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Abstract

For high precision in source estimates of magnetoencephalography (MEG) data,

high accuracy of the coregistration of sources and sensors is mandatory. Usually,

the source space is derived from magnetic resonance imaging (MRI). Sensor-to-MRI

coregistrations are the focus of this thesis. The quality of coregistrations is assessed

and the effect of their uncertainties on source estimates is analyzed. Both topics,

the quality assessment and the propagation of uncertainties to source estimates are

treated separately.

In this thesis, the target registration error (TRE) is proposed as criterion for the

quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in

coregistrations at all points of interest. In total, 5 544 data sets with sensor-to-head

and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed.

An adaptive Metropolis algorithm was used to estimate the optimal coregistration

and to sample the coregistration parameters (rotation and translation). I found

an average TRE between 1.3 and 2.3 mm at the head surface. A mean absolute

difference in coregistration parameters between the Metropolis and iterative closest

point algorithm of (1.9± 1.5)◦ and (1.1± 0.9) mm was found. A paired sample t-

test indicated a significant improvement in goal function minimization by using the

Metropolis algorithm. The sampled parameters allowed computation of TRE on the

entire grid of the MRI volume. Hence, I recommend the Metropolis algorithm for

head-to-MRI coregistrations.

The propagation of coregistration uncertainty to source estimates was performed

by using pseudospectral approximations of beamformer and standardized low reso-

lution tomography (sLORETA). This approach was tested for auditory, visual and

somatosensory brain activity with different signal to noise ratios and source orienta-

tion constraints on datasets of 20 subjects. By using pseudospectral approximations

as efficient surrogates, the spatial distribution of the source estimate maximum was

sampled for 50 000 coregistrations. From the results, it can be concluded that it

is possible to apply stochastic spectral methods to MEG source estimation with

high accuracy. The investigated effects of coregistration uncertainties on source es-

timates are small, typically the maximum location varied within a range of 5 mm,

which is in the range of the localization errors. Pseudospectral approximations of

the source estimates reduced computation times considerably by a factor of approx-

imately 10 000 for beamformer and 50 000 for sLORETA compared to the exact

original computations.





Kurzfassung

Für eine hohe Präzision in der Schätzung von Gehirnaktivität, ausgehend von

Daten der Magnetoenzephalographie (MEG), ist eine sehr genaue Koregistrierung

der Quellen und Sensoren notwendig. Üblicherweise werden hierbei die Quellorte

der Gehirnaktivität bezüglich zu Koordinaten der Magnetresonanztomographie

(MRI) angegeben. Die Sensor-zu-MRI Koregistrierungen sind der Schwerpunkt

dieser Arbeit. Die Qualität von Koregistrierungen wird bewertet und der Effekt

ihrer Unsicherheiten auf Schätzungen der Gehirnaktivität beziehungsweise auf

Quellschätzungen wird untersucht. Beide Themen, die Qualitätsbewertung und die

Übertragung der Unsicherheiten auf Quellschätzungen werden separat behandelt.

In dieser Arbeit wird vorgeschlagen, den target registration error (TRE) als

Qualitätskriterium für Sensor-zu-MRI Koregistrierungen zu verwenden. Der TRE

kann den Effekt von Koregistrierungsunsicherheiten an beliebigen Punkten messen.

Insgesamt wurden 5 544 Datensätze mit Sensor-zu-Kopf und 128 Datensätze

mit Kopf-zu-MRI Koregistrierungen aus einem Labor analysiert. Ein adaptiver

Metropolis-Algorithmus wurde genutzt um optimale Koregistrierungen zu schätzen

und um Stichproben ihrer Parameter (Rotation und Translation) zu ziehen. Es

wurde ein TRE von 1.3 und 2.3 mm an der Kopfoberfläche gefunden. Weiter

wurde eine mittlere absolute Differenz der Koregistrierungsparameter zwischen

Metropolis-Algorithmus und dem etablierten iterative closest point-Algorithmus

von (1.9± 1.5)◦ und (1.1± 0.9) mm gefunden. Ein Zweistichproben-t-Test zeigte

eine signifikante Verbesserung in der Optimierung der Zielfunktion durch den

Metropolis-Algorithmus. Die Stichproben der Parameter erlaubten die Berechnung

des TREs auf dem gesamten Gitter des MRI-Volumens. Aus diesen Gründen wird

der Metropolis-Algorithmus für Kopf-zu-MRI Koregistrierungen empfohlen.

Die Übertragung der Koregistrierungsunsicherheit auf Quellschätzungen erfolgte

unter Verwendung von speziellen Polynom-Entwicklungen des Beamformers und

der standardized low resolution tomography (sLORETA). Dieser Ansatz wurde für

auditorische, visuelle und somatosensorische Hirnaktivität mit verschiedenen Signal-

Rausch-Verhältnissen und Beschränkungen der Quellorientierung auf Datensätzen

von 20 Probanden getestet. Durch die Verwendung von Polynom-Entwicklungen als

effiziente Surrogate wurde die örtliche Verteilung des Quellschätzungs-Maximums

für 50 000 Koregistrierungen ermittelt. Aus den Ergebnissen lässt sich schließen,

dass es möglich ist, Polynom-Entwicklungen mit hoher Genauigkeit auf MEG-

Quellschätzungen anzuwenden. Die untersuchten Auswirkungen von Koreg-

istrierungsunsicherheiten auf Quellschätzungen sind gering, typischerweise variierte
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die Position des Maximums innerhalb eines Bereichs von 5 mm, was im Bereich

der Lokalisierungsfehler liegt. Polynom-Entwicklungen der Quellschätzungen re-

duzierten die Berechnungszeiten erheblich um den Faktor von etwa 10 000 für

Beamformer und 50 000 für sLORETA im Vergleich zu den exakten Originalrech-

nungen.
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Nomenclature

Abbreviations

A1 primary auditory cortex.

A4 auditory 4 complex.

A5 auditory 5 complex.

BA broadman area.

BEM boundary element method.

CC correlation coefficent.

CPU central processing unit.

EEG electroencephalography.

FEM finite element method.

GB gigabyte.

LBelt lateral belt complex.

LCMV linearly constrained minimum variance.

MAG magnification.

MBelt medial belt complex.

MEG magnetoencephalography.

MIPS MIPS Technologies, Incorporation.



xii Abbreviations

MRI magnetic resonance imaging.

PBelt para-belt complex.

PI para-insular area.

RAM random-access memory.

RDM relative difference measure.

RI retro-insular cortex.

RMS root mean square.

sLORETA standardized low resolution brain electromagnetic tomography.

SNR signal-to-noise ratio.

SSS signal space separation.

STSdp dorsal bank of superior temporal sulcus posterior.

SVD singular value decomposition.

TA2 anterior superior temporal area TA2 (Economo and Koskinas, 1925).

TM trademark.

TRE target registration error.

V1 primary visual cortex.

V2 second visual area.



Mathematical notation xiii

Mathematical notation

A, a scalar.

~a spatial vector in three dimensional space.

a general vector.

|a|, |a| absolute value of a scalar and norm of a vector, respectively.

diag (a) diagonal matrix with diagonal elements a.

~̄a expected value of a spatial vector.

E [·] expected value.

Var [·] variance.

â, â estimates of a scalar and a vector, respectively.

·T transposed.

quaternion [R] quaternion derived from a rotation matrix R.

A ⊆ B A is a subset of B.

A ∪ B union of A and B.

A \ B set difference between A and B: set of all elements that are members

of A but not members of B.





Chapter 1

Introduction

As soon as measured data are evaluated in fields of science or engineering, un-

certainty analysis is an inevitable component of the interpretation of subsequent

results. Uncertainty analysis is on the one hand the assessment of sources of un-

certainty and on the other hand the estimation of the impact of these uncertainties

on derived quantities. This kind of analysis is essential for all sorts of quality as-

sessments or assurances. The aim of this thesis is the development of methods for

systematic quality assessments and assurances in magnetoencephalography (MEG)

analysis.

In many fields of medical engineering, quality assurance has high priority. There

are several publications in radiation therapy and protection, computer tomography

and magnetic resonance imaging (MRI) focusing on quality assessment and assur-

ance only (Brendemühl et al., 2007; Weppler et al., 2018; Taguchi et al., 2018;

Küstner et al., 2018). Extensive quality assurance are the basis of these diagnostic

or therapeutic modalities for clinical applications. However, in the field of electroen-

cephalography (EEG)/MEG this topic is underrepresented. The MEG is far from

clinical routines, although it would offer some advantages like high temporal resolu-

tion together with the availability of simple volume conductor modelling. Therefore,

it is necessary to develop the branch of quality assessments in the MEG field as a

basis for clinical applications. This thesis is a contribution to verification and val-

idation in neuroscience (Mulugeta et al., 2018) by means of analysing methods for

testing the robustness of MEG models.

MEG measures the magnetic flux or flux differences at several sensors around

the human head. The sources of interest of the measured magnetic flux data are

intracranial electric currents of neural activity. An important aim of MEG analysis

is to estimate parameters of these current sources e.g., the location and the ampli-
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tude. The analysis step of source parameter estimation from measured MEG data

is also referred to as source reconstruction. From the measurement to the source

reconstruction, a number of other analysis steps are involved and each comes with its

own uncertainties. Let me guide you from the perspective of an MEG data analyst

from the measurement to the source reconstruction, focusing on uncertainties.

At the sensor level, the magnetic flux of intracranial currents is usually in the

amplitude range of 1 to 100 fT and measurable frequencies range normally from 0.3

to 1 000 Hz (Y. Lin et al., 2018; Milde et al., 2009; Papadelis et al., 2009). This signal

is interfered with magnetic flux of other electric currents within the human body

e.g., currents in the heart and other muscles. These interferences with magnetic

flux of the human body which do not originate in the brain are often referred to

as artefacts in MEG analysis. Several deterministic (signal space projection, jump

detection) (Nolte and Hämäläinen, 2001; Cheveigné and Arzounian, 2018) and non-

deterministic (independent component analysis) methods (Escudero et al., 2007) are

extensively used for artefact rejection or reduction. Another source of uncertainty

at the sensor level is technical noise, either sensor noise or environmental noise.

Technical noise is assumed to be a stationary random process and often it is con-

sidered a zero mean Gaussian process within a predefined frequency band (Hansen,

Kringelbach, and Salmelin, 2010). Usually, it is described by its covariance matrix,

which is either estimated from empty room measurements or from time intervals

of measurements with subjects. None of these methods is able to detect or remove

artefacts without uncertainty and usually this source of uncertainty and its effects

are not analyzed.

Source reconstructions incorporate sensor level data, coregistration between the

MEG device and subject’s individual head coordinate system and preprocessed MRI

data in computational models of the physical system. To this end, anatomical infor-

mation of the MRI is used to model tissue conductivities and boundaries numerically

in a volume conductor model. One first challenge is the computation of the magnetic

field outside of the head for a certain electric source model within the brain, which

is also referred to as forward solution. Both, conductivities and their boundaries can

only be estimated with considerable uncertainties. Similar methods as in this thesis

have already been employed to predict the effect of conductivity uncertainties on

forward solutions and source reconstructions (De Staelen et al., 2013; Schmidt et al.,

2014; Saturnino et al., 2019). Numerical methods like boundary element method

(BEM) and finite element method (FEM) are used to compute forward solutions of

realistic head models and they are in general computationally expensive. The re-

construction of cortical activity by means of single or distributed sources from MEG
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measurements is an ill-posed inverse problem. Many of these inverse problems add a

considerable computational burden on top of the computation of forward solutions.

Inverse problems also add their uncertainties e.g. in source positions and densities

and in the validity of their goal functions.

In the following, I briefly review some important uncertainty analysis methods

and their properties, which might be useful for MEG computations. The focus,

however, will be on stochastic spectral methods.

Monte Carlo sampling A sampling of deterministic computation results is re-

ferred to as Monte Carlo sampling, if the input is generated as independent realiza-

tions of random variables. The random variables in this context are defined before-

hand by fixed probability distributions. This approach is straightforward since the

computations stays unchanged and is only run for a number of input realizations.

Hence, Monte Carlo sampling is a stochastic collocation method. From the sam-

ples of Monte Carlo computation results, statistics e.g., mean, variance and higher

moments are estimated directly by using the estimators for independent random

variables. However, the convergence rates of the statistics are slow e.g., 1/
√
M for

the mean, where M is the sample size. The slow convergence renders Monte Carlo

sampling unfeasible for computationally expensive problems. Accelerations of this

method have been proposed e.g., latin hypercubes (Loh, 1996) or low-discrepancy

point sets (Chen, Golberg, and Hon, 1998). These methods introduce a more sys-

tematic random sampling of computations, which increases convergence rates and

thus reduces the number of necessary samples. However, for high dimensional pa-

rameter spaces and expensive computations, accelerated Monte Carlo sampling is

still not practicable.

Perturbation methods If a computation result is the solution of a system of

differential equations with stochastic parameters, the perturbation method can be

applied. This method expands stochastic parameters by using truncated Taylor

series around their mean. The Taylor series are substituted back into the differential

equations and a more complex system of equations is obtained. Because of the

complexity of the expanded system, the Taylor series is typically truncated at second

order or below (Xiu, 2009). A subsequent limitation of perturbation methods is that

they do not perform well for large magnitudes of uncertainties (Xiu, 2009; Ghanem

and Spanos, 1991). The probability distribution function of the computation result

cannot be readily computed from the perturbation method (Ghanem and Spanos,

1991).
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Operator based methods The problem of solving differential equations is equiv-

alent to the problem of finding the inverse of a given operator. If it exists, the inverse

of an operator can be expanded in a convergent series (Ghanem and Spanos, 1991).

By using a series expansion of the inverse operator, the solution of a stochastic dif-

ferential equation can be expressed as a series of powers of the stochastic parameters.

This expansion is similar to the perturbation method and also limited to uncertain-

ties of small magnitudes (Xiu, 2009; Ghanem and Spanos, 1991). The inversion of

the operator is usually extremely laborious and practically often restricted to the

second order (Ghanem and Spanos, 1991).

Stochastic spectral methods A collection of methods for uncertainty analysis

are generalizations of the ’Wiener-Hermite Chaos’ (Xiu and Karniadakis, 2002; Xiu

and Karniadakis, 2003; Xiu and Hesthaven, 2005). The computations are projected

on an orthogonal polynomial basis in the space of the random parameters. In this

work, such methods are referred to as stochastic spectral methods. In the literature,

different terms are used for stochastic spectral methods, which can be confusing

for the reader e.g., Wiener-Askey or generalized polynomial chaos (Xiu and Karni-

adakis, 2002; Xiu and Karniadakis, 2003; Weise et al., 2015). These methods have

been applied to a variety of mathematical and physical computations with good

convergence and efficiency (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002)

and are considered among the most widely used methods for uncertainty analysis

(Xiu, 2009). Stochastic spectral methods will be the focus of the uncertainty propa-

gation chapter of this work. Ghanem and Spanos (1991) applied stochastic spectral

methods to finite elments by using the polynomial basis as proposed by Wiener

(1938). This method was generalized by Xiu and Karniadakis (2002) to polynomi-

als of the Askey-scheme. From the perspective of application, the generalization by

Xiu and Karniadakis (2002) extends the choice of stochastic parameter distributions

from normal distributions to other continuous and discrete distributions. Stochas-

tic spectral methods provide advantages over other uncertainty analysis methods,

namely the availability of error measures for the approximation, expressions of sta-

tistical moments in closed forms and acceleration of the original simulator by means

of a fast surrogate. The probability density function of computations can be ap-

proximately sampled by Monte Carlo sampling or one of its accelerations on the

surrogate. An disadvantage of polynomial bases is that higher order polynomials

are prone to unstable swings. In stochastic spectral methods, these swings can occur

at places with a small likelihood in the input space. Another limitation of stochastic
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spectral methods is that the probability distribution of the inputs must be known

in order to select the correct polynomial basis.

Outline of this thesis This paragraph briefly outlines this thesis and ends with a

list of its scientific contributions. In chapter 2, methods for estimating coregistration

uncertainties are proposed. The focus is set on quality assessment and the multi-

variate distribution of coregistration parameters. Subsequently, stochastic spectral

methods of uncertainty propagation are introduced in chapter 3. Applications to

MEG forward computations and solutions of related inverse problems are explained

in the same chapter. The results of both the coregistration uncertainty assessment

and uncertainty propagation are presented in chapter 4. Discussion of the findings

and conclusions of this thesis are given separately for uncertainty assessment and

propagation in chapter 5.

The work presented in this thesis provides the following scientific contributions:

• Quality assessment of MEG-to-MRI coregistrations by using the target regis-

tration error (TRE) as a quality measure.

• Improvement of head-to-MRI coregistrations by using a Metropolis algorithm.

• Conjunction of coregistration uncertainties and head movements

• Propagation of uncertainty from coregistration to forward computations and

source estimates.

• Sensitivity analysis of forward computations and source estimates for coregis-

tration parameters.





Chapter 2

Assessment of coregistration

uncertainties

2.1 Introduction to the problem

The accuracy of the coregistration for MEG source reconstructions is limited by

stochastic and systematic errors in the three measurement modalities involved:

MEG, 3D-digitizer and MRI. While several suggestions have been made in the past

to improve the accuracy of the coregistrations (Singh et al., 1997; Adjamian et al.,

2004; Troebinger et al., 2014; Meyer et al., 2017), no standard has been yet estab-

lished. In this thesis I assess the quality of coregistrations using target registration

error (TRE). TRE is an error vector, of a point localization, resulting from coreg-

istration uncertainties. I propose a sequence of methods that are able to estimate

TRE at any point of interest.

Coregistration procedures for MEG studies typically involve estimating sets of

homologous positions, or coordinates, across at least two out of the three data

modalities involved. Each of the three modalities, (MEG, 3D-digitizer and MRI),

provides a unique device coordinate system. The MEG device coordinate system

is defined by the MEG manufacturer to provide sensor positions. MRI acquires an

image relative to scanner-specific coordinates. During 3D-digitization, anatomical

landmarks are used to establish a subject-specific head coordinate system. Within

this thesis, all positions will be reported relative to this head coordinate system. The

term ‘MEG coordinates’ will refer to those which were originally given relative to the

MEG device coordinate system and subsequently transformed to the 3D-digitized

head coordinate system. Likewise, coordinates which are extracted from an MRI

scan and transformed to the 3D-digitized head coordinate system, will be referred
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to as ‘MRI coordinates’. In practice, the results of brain activity studies are typically

presented in head coordinates derived from brain internal fiducials only identifiable

in structural MRI data, for example, MNI-coordinates1 (Evans et al., 1993).

For convenience, I will use the following labels for the different coregistrations.

MEG to head coordinate transformations will be referred to as MEG-to-head whereas

head to MRI coordinate transformations will be referred to as head-to-MRI. Both are

assumed to be proper rigid transformations (rotation and translation). To assess the

overall quality of the two coregistrations as a unit, they will be linked and referred

to as MEG-to-MRI.

There are a number of issues which contribute to coregistration uncertainty.

During MEG recordings the positions of the localization coils (coils for short) are

estimated via magnetic field measurements and inverse modeling. The solutions

depend on signal quality and coil positions relative to the sensors (Ahlfors and Il-

moniemi, 1989; Fuchs et al., 1995). However, the coils make contact with the skin

and can introduce error if their positions change while under tension. Further, MRI

scans may show systematic spatial deformations of the head shape, for instance due

to air-filled cavities in the head or even via physical deformations of the head sur-

face, for example by headphones. In addition, estimation of the skin surface from

MRI data depends on a threshold. The extracted surface may therefore appear

systematically above or below the actual skin surface. According to Singh et al.

(1997) defining anatomical landmarks, during the registration procedure, using two

points on the ears and a third on the nasion only allows repeatability on the order

of one millimeter at best. The overall accuracy of the 3D-digitizer is influenced by

the precision in digitizing the coil positions and the head shape. However, during

the digitization procedure these points can migrate slightly due to the elastic nature

of the human skin. Finally, coordinate transformations are based either on match-

ing corresponding points (fiducials) between two coordinate systems or on surfaces

(surface matching). Pure fiducial based coregistrations are sensitive to fiducial lo-

calization errors and are highly likely to suffer larger errors than surface matching

coregistrations when there are small numbers of fiducials (Singh et al., 1997; Hup-

pertz et al., 1998).

Several techniques have addressed the problem of fiducial localization errors.

One option is to fixate the participant’s head using bite bars or head casts (Singh

et al., 1997; Meyer et al., 2017). Another common approach is to digitize the

1At the Montreal Neurological Institute (MNI), brain atlases were constructed from different
sets of MR images. Different atlases are also named according to the number of MR images, which
are the basis of the atlases (e.g. MNI305).
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coils and head surface relative to an additional reference, attached to the subject’s

head (Polhemus, 2012). This technique does account for head movements during

digitization. However, the methods proposed in this thesis are also applicable to

other MEG-to-head coregistrations, which use either different definitions of the head

coordinate system or additional mechanical means.

Schwartz et al. (1996) compared the two registration families (fiducial-based

and surface matching) with respect to the head-to-MRI coregistrations. They used

between 2 000 and 4 000 head shape points for surface matching and 3 points for

pure fiducial-based registrations. Their surface matching algorithm was based on

a distance transform and the mean distance of all head shape points as cost func-

tion. They reported an accuracy improvement for the surface matching technique

compared to manual registrations. The achieved accuracy of the registration was

proportional to the number of head shape points. Registration errors of 0.7±0.3 mm

were reported, estimated on a 150 mm cube, sampled every 2 mm using simulation

tests. Huppertz et al. (1998) also estimated the accuracy of a surface matching

technique for head-to-MRI registrations for EEG data analysis. Between 1 000 to

1 800 head shape points were digitized and an iterative bisection search was used

for surface matching. They computed mean registration errors of 1.4 to 1.8 mm

for 7 fiducial points using a test–retest design with 10 repetitions and 20 subjects.

The larger registration error compared to Schwartz et al. (1996) might be related to

the points, where the registration error was measured. More specifically, Schwartz

et al. (1996) defined an equidistant grid in the MRI volume, while Huppertz et al.

(1998) used 7 fiducials at the head surface. Naturally, the points on the head sur-

face show larger mean registration errors due to rotation uncertainties than fiducial

points near the origin. Wagner and Fuchs (2001) used a similar approach to Hup-

pertz et al. (1998) utilizing approximately 300 head shape points. Their algorithm

minimizes the L1-norm of the distances of head shape points to the MRI surface.

Unfortunately, no information about the achieved accuracy was provided.

There is substantial variability in the literature concerning head-to-MRI coreg-

istration methods. For example, handheld laser scanners (Koessler, Cecchin, et al.,

2011; Hironaga et al., 2014) and photogrammetry systems (Koessler, Maillard, et al.,

2007; Baysal and Şengül, 2010; Qian and Sheng, 2011) are proposed as alternatives

to the electro-magnetic 3D digitization of electrode positions or head surface scan-

ning. Baysal and Şengül (2010) used a single camera photogrammetry system for

EEG electrode localization and reported a maximum localization error of 0.77 mm

with 25 electrodes. In a similar setting, Qian and Sheng (2011) reported a maxi-

mum localization error of 1.19 mm. They used 2 mirrors in addition to the system of
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Baysal and Şengül (2010). Koessler, Maillard, et al. (2007) compared a geodesic pho-

togrammetry system with the Polhemus FASTRAK and other electrode digitization

techniques. They reported an root mean square (RMS) position error of 1.27 mm

for the geodesic photogrammetry system and 1.02 mm for the Polhemus. Koessler,

Cecchin, et al. (2011) tested EEG-to-MRI coregistrations using a 3D laser scanner.

An average of 5 263 face shape points were recorded and an iterative closest point

(ICP) algorithm was applied to the face shapes. They reported a mean residual error

of the electrode coregistration of 2.11 mm for 65 electrode positions. Hironaga et

al. (2014) proposed a 3D laser scanner system for the MEG-to-MRI coregistration.

They found superior registrations using the forehead surface compared to the upper

head shape. Further, they reported that TRE was at the submillimeter level using

their regional registration method. The methods, proposed below, can be directly

applied to data sets of the photogrammetry and laser scanner systems as mentioned

above.

Previous studies have often only provided RMS of matched point residuals, for

example, residuals of coil positions or head shape points, as a measure of the good-

ness of fit. It has been shown, however, that these RMS of residuals and TRE are

uncorrelated (Fitzpatrick, 2009). Hence, the RMS of residuals are not well suited

for determining the quality of the coregistrations. Finally, previous studies con-

cerned with the accuracy of coregistration measured or simulated TRE at only a

few points (Fuchs et al., 1995; Singh et al., 1997; Huppertz et al., 1998; Adjamian

et al., 2004). In this thesis I sample the distribution of coregistration parameters,

and therefore TRE becomes a computable measure at any point of interest. Conse-

quently, I propose an overall assessment of the quality of individual coregistrations

based on TRE.

2.2 Instrumentation

All data sets in the analysis were recorded using a Neuromag Vectorview MEG with

102 planar magnetometers and 204 planar gradiometers. In the laboratory, five

localization coils are always used. At the beginning of each measurement the five

coils are energized by currents of unique frequencies. This allows one to disentangle

the superimposed fields and to estimate each coil’s position, with respect to the MEG

device, separately. For the 3D-digitization of the coils and head shape, a Polhemus

FASTRAK system was used, which has a accuracy specification of 0.8 mm RMS for

all receiver positions in a radius of 760 mm from the transmitter (Polhemus, 2012).

This distance is never exceeded in the lab. The MRI surface extraction is based on
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the Freesurfer segmentation of 3 T T1-weighted MPRAGE or MP2RAGE images

with a voxel size of 1 mm× 1 mm× 1 mm.

2.3 Head coordinate system

The definition of head coordinates depends on the MEG or EEG setup. In this thesis

Neuromag head coordinates were used. This coordinate system is often referred to

as RAS, which is a mnemonic for the axes’ pointing directions: right, anterior and

superior. The first axis of the head coordinate system is aligned with anatomical

points on each ear, with coordinates increasing from left to right. The second axis

intersects perpendicularly, at the origin with the first, such that it runs through the

nasion from posterior. Thereby, the origin is not necessarily located at the middle

between the ears. Again, the third axis intersects at the origin, perpendicular to

the first and second axes and coordinates are counted positive from inferior towards

the subject’s vertex. This coordinate system was defined in Ahlfors and Ilmoniemi

(1989) and is common for data acquisition with Neuromag devices (Elekta Neuromag

data acquisition user’s manual 2007, pages 25–26).

2.4 Rotation by quaternions

I used unit quaternions for the parametrization of rotations and their uncertainties

for the following reasons. Quaternions provide a convenient four-dimensional rep-

resentation of object rotations. They can be directly used to find the least squares

solution of the coregistration of two corresponding point sets, while prohibiting re-

flections (Besl and McKay, 1992). This is an advantage over the singular value

decomposition based method, which permits reflections and may thereby yield an

improper rotation matrix. Furthermore, quaternion parameters provide an efficient

method for three-dimensional rotations involving no trigonometric function compu-

tations. The quaternion-based rotation is continuous over the unit sphere in R4.

The axis of a rotation is defined by a unit vector ~u. A unit quaternion representing

the rotation around ~u by an angle of θ is written as

q = exp [(θ/2) (u1i+ u2j + u3k)]

= cos (θ/2) + (u1i+ u2j + u3k) sin (θ/2)

= q0 + q1i+ q2j + q3k , (2.1)
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where i, j and k represent the three imaginary units of quaternions. Using eq. (2.1),

the rotation of a vector ~v around ~u by an angle of θ is defined by

~v′ = q (v1i+ v2j + v3k) q−1 = R (q)~v , (2.2)

where the inverse rotation quaternion q−1 is simply obtained by converting the sign

of the exponent in eq. (2.1) and R (q) denotes the respective rotation matrix as a

function of q. In the scope of this thesis, the imaginary parts of the quaternion are

referred to as rotation parameters and the real part is redundant for unit quater-

nions. The rotation matrix R (q) is derived from the quaternion without using

trigonometric functions as

R (q) =

q
2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q1q3 + q0q2)

2 (q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2

 , (2.3)

see equation (21) in Besl and McKay (1992) for reference. In order to evaluate

rotations using a spatial distance, the rotation effect at a radius R is used. On the

plane orthogonal to the rotation axis, a rotation by an angle of θ relates to a distance

of R · θ. The relation of angles and unit quaternion parameters is derived from

q2
1 + q2

2 + q2
3 = sin2 (θ/2) (2.4)

and for small angles θ ≈ 2
√
q2

1 + q2
2 + q2

3. Hence the effect of rotations for points

at the surface of a sphere, with a radius R, is approximated by multiplying them

(q1 , q2 , q3) with the diameter of sphere 2R. This scaling is used in section 2.10,

where the rotation parameters are sampled together with the translation parameters

in the 6-dimensional parameter space. I selected R = 100 mm as a scaling radius to

approximate the radius of human heads.

2.5 Coregistration model

2.5.1 MEG-to-Head

This coregistration is based on M < 10 corresponding points, for example, coil

positions. Coil positions were first measured by the 3D digitizer and expressed in

the head coordinate system. They are estimated in MEG device coordinates based on

fitting a magnetic dipole field for each coil using mne-python (Gramfort, 2013). The

coregistration for the MEG-to-head alignment of the points A = (~a1, ~a2, . . . , ~aM )
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localized in the MEG and B =
(
~b1, ~b2, . . . , ~bM

)
digitized in the head coordinate

system is given by

~bm = R (p)~am + ~s+ ~εm , m = 1, 2, . . . , M , (2.5)

where the transformation is defined by the quaternion p dependent rotation R and

the translation ~s plus the error vector ~εm. The estimated solution to the coregistra-

tion problem is the set of parameters p̂ and ~̂s, which minimizes the residuals ~δm in

the least squares sense according to

p̂, ~̂s = argmin
p, ~s

M∑
m=1

|R (p)~am + ~s−~bm|2 (2.6)

~̂bm = R (p̂)~am + ~̂s (2.7)

~δm = ~bm − ~̂bm . (2.8)

I implemented the quaternion-based least squares solution for the problem in

eq. (2.6) as proposed by Besl and McKay (1992).

For approximate parameter covariance estimation, the problem in eq. (2.5) is

centred and linearized at the minimum of eq. (2.6) as

~bcm = Jm · (p̃1, p̃2, p̃3, s̃1, s̃2, s̃3) + ~εm , m = 1, 2, . . . , M , (2.9)

where the superscript c denotes vector subtraction of the respective mean
1
M

∑M
m=1

~bm = 1
M

∑M
m=1

~̂bm and the Jacobians read

Jm =

 0 2b̂c3m −2b̂c2m 1 0 0

−2b̂c3m 0 2b̂c1m 0 1 0

2b̂c2m −2b̂c1m 0 0 0 1

 , (2.10)

(Wheeler and Ikeuchi, 1995). Under the assumption of homoscedastic errors ε with

zero mean and variance σ2
ε , the parameter covariance matrix of the respective linear

least squares estimate of the quaternion p̃ and translation ~̃s yields

Var [p̃1, p̃2, p̃3, s̃1, s̃2, s̃3] = σ2
ε ·
(
JTJ

)−1
, (2.11)

see equation (2.1.6) in Björck (2015), where JT =
(
JT

1 , J
T
2 , . . . , J

T
M

)
. As a result

of the centring, there is no coupling between quaternion and translation parameters
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and two matrices are derived separately as

Var [p̃1, p̃2, p̃3] = σ2
ε ·
(

4

M∑
m=1

(
|~̂bcm|2I − ~̂bcm~̂bcmT

))−1

(2.12)

Var [s̃1, s̃2, s̃3] = σ2
ε · I/M , (2.13)

where I is the identity matrix of size 3. The right hand expression of eq. (2.12) is

equivalent to a related variance estimate, see equation (33) in (Markley and Mortari,

2000).

2.5.2 Head-to-MRI

This is a coregistration of N ∼ 500 points describing the head shape as measured

by the 3D digitizer D =
(
~d1, ~d2, . . . , ~dN

)
. A second list with a point matrix

E is estimated via the segmented MRI data E = {~e1, ~e2, . . . , ~eP }. The subset

F =
(
~f1, ~f2, . . . , ~fN

)
that best corresponds to D depends on the quaternion q and

the translation ~t and is the result of the closest point operator C, defined by

~fn = argmin
~f

|R (q) ~dn + ~t− ~f |2 , ~f ∈ E (2.14)

F = C
(
R (q)D + ~t1ᵀ, E

)
, 1ᵀ = (1, . . . , 1) ∈ R1×N . (2.15)

For the operator C, I used an efficient balltree implementation of the scikit-learn

module (Pedregosa et al., 2012). Omitting the explicit notation of C, the head-to-

MRI problem reads as

~fn
(
q, ~t
)

= R (q) ~dn + ~t+ ~ηn , n = 1, 2, . . . , N (2.16)

and a solution is

q̂, ~̂t = argmin
q,~t

N∑
n=1

|R (q) ~dn + ~t− ~fn
(
q,~t
)
|2 (2.17)

~̂fn = R (q̂) ~dn + ~̂t (2.18)

~ζn = ~fn

(
q̂, ~̂t
)
− ~̂fn , (2.19)

where ~η and ~ζn are the error and residual vectors, respectively. In realistic setups,

the optimization problem of eq. (2.17) may not have a unique solution and due to

the non-linearity of C, no closed-form solution is available. Thus, an approximate
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solution is found using an iterative closest point (ICP) algorithm, which is likely to

find local minima and therefore depends on the starting value (Besl and McKay,

1992). Hence, the starting value was manually set by utilizing the 3D-digitized

ear and nasion points and the 3D rendered MRI segmentation of the head shape.

The estimates
{
q̂, ~̂t
}

were computed by the ICP implementation in mne-python

(Gramfort, 2013). An overview of the coordinate system definitions and respective

coregistration parameters is depicted in fig. 2.1.
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Figure 2.1: In the top row, the MEG, head and MRI coordinate systems are shown separately.
The MEG coordinates are denoted by (y, z) and the respective axes are plotted by dashed lines
relative to the contour of the MEG sensor configuration. Dotted lines represent the axes of
the head coordinates (y′, z′) and the head contour is outlined within the respective coordinate
frame. The MRI coordinate axes are plotted by dash-dotted lines, the respective coordinates
are denoted by (y′′, z′′) and a sagittal MRI slice is shown accordingly. In the bottom row,
the notations and line styles are adopted from the top row and MEG/head and head/MRI
coordinates are depicted relative to each other in the left and right box, respectively. The

parameter notations {p̂, ~̂s} and {q̂, ~̂t} denote rotations and translations of MEG-to-head
and head-to-MRI, respectively. Axes scaling is identical for all of the five sub-figures.
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2.6 Data sets

2.6.1 MEG-to-Head

MEG data sets measured in the MEG laboratory in the years from 2007 to 2016

were retrieved from the archive and analysed. For this thesis, the term ‘MEG data

set’ denotes an MEG measurement block with coil position acquisition at the begin-

ning of the block. All included data sets had five coils attached to the participant’s

head. I further restricted the selection to MEG data sets where none of the 204

gradiometers were marked as a bad channel. In agreement with Elekta Neuromag

data acquisition user’s manual (2007, pages 38–39), two further quality control cri-

teria were taken into account. First, the goodness-of-fit value for each coil had to be

0.98 or larger. Second, the discrepancy between coil distances calculated from either

MEG localization or from 3D digitization had to be smaller than 5 mm. In total,

7 314 MEG data sets were considered, 5 544 of them matched all of the selection

criteria and formed the basis of the MEG-to-head coregistration analysis. A total

of 1 770 MEG data sets were rejected, 7 had bad gradiometers, 81 because of no

coil measurement, 349 had less than 5 active coils, 405 because of the discrepancy

between coil distances and 928 had goodness-of-fit values below 0.98.

2.6.2 Head-to-MRI

For the head-to-MRI coregistrations, only those MEG data sets were considered

for which a segmented MRI data set was available and which included more than

200 head shape digitization points. Head-to-MRI coregistrations were conducted

using MNE, where the head surface extracted from MRI is matched with the 3D-

digitized head shape using the ICP algorithm (Hämäläinen, 2010, pages 195–197).

Head shape points with a distance greater than 10 mm from the MRI surface were

excluded, as suggested by Hämäläinen (2010, page 317). A total of 128 head-to-MRI

data sets were selected for the analysis. A total of 149 head-to-MRI data sets were

rejected because they had less than 200 head shape points. Most of the rejected

data sets were from a time prior to the laboratory adopting more strict procedures.

The recommended number of head shape points was increased over the years.

2.7 Scales of the coordinate systems

When coregistering data sets of different modalities, but from the same participant

(i.e. the same head), one would not expect a need to scale the dimensions. How-

ever, as briefly raised in the introduction, different methods may lead to systematic
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differences in the metrical scaling. Thus far, I had assumed identical scalings in

the different coordinate systems, that is, there is no change in length during the

transformations. This assumption, however, can be checked by analysing distance

measures within each coordinate system separately. The available data allowed pair-

wise comparisons of MEG with head and head with MRI coordinates. To this end, I

conducted a singular value decomposition (SVD) of the centred point clouds in both

coordinate systems. For convenience, I introduce the centring (demeaning) matrix

for M points

CM = I − 1

M
11ᵀ , (2.20)

where I is the identity matrix of size M and 11ᵀ is an M ×M matrix with each

element equal to one. For the centred point sets in the two coordinate systems

Ac = ACM and Bc = BCM , this reads as

Ac = UA diag (~σA)V ᵀ
A (2.21)

Bc = UB diag (~σB)V ᵀ
B (2.22)

c = |~σA|/|~σB| (2.23)

where ~σA and ~σB are the vectors of the positive singular values. The scaling coef-

ficient c between two systems is the quotient of the l2-norms of the singular value

vectors. Table 2.1 shows a mean scaling of c ' 1.005 for MEG-to-head, which trans-

Table 2.1: Scaling statistics of MEG-to-head and head-to-MRI are tested (two-tailed t-test).

Type mean SD t-value p-value

MEG-to-head 1.005 0.007 50.309 < 0.001

Head-to-MRI 1.003 0.004 7.270 < 0.001

lates to a 0.5 mm difference at the head surface for a head radius of 100 mm. The

expected error for the coil locations is in a similar range of about 1 mm (Ahlfors and

Ilmoniemi, 1989; Fuchs et al., 1995). Thus, I assume that the MEG coordinates are

systematically scaled by a factor of 1.005 and applied the correction to the MEG

coordinates. The reason for this scaling effect might be the slight pressing force on

the coils during digitization, which shifts the coils inwards and thus introduces a

smaller scaling for digitization compared to MEG localization.

Table 2.1 shows a mean scaling of c ' 1.003 for head-to-MRI, which results

in a 0.3 mm difference at the head surface. Both scaling values were significantly

different from 1. However, I have taken into account only the first and ignored the
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second. This is because of the large variability between subjects at the level of the

surface extraction from MRI data sets, in comparison to the estimated scaling value.

Furthermore, it is in agreement with Schwartz et al. (1996), who state that surface

matching is scaling independent if scaling effects are smaller than 3 mm.

2.8 Coil localization errors

The MEG-to-head coregistration is based on coil localizations. Fuchs et al. (1995)

investigated coil localization errors for three orthogonal coils (triplets), combined in a

coil set, using a 31-channel Philips MEG. They found that the coil localization error

depends on the coil position relative to the sensor array as well as on the signal

strength. For a coil position below the sensor array they reported the difference

between measured and true location to be less then 1.8 mm, with a mean of 1.1 mm.

The Neuromag Vectorview device uses simpler single coils (no triplets) and it is

a whole-head device with roughly ten times as many channels. I investigated the

device-specific error magnitude and its spatial dependency for data with 102 planar

magnetometers and 204 planar gradiometers. The coils were localized via their

magnetic fields, each coil being modeled as a magnetic dipole (Fuchs et al., 1995).

Coil localization was exclusively based on the data of the 204 gradiometers because

gradiometers have a higher signal to noise ratio for nearby sources due to their

inbuilt suppression of distant (interfering) sources. I estimated the variance of the

noise via the norm of the misfit χ between the magnetic flux sensor signals s and

the modeled data

χ
(
~̂r
)

= s−G
(
~̂r
)
G
(
~̂r
)+
s (2.24)

σ2
noise ∼

|χ|2
204− d , (2.25)

where G
(
~̂r
)

is the leadfield of the magnetic dipole at ~̂r and G
(
~̂r
)+

is the respective

pseudoinverse. The optimization has d = 6 degrees of freedom for each coil and I

assumed that the noise follows an independent normal distribution with zero mean,

σ2
noise variance and the respective probability density πnoise in each channel. Without

prior knowledge about the parameters, the log-likelihood of the magnetic dipole

location, given the measurement data, is defined by

log π (~r | s) =

204∑
l=1

log πnoise (χl (~r)) . (2.26)
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Samples are drawn from the probability density π (~r | s) of the coil location, given

the measurements, using the adaptive Metropolis algorithm of Haario, Saksman, and

Tamminen (2001) on the log-likelihood, see eq. (2.26). I performed 10 000 runs of the

Metropolis algorithm, including 1 000 burn-in samples. In this test, 5× 5 544 coil

positions of the MEG-to-head data sets were included. The maximal spatial error

was only weakly dependent on the location in space. I estimated the dependency to

1.5× 10−3, which represents 0.15 mm at a distance of 100 mm. Since this effect is

about a 10-th of the expected maximal error, I assumed equal coil localization errors

for the volume of interest. However, Fuchs et al. (1995) found a stronger dependency

of the localization error on the position relative to the sensors. This effect is likely

related to the shape of the sensor array, as they used a 31-channel Phillips-MEG

with parallel sensor orientation and a smaller head coverage compared to the whole

head, radially oriented sensor setup in this thesis.

2.9 Estimating errors from residuals

2.9.1 General considerations

This section is about the relation of errors, parameter estimates and residuals when

parameters of a model are estimated from a sample of observations. For the case

of coregistration estimation, the problem is defined in the previous section. Let

me therefore explain the relation of errors, parameter estimates and residuals by

investigating the MEG-to-head problem of eq. (2.5). M corresponding points are

measured with three spatial dimensions in two coordinate systems. The problem is

the estimation of parameters of a proper rigid transformation, namely rotation and

translation, which transform the set of points from the first to the second system

by means of the minimum sum of squared residuals. From measurements, the set

of points are denoted by A = (~a1, ~a2, . . . , ~aM ) and B =
(
~b1, ~b2, . . . , ~bM

)
in the

first and second system respectively. Suppose, the vector set of the first system is

already centred by defintion and hence

M∑
k=1

~ak = ~0 . (2.27)

For the analysis of variances of residuals and parameter estimates, the problem

of eq. (2.5) is transformed to the case, where the true rotation and translation
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implement the identity operator ptrue = (1, 0, 0, 0) and ~strue = (0, 0, 0)T:

~bm = R (ptrue)~am + ~strue + ~εm = ~am + ~εm . (2.28)

Linearization at ptrue, ~strue and least squares fitting of the parameters gives

~bm = ~am + Jmν + ~δm (2.29)

ν = (p1, p2, p3, s1, s2, s3)T

where Jm is the Jacobian of rotation and translation for the point ~am at ptrue, ~strue

and ~δm are the residuals. The real quaternion part p0 of the Jacobian vanishes at

ptrue and hence the Jacobian reduces to the imaginary quaternion and translation.

According to eq. (2.29), the Jacobian reads

Jm =

 0 2a3m −2a2m 1 0 0

−2a3m 0 2a1m 0 1 0

2a2m −2a1m 0 0 0 1

 . (2.30)

For the following consideration, the matrices A and B are vectorized to a and b by

means of

a =
(
~aT1 , ~a

T
2 , . . . ,~a

T
M

)T
= (a11, a21, . . . , a3M )T ∈ R3M , (2.31)

the according error vector is ε = b− a and the Jacobian becomes

J =
(
JT

1 , J
T
2 , . . . ,J

T
M

)T
∈ R3M×6 . (2.32)

In vectorized form, the relation between errors, parameter estimates and residuals

of the linearized problem reads

ε = Jν + δ (2.33)

The least squares solution parameters ν can be simply expressed by singular value

decomposition (SVD) of the Jacobian

J = U{1,...,3M}{1,...6,}SV
T (2.34)

ν = V S−1UT
{1,...,6}{1,...,3M}ε , (2.35)

where U ∈ R3M×3M , V ∈ R6×6 are orthogonal matrices, and S ∈ R6×6 is a diagonal

matrix. Left multiplication of eq. (2.33) by UT and substitution of the Jacobian by

its SVD gives

ε̃ = UTε = UTU{1,...,3M}{1,...6,}SV
Tν +UTδ . (2.36)
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With eq. (2.35), it is obvious that

UT
{1,...,6}{1,...,3M}δ = (0, 0, . . . , 0) ∈ R6 (2.37)

and for shorter notation

δ̃ = UT
{7,...,3M}{1,...,3M}δ ∈ R3M−6 . (2.38)

To summarize the last steps, the residuals are projected onto its 3M−6 dimensional

subspace by the left multiplication of UT, respectively the first 6 elements of this

projection become zero and only the last 3M−6 elements are of interest and referred

to as δ̃. Because of the orthogonality of U

ε̃ = f
(
ν, δ̃

)
=

(
SV T 0

0T I

)(
ν, δ̃

)T
, I ∈ R(3M−6)×(3M−6) ,0 ∈ R6×(3M−6) ,

(2.39)

where I is an identity matrix and 0 is a zero matrix. The Jacobian of f is of

importance for the change of variables later and defined as

Jf =

(
SV T 0

0T I

)
. (2.40)

For the following consideration, a multivariate normal error distribution is assumed

with

ε ∼ N
(
0, σ2

ε I
)
, I ∈ R3M×3M (2.41)

and because of the orthogonality of U it is straightforward to conclude that also

ε̃ ∼ N
(
0, σ2

ε I
)
, I ∈ R3M×3M . (2.42)

The probability density function of a multivariate normal distribution with zero

mean and full rank covariance matrix C ∈ RN×N reads

πξ (ξ) =
1√

(2π)N |C|
exp

[
1

2
ξTC−1ξ

]
, (2.43)

which yields in case of the errors

πε̃ (ε̃) =
1√

(2π)3M σ6M
ε

exp

[
1

2σ2
ε

ε̃Tε̃

]
. (2.44)
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A change of variables gives the joint probability density of parameter estimates and

residuals as

πν,δ̃

(
ν, δ̃

)
= |detJf |

1√
(2π)3M σ6M

ε

exp

[
1

2σ2
ε

(
νTV S2V Tν + δ̃Tδ̃

)]
, (2.45)

where |detJf | =
√
|detJTJ | and

JTJ = V S2V T

(
4
∑M

m=1

(
|~am|2I − ~am~aTm

)
0

0 MI .

)
(2.46)

The marginal probability densities of the parameter estimates and residuals are

found by

πν (ν) =
1√

(2π)3M σ6M
ε |det (JTJ)

−1|

∫
Ωδ̃

exp

[
1

2σ2
ε

(
νTJTJν + δ̃Tδ̃

)]
dδ̃

=
1√

(2π)6 |det (JTJ/σ2
ε )
−1|

exp

[
1

2σ2
ε

νTJTJν

]
(2.47)

and accordingly

πδ̃

(
δ̃
)

=
1√

(2π)3M−6 σ
2(3M−6)
ε

exp

[
1

2σ2
ε

δ̃Tδ̃

]
. (2.48)

From eq. (2.47) follows the covariance of the parameter estimates as

Cp̂1,p̂2,p̂3 = σ2
ε

(
4

M∑
m=1

(
|~am|2I − ~am~aTm

))−1

(2.49)

C
~̂s

=
(
σ2
ε /M

)
I , (2.50)

which is equivalent to equation (33) in (Markley and Mortari, 2000) for the quater-

nion parameters and the well known
√

1/M characteristic for the standard error of

the mean. Since δ = U{1,...,3M}{7,...,3M}δ̃, the residuals are linear combinations of δ̃

and hence are normally distributed as well. The variance estimate of the residuals

σ2
δ relates to σ2

ε in the probability density of the sum of squares x =
∑3M−6

m=1 δ̃2
m, with

the expected value of E
[
x2
]

= (3M − 6)σ2
ε . Because U is orthogonal and therefore

does not change the sum of squares of a vector by matrix multiplication, it follows∑3M
m=1 δ

2
m =

∑3M−6
m=1 δ̃2

m. From this relation follows the dependence of the variances
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of residuals and errors as

σ2
δ =

3M − 6

3M
σ2
ε . (2.51)

So far, a normal error distribution was assumed and the distribution of the

residuals was derived accordingly. In reality, the distribution of the errors is not

known a priori and needs to be inferred from the residuals. For the inference of

errors from residuals in the more general case compared to eq. (2.48), the error

probability density is only available in implicit form of the integral equation

πδ̃

(
δ̃
)

=

∫
Ων
πε (Uε) dν . (2.52)

However, there might not be an analytical solution for eq. (2.52) and the estima-

tion of the complete πδ̃ is prone to errors because of the high dimensionality of δ̃.

Further, in the case of coregistration estimation over different subjects respectively

different point set configurations, the Jacobian of the transformation changes for

each configuration and it is impossible to estimate πδ̃. Therefore, I suggest to infer

the error distribution numerically by simulation of residuals from theoretical error

distributions. The integral in eq. (2.52) may change the shape of the probability

density e.g., from a triangular to a uniform density, but the distribution family is

not changed as drastically e.g., the uniform and triangular densities are both special

cases of the trapezoidal distribution. Therefore, it is nearby to infer the distribution

family of the errors from the residuals. This conclusion is applied in the next section

in order to estimate the error probability density.

2.9.2 Inference of errors by simulation

All residuals ~δm and ~ζn, as defined in section 2.5, were separately concatenated

from either K = 5 544 MEG-to-head or L = 128 head-to-MRI coregistrations in the

samples ∆ and Z, respectively. The empirical distribution functions of a sample ∆

of size K is denoted by Fδ,K and may be defined in terms of the order statistics

∆(1) ≤ ∆(2) ≤ · · · ≤ ∆(K) by

Fδ,K (x) =


0 if x < ∆(1)

k/K if ∆(k) < x ≤ ∆(k+1), 1 ≤ k < K

1 if x ≥ ∆(K)

(2.53)

(Pratt and Gibbons, 1981, their equation (2.1)). I modelled the distributions of the

error elements of ~εm and ~ηn using theoretical distributions for continuous random
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variables, for example, a logistic or a normal distribution. However, the errors

cannot be assessed directly. Therefore, the optimal theoretical distribution for the

errors is chosen on the basis of the distributions of the residuals. From a list of

continuous candidate distributions I selected those with no, or one, shape parameter.

These were implemented in scipy and had good convergence (excluding rice and

erlang distributions). Overall, these criteria resulted in a list of 69 distributions. For

the n-th candidate with distribution function Gn, 0 (x | λn, µn, σn), the parameters

shape λn, mean µn and scale σn were optimized according to

ŷδ, n = argmin
λ, µ, σ

{
sup
x

∣∣Fδ,K (x)−Gn, 0 (x | λ, µ, σ)
∣∣} (2.54)

ŷζ, n = argmin
λ, µ, σ

{
sup
x

∣∣Fζ, L (x)−Gn, 0 (x | λ, µ, σ)
∣∣} (2.55)

n = 1, 2, . . . 69 ,

where the optimization argument is the one-sample, two-sided Kolmogorov–Smirnov

statistic (Pratt and Gibbons, 1981, their equation (7.1)). The generalized normal

and the Students’s t-distribution yielded the smallest Kolmogorov–Smirnov statistics

in eq. (2.56) for the MEG-to-head Fδ,K (x) and head-to-MRI Fζ, L (x), respectively.

The best fitting distributions were used as a basis to simulate residuals. Utilizing

the generalized normal distribution GN
(
λ, 0, σ2

)
for ε̃ I simulated δ̃

(
λ, σ2

)
by

replacing ~am with ~̃am = ~bm + ~̃εm in eq. (2.6). Accordingly, with the Student’s t-

distribution with shape λ and scale τ for ζ̃ the residuals η̃
(
λ, σ2

)
are simulated by

replacing ~dn with ~̃dn = C
(
~̂dn, E

)
+ ~̃ζn in eq. (2.17). The two-sample, two-sided

Kolmogorov–Smirnov statistics (Pratt and Gibbons, 1981, their equation (3.1))

Dδ̃ (λ, σ) = max
x

∣∣Fδ,K (x)− Fδ̃, K (x | λ, σ)
∣∣ and (2.56)

Dζ̃ (λ, σ) = max
x

∣∣Fζ, L (x)− Fζ̃, L (x | λ, σ)
∣∣ (2.57)

were scanned for the set of parameters given in table 2.2, which was selected in

proximity of the optimum. Additionally, the normal distribution was tested for

comparison (table 2.2). Scanning of the Kolmogorov–Smirnov goal function is not

deterministic since I drew samples from a distribution to simulate errors and resid-

uals. Therefore, error estimates of the Kolmogorov–Smirnov statistics were com-

puted via multiple simulations of error distribution parameters, more specifically,

5 simulations for MEG-to-head and 10 simulations for head-to-MRI. For head-to-

MRI, 5 simulations were insufficient because of higher variability in the correspond-
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Table 2.2: Shape and scale parameters of the error distributions that were used to scan the
Kolmogorov–Smirnov goal function.

Type name shape scale in mm

MEG-to-head Gen. normal 1.7, 1.8 . . . 2.1 1.30, 1.35 . . . 1.55

Normal 0.90, 0.95 . . . 1.10

Head-to-MRI Student’s t 3, 4 . . . 7 0.90, 1.00 . . . 1.30

Normal 1.30, 1.35 . . . 1.60

ing Kolmogorov–Smirnov statistic. The minimum of the Kolmogorov–Smirnov goal

function corresponds to a certain distribution function, which is taken as a model

to approximate the error distribution. Hence, these distribution parameters were

utilized to sample the coregistration parameters in the following section.

2.10 Coregistration parameter sampling

In the previous section I approximated the distribution of errors for the point mea-

surement in the coregistration problem of eq. (2.5) and eq. (2.16). I denoted the

probability densities of the error distributions by πε and πη for MEG-to-head and

head-to-MRI, respectively. For the sampling of coregistration parameter distribu-

tions, I considered the centred and pre-registered problems. The centring matrix

transforms the coregistration points into their centred representation, for example,

Bc. During pre-registration, coordinates from each modality are converted to head

coordinates and aligned with the corresponding data set. Having already applied a

least squares or ICP optimization, all that remains in terms of error is the misalign-

ment between the sets of data points and hence p̂ = q̂ = 0 and ~̂s = ~̂t = ~0.

Log probability densities of a spatial error vector (e.g. ~a) are defined by

log π (~a) =

3∑
n=1

log π (an) .

The log-likelihood of the MEG-to-head parameters {p, ~s}, given the observation Bc

and B̂c reads

log ρ
(
p, ~s | Bc, B̂c

)
=

M∑
m=1

log πε̂

[
R (p)~̂bcm + ~s−~bcm

]
. (2.58)
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For the log-likelihood of the head-to-MRI parameters
{
q,~t
}

, given the observation

F c and F̂ c, the additional closest point operator C is required and log φ is therefore

equivalently defined as

log φ
(
q, ~t | Ec, F̂ c

)
=

N∑
n=1

log πη̂

[
R (q) ~̂f cn + ~t− C

(
R (q) ~̂f cn + ~t, Ec

)]
. (2.59)

Utilising the log-likelihood, the target distributions of the parameters p, ~s and q, ~t

given the observation, are sampled using a Metropolis algorithm on eq. (2.58) and

eq. (2.59), respectively. Metropolis algorithms draw samples from an unknown dis-

tribution using samples from a known distribution, which is referred to as proposal

distribution. The original Metropolis algorithm uses a fix proposal distribution.

However, the convergence rate of the sample, to the desired unknown distribution,

depends on the choice of the proposal distribution. The adaptive Metropolis algo-

rithm updates the proposal distribution by optimising the convergence using infor-

mation from the sample chain at the current state. Haario, Saksman, and Tamminen

(2001) used a Gaussian kernel proposal distribution with zero mean, hence only the

proposal covariance needed updating. An adaptive update scaling of the covariance

of 2.42/d was used, following Haario, Laine, et al. (2006), with the dimensionality

of the parameter-space d = 6. The algorithm is non-Markovian but it has correct

ergodic properties according to Haario, Saksman, and Tamminen (2001). During

parameter sampling, the adaptation of the Metropolis algorithm was performed for

each step. Before sampling, the rotation parameters were scaled by 2R = 200 mm to

homogenise the parameter space. The initial proposal variance was set to (5 mm)2

for the MEG-to-head parameters and to (0.5 mm)2 for the head-to-MRI parameters

based on prior experience. I performed 105 Metropolis algorithm iterations of the

MEG-to-head and 500×N iterations of the head-to-MRI coregistrations, where N

is the number of head shape points. A burn in sample size of 1 000 was used for

both MEG-to-head and head-to-MRI. The Metropolis sampling was implemented

using the software library of Parno, Davis, and Conrad (2017). Since the adaptive

Metropolis algorithm has correct ergodic properties, integral expressions over func-

tions of the probability density of the parameters like the mean and the variance

can be estimated by the respective expressions of sums over the functions on the

sample. Since the mean of the rotation parameters does not represent the mean

rotation in general, I decided to provide the sample MLE instead of the mean. In

the expression of the variance of a parameter x, the mean is replaced by the sample
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MLE accordingly as

∫ ∞
−∞

ρ (x) (x− xMLE)2 dx ≈ 1

N

N∑
n=1

(xn − x̂MLE)2

spread (x) =

√√√√ 1

N

N∑
n=1

(xn − x̂MLE)2 , (2.60)

where ρ is the probability density and N is the sample size. Throughout this thesis,

the measure in eq. (2.60) is referred to as ‘spread’.

2.11 MEG-to-MRI

In the previous section, I referred to the centred and pre-registered problems for

each of the two coregistrations (MEG-to-head and head-to-MRI ) separately. These

centrings introduce a systematic shift between the translation parameters in the

coordinate systems of both coregistrations. However, taking this into account is

straightforward. One has to add the mean point ~̄b of the first, and to subtract the

mean point ~̄d of the second coregistration, that is, de-centring after the first and re-

centring before the second transformation. Consequently, the chained coregistration

of a point ~aMEG based on the MEG-to-head and head-to-MRI, as computed by the

Metropolis algorithm, can be written as:

~aMRI
k, l = R (ql) ·

(
R (pk)~a

MEG + ~sk + ~̄b− ~̄d

)
+ ~tl (2.61)

~aMRI
MLE = R (qMLE) ·

(
R (pMLE)~aMEG + ~sMLE + ~̄b− ~̄d

)
+ ~tMLE , (2.62)

where ·MLE is the maximum likelihood estimate of the parameter from the Metropolis

algorithm. The indices k and l in eq. (2.61) refer to the k-th and l-th subsample of

MEG-to-head and head-to-MRI Metropolis samples, respectively. For random sam-

pling, k and l are drawn from the discrete uniform distribution of natural numbers

between 1 and the corresponding Metropolis sample size. Apart from the additional

indexing, the notation is adopted from eq. (2.5) and eq. (2.16), respectively (fig. 2.1).

I defined TRE ~ψ for the point ~aMEG by

~ψ
(
~aMEG | pk, ql, ~sk, ~tl

)
= ~aMRI

k, l − ~aMRI
MLE . (2.63)
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The RMS of TRE, defined by

RMS (Ψ) =

√√√√ 1

G

G∑
g=1

|~ψg|2 , (2.64)

was used as a quality measure based on TRE at a specified point grid of size G.

Statistics of ~ψ and RMS (Ψ) were estimated by computation of eq. (2.63) and

eq. (2.64) for a large number of subsamples {pk, ~sk} and
{
ql, ~tl

}
.



Chapter 3

Uncertainty and sensitivity

analysis

3.1 Introduction

In the previous chapter, I proposed a method for assessing the quality of coreg-

istrations. This method is also used to assess the distribution of coregistration

uncertainties. Figure 3.1 depicts a typical MEG setup where the sensors are aligned

with a head model for estimation of brain activity from sensor data.

(a) (b)

Figure 3.1: The coregistration setup for one subject shown from two viewpoints (a) and (b).
Grey square shapes depict the magnetometers and white tori represent the localization coil
positions and orientations. The head surface, as extracted from MRI, is rendered in beige.
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Estimates of brain activity are also referred to as source estimates and their ac-

curacy depends on the coregistration of sensors and the head model. In this chapter,

a method is described to investigate the propagation of coregistration uncertainties

to source estimates. To this end, the method of stochastic spectral approximations

is introduced for the general propagation of input uncertainties to the output of

computations in section 3.2. In section 3.4 a method is proposed which transforms

Gaussian coregistration uncertainties in a way that stochastic spectral methods can

be applied. The subsequent section 3.5 describes the simulation of magnetic fields

from sources in predefined brain areas which is used later in this thesis. Stochastic

spectral methods are applied to the simulation of magnetic fields for a simplified

case of coregistration uncertainties. Section 3.6 is based on the simulation of mag-

netic fields and two methods of source estimation, namely the linearly constrained

minimum variance (LCMV) beamformer and the standardized low resolution brain

electromagnetic tomography (sLORETA) are introduced. For different test cases of

source estimates, stochastic spectral methods are applied and coregistration uncer-

tainties are propagated to beamformer and sLORETA results.

3.2 Stochastic spectral methods

3.2.1 Representation of random processes on polynomial basis

Stochastic spectral methods expand a function f (x) using orthogonal polynomials

of random input variables. In the following, the expansion is described for the

univariate input space and later generalized to multivariate expansions. A univariate

orthogonal polynomial space with respect to the measure ρ (x) in Ω is spanned from

a set of polynomials ψm satisfying the orthogonality conditions

〈ψm, ψn〉 = 〈ψm, ψm〉 · δmn , (3.1)

where δmn is the Kronecker delta and the inner product 〈·, ·〉 is defined as

〈ψm, ψn〉 =

∫
Ω
ψm (x)ψn (x) ρ (x) dx (3.2)

(Xiu and Karniadakis, 2002; Xiu, 2009). Here, the weighting function ρ (x) is a

probability density function. The unknown transfer function f (x) is expressed on
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the basis of ψp by the polynomial expansion

f (x) =
∞∑
p=0

cpψp (x) , (3.3)

where p is the polynomial order of ψp. For example, f can be the magnetic field at a

sensor or brain activity at a point in the source space and x can be a shift or rotation

of the human head relative to the sensors. In practice, where f (x) describes a real

physical system, the contribution of the terms in eq. (3.3) is decreasing with higher

orders which allows to truncate the polynomial series at a finite polynomial order.

In this thesis, a truncated series of f up to the order P is denoted by f̂ :

f (x) ≈ f̂ (x) =

P∑
p=0

cpψp (x) . (3.4)

Xiu and Karniadakis (2002) have shown, that the statistical moments of such an

expansion converge to the real moments of any random function with finite second-

order moments. However, they further demonstrate that the convergence rate of

the expansion eq. (3.4) is optimal, in fact it is exponential, when the weighting

function ρ (x) of the polynomial basis is equal to the probability density function of

the random variable x. Subsets of polynomials in the Askey-scheme were found to

form an orthogonal polynomial basis with respect to probability density functions

of well known probability distributions (Xiu and Karniadakis, 2002; Xiu, 2009), for

example,

• Hermite polynomials: Gaussian distribution

• Laguerre polynomials: Gamma distribution

• Jacobi polynomials: Beta distribution

• Legendre polynomials: Uniform distribution.

This association of polynomials with certain probability distributions allows to ex-

pand each random input variable on the basis of an optimal orthogonal polynomial

set. In this thesis, only Gaussian input variables are considered and hence, the

polynomials ψm are probabilists’ Hermite polynomials:

〈ψm, ψn〉 =
1√
2π

∫ ∞
−∞

ψm (x)ψn (x) e
−x2
2 dx = n! · δmn . (3.5)
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It is straightforward to generalize the concept above to the K-variate random input

vector x = (x1, x2, . . . , xK) with K independent components. The joint probability

density function of x is then

ρ (x) =
K∏
k=1

ρk (xk) , (3.6)

where ρk (xk) is the probability density of the k-th input variable. According to

this, the K-variate orthogonal polynomials ψm (x) are constructed as products of

univariate polynomials in each variable:

Ψm (x) = ψm1 (x1) · ψm2 (x2) · · ·ψmK (xK) , {m1, m2, . . . , mK} = m ∈M , (3.7)

where mk is the order of polynomial ψmk (xk) and m is a multi-index of the multi-

index set M⊂ NK0 . Analogue to the univariate case, the orthogonality holds as:

〈Ψm, Ψn〉 = 〈Ψm, Ψm〉 ·
K∏
k=1

δmk nk

〈Ψm, Ψn〉 =

∫
Ω

Ψm (x) Ψn (x) ρ (x) dx ,

(3.8)

where Ω is the support of the random variables x The definition of M is critical

since it determines the number of basis polynomials. A possible choice forM are full

tensor index sets, where all combinations of polynomial orders up to P are employed

in each random variable. This choice is not desirable for practical computations as

the number of basis polynomials is (P + 1)N and increases too much for large K

(Xiu, 2009). An alternative are total order multi-index sets, which limit the sum of

polynomial orders over all variables:

MP :=

{
m ∈ NK0 : |m|1 =

K∑
k=1

mk ≤ P
}
. (3.9)

The number of basis polynomials associated with total order sets MP can be

expressed as the binomial coefficient
(
K+P
K

)
. Total order sets are used in most

computations with stochastic spectral methods (Xiu, 2009). For this thesis, a variant

of total order sets is used, which is tailored to Gaussian numerical integration and

it is described in detail in section 3.2.2.
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3.2.2 Smolyak pseudospectral approximation method

Introduction

The analytic solution of spectral expansion coefficients can be expressed by the

integral

cm =
1

〈Ψm, Ψm〉

∫
Ω
f (x) Ψm (x) ρ (x) dx . (3.10)

In almost all practical cases, however, it is not possible to find an analytic solution

of this integral. An alternative are non-intrusive approaches, which do not depend

on the governing equations and instead treat a simulator as a black box. One of

these approaches is the pseudospectral approximation method where the integral in

eq. (3.10) is computed numerically and hence, the function f (x) is only evaluated

at a finite number of quadrature nodes. For numerical integration schemes, let

QN ρ ◦ y =

N∑
n=1

wn · y (xn) ≈
∫

Ωρ

y (x) · ρ (x) dx (3.11)

be the univariate quadrature of a function y with weighting ρ, where N is the number

of nodes, wn and xn are the weights and nodes, respectively. Both wn and xn depend

on N and ρ. A rule QN ρ is referred to as Gaussian quadrature when the integral

is solved exactly for polynomials of degree M = 2N − 1 or less. In other words∑N
n=1wn ·y (xn) =

∫
Ωg
y (x)·ρ (x) dx, when y is a sum of polynomials up to the order

2N − 1. Dependent on the weighting, different terms are associated to quadrature

rules, for example Gauss-Legendre and Gauss-Hermite quadrature for uniform or

normal distribution weighting, respectively. Here, Gauss-Hermite quadrature is used

because it is optimal for normal inputs (as decribed in section 3.2.1). The nodes

of a univariate Gaussian quadrature QN are the roots of the associated order N

polynomial. A multivariate quadrature in K variables, which is exact for all products

of univariate polynomials up the orders 2N1 − 1, . . . , 2NK − 1 can be computed by

full tensor products ⊗ of univariate rules as

QN ρ ◦ y =

N1∑
n1=1

· · ·
NK∑
nK=1

wn1 · · ·wnK · y (xn1 , . . . , xnK )

= [QN1 ρ1 ⊗ · · · ⊗QNK ρK ] ◦ y
(3.12)

So far the exactness of integrating y (x) ·ρ (x) was considered for polynomial y. The

integrand in pseudospectral approximations, however, is f (x) Ψm (x) ρ (x) and it is

of greater interest here. Again, f (x) Ψm (x) is considered as a polynom. In the ideal
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case, where f and the polynomial basis have the same maximal polynomial order, a

quadrature rule is exact for transfer functions f up to the orders N1, . . . , NK when

it is exact for polynomial orders 2N1, . . . , 2NK . Hence, the set of polynomial orders

up to N1, . . . , NK is also referred to as half-exact set of a quadrature rule. Figure 3.2

depicts the polynomial orders (a) of two variables, which can be exactly integrated

by the full tensor nodes (b).
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Figure 3.2: Exact (light grey) and half-exact (dark grey) sets of polynomial orders are de-
picted for a full tensor quadrature in (a). In (b), the corresponding quadrature nodes are
plotted.

This example shows 4× 4 nodes which are needed to exactly integrate all poly-

nomial products of orders up to 7,7. Let f (x) be a polynomial of order M , then the

highest order integrand of an exact polynomial expansion of f is f (x)ψM (x) ρ (x),

which is of polynomial order 2M . For Gaussian quadrature rules, M + 1 nodes are

sufficient to exactly expand f . In this example, {0, . . . ,M} is the half-exact set of

the quadrature rule with M + 1 nodes. This concept is generalized to the multi-

variate case and the half-exact set of the quadrature rule in fig. 3.2 is depicted by

dark grey squares in (a). The quadrature in fig. 3.2 is able to exactly expand a

polynomial function in two variables of orders up to 3, 3 in the transfer function f .

Smolyak quadrature

In the previous section, the basics of pseudospectral approximations and full tensor

quadrature were introduced. A problem with full tensor quadrature is the expo-

nential increase of quadrature nodes and hence, numerical computations, when the

number of input variables increases (curse of dimensionality). Smolyak algorithms
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help to reduce the cost by omitting the coupling of higher order quadrature in

different variables. Conrad and Marzouk (2013) motivated this approach by the

following example. They consider the function f (x1, x2) = x7
1 + x7

2 + x3
1x2. A full

tensor pseudospectral expansion would estimate all polynomial coefficients up the

orders x7
1x

7
2 and hence requiring 8× 8 nodes of a Gaussian quadrature. However, in

this particular case, an exact expansion of f can be constructed more efficiently by

8× 1, 1× 8 and 4× 2 nodes. Smolyak algorithms make use of this approach since in

case of the presented spectral projection approach, the polynomial basis is known

(Conrad and Marzouk, 2013). For K inputs, Smolyak algorithms work for so-called

admissible multi-index sets. Here, a multi-index s ∈ NK0 refers to quadrature levels

in each input. An increment in the quadrature level is related to an increment in

the number of quadrature nodes. The backward neighborhood of a multi-index s is

defined as the multi-index set

nb (s) :=
{
s− uk : ∀k ∈ {1 . . .K} , s− uk ∈ NK0

}
. (3.13)

A multi-index set S is admissible if and only if for all multi-indices in S, the backward

neighborhood is a subset of S:

∀s ∈ S, nb (s) ⊆ S . (3.14)

Examples of admissible multi-index sets are total order multi-index sets

SN :=
{
s ∈ NK0 : |s|1 ≤ N

}
, (3.15)

where the sum of quadrature levels over all inputs is limited to N . Total order multi-

index sets are the most widely studied choice and suggested by Smolyak (Conrad

and Marzouk, 2013). The Smolyak algorithm defines the difference operators for a

set Q of univariate quadrature levels s as

∆k 0 (Q) : = QNk(0) ρk = 0 (3.16)

∆k s (Q) : = QNk(s) ρk −QNk(s−1) ρk , s ∈ N1 , (3.17)

where QNk(s) ρk is a univariate quadrature for input k with weighting ρk and Nk (s)

nodes. Let Ek (s) be the exact set of a univariate quadrature QNk(s) ρk . Conrad and



36 Chapter 3. Uncertainty and sensitivity analysis

Marzouk (2013) have proven, that the multivariate Smolyak quadrature

A (Q, S) ◦ f =
∑
s∈S

[∆1 s1 (Q)⊗ · · · ⊗∆K sK (Q)] ◦ f

=
∑
s∈S

cs
[
QN1(s1) ρ1 ⊗ · · · ⊗QNK(sK) ρK

]
◦ f

(3.18)

is exact for all polynomial orders in

E (A (Q, S)) ⊇
⋃
s∈S
E1 (s1)⊗ · · · ⊗ EK (sK) . (3.19)

The cs in eq. (3.18) are integer coefficients, resulting from a rearrangement of the

difference operators. The exactness relation of eq. (3.19) holds for quadrature rules

with nested exactness. That is, univariate quadrature rules with Nk nodes must

include the exact set of their rules with less nodes. This condition is fulfilled for

most quadrature rules, for example for Gaussian quadrature which is used here. A

total order multi-index set in two dimensions up to the total level of 4

S4 :=
{
s ∈ N2

0 : |s|1 ≤ 4
}
, (3.20)

combined with a simple linear growth of nodes Nk = s and Gaussian quadrature

(Ek (s) = 2s− 1) has an exact set as depicted in fig. 3.3 (a).
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Figure 3.3: The graphs depict polynomial exactness, nodes and weights of Gauss-Legendre
quadrature rules. Exact (light grey) and half-exact (dark grey) sets of polynomial orders are
depicted for different total order level sets and growth rules in the left graphs (a), (c) and
(e). On the right side (b), (d) and (f), the corresponding quadrature nodes and weights are
plotted. Black dots and circles represent positive and negative weights, respectively. The size
of the markers scales with the absolute weight values.
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The quadrature nodes for this example are plotted in fig. 3.3 (b). Similar exam-

ples are depicted in fig. 3.3 (c), (d) and (e), (f) for an exponential growth of nodes

Nk = 2s−1 , s ≥ 1 and total levels of |s|1 ≤ 3 and |s|1 ≤ 4, respectively.

Smolyak pseudospectral approximation

In this section, the Smolyak algorithm from above is applied to estimate the coeffi-

cients of pseudospectral approximations. The Smolyak algorithm from section 3.2.2

can be transferred directly from univariate quadrature rules to pseudospectral ap-

proximations. The pseudospectral approximations in dimension k are defined as

Pk s ◦ f :=

qk(s)∑
l=0

[
1

〈ψl, ψl〉
QNk(s) ρk ◦ (fψl)

]
ψl (x) , (3.21)

where qk (s) is the polynomial truncation. Here, a polynomial truncation of qk (s) =

floor ((2Nk (s)− 1) /2) = Nk (s) − 1 is used for Gaussian quadrature rules. Such a

truncation guarantees polynomial accuracy and avoids internal aliasing (Conrad and

Marzouk, 2013). Internal aliasing is an erroneous estimation of nonzero polynomial

coefficients for a function within the polynomial range of the pseudospectral ap-

proximation. The Smolyak pseudospectral approximation of a function f is defined

as

A (P, S) ◦ f =
∑
s∈S

csPs (f) , (3.22)

which is constructed exactly like the Smolyak quadrature of eq. (3.18) with Q sub-

stituted for P. That is, quadrature rules are substituted for pseudospectral approx-

imations. The differential operators of pseudospectral approximations are

∆k 0 (P) : = 0 (3.23)

∆k s (P) : = Pk s − Pk (s−1), s ∈ N1 (3.24)

and Ps are full tensor approximations built around the polynomial accuracy of single

full tensor quadrature rules (Conrad and Marzouk, 2013). The half-exact set of a

Smolyak quadrature defines the polynomial range of the corresponding Smolyak

pseudospectral approximation. A Smolyak pseudospectral approximation is exact

for functions which can be expressed as a sum of polynomials within the polynomial

range of the approximation. Hence, Smolyak pseudospectral approximations have

no internal aliasing (Conrad and Marzouk, 2013). For example, in the figures 3.3
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the Smolyak pseudospectral approximations based on the nodes in the right graphs

are exact for the corresponding polynomial orders in dark grey in the left graphs.

Smolyak pseudospectral approximation example

The principles of Smolyak pseudospectral approximations are demonstrated on a

simple example. Let the function of interest be f (x1, x2) = 2 cosx1+3 sinx2−1. The

inputs x1 and x2 are independent random variables following a normal distribution

with zero mean and unit variance. Hence, Gauss-Hermite quadrature rules are

used in the following. For the approximation, a total order Smolyak level set S
with maximum order of 1 and the quadrature growth rule N (0) = 1, N (1) = 5

is chosen. That is, S = {{0, 0} , {0, 1} , {1, 0}} and three quadrature rules, one

with one node and two with five nodes each, are assigned. Again a polynomial

truncation of qk (s) = N (s) − 1 is used. That is a maximal polynomial order of 4

in each variable. The set of basis polynomials {Ψ0, 0,Ψ1, 0 . . . ,Ψ0, 4}, here 9 Hermite

polynom products, reads

Ψ0, 0 = ψ0 (x1)ψ0 (x2) = 1

Ψ1, 0 = ψ1 (x1)ψ0 (x2) = x1

Ψ2, 0 = ψ2 (x1)ψ0 (x2) = x2
1 − 1

Ψ3, 0 = ψ3 (x1)ψ0 (x2) = x3
1 − 3x1

Ψ4, 0 = ψ4 (x1)ψ0 (x2) = x4
1 − 6x2

1 + 3

...

Ψ0, 4 = ψ0 (x1)ψ4 (x2) = x4
2 − 6x2

2 + 3 .

(3.25)

From the Smolyak level set, the quadrature rules and the polynomial set, the

Smolyak algorithm defines the sum over the differential approximations as

A (P, S) ◦ f =
∑
s∈S

∆1 s1 ⊗∆2 s2 , (3.26)
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which reads in this example as

A (P, S) ◦ f = +
∑

s∈S, s2=0

csΨs − c0, 0Ψ0, 0︸ ︷︷ ︸
∆1 2⊗∆2 1

+

+
∑

s∈S, s1=0

csΨs − c0, 0Ψ0, 0︸ ︷︷ ︸
∆1 1⊗∆2 2

+

+ c0, 0Ψ0, 0 − 0︸ ︷︷ ︸
∆1 1⊗∆2 1

,

(3.27)

where the coefficient c0, 0 is computed from the central node (0, 0). Hence, the

Smolyak pseudospectral approximation consists of three differential terms, where

each minuend and subtrahend is a pseudospectral approximation in its own right.

Figure 3.4 demonstrates the composition of this example in differential terms, where

the associated quadrature nodes are marked black.
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Figure 3.4: Example of a Smolyak pseudospectral approximation of the function f =
2 cosx1 + 3 sinx2 − 1. All four graphs depict the function f in black. In red, the zero
order approximation (c0, 0) estimated from one node is depicted. The differentials of the
fourth and zero order approximations are depicted in blue and green for inputs x1 and x2,
respectively. In pink, the sum of all three differential terms is depicted, this is the Smolyak
pseudospectral approximation of f . The black markers represent the quadrature nodes of
each term associated to the graphs.

Choosing quadrature growth rules

Here, only linear growth rules are briefly investigated. Smolyak pseudospectral

approximations are built around quadrature sets with certain growth rules. The

growth rules determine the number of quadrature nodes and hence the range of

polynomial orders of pseudospectral approximations. It is desirable to reduce the
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number of nodes for a given range of polynomial orders. Burkardt and Webster

(2014) proposed a Smolyak quadrature where only odd numbers of nodes are used.

They do this by lifting each even number rule up to the next odd rule, this does not

contradict with the Smolyak algorithm and it is efficient since odd rules usually share

the midpoint node and the same nodes are used for two polynomial orders. I followed

this idea and used the growth rule N (s) = 2s + 1 for my Smolyak pseudospectral

approximations, where N is the number of nodes and s is the Smolyak level. Conrad

and Marzouk (2013) also recommended to add at least two nodes for each new level

in adaptive strategies (adaptive approximations are introduced in the next section).

Here, a total order multi-index set up to the level of 3 is used and with the growth

rule from above, the polynomial order range M is defined as

M′ : =
{
{2s1, . . . , 2sK} ∈ NK0 : |s|1 ≤ 3

}
M : =

{
nb (m) : ∀m ∈M′

}
∪M′ ,

(3.28)

which is the half-exact set of the associated Smolyak quadrature. nb (m) is the

backward neighbourhood of m as defined in eq. (3.13).

Adaptive Smolyak pseudospectral approximation

So far, pseudospectral approximations were discussed for fixed multi-index sets. In

practise, often the convergence of such approximations cannot be estimated prior

to the evaluation of the function of interest. Hence it is desirable to adapt to a

function and refine an approximation in subspaces, where the error is large. Conrad

and Marzouk (2013) analyzed Smolyak multi-index sets and derived an error measure

for terms which can be refined. Let S be the current multi-index set, A multi-index

s ∈ S can be refined if it has at least one admissible forward neighbour. The

admissible forward neighbourhood of s is the set of forward neighbours of s which

are not contained in S and which form again an admissible multi-index set if added

to S:

naf (s) :=
{
n ∈ NK1 \ S : s ∈ nb (n) , nb (s) ⊆ S

}
. (3.29)

Let s be a multi-index with admissible forward neighbours and

M :=M′ ∪ {s} , (3.30)

whereM andM′ are admissible. Conrad and Marzouk (2013) assume that whenever

s changes the Smolyak approximation strongly, it probably represents a subspace

which needs further refinement. They estimate the change of Smolyak approxima-
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tions due to adding s to M′ by the triangle inequality

ε (s) :=
∣∣ [∆1 s1 (P)⊗ · · · ⊗∆K sK (P)] ◦ f

∣∣
2
≥
∣∣A (P,M) ◦ f −A

(
P,M′

)
◦ f
∣∣
2
.

(3.31)

Their local error estimate ε (s) is efficient since it does not change as M′ evolves

and hence needs to be computed only once for each s (Conrad and Marzouk, 2013).

The set of multi-indices in S with at least one admissible forward neighbour can be

defined as

K :=
{
s ∈ nb (n) : ∀n ∈ NK1 \ S, nb (n) ⊆ S

}
. (3.32)

At each adaptation, s ∈ K is found that maximises ε (s) and the admissible forward

neighbours of s are added (Conrad and Marzouk, 2013). As a termination criterion,

they proposed the global error indicator

εg =
∑
s∈K

ε (s) . (3.33)

For this thesis, I decided against adaptation for a better comparability between the

approximations of different functions. But for other applications, the adaptability

is an important feature of Smolyak pseudospectral approximations.

3.2.3 Error estimates of spectral approximations

For the verification of spectral approximations, I define a measure which is closely

related to the one described by Weise et al. (2015). Here, the relative error of an

approximation p̂ of a function p (x) is defined as

εp̂ =
1

AΩ

∫
Ω

∣∣p (~r,X)− p̂ (~r,X)
∣∣∣∣∣p (~r,X)− E [p (~r,X)]
∣∣∣dΩ , (3.34)

where Ω is a region of interest, AΩ is its area. The vectors p and p̂ are reference

solutions and its approximations for an input sampleX = (x1, . . . ,xN ), respectively.

E [p (~r,X)] denotes the mean reference solution over N samples at location ~r. In

this thesis, the region of interest is defined by a discrete set of sources, the source

locations ~r, and hence the integral in eq. (3.34) is approximated by the sum over this

set and the area by the number of sources. A disadvantage of this error computation

is that additional N evaluations of p (x) are required (Weise et al., 2015).
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3.2.4 Statistics from polynomial coefficients

From a stochastic spectral approximation f (x) ≈ f̂ (x) =
∑
s∈S f̂sΨs (x), the first

two moments of the output distribution of f (x) can be approximated in closed form

according to

E [f (x)] ≈ E
[
f̂ (x)

]
= f̂0 (3.35)

Var [f (x)] ≈ Var
[
f̂ (x)

]
= E

[(
f̂ (x)− E

[
f̂ (x)

])2
]

=
∑
s∈S\0

f̂2
s 〈Ψs, Ψs〉 (3.36)

where E [f (x)] is the expected value and Var [f (x)] is the variance of f (x) (Xiu,

2009). The above relations follow from the orthogonality of the polynomials Ψs (x)

when the polynomial basis is matched with the input distribution of x.

3.2.5 Variance based sensitivity analysis

Provided that the input factors are statistically independent, the output variance

can be decomposed into first and higher order effects. In such a decomposition, first

order effects model the partial output variance due to variations of a single input

factor only. The remaining variance, which cannot be explained by first order effects

is due to interaction effects of two or more input factors on the output variance. For

a scalar function f (x) = f (x1, x2, . . . , xK) a variance based first order effect for

an input factor xk can be expressed as

Varxk
[
Ex6k [f | xk]

]
, (3.37)

where Varxk [·] is the variance computed for all xk and Ex6k [·] is the mean computed

for all other inputs while keeping xk fixed (Saltelli et al., 2010). The associated

normalized first order sensitivity index is expressed as

Sk [f ] =
Varxk

[
Ex6k [f | xk]

]
Var [f ]

. (3.38)

Sk is normalized between zero and one and measures the additive effect of xk on the

model output (Saltelli et al., 2010). In fig. 3.5, the relation between the means and

variances is demonstrated on an example function. From a pseudospectral approxi-

mation, the sensitivity indices are simply estimated from subsets of the coefficients.

Each index Sk

[
f̂
]

is computed from the multi-index set Mk with non-zero indices
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Figure 3.5: First order sensitivity indices are demonstrated on the example function
f (x1, x2) = 2 cosx1 + 3 sinx2 − 1. The probability density of the inputs ρ (x1, x2) =
ρ1 (x1) ρ2 (x2) is depicted (violet) below the function f (red mesh). On the planes f, x1 |
x2 = −3 and f, x2 | x1 = −3, the mean functions Ex1

= Ex 62 and Ex2
= Ex 61 are plotted,

respectively. The mean functions are computed with respect to the probability density ρ.
That is, the function values near (0, 0) are higher weighted compared to f at more distant
inputs. From the distributions of the weighted Ex1 and Ex2 , their variances are computed,
their standard deviations are depicted by the read areas here. The sensitivity indices are
computed from these variances by normalization with the variance of f .
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only for the xk of interest (Saturnino et al., 2019):

Sk

[
f̂
]

=
1

Var
[
f̂ (x)

] ∑
m∈Mk

f̂2
m〈Ψm, Ψm〉 , (3.39)

where Var
[
f̂ (x)

]
is computed as in eq. (3.36). However, when a nonlinear function

g is applied to f̂ , the sensitivity indices of g ◦ f̂ cannot be extracted from the

polynomial coefficients of f̂ . For example, when f is a brain activity measure and its

pseudospectral approximation is f̂ , then the maximum location of the brain activity

can be estimated by the nonlinear maximum function g applied to f̂ . Although it

is possible to expand g ◦ f̂ , some disadvantages would arise, namely it would be

an approximation of an approximation with larger errors and in this example the

expansion needs re-computation for different magnetic fields. On the other hand, f̂

is already computational efficient and Monte-Carlo sampling would be appropriate.

An efficient sampling based approach for sensitivity indices was published by Saltelli

et al. (2010). They proposed to estimate Varxk

[
Ex6k

[
g ◦ f̂ | xk

]]
as

1

N

L∑
l=1

g (A)l ·
(
g
(
A

(k)
B

)
l
− g (B)l

)
(3.40)

where A and B are independent sampling matrices of f̂ on x with L rows and K

columns, K is the number of input factors and L is the number of computations per

matrix. The k-th column of matrix A
(k)
B is equal to the k-th column of B and all

other columns of A
(k)
B are equal to the associated columns of A. In eq. (3.40), the

notation g (A)l refers to the l-th column of the evaluation matrix g (A). By using

eq. (3.40) for all K sensitivity indices, 2L evaluations of g ◦ f̂ are computed from A

and B and another K · L from A
(k)
B . In total the cost of the sensitivity indices is

L ·(K + 2) evaluations of g◦ f̂ , with L sufficiently large, 500 or higher (Saltelli et al.,

2010). For this thesis L = 10 000 is chosen for the estimation of sensitivity indices.

The sampling of the input space is performed by Sobol’ quasi-random sequences, as

proposed by Saltelli (2002) and Saltelli et al. (2010). If it is not possible to extract

the sensitivity indices from the polynomial coefficients, the method of Saltelli et al.

(2010) is used here.
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3.3 Coregistration parameter distribution

The coregistration parameters are derived from the Metropolis sampling and com-

puted in a similar way as the TRE which is described in section 2.11. Metropolis sam-

pling of head-to-MRI explicitly draws samples from the head-to-MRI coregistration

parameter distribution. For MEG-to-head, the parameter covariance CMEG-to-head

can be inferred from linearization, as described in section 2.5.1. By assuming normal

errors, MEG-to-head parameter samples are drawn from standard normal samples

and multiplied by C
1/2
MEG-to-head. Here, the distribution of interest is the combination

of MEG-to-head and head-to-MRI uncertainties. The computations below are per-

formed in head coordinates. That is, all locations in source space, volume conductor

model and sensors are all given in head coordinates. MEG-to-head and head-to-MRI

parameters are both sampled in centred coordinates, see section 2.10 for details. In

the following, the centring effects are transformed to the uncentred head coordinates.

Let pk and ~sk be the MEG-to-head parameters for centred and pre-registered MEG

coordinates. A point ~b in head coordinates is derived from a point ~a in the MEG

coordinates by adding the mean point ~̄b

~b = ~a+ ~̄b (3.41)

and hence the coregistration R (pk)~a + ~sk is transformed to head coordinates as

R (pk)
(
~b−R (pk)~̄b

)
+~sk. That is, instead of ~sk the shift vector becomes (~sk−~̄b For

head-to-MRI it is necessary to account for the difference between pre-registration

and maximum likelihood estimate. This is done by applying the inverse of the

maximum likelihood head-to-MRI to rotation and shift and is denoted by R′ and ~t′:

R′ (ql) = R−1
MLER (ql) (3.42)

and

~t ′l = R−1
MLE

(
~tl − ~tMLE

)
, (3.43)

where ·MLE is the maximum likelihood estimate. Both steps together, the transfor-

mation from centred to head coordinates and accounting for the maximum likelihood

estimate in head-to-MRI yields a sample of the MEG-to-MRI translation uncertainty

in head coordinates as

~hk l = ~t ′l +R′ (ql)
(
~sk −R (pk)~̄b+ ~̄b− ~̄d

)
+ ~̄d , (3.44)
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where ~̄b are the ~̄d MEG and MRI centres, respectively. The associated rotation

uncertainty is not affected by centring and simply sampled as

gk l = quaternion
[
R′ (ql)R (pk)

]
. (3.45)

The indices k and l in eq. (2.61) refer to the k-th and l-th subsample of MEG-to-

head and head-to-MRI samples, respectively. Apart from the additional indexing,

the notation is adopted from eq. (2.5) and eq. (2.16), respectively (fig. 2.1).

3.4 Definition of input variables

3.4.1 Static coregistration uncertainties

The representation of random processes in section 3.2.1 is based on theoretical uni-

variate input parameter distributions. Each input parameter is associated with

a theoretical distribution and all input parameters are independent random vari-

ables. In the uncertainty assessment chapter 2 I estimated normally and students-t

distributed errors for the MEG-to-head and head-to-MRI coregistrations. The pa-

rameters of the MEG-to-MRI coregistration are approximately normally distributed

with non-diagonal covariance matrices. A non-diagonal covariance matrix indicates

dependency between the parameters. In order to apply stochastic spectral methods,

the parameter covariance is decomposed into independent components using an sin-

gular value decomposition (SVD). The rotation and translation parameters g and
~h of MEG-to-MRI are sampled as described in section 3.3. A transformation to(
g, ~h

)
from six independent and identically distributed Gaussian random variables

x with zero mean and variance 1, is found by C
1/2
MEG−to−MRI, with

U diag (s)V T =
1√
N − 1


g1 1 g1 2 g1 3 h1 1 h1 2 h1 3

...
...

...
...

...
...

gN 1 gN 2 gN 3 hN 1 hN 2 hN 3


C

1/2
MEG−to−MRI = V diag (s)V T ,

(3.46)

where N is the sample size. With x as input variables and the transformation(
g, ~h

)
∼ C

1/2
MEG−to−MRIx, it is possible to analyze functions of the coregistration

parameters by stochastic spectral methods on the basis of Hermite polynomials.
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For example the function f
(
g, ~h

)
is expanded by

f̂
(
C

1/2
MEG−to−MRIx

)
=
∑
s∈S

f̂sΨs (x) . (3.47)

3.4.2 Head movements

So far, in chapter 2, uncertainty of coregistrations is assessed for a moment in time or

for non-moving subjects. Although some methods have been developed to account

for head movements during MEG recordings, the standard MEG forward models are

computed for one static coregistration. Hence, head movements add further uncer-

tainty to the MEG-to-head coregistration. In this section, I propose a method to

assess the amount of head movements during MEG recordings by means of a covari-

ance matrix. Further, the mean coregistration is estimated for the use in forward

models. For the coregistration uncertainty at a moment in time, I found approxi-

mately normally distributed parameters. Since the head movements are added to

these parameters independently and typically with a similar magnitude, in the order

of a few mm, I make use of the central limit theorem and assume that the sum of

static coregistration uncertainty and head movements is normally distributed.

In the laboratory the head movements are recorded by activating five head local-

ization coils during the measurement. The MaxFilterTM software estimates MEG-to-

head coregistration parameters — rotation quaternions ql and translations ~tl — for

each second of the recorded data from the signals of the localization coils. Markley,

Cheng, et al. (2007) have shown that the average rotation E [q] of unit quaternions

ql can be found by the SVD

(q1, q2, . . . , qL) = U diag (σ)V T

E [q] = (u1 1, u1 2, u1 3, u1 4)T
(3.48)

as the first column eigenvector, where L is the length of the data in seconds. For

the estimation of rotation covariances, the inverse of the mean rotation is applied

to the rotations for centering. The centered quaternions are computed from these

rotations as

qcl = quaternion
[
R (ql)R

−1 (E [q])
]

(3.49)

The mean of the translation parameters is E
[
~t
]

=
∑L

l=1
~tl. For the translation

covariances, the methods of chapter 2 are used and the MEG coordinate system

origin is initially shifted to the mean of the localization coil positions E [~a], which is

computed from E [q] and E
[
~t
]
. Let the point ~aMEG be a point in MEG coordinates,
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which is aligned in head coordinates by MEG-to-head as

~ahead = R (ql)~a
MEG + ~tl . (3.50)

The shift of the MEG origin to E [~a] can be expressed as

~ahead = R (ql)
(
~aMEG − E [~a]

)
+ ~tl +R (ql)E [~a] (3.51)

and the shifted translation vector is defined as

~tl o = ~tl +R (ql)E [~a] . (3.52)

The covariance matrix of the MEG-to-head coregistration parameters due to head

movements is estimated as

Cmovement =
1

L− 1
MMT

M =

(
qc1 . . . qcL

~t1 o − E
[
~to
]

. . . ~tLo − E
[
~to
]) .

(3.53)

Because a static MEG-to-head coregistration uncertainty with covariance matrix

Cstatic is independent from head movements, the total MEG-to-head covariance

matrix for head movements and coil localization errors is

Cdynamic = Cmovement +Cstatic . (3.54)

3.4.3 Target registration error

By using the transformation of the coregistration parameters from section 3.4.1

it is straightforward to sample the TRE ~φ at a point ~a in the head coordinate

system. Let C
1/2
MEG−to−MRI be the transformation matrix from six independent and

identically distributed standard Gaussian random variables x to the MEG-to-MRI

coregistration parameters
(
g, ~h

)
. A sample of coregistration parameters is obtained

as

(gl 1, gl 2, gl 3, hl 1, hl 2, hl 3)T = C
1/2
MEG−to−MRIxl . (3.55)

The TRE at ~a is sampled accordingly as

~ψ
(
gl, ~hl

)
= R (gl)~a+ ~hl . (3.56)



3.5. Forward modeling 51

For a set of M points the mean RMS of TRE at these points is defined by

E [RMS (Ψ)] =
1

L

L∑
l=1

√√√√ 1

M

M∑
m=1

|~ψm
(
gl, ~hl

)
|2 , (3.57)

where L is the sample size of the mean estimation.

3.5 Forward modeling

3.5.1 Source space

In MEG forward computations, the magnetic flux is computed for given source con-

figurations. That is, each source is defined by its dipole location, orientation and

strength. A source space defines the space of dipole locations and dependent on

the modeling it can constrain dipole orientations, for example to surface normals.

Here, the dipole locations are defined by the vertices of the white matter triangula-

tion from the FreeSurfer software. Figure 3.6 depicts the FreeSurfer white matter

triangulation. Here, the triangulation is based on the topology of a recursively sub-

divided icosahedron with 5 subdivisions. This is done separately for left and right

hemispheres and results in 10 242 sources per hemisphere. Sources with a distance

smaller than 5 mm to the closest volume conductor boundary are excluded from the

source space.
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(a) (b)

Figure 3.6: Source space triangulation from (a) saggital and (b) coronal view. The sources
are located at the vertices of the triangulation. Three red areas indicate the test patches of
auditory, visual and somatosensory sources.

The red patches in the left auditory, visual and somatosensory regions are used

for forward computations below. Source normal orientations are derived from a finer

FreeSurfer surface triangulation compared to the source space in fig. 3.6 by using

cortical patch statistics (F.-H. Lin et al., 2006). The normal orientations are used

to constrain the source estimates in sections 3.6.2 and 3.6.3.

3.5.2 Regions of interest

Many MEG studies are based on the stimulation of certain functional brain regions,

for example auditory stimuli are presented which are supposed to activate primarily

auditory regions. Hence, often also the source analysis is restricted to functional

regions of interest. Here, three regions of interest are defined, namely auditory, visual

and somatosensory regions. The definition of each region is derived from the human

cerebral cortex parcellation of Glasser et al. (2016). In table 3.1 parcellation labels

are listed for each region and left/right refers to the left/right brain hemispheres.
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Table 3.1: Definition of auditory, visual and somatosensory regions of interests from parcel-
lation labels.

auditory visual somatosensory

• left broadman area (BA) 52

• left primary auditory cortex (A1)

• left auditory 4 complex (A4)

• left auditory 5 complex (A5)

• left lateral belt complex (LBelt)

• left medial belt complex (MBelt)

• left para-belt complex (PBelt)

• left para-insular area (PI)

• left retro-insular cortex (RI)

• left dorsal bank of superior tempo-
ral sulcus posterior (STSdp)

• left anterior superior temporal
area TA2 (Economo and Koskinas,
1925) (TA2)

• left primary visual cor-
tex (V1)

• left second visual area
(V2)

• right V1

• left BA 1

• left BA 2

• left BA 3a

• left BA 3b

For the visual region, I decided to include the right V1 label. Figure 3.7 depicts

the result of the region of interest definitions for one subject.
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(a) (b)

Figure 3.7: The inner skull compartment and source space is shown from (a) saggital and
(b) axial views. Regions of interest are coloured in blue, green and red for the auditory,
visual and somatosensory regions, respectively.

3.5.3 Volume conductor and boundary element method

Bioelectrical effects due to brain activity are characterized by the second order el-

liptic partial differential equation

∇ · (σ (~r)∇φ (~r)) = j (~rp) , (3.58)

where σ (~r) is the specific electric conductivity of the tissue, φ (~r) is the electric

potential and j (~rp) is the primary current density at source position ~rp (Stenroos,

Mäntynen, and Nenonen, 2007). Let the primary current density be described by an

equivalent current dipole, with dipole moment p. From the Biot Savart law follows

the primary magnetic flux density b∞ of a current dipole inside infinite vacuum

space as

b∞ (~r ) =
µ0

4π

p× (~r − ~rp)
|~r − ~rp|3

, (3.59)

where (~r ) is the sensor position and µ0 is the magnetic permeability of the vacuum.

Primary current dipoles inside a conductive volume like the brain cause a secondary

magnetic flux density bvol which is caused by the ohmic currents inside the volume

conductor. From the divergence theorem follows the expression of the secondary
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magnetic flux density as

bvol (~r ) = −µ0

4π

L∑
l=1

(σl− − σl+)

∫
∂Ωl

φ
(
~r ′
)

d~s ′ × ~r − ~r ′
|~r − ~r ′|3 , (3.60)

where σl− and σl+ are the specific electric conductivities inside and outside of a

homogeneous compartment l with boundary surface ∂Ωl and φ is the electric poten-

tial at the boundary surfaces (Geselowitz, 1970; Stenroos, Mäntynen, and Nenonen,

2007). For this thesis, only one compartment, namely the inner skull comparment, is

used for volume conductor modeling and the secondary magnetic flux density reads

as

bvol (~r ) = −µ0σskull−
4π

∫
∂Ω
φ
(
~r ′
)

d~s ′ × ~r − ~r ′
|~r − ~r ′|3 . (3.61)

The total magnetic flux density b at sensor position ~r due to a current dipole p at

~rp is the sum of primary and secondary flux density

b (~r ) = b∞ (~r ) + bvol (~r ) . (3.62)

In the computations for this thesis, the surface potential φ is computed by using

the Helsinki BEM library (Stenroos, Mäntynen, and Nenonen, 2007). The surface

integral in eq. (3.61) is computed analytically over the triangulation of the inner

skull surface, where the element integrals are solved for the linear potential approach

(Ferguson, Xu Zhang, and Stroink, 1994). For source estimation it is convenient to

write the normal magnetic flux density bk = b (~rk) ·nk at the MEG sensor positions

~rk, with sensor orientation nk in terms of the matrix equation

b1

b2

b3
...

bN


= L



p1x

p1 y

p1 z

...

pM z


, L ∈ RN×3M , (3.63)

where L is referred to as leadfield matrix and pmx is the x-component of a dipole

moment at source position ~rpm and so on for y and z.

3.5.4 Expansion of forward operators

Since both b∞ and bvol depend on the sensor position relative to the source and

volume conductor position, both terms also depend on the MEG-to-MRI coregis-
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tration. The leadfield matrix from the previous section, which is also referred to as

forward operator, is the sum of primary and secondary magnetic flux density per

unit dipole moment:

L = L∞ +Lvol . (3.64)

The effects of coregistration uncertainty on the forward operator are separately

analyzed for L∞ and Lvol. Only uncertainties in the translations in x, y and z-

direction (hx, hy, hz) are analyzed. In this analysis, hx, hy and hz are independent

random variables following a Gaussian distribution with zero mean and standard

deviation of 2 mm. The elements of the forward operator are expanded as

l∞nm (hx, hy, hz) ≈
∑
s∈S

l̂∞nm sΨs

(
hx

2 mm
,

hy
2 mm

,
hz

2 mm

)
lvol nm (hx, hy, hz) ≈

∑
s∈S

l̂vol nm sΨs

(
hx

2 mm
,

hy
2 mm

,
hz

2 mm

)
lnm (hx, hy, hz) ≈

∑
s∈S

(
l̂∞nm s + l̂vol nm s

)
Ψs

(
hx

2 mm
,

hy
2 mm

,
hz

2 mm

)
.

(3.65)

In this thesis, the expansions eq. (3.65) are used to approximate the forward operator

efficiently for a profound uncertainty and sensitivity analysis.

3.5.5 Error of forward computations

For the comparison of approximations with reference solutions at the sensors, the

relative difference measure (RDM) and the magnification (MAG) were introduced

(Meijs et al., 1989). The RDM measures differences in the field topography and is

not affected by scalings of the global field strength by positive factors. A minimal

RDM of zero indicates no topography differences between two fields. And a maximal

RDM of two is reached when one field is a negative multiplication of the other. The

MAG measures the error of global scaling between two fields, where a MAG of one

indicates no scaling error and MAGs of zero and infinity indicate maximal scaling
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errors. Both measures are defined according to

RDM =

√√√√√√√√√
N∑
n=1

 bn√
N∑
n=1

b2n

− b̂n√
N∑
n=1

b̂2n


2

∈ [0, 2]

MAG =

√√√√√√√√
N∑
n=1

b̂2n

N∑
n=1

b2n

≥ 0 ,

(3.66)

where bn and b̂n denote the reference and approximation field values at sensor n and

N is the number of sensors.

3.6 MEG source estimation

3.6.1 Introduction

For the estimation of locations and time courses of neural activity from MEG data,

a variety of different methods exist. Source estimators can be classified into three

main branches, dipole search methods, scanning methods and estimators of dis-

tributed sources. All classes of methods are based on the idea, that sensor data d of

measured brain activity can be expressed by the sum of fields from dipolar sources

in the brain plus noise. In the context of scanning and distributed inversion meth-

ods, source estimates are estimates of dipole moments for given sensor data. The

dipole moments, representing brain activity, are denoted by p and together with the

leadfield matrix from above, the sensor data read

d = Lp+ ν . (3.67)

Normally, it is assumed that the sensor noise ν follows a multivariate Gaussian

distribution with zero mean and its covariance matrix Cν is estimated from the data.

For the formulation of source estimators, it is convenient to introduce a whitening

matrix C
−1/2
ν , whitened data and leadfield as

d̃ = C−1/2
ν d

L̃ = C−1/2
ν L .

(3.68)
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The purpose of this transformation is apparent when it is applied to eq. (3.67)

because C
−1/2
ν ν follows a Gaussian distribution where the covariance matrix is equal

to the identity matrix I (Hämäläinen, F. H. Lin, and Mosher, 2010).

3.6.2 Beamformer

From the class of scanning methods, a vector beamformer is implemented for this

thesis. The LCMV beamformer is known to have the solution

W T (~r) =
(
LT (~r)C−1

d L (~r)
)−1

LT (~r)C−1
d (3.69)

at source location ~r, where C−1
d is the inverse of the data covariance matrix and

L is the leadfield matrix (Van Veen et al., 1997). Following Hillebrand and Barnes

(2003), an unfocussed beamformer is used in this thesis, where the data covariance

matrix is a scaled identity matrix Cd = σ2I and the beamformer weights become

W T (~r) =
(
LT (~r)L (~r)

)−1
LT (~r) . (3.70)

In contrast to Hillebrand and Barnes (2003), the leadfield L (~r) is not a column

vector, it consists of three columns L (~r) = (lt1 (~r) , lt2 (~r) , ln (~r)), where the in-

dices t1, t2 and n decode the two cortical tangential and one cortical normal dipole

orientation, respectively. In order to be comparable with the distributed source esti-

mator, I decided to introduce a loose orientation parameter θ which is implemented

in a prior source covariance matrix R, where

R1/2 =

θ 0 0

0 θ 0

0 0 1

 . (3.71)

The loose orientation parameter can take values from zero to one, where a value

of zero results in a completely orientation constrained beamformer and a value of

one results in an unconstrained beamformer. That is, in the constrained case only

the cortical normal dipole component is estimated and the cortical tangential com-

ponents are zero. In the unconstrained case, the dipole orientation is free and it

is linearly optimized in the least squares sense. The whitened beamformer with

incorporated prior source covariance matrix reads

W̃ T
θ (~r) = R1/2

(
R1/2L̃T (~r) L̃ (~r)R1/2

)−1
R1/2L̃T (~r) . (3.72)
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A solution to eq. (3.72) is found by the following SVD

U diag (σ)V T = L̃ (~r)R1/2

W̃ T
θ (~r) = R1/2V diag (1/σ1, 1/σ2, 1/σ3)UT

(3.73)

For better numerical stability, eq. (3.73) is regularized by using the truncated SVD

W̃ T
θ, trunc (~r) = R1/2V diag (1/s1, 1/s2, 0)UT , sl =

σl σl > σ1 · ε
0 σl ≤ σ1 · ε

, (3.74)

where ε is the machine precision. The third singular value is set to zero because the

MEG is only sensitive to two source orientations, which are associated to the two

first singular values. Finally, a noise normalized beamformer Z̃ is computed as

Z̃T (~r) = W̃ T
θ, trunc/

√
tr
{
W̃ T

θ, trunc (~r) W̃θ, trunc (~r)
}
. (3.75)

This beamformer is related to the Borgiotti–Kaplan beamformer (Sekihara et al.,

2001). Since Z̃T (~r) is a function of the leadfield matrix, it is also a function of the

coregistration parameters x and can be expressed as Z̃T (~r, x).

3.6.3 sLORETA

From distributed source estimators, the standardized low resolution brain electro-

magnetic tomography (sLORETA) is implemented for this thesis. It is based on

the widely used minimum norm estimate (MNE), where the dipole moments are

estimated as

sMNE = RL̃T
(
L̃RL̃T + λ2I

)−1
d̃ = Λ̃d̃ , Λ̃ ∈ R3M×N , (3.76)

where M is the number of source positions and N is the number of sensors and λ

is a regularization parameter. In contrast to the beamformer, the leadfield of the

entire source space

L = (lt1 (~r1) , lt2 (~r1) , ln (~r1) , . . . , lt1 (~rm) , lt2 (~rm) , ln (~rm)) ∈ RN×3M (3.77)
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is involved and the prior source covariance matrix R is a square diagonal matrix of

size 3M , it is constructed from the loose parameter θ as

R1/2 =



θ 0 0 . . . 0

0 θ 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


. (3.78)

The loose orientation constraint was previously used by F.-H. Lin et al. (2006), where

they defined the loose parameter as sine of the angle to the cortical normal orien-

tation. It has been shown, that it is reasonable to choose λ2 = 1
ξ2

tr
(
L̃RL̃T

)
/N ,

where ξ2 is the power signal-to-noise ratio (SNR) of the whitened data. I fixed

ξ2 = 10 in the style of the default value of 9 in the MNE software (Hämäläinen,

2010). In order to be comparable with other functional imaging methods (fMRI,

PET) and the noise normalized beamformer of this thesis, the sLORETA noise nor-

malization is applied to sMNE. The sLORETA method defines resolution matrix

diagonal elements as

nl =
1

λ2

(
Λ̃
(
L̃RL̃T + λ2I

)
Λ̃T
)
l l

(3.79)

for noise normalization (Pascual-Marqui, 2002). In this thesis the sLORETA activity

estimate is computed for source position k as

ssLORETA
k =

(
sMNE

3(k−1)+1, s
MNE
3(k−1)+2, s

MNE
3(k−1)+3

)T
√∑3

l=1 n(3k−1)+l

= Z̃sLORETA (~rk) d̃ . (3.80)

The sLORETA operator is a function of source position ~r and coregistration param-

eters x and it can be expressed as Z̃sLORETA (~r, x).

3.6.4 Expansion of source estimators

Both estimators, the proposed beamformer and sLORETA can be expressed as func-

tions of the coregistration parameters and approximated by polynomial expansions.

Let me therefore introduce a general matrix operator Γ of size 3M ×N , where M is

the number of source positions and N is the number of sensors. For this thesis, Γ can

take four different forms, namely beamformer and sLORETA operator, each with

fixed orientation (θ = 0) or loose parameter θ = 0.2. In any case, Γ is a function of
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the six coregistration parameters x. The matrix elements of Γ are denoted by γmn

and a stochastic spectral approximation of Γ reads

γmn (x) ≈
∑
s∈S

γ̂mn sΨs (x) . (3.81)

Source estimates s for given sensor data d are computed by the matrix multiplication

s = Γd and its stochastic spectral approxmiation is

sm (x) ≈
N∑
n

[
dn
∑
s∈S

γ̂mnpΨs (x)

]
=
∑
s∈S

ŝm sΨs (x)

ŝm s =

N∑
n=1

dnγ̂mn s .

(3.82)

That is, the polynomial coefficients of source estimates are obtained by a weighted

sum of the polynomial coefficients of the estimator, where the weights are the sensor

data. Hence, the coefficients of source estimators Γ are computed only once and

used to efficiently compute the coefficients of source estimates s for different sensor

data.

3.6.5 Verification

Expansions of source estimators are applied to testing data, which consist of simu-

lated brain activity from three regions of interest and additive noise of three different

levels. For the computations, test patches were defined as subregions of the regions

of interest in the left auditory, visual and somatosensory cortex. More precisely, the

parcellation labels left PBelt, left 1 and left V1 were devided by using FreeSurfer

into 3, 6 and 8 divisions, respectively. The second, fourth and second division de-

fine the auditory, visual and somatosensory test patches, respectively. Test patches

contain the test sources as vertices and are visualized red in fig. 3.6 at the source

space triangulation.

In order to avoid an inverse crime in source estimation, the positions of the test

sources are shifted away from the original source space by a random vector following

a Gaussian distribution with zero mean and 1 mm standard deviation in x, y and

z-direction. Each source was simulated as a fixed dipole with orientation normal to

the cortex and a dipole moment of 1 nA m. For the additive sensor noise, a noise

covariance matrix Cν was estimated from empty room measurements and a noise
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sample ν was simulated as

ν =
1

a
·C1/2ε , ε ∼ N (0, I) , (3.83)

where a is proportional to the amplitude SNR and for this thesis, values of 2, 10

and 50 are used.

3.6.6 Source amplitude maximum distribution

A distribution of source amplitude maximum locations is found by Monte Carlo sim-

ulation of source estimates from a distribution of coregistration parameters. Here,

the domain of maximum locations is the discrete space of source locations in a region

of interest. A maximum location is defined by the maximal source strength within

the region Ω as

~rmax = argmax
~r
|s (~r)| , ~r ∈ Ω , (3.84)

where s (~r) is the vector source estimate at ~r. Since the maximum location is a

function of coregistration parameters, a sample (~rmax 1, ~rmax 2, . . . ~rmaxM ) of its dis-

tribution is sampled by Monte Carlo simulation from a sample of the coregistration

parameters. The spatial distribution of the maximum is modeled by the mean ~̄rmax

and standard deviations σ1, σ2, σ3 on its three SVD-main axes:

1√
M − 1

(
~rmax 1 − ~̄rmax, . . . ~rmaxM − ~̄rmax

)
= (~u1, ~u2, ~u3) diag (σ1, σ2, σ3)v ,

(3.85)

where the vectors ~ul are normalized oriented along the main axes.
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Figure 3.8: The ellipsoid represents a spatial confidence interval, where the surface intersects
with the u1, u2 and u3 axes at ±σ1, ±σ2 and ±σ3, respectively.

Figure 3.8 depicts the surface of a spatial one standard deviation confidence

interval for an example maximum distribution. In the results section 4.3.2, the

maximum distribution is depicted by such wire frame surfaces in the source space. As

a measure of source localization errors, the absolute element-wise differences between

~̄rmax and the center of the test patch are computed and denoted by ~δ = (δx, δy, δz)
T

in the results section. These localization error elements are expressed as

δx =|r̄maxx − r̄patch x| , (3.86)

here exemplarily for the x axis, where r̄patch x is the average x-location of the source

patch.





Chapter 4

Results

4.1 Errors and residuals

4.1.1 MEG-to-Head

The smallest value for the maximal deviation measured by the Kolmogorov–Smirnov

statistics (see eq. (2.57)), between the points and theoretical distributions was found

for the generalized normal distribution with shape λ = 1.7 and which estimated

to Dδ̃ = 4.5× 10−3 ± 0.6× 10−3. The maximal Kolmogorov–Smirnov-value for

the normal distribution with scale σε̂ = 1.05 mm was only slightly larger: Dδ̂ =

6.2× 10−3±0.8× 10−3. The normal distribution is the special case of the generalized

normal distribution with shape λ = 2. Hence, I decided to approximate the error

distribution of ε using the commonly used normal distribution. The probability

density of the error estimate ε̂ was therefore defined as

πε̂ (x) =
1

σε̂
√

2π
exp

[
− x2

2σ2
ε̂

]
. (4.1)

This choice provided control over the approximations, since closed form solutions are

available under the precondition of the normal distribution for the relation between

variances (error, residual, and parameter) in a least squares estimation (Fitzpatrick,

2009). The ratio between the variances of errors and residuals was found to be

σ2
ε̂ /σ

2
δ = 1.65 ≈ 5/3, which is approximately the ratio of the number of data points

and the number of data points minus the degrees of freedom of the least squares fit,

namely 3M/ (3M − 6) = M/ (M − 2).
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Figure 4.1: The MEG-to-head residuals Q–Q plot (a) depicts every 100th data point of the ∆̂-
quantiles over the ∆-quantiles. The r-value is the correlation coefficient between the paired
sample quantiles. The empirical distribution function of RMS of observed MEG-to-head
residuals is depicted in (b).

Figure 4.1a demonstrates the distribution-wise similarity between ∆̂ and ∆ using

a Q–Q plot, where ε̂ ∼ N
(

0, (1.05 mm)2
)

. If both distributions were identical, the

Q–Q plot would show a straight diagonal. Divergence from linearity at both ends

show that the deviations between the two distributions were mainly observed with

respect to the tails. The residuals ∆̂ and ∆ were distributed between −3 to 3 mm,

with approximately zero median and mean. In fig. 4.1b, the distribution of observed

RMS of residuals is plotted for the 5 544 MEG-to-head data sets. One RMS value

is calculated over the 5 residual vectors ~δm of the coil positions. Figure 4.1b shows

that RMS values were smaller or equal to 2.5 mm for 99 % of the MEG-to-head data

sets. The RMS values were distributed between 0.4 to 3.6 mm, with a median of

1.3 mm.
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4.1.2 Head-to-MRI
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Figure 4.2: The Head-to-MRI residuals Q–Q plot (a) depicts every 100th data point of the
Ẑ-quantiles over the Z-quantiles, where η̂ follows the t-distribution with shape 4 and scale
1.1 mm. The r-value is the correlation coefficient between the paired sample quantiles. The
empirical distribution function of RMS of observed head-to-MRI residuals is depicted in (b).

The smallest Dζ̃ was found for a Student’s t-distribution with shape λ = 4 and scale

τ = 1.1 mm with Dζ̂ = 5× 10−3 ± 1× 10−3. Hence, the probability density of the

error estimate η̂ is expressed efficiently as

πη̂ (x) ∝
(

1 +
x2

τ2λ

)−(λ+1)/2

, (4.2)

directly proportional to a normalization constant. A ratio between the variances of

errors and residuals of σ2
η̂/σ

2
ζ =

(
λτ2/ (λ− 2)

)
/σ2

ζ = 2.87 was found. The Q–Q plot

in fig. 4.2a demonstrates the similarity between Ẑ and Z in distribution, where η̂

follows the t-distribution with shape 4 and scale 1.1 mm. Residual values of Ẑ and

Z were in the range of −4 to 4 mm, as indicated in fig. 4.2a, with approximately zero

median and mean. The best fit normal error distribution yielded substantially worse

head-to-MRI residuals with a Kolmogorov–Smirnov statistic of Dζ̂ = 9× 10−3 ±
7× 10−4. In fig. 4.2b, the distribution of observed RMS of residuals is plotted for

the 128 head-to-MRI data sets. One RMS value is calculated over the head shape

point residuals ~ζn for each data set. An RMS of up to 2.2 mm was not exceeded for
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99 % of the head-to-MRI data sets. The RMS values were between 0.8 to 2.9 mm,

with a median of 1.4 mm.

4.2 Parameter-distribution sampling

4.2.1 MEG-to-Head and head-to-MRI

The MLEs and spreads of the coregistration parameters from the Metropolis al-

gorithm samples were averaged over the data sets in table 4.1. The first row in

table 4.1 demonstrates accurate estimates of the Metropolis algorithm with no dif-

ferences compared to the least squares estimates. For the MEG-to-head data sets I

found sample spreads of the Metropolis algorithm results of 0.6 to 0.9 mm for the

scaled quaternion parameters and 0.5 mm for the translations.

The spreads of MEG-to-head parameters in table 4.1 are identical, up to the first

decimal place, to the theoretical estimate of eq. (2.12) and eq. (2.13):

200 mm · σε ·

√√√√√diag

(4

M∑
m=1

(
|~̂bcm|2I − ~̂bcm~̂bcmT

))−1
 =

 0.8± 0.1

0.9± 0.1

0.6

mm

σε/
√
M = 0.5 mm ,

where σε = 1.05 mm and M = 5. The numbers on the right hand side of the

equation refer to sample means and standard deviations over the 5 544 data sets.

This comparison provides a quality check of the Metropolis algorithm.

The results of the sample spreads, of the head-to-MRI coregistration parameters

in table 4.1, are similar to the results of MEG-to-head, with slightly larger values in

the scaled quaternion part of 0.6 to 1.0 mm and smaller values in the translation part

of 0.2 to 0.4 mm. Contrarily, the sample MLEs of head-to-MRI in table 4.1 show

deviations up to several millimeters. This indicates considerable difference between

the pre-registration of the ICP and the subsequent registration of the Metropolis

algorithm. A mean absolute difference of the ICP compared to the Metropolis algo-

rithm results of (1.9± 1.5)◦ in the rotations and (1.1± 0.9) mm in translations was

found. The respective paired differences of RMS of residuals were tested. According

to the t-statistic, RMS computed by the Metropolis MLE were significantly smaller

than RMS computed by the ICP fit with t = 3.04 and two-sided p < 0.01. However,

the difference of the means was only in the order of 0.02 mm.

In order to test the correlation of RMS (Ψ) and RMS of residuals, I computed

these measures separately for MEG-to-head and head-to-MRI data sets. RMS (Ψ)
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Table 4.1: Statistics of the Metropolis algorithm parameter results in mm.

MEG-to-head 2R · p1 2R · p2 2R · p3 s1 s2 s3

MLE 0.0 0.0 0.0 0.0 0.0 0.0

Spread 0.8± 0.1 0.9± 0.1 0.6 0.5 0.5 0.5

Head-to-MRI 2R · q1 2R · q2 2R · q3 t1 t2 t3

MLE 0.6± 3.3 0.4± 2.4 −0.2± 1.3 0.1± 0.7 −0.2± 1.2 0.1± 0.3

Spread 0.8± 0.3 0.9± 0.3 0.6± 0.1 0.3± 0.1 0.3± 0.1 0.2

and RMS of residuals were computed separately over coil positions of MEG-to-head

and head shape points of head-to-MRI. Correlation coefficients were determined

accordingly over the 5 544 and 128 data sets. Correlation coefficients of 0.017 and

−0.116 for MEG-to-head and head-to-MRI were found, respectively.

4.2.2 MEG-to-MRI

126 out of the 128 head-to-MRI data sets have a corresponding MEG-to-head, taking

into account the selection criteria of section 2.6.1. If more than one MEG-to-head

data set corresponded to a given head-to-MRI, which occurred if more than one MEG

measurement block existed for a given session, only the first MEG-to-head block was

used. Figure 4.3 depicts the estimated RMS of TRE, denoted as RMS (Ψ), by the

number of head shape points for these data sets.
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Figure 4.3: The estimated RMS (Ψ) is plotted over the number of head shape points N. Ψ
is computed at each head shape point. Data points indicate the mean over the samples of
RMS (Ψ) and the dash-dotted line was fit to these points. The error bars show the 50th to
95th percentiles over the samples of the measure.

The estimation of TRE is based on drawing subsamples from corresponding

MEG-to-head and head-to-MRI Metropolis samples. The size of the subsamples

is the effective sample size of the respective Metropolis sample. Utilizing these

subsamples, the respective samples of the RMS (Ψ) were computed over the head

shape points according to eq. (2.63). In a few cases there are multiple TRE data per

head shape point numbers in fig. 4.3 due to coincidental digitization with the same

number of points. The error bars reflect the range, from the median to the 95th

percentile, over the samples of RMS (Ψ) whereas the points indicate the respective

means. I regard the 95th percentile as an upper bound of the RMS (Ψ) confidence

interval. The data sets show a mean RMS (Ψ) of 1.3 to 2.3 mm and an upper bound

of 2.1 to 4.0 mm. Overall, both the mean and the upper bound decrease with the

number of head shape points. This TRE measure serves as a quality criterion for

MEG-to-MRI coregistrations and allows thresholding, for example, 2 mm.
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Figure 4.4: Estimates of TRE plotted as overlay onto the corresponding MRI slices. The
RMS of TRE is computed for all samples of all grid points. Black lines indicate the slices
in Freesurfer-MRI coordinates. The yellow crosshairs indicate the estimated minimum of
TRE. In the plots, A refers to anterior, P to posterior, I to inferior, S to superior, R to
right and L to left. On the left and right side, the coronal and sagittal cuts at slice 110 and
100 are plotted, respectively.

Figure 4.4 shows the estimated TRE at a fine grid on the MRI of one data

set. Analogue to TRE, the coregistration rotation error is estimated by the RMS

of
√
q2

1 + q2
2 + q2

3 for the MEG-to-MRI rotation, which is easily sampled from the

Metropolis algorithm results and does not depend on the position in space. The

angular approximation of this rotation error, estimated for each subject, is between

0.8 to 1.8◦, with the upper bound 95th percentile between 1.3 to 3.1◦. The mean of

the rotation error, across subjects, gives an angular approximation of (1.1± 0.2)◦.

4.3 Effects of coregistration uncertainties

4.3.1 Forward computation

The forward computation of a total magnetic field at the sensors is decomposed as

sum of primary b∞ and secondary bvol field here. In this section, effects of coregis-

tration uncertainties on primary, secondary and total magnetic fields are presented.

The following figures show source orientations in x, y and z direction on the abscissa.

The distributions are sampled over auditory, visual and somatosensory sources of 20

subjects. Standard deviations of magnetic fields (see fig. 4.5) measure the change

in amplitude over the sensors. The median of the standard deviations, here over

subjects and sources, is smaller for the total field compared to the primary field

since primary and secondary currents are opposed to each other. For the x source

orientation (from left to right) in auditory regions, the deviations of primary and
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Figure 4.5: Standard deviations of magnetic fields over all magnetometers. The distributions
are sampled over sources of 20 subjects and three cortical regions. Fields are decomposed into
three orthogonal source orientations (x, y and z direction). The boxes are drawn around
the region between the first and third quartiles, with a horizontal line at the median value.
Whiskers extend from the box to the most distant values within 1.5 times the interquartile
range. Points that lie outside these limits are drawn separately as in black. The coloured
violin plots depict the probability density of the data, smoothed by a kernel density estimator.
On the abscissa of the graphs, the regions of interest, auditory, visual and somatosensory
are denoted by audi., vis. and soma., respectively.

secondary fields almost cancel each other out in the total magnetic field. This can

be explained when the volume conductor is compared to a sphere with origin at

(0, 0, 0) where the auditory cortex is on the x axis. In this case, a source orien-

tation in x direction is radial and it is known from analytic solutions for spherical

volume conductors that the primary and secondary field of radial sources cancel

each other out outside of the sphere (Sarvas, 1987). For visual and somatosensory

regions, the approximately radial orientations are y and z respectively and their

suppression is confirmed in fig. 4.5. The RDMs depicted in fig. 4.6 are computed

over all magnetometers. RDMs and MAGs are computed for a Gaussian sample of

shifts in x, y and z, see section 3.5.4, against the reference solution at zero shift.

Mean and standard deviation of RDMs and MAGs are computed over the sample of

shifts. Secondary fields from sources in z orientation show the largest RDM means

and standard deviations with medians of approximately 0.13 and 0.06, respectively.

For the total magnetic field, RDMs have a mean and standard deviation of ap-

proximately 0.07 and 0.03. Primary and secondary fields contribute approximately

equally to the RDMs of the total field.
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Figure 4.6: Mean (upper row) of magnetometer RDMs and corresponding standard deviation
(lower row) over a sample of shift parameters. The distributions are sampled over sources
of 20 subjects and three cortical regions. The boxes are drawn around the region between the
first and third quartiles, with a horizontal line at the median value. Whiskers extend from
the box to the most distant values within 1.5 times the interquartile range. Points that lie
outside these limits are drawn separately as in black. The coloured violin plots depict the
probability density of the data, smoothed by a kernel density estimator. On the abscissa of
the graphs, the regions of interest, auditory, visual and somatosensory are denoted by audi.,
vis. and soma., respectively.

First order sensitivity indices, as defined in section 3.2.5, in fig. 4.7 reveal smaller

sensitivity for the RDMs if source orientation and shift direction match. This cannot

be observed for total fields of the approximately radial source orientations (auditory

x, visual y and somatosensory z) because they produce small outside fields.
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Figure 4.7: First order sensitivity indices are plotted for the RDM-function of shifts in x,
y and z direction, where Sk is the index for the effect of shifts in k on the variance of the
RDM. The distributions are sampled over sources of 20 subjects and three cortical regions.
The boxes are drawn around the region between the first and third quartiles, with a horizontal
line at the median value. Whiskers extend from the box to the most distant values within
1.5 times the interquartile range. Points that lie outside these limits are drawn separately
as in black. The coloured violin plots depict the probability density of the data, smoothed by
a kernel density estimator. On the abscissa of the graphs, the regions of interest, auditory,
visual and somatosensory are denoted by audi., vis. and soma., respectively.

The sums of the RDM sensitivity indices in fig. 4.7 indicate that approximately

0.95 of the RDM variance can be explained by the first order indices.

Figure 4.8 depicts the means and standard deviations of magnification errors

(MAGs) over the sample of shift parameters. Secondary fields from sources in z

orientation show the largest MAGs with means and standard deviations distributed

around 1.01 and 0.06. For the total field, MAGs have a mean and standard deviation

of approximately 1.003 and 0.04.
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Figure 4.8: The mean (upper row) and standard deviation (lower row) of magnetometer
MAGs over a sample of shift parameters. The distributions are sampled over sources of 20
subjects and three cortical regions. The boxes are drawn around the region between the first
and third quartiles, with a horizontal line at the median value. Whiskers extend from the box
to the most distant values within 1.5 times the interquartile range. Points that lie outside
these limits are drawn separately as in black. The coloured violin plots depict the probability
density of the data, smoothed by a kernel density estimator. On the abscissa of the graphs,
the regions of interest, auditory, visual and somatosensory are denoted by audi., vis. and
soma., respectively.

There are bigger MAGs of the total fields for visual sources (see fig. 4.8). This

effect can be caused by the small distance between sensors and sources in visual

regions. The subjects lean with the back of their heads on the helmet of the MEG.

This head position achieves nearly minimal distances between visual sources and the

sensors, which is clearly not the case for auditory (left) sources. For somatosensory

(cranial) sources, small distances to the sensors can also be achieved since the sub-

jects are told to touch the MEG helmet with the cranial part of their heads. This

is also confirmed by the results of the total fields in fig. 4.8, where similar median

values are found for somatosensory and visual sources.

4.3.2 Source estimates

Target registration errors

Below, results of the propagation of coregistration uncertainties to source estimates

are reported for 20 subjects. The extent of the uncertainties is quantified here by
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the mean RMS of the TRE, denoted as E [RMS (Ψ)] as in section 3.4.3. At the

head shape points a E [RMS (Ψ)] of (1.9± 0.7) mm (mean ± standard deviation

over subjects) was found. Head movements were taken into account in this analysis.

Field topographies

The fieldmaps in fig. 4.9 (upper row) show typical forward computation magnetome-

ter topographies of the corresponding source patches, namely the primary auditory,

visual and somatosensory cortices in that order from left to right. The fieldmaps in

fig. 4.9 (lower row) show three different noise levels which are later combined with

the error-free forward computations of the upper row to simulate realistic scenarios.

The sum of forward computation and noise results in three amplitude SNRs which

are from here on refered to as small, medium and large SNR. The SNR of the visual
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Figure 4.9: Upper row: Magnetic field topographies (forward model) of auditory, visual and
somatosensory source patches. Lower row: Topographies of different noise levels - large,
medium and small. Adding these noise topographies to the forward model leads to small,
medium and large SNR.

and somatosensory fields is higher compared to the SNRs of the auditory fields. This
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effect is caused by the distance of sources to the closest sensors, which is normally

greater for the auditory source patch compared to visual and somatosensory sources.

The weaker field strength for the auditory sources is already visible in fig. 4.9 (upper

row).

Source amplitudes

Below, topographies in the source space are depicted on the surfaces of the regions

of interest. The polynomial expansions were focused on the regions of interest and

therefore the results are not available for the whole brain. Figure 4.10 shows the

position and orientation of these regions in the brain. In fig. 4.11, the axes of the head

coordinate system are depicted. From the polynomial expansion of sLORETA, the

Figure 4.10: Regions of interest are encircled and zoomed in. The black border strips inside
the regions of interest mark the source patches. As an example, an sLORETA source estimate
is depicted in the regions of interest.

mean, mean divided by standard deviation and the sum of the first order sensitivity

indices are depicted in fig. 4.12 for auditory sources. The figure shows sLORETA

results for medium SNR and loose parameter of 0. Statistics are visualized for the

dynamic distribution of coregistrations, see section 3.4.2 for a detailed description.

The sLORETA estimate, fig. 4.12 (a), is smooth in the auditory region and the

maximum is located within the source patch. Figure 4.12 (b) depicts the mean

estimate devided by its standard deviation. In fig. 4.12 (c), the sum of the sLORETA
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z
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Figure 4.11: The head coordinate system is depicted for one subject from three viewpoints.
From left to right, the images show sagittal, coronal and axial views. The coordinate system
can be described by its axes orientations as right (x), anterior (y) and superior (z). In the
figures below, axes are always aligned in this coordinate system.

(a) (b) (c)

Figure 4.12: (a) Mean sLORETA estimate for the auditory region. The mean was computed
over the distribution of sLORETA estimates. Positive (red) and negative (blue) values re-
veal outward and inward oriented sources on the white matter (source space) triangulation,
respectively.
(b) Estimate of (a) divided by the corresponding standard deviation.
(c) Total first order sensitivity index of the auditory region. The total first order sensitivity
index is computed as the sum over six coregistration indices. This total indicex sums up to
values not greater than one.
The renderings are shaded, which results in darker colours in some regions.
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first order sensitivity indices is depicted. This sum is the normalized fraction of the

source amplitude variance which can be traced back to first order effects, that is

to each coregistration parameter alone. The difference of one minus that fraction

is explained by higher order interactions of these parameters. Here, outside of the

source patch at least 80% of the variance and within the patch more than 90% is

explained by first order effects. Figure 4.13 shows all sLORETA first order sensitivity

indices in the auditory region. The rotation and shift indices are depicted for the

axes x, y and z from left to right in the upper and lower row, respectively.

Figure 4.13: First order sensitiviy indices of the sLORETA estimate are depicted for each
coregistration parameter in the auditory region. In the upper row the indices of rotation
parameters are shown for rotation axes x, y and z from left to right. The lower row shows
the indices of shift parameters in x, y and z from left to right. All indices are normalized
on each source position separately. The indices are computed from the coefficients of the
polynomial expansion.

A profound assessment of the results in fig. 4.13 is only possible when the results

of fig. 4.12 are taken into account. Within the auditory source patch and in its

vicinity, more than 90 % of the variance is explained by the first order effects, see
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fig. 4.12 (c). Hence, the first order sensitivity indices in fig. 4.13 provide detailed

information about the main source of variance. The sum of the 6 topographies

in fig. 4.13 yields fig. 4.12 (c). Since the sensitivity indices are normalized, it is

important to take a look at the topography of the absolute variance. Additionally,

only regions with large source activity are of interest here. Both, information about

the variance and the source activity is encoded in fig. 4.12 (a) and (b). The region of

large source activity is in the vicinity of the source patch where source orientations

are similar to the patch, see fig. 4.12 (a). Source location with large absolute values

in fig. 4.12 (a) and small absolute values in fig. 4.12 (b) are locations with large

variance, this is the case for the source patch, especially for the shallow part (closer

to the sensors) of the source patch. Within the source patch, highest sensitivity

indices are found for the shift in x, with a maximum value of approximately 0.9, see

fig. 4.13. This can be explained by the relation of auditory sources and the closest

sensors where only a shift in x direction changes the distance of sources to sensors

effectively. The other parameters move the sources approximately parallel to the

sensors. The triangular topography of the x-shift sensitivity index converges in the

deeper region of the auditory cortex. That is the expected result, since the shallow

sources are more affected by a change in distance between sources and sensors.

Source amplitude maximum distribution

By using polynomial expansions of the beamformer and sLORETA operators, the

amplitude maximum of source estimates was efficiently sampled for different coreg-

istrations. The sample of coregistration parameters follows the assessment of MEG-

to-MRI as described in section 3.4.1. Standard deviations of the spatial maximum

distribution were computed for the three main axes as singular values and denoted

as σ1, σ2 and σ3. Figure 4.14 shows these maximum location standard deviations

in the shape of an ellipsoid for the auditory, visual and somatosensory regions. The

probabilities of the maximum location are colour-coded at the cortical surface. This

figure (4.14) is an example for the sLORETA maximum distributions of one subject

with a medium SNR and the loose parameter set to 0. Localization errors were com-

puted as spatial differences between the maximum of a source estimate and the mean

location of the associated source patch. The absolute means over these differences

for the coregistration sample are denoted by δx, δy, δz in fig. 4.15 and fig. 4.16 for a

loose parameter of 0 and 0.2, respectively. In fig. 4.14 the mean maximum location

is at the center of the ellipsoids. Details about the computation of the δ-values are

described in section 3.6.6. For a loose parameter of 0, beamformer and sLORETA

had similar localization errors with media δ-values up to 5 mm on each axis. The
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5 mm

(a)

5 mm

(b)

5 mm

(c)

(d)

Figure 4.14: SLORETA maximum location probability plotted for the auditory, visual and
somatosensory region (a), (b) and (c) respectively. Medium SNR and a loose parameter set
to 0 were used. The maximum location probability is colour-coded according to the colourbar
in (d). The wire frame ellipsoids depict the standard deviations at the main axes of the
probability distribution, centred at the mean location. A wire frame cube with side length
5 mm, aligned in x, y and z is placed at the location of the ellipsoid as a spatial reference.
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smallest localization errors were achieved in auditory regions, especially for medium

SNR where all errors were below 5 mm. For a loose parameter of 0.2, the beam-

former had larger localization errors compared to a loose parameter of 0. Especially

in auditory regions, the differences are large, for example median δ-values of between

5 to 10 mm were found for the x-axis. SLORETA had very similar localization errors

for loose parameters of 0 and 0.2.

Figures 4.17 and 4.18 depict spatial standard deviations of maximum locations

of 20 subjects with different SNRs and loose parameters. In these figures, σ1, σ2, σ3

denote the main axes of the maximum distribution ellipsoids, as described in sec-

tion 3.6.6. The strongest effect of coregistration uncertainties is observed in
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Figure 4.15: Violine plots of localization errors in auditory, visual and somatosensory regions
for small and medium SNRs and loose parameter of 0. The distributions are sampled over
20 subjects. Boxes are drawn around the region between the first and third quartiles, with
a horizontal line at the median value. Whiskers extend from the box to the most distant
values within 1.5 times the interquartile range. Points that lie outside these limits are drawn
separately as in black. The coloured violin plots depict the probability density of the data,
smoothed by a kernel density estimator.

beamformer estimates with loose parameter set to 0.2. Here, median values of

approximately 4 mm to 7 mm are obtained for the maximum location standard de-

viation on the first main axis (σ1). The sLORETA results show almost no difference

between loose parameters set to 0 or set to 0.2. For a loose parameter of 0, the

beamformer and sLORETA results are similar, with a median σ1 value between 2

and 4 mm. Different SNRs values have resulted in small changes of maximum dis-
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Figure 4.16: Violine plots of localization errors in auditory, visual and somatosensory regions
for small and medium SNRs and loose parameter of 0.2. See fig. 4.15 for details on statistics,
boxes and violin plots.
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Figure 4.17: Violine plots of maximum location statistics in auditory, visual and somatosen-
sory regions for small and medium SNRs and loose parameter of 0. See fig. 4.15 for details
on statistics, boxes and violin plots.
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Figure 4.18: Violine plots of maximum locatioon distribution statistics in auditory, visual
and somatosensory regions for small and medium SNRs and loose parameter of 0.2. See
fig. 4.15 for details on statistics, boxes and violin plots.

tributions only. The beamformer results with loose parameter of 0 tend to yield

smaller σ1 for small SNR compared to medium SNR. Higher than medium SNR do

not result in further improvements with respect to coregistration uncertainties.

4.3.3 Error estimates

Error estimates of the polynomial expansions were conducted, following the pro-

cedure of Weise et al. (2015). For this purpose, 1 000 evaluations of the polyno-

mial expansion were compared against exact computations of the beamformer and

sLORETA solutions in the regions of interest. For one subject, errors of a beam-

former estimate are depicted on the regions of interest in fig. 4.19. The topographies

of fig. 4.19 (a), (b) and (c) reveal the spiky characteristic of the relative error mea-

sure and care must be taken by interpreting the results. Large relative errors can

occur where the variance of the source estimates, due to coregistration uncertain-

ties, is small. The relative error measure was used in this thesis in order to compare

the results to Weise et al. (2015). Below the average over the regions of interest

is computed to obtain a global error measure for the regions. Figure 4.20 depicts

error statistics from 20 subjects for different SNRs, loose parameters and regions of

interest. The sLORETA errors are considerably larger than the beamformer errors.

Largest errors are observed in the visual and auditory regions while the errors in
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(a) (b) (c)

(d)

Figure 4.19: Error of the polynomial expansion of the beamformer estimate compared to
exact solutions shown for the auditory (a), visual (b) and somatosensory (c) region. The

values decode the relative error measure

∣∣p(~r,X)−p̂(~r,X)
∣∣∣∣p(~r,X)−E[p(~r,X)]
∣∣ . In the statistics below, the means

of this measure over the regions of interest are reported (see eq. (3.34)). Medium SNR and
a loose parameter set to 0 were used.

somatosensory regions are clearly smaller. Overall, the third quartiles of the errors

are not greater than 0.005. Small SNR causes larger sLORETA errors compared to

medium SNR. The beamformer expansion errors were larger when setting the loose

parameter to 0.2 compared to 0. Larger SNRs are not depicted in the figures because

the results were almost identical to medium SNR. Weise et al. (2015) found relative

errors between 0.1 to 1 % for three inputs and an order 7 polynomial expansion.

They used the order 7 polynomial expansion as reference and found errors of the

derived statistics, namely mean, standard deviation and derivative-based sensitivity

indices below 1 % for an order 4 polynomial expansion. The errors of the statistics

of the order 4 polynomial expansion were interpreted as acceptable. They also re-

ported relative errors of the 4 polynomial expansion of approximately 3 %. In this

thesis, order 6 polynomial expansions were used and maximal relative errors of 1.8 %

were found for the sLORETA estimate in visual regions for medium SNR.



86 Chapter 4. Results
θ

=
0

small SNR

10−4

10−3

10−2

a. v. s.

re
l.

er
ro

r

Beamf.

10−4

10−3

10−2

a. v. s.

re
l.

er
ro

r

sLORETA

medium SNR

10−4

10−3

10−2

a. v. s.

re
l.

er
ro

r
Beamf.

10−4

10−3

10−2

a. v. s.
re

l.
er

ro
r

sLORETA

θ
=

0.
2

10−4

10−3

10−2

a. v. s.

re
l.

er
ro

r

Beamf.

10−4

10−3

10−2

a. v. s.

re
l.

er
ro

r

sLORETA

10−4

10−3

10−2

a. v. s.

re
l.

er
ro

r

Beamf.

10−4

10−3

10−2

a. v. s.

re
l.

er
ro

r

sLORETA

Figure 4.20: Statistics of the relative error measure eq. (3.34) over 20 subjects for loose
parameters of 0 and 0.2 in the upper and lower row, respectively. On the abscissa of the
graphs, the regions of interest, auditory, visual and somatosensory are denoted by a., v. and
s., respectively. Boxes are drawn around the region between the first and third quartiles,
with a horizontal line at the median value. Whiskers extend from the box to the most distant
values within 1.5 times the interquartile range. Points that lie outside these limits are drawn
separately as in black. The coloured violin plots depict the probability density of the data,
smoothed by a kernel density estimator.



Chapter 5

Discussion and conclusions

5.1 Quality assessment of MEG-to-MRI coregistrations

5.1.1 Findings

Using an adaptive Metropolis algorithm to sample the six-dimensional coregistration

parameter space, and subsequent MLE, I was able to confirm the results of the

least squares approach to MEG-to-head coregistrations and further, to improve the

results of the ICP algorithm for head-to-MRI coregistrations. Interestingly, the

Metropolis algorithm provides parameter sets with ergodic properties that allow

estimating confidence intervals of the coregistration parameters. Target registration

error (TRE), for instance, is a function of the coregistration parameters at any point

in space. Statistical indices of TRE can be derived via the proposed Metropolis

sampling.

I found that it is possible to approximate the empirical distributions of residuals

in MEG-to-head and head-to-MRI coregistrations by replacing the point errors with

samples from normal and Student’s t-distributions, respectively. The empirical dis-

tributions indicated that 99 % of the data sets yielded RMS of residuals not larger

than 2.5 mm for MEG-to-head and 2.2 mm for head-to-MRI coregistrations. Thus,

dependent on the MEG lab, RMS values larger than these thresholds may indicate a

problem in the measurement procedure. However, this provides only a preliminary

assessment where the given thresholds are exceeded in about 1 % of the data sets.

Further, RMS of residuals are not well suited as a quality measure for coregistration,

as they do not correlate with the actual errors i.e. TRE (Fitzpatrick, 2009). This

was confirmed in the present study where very small correlation coefficients, of 0.017

and −0.116, were observed over the 5 544 MEG-to-head and 128 head-to-MRI data

sets. An adaptive Metropolis algorithm was used to sample the probability density of
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the coregistration parameters for each data set. For the MEG-to-head data sets, the

MLEs of the Metropolis algorithm were equal to the least squares estimates. This

was the expected result as I used the probability density of a normal distribution for

the errors and in this case the least squares estimate is equal to the MLE (Press et

al., 1992, equation 15.1.3). For the head-to-MRI data sets, the Metropolis algorithm

computed different MLE coregistration parameters compared to the ICP algorithm.

RMS of residuals were significantly reduced by the Metropolis algorithm compared

to the ICP. This may be explained by the fact that the ICP algorithm finds a local

minimum dependent on the initial state of the iteration (Besl and McKay, 1992).

Optimizations of the head-to-MRI coregistration have to deal with the difficulty

that the underlying data of both modalities does not match, only a subset of points

of one modality matches points of the other. Such optimizations depend on both

the initial rotation and translation, and are also referred to as local shape-matching

(Besl and McKay, 1992). And although Besl and McKay (1992) propose sampling

the initial rotation and translation parameters for the local shape matching using

the ICP algorithm, this method is not common practice in MEG labs, nor is it im-

plemented in commonly used packages such as MNE or mne-python. Compared to

ICP, the Metropolis algorithm searches more globally and it is less dependent on its

initial state. Samples can be drawn from the complete parameter distribution. Vari-

ance and higher moments can be estimated from the Metropolis samples because

of the correct ergodic properties (Haario, Saksman, and Tamminen, 2001). How-

ever, these advantages are achieved at much higher computational costs compared to

ICP. A standard desktop computer (random-access memory (RAM): 15.58 gigabyte

(GB), MIPS Technologies, Incorporation (MIPS): 4x6 784, central processing units

(CPUs): Core trademark (TM) i7-2600K 3.40 GHz) takes approximately 50 minutes

of computation to run a head-to-MRI Metropolis algorithm with 296 500 steps (593

head shape points).

For the translation parameter estimates, the head-to-MRI yielded smaller vari-

ances compared to the MEG-to-head coregistrations. The high accuracy of the

head-to-MRI translation parameters can be explained by the larger number of data

points compared to the MEG-to-head coregistrations. Interestingly, rotation param-

eters were similar between MEG-to-head and head-to-MRI. This may be explained

by the spherical nature of the head; spheres are rotation invariant in the head-to-MRI

coregistration problem.

For the investigated data sets, an average RMS of TRE at the head surface

of 1.7 mm was observed. An average RMS of the rotation errors of 1.1◦ was found,

which was well predicted by the root of the sum over the squared quaternion spreads
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from table 4.1. Hillebrand and Barnes (2003) found a TRE threshold of 2 mm at

the cortical surface for anatomically constrained beamformers. They suggest that

the use of anatomical constraints with beamformers is only beneficial if the MEG-

to-MRI coregistration and segmentation errors are smaller than 2 mm and 10◦ at

the cortex. This result was later confirmed by Hillebrand and Barnes (2011) for the

estimation of the source extent. The findings of this thesis showed, on average, a

smaller TRE than the critical 2 mm value reported by Hillebrand and Barnes (2003)

and Hillebrand and Barnes (2011), but 2 mm was still completely within the range of

the TRE distributions. However, with respect to rotations, the results of this thesis

were consistently below the critical threshold of 10◦. I found an upper 95th percentile

of the coregistration rotation error of 3.1◦ at maximum. That is, the measurements

described in this thesis are sufficiently accurate to practically avoid rotation errors

greater than 4◦. On the other hand do orientations of the cortical surface also depend

on the segmentation, which may result in source orientation errors in the order of

10◦. In contrast to Hillebrand and Barnes (2003) and Hillebrand and Barnes (2011),

I did not assess TRE at the cortical surface but at head shape points because of the

availability of this surface without conducting further segmentation. However, using

the Metropolis sampling of the coregistration parameters, I am able to compute TRE

at any point in space. For source reconstruction, TRE can be estimated at various

points of interest in the source space or at the entire cortical surface. For example,

fig. 4.4 shows TRE computed on a coronal and sagittal slice. The sagittal grid

on the right side of the figure shows a small TRE in frontal regions of the brain.

These regions were close to the centre of the coil positions, where the MEG-to-head

produces the smallest TRE, and also close to the face, where the digitization provides

more specific coregistration information compared to occipital regions.

Several studies have addressed the improvement in coregistration error stemming

from particular measurement steps. Singh et al. (1997) aimed to reduce the fiducial

localization error effects using a bite bar. They evaluated their strategy using Monte

Carlo simulations and were able to substantially improve the stability of their coreg-

istrations, in comparison to the pure fiducial-based method. At the time of Singh

et al. (1997), tracking of head position and rotation, during head shape digitization,

had not been established and, thus, the bite bar was essential to stabilise the head

relative to the digitization reference. A similar bite bar system was also proposed

by Adjamian et al. (2004) which, reduced the fiducial localization error by approx-

imately a factor of two. They also reported that the bite bar can cause discomfort

and introduces artifacts for some subjects. In the laboratory, coils are placed freely

on the anterior, upper part of the subject’s head surface, independent of anatom-



90 Chapter 5. Discussion and conclusions

ical landmarks. To compensate for head movement during 3D-digitization, head

position and rotation are tracked using an additional reference, mounted on special

glasses, which is common practice in present day MEG laboratories. No additional

mechanical hardware, for example, bite bars or individual head casts, are used to

restrict the movement of the subject’s head. The methods of assessing coregistra-

tion errors suggested in the current report are not affected by mechanical hardware,

although, if individual head casts are used a different approach for the assessment

of the head-to-MRI coregistration is needed. Meyer et al. (2017) suggested the use

of head casts that fit to the reconstructed surface of the MRI of individual subjects.

They estimated a maximal coregistration error of 1.2 mm by using such head casts.

Depending on the shape of the subjects head, there was some flexibility in the posi-

tioning of the head, relative to the cast, which was tracked by a reference coil on the

subject’s nose, in addition to the coils in the cast. They report a predominant uncer-

tainty of about 1.2 mm standard deviation of the head position relative to the cast

in the z-axis (superiorly oriented head coordinate). However, potential movement

of the subject’s head, in a head cast, presents a problem that was not addressed by

the assessments of this thesis.

Besides coregistration, head movement during data acquisition or between mea-

surement blocks are related sources of error in MEG source reconstructions. Uutela,

Taulu, and Hämäläinen (2001) compared two methods, a correction of sensor signals

by alignment of minimum norm estimates and a correction of forward calculations.

They found that both methods can efficiently reduce the effect of head movement in

typical MEG studies. Later, an alternative method of sensor signal correction, based

on multipole expansions, was proposed by Taulu and Kajola (2005) which is nowa-

days widely used with Neuromag devices. All of these methods rely on the accurate

estimation of head positions during the MEG measurement. Hence, their accuracy

is intrinsically limited by the error of MEG-to-head coregistrations. The magnitude

of head movements is often greater than the errors of MEG-to-head coregistrations

especially between measurement blocks and in studies with children. For example,

Wehner et al. (2008) reported an average head position displacement of 12 mm from

the beginning to the end of the experiment. Compared to other sources of error, such

as sensor noise and head movement, the MEG-to-MRI coregistration error provides

an absolute limit to the accuracy of source localization, which, cannot be reduced

by longer measurements or sophisticated head movement corrections.
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5.1.2 Practical recommendations

To facilitate a straightforward implementation of the proposed Metropolis algorithm

for head-to-MRI coregistration in different laboratories, I recommend the estimation

of error variance from the residuals according to the ratio σ2
η̂/σ

2
ζ = 2.87 ≈ 3, which

was found in the present study. For the acquisition of σ2
ζ , I suggest the use of existing

procedures from the respective laboratories (e.g. the ICP). From this starting point,

the estimation of error variance can be validated by error simulations and subsequent

head shape matchings. I recommend starting with variations of normal or Student’s

t-distributions. As soon as a theoretical error distribution is found, with satisfying

Kolmogorov–Smirnov statistics and a satisfying Q–Q plot of simulated and observed

residuals, Metropolis sampling of the log-likelihood eq. (2.59) can be started. For

MEG-to-head coregistration the Metropolis algorithm is not required in the case of

approximately normally distributed errors, of similar size as reported in the present

study. Assuming the latter conditions are met, parameter samples of MEG-to-head

can be generated by using σ2
ε ·
(
JTJ

)−1
of eq. (2.11) as the covariance matrix and

a standard normal random number generator. The MEG-to-head error variance

σ2
ε can be estimated from residuals as σ2

ε = σ2
δM/ (M − 2). This is the theoretical

ratio for linear least squares fits (Björck, 2015, page 214) of rotation and translation

parameters, where M is the number of coils. Optimal coregistration parameters are

found in closed form for MEG-to-head and from the maximum likelihood estimate

of the Metropolis sample for head-to-MRI. For corresponding parameter samples of

MEG-to-head and head-to-MRI, TRE is estimated by computation of eq. (2.61),

eq. (2.62) and eq. (2.63).

For the digitization of the head-to-MRI data sets a large number of head shape

points was used and facial features, (e.g. bridge of nose) were emphasized. Hence,

it is difficult to determine the exact contributions, to TRE, of the sheer number

of points involved and the number of facial features used. Taking into account the

spatial distribution of TRE, in fig. 4.4, I suggest it might also be beneficial to acquire

more head shape points in areas with the highest errors, such as the inion, which

tends to have unique spatial features. A similar argument can be made for coil

placement. The hair complicates the attachment of the coils at occipital regions,

which is the reason for a more frontal coil placement in the laboratory. If possible, I

recommend attaching at least one coil to an occipital location. I recommend using

a large number of head shape points, about 600 yielded the smallest TRE in the

current study, emphasis on facial features as well as the inion. However, the sheer

number of head shape points is not a guarantee for good coregistration. As seen

in fig. 4.3, the largest number of head shape points resulted, accidentally, in the
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largest TRE. Therefore, and in agreement with Hillebrand and Barnes (2003) and

Hillebrand and Barnes (2011), I recommend checking that the mean RMS of TRE

is not greater than 2 mm at the head surface.

Computations of TRE, like in fig. 4.4, are useful for coil placement and head

shape digitization optimizations in EEG applications as well. For example, for

accurate reconstructions of brain activity in the visual cortex it is beneficial to

refine the head shape digitization at occipital regions. In this case, TRE at the

visual cortex is the measure of interest. Coregistrations for EEG only involve the

head-to-MRI problem although head shape digitization is more challenging due to

the electrode cap, compared to the MEG procedure. As a result of the electrode

cap, the number of head shape points is usually smaller in the EEG coregistration

compared to the equivalent procedure in MEG. For this reason, the uncertainties of

the fit are likely to be higher for EEG compared to the results of the present study.

I believe that the availability of TRE at regions of interest would be useful for the

digitization optimization in EEG.

5.1.3 Conclusion

Quality assessment of MEG-to-MRI coregistrations can be achieved by using the

Metropolis sampling algorithm of the coregistration parameters and subsequently

evaluating TRE. Further, I propose establishing this assessment procedure in EEG

and MEG laboratories and suggest reporting TRE in the study publications, espe-

cially if source estimates are reported. I recommend the application of the Metropolis

algorithm to achieve higher accuracy when estimating the parameters of the head-

to-MRI problem. Due to the superior results compared to the ICP, and the avail-

ability of parameter distribution samples and derived measures like TRE, I suggest

the Metropolis algorithm also for EEG coregistration fits.
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5.2 Effects of coregistration uncertainty on forward

computations

The BEM forward computations were decomposed into primary and secondary fields.

Both components produce magnetic field standard deviations in the same order of

magnitude, for example between approximately 1 and 4 fT for auditory sources of

1 nA m. The effect of coregistration on topography and amplitude changes is similar

between primary and secondary fields.

For the total magnetic field, a Gaussian coregistration uncertainty with standard

deviation of 2 mm in each axis relates to median RDMs and MAGs of approximately

0.07± 0.02 and 1.00± 0.04, respectively.

The RDMs are less sensitive to a shift along the direction of the source orienta-

tion compared to orthogonal shifts. This can be explained by the relation of source

orientation and sensor topography. A source orientation parallel to the y-axis is

related to a magnetic field zero-crossing along the y-axis and a small shift in y pro-

duces a smaller difference in topography than shifts in x or z, because the strongest

gradient is parallel to x and x-shifts move the topography along this gradiant while

z-shifts modify it. In a similar setup, Zetter et al. (2018) investigated the effect

of coregistration uncertainties on forward computations and source reconstructions

for on-scalp MEG (by simulating optically pumped magnetometers). As opposed to

this thesis, their translation uncertainties were added independently to each sensor

position. They sampled their translation uncertainties from uniform distributions

within centered spheres. For different error levels, the radii of the spheres were de-

fined according to their RMS position errors of 2, 4 and 6 mm. Their error level of

2 mm RMS is most comparable to the uncertainties observed and discussed in this

thesis. For this error level, they found a mean correlation coefficent (CC) of 0.997

in sensor topographies for shallow sources. The CC is defined as

CC =
(b− E [b]) ·

(
b̂− E[b̂]

)T∣∣∣b− E [b]
∣∣∣ · ∣∣∣b̂− E[b̂]

∣∣∣ , (5.1)

where b is the reference topography and b̂ is the topography from the displaced

sensors. It follows from the definition of the RDM that RDM2 ≈ 2 (1− CC). This

is a good conversion if the means over the topographies are small compared their

standard deviations and it converges when the means approach zero. Hence, Zetter

et al. (2018) have found an RDM of 0.077 transforming their (CC = 0.997), which

is in fine agreement with the results of this thesis (median RDMs of 0.07± 0.02).
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MAGs depend mainly on the distance between sources and sensors and hence

larger MAGs are found for visual and somatosensory sources compared to auditory

sources. The reported mean MAGs were always greater than 1. This result is ex-

plained by the distribution of the 1/r2 characteristic of the magnetic field amplitude,

where r is the distance between source and sensor. The mean of two MAGs resulting

from an increase and decrease of the distance by δr is

r2

2 (r − δr)2 +
r2

2 (r + δr)
2 =

r2 (r + δr)
2 + r2 (r − δr)2

2 (r2 − δ2
r )

2 =
r2
(
2r2 + 2δ2

r

)
2 (r2 − δ2

r )
2 ,

where the first fraction on the left hand side is expanded by (r + δr)
2 and the second

one by (r − δr)2. The result is obviously greater than 1 for δ2
r < 3r2. Hence, for

symmetrical distributions of reasonably small increases and decreases of the distance

between sources and sensors, the mean MAG is greater than one.

By using polynomial expansions of the BEM forward computation, the compu-

tation time was reduced by a factor of approximately 40 compared to sheer Monte

Carlo sampling on a standard desktop machine (RAM: 15.58 GB, MIPS: 4x6 784,

CPUs: Core TM i7-2600K 3.40 GHz). However, the BEM computation is already

very efficient for different coregistrations because only the surface integrals over

the precomputed potentials at the boundary surfaces add a computational burden.

When FEM forward computations are involved, the computation of the magnetic

field for different coregistrations is computationally more expensive. Hence, polyno-

mial expansions of FEM computations can achieve a higher speed up here compared

to BEM.

From the forward computation results, it can be concluded:

1. It is not possible to accurately approximate the coregistration effects by using

primary or secondary fields alone.

2. The effects of coregistration uncertainty on RDMs are small and hence, only

small effects on source localization errors are expected.

3. The effects on MAGs are very small and only affect the amplitudes, not the

topographies, in the source space.

4. BEM forward computations are efficient for different coregistrations and poly-

nomial expansions reduced computation times by a factor of approximately

40.
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5.3 Effects of coregistration uncertainty on source esti-

mates

The propagation of coregistration uncertainty to source estimates was performed by

using Smolyak pseudospectral approximations of beamformer and sLORETA. This

approach was tested for auditory, visual and somatosensory brain activity with dif-

ferent SNRs and loose parameters on datasets of 20 subjects. The mean RMS of

TRE at the head shape points of these subjects was (1.9± 0.7) mm (mean ± stan-

dard deviation over subjects). By using pseudospectral approximations as efficient

surrogates of inverse operators, the distribution of the source estimate maximum

was sampled for 50 000 coregistrations. For this purpose, the sampling of coregis-

trations was built on the results of the assessment part of this thesis. The efficient

polynomial surrogate of the source estimates reduced the computation times by a

factor of either approximately 10 000 for beamformer or approximately 50 000 for

sLORETA compared to the exact reference computations. These large reductions of

computation times are possible because the computation of forward solutions plus

whitening, SVD, noise normalization et cetera were replaced by polynomial evalua-

tion and a matrix product. The size of the matrices is the number of polynomials

in the expansion (here 377) times the number of sources in the region of interest

(here between hundred and thousand) times 3 (for dipole triplets). The greater re-

duction of the sLORETA compared to the beamformer can be explained by the fact

that sloreta is based on the entire source space. In contrary, the beamformer can

be computed for each source independently, which is beneficial when only regions of

interest are analyzed. The computation times were estimated from 1 000 evaluations

on a standard desktop machine (RAM: 15.58 GB, MIPS: 4x6 784, CPUs: Core TM

i7-2600K 3.40 GHz).

The approximation errors had in the worst case (sLORETA in visual regions)

an upper 95 percentile of less than 1 % which indicates high accuracy (Weise et al.,

2015). Compared to sLORETA, the beamformer approximation errors are clearly

smaller. This is due to the lesser degrees of freedom for the beamformer compared to

sLORETA. SLORETA includes a coupling of different sources in its pseudoinverse

which may result in higher order polynomial terms.

By using the polynomial expansion coefficients of source estimates, statistics and

sensitivity indices were computed in closed form for source amplitudes. This analysis

revealed for example, that auditory sLORETA amplitudes were most sensitive to the

coregistration parameters which mainly affected the distance between sources and

closest sensors. In MEG analysis, however, the source estimation amplitudes itself
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are not as informative as its spatial and temporal distribution. Hence, the polyno-

mial expansions were used to efficiently sample the spatial maximum distribution

of the estimates for uncertain coregistrations. In such cases, where the expansion is

used as efficient approximation, it is not as important to use an orthogonal polyno-

mial basis as in cases where the statistics are directly derived from the coefficients.

That is, for the distribution of the maximum location a non-orthogonal basis could

be used providing even more efficient approximations. However, when the Smolyak

pseudospectral approximation is used, adaptation can also provide more accurate

and more efficient approximations compared to the fixed polynomial set of this the-

sis. The fixed polynomial sets were used for a better comparability of the expansion

errors, for between beamformer and sLORETA or between loose parameter of 0 and

0.2.

In this thesis, the results for dynamic coregistration uncertainties were reported,

that is, head movements are included in the uncertainties. When I compared the re-

sults with the static uncertainties for one single head position, I found only negligible

differences to the dynamic ones. This is related to the observation, that the subjects

moved their heads only a few millimeters at maximum. The MEG recordings were

conducted with adults, who are able to keep their heads well at one position for

several minutes. This would be different with children since they move their heads

much more during recordings (Wehner et al., 2008).

The effect of coregistration on the maximum location was similar between beam-

former and sLORETA with fixated orientations (a loose parameter of 0). On the

main axis, the median location standard deviation was between 2 and 4 mm, depen-

dent on the region, SNR and method, where the median was computed over subjects.

For slightly variable orientations (loose parameter of 0.2), the beamformer maximum

showed larger spatial deviations. Hence, when using orientation constraints, I rec-

ommend to use a strictly fixated (loose parameter of 0) surface normal constraint for

beamformers. In this thesis, localization errors were computed as spatial differences

between the mean maximum location (centre of the ellipsoids) and the centre of the

source patches. Compared the standard deviation of the maximum location, similar

localization errors are found with median values almost always smaller then 5 mm

per axis. This is in contrast to the results of Zetter et al. (2018), who reported similar

localization errors but smaller effects of coregistration uncertainty on the localiza-

tion errors. Zetter et al. (2018) investigated the effect of coregistration uncertainty

on source estimates in on-scalp MEG. They found that sensor position errors of less

than 4 mm increase any of their source estimation error metrics by no more than

8 %. On the one hand, this could be explained by the different error metric. They
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reported the effect on the localization errors while in this thesis the effect on the

maximum location itself was computed. On the other hand they used a different

definition of coregistration uncertainty. In on-scalp MEG, each sensor is localized

individually with respect to the head. This changes the nature of coregistration

uncertainties: in this thesis (sensors inside the MEG helmet), the uncertainties are

systematic shifts or rotations of the whole sensor array, while in on-scalp MEG, the

dominant uncertainty is sensor-wise (Zetter et al., 2018). Sensor localization un-

certainties are likely to cancel each other out to a certain extent, depending on the

number of sensors. This may explain the smaller localization errors found by Zetter

et al. (2018). Concerning the forward solutions, Zetter et al. (2018) found com-

parable difference measures on the field topographies as found in this thesis. This

may reveal that it is not straightforward to link localization errors and measures of

field topography differences like the RDM if the sensor arrays are different. When

sensor-wise errors yield similar RDMs as systematic shifts or rotations of the whole

sensor array, it is likely to find smaller effects on the source localization errors for

sensor-wise errors.

The head position measurements, which were assessed in this thesis, were con-

ducted according to the following MEG guidelines. Bagić et al. (2011) recommend

to use at least three localization coils, the data reported in this thesis was measured

with five localization coils. Hence, I recommend using at least five localization coils

in order to achieve the accuracy reported in this thesis. It is recommended that the

coil positions are covered by the sensor array (Gross et al., 2013) which was ful-

filled for the data reported in section 4.3. Bagić et al. (2011) and Hari et al. (2018)

further recommend to continuously measure head positions during recordings which

was done for the data of all 20 subjects reported in section 4.3. In section 3.4.2,

a method is proposed to incorporate continuously measured head positions in the

distribution of coregistration parameters. This method was used in all uncertainty

analyses reported in section 4.3.2. All coregistrations of this thesis were visually in-

spected as recommended by Gross et al. (2013). The MRIs used in this thesis follows

the recommendation of 1 mm slice thickness and skin to skin MRI head coverage for

proper coregistration (Burgess et al., 2011). Burgess et al. (2011) recommend the

digitization of at least 100 head shape points for coregistration. The number of head

shape points of the 20 subjects was between 475 and 857 in this thesis. For reporting

on spatial coordinates, Keil et al. (2014) recommend detailed methods for obtaining

these parameters and providing a measure of spatial variability or measurement er-

ror. In this thesis, source localization errors, confidence ellipsoids of source locations

and the TREs are provided.
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For compensation of head movements or as general noise reduction, the signal

space separation (SSS) (Taulu and Kajola, 2005) is commonly used as an early

pre-processing step in the MEG analysis. The compensation of head movements

requires continuous recording of the localization coil signals which typically operate

close the upper frequency band limit of the recording. These coil signals need to

be removed before MEG analysis by low pass filtering which effectively reduces the

bandwidth of the data. This compromise between head positions and bandwidth

is usually decided in favor of head positions, which is also the recommendation of

clinical MEG guidelines (Bagić et al., 2011; Hari et al., 2018). When the SSS is

applied, a linear combination of harmonic components is fitted to the MEG data.

The harmonic components are grouped into internal and external ones. SSS discards

the external ones and reconstructs cleaner MEG data by backprojecting the internal

components only (Garcés et al., 2017). For the internal components, an expansion

origin needs to be chosen inside the head volume. The effect of the position of that

origin on forward solutions and source estimates could be investigated by polynomial

expansions according to the methods of this thesis. Since the SSS reduces the

dimensionality and especially limits the spatial frequency of the data (Garcés et al.,

2017), it affects source estimates. Besides the origin, the number of internal and

external components as well as the regularization is variable in the SSS method.

Hence, the methods proposed in this thesis could be applied to SSS and sensitivities

of source estimates to individual variables could be investigated.

By using the uncertainty propagation methods of this thesis, it is possible to

analyse the effects on source estimation amplitudes and maximum locations. Such an

analysis can assist the decision whether a movement compensation, for example via

a signal space separation (Taulu and Kajola, 2005), should be used. The maximum

location confidence ellipsoid can also be used to decide whether a measurement block

should be excluded or not.

From the uncertainty analysis of source estimates, it can be concluded:

1. It is possible to apply stochastic spectral methods to MEG source estimation

with high accuracy.

2. The investigated effects of coregistration uncertainties on source estimates are

small, typically the maximum location varied within a range of 5 mm. This

is in the range of the localization errors. That is, high accuracy in source

estimation was achieved for TREs of approximately 2 mm.

3. Polynomial expansions of the source estimates reduced computation times con-

siderably by a factor of approximately 10 000 for beamformer and 50 000 for
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sLORETA compared to the exact original computations. This speedup en-

abled the Monte Carlo simulations of this thesis.
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Täuschungsversuch bewertet wird und gemäß § 7 Abs. 10 der Promotionsordnung
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