3.4.3 in Fig. 3.6. 

e. Cross-polarization discrimination: 

On the other hand, coupling introduced between the antenna elements decreases the cross-

polarization discrimination of each element. Measurements of radiation fields of the single-

layer antenna array in the anechoic antenna measurement chamber, and calculations of the 

cross-polarization discrimination using Matlab revealed a significant reduction of the cross-

polarization discrimination of the radiating elements, comparing to the simulated XPD 

pattern of the single-element, as depicted in Fig. 5.5. Moreover, the 10 dB XPD-beamwidth 

was reduced from 180° in the single-element mode to about 80° in the array mode, as 

highlighted also in the figure.  

This notable impact of mutual coupling on cross-polarization discrimination adds another 

reason to use decoupling techniques for the compact antenna array. 

 

Figure 5.5: Influence of mutual coupling on cross-polarization discrimination of the 

single-layer GNSS patch antenna element. The figure shows XPD for the single element 

(red dashed-curve), and of the element in the array (blue curve). 10 dB XPD-beamwidth 

is highlighted between the two black dotted lines. 
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5.3 Excitation of the circular polarization 

5.3.1 Circuit design 

As described before, both the single-layer and multi-layer antenna elements excite two 

orthogonal linear polarizations. The right hand and left hand circular polarizations were 

achieved using 90° phase-shifted hybrid couplers, built of the quasi-lumped off-the-shelf 

integrated circuits QCN-19+ from Mini-Circuits [104], as illustrated in Fig. 5.1. The 

circuits were added to the bottom layer of the decoupling network board, as described in 

section 5.1.4.  

5.3.2 Cross-polarized coupling 

S-parameter measurements revealed that the ports of different polarizations were well 

decoupled, with a decoupling level larger than 15 dB, before adding the 90° phase-shifted 

hybrid couplers that generate the circular polarizations. 

However, the hybrid couplers operate perfectly for 50 Ω input and output impedances, 

which is not easy to achieve for dual-band GNSS antennas, where the two bands are too 

close. Practically, optimization of the designed antenna elements resulted in an output 

impedance between 30 Ω and 45 Ω, which deteriorates the performance of the couplers, 

especially at the L5-band, where the impedance was about 30 Ω, resulting in a notable 

coupling level of about -6 dB between the exited RHCP and LHCP radiation modes. 

Nevertheless, due to its source of mismatching, cross-polarized coupling was reduced later 

by tuning dual-band matching networks, introduced directly after the decoupling networks, 

as discussed in sections 5.5 and 5.6. Coupling levels were reduced from -3 dB to -6 dB 

between the RHCP and LHCP  Pi modes of the antenna array, and from -7 dB to -12 dB 

between the RHCP and LHCP  even modes of the antenna array. 

The other possible solution of adding another layer of matching networks directly after the 

antennas and before the hybrid coupler was ignored, to avoid adding more design 

complexity and Ohmic losses.  

In general, it is important either to generate the circular polarizations directly at the 

antennas, which is quite challenging for dual-band antennas, or to match the linear 

polarizations very well, which is also not easy for too close bands such as with GNSS.  

A further study showed the same behavior when an equivalent circuit of transmission lines 

was used instead of the integrated circuit, which confirms that the reason behind this 

problem is mismatching, and not a weakness in the off-the-shelf circuits. 
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5.4 Mitigation of the mutual coupling - State-of-the-art 

As mentioned in section 5.2.2, measurements of the antenna array revealed a strong mutual 

coupling of -4 to -8 dB between the antenna ports of identical polarization, which reduces 

the radiation efficiencies of the array eigenmodes. This poor efficiency reduces the 

feasibility of the modes, and hence decreases the diversity gain of the array, or in other 

words, it limits the use of the four-element compact array, resulting in a system 

performance comparable to that of a three-element array with 6�/2 element spacing. This 

limitation justifies the importance of using decoupling techniques to decouple the co-

polarized ports, and restore part of the radiation efficiency.  

There are several approaches to reduce the mutual coupling in compact antenna arrays. 

Mutual coupling can be reduced at the level of the radiating elements using techniques such 

as electromagnetic band-gap structures [105-110], and frequency-selective surfaces [111-

115]. Some techniques suppress the surface wave coupling by optimizing the antenna 

dimensions [92, 116], grooving the dielectric [117], or covering the patch by additional 

dielectric layers [118]. However, these techniques come at the cost of increasing the design 

complexity and the fabrication costs. 

Mutual coupling can also be reduced by changing the structure of the antenna array, e.g., 

by using spatial tilting [79, 98, 119], which converts the planar structure of the antenna into 

a 3D structure. This approach, however, increases the fabrication complexity, and reduces 

the antenna directivity. 

Furthermore, coupling can also be reduced at the level of the feed network, using solutions 

such as eigenmode-based decoupling and matching networks as explained in this thesis. 

 

5.5 Design of the eigenmode-based decoupling networks 

Since coupling affects the matching efficiencies of the array more than the radiation 

efficiencies, as seen in section 4.6.1 in Fig. 4.23, the approach of eigenmode-based 

decoupling and matching network solves the problem of enhancing the poor 

eigenefficiencies of the compact array by matching the eigenmodes of the array.  

However, to match the eigenmodes of a compact array, it is needed to have access to them 

at first. Hence, the approach separates the problem into a decoupling stage, and a matching 

stage. At the decoupling stage, a network is used to excite the eigenmodes of the array, 

which are decoupled in nature, due to the orthogonality, and therefore the network is called 

a decoupling network [76, 77, 120, 121]. Then, at the matching stage, separate matching 

networks are used to match each of the extracted eigenmodes, resulting in enhancing their 

efficiencies, and eventually the array diversity.  
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The usability of the decoupling and matching networks was proven in previous works for 

compact single-band single-polarized GNSS antenna arrays [4, 15, 49, 122]. Therefore, and 

to keep the fabrication costs at low levels, this approach will be extended in this work for 

compact dual-band dual-polarized receivers.  

5.5.1 Circuit design 

Based on the eigenmode analysis described in section 5.2.2, both the multi-layer and the 

single-layer four-element antenna arrays presented in Fig. 5.2 and Fig. 5.3 have four 

eigenmodes with eigenvectors as stated in Table 5.1, assuming symmetric ideal structures. 

Table 5.1: The array eigenmodes and their relevant eigenvectors of the studied four-element 

patch antenna arrays, assuming symmetric ideal structures. 

Eigenmode Eigenvectors Excitation: same amplitude of 1, and 
different phases at the feeding ports of the 
antenna elements 
phases at 
element1 

phases at 
element2 

phases at 
element3 

phases at 
element4 

Even mode ¦
 � [+1, +1, +1, +1]­ 0° 0° 0° 0° 
Odd mode 1 ¦� � [+1, �1, �1, +1]­ 0° 180° 180° 0° 
Odd mode 2 ¦® � [�1, �1, +1, +1]­ 180° 180° 0° 0° 
Pi-mode ¦¯ � [�1, +1, �1, +1]­ 180° 0° 180° 0° 

 

The design starts with a single 180° phase-shift hybrid coupler [123, 124], which extracts 

the orthogonal even and Pi-modes of a two-element antenna array, as illustrated in Fig. 5.6, 

by simply using different lengths of the transmission lines to shift the phases of the signals 

to achieve: 

Even mode = Ant.1+Ant.2    																																										�5.5� 

Pi-mode = Ant.2-Ant.1     																																															�5.6� 

where Ant.1 and Ant.2 are the signals at first and second antennas, respectively. 

Then, for the four-element antenna arrays, a four-input four-output eigenmode-based 

decoupling network that excited the array eigenmodes listed in Table 5.1 can be designed 

using four of the 180° hybrid couplers, cascaded as shown in the block diagram in Fig. 5.7, 

to feed the four antennas with the relevant eigenvector of each eigenmode. 
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Figure 5.6: The concept a single 180° phase shift hybrid coupler. Z is the characteristic 
impedance of a transmission line or a port, and L is the length of a transmission line. 

 

 

Figure 5.7: The block diagram of one decoupling network designed based on four 180° 
hybrid couplers. Z is the characteristic impedance of a transmission line or a port, and L is 

the length of a transmission line. 
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The decoupling networks were designed using stripline technology, as depicted in Fig. 5.8. 

The four ports related to each polarization were decoupled separately, using one 

eigenmode-based decoupling network. Hence, two decoupling networks were needed for 

the antenna array, one to decouple its RHCP ports, and one for the LHCP ports.  

 

 

Figure 5.8: The 10 cm x 10 cm stripline-circuit consisting of two eigenmode-based 
decoupling networks, designed in Keysight Advanced Design System, using Rogers 

3010. The antenna elements, related to each polarization, will be connected to the antenna 
ports 1..4, and the eigenmodes are extracted at the feed ports 1..4. 

It was also possible to design decoupling networks for the two linear polarizations excited 

by the antenna, instead of the RHCP and LHCP. This approach is theoretically equivalent, 

and it eliminates the need for the hyprid-couplers that excite the circular polarizations, and 

hence reduces the power losses introduced by them, and avoids the problem of coupling 

between their outputs. However, since GNSS signals are ideally RHCP, this approach 

demands the use of both linear polarizations for beamforming algorithms, which increases 

the complexity of both the RF front-end and the digital receiver. On the contrary, the 

approach of exciting and decoupling the RHCP and LHCP modes allows beamforming 
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algorithms to use only the RHCP ports, if sufficient, or additionally selected LHCP ports, 

depending on feasibility and receiver capability. 

The design of the circuit was performed and optimized using the Momentum 3D EM 

Simulator of Keysight Advanced Design System (ADS) [125]. 

The adhesive material used to glue the substrate layers together changes the dielectric 

constant of the substrate, resulting in changing the performance of the stripline-based 

decoupling networks. However, it was found based on simulations in Momentum that this 

influence can be mitigated by loading the hybrid-couplers of the networks with capacitive 

loads in the shape of half circles of 0.5 mm radius, as depicted in Fig. 5.8. 

The Rogers 3010 with a dielectric constant of 10.2 and a thickness of 0.635 mm was chosen 

as the circuit substrate. The high permittivity was selected to improve the compactness, and 

thus to allow for the placement of the two decoupling networks in the one layer of 10 cm x 

10 cm area. The adhesive material Prepreg RO 4450F is used to stick the layers together. 

The circuit was integrated in a multilayer printed circuit board, as illustrated in Fig. 5.9, 

and Fig. 5.10, to ease the integration with the antenna array, and later with the following 

circuits in the RF front-end. The bottom layer of the printed circuit board contains the 

calibration and the matching circuits, which will be described later. The entire board is 

referred to as the decoupling and matching (DMN) board. 

 

Figure 5.9: A side-view sketch of DMN board layers, brown: metallization, blue: 
dielectric substrate, gray: adhesive material. 

The printed circuit board was designed and fabricated for both the single-layer and the 

multi-layer antenna arrays, with layout modifications to fit with each antenna.  
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Figure 5.10: A transparent top-view of the 10 cm x 10 cm multilayer DMN board, 
highlighting the layer of the two decoupling networks (in red), the layer of matching and 

calibration circuits (yellow), and the vias of the antenna ports (blue circles). 

 

Designs were modified, fabricated, and tested several times between 2014 and 2016, to 

enhance the decoupling and the matching parameters, by tuning dimensions of the 

striplines, and to ease the assembly of the calibration and matching circuits. Figure 5.11 

shows the top-view of one fabricated board. The figure highlights the antenna inputs, the 

decoupling network inputs and outputs, and the layout of the matching and calibration 

circuits. 

 

Figure 5.11: Top-view of the fabricated DMN board, with instances of the main functions 
and ports highlighted. Numbers represent the order of the functions in the signal flow. 

First decoupling network 

(for RHCP eigenmodes) 

Second decoupling 

network (for LHCP 

eigenmodes) 

2- 90° phase-shift hybrid couplers 

1- Antenna outputs 

6- Calibration circuit 

5- Matching circuit 

4- Output of the decoupling network 

7- Outputs of the matching network 

3- Input of the decoupling network 



 

 
 

 
 

Design and Testing of Compact Dual-band Dual-polarized Robust Satellite Navigation 

Antenna Arrays 
94 

Quality of the eigenmode excitation:  

S-parameters of the fabricated decoupling networks were measured in order to check if the 

excitation of the eigenvectors was achievable as listed in Table. 5.1. Results stated in Table 

5.2 compare the theoretical excitation phases required to excite the eigenmodes with the 

measured ones, at the L1-band. The table shows an average shift of about ±13°, due to 

fabrication limitations, which can be minimized by tuning the lengths of the feeding paths. 

Table 5.2: Theoretical (theo.) and measured (msr.) phases between the decoupling network 

outputs and the related four ports of the antenna array 

Array 
port 

Phase 

Odd mode 1 Pi-mode Odd mode 2 Even mode 

theo. msr. theo. msr. theo. msr. theo. msr. 

1 180° 189° 180° 184° 0° -13° 0° -12° 

2 0° -13° 0° -13° 0° -17° 0° -19° 

3 0° -1° 180° 183° 180° 172° 0° -14° 

4 180° 196° 0° 29° 180° 168° 0° -20° 

 

The quality of the eigenmode excitation, and hence the quality of decoupling, can be 

concluded from computing the non-orthogonality ratio between the actual excitation 

vectors provided by the network, as following: 

Since the scalar product between two vectors °, ± is defined by: 

°. ± � |°||±|cos�,�,																																																	�5.7� 

where , is the phase between ° and ±, then it is possible to use the amount cos�,� as a 

measure of non-orthogonality level between ° and ±. 

A similar measure can be written for the case of feeding networks, to calculate the non-

orthogonality ratio between two excitation vectors, as following: 

γ�³ � 1
N µ cos�θ�¶ � θ³¶�

·

¶¸

,																																															�5.8� 

where γ�³ represents the non-orthogonality between the excitation vector ¦i and the 

excitation vector ¦¹  , N is the number of components, θ�¶ is the k»¼ phase component of the 

excitation vector ¦i. 
This function satisfies that γ�³ � 0 for any two eigenvectors listed in table 5.1. For example, 

if ¦
 � [1,1,1,1]­ , ¦� � [1, �1, �1,1]­, then: 
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γ
� � 1
4 �cos�0� + cos�180� + cos�180� + cos�0�� � 1 � 1 � 1 + 1 � 0 

It also satisfies γ�� � 1 which means that any excitation vector ¦i is fully non-orthogonal 

to itself. 

Accordingly, Table 5.3 shows the non-orthogonality between the measured excitation 

vectors. Calculations reveal that the largest non-orthogonality level is about only 6.7%, 

which gives an indication of the quality of the fabricated decoupling network.  

However, the decoupling levels can only be measured after integrating the DMN board 

with the antenna, which is performed in the following section 

Table 5.3: Correlation between the excited (Ex.) modes at the outputs of the decoupling 

network 

Eigenmodes Ex. Odd mode 1 Ex. Pi-mode Ex. Odd mode 2 Ex. Even mode 

Ex. Odd mode 1 100 % 0.6 % 0.9 % 5.5 % 

Ex. Pi-mode 0.6 % 100 % 6.7 % 6.7 % 

Ex. Odd mode 2 0.9 % 6.7 % 100 % 0.3 % 

Ex. Even mode 5.5 % 6.7 % 0.3 % 100 % 

5.5.2 Integration with the antenna array 

The DMN board was connected first to the multi-layer antenna array, using surface mount 

SMA connectors, as illustrated in Fig. 5.12. 

 

Figure 5.12: Top-view (left), and bottom-view (right) of the multi-layer antenna array 

connected to the DMN board with 50Ω-SMA connectors. 

Four final-version DMN boards were designed and fabricated in December 2015 and 

January 2016; two for each antenna array. The DMNs boards were assembled, and then 

glued with their antenna as shown in Fig. 5.13 and Fig. 5.14.  

While the two antenna systems (antenna + DMN board) were electrically comparable, the 

system with the single-layer array featured a smaller thickness of 7.28 mm instead of 12 



 

 
 

 
 

Design and Testing of Compact Dual-band Dual-polarized Robust Satellite Navigation 

Antenna Arrays 
96 

mm, resulting in a smaller weight, and thus a more stable adhesion between the antenna 

and the DMN board. Moreover, it costs less as it uses less material. 

 

 

Figure 5.13: Top-view (left), and bottom-view (right) of the single-layer antenna array 
integrated with the DMN board. Total thickness: 7.28 mm  

 

 

Figure 5.14: Top-view (left), and bottom-view (right) of the multi-layer antenna array 
integrated with the DMN board. Total thickness about 12 mm. 

The evaluation of the decoupling networks was performed after integration with the 

antennas, by measuring the mutual coupling coefficients between the decoupling network 

outputs. S-parameter measurements revealed a very small coupling level of below -18 dB 

at the L5-band and below – 20 dB at the L1-band between any two outputs of the RHCP 

decoupling network or the LHCP decoupling network, for both antenna systems. Fig. 5.15 

shows the mutual coupling levels between the RHCP decoupling network outputs of the 

single layer antenna system. 

These very small coupling values emphasize the very good performance introduced by the 

decoupling networks, as the mutual coupling between the original antenna elements was 

about -4 dB at the L5-band and -8 dB at the L1-band. The DMN design and the results were 

published in [69]. 
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Figure 5.15: Measured mutual coupling between the outputs of the RHCP decoupling 

network of the single-layer antenna system. The curves show the coupling between the first 

odd mode and: the second odd mode (dashed red curve), the even-mode (dotted green 

curve), and the Pi-mode (blue curve). 

5.6 Design of the dual-band matching networks 

5.6.1 Introduction 

The eigen-mode decoupling network, in its best case when it introduces no losses to the 

circuit, is just a transformation system that converts the coupled radiation modes of the 

antenna elements into a new set of decoupled modes, which are the eigenmodes of the 

array. Hence, the influence of mutual coupling on reducing the radiation efficiencies of the 

antenna elements is reflected again in deteriorating the input impedance of the higher-order 

eigenmodes of the array, which results in poor reflection efficiencies at the eigenmode 

ports, and hence poor eigenefficiencies.  

In other words, it is possible at this point to reduce the mutual coupling impact by re-

matching the eigenmodes of the array. However, due to the losses introduced by the 

decoupling network, only part of the eigenefficiencies can be restored. Additionally, the 

need to match the eigenmodes at the two close bands L1 and L5 may rise the need to accept 

trade-off solutions where some notable mismatching is still introduced, especially for the 

higher-order eigenmodes which are usually heavily mismatched. 
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5.6.2 Design approach 

So, at this stage, the RHCP and LHCP eigenmodes of the array were matched using dual-

band lumped-element matching circuits, added at the outputs of decoupling network. 

Lumped elements were used, instead of distributed lines, to enable measurement-based 

tuning, and to save the large area needed by distributed lines for the other circuits that 

should be placed on the compact board, namely the calibration circuit and the circular-

polarization excitation circuits. Eight matching circuits were designed for the four RHCP 

and four LHCP eigenmodes. 

Matching circuits with only two elements could be enough for the matching of single-band 

ports. Circuits with more elements give better matching in the case of dual-band ports. 

However, the more elements used the more Ohmic losses and design complexity 

introduced, and therefore a trade-off number of five lumped elements was selected for each 

matching circuit.  

Considering that the design of the matching circuits is a critical task, which determines the 

performance of the entire system, intensive simulations and measurement-based 

optimizations were performed, in order to match the system at both bands, and overcome 

the challenging high sensitivity of the system at each band to the optimizations at the other 

band.  

5.6.3 Optimization and measurement results 

Optimization strategy: 

Several approaches can be followed during the optimization process. First, each port can 

be matched alone, regardless of its influence on the others. This will not work in the 

presence of coupling, since matching of one element will disturb the already matched 

elements. However, this partially works in the presented case, due to the decoupling 

provided by the decoupling network.  

On the other hand, matching of one mode in RHCP/LHCP decoupling network may disturb 

the matching of the similar mode in the other LHCP/RHCP decoupling network, due to the 

cross-polarized coupling introduced by the hybrid couplers, as discussed in section 5.3.2. 

This coupling cannot be ignored as it reduces the polarization purity of the eigenmodes, 

and thus affects the performance of the dual-polarized robustness algorithms.  

Based on this discussion, the optimization process was implemented to find the best 

matching circuit elements for every two cross-polarized coupled ports, jointly and 

separately from the other ports, i.e., for the RHCP and LHCP even modes, the RHCP and 

LHCP first odd modes, the RHCP and LHCP second odd modes, and finally the RHCP and 

LHCP odd modes. Simulations and measurements proved the suitability of this approach 

comparing to the other approaches.  
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However, it is still possible theoretically to implement a full design optimization process 

that tries to match every port and decouple all of them at the same time, but with the fifty 

elements to tune and at least twelve goals to target, this becomes impractical even in 

simulations. 

Simulation-based optimization:  

Simulations of the matching circuits where performed in ADS based on the measured S-

parameters of the antenna with the two decoupling networks. Due to the complexity of the 

design, the ADS-built-in genetic optimization algorithm and the ADS-built-in least-path 

random optimization algorithm where used, separately, to find the best solution. The 

algorithm which gave the best solution, with smallest error, for each case was adopted for 

that case. The optimization goals were set to get: 

- Goal 1: -10 dB reflection coefficients for all eigenmodes at both frequency bands. 

- Goal 2: -10 dB cross-polarization coupling. 

Moreover, it was also noticed that adding the matching circuits reduces the decoupling 

between the modes, since decoupling levels were measured at first place using 50 Ω cables 

and connectors directly connected to the decoupling networks, while the matching circuits 

added to series here provide impedances slightly different from 50 Ω. Therefore, the 

process of optimizing the matching circuits had to add a new condition of: 

- Goal 3: keeping coupling levels between any two outputs of each decoupling network 

below -10 dB at both frequency bands.  

A snapshot of the simulation-based optimization process is illustrated in Fig. 5.16. The 

figure highlights the approach of finding the best matching circuit for every two cross-

polarized coupled ports, jointly and separately from the other ports. It shows also an 

example of two matching circuits, where each one consists of five lumped elements. 

ADS simulations proved the possibility of -10 dB matching for all modes, including the 

higher-order modes, while keeping coupling levels below -10 dB. However, optimization 

of the worst-case eigenmode, the Pi-mode, was so challenging, and finally a narrow 

bandwidth of only 2 MHz at the L1-band was achieved, with a cross-polarization coupling 

of -6 dB. 

Nevertheless, simulation-based circuits showed poor performance when assembled to the 

system, mainly due to the parasitic effects, which is hard to be measured or modelled in the 

design. Even though, all microstrip lines in the circuit were accurately involved in the 

simulation design, and the manufacturer S-parameters of the lumped elements (mainly, 

from Murata for capacitors [126], and Coilcraft for inductors [127]) were used instead of 

the standard elements of ADS library, notable differences between ADS simulations and 

measurement results were revealed. This was not the case for the decoupling networks were 

no lumped elements were used, which confirms the known limitations the RF design 

environments have in modelling of lumped elements and parasitic effects. 
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Figure 5.16: A snapshot of part of the simulation-based design and optimization process 

of the matching networks in ADS. The figure highlights the approach of finding the best 

matching circuit for every two cross-polarized coupled ports, jointly and separately from 

the other ports. The figure depicts also the schematic of the relevant matching circuit 

consisting of five lumped elements, and the modeling of the measurement cables. 

Measurement-based optimization: 

Considering the limitations found for the simulation-based approach, further measurement-

based optimization of the matching circuits was needed. The same optimization strategy 

was followed here, with optimizing the matching network for every two cross-polarized 

coupled ports, jointly and separately from the other ports.  

However, besides the critical and demanding work of repeated soldering, measuring, and 

removing the elements, which limits the scanned space of values compared to simulations, 

measurement-based optimization was also limited by the discrete available values of the 

lumped elements, in addition to the influence of parasitic effects. Therefore, the values 

achieved by simulation-based optimizations could not be reached here.  

Matching networks optimized for the multi-layer antenna achieved the following results: 

• -12 to -15 dB reflection coefficient for the even mode 

• -9 to -11 dB for the odd modes 

• Poor matching of -4 to -6 dB for the Pi-mode 

Matching networks optimized for the single-layer antenna achieved better results of: 

• -12 to -15 dB reflection coefficient for the even mode 

• -9 dB or below for all the other modes including the Pi-modes 

3. Optimization of the two relevant matching circuits, jointly 

4. Repeat for the other 

coupled modes 

2. Measured S-

parameters of two 

coupled RHCP and 

LHCP modes 
1.System 

setup 
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This is probably because of the thinner substrate the single-layer antenna has, which results 

in smaller surface-wave mutual coupling. 

Measurements of the coupling levels after matching networks revealed a coupling level 

below -15 dB between any two eigenmodes of the array, at both bands, and for both 

polarizations. Moreover, measurements revealed that, with the use of the decoupling and 

matching network, the angular width of XPD > 10 dB was increased from about 80° to 

about 110°. This result is of great importance, since it proves the feasibility of the 

decoupling and matching networks to partially restore the polarization purity degraded by 

the mutual coupling. 

Further discussion: 

A- Matching of the best case (the even modes): 

The need for matching the even mode is not imperative in general single-band applications, 

where the antenna element usually supports almost 50 Ω output impedance to the following 

50 Ω circuits [80]. This changes in dual band applications due to the difficulty of providing 

the 50 Ω output impedance at both bands, as mentioned in section 3.4.2.  

However, the optimization process quickly found a solution which matches the RHCP and 

LHCP even modes while reserve acceptable decoupling between them as illustrated in Fig. 

5.17. 

 

Figure 5.17. Measured reflection coefficient of the RHCP even mode of the antenna 

system (antenna plus decoupling network) without matching circuit (dashed red curve) 

and with matching circuit (blue curve). 

B- Matching of the worst case (the Pi-modes): 

The Pi-mode has the lowest radiation efficiency among the array eigenmodes. Furthermore, 

its four beams (for a four-element array) are tilted away from the zenith towards low 

elevations where the polarization purity of the single element is significantly reduced, as 
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discussed in section 5.2.2. This gives rise to a strong cross-polarization coupling between 

the RHCP and the LHCP Pi-modes, which is boosted again by the hybrid couplers due to 

mismatching, as discussed in section 5.3.2. Therefore, the cross-polarization coupling can 

hardly be reduced below -6 dB in the matching process, even in the simulation-based 

optimization, especially at the L5-band where mutual coupling is stronger. 

5.6.4 Realized eigenmode radiation patterns 

The radiation patterns of the RHCP and LHCP eigenmodes of the antenna arrays where 

measured in the anechoic antenna measurement chamber after integrating with the 

decoupling and matching network. Far field realized gain patterns of the eigenmodes of the 

single-layer antenna array at the L1-band, are illustrated in Fig. 5.18. The even mode has a 

single beam directed towards the zenith. Each of the two odd modes has two beams tilted 

to about 30° in elevation. The pi-mode should theoretically have four beams. However, due 

to its poor efficiency, the measurements could not clearly reveal the four beams. The 

relevant measured realized gains of the eigenmodes as listed in Table 5.4. 

 

Figure 5.18: 3D-plots of the far field realized gain patterns of the RHCP/LHCP 

eigenmodes of the single-Layer antenna array, at the L1-band, after decoupling and 

matching. 
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Table 5.4: Realized gains of the RHCP/LHCP eigenmodes of the single-layer antenna array 

after decoupling and matching. 

 Realized gain at the L1-band Realized gain at the L5-band 
Even mode 7 dBi 4 dBi 
Odd mode 1 0 dBi -1 dBi 
Odd mode 2 2 dBi 0 dBi 
Pi-mode -2 dBi -5 dBi 

 

Apparently, the higher-order modes have smaller realized gains at the L5-band, due to the 

stronger mutual coupling. The multi-layer antenna features similar patterns with slightly 

different gain values.  

The eigenefficiency of the best case, the even mode, was enhanced from 58% at the L1-

band and 24% at the L5-band, before decoupling and matching networks, to about 65% at 

the L1-band and 48% at the L5-band after decoupling and matching. The efficiency of the 

worst case, the Pi-mode, was enhanced from 6% at the L1-band and 2% at the L5-band, to 

about 10% at the L1-band and 4% at the L5-band after matching.  

These eigenmode radiation patterns determine the system performance. An array-based 

system that uses only the even mode performs well mostly at the zenith, which is similar to 

the case of the single element system, but probably with higher gain. In contrast, a system 

that uses the higher order modes shifts its coverage area to lower elevations. Obviously, a 

system that covers both the zenith and low elevation directions needs to use a superposition 

of several radiation modes. This is to be discussed in detail in the next chapter. 

5.7 Design of calibration circuits 

The proposed receiver was empowered with a calibration network1 built of eight directional 

couplers, to enable the digital receiver to calibrate the RF output levels after matching. The 

couplers were also driven by eight identical calibration signals, to enable off-line 

calibration. These eight signals were achieved from one calibration signal divided equally 

using two stages of power dividers.  

The calibration signal was generated and up-converted to each of the two RF frequency 

bands in a separate signal-generator board2, as illustrated in Fig. 5.19. 

The calibration network was miniaturized using off-the-shelf components, and then 

integrated with the DMN board as mentioned in section 5.5.1, and as depicted in Fig. 5.11. 

Insertion loss measurements found that the calibration circuit introduced an insertion loss 

below 0.5 dB. 

                                                             
1 Designed by Dr.-Ing. Safwat Irteza who was at TU Ilmenau. Later, Dr.-Ing. Kurt Blau from TU Ilmenau and 
me were responsible for assembly, testing, and system integration. 
2 Designed by Dr.-Ing. Kurt Blau. 
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5.8 RF-IF front-end 

5.8.1 Preamplifier stage3 

The resulting dual-band decoupled, matched, and calibrated LHCP and RHCP modes were 

then amplified in a pre-amplifier stage of eight low-noise amplifiers, and then separated 

into L1-band and L5-bands using eight frequency diplexers. These functions were 

integrated in one PCB, depicted in Fig. 5.20. 

 

 

Figure 5.19: Realization of the calibration signal-generator at both the L1/E1-band and 

the L5/E5a-band, consisting of two RF signal generators at both bands, two IF-signals, 

two mixers, two attenuators, and two bandpass filters. 

Sixteen signals were achieved at the end, eight RHCP and eight LHCP, as stated in section 

5.1. However, due to the aforementioned digital receiver limitations, only the following 12 

channels where passed to the following circuits: 

a. Four L1/E1 channels, with RHCP. 

b. Four L1/E1 channels, with LHCP. 

c. Four L5/E5a channels, with RHCP. 

 

                                                             
3 Designed mainly Dr.-Ing. Irteza. Later, Dr.-Ing. Kurt Blau and me were responsible for testing and system 
integration. 
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Figure 5.20: The pre-amplifier stage, consisting of eight low-noise amplifiers, and eight 

frequency diplexers, using off-the-shelf components 

5.8.2 RF-IF down-converting 

The resulting RF signals from the preamplifier stage were delivered to an RF-IF down-

converting circuit, which down converts the RF signals from the L1- an L5-bands to the 

two IF bands at 60.42 MHz and 133.55 MHz, respectively. 

The circuit combined a coherent phase-locked loop with two local oscillators at 1.515 GHz 

and 1.310 GHz, driving eight mixers and eight reconfigurable IF-amplifiers with band-pass 

filters of 30 MHz bandwidth. These functions were realized in an Application-Specific 

Integrated Circuit (ASIC) chip, with eight RF-channels manufactured in a 180 nm United 

Microelectronics Corporation (UMC) technology. This technology allows for building 

compact RF-IF front-ends for the array-based GNSS receivers, despite the multi RF 

channels. 

The integrated chip (named D1027A-ASIC) was placed on an evaluation board using 

“Chip-on-Board” technology, bonded to the PCB with 25 µm gold wires. The 8-channel 

chip and its PCB were developed by IMMS GmbH in cooperation with Technische 

Universität Ilmenau4. Two PCBs were needed for the twelve channels. More details about 

the design are in the IMMS report [128]. 

A block diagram that highlights the functions of the RF-IF front-end is presented in Fig. 

5.21. The fabricated PCBs are illustrated in Fig. 5.22.  

 

                                                             
4 From the side of TU Ilmenau: Dr.-Ing. Safwat Irteza was responsible for the design phase, and later Dr.-Ing. 
Kurt Blau and me were responsible for phases of testing, system integration, and system evaluation. 

4- RF output 

1- RF input 

3- Frequency diplexer 

2- Low-noise amplifier 

1 2 3 4 
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Figure 5.21: A block diagram that highlights the main functions of the RF-IF front-end. 

 

Figure 5.22: (Right): perspective-view of the two 8-channel RF-IF front-end PCBs, with 

main functions integrated in ASIC chips manufactured in UMC technology. (Left): layout 

of the 5 mm × 5 mm D1027A-ASIC chip. 

The amplification measured for the entire RF-IF chain of the front-end was approximately 

89 dB, with a noise-figure of 1.25 dB. This gain was controlled in the proposed design, 

using dual in-line package (DIP) switches, to ensure similar power levels of the different 

channels, and to avoid saturation of the front-end, especially in the presence of jamming 

interferers, as will be discussed in the next chapter. 

The IF channels were finally filtered by external stand-alone SMA-SMA filters at 60.42 

MHz for the L1-band and at 133.55 MHz for the L5-band. 

A photograph of the entire analog receiver, combining the antenna, the DMN, and the RF-

IF front-end, and the other circuits, is presented in Fig. 5. 23. 



 
 
 

 
 

107 

 

Figure 5.23: Top-view of the innovative sixteen-channel dual-band dual-polarized analog 

GNSS receiver, combining the antenna array, the DMN and calibration board, the 

preamplifier + diplexer board, the two RF-IF front-end boards, and the calibration signal-

generator board. The receiver is mounted on a supporter to enable assembly and 

measurement on either a tripod or a car-roof. 

5.9 Integration with the digital receiver 

The digital receiver was developed at the Chair of Electrical Engineering and Computer 

Systems (EECS) at RWTH Aachen University, in cooperation with the German Aerospace 

Center (DLR/IKN). Beside its essential functions such as data acquisition and tracking, the 

receiver incorporates direction-of-arrival estimation, adaptive beamforming, and null-

steering algorithms, to enable robustness against jamming and spoofing.  

Jammers are initially suppressed using a pre-whitening approach. If jamming is still 

detected, i.e., in case of strong jamming levels, then it is suppressed using the approach of 

subspace-projection scheme [129, 130]. In contrast to conventional algorithms, which 

assume identical gains of the individual radiating elements, the used anti-jamming 

algorithms were optimized for the different gains of the eigenmodes of the array, which 

may vary by up to 10 dB. 

Compact antenna 
array with DMN and 
calibration circuits 

Preamplifier + 
diplexer PCB 

8-channel front-end 
PCB (Slave) 

8-channel front-end 
PCB (Master) 

Calibration signal-
generator PCB 

Outputs to the digital 
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The receiver circuit was built using field-programmable-gate-array (FPGA) technology. 

Results were collected and presented by a graphical user interface (GUI) run on a personal 

computer. The GUI displays information incorporates position, velocity, and time (PVT) 

of the receiver, the carrier-to-noise ratio (CNR), beamforming weights of the eigenmode 

patterns, antenna beam pattern, direction-of-arrival estimations, actual directions of the 

satellites, and altitude estimation. 
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Chapter 6: 

6.  

Automotive-related Testing and 

System Performance Evaluation 

 

6.1 Introduction 

Several measurement campaigns were carried out to test and evaluate the receiver 

performance, with a special focus on its robustness against jamming and multipath 

propagating. Four main campaigns, with their dates and goals, are stated in Table 6.1. 

Table 6.1. The main measurement campaigns, for testing and evaluating the system 

performance   

Measurement 
Campaign 

Goals of the Campaign 

Ilmenau 1, 

Sep. 2016. 

 

Proof-of-concept for principle of antenna array diversity: feasibility of 
higher-order RHCP eigenmodes 

Proof-of-concept for principle of dual polarization diversity: feasibility 
of LHCP eigenmodes 

Ilmenau 2, 

Sep. 2016  

First-time integration with digital receiver. Check of analog receiver 
functions with integration 

Proof of functionality of digital receiver algorithms with integration 

Static tests with/without one jamming interferer, with antenna on tripod. 

Aldenhoven, 

Oct. 2016 

Static and dynamic tests without interferers, with antenna on car. 

Static and dynamic tests with one to three interferers, with antenna on car 

Ilmenau 3, 

Nov. 2016 

Static tests with/without one to three interferers 

Investigation of car influence on system performance 
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The term of system robustness can be seen from different perspectives. A discussion about 

the used robustness figure-of-merits will follow to help understanding the term before 

starting describing the measurement setups and results. 

 

6.2 Robustness figure-of-merit 

A GNSS receiver is considered operating when it can track enough number of satellites 

with good Geometric Dilution of Precision (GDOP) to compute the correct position with a 

specified accuracy.  

Moreover, it is considered robust against jamming sources when it can block the directions 

from which jamming signals arrive, and track the needed number of satellites with good 

GDOP at the other directions. The degree of robustness depends on many parameters, such 

as: 

- The number and direction of GNSS satellites available in the sky-view. 

- The number and direction of jamming sources. 

- The maximum jamming-to-signal ratio (JSR) bearable by the receiver before it stops 

functionality. 

- The propagation channel and impact of multipath. 

- The receive antenna (number of radiating elements, radiation patterns, radiation 

eigenefficiencies, spatial diversity, polarization diversity, frequency diversity, etc.). 

- The beamforming capability to desensitize the receiver at directions of jamming 

sources, involving the antenna array, the feeding network, and the signal processing 

algorithms used for beamforming, jamming detection and signal acquisition.  

Furthermore, the degree of robustness depends on the RF-IF full chain gain of the front-

end. Saturation of the front-end due to high-power jamming signals can be avoided by 

decreasing the RF-IF gain, which comes at the cost of losing the sensitivity to the wanted 

GNSS signals.  

Even though positioning accuracy is the main criterion to evaluate the performance of the 

entire GNSS receiver, the number of satellites tracked by the system was found to be the 

most suitable figure-of-merit for describing the robustness of the analog part of the receiver, 

since it is the most important indicator of the best potential performance of the system 

regardless of the tunable front-end full gain or the different signal processing algorithms 

used by the digital part.  

Nevertheless, for an anti-jamming receiver, the maximum jamming-to-signal ratio bearable 

by the receiver, before stopping providing correct positioning solutions, is more meaningful 

for describing the overall robustness of the system for a specific set of digital algorithms 

and a fixed front-end gain, which is more interesting for industry. 
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The jamming-to-signal ratio is defined as: 

½"� � $¹jE$2 	,																																																									�6.1� 

where $¹jE is the average power, measured at the receiver input, of the jamming signals in 

the operation frequency band (L1 or L5), and $2 is the average power, measured at the 

receiver input, of the GNSS signals in the operation frequency band (L1 or L5). 

The maximum bearable JSR is defined as the jamming-to-signal ratio at which the receiver 

tracks three GNSS satellites or less, since at least four GNSS satellites are needed to find 

the position in GNSS systems. 

Accordingly, the maximum bearable JSR is the main parameter used to measure the system 

robustness in this work. The number of trackable satellites is additionally used, when 

needed, to indicate the potential enhancements of the performance if the front-end gain was 

retuned or if the signal processing algorithms were enhanced. 

 

6.3 Measurement campaign Ilmenau 1 – Proof-of-concept 

6.3.1 Measurement set-up 

The IF output signals of the analog receiver should be carried to the digital receiver to 

perform decoding, tracking, beamforming, null-steering, etc. However, for this campaign, 

the analog part of the receiver was connected to the GNSS receiver of a commercial mobile 

phone, to check the feasibility of each of the RHCP and LHCP eigenmodes of the antenna 

array, independent of the developed digital receiver. 

Real-scenario tracking of the GNSS signals was performed at L1-band. GPS, GLONASS, 

and BeiDou satellites were tracked. The mobile phone was kept in a shielded environment 

to avoid reception from its built-in antenna, and thus to rely totally on the signal acquired 

with the developed GNSS front-end.  

In order to check the performance of the entire analog chain, RF signals were fed through 

the RF-IF front-end as in the realistic situation, and then up-converted again to the L1-band 

using an additional circuit. Resulting RF signals were transmitted again using a separate 

antenna, to be received by the built-in GNSS antenna of the mobile. The signal power level 

was adjusted by the programmable amplifiers of the front-end. 

To adapt to the single-input receiver, the performance of each of the eigenmodes of the 

array was measured separately. Measurements focused on positioning accuracy and the 

number of satellites tracked by each eigenmode, as the two main evaluation criteria, to 
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measure the performance of each mode. However, since positioning accuracy can be 

enhanced later by signal processing, e.g., using the advanced carrier-phase smoothing 

algorithm [131, 132], or the real time kinematic techniques [133, 134], or the precise point 

positioning [135, 136], hence the number of tracked satellites was considered as the main 

evaluation criterion. 

This approach helps, particularly, to specify which RHCP and LHCP eigenmodes are more 

useful for the dual-polarized beamforming algorithms, especially for cost-efficient 

receivers where including more modes is not affordable, since it means more RF-IF 

channels in the front-end and more hardware/software complexity in the digital receiver. 

This case applies for the proposed design, where it was found that only six channels can be 

processed simultaneously by the digital receiver. 

6.3.2 Feasibility of the higher-order and cross-polarized eigenmodes 

Figure 6.1 shows screenshots taken by the software “AndroiTS GPS Test” [137], for the 

system positioning performance, using each of the RHCP eigenmode.  

 

Figure 6.1: Screenshots of “AndroiTS GPS Test” for each RHCP eigenmode. Color bars 

refer to the signal-to-noise ratio (SNR), grey bars refer to unusable satellites, the flags 

refer to the systems tracked (American flag for GPS, Russian flag for GLONASS, and 

Chinese flag for BeiDou). 
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The results are summarized in Table 6.2. The table shows the number of satellites detected, 

the number of satellites used for tracking, and the positioning accuracy achieved, using 

each RHCP and LHCP mode. 

TABLE 6.2: Eigenmode performance, focusing on the number of satellites 

detected/tracked, and the positioning accuracy achieved.  

Polarization Eigenmodes Number of satellites detected 
(GPS, GLONASS, BeiDou) 

Number of 
Satellites 
tracked 

Positioning 
Accuracy 

RHCP Even mode 14 (10, 1, 3) 12 4 m 
Odd mode 1 11 (8, 0, 3) 8 8 m 
Odd mode 2 11 (8, 1, 2) 8 15 m 
Pi-mode 11 (8, 1, 2) 8 17 m 

LHCP Even mode 6 (5, 0, 1) 5 35 m 
Odd mode 1 7 (6, 0, 1) 6 10 m 
Odd mode 2 9 (6, 0, 3) 7 11 m 
Pi-mode 6 (5, 0, 1) 5 50 m 

 

The results reveal that the RHCP modes are, in general, better than the LHCP modes, which 

is expected from the fact that the GNSS signals are RHCP. The RHCP even mode performs 

the best because, as illustrated in Fig. 6.2, its single beam is directed towards the zenith 

with a realized gain higher than any other mode. The LHCP even mode has a pattern like 

the RHCP one, but with a larger polarization mismatch with the RHCP GNSS signal, and 

therefore it performs worse. 

Each of the two RHCP odd modes has two beams tilted to about θ=±30° in elevation, and 

therefore they perform better than the even mode at such low elevations. Measurement data 

and analysis show that they could track eight satellites and acquire a positioning accuracy 

between 8 m and 15 m. They started to detect satellites at elevations below 40°. These 

results confirm the potential of using these modes to increase the view-angle of the receiver. 

Moreover, the multipath propagation has larger influence on the RHCP GNSS signal at low 

elevations, giving rise to a stronger LHCP component, as explained in detail in [2, 7, 16, 

17]. This would result in a performance drop if only RHCP antennas were used, and 

therefore the proposed system uses both RHCP and LHCP odd modes to receive from these 

directions. Measurements revealed that LHCP modes started to detect satellites at 

elevations below about 60°. The results in Table1 show that an accuracy of about 10 meters 

was achievable using any of the LHCP odd modes, which is close to the performance 

attained with the RHCP odd modes. This proves the feasibility of using the LHCP odd 

modes to compensate for the polarization mismatch at low elevations, caused by the 

multipath propagation. 
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Figure 6.2 (repeat of Fig. 5.17, as it is essential for the discussion): 3D-plots of the far 

field radiation patterns of the RHCP/LHCP eigenmodes of the single-Layer antenna array, 

after decoupling and matching. 

Finally, the Pi-mode has four beams directed also at about 30° elevation, with about -2 dB 

realized gain. Such a small gain would result in poor performance of the mode if used alone. 

The RHCP Pi-mode could achieve a positioning accuracy of about 17 m, while an accuracy 

of only 50 m was possible using the LHCP Pi-mode. However, this mode remains to be 

very useful for beamforming, especially for RHCP. 

6.3.3 Conclusions 

The analog part of the diversity dual-band and dual-polarized compact GNSS receiver was 

evaluated by a real GNSS test scenario. Measurement results confirmed the feasibility of 

the higher-order RHCP eigenmodes that could achieve reasonable accuracies of 8 m to 17 

m. Results confirmed also the possibility of using the LHCP modes to compensate for the 

polarization mismatch caused by multipath propagation at elevations below 60°. For this 

purpose, the use of the LHCP odd modes was found to be more beneficial, due to their 

radiation lobes pointing to lower elevations compared to the even mode, and their 

reasonable realized gains compared to the Pi-mode.  

The achieved results are promising, especially for the case of compact powerful array-based 

receivers, were several modes can be exploited jointly, by beamforming, to enhance the 

robustness against polarization impurity, and extend the coverage to low elevations. 
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In summary, we have presented the proof-of-concept for the compact array-based dual-

band dual-polarized GNSS receiver. These results were published in [48]. 

 

6.4 Measurement campaign Ilmenau 2 – Full system integration 

6.4.1 System integration with the digital receiver 

This measurement campaign followed the first-time full system integration of the analog 

system with the digital receiver. Therefore, the first phase of this campaign was to check 

and validate some operation-critical functions in the RF-IF chain such as the IF filters, the 

10 MHz reference signal, and the 10 to 30 dB switchable gain amplifiers. The functionality 

of the digital receiver was also controlled and approved. 

Afterwards, static tests were performed with and without one jamming interferer, to check 

to the system robustness. The antenna, at this point, was mounted in a tripod, and thus no 

car influence was involved. 

6.4.2 Static performance evaluation without interferers 

The second phase of the campaign was to run static tests without interferers. The analog 

GNSS receiver was mounted on a tripod and connected to the digital receiver, as shown in 

Fig. 6.3. Static tests were performed while tracking real GNSS satellites, involving GPS 

and Galileo systems. 

Tests confirmed the functionality of the system at both the L1-band and L5-band, with 

positioning accuracy of 30 cm to 3 m at the L1-band depending on the acquisition 

algorithms used by the digital receiver. Positioning solutions depending only on the L5-

band were not possible, because there were only two Galileo satellites operating at that 

band in the sky-view, since the L1-band is still the most popular band used by GNSS 

satellite systems. However, the two satellites were enough to prove the capability of the 

system to track and decode Galileo signals, which was tested for the first time for this 

project. 

6.4.3 Static performance evaluation with one jamming interferer 

System performance was tested with existence of one self-made jamming source. The 

jammer was built with a continuous wave (CW) signal generator of maximum output power 

of 9 dBm, and a horn antenna of 13 dBi gain. The antenna was placed about 30 m away 

from the receive antenna, at about 11° elevation, with a line of sight to the receiver, as 

illustrated in Fig. 6.4.  
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With this setup, it is possible to jam the receiver with a jamming-to-signal ratio up to 85 

dB (measured value). 

 

Figure 6.3: Measurement-setup in the measurement campaign Ilmenau 2, with the 

antenna system mounted on a tripod.  

 

 

Figure 6.4: Setup of the continuous wave jamming source, about 30 meters far from the 

receive antenna, at 11° elevation. 

Evaluation tests showed that the system was correctly operating up to a JSR of about 70 

dB, when using the four RHCP eigenmodes, which fulfills the targeted objectives of the 

system. 
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In another perspective, measurements confirmed the feasibility of the dual-polarized 

systems to compensate for multipath propagation impact on the GNSS polarization. Two 

more low-elevation satellites were trackable when using the LHCP modes in addition to 

the RHCP modes. These two satellites give the antenna more degrees-of-freedom, either to 

enhance the positioning accuracy or to form its radiation pattern to block possible jamming 

sources and track enough satellites for positioning. Measurements revealed that the system 

was robust for a JSR up to 85 dB, when using the two LHCP odd eigenmodes in addition 

to the four RHCP eigenmodes. This was the most important result of this campaign. With 

such a result, the developed system outperforms the state-of-the-art systems described in 

[3, 6, 26-28], where a JSR-tolerance between 25 dB, for a single antenna receiver, and 60 

dB, for an array-based receivers, was provided. The system also outperforms the single-

polarized array-based receiver designed under the preceding project “KOSERNA”, where 

a JSR-tolerance of about 55 dB was achieved, and the enhanced KOSERNA receiver, with 

front-end gain-control, where 70 dB JSR-tolerance was reachable. 

6.5 Measurement campaign ATC-Aldenhoven – On-car tests 

6.5.1 Measurement setup 

The main goal of this campaign was to check the system performance when the antenna 

system is installed on the car roof as shown in Fig. 6.5.  

 

 

Figure 6.5: Mounting of the RF-IF receiver on the car roof, with the digital receiver 

installed inside. 
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The antenna was protected from weather conditions using a radome designed in TU 

Ilmenau5. Numerical simulations and far field measurements confirmed a minor influence 

of the radome on the radiation patterns and the resonance frequencies of the antenna array. 

A detailed study of the effect of the radome on the receiver performance, or a comparison 

between performance with Radome and performance without it was not performed at this 

stage of the work. 

The receiver was tested for static and dynamic scenarios, with/without one to three jamming 

sources, as illustrated in Fig. 6.6, Fig. 6.7, and Fig. 6.8. The jamming interferers were 

generated with three different interferer models:  

- Continuous wave signal. 
- Noise-modulated signal. 

- Pulse signal (generated usually by airport radar systems with, for example, 10 µs length 
and 5% duty-cycle). 
 

 

Figure 6.6: Setup of static tests with one jamming source, while the RF-IF receiver is 

placed on car roof. 

Each jamming signal was carried on an RF signal at the L1-band, and radiated through a 

horn antenna. The jamming sources were placed on low elevations (5° and 16°) and 

different azimuths to simulate a realistic scenario. An example of the realized noise-

modulated jamming source is illustrated in Fig. 6.9. 

                                                             
5 By Dr.-Ing. Safwat Irteza who was at TU Ilmenau, within the framework of the preceding project 
KOSERNA. 
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Figure 6.7: Snapshots of the dynamic tests with one jamming source. 

 

 

Figure 6.8: Installation of three jamming source for static and dynamic tests. 
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Figure 6.9: In-field installation of the noise-modulated jamming source, with a noise 

signal bandwidth of 4.8 MHz, modulated to the L band (in-band or out-of-band), and 

transmitted using a horn antenna with line-of-sight to the receiver. 

6.5.2 System robustness against one jamming interferer 

A- Robustness due to array diversity 

When only the four RHCP eigenmodes were used, static tests confirmed the robustness of 

the receiver against one CW jamming source for a jamming-to-signal ratio up to: 

- 75 dB, for the interferer at the elevation θ=5°. 
- 65 dB, for interferer elevation of θ=16°. 

These results, together with the relevant result from the second measurement campaign (70 
dB JSR-tolerance, for the interferer at the elevation θ=11°), show that the system robustness 
depends on the elevation of the jamming sources. In other words, the receiver features a 
better robustness against lower-elevated jammers, as illustrated in Fig. 6.10. This result is 
attributed to the gain pattern of the antenna, which rapidly decreases at lower elevations 
resulting in reduced levels of the received jamming power. 

This feature of the antenna pattern, in spite of its influence on the reception of low-elevation 
GNSS signals, is essential for robustness against jamming sources. The result shows that 
metallic walls can be used to surround future antenna arrays to enhance their immunity to 
jamming sources, if enough number of GNSS satellites with good GDOP is guaranteed at 
higher elevations. However, this is still not the case for recent applications, since GNSS 
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satellites are still limited in number, and therefore reception with wide field-of-view is 
needed for better performance. 

 

 

Figure 6.10: Maximum JSR bearable by the system, for different elevations of the 

jamming sources. 

The same JSR-tolerance levels were achieved against a noise-modulated jamming signal, 
since the main jamming parameters, which are the power level and the frequency band, are 
similar to those of the CW jamming signal. 

This was not the case for the pulse jamming signals where a JSR-tolerance ratio up to 95 
dB was achieved, because the pulses were too short to force the receiver to lose its tracking 
state.  

B- Robustness due to polarization diversity: 

Measurements did not observe a notable JSR gain when using the LHCP modes in addition 

to the RHCP ones. This observation is quite interesting, because it is attributed to the fact 

that the multipath influence in ATC was weaker than that of Ilmenau. Measurements in 

ATC were held in an open area with few buildings 400 m away at one single direction, 

while tests were held in Ilmenau in a semi-closed yard of 75 x 30 m2 area, surrounded by 

buildings at almost all directions, which gives rise to stronger multipath effects, and hence 

better feasibility of dual polarization diversity.  

6.5.3 Robustness against two and three jamming sources 

This was the point to test the system robustness against two or three jamming interferers, 

which highly depends on the antenna beamforming capability. However, measurements 

revealed poor beamforming flexibility, due to an internal CW distortion signal at the IF 

band of 60 MHz. The distortion signal was caused by unwanted harmonics of the reference 
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signal of 10 MHZ, and was about 20 dB higher than the data signal. Additionally, 

measurements observed spurious at 55 MHz and 65 MHz, due to mixing. These signals 

were about 10 dB higher than the signal.  

Due to these distortions, beamforming algorithm was misled, resulting in a gain depression 

at some directions, as illustrated in Fig. 6.11, and yielding a performance close to that of 

the two-element antenna array. Therefore, this test was postponed to the following 

campaign, where the internal distortions should have been eliminated. 

The internal distortions were possible to be filtered out in the digital receiver. However, 

due to limitation in the digital resources, only the 60 MHz distortion was cancelled by 

software, while the 55 MHz and 65 MHz signals were filtered out using 4.8 MHz bandpass 

filters.  

 

Figure 6.11: Impact of the IF signal distortions on the antenna patterns resulting from 

beamforming algorithms. The two examples here show a fixed gain depression at north. 

6.5.4 Dynamic tests 

Dynamic tests were performed for speeds up to 30 km/h. Measurements did not show a 

notable influence of the movement of the car on the receiver performance at theses speeds. 

Tests at higher speeds were not performed due to the technical problems regarding the 

internal distortions. However, dynamic tests for the predecessor project KOMPASSION 

showed that the system maintains robustness up to at least 120 km/h. With the advantage 

of exploiting dual-polarization, a better robustness is expected for the recent receiver 

KOSERNA. 
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6.6 Measurement campaign Ilmenau 3 – Complete system evaluation 

This final campaign was held after filtering the internal distortions out as described in 

section 6.5.3. Due to capacity, only static tests were run. Only the RHCP modes of the array 

were involved in the following test. 

Three jamming sources (two CW and one noise-modulated) were built, to evaluate the 

system robustness against two or three jammers. The jammers were distributed at three 

different directions, 15 to 30 meters away from the antenna, as illustrated in Fig. 6.12. 

 

Figure 6.12: Top-view (left) and side-view (right) of the setup of the “measurement 

campaign Ilmenau 3”, with antenna placed either on a tripod or on the car roof. The test 

was performed in a 75 m x 30 m yard surrounded by buildings. Three jamming sources at 

three different directions were used. 

6.6.1 Robustness against one jamming source 

System evaluation started with testing the receiver robustness against one CW jamming 

interferer “Jammer 1” at elevation of 11º, as represented in Fig. 6.12. 

For this test, the antenna was mounted on a tripod. Measurements proved the system 

robustness up to a JSR of 70 dB, which confirms the results achieved in the second 

measurement campaign Ilmenau 2 (section 6.4.3). 

The same result was achieved when using the noise-modulated jamming source “Jammer 

2”, which confirms the results achieved in the third measurement campaign at ATC-

Aldenhoven (section 6.5.2). 
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6.6.2 Influence of car-body on anti-jamming robustness 

The same robustness test against one jamming source was repeated with the antenna on a 

car roof, instead of the tripod, in order to get a quantitative measure of the car influence on 

the system robustness.  

Measurements revealed that the system mounted on the car roof was robust against 

jamming up to JSR = 65 dB, which is 5 dB less than the case without car. This is due to the 

impact of the car body on the radiation pattern of the antenna array, as the car reduces the 

gain at zenith and increases it at low-elevation directions where the jamming source is.  

While this result gives an indication of the car influence on the robustness of GNSS 

receivers, it must be considered that the estimation may depend also on the scenario case 

and the distribution of satellites in the sky-view. Reliable estimations of the car influence 

may need further investigations in the future. 

6.6.3 Robustness against two jamming sources 

Having the internal distortions filtered out, the robustness of the receiver against two or 

three jamming sources was tested for the first time. One CW jamming source “Jammer 1” 

and one noise-modulated jamming source “Jammer 2” were built and positioned at two 

directions with 90° azimuth difference (almost south and east), and 11º elevation, as 

illustrated in Fig. 6.12.  

First measurements were run while Jammer 1 was producing a fixed jamming-to-signal 

ratio of JSR1 = 45 dB, which is too small compared to the 70 dB JSR-tolerance in case of 

one jamming source (at 11º elevation). Jammer 2 was tuned up to a maximum level of JSR2 

= 75 dB. Measurements revealed that the GNSS receiver was saturated when the second 

jamming source was at level of JSR2 = 68 dB or higher, which is comparable to the case 

of one jamming signal (where JSR-tolerance =70 dB). This impact of the second source is 

scenario-dependent and may change depending on the distribution of the satellites in the 

sky, the relative directions of both jamming sources, the radiation pattern of the antenna 

array, and the used beamforming and anti-jamming techniques. 

In the second measurement scenario, both jamming sources were tuned to achieve close 

jamming-to-signal ratios at the receiver. It was found that increasing the power level of 

Jammer 1 to produce a JSR1 of 55 dB forced the need to decrease the power level of 

Jammer 2 to produce a JSR2 of only 60 dB, instead of 68 dB, to keep the receiver capable 

of finding the positioning solutions. 
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6.6.4 Robustness against three jamming sources 

At this stage, both Jammer 1and Jammer 2 were placed as described in the previous section, 

and a new CW jamming source “Jammer 3” was added at elevation θ = 0°, at a direction 

close to north, as also illustrated in Fig. 6.12.  

All jamming sources were tuned together to produce the same JSR level at the GNSS 

receiver. Measurements found that the system was robust against a jamming-to-signal ratio 

up to JSR1 = JSR2 = JSR2 =50 dB. 

These results achieved through the described automotive-related measurement campaigns 

are published in [138]. 
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Chapter 7: 

7.  

Conclusions 
 

This thesis describes the design and evaluation of a fully operational dual-band dual-

polarized GNSS receiver that exploits array-diversity and polarization diversity to enhance 

its robustness against signal distortions such as jamming and multipath propagation. 

The designed receiver included a four-element dual-band dual-polarized antenna array 

(using two different versions of the radiating elements, stub-loaded single-layer patch 

antenna elements, and multi-layer patch antenna elements), integrated with its decoupling 

and matching networks, and followed by a calibration network, a preamplifier and 

frequency diplexer stage, and an RF-IF front-end, in addition to an eigenmode-based and 

anti-jamming digital receiver that exploits the array- and polarization-diversity of the 

antenna array to detect and block one to three jamming sources, and enhance the system 

robustness. 

The thesis studied different aspects that affect the array-diversity and the polarization-

diversity of the antenna array. This involved the sources of mutual coupling in compact 

antenna arrays, the influence of mutual coupling on radiation efficiency, the sources of 

cross-polarized radiating fields in patch antenna elements, and the influence of mutual 

coupling in compact patch antenna arrays on the cross-polarization discrimination. 

Moreover, the work described the approach of eigenmode-based decoupling and matching 

networks, and how it helps to mitigate the influence of mutual coupling on the radiation 

efficiency and the cross-polarization discrimination. 

The designed system demonstrator was installed on either a tripod or a car roof, and 

evaluated for its robustness against scenarios highly related to safety-critical and 

automotive applications, including static and dynamic tests with one to three jamming 

sources of different types.  

The performance evaluation confirmed the feasibility of the higher-order RHCP 

eigenmodes, particularly at elevations below 40°, which helps to extend the coverage area 

of the receiver to track more satellites and enhance the positioning accuracy. 
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Moreover, measurements proved the feasibility of the LHCP mode, especially the odd 

modes, to compensate for the multipath propagation at elevations below 60°, and enhance 

the anti-jamming robustness of the system at these directions. 

Quantitatively, for the antenna on the tripod, when only the RHCP modes were sued, the 

system was proved to be robust against one to three jamming sources with: 

- JSR up to [65 dB to 75 dB], for a single jamming source at 5° to 16 ° elevation. 

- JSR between 55 dB and 60 dB, for two jamming sources, at 11° elevation. 

- JSR up to 50 dB, for three jamming sources, at 5°, 11° and 11° elevations. 

The use of the LHCP odd modes added a gain of 10 to 15 dB to the maximum JSR-tolerance 

level. 

The impact of the car on the JSR-tolerance level was estimated by about 5 dB loss, for the 

tested scenarios. 

The designed receiver outperforms the state-of-the-art systems described in several 

literatures [3, 6, 26-28]. 

The main conclusions of this dissertation can be summarized in the following points: 

- Array diversity enhances the signal-to-noise ratio of global navigation satellite system 

receivers, and enables beamforming to enhance the receiver robustness against 

multipath propagation, atmospheric impact, jamming, and spoofing. 

 

- Polarization diversity compensates for the influence of multipath propagation, and 

helps to enhance the robustness against jamming sources. 

 

- Compact array-based receivers suffer from mutual coupling between the radiating 

elements, which degrades the eigenefficiencies of the array, and subsequently its 

diversity gain. 

 

- Mutual coupling decreases the cross-polarization discrimination (XPD) of the radiating 

patch antenna elements across the entire upper half-sphere, and especially at low 

elevations. 

 

- Decoupling and matching networks partially restore the radiation eigenefficiencies and 

the polarization purity. 

 

- In compact antenna arrays, the XPD gain achieved by proper optimization of the single 

antenna element can be significantly larger than the XPD gain restored by introducing 

decoupling techniques to reduce the influence of the mutual coupling, which stresses 

the importance of the fine tuning of the single antenna element regarding its XPD. 
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- Array-based receivers that use adaptive beamforming outperform receivers that use 

uniform beamforming and do not consider the different gains of the array eigenmodes. 

 

- Gain-control of the RF front-end of the GNSS receiver helps to enhance the anti-

jamming robustness level of the receiver at the cost of reducing its sensitivity to the 

useful navigation signals. A trade-off between the anti-jamming robustness level and 

the signal sensitivity is essential for automotive-dedicated GNSS receivers. 

 

- Realistic implementation of a robust dual-band dual-polarized array-based GNSS 

receiver, with decoupling and matching networks, adaptive beamforming, and gain-

control was possible. The receiver outperforms several single-element and array-based 

anti-jamming receivers, described in literature, in term of anti-jamming robustness 

level.  
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