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Abbreviations 

α       Alpha 

aCSF      Artificial cerebrospinal fluid 

AAMR      Achalasia, alacrima, mental retardation 

ALG6      α-1,3-glucosyltransferase 

Asn      Asparagine 

β       Beta 

bFGF      Basic fibroblast growth factor 

BIP      Binding immunoglobulin protein 

BTX      Bungarotoxin 

CA      Cornu ammonis 

CaCl2      Calcium chloride 

CAPZB      Capping actin protein of muscle Z-disc β subunit 

CDG      Congenital disorder of glycosylation 

CHX      Cycloheximide 

CMD      Congenital muscular dystrophy 

CO2      Carbon dioxide 

COG      Conserved oligomeric golgi 

Con A      Concanavalin A 

COS-7      CV-1 in Origin, carrying SV40 

Cre      Causes recombination 

DAG1      Dystroglycan (precursor protein) 

dATP       Deoxyadenosine triphosphate 

DG      Dystroglycan 

dGTP                                                  Deoxyguanosine triphosphate 

DMSO      Dimethyl sulfoxide 

DNA      Deoxyribonucleic acid 

dNTP      Deoxynucleotide triphosphate 

Dol-PP-GlcNAc2Man5   Dolichol-diphosphate-di-N-acetylglucosamine-

penta-mannose 

Dol-PP-GlcNAc2Man9Glc3  Dolichol-diphosphate-di-N-acetylglucosamine-nona-

mannose-tri-glucose  

DPM      Dolichol-phosphate-mannose synthase 

DTT      Dithiothreitol 

dTTP       Deoxythymidine triphosphate 

ECM      Extracellular matrix 
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EDTA      Ethylenediaminetetraacetic acid 

ECL      Enhanced chemiluminiscence 

EM      Electron microscopy 

ER      Endoplasmic reticulum 

ERK      Extracellular-signal regulated kinase 

FBA      Foot base angle 

fEPSPs      Field excitatory postsynaptic potentials 

Flpe      Flippase 

FS      First-strand 

FKRP      Fukutin-related protein 

GalNAc      N-acetylgalactosamine 

GAPDH     Glyceraldehyde 3-phosphate dehydrogenase 

GDP      Guanosine diphosphate 

GFAP      Glial fibrillary acid protein 

GlcNAc      N-acetylglucosamine 

GlcNAcT-1     N-acetylglucosaminyltransferase 1 

GlcNAcT-2     N-acetylglucosaminyltransferase 2 

GLG1      Golgi glycoprotein 1 

GM130      Golgi matrix protein 130 

GMPPA   Guanosine-diphosphate-mannose  

   pyrophosphorylase A 

GMPPB  Guanosine-diphosphate-mannose 

pyrophosphorylase B 

GPI      Glycosyl-phosphatidylinositol 

GRB2      Growth factor receptor-bound protein 2 

GST      Glutathione S-transferase 

GTP      Guanosine triphosphate 

HCl      Hydrochloric acid 

HE      Hematoxylin/eosin 

HEK                                                          Human embryonic kidney 

HEPES      4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HFS      Half-maximal intensity 

His      Histidine 

H2O      Water 

HS      Horse serum 

IAA      Iodoacetamide 
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IF      Immunofluorescence 

IgG      Immunoglobuline G 

IgM      Immunoglobuline M 

IP      Immunoprecipitation 

KCl      Potassium chloride 

KDN      2-keto-3-deoxy-D-glycero-D-galacto-nononic acid 

KO      Knockout 

LacZ      β-D-galactosidase 

LARGE      Like-acetylglucosaminyltransferase 

LB      Lysogeny broth 

Lys      Lysine 

LTP      Long-term potentiation 

MALDI-TOF  Matrix-assisted laser desorption/ionization time of 

flight 

MBP      Maltose binding protein 

MEB      Muscle-eye-brain disease 

MgSO4      Magnesium sulfate 

MnCl2      Manganese chloride 

MOPS      3-(N-morpholino)-propanesulfonic acid 

MPI      Mannose-6-phosphate-isomerase 

MUSK      Muscle-specific kinase 

NaCl      Sodium chloride 

NaHCO3     Sodium bicarbonate 

NaH2PO4      Monosodium phosphate 

NaOH      Sodium hydroxide 

NF200      Neurofilament 200 

NMJ      Neuromuscular junction 

O2      Oxygen 

OST      Oligosaccharyltransferase 

P      Penicillin 

P-      Phosphate 

PBS      Phosphate buffered saline 

PCR      Polymerase chain reaction 

PEG      Polyethylene glycol 

PFA      Paraformaldehyde 

PLA      Proximity ligation assay 
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PMM2      Phosphomannomutase 2 

PNA      Peanut agglutinin 

POMGnT1/ 2  Protein-O-mannose-β1,4-N-

acetylglucosaminyltransferase 1 and 2 

POMT 1/ 2     Protein O-mannosyltransferases 1 and 2 

Pro      Proline 

PVDF      Polyvinylidene fluoride 

qPCR      Quantitative PCR 

RbCl      Rubidium chloride 

RNA      Ribonucleic acid 

RSC1A1     Regulator of solute carriers 1 

RT      Room temperature 

S      Streptomycin 

SDS      Sodium dodecyl sulfate 

Ser      Serine 

siScr      Scrambled siRNA 

SSPE      Sodium chloride-sodium phosphate-EDTA 

TAE      Tris-acetate-EDTA 

TBS      Tris-buffered saline 

TE      Tris-EDTA 

TGN38      Trans-Golgi network integral membrane protein 38 

Thr      Threonine 

Tyr      Tyrosine 

UV      Ultraviolet 

WGA      Wheat germ agglutinin 

WT      Wild-type 

WWS      Walker-Warburg-syndrome 
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Summary 

The AAMR syndrome is characterized by mental retardation and gait abnormalities as well as 

achalasia and alacrima. This disorder is inherited as an autosomal recessive trait and is 

caused by mutations in the Guanosine-diphosphate-(GDP)-mannose-pyrophosphorylase A 

(GMPPA) gene. GMPPA encodes the 420 aa protein GMPPA. Its homolog, the GDP-

mannose-pyrophosphorylase B (GMPPB), converts mannose-1-phosphate and guanosine 

triphosphate (GTP) to GDP-mannose, which is an essential substrate for glycosylation. Up to 

date, 18 patients with inactivating mutations in the GMPPA gene have been reported 

worldwide. 

 

To elucidate the function of GMPPA in more detail we generated a Gmppa knockout (KO) 

mouse model. Importantly, these mice recapitulate many features of human AAMR syndrome 

patients, e.g. homozygous Gmppa KO mice show structural brain alterations. Moreover, 

Gmppa KO mice show a progressive gait disorder with muscle weakness accompanied by 

centralization of nuclei, alterations of the mean fiber diameter, the distribution of extracellular 

matrix (ECM) proteins and of the Z-disc related protein α-Actinin. In immunoblot analysis we 

found hyperglycosylation of proteins, especially hyperglycosylation of alpha-Dystroglycan (α-

DG). Hyperglycosylated α-DG shows decreased protein stability and an increased binding to 

ECM proteins. Suggesting that the observed muscle phenotype is muscle intrinsic, sciatic 

nerve structure and nerve conduction velocities are normal in Gmppa KO mice. 

Mechanistically, elevated GDP-mannose levels and a direct interaction of GMPPA with 

GMPPB support a role of GMPPA as an allosteric feedback inhibitor of GMPPB. Gmppa 

knockdown studies in myoblasts revealed an increased α-DG turnover and activation of ERK 

signaling. 

In mice, a mannose-depleted diet dramatically improved the motor phenotype and almost 

normalized glycosylation of α-DG and ERK signaling. Thus, we propose that AAMR 

syndrome caused by GMPPA mutations is at least in part a treatable condition. 
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Zusammenfassung 

Beim AAMR-Syndrom leiden Betroffene unter einer geistigen Behinderung, Gangstörungen 

sowie Achalasie und Alakrimie. Diese autosomal-rezessiv vererbbare Erkrankung wird durch 

Mutationen im Guanosin-Diphosphat-(GDP)-Mannose-Pyrophosphorylase A (GMPPA) Gen 

hervorgerufen, welches das 420 Aminosäuren lange Protein GMPPA kodiert. Das Homolog 

von GMPPA, die GDP-Mannose-Pyrophosphorylase B (GMPPB), konvertiert Mannose-1-

Phosphat und Guanosin-Triphosphat (GTP) zu GDP-Mannose, welches ein essentielles 

Substrat der Glykosylierungskette darstellt. Bis heute sind nur 18 Patienten mit GMPPA-

Mutationen beschrieben worden.  

 

Um die Funktion von GMPPA näher zu beleuchten, haben wir ein Gmppa-Knockout-(KO)-

Mausmodell generiert. Diese Mäuse zeigen ein Krankheitsbild das viele Aspekte der 

humanen Patienten wiederspiegelt, so zeigen homozygote Gmppa-KO-Mäuse kognitive 

Defekte sowie strukturelle Veränderungen des Gehirns. Des Weiteren zeigen Gmppa-KO-

Mäuse eine progressive Gangstörung mit zunehmender Muskelschwäche sowie 

Veränderungen extrazellulärer Matrix-(ECM) und Z-Disk-Proteine. Wir konnten an Gewebe-

Lysaten zeigen, dass Proteine von Gmppa-KO-Mäusen, insbesondere auch alpha-

Dystroglykan (α-DG), hyperglykosyliert sind. Die Hyperglykosylierung von α-DG führt zu einer 

verminderten Proteinstabilität und einer erhöhten Bindung an ECM-Proteine. Da in Gmppa-

KO-Mäusen der Ischiasnerv morphologisch unverändert war und die elektrophysiologischen 

Eigenschaften unauffällig waren, gehen wir von einem muskelintrinsischen Defekt aus.  

Da die GDP-Mannose-Spiegel im Gewebe erhöht waren und eine direkte Interaktion von 

GMPPA mit GMPPB gezeigt werden konnte, vermuten wir, dass GMPPA als allosterischer 

Inhibitor von GMPPB fungiert. 

Gmppa-knockdown-Studien in Myoblasten lassen auf eine Aktivierung des ERK-Signalweges 

schließen.  

Wir konnten durch Gabe einer Mannose-freien Diät eine erhebliche Verbesserung der 

motorischen Auffälligkeiten sowie eine fast vollständige Normalisierung der Glykosylierung 

und der ERK-Aktivierung erreichen. Möglicherweise ist eine Mannose-freie Diät auch eine 

therapeutische Option für Patienten. 
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This thesis follows the “Guidelines for nomenclature of genes and proteins” from the Mouse 

Genome Informatics (MGI) and the HUGO Gene nomenclature committee: Human genes are 

written in uppercase and italics, human proteins are written in uppercase. Mouse genes are 

written with the first letter in uppercase and the following letter in lowercase, proteins are 

written in uppercase. Protein names as well as antibodies that are written out completely are 

written with the first letter in upper case and the following letters in lower case. 

 

Introduction 

Glycosylation is the most common post-translational modification of proteins and lipids. It has 

been reported that more than 50 % of human proteins are conjugated with glycans (Wong 

2005). The glycosylation status can affect protein stability and conformation. It plays a 

prominent role in many biological processes, e.g. cell-to-cell communication, cell-matrix 

interaction, adhesion, protein targeting and folding, viral or bacterial infection, progression of 

cancer and aging (Traini et al. 2017, Banerjee et al. 2017, Breloy et al. 2018). Briefly, sugars 

required for glycosylation are synthesized or isomerized in the cytoplasm, activated and 

linked to dolichol-phosphate at the endoplasmic reticulum (ER). Linkage of glycans to 

dolichol enables further use by the glycosylation machinery. Therefore, dolichol-phosphate-

sugars are translocated into the ER by flippases and sugars are then added to nascent 

protein chains. While proceeding from the ER into the Golgi, the glycosylation of proteins 

becomes eventually highly complex (Fig. 1).  

Normally, glycans can be classified into two groups according to their glycan-peptide linkage: 

Glycans that are linked to asparagine (Asn) residues of polypeptides are termed N-glycans, 

while those that are linked to serine (Ser), threonine (Thr), tyrosine (Tyr), (hydroxyl-) lysine 

(Lys) and (hydroxyl-) proline (Pro) residues are termed O-glycans. In N-glycans, the terminal 

N-acetylglucosamine (GlcNAc) is linked to the amide group of Asn. In O-glycans, the terminal 

N-acetylgalactosamine (GalNAc) is attached to the hydroxyl group of Ser and Thr residues of 

polypeptides. However, in addition to the abundant O-GalNAc forms, several other subtypes 

of protein O-glycosylation have been reported, such as linkage via O-fucose, O-glucose, O-

GlcNAc, O-xylose, O-galactose on hydroxylysine, and O-mannose (Bennett et al. 2012). In 

mammals, both N- and O-glycosylation start at the ER site in the cytoplasm with the 

generation of activated sugar molecules, e.g. GDP-mannose (activated mannose form) by 

GMPPB.  
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Fig. 1: The glycosylation pathway. N-glycosylation and O-mannosylation start with the synthesis of mannose-

6-phosphate by the Mannose-6-phosphate-isomerase (MPI). Mannose-6-phosphate is converted to mannose-1-

phosphate by the Phosphomannomutase 2 (PMM2). Mannose-1-phosphate is converted to GDP-mannose by 

(Guanosine-diphosphate-mannose-pyrophosphorylase B) GMPPB. GDP-mannose is then transferred to a 

dolichol-phosphate-molecule by Dolichol-phosphate-mannose synthase (DPM) creating dolichol-phosphate-

mannose. The dolichol-phosphate-mannose molecule flips to the lumen of the endoplasmic reticulum (ER) 

where mannose and glucose molecules are attached. The first glucose residue is attached by the α-1,3-

Glucosyltransferase (ALG6). Dol-PP-GlcNAc2Man9Glc3 is transferred onto an asparagine (Asn) residue in case 

of N-glycosylation. In case of O-glycosylation, dolichol-phosphate-mannose is transferred normally onto a serine 

(Ser) or threonine (Thr) residue. Correctly folded proteins exit the ER and move to the Golgi where additional 

sugar molecules are added and/or modified. COG: Conserved oligomeric golgi, LARGE: Like-

acetylglucosaminyltransferase, POMGnT1: Protein-O-linked-mannose-β-1,2-N-acetylglucosaminyltransferase, 

FKRP: Fukutin-related protein. 

 

D-Mannose is the 2-epimer of glucose and is transported into mammalian cells via glucose 

transporters. Hexokinase then phosphorylates mannose to form mannose-6-phosphate. 

Alternatively, Mannose-6-phosphate is generated by the isomerization of glucose-6-

phosphate. Mannose-6-phosphate serves as a substrate for three different enzymes which 

compete for this substrate. The first enzyme, the Mannose-6-phosphate isomerase catalyzes 

the conversion of mannose-6-phosphate to fructose-6-phosphate which can be either 

converted to glucose-6-phosphate or used for glycolysis. The second enzyme, the 2-keto-3-

Deoxy-D-glycero-D-galacto-nononic acid-(KDN)-9-phosphate synthase converts mannose-6-
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phosphate to KDN-9-phosphate, a sialic acid analog which is used for generation of KDN 

glycans. The third enzyme, the Phosphomannomutase 2 (PMM2) converts mannose-6-

phosphate to mannose-1-phosphate. Mannose-1-phosphate and GTP are converted to GDP-

mannose by GMPPB (Sharma et al. 2014).  

GDP-mannose is then transferred onto dolichol-phosphate by the enzyme Dolichol-

phosphate-mannose synthase (DPM) creating dolichol-phosphate-mannose, which is 

translocated into the ER lumen, most likely by a flippase. Until today, the exact mechanism of 

the dolichol-phosphate-mannose translocation into the ER remains unknown. Importantly, 

GDP-mannose cannot be transported across the ER. Thus, its conversion to dolichol-

phosphate-mannose is essential for the glycosylation pathway. 

For N-glycosylation, the dolichol-linked glycan precursor Dol-PP-GlcNAc2Man5 (dolichol-

diphosphate-di-N-acetylglucosamine-penta-mannose) is flipped from the cytoplasmic to the 

luminal side of the ER. In the luminal ER four additional mannose and three glucose residues 

are attached to the glycan precursor generating Dol-PP-GlcNAc2Man9Glc3 (dolichol-

diphosphate-di-N-acetylglucosamine-nona-mannose-tri-glucose). Dol-PP-GlcNAc2Man9Glc3 

is transferred to the γ-amino-group of a nascent protein by Oligosaccharyltransferase (OST) 

releasing dolichol-di-phosphate. After the transfer of the precursor Dol-PP-

GlcNAc2Man9Glc3 to an Asn residue of a nascent protein chain, further processing of the 

glycosylation takes place. While α-Glucosidase 1 removes the terminal α1-2 glucose and 

Glucosidase 2 removes the inner α1-3 glucose residues, Mannosidase 1 removes the 

terminal α1-2 mannose of some N-glycosylated proteins. Correctly folded proteins are 

transported from ER to Golgi and processing of the glycosylation continues. The enzyme α1-

2-Mannosidase removes mannose residues in order to produce GlcNAc2Man5. Some 

glycoproteins will escape this mannose removal creating oligomannose or so called high-

mannose structures. After the N-acetylglucosaminyltransferase 1 (GlcNAcT-1) added a N-

acetylglucosamine residue to the α1-3 mannose, mannose residues are trimmed by α-

mannosidase 2 in order to form GlcNAc2Man3 in complex glycoproteins. In hybrid glycans no 

trimming occurs. A second N-acetylglucosamine residue is added to the α1-6 mannose by 

the N-acetylglucosaminyltransferase 2 (GlcNAcT-2). The two N-actelyglucosamine residues 

serve for further branch extension by attachment of fucose, galactose and sialic acid. 

Complex glycans have more than two branches (Stanley et al. 2009). 

For O-glycosylation, dolichol-phosphate serves as precursor for activated sugars, e.g. in case 

of O-mannosylation, dolichol-phosphate-mannose flips into the ER lumen and mannose is 

transferred onto the hydroxyl group of the nascent protein by a heteromeric complex of 

Protein O-mannosyltransferases 1 and 2 (POMT) (Bartels et al. 2016). The first elongation 

process of O-glycans starts in the ER: The Protein-O-mannose-β1,4-N-
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acetylglucosaminyltransferase 2 (POMGnT2) initiates core m3 structures (GlcNAcß1,4Man) 

which are elongated by β1,3-linked N-acetylgalactosamine. The first mannose residue is 

phosphorylated in the ER and is further modified by disaccharide units (-3-xylose-α1,3-

glucuronic acid-β1-) in the Golgi. In the Golgi the Protein O-mannose β1,2-N-

acetylglucosaminyltransferase 1 (POMGnT1) initiates linear core m1 (GlcNAcß1,2Man) and 

together with β1,6-N-acetylglucosaminyltransferase (GnT-Vb/GnT-IX) branched core m2 

structures (GlcNAcß1,6GlcNAcß1,2Man). The m1 and m2 core structures are further 

elongated by ß1,4-linked galactose and neuraminic acid. Similar to N-glycosylated proteins 

only correctly folded proteins are transported from the ER to the Golgi. Misfolded proteins are 

de-glycosylated in the ER, and degraded by the proteasome and lysosome pathway 

releasing monosaccharides for re-entering the glycosylation pathway (Martinez-Duncker et 

al. 2014, Freeze et al. 2012, Cantagrel et al. 2011, Endo 2019, Spiro 2002, Vasconcelos-

Dos-Santos et al. 2015).  

Similar to N- and O-glycosylation, the attachment of Glycosyl-phosphatidylinositol (GPI) 

membrane anchors requires dolichol-phosphate-mannose. Mannose residues that are 

attached to dolichol-phosphate on the cytoplasmic side of the ER are derived from GDP-

mannose. GPI anchor synthesis starts with the transfer of N-acetylglucosamine to 

phosphatidylinositol at the cytoplasmic side of the ER. At the luminal side of the ER the 

inositol is acylated and mannose and phosphoethanolamine residues are attached. The GPI 

is then transferred to proteins with a C-terminal GPI signal. GPI anchor synthesis comprises 

at least 10 reaction steps and more than 20 genes (Kinoshita et al. 2000). 

 

Congenital disorders of glycosylation (CDG)  

CDGs appoint mostly to autosomal recessive inherited disorders with mutations in genes 

encoding proteins essential for the glycosylation pathway and are often associated with brain 

and eye involvement and muscular dystrophy (Barišić et al. 2011, Engel et al. 2015). In 

general, CDGs can be divided into two types: CDGs type I are based on defects in the 

biosynthesis and/or the subsequent transfer of oligosaccharides. CDGs type II are due to 

defects in oligosaccharide trimming and processing. Among diagnosed CDG patients 

worldwide, 94 % are represented by CDGs type I and only 6 % by CDGs type II (Péanne et 

al. 2017). 

The most frequent CDG is the PMM2-CDG with over 800 cases out of 1350 CDG cases 

reported worldwide. The PMM2 gene encodes for the Phosphomannomutase 2, the enzyme 

that converts mannose-6-phosphate into mannose-1-phosphate. Mannose-1-phosphate is 

needed for the formation of GDP-mannose and dolichol-phosphate-mannose (Fig.1). The 
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reported mutations in the PMM2 gene lead to a reduced PMM2 activity and less GDP-

mannose and dolichol-phosphate-mannose molecules are available, resulting in shortened 

oligosaccharides and hypoglycosylation. Individuals with the respective mutations show a 

wide range of affected organs and varying degree of severity depending on the impact of the 

mutation. Most patients show hypotonia, strabismus, developmental delay, gait ataxia, 

hypogonadism and abnormal facial gestalt, e.g. high forehead and triangular face. In severe 

cases, affected children are stillborn or die shortly after birth due to excessive fluid 

accumulations in the fetal body. Approximately 20 % of affected children die within their first 

year of life because of organ failure (Péanne et al. 2017, Jaeken 2013). 

The second most frequent CDG is reported for mutations in the α-1,3-Glucosyltransferase 

(ALG6) with over 100 diagnosed cases worldwide. The ALG6 gene encodes for the α-1,3-

Glucosyltransferase which catalyzes the addition of the first glucose residue to the dolichol-

phosphate-oligosaccharide in the ER (Fig.1). Mutations in the ALG6 gene lead to a reduced 

expression or activity of the glucosyltransferase preventing further processing of the 

glycosylation. Indeed, patient fibroblasts demonstrated increased Dol-PP-GlcNAc2Man9 

levels. Affected individuals show strabismus, hypotonia, ataxia, seizures and mild 

developmental delay (Jaeken 2013, Péanne et al. 2017). 

The Conserved oligomeric golgi (COG) complex is a peripheral Golgi membrane complex 

composed of 8 subunits. It is crucial for retrograde protein transport from Golgi to ER and for 

transport processes in the Golgi, thus, allowing proper glycosylation (Fig.1). Thus, mutations 

in one or more of the COG subunits alters the retrograde and internal Golgi transport as well 

as ongoing glycosylation processes in the Golgi leading to COG-CDG. It has been shown 

that mutations in the COG complex lead to a decreased activity of nucleotide-sugar 

transporters and glycosyltransferases in the Golgi. Patients with COG-CDG suffer from 

hypotonia, growth retardation, microcephaly, dysmorphism, feeding problems and cerebral 

atrophy (Jaeken 2013, Wu et al. 2004).  

The majority of CDGs is associated with glycosylation defects of α-DG. At least 15 genes are 

known to cause such α-Dystroglycanopathies. α-DG is an essential linker between the 

extracellular matrix (ECM) and the muscle fiber sarcolemma. Its proper glycosylation is 

critical for its ability to bind to ligands in the ECM and for acetylcholine receptor clustering at 

neuromuscular junctions (NMJ). Its 895 amino acids (aa) precursor protein Dystroglycan 

(DAG1) is cleaved in the ER into an alpha (α) and a beta (β) subunit (Deyst et al. 1995). The 

cleavage of Dystroglycan is essential for post-translational modifications, including 

glycosylation (Esapa et al. 2003). α- and β-DG are both N-glycosylated, but α-DG 

glycosylation is much more complex (Ervasti et al. 1997). α-DG includes two globular 

domains flanking a central mucin domain which possesses many serine (Ser) and threonine 
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(Thr) residues which are heavily O-glycosylated and, especially, O-mannosylated (Stalnaker 

et al. 2011). This tremendous glycosylation of the mucin domain of α-DG increases its 

molecular weight significantly. Interestingly, this glycosylation is varying between different 

tissues and ages. Notably, unglycoslated α-DG has a molecular weight of 74 kDa, while the 

mature fully glycosylated brain α-DG has a molecular weight of roughly 120 kDa and mature 

skeletal muscle α-DG shows a molecular weight between 130 and 280 kDa depending on the 

developmental phase (Gee et al. 1993, Ervasti et al. 1993). Glycosylation of α-DG is 

necessary for its localization to the cell membrane and its binding to ECM proteins, such as 

Laminin or Agrin, but it is not essential for β-DG binding (Di Stasio et al. 1999, Michele et al. 

2009). As β-DG is non-covalently bound via its N-terminal domain to the C-terminal part of α-

DG, β-DG interacts inside the cell with Dystrophin and Growth factor receptor-bound protein 

2 (GRB2) and is therefore thought to be involved in cell signaling (Grady et al. 1999, Jung et 

al. 1995).  

Most α-Dystroglycanopathies are classified as CDGs type II and include Muscle-eye-brain 

disease (MEB), Walker-Warburg-syndrome (WWS), Fukuyama congenital muscular 

dystrophy (CMD) and limb girdle muscular dystrophy. So far, only α-Dystroglycanopathies 

due to a reduced glycosylation of α-DG, and not a hyperglycosylation, have been reported. 

The LARGE gene encodes for the Golgi resident bifunctional glycosyltransferase Like-

acetylglucosaminyltransferase (LARGE) which attaches the final xylose and glucuronic acid 

to α-DG enabling its binding to ECM ligands (Fig.1). Moreover, binding of LARGE to the N-

terminal domain of α-DG is crucial for proper α-DG glycosylation (Kanagawa et al. 2004) and 

mutations in LARGE cause CMD (Brockington et al. 2005). LARGE-deficient mice show 

similar symptoms compared to human patients, but mice are more severely affected. 

Strikingly, these mice exhibit a shorted life span due to a severe and progressive CMD with 

defects in skeletal and cardiac muscles and impaired neuronal migration (Holzfeind et al. 

2002). Moreover, LARGE-deficient mice show hypoglycosylated α-DG with decreased 

molecular weight and reduced ECM ligand binding compared to wild-type (WT) mice. It has 

been shown that overexpression of LARGE in mouse models with defective 

glycosyltransferases rescues proper ECM ligand binding (Aguilan et al. 2009, Patnaik et al. 

2009, Brockington et al. 2005). Interestingly, LARGE overexpression in mice resulted in 

hyperglycosylation of α-DG and reduced muscle force (Brockington et al. 2010).  

The POMGNT1 gene encodes for the Golgi resident Protein-O-linked-mannose-β-1,2-N-

acetylglucosaminyltransferase which initiates linear m1 and branched m2 core structures in 

O-glycans (Fig.1). Individuals with mutations in POMGNT1 suffer from MEB-disease with 

CMD, eye involvement, mental retardation and type II lissencephaly. Life expectancy of the 

patients is about 12 years (Dobson et al. 2013). POMGNT1-deficient mice develop MEB 
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disease with hypoglycosylation of α-DG. Homozygous knockout (KO) mice showed reduced 

fertility, abnormal eye development, dystrophic muscles with reduced fiber size and centrally 

located nuclei. Moreover, these mice showed developmental defects in the brain including a 

smaller cerebellum, thinner cortical layers, cell clumps in the cerebellum due to abnormal cell 

migration and hippocampal alterations (Liu et al. 2006).  

Similar findings have been reported for mutations in the Fukutin-related protein (FKRP) in 

mice, a putative glycosyltransferase (Fig.1). Affected individuals with a reduced FKRP activity 

suffer from CMD, limb girdle muscular dystrophy, WWS and MEB. FKRP-deficient mice die 

during embryonic development. Mice with a Fkrp-point mutation display hypoglycosylated α-

DG, muscle weakness, ocular and brain abnormalities due to a reduced FKRP activity. 

Muscular dystrophy of skeletal and heart muscle was indicated by a higher variation in fiber 

size, more necrotic fibers, more centrally located nuclei and increased fibrosis. Brain 

abnormalities included a smaller brain size, expanded lateral ventricles, disorganized cortex 

and cerebellum and hippocampal alterations (Chan et al. 2010).  

 

As described above, α-Dystroglycanophathies show many features overlapping with brain 

and muscle disorders. In mouse models it has been shown that brain abnormalities include 

abnormal layering of the cortex, an altered hippocampus and a smaller cerebellum with 

abnormal cell clusters. 

The cortex is the outer layer of the cerebrum of the brain and is connected to several 

subcortical structures. It consists of motoric, sensory and association areas. Sensory areas, 

such as primary visual, primary auditory or primary somatosensory cortex, receive and 

process information. Motoric areas, such as the primary motor cortex, are necessary for 

voluntary movement. Association areas include areas that do not belong to the primary 

cortex and are necessary for a perceptual experience (Shipp 2007). 

Thalamus, hypothalamus, amygdala and hippocampus form the limbic system which is 

related to emotions and memory and learning. 

The hippocampus is important for declarative memory function. It comprises the dentate 

gyrus, cornu ammonis (CA) fields and the subiculum. The dentate gyrus receives input from 

the entorhinal cortex. The CA fields contain pyramidal cells and are divided into three regions 

(CA1–CA3) (Cohen et al. 1999, Wible 2013). 

The cerebellum plays an important role in the control and coordination of movements (Paullin 

et al. 1993). It consists of the cerebellar cortex, white matter and a fluid-filled ventricle at the 

base (Braitenberg et al. 1958). The cerebellar cortex is divided into a granule cell layer, a 

Purkinje cell layer and the molecular layer. Purkinje cells belong to the second largest 
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neurons in the human brain. It has been reported that Purkinje cell alterations impair 

voluntary movements (Schmitz-Hübsch et al. 2006). 

 

Fig. 2: The murine brain. a) Hematoxylin/esosin (HE) staining showing a sagittal section of a murine brain with 

cortex, hippocampus and cerebellum. b) HE staining of a murine hippocampus showing the different CA fields 

and the dentate gyrus.  

 

All α-Dystroglycanopathies are connected with CMD. In mouse models muscular dystrophy is 

reflected by reduced muscle strength, variation in fiber size, necrotic fibers, centralized nuclei 

and fibrosis.  

The muscular system comprises smooth and skeletal muscles as well as the heart. Muscles 

are involved in manifold functions such as movement, blood circulation, heartbeat, breathing, 

digestion, temperature regulation and vision. The unique feature of skeletal muscles is their 

conscious control. In humans, skeletal muscle tissue comprises 40 % of total body weight 

and approximately 50-75 % of all proteins found in the human body. Skeletal muscle tissue 

comprises skeletal muscle fibers, blood vessels, nerve fibers, and the ECM. The ECM is 

divided into different levels: The epimysium surrounds skeletal muscle, the perimysium 

surrounds fascicles and the endomysium surrounds muscle fibers. 

Skeletal muscle cells, also known as myofibers or fibers, are multinucleated and post-mitotic 

(Hikida 2011) cells. Skeletal muscle cells appear striated under the microscope due to their 

highly organized structure: Actin (thin filaments) and Myosin filaments (thick filaments) are 

regularly repeated together with their regulatory proteins Troponin and Tropomyosin forming 

the functional unit of a fiber, the sarcomere, which is important for contraction. The 

sarcomere is bordered by Z-discs to which the Actin filaments are anchored. Z-discs contain 

several proteins, such as α-Actinin or the Capping actin protein of muscle Z-disc β subunit 

(CAPZB). 

Skeletal muscle stem cells, the satellite cells, are located between the sarcolemma, the 

skeletal muscle cell membrane, and the basal lamina. Satellite cells are important for muscle 
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growth, repair and regeneration. Upon myogenic signals, satellite cells start to proliferate and 

differentiate into new fibers (Hikida 2011, Wilkins et al. 2001, Macaluso et al. 2012, Bareja et 

al. 2014, Frontera et al. 2014). 

 

Fig. 3: Schematic structural organization of a skeletal muscle. a) Each skeletal muscle is embedded into 

the epimysium. Bundles of muscle fibers, named fascicles, are surrounded by the perimysium. Each muscle 

cell, called fiber, is surrounded by the endomysium. b) Schematic overview of the basic muscle contractile unit, 

the sarcomere: thick Myosin filaments are shown in red, thin contractile Actin filaments are shown in black. The 

elastic protein Titin is shown in green. Actin and Titin are connected via α-Actinin to the Z-discs, shown as 

vertical black lines. 

  

Recent studies revealed that mutations in the Guanosine-diphosphate-(GDP)-mannose-

pyrophosphorylase B (GMPPB) causes CMD and MEB with hypoglycosylation of α-DG. 

GMPPB catalyzes the formation of GDP-mannose (Fig.1), which is required for the 

glycosylation of proteins and lipids. The GDP-mannose molecule is an essential cellular 

requirement for a number of glycosylation pathways, including O-mannosylation of 

membrane and secretory glycoproteins, such as α-DG (Stalnaker et al. 2011, Endo 2019).  

Our group identified mutations in the homolog of the GMPPB gene, the Guanosine-

diphosphate-(GDP)-mannose-pyrophosphorylase A (GMPPA) as the causative genetic 
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defect for achalasia, alacrima and mental retardation (AAMR) syndrome (Koehler et al. 

2013). AAMR syndrome is a rare disease that is inherited as an autosomal recessive trait. 

Achalasia is the inability to swallow and alacrima is the absence of tear flow. Individuals with 

mental retardation show deficits in memory and learning, reasoning and adaptive behaviors 

due to brain alterations (Koehler et al. 2013). Up to now, 18 patients are reported worldwide 

and only two of them are older adults. Symptoms arise at birth or within the first months of 

life. Apart from the mentioned symptoms, some AAMR patients show gait abnormalities, 

muscle hypotonia as well as visual and hearing impairment (Koehler et al. 2013, Gold et al. 

2017, Benítez et al. 2018).  

The GMPPA gene encodes a protein of 420 amino acids (aa). The Guanosine-diphosphate-

mannose-pyrophosphorylase A (GMPPA) does not show catalytic activity, but is able to bind 

GDP-mannose (Ning et al. 2000). These findings suggest that GMPPA might serve as an 

allosteric feedback inhibitor of GMPPB (Koehler et al. 2013). 
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Aim of this thesis 

Glycosylation is of vital importance as it is the most common post-translational modification of 

proteins and lipids. While N-linked glycans are linked to the nitrogen atom of an asparagine, 

O-linked oligosaccharides are attached to the hydroxyl oxygen group of a serine, threonine, 

tyrosine, (hydroxl-) lysine or (hydroxl-) proline. Both N- and O-glycosylation start in the 

cytoplasm with the generation of activated sugar molecules that are linked to dolichol-

phosphate at the ER. Dolichol-phosphate-sugars are then flipped into the ER, more sugar 

residues are added and subsequently linked to nascent protein chains. The glycosylation 

process continues while the protein is proceeding into the Golgi apparatus. Perturbations of 

the glycosylation pathway lead to severe diseases, which are categorized as CDGs.  

Our group recently identified that mutations in the GMPPA gene cause AAMR syndrome in 

combination with muscle weakness and hypotonia and gait abnormalities. While the function 

of GMPPA is unknown, it is known that its homolog GMPPB catalyzes the formation of GDP-

mannose, a key substrate for both N- and O-glycosylation. Because GMPPA does not show 

catalytic activity itself, but does bind the product of GMPPB, GDP-mannose, we hypothesize 

that GMPPA serves as an allosteric feedback inhibitor of GMPPB. 

 

To get more insights into the molecular function of GMPPA and to elucidate the 

pathophysiology of the AAMR syndrome we disrupted the Gmppa gene in mice. This thesis 

addresses the following main questions:  

 

  Does GMPPA interact with GMPPB? 

  What are the cellular and subcellular consequences of the disruption of Gmppa? 

  Are there treatment options? 
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Material and methods  

Material 

Chemicals, enzymes and nucleotides 

All chemicals were at least of analytical grade and purchased from Sigma, Merck or Roth 

unless otherwise stated.  Solutions were prepared with deionized water. Enzymes were 

obtained from Roche, Invitrogen, New England Biolabs and Thermo. Oligonucleotides were 

purchased from MWG-Biotech. Radioactive nucleotides were obtained from Hartmann 

Analytic. 

 

Bacterial Vectors 

The following vectors were used in order to generate plasmids for overexpression: 

Vector Source 

pCMV10 3xFLAG Sigma 

pCS2+-myc6 gift from Prof. Dr. Ralph Rupp 

pGex4T1 Amersham 

pMalC2X NEB 

pEGFP-N3 Clontech 

pKO Scrambler 901 Lexicon Genetics 

Table 1: List of cloning vectors.  

 

Primer pairs for cloning 

The following primer pairs were used to clone GMPPA/GMPPB variants with the respective 

cDNA expression vector as a template: 

Primer sequence For plasmid 

tataGGATCCATGTTGGAGGACTCACCAGGCTT Myc-GMPPA ΔN 

(aa206-420) tataGGATCCGAGGATGATCTGGTTGGTGAAG 

tataGGATCCATGCTGGTGACCAAGGTGGAGG Myc-GMPPB ΔN 

(aa133-360) tataGGATCCTCACATGATGATACGAGGCTCTG 

tataGGATCCATGCTCAAAGCGGTGATCCTG Myc-GMPPA ΔC 

(aa1-205) tataGGATCCTTGCCCATCCTGCTGATTACG 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
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tataGGATCCATGAAGGCACTGATCTTAGTGGG Myc-GMPPB ΔC 

(aa1-132) tataGGATCCGATGGAGCCCTCCTGGC 

tataAGATCTATGAAGGCACTGATCTTAGTGG GMPPB-Flag 

tataGCGGCCGCCATGATGATACGAGGCTCTG

GC 

ggg ACCGGTTCGTGGAGAAGCCA GMPPB-D334N 

gggGAGCTCATTATTAACTATGACGTCCTC GMPPB-D334N 

Table 2: List of primer sequences. 

 

Plasmids containing GMPPA-Myc, GMPPA-D182N-Myc and GMPPA-T334P-Myc were 

cloned by Sebastian Gießelmann. GST- and MBP-constructs were cloned by Sonnhild 

Mittag. To generate FLAG-GMPPA, GMPPA was excised from GST-GMPPA with restriction 

enzymes and inserted into the pCMV103XFlag vector.  

 

Antibodies and lectins 

The following primary polyclonal/monoclonal antibodies/lectins were purchased. The 

respective working concentrations for Western Blot and/or immunohistochemistry are listed in 

the following table: 

 Working concentration  

Antibodies/lectins 

(raised in) 
Western Blot Immunocytochemistry Source 

rabbit anti-GMPPA 1:500 1:25 Proteintech 

rabbit anti-GMPPB 1:500 not used Abcam 

mouse anti-GMPPB Not tested 1:25 Novus Biologicals 

mouse anti-GFAP 1:1000 1:1000 Milipore 

rabbit anti-GAPDH 1:1000 not used Santa Cruz 

rabbit anti-Myc Tag 1:1000 1:500 Millipore 

mouse anti-Myc Tag 1:1000 1:1000 Sigma 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&ved=2ahUKEwjc9fWq3_nfAhUCPewKHUnpAEMQFjAFegQIChAB&url=https%3A%2F%2Fde.wiktionary.org%2Fwiki%2F%25CE%2594&usg=AOvVaw0Sft7Le_XtC2hJdx0GBI7I
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rabbit anti-Flag Tag 1:1000 1:500 Sigma 

anti-MBP 1: 4000 not used Sigma 

anti-GST 1: 10000 not used 
gift from Prof. Dr. 

Jürgen Wienand 

rabbit anti-Laminin 1:500 1:200 Abcam 

rabbit anti-Nidogen 1:500 1:200 Abcam 

rabbit anti-Collagen 

IV 
1:500 1:100 Abcam 

mouse IgM anti-

Oligomannose 
1:50 1:50 

gift from Prof. Dr. 

Rüdiger 

Horstkorte 

mouse IgM anti-

Paucimannose 
1:50 1:50 

gift from Prof. Dr. 

Rüdiger 

Horstkorte 

biotinylated PNA 1:300 1:50 
gift from PD Dr. 

Christian Thiel 

biotinylated 

Concanavalin A 
1:300 1:50 

gift from PD Dr. 

Christian Thiel 

mouse anti-α-

DGIIH6C4 
1:250 1:100 Millipore 

mouse anti-α-DGVIA4 1:250 1:100 Millipore 

sheep anti-core-

Dystroglycan 
1:1000 1:100 R&D Systems 
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goat anti-α-DG 1:500 1:100 Abcam 

rabbit anti-β-DG 1:500 1:100 Gene Tex 

biotinylated anti-

Ubiquitin 
1:1000 not used 

gift from Dr. 

Sebastian Drube 

rabbit anti-TGN38 1:500 1:250 Santa Cruz 

rabbit anti-GLG1 1:500 1:250 Abcam 

rabbit anti-P-ERK1/2 1:4000 not used Cell signaling 

rabbit anti-ERK 1/2 1:4000 not used Cell signaling 

mouse anti-BIP 1:250 not used BD Biosciences 

mouse anti-GM130 1:500 1:250 BD Biosciences 

mouse anti-Histidin 

Tag 
1:1000 not used R&D Systems 

mouse anti-NF200 

(2H3 and SV2) 
not used 1:2 DSHB 

BTX-Alexa 555 not used 1:500 Invitrogen 
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mouse anti-α-Actinin not used 1:200 Abcam 

ECL Mouse IgG, 

HRP-Linked 
1:4000 not used 

Amersham (GE 

healthcare) 

ECL Rabbit IgG, 

HRP-Linked 
1:4000 not used 

Amersham (GE 

healthcare) 

ECL Goat IgG, HRP-

Linked 
1:1000 not used Sigma 

ECL Mouse IgM, 

HRP-Linked 
1:4000 not used Invitrogen 

ECL Sheep IgG, 

HRP-Linked 
1:4000 not used Sigma 

ECL Streptavidin, 

HRP-Linked 
1:10000 not used Sigma 

Hoechst-33258 

(DAPI) 
not used 1:10 000 

Molecular Probes 

Invitrogen 

anti-mouse IgG Alexa 

Fluor 488, 555 
not used 1:1000 

Molecular probes 

Invitrogen 

anti-rabbit IgG Alexa 

Fluor 488, 555 
not used 1:1000 

Molecular probes 

Invitrogen 

anti-mouse IgM Alexa 

Fluor 555 
not used 1:1000 

Molecular probes 

Invitrogen 

anti-goat IgG Alexa 

Fluor 488 
not used 1:1000 

Molecular probes 

Invitrogen 

anti-biotin 

(Streptavidin) IgG 

Alexa Fluor 488 

not used 1:1000 
Molecular probes 

Invitrogen 

Table 3. Antibodies used for Western Blotting and Immunocytochemistry. 
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Methods 

All animal experiments were approved by the Thüringer Landesamt für 

Lebensmittelsicherheit und Verbraucherschutz (TLLV) in Germany (license number 02-

013/14). Experiments were performed on a C57BL/6 background. Mice were housed in a 12 

h light/dark cycle and fed on a regular diet ad libitum. Littermates of the same sex were 

randomly assigned into experimental cohorts. Experiments were performed at different ages 

as indicated. Treatment cohorts were fed with nominally mannose-free food (22 % fat, 28 % 

protein, 50 % carbohydrates; Ssniff) as compared to the normal chow (9 % fat, 24 % protein, 

67 % carbohydrates; Altromin). 

 

Targeted inactivation of the murine Gmppa gene 

To disrupt Gmppa in mice, we used the EUCOMM EPD0621_7_G03 embryonic stem cell 

clone (Source Bioscience). This clone harbours a genetrap cassette following exon 4 and has 

conditional potential with exon 5 flanked by loxP sites within the Gmppa gene. The ES-cell 

clone was injected into C57BL/6 donor blastocysts and transferred into foster mice by Katrin 

Schorr. The resulting chimeric mice were mated with C57BL/6 mice to obtain heterozygous 

gene-trapped mice, which were subsequently mated to obtain homozygously gene-trapped 

mice. To obtain knockout mice without the LacZ reporter cassette and the removal of exon 5, 

gene-trapped mice were mated with Flpe deleter mice and then with Cre deleter mice.  

 

Phenoyping 

Fear conditioning 

In fear conditioning tests, a neutral stimulus, in this case a tone, is paired with an aversive 

event. The aversive event, an electric footshock, induces fearful behaviour categorized by 

robust autonomic responses and a cessation of movement or freezing (Fanselow et al. 2005, 

Smith et al. 2007). 

The fear conditioning apparatus (Ugo Basile) consists of 4 identical sound-attenuating 

chambers (d 55 x w 60 x h 57 cm) with door switch, electrified grid floor, fan, video camera, 

speaker, infrared and LED light. Animals were video recorded the whole time for automatic 

detection of freezing by ANY-maze software (Stoelting): 

Young (3 months) and aged (12 months) mice were placed in a chamber (d 17 x w 17 x h 25 

cm, plexiglas wall, 4 lux light, 70 % ethanol, fan speed 100 %) and allowed to explore the 

surrounding area for 180 s. A tone was played for the following 20 s (9 kHz, volume 20 %, 80 
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dB) paired with a foot shock (US, 0.7 mA for 2 s) in the last 2 s applied via the metal grid. 

After additional 60 s mice were returned to their home cages. 

After 24 h, the cued test was performed to determine tone-shock association: Mice were 

placed in the fear conditioning apparatus in a differently shaped box with altered colour 

pattern (caro patterned wall, white floor), lightening (2 lux), odour (3 % acetic acid) and fan 

speed (50 %) compared to the day before. Mice were allowed to explore the new area for 

180 s before the tone was applied for 180 s. After additional 60 s mice were transferred back 

into their home cages and allowed to relax for 2 h. After 2 h they were placed in the same 

context as the day before, during acquisition (plexiglas walls, metal grid floor, lightening 4 lux, 

odour 70 % ethanol, fan speed 100 %), and observed for 180 s. 

For freezing detection, videos were manually analyzed. Freezing time was presented as 

percentage of the investigated 60 s intervals: 

freezing time (%)=(
freezing time (s)

60 (s)
) *100 

Fear conditioning experiments were conducted together with Tanja Herrmann. All recorded 

datasets were manually analysed by Tanja Herrmann. 

 

Beam Walk balance test 

Mice were trained to walk on a horizontal 20 cm elevated plastic beam (1000 mm long, 80 

mm broad) leading to their home cage (Irintchev et al. 2005). After the initial learning phase 

mice were video-recorded with a NV-DS12 camera (Panasonic). For quantitative analysis 

video sequences were digitized using the software Virtual Dub 1.5.10 (free software available 

at www. virtualdub.org). In order to quantify the foot base angle (FBA) two video sequences 

per animal were selected with the mouse walking at least ten consecutive steps (5 left toe, 5 

right toe). The FBA at toe-off position of the hind-paws was measured using single video 

frames from recordings of beam walking mice. The angle was determined with ImageJ (free 

software available at www. fiji.sc). For statistical analysis the mean of two independent trials 

was taken.  

 

Kondziela´s inverted screen test 

The inverted screen is a square of wire mesh consisting of 8 mm squares of 1 mm diameter 

wire. It is surrounded by a beading to avoid climbing to the other side. The mouse is placed in 

the center of screen, a stop clock is started and the screen is rotated within 2 s to an inverted 
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position above a padded surface. The time the mouse is falling off the screen is recorded or it 

is removed after a criterion time of 70 s (Deacon 2013).  

 

Weights test 

The Weights test consists of eleven different weights. Each weight consists of steel wire that 

is connected to steel chains. The steel chains differ in length between the different weights. 

The following weights were tested: 2.8, 9.2, 15.4, 19, 34.2, 42.5, 50, 60.4, 73, 86.5 and 103 

g, respectively. For the weight test, a mouse is held on its tail base and allowed to grasp the 

weight. Then a stop clock is started and the mouse is lifted up on its tail until the weight is 

clear of the bench. After a criterion time of 3 s the mouse is allowed to relax for 10 s. If the 

mouse was able to hold the weight for 3 s, the same procedure is applied for the next heavier 

weight. If the mouse failed to hold the weight for 3 s, the procedure for this weight is 

repeated. If the mouse failed to hold the weight 3 times, the last weight the mouse was able 

to hold for 3 s is considered the heaviest weight the mouse is able to hold (Deacon 2013).  

 

Electrophysiological measurements 

Long-term-potentiation experiments 

After decapitation of mice (12-14 weeks of age) the brain was quickly removed, immediately 

placed in ice-cold artificial cerebrospinal fluid (aCSF: 120 mM NaCl, 3.5 mM KCl, 5 mM 

MgSO4 x 7 H2O, 1.25 mM NaH2PO4 x H2O, 0.2 mM CaCl2 x 2 H2O, 10 mM glucose, 25 mM 

NaHCO3, bubbled with 5 % CO2, 95 % O2) and cut into horizontal slices with a vibratome (VT 

1200S, Leica Instruments) as described previously (Liebmann et al. 2009). Slices (400 μm) 

were stored at RT in recording-aCSF (aCSF: 124 mM NaCl, 3 mM KCl, 1.8 mM MgSO4 x 7 

H2O, 1.25 mM NaH2PO4 x H2O, 1.6  mM CaCl2 x 2 H2O, 10 mM glucose, 26 mM NaHCO3, 

bubbled with 5 % CO2, 95 % O2) for at least 1 h until use. Slices were transferred to an 

interface-recording chamber allowed to adapt to recording conditions for at least 1 h 

(oxygenated aCSF, 32 °C, flow 2-3 ml/min). Bipolar stimulating electrodes with a tip diameter 

of 100 µm (SNE-200X, Science-Products) were placed onto the glutamatergic Schaffer 

collaterals of the hippocampus CA3 region to stimulate CA1 pyramidal neurons. Upon 

stimulation (pulse duration 50 µs), field excitatory postsynaptic potentials (fEPSPs) were 

recorded using glass microelectrodes (2-5 MΩ, filled with recording-aCSF, Model P-97 

Micropipette Puller, Sutter Instruments) impaled into the stratum pyramidale or the stratum 

radiatum of hippocampal CA1 region. Slopes of fEPSPs and amplitudes of population spikes 

(PS) were analyzed. Data of field potential recordings were collected with an extracellular 



20 
 

amplifier (EXT-02, NPI), low pass filtered at 4 kHz and digitally stored with a sample 

frequency of 10 kHz. Data acquisition and analysis of population spike amplitudes were 

performed using the software Signal (Cambridge Electronic Design).  

To determine the maximal population spike amplitude or the maximal slope of fEPSP the 

stimulus intensity was increased in gradual steps of 5 V (range 0-60 V) for each experiment 

(interstimulus interval 30 s). The relationship between stimulus intensity and the evoked 

response was fitted by a sigmoid function: R(i)=Rmax/1+exp(i–ih), where R(i) is the response 

at intensity (i), Rmax is the maximal response and ih is the intensity at which half-maximal 

response was observed. 

For investigation of changes in LTP the following protocol was applied: Stimuli with half-

maximal intensity were applied (interstimulus interval 20 s) for 30 min to record the baseline. 

The high frequency stimulus (HFS, 5 x 100 pulses a 100 Hz) induced increasing PS 

amplitudes and slopes of fEPSPs, which were recorded over 1 h (interstimulus interval 20 s). 

The amount of potentiation was analysed by comparing baseline values (normalized and 

averaged 20 min before induction) with those values collected within 60 min after HFS 

application. LTP measurements were performed by Tanja Herrmann. 

 

Fig. 4: Recordings of field potentials on coronal murine sections. The stimulation electrode was placed in 

the stratum radiatum in the CA3 area, while recording electrodes were located in the CA1 region of the 

hippocampus. The figure was adapted from http://melbournebraincentre.edu.au/content/coronal-section-mouse-

brain. 

 

Recording of SSAPs and CMAPs 

While under anesthesia, the body temperature of the mice was maintained with a heating 

pad. Sensory sum action potentials (SSAPs) were recorded near the base of the tail 30 mm 

proximal of the stimulation site close to the tip of the tail. Compound muscle action potentials 

(CMAPs) were evoked near the base of the tail and recorded 30 mm distal to the stimulation 

http://melbournebraincentre.edu.au/content/coronal-section-mouse-brain
http://melbournebraincentre.edu.au/content/coronal-section-mouse-brain
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site close to the tip of the tail. Electrodes with a tip diameter of 1 µm and an impedance of 0.1 

MΩ were used (WE30030.1H10, Science Products). Both SSAPs and CMAPs were evoked 

with increasing intensities (0-15 V, increment 1 V, 50 µs duration) at a sample frequency of 

20 kHz. Signals were processed with an extracellular amplifier (EXT 02F, NPI, high-pass 

filter: 3 Hz, low-pass filter: 2 kHz). For analysis we used the Signal 3 software (CED). 

Amplitudes were determined from peak to peak. Recordings were performed by Lutz 

Liebmann. 

 

Molecular methods 

Phenol-chloroform extraction of mouse genomic DNA from tail biopsy 

To obtain mouse genomic DNA in high purity from tail biopsies, a phenol-chloroform 

extraction was performed. Each tail biopsy was incubated in 500 µl lysis buffer (50 mM Tris, 

100 mM EDTA, 100 mM NaCl, 1 % SDS, pH 8.0) supplemented with 10 µl  of proteinase K 

(14 mg/ml) at 55 °C overnight.  Then, one volume of a phenol-chloroform-isoamylalcohol 

mixture (25:24:1, Roth) was added and the sample rotated for 5 min at RT. After 

centrifugation at 14000 rpm for 10 min at 4 °C, the upper aqueous phase was transferred into 

a new tube and extracted with chloroform-isoamylalcohol mixture (24:1). DNA was 

precipitated by adding 1 volume isopropanol and 1/10 vol. 3 M sodium acetate pH 5.2. After 

centrifugation at 14000 rpm for 30 min at 4 °C, the resulting DNA pellet was washed with 70 

% ethanol, air dried and dissolved in 150 µl TE buffer overnight at 4 °C. This high-grade DNA 

was further used for Southern blot analysis. 

 

Southern blot 

For Southern blot analysis, phenol-chloroform-purified DNA from tail biopsies was digested 

overnight with 20-30 units of a suitable restriction enzyme (Thermo) at the appropriate 

incubation temperature. Resulting fragments were separated by 0.8 % agarose gel 

electrophoresis. For facilitating the transfer of DNA fragments onto a nylon membrane 

(Hybond XL, GE Healthcare) the gel was washed several times with distilled water and the 

DNA fragmented in 0.25 M HCl for 15 min, and washed again with distilled water. After 

equilibration in 0.4 M NaOH for 20 min, a capillary blot was assembled with 0.4 M NaOH. 

DNA transfer from the gel to the membrane by capillary forces was performed overnight at 

RT. After blotting, the membranes were baked for 2 h at 80 °C to crosslink the DNA to the 

membrane. Before hybridization the membrane was rinsed in 2 x SSC and equilibrated in 

prehybridization buffer prior to hybridization with the radioactive probe. A probe template of 

453 bp mirroring chr1:75546871-75558943 of the mouse genome (mm10) was used for 
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labelling of the radioactive probe. After gel purification, 25-50 ng of the template were diluted 

in 45 µl of TE buffer and denatured at 95 °C for 5 min and cooled on ice. The denatured 

probe was briefly centrifuged down and transferred into a Rediprime II (GE Healthcare) tube 

containing lyophilized dATP, dTTP, dGTP, and Klenow fragment of DNA polymerase I. 

Following the addition of radioactive 32P-dCTP the reaction mixture was incubated for 30 min 

at 37 °C. For the removal of non-incorporated radiolabelled nucleotides the probe mix was 

purified over a G50 column (GE Healthcare, USA). Using a Beckman scintillation counter, 

radiolabelling of the probe was tested and a hybridization mix (7 % SDS, 10 % PEG, 1.5 x 

SSPE, 0.1 mg/ml hering sperm DNA (Roche) with 500,000 cpm/ml was prepared. To block 

unspecific DNA binding to the membrane, the membrane was prehybridized for 2 h at 68 °C 

with blocking buffer (7 % SDS, 10 % PEG, 1.5 x SSPE, 0.1 mg/ml hering sperm DNA 

(Roche) in a rolling bottle. Hybridization with the radio-labelled probe was performed 

overnight at 68 °C in rolling bottles. The membrane was washed with preheated wash buffer 

(2 x SSC, 0.1 % SDS) at 68 °C for 20 min several times until radioactivity of the membrane 

was below 200 cpm. The membrane was covered with saran wrap and exposed to a 

Phosphor-imager plate (Fuji Films). Southern Blot was performed with the help of Christopher 

Hennings. 

 

RNA isolation  

Mice were sacrificed. Organs were removed and flash frozen in liquid nitrogen. Tissue 

homogenization was performed with mortar and pestle in liquid nitrogen. After evaporation of 

liquid nitrogen, 1 ml Trizol (Invitrogen) per 100 mg tissue weight was added. The Trizol-tissue 

mixture was vortexed and incubated at RT for 5 min. After centrifugation at RT and 4000 g for 

5 min, the supernatant was transferred into a new tube. Per 1 ml Trizol 200 µl Chloroform 

were added and samples were vigorously shaken by hand. After incubation for 2 min at RT, 

samples were centrifuged at 4 °C and 14000 rpm for 15 min. The aqueous phase was 

transferred into a new tube. 1 volume isopropanol was added and samples were incubated at 

RT for 10 min followed by a centrifugation at 4 °C and 14000 rpm for 10 min in order to 

precipitate the RNA. The RNA pellet was washed with 75 % (v/v) ethanol. After air-drying the 

RNA pellet was dissolved in RNase free water and stored at -80 °C.  
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Reverse transcription 

Reverse transcription was conducted with 0.5 µg total RNA using the SuperScriptIII reverse 

transcription kit (Invitrogen): 

material Volume in µl 

 50 µM Random Primer 1 

10 mM dNTPs 1 

RNA 1 (0.5 µg) 

RNase-free H2O 10 

Table 4: Materials and volumes needed for reverse transcription step 1 

 

After incubation at 65 °C for 5 min, the mixture was incubated for 1 min on ice and following 

components were added: 

material Volume in µl 

5 x FS buffer 4 

0.1 M DTT 1 

RNase Out 1  

SuperScript III reverse 

transcriptase  

1 

Table 5: Materials and volumes needed for reverse transcription step 2 

After incubation at 25 °C for 5 min, the mixture was incubated for 1 h at 50 °C and afterwards 

for 15 min at 70 °C.  

 

Real time Quantitative PCR  

Quantitative PCR (qPCR) was performed with 100 ng final amount of cDNA (assuming 

reverse transcription 1:1), the innuMix qPCR MasterMix (Analytik Jena) and Taqman Gene 

Expression Assays (Thermo Fischer) for Gapdh (4331182,  Assay-identifier: 

Mm99999915_g) and Gmppa (4331182, Assay-identifier: Mm00505084_m1): 

material Volume in µl 

2 x innuMix  5 

Taqman Gene Expression Assay 0.5 

cDNA (22.2 ng/µl) 4.5 

Table 6: Materials and volumes needed for quantitative PCR 
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The qPCR was performed in a thermocycler (BioRad): 

step temperature time go back to step repeat cycles 

1 95 °C 3 min   

2 95 °C 5 s   

3 60 °C 30 s 2 40 

Table 7: Quantitative PCR cycling temperatures and duration 

 

Extraction of DNA from tail biopsies 

Genomic DNA was extracted from tail biopsies using the Hot-Shot protocol: To each tail 

biopsy (1-3 mm in size) 50 µl of alkaline lysis buffer (25 mM NaOH, 0.2 mM EDTA) were 

added and incubated for one hour at 95 °C. Afterwards, the samples were cooled down on 

ice for 5 min and 50 µl of neutralization buffer (40 mM Tris-HCl, pH 5.0) were added. The 

samples were vortexed, spun down and stored at 4 °C until further use. 

 

Genotyping PCR 

Genotyping was performed on genomic DNA obtained from tail biopsies treated with the Hot-

Shot protocol. Each reaction was performed in a total volume of 20 µl: 

material Volume in µl 

10 pmol primer for (MWG-Biotech): 

gaccctgtcatcttaggctg 

1 

10 pmol primer WT rev (MWG-Biotech): 

gcatatgtgggggtacacaa 

0.5 

10 pmol primer KO rev (MWG-Biotech): 

cttgtcagcagtacttctgc 

1 

10 x PCR buffer 2.0 

50 mM MgCl2 0.75 

10 mM dNTPs (Invitrogen) 0.5 

H2O 12.65 

Taq polymerase (Invitrogen) 0.1 

DNA 2 

Table 8: Material and volumes needed for genotyping PCR 
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The PCR was performed in a thermocycler (Biometra): 

step temperature time go back to step repeat cycles 

1 94 °C 5 min   

2 94 °C 30 s   

3 72 °C 40 s 2 39 

4 72 °C 10 min   

5 10 °C forever    

Table 9: Genotyping PCR cycling temperatures and duration 

The primer pair for/wt_rev amplified a 348 bp fragment for the WT allele and the primer pair 

for/ko_rev a 762 bp fragment for the KO allele. 

 

Agarose gel electrophoresis 

PCR products were separated by horizontal gel electrophoresis (Amersham Bio-Sciences). 

Depending on the size of PCR fragments for separation, agarose concentration in the gels 

varied between 1-2 %. Briefly, agarose (Invitrogen) was boiled in 1 x TAE buffer (40 mM Tris-

acetate, 1 mM EDTA), 0.5 µg/ml ethidium bromide was added and the gel was casted. DNA 

samples were prepared with 6 x DNA loading buffer (10 mM Tris-HCl, 30 % (v/v) glycerol, 

0.25 % (v/v) bromphenol blue, 0.25 % (v/v) xylene cyanol). DNA fragments were separated in 

an electric field and the DNA with intercalated ethidium bromide was visualized under UV-

light.  

 

Cloning 

Cloning of DNA fragments Targeting Vector and restriction digests 

In order to obtain the DNA fragments of interest, PCR with corresponding primer pairs was 

performed on either human or mouse cDNA. PCR products were analysed by agarose 

electrophoresis to verify the correct molecular size. DNA bands of interest were excised and 

DNA was extracted using a DNA recovery kit (Zymoclean). For the cloning of DNA fragments 

into the appropriate vector, 1-2 µg of vector and 5 µg of insert were digested with restriction 

enzymes at the appropriate temperature using enzymes from Thermo Fischer and New 

England Biolabs. Vector DNA was dephosphorylated with 1000 U of alkaline phosphatase 

(Roche) for 60 min at 37 °C. Vector DNA was purified similar to the insert by gel 

electrophoresis and purified using the Zymoclean recovery kit.  
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DNA Ligation 

For cloning DNA fragments into plasmid vectors, insert and vector fragments with compatible 

ends were ligated. As ligation efficiency depends on the ratio between insert to vector. The 

optimal ratio (insert:vector = 3:1) was calculated by taking the molecular weight of the 

respective DNA into account. A typical ligation mixture was performed in a volume of 20 µl 

with T4 DNA-Ligase (Thermo Fischer). The ligation mixture was incubated overnight at 4 °C 

and 3 µl of the ligation reaction were transformed into chemo-competent bacteria. 

 

Generation of competent bacteria 

For generating chemo-competent bacteria a culture of E. coli XL1 Blue was grown overnight 

at 37 °C in 2 ml  broth medium (LB-broth medium, 4 mM MgSO4, 10 mM KCl, 3 µg/ml 

tetracycline, pH 7.0). The next day, 1 ml of the culture was inoculated into 500 ml  broth 

medium and grown at 37 °C until an optical density of 600 nm (OD600) was reached. 

Following cooling of the bacterial culture, bacteria were pelleted by centrifugation at 4000 g 

for 5 min at 4 °C. The supernatant was discarded and the pellet was resuspended in 150 ml 

ice-cold TFB1 buffer (15 % glycerol, 10 mM CaCl2, 30 mM potassium acetate, 100 mM RbCl, 

50 mM MnCl2, pH 5.8). After incubation on ice for 1 h the bacterial suspension was 

centrifuged at 3000 rpm for 5 min at 4 °C. The supernatant was discarded and the pellet was 

resuspended in filtered sterile, ice-cold TFB2 buffer (15 % glycerol, 10 mM MOPS, 75 mM 

CaCl2, 10 mM RbCl). Competent cells were divided into aliquots on ice and snap-frozen in 

liquid nitrogen and stored at -80 °C. 

 

Transformation of competent bacteria 

Plasmid DNA and 50 µl of chemo-competent bacteria were incubated on ice for 20 min. After 

a heat shock at 42 °C for 45 s the cells were cooled on ice for 1 min and 250 µl of SOC 

medium (0.5 % yeast extract, 2 % tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, 20 mM glucose, pH 7.0) were added and incubated at 37 °C on a shaker for 1 h. The 

mixture was centrifuged at 4000 rpm for 5 min. After removing 250 µl of the supernatant, the 

pellet was resuspended in the remaining SOC medium and the suspension was plated on 

LB-Agar plates containing the appropriate antibiotic for plasmid selection. Inverted plates 

were incubated at 37 °C overnight. 

 

Mini preparation of plasmid DNA from bacterial colonies 

A single bacterial colony was inoculated in 2 ml of LB medium containing antibiotics. The 

culture was grown overnight at 37 °C with shaking. Next day, bacteria were pelleted by 
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centrifugation and DNA was isolated using the Mini-preparation Kit (Peqlab) following 

manufacturer´s instructions.  

 

DNA sequencing 

To verify that the reading frame and the nucleotide sequence of the cloned construct was 

correct, DNA samples were sent to Macrogen for Sanger sequencing. 

 

Maxi Preparation of Plasmid DNA 

To isolate high DNA quality and yield for transfections a Maxi preparation was performed. 

Bacterial precultures were inoculated into 250 ml LB medium with the respective antibiotic. 

After overnight incubation at 37 °C, bacteria were pelleted by centrifugation at 4000 g for 5 

min and DNA was prepared using the Midi/Maxi Kit from Qiagen according to the 

manufacturer's instructions. 

 

Protein isolation of cells and tissue lysates  

Human AAMR quadriceps samples were obtained from Dr. Osvaldo Mutchinick (Mexico). 

Control quadriceps samples were obtained from the Telethon Biobank (Italy). Following the 

operation the samples were immediately frozen on dry ice and stored at -80 °C. 

Cells were harvested and lysed in RIPA buffer (50 mM TRis-HCl pH 7.4, 150 mM NaCl, 1 % 

NP-40, 1 % Sodium deoxycholate, 0.1 % SDS, 1 mM EDTA, and complete protease inhibitor 

(Roche). Tissue lysates were prepared with the Ultra-Turrax T8 tissue homogenizer (IKA-

WERKE) of quadriceps muscles in RIPA buffer. After sonication homogenates were 

centrifuged at 14000 rpm to remove nuclei and insoluble debris. The supernatant was stored 

at -80 °C. 

 

Western Blot 

Proteins were denatured at 90 °C for 5 min in 1 x Laemmli sample buffer. After separation via 

SDS-polyacrylamide gel electrophoresis proteins were transferred onto PVDF membranes 

(Whatman). Membranes were blocked with 1 % bovine serum albumin (BSA, Sigma) in tris-

buffered saline (TBS) buffer (50 mM Tris-Cl, pH 7.6, 150 mM NaCl) supplemented with 0.1 % 

Tween (Sigma) for 1 h at RT. Membranes were incubated with primary antibodies in 

according dilutions overnight at 4 °C. Primary antibodies were detected with a horseradish 

peroxidase-conjugated secondary anti-rabbit antibody (Amersham Bioscience) and the Super 
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Signal Western Blot Enhancer Kit (Thermo). The quantification of detected protein bands was 

done with ImageJ. All blots were repeated at least once. 

 

Co-Immunoprecipitation 

HEK-293T cells were maintained in DMEM (Invitrogen) supplemented with 10 % fetal bovine 

serum (FBS, Gibco), penicillin (100 UI/ml) and streptomycin (100 mg/ml) (P/S, Gibco). Cells 

were plated in dishes and after 24 h transfected with 15 µg/dish WT and 20 µg/dish mutant 

plasmid construct of human GMPPA-Myc, GMPPB-FLAG, GMPPA-T334P-Myc, GMPPA-

N182D-Myc, FLAG-GMPPA, GMPPB-FLAG plasmids and/or Myc- tagged DNA constructs 

missing either the C-terminus or N-terminus: DNA was mixed with 15 µl lipofecftamine 2000 

(Invitrogen) and 800 µl Optimem (Gibco) according to manufacturer’s instruction. After 

incubation for 15 min at RT the mixture was added to the cells. After 24 h cells were 

harvested in lysis buffer (20 mM Imidazol pH 8.0, 150 mM NaCl, 2 mM MgCl2, 300 mM 

sucrose, 0.25 % Triton X-100) and centrifuged at 14000 rpm to remove nuclei and insoluble 

debris. The supernatant was incubated with Myc- oder FLAG-coupled agarose beads 

overnight at 4 °C. The supernatant was then washed with lysis buffer 3 times and beads with 

bound proteins were boiled at 90 °C for 10 min in 1x Laemmli sample buffer and stored at -80 

°C. 

 

GST pull-down 

Recombinant human GST-GMPPA, GST-GMPPB and MBP-GMPPA proteins were 

generated in E. coli cells using pGex4T1 and pMalC2X plasmids, harvested in Imidazol buffer 

and centrifuged at 14000 rpm. The supernatant was incubated with GSH beads for 45 min at 

4 °C. The supernatant was then washed 3 times with Imidazol buffer (20 mM Imidazol pH 

8.0, 150 mM NaCl, 2 mM MgCl2, 300 mM sucrose, 0.25 % TritonX-100) and beads with 

bound proteins were boiled at 90 °C for 10 min in 1x Laemmli sample buffer and stored at -80 

°C. GST pull-down experiments were conducted by Sonnhild Mittag. 

 

Overlay assays 

Tissue lysates were prepared with an Ultra-Turrax T8 tissue homogenizer (IKA-WERKE) of 

Quadriceps muscles in Tris-buffered saline buffer (TBS, 50 mM Tris-Cl, pH 7.6, 150 mM 

NaCl) supplemented with 1 % Triton X-100 (Sigma). After sonication homogenates were 

centrifuged at 14000 rpm at 4 °C to remove nuclei and insoluble debris. The supernatant was 

stored at -80 °C. Dystroglycan was precipitated using the Pierce Glycoprotein WGA or Con A 
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isolation kit (Thermo Fischer). After separation via SDS-polyacrylamide gel electrophoresis 

proteins were transferred onto PVDF membranes (Whatman). Membranes were blocked in 

Laminin-binding buffer (10 mM triethanolamine, 140 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, pH 

7.6) containing 5 % non-fat dry milk. Membranes were incubated with either 160 µg Laminin 

(Sigma) or 40 µg Agrin (LSBio) followed by incubation with primary and secondary antibodies 

and ECL detection.  

 

Mass spectrometry 

Homogenized Quadriceps muscle samples were lysed in RIPA buffer followed by reduction, 

alkylation and subsequent acetone precipitation. Protein pellets were digested into peptides, 

labeled with 10plex Tandem Mass Tags (Thermo Fisher) and fractionated by high pH reverse 

phase chromatography, as previously described (Heinze et al. 2018). The resulting fractions 

were combined into 24 pools and analysed in an Orbitrap Fusion Lumos Tribrid Mass 

Spectrometer (Thermo Fisher) using a synchronous precursor selection (SPS)/MS3 method 

(McAlister et al. 2014). Raw data were processed using Proteome Discoverer v2.0 (Thermo 

Fisher) and searched against a Uniprot mouse database using Mascot v2.5.1 (Matrix 

Science). Differential expression analysis was performed using limma (Ritchie et al. 2015) 

and additional procedures written in R. Mass spectrometry was performed by Svenja Schüler. 

 

Histological analysis 

Tibialis anterior muscles were sectioned into 5 µm thick sections with a Cryotome (Kryostar 

NX70, Thermo Scientific). Brain tissue was cryo-sectioned into 8 µm thick sections. For 

histological analysis sections were stained with hematoxylin/eosin according to the 

manufacturers’ protocols (Sigma-Aldrich). Images were captured with a Zeiss AxioLab A1 

microscope and further analyzed by ImageJ. 

Centralized nuclei and fiber diameter were measured using ImageJ software. The fiber 

diameter of skeletal muscle cross sections from young and old animals was analyzed by 

Juliane Jung. 

Immunofluorescence (IF) stainings were performed in Shandon chambers (Thermo 

Scientific). Sections were fixed with 4 % paraformaldehyde (PFA) and rinsed in phosphate-

buffered saline (PBS). 0.25 % Triton-X in 1x PBS was used to permeabilize the cells. After 

adding blocking solution (5 % goat serum in PBS or 5 % milk in PBS) for 1 h, primary 

antibody solution (in 1 % goat serum in PBS or 1 % milk in PBS) was applied overnight and 

secondary antibody solution (in blocking solution) was applied for 2 h. Nuclei were stained 
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with DAPI 1:10000 (Invitrogen). Images were taken with a Zeiss LSM880 with Airyscan 

microscope with the Z-stack module. Z-projections with average intensity processed with 

ImageJ are shown. Images were processed identically for ImageJ-analysis. 

Human AAMR quadriceps samples were obtained from Dr. Osvaldo Mutchinick (Mexico). 

Control quadriceps samples were obtained from the Telethon Biobank (Italy). Samples were 

immediately frozen on dry ice after operation and stored at -80 °C. For IF stainings, samples 

were cryo-sectioned into 5 µm thick sections and followed normal IF protocol as described 

above.  

 

NMJ preparation 

The Musculus tibialis anterior was fixed in 4 % PFA for 30 min and washed with 1 x PBS. 

Fiber bundles consisting of 4-5 myofibers were prepared and used for further analyses. After 

permeabilization in PBS with 0.1 % Triton-X 100 overnight samples were incubated with 5 % 

horse serum for 1 h followed by an incubation with with α-bungarotoxin-Alexa 555 (BTX, 

Invitrogen) 1:500 and an antibody detecting neurofilament (2H3, DSHB, 1:2) and synaptic 

vesicle 2 (SV2, DSHB 1:2) overnight at 4 °C. After washing with PBS, single myofiber 

bundles were incubated with the corresponding secondary antibodies (Invitrogen) in a dilution 

of 1:1000 for 1 h at RT. Nuclei were stained with DAPI (Invitrogen, 10 µg/ml). Muscles were 

washed with PBS and mounted with Prolong Gold anti-fade mounting medium (Invitrogen). 

Images were taken with a Zeiss Axio Observer microscope. NMJ preparation was performed 

by Julia von Maltzahn. 

 

Skeletal muscle fiber bundle stainings 

Muscles (Musculus Tibialis anterior) were fixed in 4 % PFA and washed with 1 x PBS. 

Following incubation in PBS with 0.25 % Triton X-100 (Sigma) overnight at 4 °C, fiber 

bundles were prepared. After blocking in 5 % normal goat serum fiber bundles were 

incubated with primary antibodies TGN38, GLG1 and GM130 overnight at 4 °C. After 

washing with 1 x PBS fiber bundles were incubated with the corresponding secondary 

antibodies. Fiber bundles were washed with PBS and mounted with Fluoromount-G 

(Southern Biotech). Images were taken with a Zeiss LSM880 Airyscan confocal microscope 

with the Z-stack module. Images were further analyzed with ImageJ. For intensity 

measurements, the integrated density was used. The integrated density is the product of 

area and mean gray value (gray value: each pixel in an image is one sample representing a 

specific amount of light) and is therefore more meaningful than only the area or mean gray 

value. Co-localization analysis was performed with the Coloc2 module in ImageJ. Manderson 
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overlap and Pearson correlation coefficients were used for co-localization quantifications. 

Both coefficients are mathematically very similar. The Pearson correlation coefficient uses 

the deviation from the mean. The Manderson overlap coefficient uses absolute intensities 

and is insensitive to noise (see ImageJ web-page www.fiji.sc).  

 

Glycome analysis 

Mice were fasted for 24 h. Quadriceps muscle tissue was thawed at 4 °C and all steps of 

protein extraction was executed at 4 °C to prevent protein degradation. The tissue was cut 

into small pieces with a scalpel and transferred into reaction tubes. Tissue lysis was 

performed in lysis buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA and proteinase 

inhibitor cocktail). Samples were vortexed vigorously, 30 min incubated on ice and sonicated 

twice for 45 s (80 % amplitude, 0.5 cycles). Lysates were spun down at 4847 rpm at 4 °C for 

10 min and the supernatant was recovered. Protein concentrations were determined using 

the Pierce BCA Protein Assay Kit (Thermo Scientific) according to the manufacturer´s 

manual. For N-glycan analysis, about 200 μg proteins were dissolved in 40 µl 250 mM 

phosphate buffer pH 6.5 (250 mM NaH2PO4, 250 mM Na2HPO4) and SDS was added to a 

final concentration of 1 %. The protein was denatured by incubation at 95 °C for 5 min. The 

buffer was diluted to 160 mM with water and Ipegal at a final concentration of 1 %. Next, N-

glycan release was performed using 1 U of PNGase F (N-Zyme Scientifics) was added to the 

protein and incubated overnight at 37 °C. N-Glycans were subsequently cleaned up, 

permethylated to neutralize the negative charge of sialic acids and measured by MALDI-TOF 

mass spectrometry. MALDI-TOF spectra were acquired in m/z 1000–5000 region in the 

positive ion mode [M+Na]+ using 10000 laser shots at a frequency of 100 Hz. Detector gain 

was set up to 1722 V and the analog offset was 51 mV. 

For O-glycan analysis, about 200 µg proteins were dissolved in 40 µl 250 mM phosphate 

buffer pH 6.5 (250 mM NaH2PO4, 250 mM Na2HPO4) and SDS was added to a final 

concentration of 1 %. The protein was denatured by incubation at 95 °C for 5 min. The buffer 

was diluted to 160 mM with water and Ipegal at a final concentration of 1 %. After chemical 

release with NaOH/NaBH4 O-glycans were purified over self-made C18/Dowex H+ column 

followed by a methanolic desalting step in the vacuum centrifuge and permethylation 

reaction. The spectra were acquired in m/z 300–2000 region in the positive ion mode 

[M+Na]+. For every spectrum acquisition, 10000 shots were collected. The spectra were 

acquired at 100 Hz frequency. Detector gain was set up to 1638 V and the analog offset was 

51 mV. Glycome analysis was performed by Karina Biskup. 
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Proximity ligation assay 

Proximity ligation assay (PLA) was performed with the Duolink in situ red starter kit 

mouse/rabbit (DUO92101) according to the manufacturer´s instructions (Sigma) with rabbit 

GMPPA (Proteintech) and mouse GMPPB (Novus Biologicals) antibodies in a 1:25 dilution.  

 

EM microscopy of human samples 

Human AAMR quadriceps and control samples were obtained from Dr. Osvaldo Mutchinick 

(Mexico). The biopsies were immediately immersed in 2.5 % glutaraldehyde (EMS Cat 

16210) for 5 h, followed by two washes in cacodylate buffer (EMS Cat 21300) at pH 7.2 and 

0.15 M and post-fixation done in 1 % osmium tetraoxide (EMS Cat 19100) for 45 min, 

followed by two washes in cacodylate buffer and tissue dehydrated in the following 

progressive ethyl alcohol concentrations at 30 %, 50 %, 70 %, 80 %, 96 % and 100 % for 20 

min each. For an adequate infiltration, muscle samples were changed to propylene oxide 

(EMS Cat 20401) for 45 min. The infiltration was carried out with epoxy resin diluted in 

propylene oxide 1:2, 1:1 for 4 h in each solution and pure resin for 8 h. The procedure 

described was carried out in a Leica EM TP automatic processor. For the polymerization of 

the resin samples were incubated at 55 °C for 24 h. Processed biopsies were cut in 75 nm 

thick sections and mounted on 200 mesh copper grids. The contrast was attained with 5 % 

uranyl acetate (EM Grade) and lead citrate with Reynold's method, and the samples 

analyzed in a Transmission Electron Microscope FEI model Tecnai BioTwin at 80 kV. 

EM microscopy was performed by Braulio Martínez. 

 

EM microscopy of murine sciatic nerve 

Mice were perfused transcardially with 4 % PFA and 2.5 % Gluaraldehyde in PBS. Sciatic 

nerve was removed and post-fixed in 4 % PFA and 2.5 % Gluaraldehyde in PBS overnight.  

Afterwards, nerves were washed 6 times with 0.1 M cacodylate buffer pH 7.3 and post-fixed 

in 0.1 M cacodylate buffer containing 2 % osmium and 1 % potassium ferrocyanide for 2 h at 

4 °C followed by four washes in 0.1 M cacodylate buffer and 3 times distilled water. Tissue 

was dehydrated in the following progressive acetone concentrations at 30 %, 50 %, 70 %, 90 

% and 95 % for 30 min each and 3 times 100 % for 45 min each. For contrast, 1 % uranyl 

acetate was added to 50 % acetone. The infiltration was carried out with epoxy resin diluted 

in acetone 1:3, 1:1, 3:1 for 45 min in each solution and pure resin for 3 h. The polymerization 

of the resin was made at 60 °C for 48 h. Processed biopsies were cut in 50 nm thick sections 

(Reichert Ultracut S, Leica) analyzed in a Transmission Electron Microscope JEM 1400 (Jeol) 

at 80 kV. EM microscopy was conducted by Katrin Buder. 
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COS-7 cell culture and transfection for immunohistochemistry  

COS-7 cells were maintained in DMEM (Invitrogen) supplemented with 10 % FBS (Gibco), 

penicillin (100 UI/ml) and streptomycin (100 mg/ml) (P/S, Gibco). Cells were plated on 

coverslips and 24 h later transfected with 1 µg DNA/well/ plasmid construct in 24-well plates 

with lipofectamine reagent 2000 (Invitrogen) according to the instructions of the 

manufacturer. 24 h post-transfection cells were fixed for 15 min in 4 % PFA at RT and 

immunocytochemistry was performed as described above. 

 

Myoblast experiments 

For cycloheximide (CHX) experiments, primary myoblasts were seeded in growth medium 

(F10 medium (Gibco), 20 % FBS (Gibco), 2 % pentamycin/streptomycin (P/S, Gibco), 2.5 

ng/ml bFGF (Gibco)) on collagen-coated culture dishes. The following day, cells were treated 

with differentiation medium (DMEM (Sigma), 2 % HS (Gibco), 2 % P/S (Gibco)) and allowed 

to differentiate for two days. Then, cells were transfected with 30 pmol siRNAs (for a 6-well 

plate) against either control (siScr) (Dharmacon), Dystroglycan (siDag1) (Dharmacon) or 

Gmppa (siGmppa) (Novus Biologicals). After 3 days, cells were treated with 8 µg/ml 

cycloheximide for 24 h. Then, cells were harvested with RIPA buffer. After sonication 

homogenates were centrifuged at 16900 g to remove nuclei and insoluble debris. The 

supernatant was stored at -80 °C. Myoblast seeding was performed by Henriette Henze. 

 

Sugar content determination 

Sugar concentration was determined using the Megazym kit for measuring D-mannose, D-

fructose and D-glucose following manufacturer´s instructions. 

 

GDP-mannose measurements 

Mice were sacrificed, organs dissected out and immediately frozen in liquid nitrogen. Organ 

homogenates were run on high-performance liquid chromatography with a modified gradient 

to enhance separation of NDP-sugars as described previously (Koehler et al. 2013). 

GDP-mannose measurements were performed by Takfarinas Kentache. 
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Statistical analysis 

For statistical analysis, raw data were analyzed for normal distribution with the Kolmogorov-

Smirnov test or with graphical analysis using the Box-Plot and QQ-Plot. As these tests 

suggested normal distribution 1-way ANOVA, 2-way ANOVA and T-Test were used with * 

indicating p< 0.05, ** indicating p< 0.005 and *** indicating p< 0.0005. For all data, the mean 

with standard error of the mean are shown. 
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Results 

Generation of Gmppa KO mice 

To unravel the pathophysiology of AAMR syndrome we created a Gmppa KO mouse line. For 

this purpose we selected the ES cell clone EPD0621_7_G03 obtained from EUCOMM 

harboring a cassette consisting of a β-galactosidase reporter gene (LacZ), a neomycin 

resistance (NeomR), loxP and Frt sites (Fig. 5a). ES-cells with this clone were injected into 

donor blastocysts, which were transferred into foster mice. Resulting chimeric mice were 

analyzed by Southern blot (Fig. 5b, c). Chimeric mice were mated with FLPe-deleter mice 

(Rodríguez et al. 2000) to remove the LacZ cassette. After mating these mice with Cre-

deleter mice (Schwenk et al. 1995) the offspring showed a heterozygous deletion of exon 5. 

Heterozygous offspring was subsequently mated in order to create homozygous knockout 

mice. The homozygous offspring was born in the expected Mendelian ratio.  

The predicted aberrant Gmppa KO transcript leads to a frameshift with premature termination 

and thus a truncated protein (Fig. 5a). Real time PCR showed a significant reduction of 

Gmppa transcript abundance in Gmppa KO mice compared to WT littermates suggesting 

nonsense-mediated decay of the recombinant transcript (Fig. 5d). As expected, we detected 

a band of the appropriate size in different WT tissues but not in KO tissues with a commercial 

polyclonal antibody against the GMPPA protein (Fig. 5e). GMPPB protein bands were 

detected in Gmppa WT and KO tissue lysates at equal amounts (Fig. 5e).  
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Fig. 5: Targeted disruption of the murine Gmppa gene. a) Genomic structure of the Gmppa locus and the 

predicted mutant protein as compared to WT GMPPA. Grey rectangles: exons, black rectangles: Frt sites, black 

triangles: loxP sites, LacZ: β-galactosidase cassette, NeomR: neomycin fusion cassette. b) Genomic structure 

of the WT and targeted Gmppa locus with EcoRI restriction sites, location of the Southern probe and the 

expected Southern blot fragments. Grey rectangles: exons, black rectangles: Frt sites, black triangles: loxP 

sites, LacZ: β-galactosidase cassette, NeomR: neomycin resistance cassette, red rectangles: probe-binding 

site. c) Southern blot analysis of the Gmppa locus of a WT and heterozygous knockout mouse exploiting the 

EcoRI restriction sites and the probe displayed in a). The probe detects a WT fragment at 6979 bp and a 

recombinant fragment at 2671 bp as expected. d) Gmppa transcript abundance is decreased in skeletal muscle 

and brain lysates in KO mice (n=3). e) The GMPPA protein can be detected in different tissues of WT mice, but 

is absent in samples of KO mice. The abundance of GMPPB is not altered in Gmppa KO mice. GAPDH served 

as loading control.  

 

GMPPA interacts with GMPPB 

GMPPB catalyzes the formation of GDP-mannose, a key substrate for the glycosylation 

pathway. GMPPA does not show catalytic activity, but it binds GDP-mannose. Because of 
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these features, we hypothesized that GMPPA might act as an allosteric feedback inhibitor of 

GMPPB (Koehler et al. 2013). To confirm our hypothesis that GMPPA serves as a regulatory 

subunit of GMPPB, we wanted to assess whether human GMPPA interacts with GMPPB. 

Therefore, we performed co-immunoprecipitation experiments after heterologous expression 

of Myc-tagged GMPPA and FLAG-tagged GMPPB in HEK-293T cells.  

Immunoprecipitation (IP) with agarose beads coupled to an antibody against the FLAG-tag 

revealed that GMPPB-FLAG and GMPPA-Myc co-precipitate (Fig. 6a). IP with agarose 

beads coupled to an antibody against the Myc-tag further confirmed that GMPPA-Myc and 

GMPPB-FLAG interact (Fig. 6b). Notably, the N-terminal disease-associated variant GMPPA 

Myc G182D co-precipitated with GMPPB-FLAG while the C-terminal disease-associated 

variant GMPPA-Myc T334P did not (Fig. 6b). In contrast, the mutant protein GMPPB-FLAG 

D334N with the amino acid substitution in the C-terminal part of GMPPB was able to 

precipitate GMPPA-Myc (Fig. 6b).  

Next, we performed immunoprecipitation experiments with Myc-tagged GMPPA and GMPPB 

mutant proteins lacking either the C- or the N-terminal part, and FLAG-tagged GMPPA and 

GMPPB WT constructs. The variant missing the N-terminal part of GMPPA showed an 

interaction with GMPPB, whereas the variant lacking the C-terminal part of GMPPA did not 

show any interaction (Fig. 6c). In contrast, the variant missing the N-terminal part of GMPPB 

did not co-precipitate GMPPA whereas the variant lacking the C-terminal part of GMPPB did 

co-precipitate GMPPA (Fig. 6d).  

Our immunoprecipitation studies showed an interaction of overexpressed GMPPA with 

GMPPB. To investigate if the interaction is direct or indirect, we performed GST pull-down 

assays with recombinant GMPPA and GMPPB constructs. 

Pointing to a direct interaction between GMPPA and GMPPB recombinant GMPPA-MBP was 

pulled down with immobilized GMPPB-GST (Fig. 6e).  
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Fig. 6: GMPPA directly interacts with GMPPB. a) GMPPA-Myc and GMPPB-FLAG co-precipitate upon co-

overexpression in HEK-293T cells. b) The N-terminal disease-associated variant GMPPA G182D precipitates 

with GMPPB, while this is not the case for the C-terminal variant GMPPA T334P. c) The N-terminal but not the 

C-terminal GMPPA deletion construct co-precipitates with GMPPB. d) The C-terminal but not the N-terminal 

GMPPB deletion construct co-precipitates with GMPPA. e) GST pull-down of recombinant GMPPA and GMPPB 

points to a direct interaction of GMPPA with GMPPB. GST pull-down assays were performed by Sonnhild 

Mittag. 

 

In COS-7 cells, we analyzed the localization of heterologous expressed human GMPPA and 

GMPPB proteins as well as the mutant variants. Both GMPPA and GMPPB showed a diffuse 

cytoplasmic expression pattern (Fig. 7a) which was altered upon transfection with the 

GMPPA mutants G182D and T334P (Fig 7b, c). The GMPPA point mutant G182D showed a 

more clustered staining, while the point mutant GMPPA T334P revealed a dotted staining. 

For both variants a co-localization with GMPPB was observed, although the co-localization 
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was more prominent for the G182D variant (Fig. 7b, c). The GMPPB point mutant D334N 

showed a dotted staining pattern and partially co-localized with GMPPA (Fig. 7d). The variant 

missing the N-terminal part of GMPPA showed a diffuse cytoplasmic co-localization with 

GMPPB (Fig. 7e), while the variant missing the C-terminal of GMPPA showed a dotted 

staining and no co-localization with GMPPB (Fig. 7f). The mutant lacking the C-terminal part 

of GMPPB revealed a diffuse cytoplasmic co-localization with GMPPA (Fig. 7g), whereas the 

mutant missing the N-terminal part of GMPPB showed a dotted staining with no co-

localization with GMPPA (Fig. 7h).  

These data suggest that the C-terminal part of GMPPA is necessary for its localization and its 

interaction with GMPPB, while the N-terminal part of GMPPB is necessary for its localization 

and interaction with GMPPA. Therefore, the localization of GMPPA and GMPPB are highly 

linked and mutations in one protein can affect the localization of the other WT protein.  
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Fig. 7: Localization of WT and mutant GMPPA and GMPPB. GMPPA has a putative GDP-mannose binding 

domain at the N-terminus (nude) and several hexapeptide domains in the C-terminal part (grey). GMPPB has a 

nucleotidyl-transferase domain in the N-terminal part (nude) and hexapeptide repeats in the C-terminal part 
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(grey). GMPPA and GMPPA point mutations are indicated with red asterisks. GMPPA and GMPPB domain 

mutants are displayed in varying sizes according to the missing domain. WT GMPPA consists of 420 aa and 

WT GMPPB of 360 aa. a - h) Immunostainings of overexpressed WT and mutant GMPPA and GMPPB 

constructs showing a) a diffuse cytoplasmic co-localization of GMPPA and GMPPB WT proteins in COS-7 cells, 

while b - d) the staining pattern of GMPPA and GMPPB variants is altered. e) A variant missing the N-terminal 

part of GMPPA shows a diffuse co-localization with GMPPB in COS-7 cells, while f) a variant missing the C-

terminal part displays a dotted staining and no co-localization with GMPPB. g) A variant missing the C-terminal 

part of GMPPB reveals a diffuse co-localization with GMPPA in COS-7 cells, whereas h) a variant missing the 

N-terminal part of GMPPB suggests a dotted staining of GMPPB  and no co-localization with GMPPA (scale 

bars: 25 µm). 

 

To confirm a direct interaction of both proteins in native tissue, we performed a proximity 

ligation assay (PLA) on murine skeletal muscle cross sections (Fig. 8a) and brain sections 

(Fig. 8b - d) with antibodies directed against either GMPPA or GMPPB.  

The fluorescent amplification signal obtained from the oligonucleotide labeled antibodies 

directed against the primary antibodies, which indicates proximity of the targets of less than 

40 nm, was present in WT sections, but not in KO sections (Fig. 8a - d).  

 

Fig. 8: Visualization of the co-localization of endogenous GMPPA and GMPPB. a - d) Proximity ligation 

assay (PLA) on murine sections with antibodies directed against GMPPA and GMPPB. a) PLA on skeletal 

muscle cross sections reveals signals in WT but not in KO sections (scale bar: 5 µm). b - d) PLA on brain 

sections shows a staining in WT but not in KO sections in b) the cortex, c) the CA3 region of the hippocampus 

and d) the Purkinje cell layer in the cerebellum (scale bars: 50 µm).   
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Gmppa KO mice do not show obvious signs of achalasia or alacrima up to 5 months of 

age 

As patients with mutations in the GMPPA gene show congenital achalasia and alacrima 

(Koehler et al. 2013, Gold et al. 2017), we asked whether Gmppa KO mice recapitulate these 

deficits. We could not detect any macroscopic changes of the esophagus (Fig. 9a) in 5-

months-old mice. HE staining of longitudinal sections of the stomach and esophagus from 5-

months-old WT and KO mice revealed no dilation of the esophagus or a constricted 

esophageal sphincter (Fig. 9b). Moreover, the HE staining of esophageal cross sections from 

5-months-old mice did neither show differences between genotypes (data not shown). HE 

staining of cross sections of lacrimal glands from 5-months-old mice did not show any 

differences between WT and KO animals as well (Fig. 9c). However, Laminin staining of 

cross sections of the lacrimal glands from 5-months-old KO mice showed a blurrier staining 

compared to WT sections (Fig. 9d). In addition, we detected increased signal intensities with 

an antibody against Paucimannose in KO lacrimal gland sections suggesting an increased 

mannosylation of proteins (Fig. 9e). 

Laminin stainings of esophageal cross sections did not show any differences between 

genotypes (Fig. 9f).  As in lacrimal gland sections, we detected increased signal intensities 

for Paucimannose (Fig. 9g) and the glycosylation specific epitope of α-DG (Fig. 9h) 

suggesting increased protein glycosylation. Excluding a functional relevant achalasia, the 

body weight of Gmppa knockout mice did not differ at 3 months of age and only decreased at 

a later age (Fig. 9i, j).  
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Fig. 9: Gmppa KO mice do not show obvious signs of achalasia or alacrima up to 5 months of age. a) 

Macroscopic organization of the stomach (3) with esophagus (1), esophageal sphincter (2) and pylorus (4) of 5-

months-old WT and KO mice revealing no obvious changes. b) HE stainings of the stomach with esophageal 

sphincter show no alterations of the esophageal sphincter (indicated by asterix) in 5-months-old KO mice (scale 

bar: 50 µm). c) HE stainings of lacrimal glands from 5-months-old mice reveal no differences between 

genotypes (scale bar: 20 µm). d) Laminin signals appear blurrier in lacrimal gland cross sections of 5-months-

old KO animals (scale bar: 20 µm). e) Paucimannose signals are increased in KO cross sections of lacrimal 

glands from 5-months-old mice (scale bar: 20 µm). f) Laminin signals are not changed between genotypes on 

esophageal cross sections, while g) Paucimannose and h) VIA4 signals are increased (scale bar: 20 µm, n = 3). 

Body weight does not differ at a young age of i) male and j) female mice. With increasing age, KO mice show a 

reduced body weight (n = 6).  
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Gmppa KO mice show neurological deficits 

Patients with mutations in the GMPPA gene are mentally handicapped (Koehler et al. 2013, 

Gold et al. 2017, Benítez et al. 2018). Therefore, we aimed to assess whether Gmppa KO 

mice show cognitive deficits. To assess cognitive functions independent of motor impairment, 

we performed a fear-conditioning analysis. On the first day, we analyzed the freezing time 

when the mice were sitting in the box at baseline, then with the tone (for 20 s) and when the 

foot shock was applied (for 2 s at the end of the tone). All mice showed an increased freezing 

time after the foot shock (Fig. 10a). The next day, the cued fear-conditioning was assessed. 

Therefore, the mouse was placed in another box with different olfactory stimuli and different 

visual cues. We analyzed the freezing time at baseline (for 180 s), when the tone was applied 

(for 180 s) and when the tone was shut off (for 60 s). For 3-months-old mice we could not 

detect significant differences in the freezing time between WT and KO mice, although we 

observed a trend towards a decreased freezing time in KO mice (Fig. 10b). 12-months-old 

KO mice showed a significantly diminished freezing time compared to their WT littermates 

(Fig. 10b), but still showed an increased freezing time when the tone was applied (Fig. 10b) 

suggesting that older Gmppa KO mice were still able to connect the tone with the foot shock. 

In the third scenario, the context fear-conditioning, we put the mice into the same box as the 

day before with the same olfaction, light and decoration and analyzed the freezing time. Both, 

young and older KO mice showed a significantly decreased freezing time compared to their 

WT littermates (Fig. 10c) suggesting that Gmppa KO mice were not able to connect the 

environment with the foot shock applied the day before. While the amygdala is responsible 

for emotional learning, the hippocampus mediates short and long-term memory. It has been 

shown that lesions of the amygdala affect both cued and context fear conditioning, while 

hippocampal lesions only affect context but not cued fear conditioning (Phillips et al. 1992).  

Because we saw major differences between Gmppa WT and KO mice in the context fear-

conditioning, our data are consistent with a compromised hippocampal function. As KO 

animals were still able to connect the tone with the foot shock, our data suggest a minor 

decline in amygdala function.  
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Fig. 10: Gmppa KO mice show impaired memory in the fear-conditioning analysis. a) Acquisition at day 1: 

The freezing time was measured before and after mice got a foot shock for 2 s (red line) paired with a tone for 

20 s. b) 24 h after the acquisition, the cued test was performed: Mice were placed in a new environment 

compared to the day before and the freezing time upon tone stimulus was measured. KO mice showed a 

decreased freezing time compared to WT littermates (n (3 months) = 7 WT and 6 KO, n (12 months) = 8). c) 

After 2 h the context test was performed: Mice were placed in the same environment as the day before and the 

freezing time was measured. KO mice show a significantly decreased freezing time compared to their WT 

littermates (n (3 months) = 7 WT and 6 KO, n (12 months) = 8). 

 

Based on these findings we assessed whether long-term potentiation (LTP) is modified in 

Gmppa KO animals. Stimulating electrodes where placed onto Schaffer collaterals (axon 

collaterals) in the CA3 of the hippocampus to stimulate CA1 pyramidal neurons. Recording 

electrodes were placed in the CA1 region (Fig. 4). Upon stimulation of the axons, field 

excitatory postsynaptic potentials (fEPSPs) were measured. Stimulation of the axons with 

different patterns and frequencies lead to long-lasting changes in postsynaptic potentials. We 

measured fEPSPs at baseline and after inducing LTP. KO mice showed a significantly 

decreased field excitatory postsynaptic potential (fEPSP) compared to their WT littermates 

(Fig. 11) suggesting a disturbed LTP.  
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Fig. 11: Gmppa KO mice show a decreased long-term potentiation (LTP). Gmppa KO mice show a 

significantly decreased field excitatory postsynaptic potential (fEPSP) compared to their WT littermates (n = 10). 

LTP measurements were performed by Tanja Herrmann. 

 

We then analyzed the brain weight of Gmppa WT and KO mice. In accordance to our 

previous findings, KO mice showed a significantly decreased brain weight compared to their 

WT littermates (Fig. 12a). Immunostainings of brain sections revealed increased signals for 

the glial fibrillary acid protein (GFAP) (Fig. 12b) and thinned cortex layers with less cells in 

KO sections (Fig. 12c, d) suggesting a cell loss accompanied by activation of astrocytes. 

 

Fig. 12: Gmppa KO mice show brain alterations. a) Overall brain weight is reduced in KO mice at young and 

later ages (n = 6). b) Immunohistochemistry on murine sagittal brain sections reveals an increased signal for the 
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glial fibrillary acid protein (GFAP) in young KO sections (n = 3, scale bar: 200 µm). c - d) DAPI staining on 

sagittal brain sections reveals thinner cortical layers in 3-months-old KO brains (n = 3).  

 

Moreover, Gmppa KO mice had a smaller cerebellum (Fig. 13a) and an altered hippocampal 

structure with a decreased cell number in the CA3 region at 3 months of age (Fig. 13b, c).  

 

Fig. 13: Gmppa KO mice show altered brain structures. HE stainings of sagittal brain sections revealed a) a 

smaller cerebellum and (scale bar: 2 mm) b - c) less cells in the CA3 region of the hippocampus in 3-months-old 

KO mice (n = 3, scale bar: 500 µm). 

 

The analysis of the brain of Gmppa KO mice is still ongoing.  

 

Gmppa KO mice develop a progressive gait disorder with muscle weakness 

Because AAMR patients often develop gait abnormalities (Koehler et al. 2013), we asked 

whether Gmppa KO mice display gait problems. To this end, we performed the Beam Walk 

balance test (Fig. 14a). The walk was analyzed using the FBA. The gait deficit of Gmppa KO 

mice was already visible at 3 months of age and further deteriorated with age (Fig. 14b).  

To address the muscle strength of the fore-paws we performed the Weights test (Fig. 14c). 

Compared to WT littermates, the maximal weight held by the fore-paws was reduced in KO 

mice and further decreased with age (Fig. 14d).  

We also performed the Kondziela´s inverted screen test (Fig. 14e). At 3 months of age, all 

mice independent of the genotype were able to hang on the screen for 70 s. Muscle 

weakness became evident at later ages, when KO mice fell off the screen more rapidly (Fig. 

14f).  
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Fig. 14: Gmppa KO mice develop a progressive gait disorder with muscle weakness. a - b) Beam Walk 

balance test. a) Representative single video frames from a WT and a KO mouse 12 months of age walking on a 

beam at the moment when the toe is lifted. The foot base angle (FBA) is indicated by white lines. b) The FBA is 

decreased in KO compared to WT mice. The FBA decreases over time in KO, but not in WT mice (n = 12). c - 

d) Weights test. c) Representative image of a mouse holding a weight while lifted on the base of its tail. d) WT 

mice are able to hold more weight compared to their KO littermates and generally this ability decreases over 

time (n = 12). e - f) Kondziela´s inverted screen test. e) Representative image of a mouse hanging on an 

inverted screen. f) Older KO mice fall off the screen earlier as WT mice (n = 12). 

 

Gmppa KO mice develop a progressive myopathy 

To address the origin of the observed motor phenotype we analyzed skeletal muscles in 

more detail. At 3 months of age we could not detect differences in the muscle weight 

between WT and KO mice (Fig. 15b). However, at 12 months of age we observed an 

increased muscle loss for the Musculus palmaris longus of the fore-paws and Musculus 

tibialis anterior of the hind-paws (Fig. 15c). HE stainings of skeletal muscle sections revealed 

an increased number of centralized nuclei (Fig. 15a, d) and a decreased fiber diameter (Fig. 

15a, e). These findings are consistent with a myopathic disorder.  
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Figure 15: Gmppa KO mice develop a progressive myopathy. a) Cross-sectioned Tibialis anterior muscle 

stained with HE from 3-months-old WT and KO mice (n = 3, scale bars: 50 µm). b) At 3 months of age the 

muscle weight of the Musculus tibialis anterior and the Musculus palmaris longus does not differ between the 

genotypes (n = 5), while c) KO mice show a higher muscle loss compared to WT littermates at 12 months of age 

(n = 5). d) 12-months-old KO mice show more centralized nuclei and e) a decreased fiber diameter (n = 3). The 

fiber diameter was analyzed by Juliane Jung. 

 

As the ECM provides structural and molecular support of skeletal muscle fibers and plays an 

important role in developmental and regenerative processes, we stained skeletal muscle 

cross sections for ECM proteins such as Laminin (Fig. 16a), Nidogen (Fig. 16b) and Collagen 

IV (Fig. 16c). At 3 months of age no obvious differences were noted between WT and KO 

mice, while at 12 months of age KO mouse sections demonstrated a more clustered staining 

for Laminin (Fig. 16a), Nidogen (Fig. 16b) and Collagen IV (Fig. 16c) suggesting a 

disorganization of the ECM upon Gmppa disruption. Importantly, overall protein abundance 

for Laminin, Nidogen and Collagen IV remained unchanged in skeletal muscle lysates as 

determined by immunoblot analysis (Fig. 16d, e). 
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Figure 16: Gmppa KO mice display ECM alterations. a - c) Immunostaining on cross-sectioned Tibialis 

anterior from 3- and 12-months-old mice. a) The Laminin, b) Nidogen and c) Collagen IV staining is interrupted 

(marked with arrows) in older KO but not in WT mice (scale bars: 5 µm) while d - e) Laminin, Nidogen and 

Collagen IV levels were not changed. GAPDH served as loading control (n = 5). 

 

As the ECM provides mechanical structure to myofibers and participates in the force 

transmission from myofiber to tendon, we wanted to assess whether an alteration in ECM 

protein distribution might lead to a disruption of the sarcolemma. For this purpose, we stained 

skeletal muscle cross sections with IgG (Fig. 17a), IgM (data not shown) or Albumin (data not 

shown). No intracellular IgG deposits were visible neither in WT nor in KO sections (Fig. 17a) 
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suggesting that the sarcolemma was not severely damaged. Similar results were obtained for 

either IgM or Albumin.  

We stained longitudinal skeletal muscle sections for the Z-disc protein α-Actinin (Fig. 17b). 

The α-Actinin signal was altered in aged KO mice, while there was no difference in young 

mice (Fig. 17b) pointing to an alteration of the contractile apparatus at later ages. Mass 

spectrometry analysis of skeletal muscle lysates showed decreased abundance of proteins 

involved in muscle contraction (e.g. Tropomodulin) and muscle organization (e.g. Actin) as 

well as Z-disc proteins (e.g. CABZB) while some proteins involved in sugar transport and 

regulation of sugar transport were increased (e.g. RSC1A1) (Fig. 17c).  

 

Figure 17: Alterations in skeletal muscle proteins in Gmppa KO mice. a) IgG stainings do not show 

alterations between young and older WT and KO mice (n = 3, scale bars: 100 µm). b) α-Actinin stainings of 

longitudinal skeletal muscle sections of young and old WT and KO mice reveal no differences at 3 months of 

age, but Z-disc alterations at 12 months of age in KO mice (n = 3, scale bars: 10 µm). c) Mass spectrometry 

analysis: most proteins necessary for muscle organization and contraction are down-regulated (blue colour, 
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marked in bold letters), signal proteins and peptidoglycan-binding elements are up-regulated (red colour) (n = 

5). Mass spectrometry was performed by Svenja Schüler. 

 

To exclude a neurogenic origin of the motor phenotype, we assessed the anatomy of the 

skeletal muscle and sciatic nerve. We did not detect grouped degenerating muscle fibers 

(Fig. 17a). Further supporting the notion that the nerve itself is intact, semi-thin sections of 

the sciatic nerves of 12-months-old WT and KO mice did not show any obvious pathology 

(data not shown). In agreement, we did not observe differences between aged WT and KO 

sciatic nerve sections (Fig. 18a) by electron microscopy analysis.  

To exclude a major problem in neuromuscular transmission, we performed nerve conduction 

velocity experiments on aged mice. In agreement with our previous findings, no differences 

were detected in sensory sum action potentials (SSAPs) and compound muscle action 

potentials (CMAPs) (Fig. 18b, c). 

 

Figure 18: The myopathy in Gmppa KO mice is a muscle intrinsic event. a) Electron microscopy of the 

sciatic nerve from 12-months-old mice does not show obvious differences between the genotypes (n = 3, scale 

bar: 5 µm). Electron microscopy was performed by Katrin Buder. b - c) Amplitudes of b) sensory sum action 

potentials (SSAPs) and of c) distal compound muscle action potentials (CMAPs) upon electrical stimulation at 

the tail root do not differ between genotypes (n = 10). Recordings were performed by Lutz Liebmann. 

 

Loss of GMPPA affects skeletal muscle glycosylation 

As GDP-mannose levels were elevated in lymphoblastoid cells from AAMR patients (Koehler 

et al. 2013), we measured GDP-mannose and serum mannose levels (Sharma et al. 2014). 
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Notably, we detected diminished serum glucose levels in KO mice, while serum mannose 

levels were increased (Fig. 19a). In agreement, GDP-mannose levels were increased in 

several tissues (Fig. 19b), while GDP-fucose, GDP-glucose and GDP-glucosamine levels 

were unchanged (data not shown).  

 

Figure 19: Mannose and GDP-mannose levels are increased in Gmppa KO mice. a) Measurement of sugar 

concentrations in serum from 3-months-old mice revealed lowered glucose and increased mannose serum 

levels in KO mice (n = 3). b) GDP-mannose levels are increased in 8-months-old KO mice (n = 3). 

 

As increased GDP-mannose levels might alter the glycosylation pattern of proteins, we 

performed immunoblot analysis for several skeletal muscle proteins (Fig. 20a - d). Indeed, 

Oligomannose and Paucimannose immunoreactivities were increased in young (Fig. 20a, b) 

and aged (Fig. 20c, d) KO mice. While the signals for the lectin Peanut agglutinin (PNA), 

which detects non-sialylated Gal-β(1-3)-GalNAc in glycoproteins, were increased (Fig. 20a - 

d), we did not identify signal differences for the lectin Concanavalin A (Con A), which detects 

both α-D-mannosyl and α-D-glucosyl residues (Fig. 20a - d). 

Because α-DG is an important protein for muscle stability and integrity and is 

hypoglycosylated in patients with mutations in the GMPPB gene (Carss et al. 2013), we 

assessed its glycosylation in young and aged Gmppa KO mice (Fig. 20a - d). With an 
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antibody directed against the glycosylation specific epitope IIH6C4 of α-DG we observed 

increased signal intensities and a band shift towards a slightly higher molecular size in KO 

skeletal muscle lysates (Fig. 20a - d) pointing to a hyperglycosylation of α-DG upon 

disruption of Gmppa.  

  

Figure 20: Loss of GMPPA leads to hyperglycosylation of skeletal muscle proteins. a - d) Immunoblot 

analysis of skeletal muscle lysates obtained from 3- and 12-months-old WT and Gmppa KO mice. In KO 

skeletal muscle lysates the signal intensities for Oligomannose, Paucimannose, PNA and the glycosylation 

specific α-DG epitope are increased. Con A expression is not changed. GAPDH served as loading control. For 
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immunoblot analysis of the sugar-binding components, all visible bands on the membranes were evaluated (n = 

5). 

 

In agreement, immunostainings of skeletal muscle cross sections from Gmppa KO mice 

showed increased signal intensities for Oligomannose (Fig. 21a), PNA (Fig. 21b) and the 

glycosylation specific epitope of α-DG (Fig. 21d), while signal intensities did not differ for Con 

A (Fig. 21c).  

  

Figure 21: GMPPA loss leads to a hyperglycosylation disorder in skeletal muscle tissue. 

Immunohistochemistry staining of 3- and 12-months-old WT and KO cross-sections of the Musculus Tibialis 

anterior. a) Oligomannose and b) PNA stainings are increased in KO sections. c) Con A signals are not 

changed. d) The glycosylation specific α-DG epitope IIH6C4 is increased in KO sections. (n = 3, scale bars: 5 

µm).  
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In order to further verify these findings for glycans, we isolated N- and O-glycans from 

skeletal muscle tissue for MALDI-TOF analysis.  

In agreement with our previous immunoblot and IF findings, we observed elevated high-

mannose N-glycans (Fig. 22a) and an increase in O-glycans carrying more than one 

mannose residue (Fig. 22b). In accordance with the increased PNA binding in KO lysates 

(Fig. 20), sialylated structures were reduced in KO tissue (Fig. 22c). In agreement with α-Dg 

hyperglycosylation upon disruption of Gmppa, we identified seven α-DG-related O-

mannosylated glycans in the pool of glycans extracted from skeletal muscle, all of which were 

increased in KO samples (Fig. 22d). 

 

Figure 22: Loss of GMPPA leads to protein hyperglycosylation in skeletal muscle tissue in mice. 

Glycome analysis of the Quadriceps muscle from 5-months-old mice. H = hexose (mannose or galactose), N = 

N-acetylglucosamine, S = N-acteylneuraminic acid, U = glucoronic acid, W = glucouronic acid containing one 

sulphate group. a - c) Analysis of selected glycan peaks from MALDI-TOF spectra showing a) increased high-

mannose N-glycans, b) increased levels in O-mannosylated glycans, c) decreased sialylated structures and d) 

increased O-mannosylated glycans originating from α-DG in KO tissue (n = 3). Glycome analysis was 

performed by Karina Biskup. 
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α-DG hyperglycosylation increases its binding to ECM proteins  

It has been demonstrated that hypoglycosylated α-DG shows a decreased binding affinity for 

ECM ligands, e.g. Laminin (Esser et al. 2012, Endo 2015), and that α-DG hyperglycosylation 

increases its binding to ECM proteins (Brockington et al. 2010). So, we asked whether the 

binding of ECM proteins to α-DG is stronger in Gmppa KO mice. Therefore, we enriched 

glycoproteins with Wheat germ agglutinin (WGA) and/or Con A lectins which were then 

separated by SDS-PAGE. Probing the membranes with antibodies directed against either the 

glycosylation-specific epitope of α-DG or the α-DG core protein, confirmed an enrichment of 

glycoproteins and a shift of α-DG towards a higher molecular weight (Fig. 23). Incubation of 

the membranes with either Laminin or Agrin revealed a significantly increased binding of both 

proteins (Fig. 23).  

 

 

Figure 23: Loss of GMPPA increases its binding to ECM proteins. Laminin and Agrin overlay 

assay showing an increased binding of hyperglycosylated α-DG to Laminin and Agrin in Gmppa KO 

mice (n = 3). The α-DG core protein served as loading control. 

 

As Agrin contributes to the formation and maintenance of neuromuscular junctions (NMJs) 

(Sugiyama et al. 1994), we assessed the morphology and innervation of NMJs in young and 

aged Gmppa KO mice (Fig. 24a - c). Notably, young and older KO mice show more 

fragmented (Fig. 24a, b) and less fully innervated NMJs (Fig. 24a, c) compared to WT 

littermates. 
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Figure 24: Loss of GMPPA affects the integrity of neuromuscular junctions. a - c) Analysis of 

neuromuscular junctions (NMJ) stained with α-bungarotoxin (BTX). The nerve fibers innervating NMJs are 

stained for NF200 (2H3, SV2). In KO mice the ratio of fragmented NMJs is increased and the innervation of 

NMJs decreased (n = 4, scale bars: 50 µm). NMJs were prepared and analyzed by Julia von Maltzahn. 

 

Gmppa knockdown decreases α-DG stability  

As post-translational modifications such as glycosylation may alter protein stability (Baudys et 

al. 1995), we asked whether the hyperglycosylation of α-DG in Gmppa KO mice affects its 

stability. We tested α-DG protein abundance in skeletal muscle lysates with an antibody 

directed against the inner core of α-DG. Interestingly, α-DG protein bands were slightly 
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shifted towards a higher molecular weight and displayed decreased signal intensities in KO 

mice (Fig. 25a, b, c, d) while β-DG levels were not changed (Fig. 25a, b, c, d). In agreement 

with this notion, IF revealed reduced signal intensities for α-DG in KO mice while β-DG levels 

did not differ between genotypes (Fig. 25e, f).  

  

 

Figure 25: Gmppa KO mice display reduced α-DG abundance. a - b) Immunoblot analysis shows reduced 

core α-DG levels, while β-DG levels are not changed in 3-months- and c - d) 12-months-old KO mice (n = 5). 

GAPDH served as loading control. e) IF demonstrates reduced core-α-DG and f) unchanged β-DG signals in 

young and aged mice (n = 3, scale bars: 5 µm). 

 

To address α-DG turnover, we performed Gmppa knockdown experiments in murine primary 

differentiating myoblasts. We employed two knockdown controls in this experiment: a siRNA 

against Dystroglycan (siDag1) as a positive control for Dystroglycan knockdown and 

scrambled siRNA (siScr) as a negative control. Briefly, myoblasts were seeded and treated 
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next day with differentiation medium. After two days in differentiation medium, cells were 

transfected with siRNA. After 3 days we blocked protein translation with cycloheximide (CHX) 

and assessed α-DG abundance 24 h afterwards by immunoblot analysis. Ubiquitin served as 

a control for successful translation stop, as in CHX-treated cells Ubiquitin levels were 

decreased (Fig. 26a, b). Dystroglycan and Gmppa knockdown was successful as evident 

from Western blot analysis of lysates obtained from siRNA-treated cells (Fig. 26a, b). 

Consistent with a shorter half-life of hyperglycosylated α-DG, α-DG levels were reduced upon 

knockdown of Gmppa, which further decreased in CHX-treated cells (Fig. 26a, b) about 47 

%. In control cells (siScr) α-DG levels decreased about 24 % after CHX treatment. 

 

Because glycosylation starts at the endoplasmic reticulum (ER) and only correctly post-

translationally modified proteins are transported to the Golgi (Hirai et al. 2018), we asked 

whether BIP, a major ER chaperone and ER stress sensor (Bravo et al. 2013), might be up-

regulated in Gmppa knockdown myoblasts. As BIP levels did not differ between the different 

knockdown conditions (Fig. 26c, d), a major ER stress upon loss of GMPPA is unlikely.  

Because the glycosylation process continues in the Golgi, we also studied the abundance of 

different Golgi marker proteins. Interestingly, the cisGolgi protein GM130, the Golgi protein 

GLG1 as well as the transGolgi protein TGN38 showed higher signal intensities (Fig. 26c, d) 

pointing to a secondary alteration of the Golgi. Moreover, ERK signaling was strongly 

activated (Fig. 26c, d).   
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Figure 26: Gmppa knockdown decreases GMPPA stability. a - b) Immunoblot analysis shows efficient 

knockdown of Dystroglycan (Dag1) and Gmppa. Cycloheximide (CHX) treatment results in diminished 

Dystroglycan levels with core-α-DG expression being significantly lower in Gmppa knockdown than compared to 

control (siScr) cells. Ubiquitin served as control for efficient CHX treatment. GAPDH served as loading control (n 

= 3). c - d) Immunoblot analysis shows that Dystroglycan and Gmppa knockdown leads to an increase in 

TGN38, GLG1, GM130 and ERK activation whereas BIP is not changed (n = 3, not significant values are not 

shown). 

 

As we observed altered abundances of Golgi proteins, we wondered whether the Golgi 

structure within the skeletal muscle is normal. Therefore, we stained murine skeletal muscle 

fibers with the cisGolgi marker GM130, the transGolgi marker TGN38 and the Golgi marker 

GLG1. 
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Notably, the Golgi, especially the TGN appeared more fragmented in skeletal muscle fibers 

of KO mice as evidenced by an increased number of GLG1- and TGN38-positive structures 

(Fig. 27a - d) and a reduced overlap between different Golgi-markers (Fig. 27a - e). 

Moreover, we observed a higher integrated signal density for TGN38 in KO fibers (Fig. 27 a - 

e).  

Taken together, disruption of Gmppa does not cause ER stress but results in structural 

alterations of the Golgi apparatus. 

 

Figure 27: Loss of GMPPA affects Golgi-associated proteins. (a,b) Representative images of skeletal 

muscle fibers from 5-months-old mice stained for TGN38 and GM130. a) WT fibers show a Golgi staining with 

partial overlap of TGN38 with GM130 (scale bars: 10 µm). b) KO fibers do not show an obvious overlap of the 

cisGolgi protein GM130 with the transGolgi protein TGN38 (scale bars: 10 µm). c) Representative images of 

skeletal muscle fibers from 5-months-old mice stained for GLG1 (scale bars: 10 µm). d) GLG1 and TGN38 

staining reveal more transGolgi fragments in KO fibers, whereas cisGolgi GM130 fragments are not changed 

between genotypes (n = 3 per genotype). e) Manderson overlap coefficient reveals a partial overlap of GM130 

with TGN38 in WT fibers. In KO fibers this overlap coefficient is significantly reduced (n = 3). The integrated 

density is increased for TGN38 stainings in KO fibers, while it is not changed for GLG1 and GM130 (n = 3). 
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α-DG is hyperglycosylated in AAMR patients  

Our findings in Gmppa KO mice prompted us to ask whether patients with mutations in the 

GMPPA gene might show similar alterations in skeletal muscle.  

From two previously described patients with GMPPA mutations (Benítez et al. 2018) we were 

able to obtain skeletal muscle biopsies. Control samples were obtained from the Telethon 

Biobank. Consistent with our findings in Gmppa KO mice, both patients displayed increased 

glycosylation of α-DG (Fig. 28a, b), while the core protein of α-DG was diminished (Fig. 28c). 

As in Gmppa KO mice, β-DG abundance was not altered between patient and control 

samples (Fig. 28d). Further, we observed discontinuous Laminin signals in both patients (Fig. 

28e) similar to our findings in Gmppa KO mice. Moreover, α-Actinin signals were altered in 

patients compared to control samples suggesting Z-disc alterations (Fig. 28f). Electron 

microscopy analysis revealed disarrayed filaments and loss of the continuity of the Z-discs 

(Fig. 28g). 

 

Figure 28. AAMR patients show hyperglycosylation and Z-disc alterations. a - e) Immunostaining of 

Quadriceps cross-sections (scale bars: 50 µm) showing an increase in the glyosylation specific α-DG epitopes 

a) IIH6C4 and b) VIA4. c) Core α-DG levels are reduced whereas d) β-DG levels are not changed. e) Laminin 

levels are unchanged but reveal an interrupted staining pattern in both patients compared to the control. f) α-

Actinin staining is altered in patient longitudinal skeletal muscle sections (scale bars: 10 µm). g) Electron 
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microscopy analysis reveals disarrayed fibers and loss of the continuity of the Z-lines in both siblings (scale bar: 

500 nm). Electron microscopy was performed by Braulio Martínez. 

 

Immunoblot analysis of skeletal muscle lysates revealed diminished GMPPA levels in both 

patients (Fig. 29). In agreement with our data from Gmppa KO mice, band intensities for 

Oligomannose, Paucimannose, and PNA were increased in patient samples, while Con A 

signals were unchanged (Fig. 29). With antibodies directed against the glycosylation specific 

epitopes IIH6C4 and VIA4 of α-DG we observed a band shift towards a higher molecular 

weight and increased signal intensities in patient samples (Fig. 29) pointing towards a 

hyperglycosylation of α-DG. With an antibody against the core protein of α-DG we observed a 

band shift to a slightly higher molecular weight and decreased band intensity for both patients 

(Fig. 29). In accordance to our myoblast knockdown findings, the transGolgi protein TGN38 

was upregulated in patient samples (Fig. 29).  

  

Figure 29: Protein hyperglycosylation in skeletal muscle of AAMR patients. Immunoblot stainings showing 

reduced signal intensities for GMPPA in both sisters as well as increased signal intensities for Oligomannose, 

PNA and the glycosylation specific α-DG epitopes, while Con A staining is unchanged. Core α-DG levels are 

decreased, while β-DG and Laminin levels are not changed. The trans-Golgi protein TGN38 is increased. 

GAPDH served as loading control. 
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A mannose-depleted diet rescues the motor phenotype in Gmppa KO mice 

As Gmppa KO mice display elevated mannose and GDP-mannose levels, we asked whether 

a mannose-free diet might prevent the progress of the disease. Therefore, Gmppa WT and 

KO mice were fed either with mannose-depleted food with reduced glucose and fructose 

content (treated) or with normal food (untreated) starting from postnatal day 14 (P14) up to 8 

months of age. Notably, the FBA did not deteriorate in the Beam Walk balance test in treated 

KO mice compared to untreated KO mice (Fig. 30a, b). In the Kondziela´s inverted screen 

test, the latency until the mice fell off the wire mesh was almost normalized in treated KO 

mice (Fig. 30c). Comparison of skeletal muscle proteins of mannose-restricted or unrestricted 

KO mice with those of unrestricted WT mice by mass spectrometry showed that levels of 

many proteins either up- or down-regulated in untreated KO mice were largely normalized by 

dietary intervention (Fig. 30d).  

 

Figure 30: A mannose-depleted diet largely rescues the myopathy in Gmppa KO mice. a - b) Beam Walk 

balance test. a) Representative video frames from an untreated KO and a treated KO mouse (8 months of age) 

walking on a beam at the moment when the toe is taken off. The foot base angle (FBA) is indicated in white 

lines. b) In treated mice, the difference in the FBA between WT and KO mice is decreased compared to 

untreated animals and does not increase with age (n = 11). c) Kondziela´s inverted screen test. In treated mice, 

the difference in the latency to fall between WT and KO mice is decreased compared to untreated animals (n = 

11). d) Mass spectrometry analysis showing proteins which are altered in the untreated KO but normalized in 

the treated KO animals compared to the WT littermates (n = 5, up-regulated proteins are indicated in red, down-

regulated proteins are shown in blue). Mass spectrometry was performed by Svenja Schüler. 

 

Our immunoblot analysis revealed almost normalized signal intensities for Oligomannose, 

Paucimannose and PNA in skeletal muscle lysates dissected from KO mice treated with 

mannose-depleted food (Fig. 31a, b). Moreover, the respective bands for the glycosylation 
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specific epitope of α-DG were slightly shifted towards lower molecular weight and the signal 

intensity in treated KO mice was decreased compared to untreated KO mice. The abundance 

of the core α-DG was almost normalized (Fig. 31a, b).  

Moreover, we performed immunoblot analysis for the ER stress marker protein BIP and 

selected Golgi proteins. In accordance to our previous findings in myoblasts, BIP levels did 

not differ between genotypes and treatments (Fig. 31c, d). However, the transGolgi protein 

TGN38 and the Golgi protein GLG1, which were up-regulated in untreated KO mice, were 

normalized upon treatment (Fig. 31c, d). In contrast to our findings in myoblast knockdown 

experiments, the cisGolgi protein GM130 was not altered in Gmppa KO mice (Fig. 31c, d).  

 

Figure 31: A mannose-depleted diet rescues the protein hyperglycosylation in Gmppa KO mice. a - b)  

Immunoblot analysis shows increased signals for Oligomannose, Paucimannose, PNA and the glycosylation-
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specific α-DG epitope IIH6C4 in untreated KO mice, which are normalized by the mannose-depleted diet. α-DG 

core-protein levels are decreased in untreated KO mice and rescued by the mannose-depleted diet. β-DG levels 

are unchanged. For immunoblot analysis of the lectin as well as Oligomannose and Paucimannose stainings, all 

bands were quantified (n = 3). c - d) Immunoblot analysis reveals unchanged protein levels for BIP and GM130. 

TGN38, GLG1, and P-ERK levels are increased in untreated KO mice and decrease with therapy. GAPDH 

served as loading control (n = 3). 
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Discussion 

Glycosylation is the most frequent post-translational modification. Perturbations of 

glycosylation can lead to severe diseases also known as congenital disorders of 

glycosylation (CDGs) which can affect a wide variety of organs and body functions.  

Up to date roughly 400 genes are known to be involved in the glycosylation pathway, but only 

130 genes are currently associated with glycosylation disorders. So, glycosylation disorders 

are rare diseases and are generally characterized by hypoglycosylation. A well-studied and 

more common glycosylation defect is caused by mutations in the gene encoding 

Phosphomannomutase 2 (PMM2). It occurs with a prevalence of 1/20,000 and is therefore 

the most prevalent glycosylation disorder (Freeze et al. 2014). PMM2 converts mannose-6-

phosphate into mannose-1-phosphate, which is the substrate for GMPPB. Mutations in the 

PMM2 gene lead to a decreased PMM2 activity and thus result in lower mannose-1-

phosphate levels and hypoglycosylation. Affected individuals show gait ataxia, developmental 

delay, hypotonia and strabismus among other symptoms (Péanne et al. 2017, Jaeken 2013). 

Recently, it has been reported that mutations in the GMPPB gene also cause a glycosylation 

disorder (Carss et al. 2013). GMPPB converts Mannose-1-phosphate and GTP into GDP-

mannose, the initial molecule for N-linked glycosylation and O-linked mannosylation (Freeze 

et al. 2012) which is of special relevance for α-DG. In agreement, it has been shown that 

GMPPB mutations result in the hypoglycosylation of α-DG. 

Our group identified mutations in the GMPPA gene in a syndromic disorder which is 

characterized by gait abnormalities, achalasia, alacrima, and mental retardation (AAMR-

syndrome) (Koehler et al. 2013, Barišić et al. 2011, Engel et al. 2015). Up to now, the 

function of GMPPA remained unclear, because it lacks enzymatic activity compared with 

GMPPB (Jin et al. 2005). This thesis aimed to elucidate the underlying mechanisms and to 

envisage potential therapeutic strategies. 

 

Localization and interaction of GMPPA and GMPPB 

GMPPA lacks enzymatic activity due to an insertion of 2 amino acids within its catalytic 

pocket, but is still able to bind GDP-mannose, the product of GMPPB. Therefore, GMPPA 

may rather serve as an allosteric feedback inhibitor of GMPPB (Koehler et al. 2013, Szumilo 

et al. 1993, Jin et al. 2005).  

In overexpression Co-IP studies in HEK-293T cells we could show that human GMPPA and 

GMPPB interact. By GST pull-down assays with recombinant proteins we further resolved 

that this interaction is direct. While some disease-associated mutations in GMPPA impair this 

interaction, other mutations do not. For instance, we could show that the disease associated 

GMPPA variant with the amino acid substitution T334P, which locates to the C-terminal part 
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of the protein, does not interact with GMPPB, whereas a variant with the amino acid 

substitution G182D, which locates to the N-terminal part of GMPPA, still interacts with 

GMPPB. Interestingly, mutations in the C-terminal part of GMPPB such as the amino acid 

exchange D334N do not affect the interaction between both proteins.  

These data imply that the C-terminal part of GMPPA and the N-terminal part of GMPPB are 

necessary for the interaction between both proteins. Therefore, we generated GMPPA and 

GMPPB domain mutants. Notably, a GMPPA mutant missing the N-terminal part of the 

protein still interacted with GMPPB, while the GMPPA variant lacking the C-terminal part did 

not interact with GMPPB. In contrast, a GMPPB variant missing the N-terminal part of the 

protein did not interact with GMPPA, whereas a GMPPB variant lacking the C-terminal part 

interacted with GMPPA.  

Immunofluorescence stainings for heterologous expressed GMPPA WT and mutant variants 

as well as GMPPB WT and mutant proteins corroborated our Co-IP findings. Moreover, we 

saw an altered staining pattern upon transfection of COS-7 cells with GMPPA and GMPPB 

point mutant constructs. The domain mutant missing the N-terminal part of GMPPA and the 

mutant missing the C-terminal part of GMPPB showed the same diffuse cytoplasmic staining 

as already observed for the WT constructs. The domain mutant lacking the C-terminal part of 

GMPPA as well as the mutant missing the N-terminal part of GMPPB, however, showed an 

irregular staining pattern and no co-localization with the corresponding WT construct. 

Taken together, these findings suggest that the C-terminal part of GMPPA and the N-terminal 

part of GMPPB mediate interaction of the two proteins. Moreover, GST pull-down suggest a 

direct interaction of GMPPA with GMPPB.  

Because we observed just a faint band when pulling down GMPPA-MBP with immobilized 

GMPPB-GST and a very intense band when pulling down GMPPA-MBP with immobilized 

GMPPA-GST, we suggest that GMPPA is preferentially forming homodimers in a solution 

without additional GDP-mannose. Moreover we suggest that we would see an increased 

interaction of GMPPA with GMPPB in the presence of elevated GDP-mannose levels.  

To confirm the interaction of GMPPA with GMPPB for the endogenous proteins in vivo, we 

performed a proximity-ligation-assay on murine tissue sections. The PLA assay clearly 

showed interaction between GMPPA and GMPPB. The specificity of the PLA assay was 

verified on Gmppa KO sections.  

Although these data suggest that GMPPA acts as an allosteric feedback inhibitor of GMPPB, 

they do not prove this hypothesis. To this end, one could address whether GMPPB activity 

changes with increasing or decreasing GDP-mannose levels, when the GMPPA WT protein 

is present. Whether GMPPB activity changes with GMPPA mutant proteins remains elusive. 

To address these questions, GMPPB enzyme activity assays with increasing or decreasing 
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GDP-mannose levels in the presence of GMPPA WT or mutant proteins should be 

performed.  

 

Symptoms of Gmppa KO mice and human patients 

Disruption of the Gmppa gene in mice partially recapitulated muscle weakness and gait 

abnormalities as observed in patients. However, we could neither detect obvious indications 

for achalasia such as changes of the lower esophageal sphincter nor obvious hints to 

assume that tear production was reduced. However, in IF stainings we detected a more 

blurry Laminin signal in lacrimal gland cross sections from 5-months-old KO mice suggesting 

mild  alterations of the ECM. In addition, we detected increased signal intensities with an 

antibody against Paucimannose in KO mice suggesting an increased mannosylation of 

glycoproteins in the lacrimal gland. Increased signal intensities for Paucimannose were also 

evident in cross sections of the esophagus of KO mice. Signals for the glycosylation specific 

epitope of α-DG were increased as well. As we could not detect structural alterations in 

skeletal muscle before 12 months of age, one should look for structural changes in the 

esophagus and lacrimal glands at later stages of life. Of note, we neither performed 

esophageal motility studies nor assessed tear production, two methods that are used to 

assess esophageal and lacrimal gland function in human patients, because of technical 

limitations. 

 

In accordance with the clinical presentation of human patients (Koehler et al. 2013, Gold et 

al. 2017, Benítez et al. 2018), Gmppa KO mice display cognitive defects. In mice, these 

deficits include decreased freezing times in the cued and context fear conditioning test and 

decreased field excitatory postsynaptic potentials in LTP measurements. These learning and 

memory difficulties often reflect structural and functional brain alterations. Indeed, we found 

an increased amount of activated astrocytes, indicated by increased GFAP signals, and a 

reduction of the thickness of cortical layers in 3-months-old KO mice. This may either indicate 

neuron loss or a decreased neurogenesis in development. In addition, we observed a smaller 

size of the cerebellum and fewer pyramidal neurons in the CA3 region of the hippocampus in 

KO animals. Consistent with this notion, Gmppa KO mice exhibited a reduced brain weight. 

Because we found a hyperglycosylation of α-DG in skeletal muscle, we suggest that α-DG 

and also other proteins which may play a role for neurogenesis or neuronal homeostasis may 

be hyperglycoslyated. Furthermore, as hyperglycosylation decreases the half-life of α-DG in 

skeletal muscle and myoblasts this may result in a decrease of overall α-DG abundance. In 

fact, mice lacking Dystroglycan show disarrayed cortex layering and a reduced LTP (Moore 

et al. 2002) similar to our findings in Gmppa KO mice. Patients with reduced expression of 
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glycosylated Dystroglycan exhibit severe brain malformations with cortical dysplasia, 

neuronal migration defects, epilepsy and a defect of neuromuscular transmission (Chan et al. 

2010, Barišić et al. 2011, Carss et al. 2013, Engel et al. 2015). Dystroglycan-deficient mice 

did not show changed paired-pulse facilitation suggesting that presynaptic transmitter release 

was not changed. Whether this also applies for Gmppa KO mice is still elusive. Moreover, 

several studies showed that abnormal glycosylation during brain development, especially O-

mannosylation, can lead to severe cognitive impairment (Freeze et al. 2012, Liu et al. 2006). 

In conclusion, whether GMPPA has a function in brain development is still unclear,but it 

appears likely.  

 

Similar to human patients with GMPPA mutations (Koehler et al. 2013, Gold et al. 2017, 

Benítez et al. 2018), Gmppa KO mice show gait abnormalities. Notably, these gait 

abnormalities become more severe with age and are accompanied by a progressive muscle 

weakness. Gmppa KO mice show a significantly decreased muscle weight compared to WT 

littermates. In addition, we found more centralized nuclei and a reduced fiber diameter in 

skeletal muscle tissue of aged KO mice, altogether indicating a myopathy. Thus, gait 

abnormalities in patients may be also related to a skeletal muscle pathology.  

Notably, ECM proteins, e.g. Laminin, showed a more clustered and disrupted distribution 

pointing to a reorganization of the ECM upon Gmppa disruption. This does not dramatically 

impair sarcolemma stability as shown by the lack of intracellular IgG deposits in skeletal 

muscle section of aged KO mice. To further assess whether the ECM alterations affect the 

stability of the sarcolemma, it would be interesting to assess skeletal muscle viability under 

challenged conditions, e.g. after forced running on a treadmill. Interestingly, the protein 

abundance of the Z-disc protein CAPZB was reduced and the distribution of the Z-disc 

protein α-Actinin was altered in KO mice. As the sarcomere and the ECM are important for 

force generation and contractility, it would be of great interest to perform force measurements 

on isolated muscle fibers. Importantly, histological examinations of skeletal muscle specimen 

obtained from two AAMR patients with GMPPA mutations (Benitez et al. 2018) confirmed 

these findings. 

 

To exclude a neurogenic origin of the observed myopathy, we measured SSAPs and CMAPs 

in response to electrical stimulation of peripheral nerves in WT and KO mice. SSAPs and 

CMAPs were not changed between genotypes arguing against a neurogenic component. 

Moreover, we could not detect any structural differences of sciatic nerves between genotypes 

by electron microscopy. These findings indicate that the observed muscle phenotype likely is 
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skeletal muscle intrinsic. Of note, we did not look for SSAPs and CMAPs or at the sciatic 

nerve morphology at later stages of life.  

 

Molecular mechanisms underlying AAMR syndrome 

AAMR patients have elevated GDP-mannose levels in lymphoblastoid cells (Koehler et al. 

2013). In agreement with this, we found increased GDP-mannose levels in several tissues of 

Gmppa KO mice including skeletal muscle. 

It has been reported that low GDP-mannose levels correlate with low serum mannose levels 

(Sharma et al. 2014). As we found elevated GDP-mannose levels in Gmppa KO mice, we 

wondered whether we will find elevated serum mannose levels in KO mice. Indeed, Gmppa 

KO mice displayed increased serum mannose levels. Potentially, elevated serum mannose 

levels result from mannose release from the degradation of hypermannosylated proteins.  

Of note, glucose and mannose are taken up into the cell by the same transporter molecules 

(Thorens and Mueckler 2010) and thus increased mannose levels may impair glucose uptake 

into the cell and thus glucose metabolism (Gonzalez et al. 2018).  

Interestingly, serum glucose levels were decreased in KO mice. In accordance with reduced 

serum glucose levels in KO mice, we found an increased abundance of RSC1A1 protein by 

mass spectrometry. RSC1A1 inhibits the expression of the sodium/glucose symporter by 

lowering its incorporation into the cell membrane at low intracellular glucose levels (Kroiss et 

al. 2006). 

We propose that increased mannose levels in the blood of Gmppa KO mice may lead to an 

increased influx of mannose into the cells. In cells, increased mannose supply may further 

stimulate the generation of GDP-mannose, because control of GMPPB by GMPPA is missing 

leading to hyperglycosylation of proteins and lipids. Hyperglycosylation might lead to protein 

degradation, glycan trimming and thus release of free mannose. Most of free mannose 

released by intracellular glycan processing exits the cells via a nocodazole-sensitive 

transporter into the blood (Sharma and Freeze 2011). This mannose efflux may explain 

elevated serum mannose levels in Gmppa KO mice. Intracellular released mannose cannot 

enter directly glycosylation again (Sharma and Freeze 2011, Sharma et al. 2014). So, if more 

mannose is needed due to an increased GDP-mannose generation in KO mice, it has to 

derive from glucose. Of note, glucose conversion into mannose is lowering the glucose pool 

and may explain decreased serum glucose levels. 

 

Increased GDP-mannose levels might cause glycosylation imbalances. Notably, we observed 

increased reactivities for Paucimannose and Oligomannose in KO skeletal muscle lysates. 

The Paucimannose antibody detects three mannose residues in a “V-shaped” arrangement 

https://www.physiology.org/doi/full/10.1152/ajprenal.00067.2006?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed
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and the Oligomannose antibody detects 5-9 mannose residues which are not further 

decorated. Thus, this approach is limited to several mannosylated proteins, but gives no 

insights into proteome-wide glycosylation imbalances.  

In skeletal muscle of Gmppa KO mice and AAMR patients we also detected increased 

reactivities for PNA, which detects non-sialylated Gal-β(1-3)-GalNAc (Morran et al. 2017, 

Lotan et al. 1975), but not for Con A, which detects both α-D-mannosyl and α-D-glucosyl 

residues (Morran et al. 2017, Mega et al. 1992) on glycoproteins and glycolipids. Notably, the 

glycome analysis is consistent with an increase in high-mannose N-glycans and O-glycans 

carrying more than one mannose residue and less sialylated structures detected in KO 

lysates. Performing glycome analysis in skeletal muscle requires the absence of glycogen as 

it masks the relevant mass peaks in the MALDI-TOF spectra. For this purpose we had to fast 

the mice for 24 h before organ removal. Although glycogen levels were lowered with that 

protocol, still some relevant O-glycan peaks were masked by residual intracellular glycogen 

stores. We also tried to separate glycogen from other skeletal muscle proteins by SDS-PAGE 

prior to glycome analysis, but results were not satisfying and we are still trying to improve the 

protocols.  

We found increased reactivities and a shift of the band to a slightly higher molecular weight 

with an antibody directed against the glycosylation specific epitope of α-DG, which points to 

the hyperglycosylation of α-DG both in Gmppa KO mice as well as in patients. We tried to 

verify the data with glycome analysis after pull-down of α-DG with WGA coupled beads. 

Unfortunately, obtained protein amounts were not sufficient for glycome analysis. 

In accordance to previous studies (Brockington et al. 2010) we could show that α-DG 

hyperglycosylation leads to an increased binding of α-DG to the ECM proteins Laminin and 

Agrin. It has been shown that this binding depends on the repeating disaccharide [-3-xylose-

alpha1,3-glucuronic acid-beta1-], which is attached by LARGE (Inamori et al. 2012, Yoshida-

Moriguchi et al. 2010). LARGE mutations are reported for some forms of muscular 

dystrophies (Longman et al. 2003). Transgenic overexpression of LARGE in mice resulted in 

α-DG hyperglycosylation and thereby increased Laminin binding. Therefore, it was proposed 

that LARGE overexpression might be a therapeutic strategy for dystroglycanopathies 

(Brockington et al. 2010). In view of the myopathic phenotype of Gmppa KO mice, however, 

this strategy might come with side effects. Notably, α-DG hyperglycosylation increases its 

turnover and thus decreases its overall abundance, which likely contributes to the detrimental 

effects of the loss of GMPPA on NMJ and skeletal muscle integrity. Of note, as α-DG is 

heavily glycosylated under normal conditions (Stalnaker et al. 2011), hyperglycosylation of α-

DG may mask the core protein epitope hindering the core α-DG of proper binding and thus 
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leading to decreased α-DG core protein bands in KO tissue. Therefore, de-glycosylation 

experiments would be of great interest. 

 

Agrin binds to the Muscle-specific kinase (MUSK) and to α-DG, which are both critical for 

NMJ formation and maintenance (Barik et al. 2012). These two proteins are required for 

neuromuscular innervation (Lefebvre et al. 2007). Therefore, increased Agrin-binding to α-DG 

may reduce Agrin-binding to Musk and therefore impair MUSK signaling. Thus, the partially 

fragmented motor endplates in Gmppa KO mice may be a consequence of aberrant 

interaction of Dystroglycan and Agrin. Abnormalities of NMJs are a common finding 

especially in myopathies, which are caused by alterations of the Dystrophin-Dystroglycan 

complex (Gawor et al. 2018). Upon loss of Dystroglycan expression NMJs are still formed, 

but fail to undergo the developmental remodeling from plaque to the typical pretzel like shape 

in the adult (Shi et al. 2012). 

 

Notably, α-DG hyperglycosylation decreases its protein stability and increases α-DG turnover 

as shown in myoblast experiments. A previous study reported that the hypoglycosylation of α-

DG destabilizes the protein (Palmieri et al. 2017). In light of our data, we propose that 

improper glycosylation, either hypo- or hyperglycosylation, reduces α-DG protein stability.  

We did not observe increased Dystroglycan retention in the ER or the Golgi due to 

hyperglycosylation, although Golgi marker protein abundance, such as TGN38 or GLG1 were 

increased in immunoblot analysis in Gmppa KO mice and patients suggesting an effect on 

the Golgi compartment. Recently, it has been reported that the Golgi compartment showed 

an altered distribution in Duchenne muscular dystrophy, a disease caused by disruption of 

Dystrophin, which interacts with Dystroglycan (Percival et al. 2007). In accordance with these 

findings, we could detect altered transGolgi structures upon loss of GMPPA. Some CDGs are 

due to deficiencies in subunits of the Conserved oligomeric golgi (COG) complex affecting 

glycosylation in the Golgi (Zeevart et al. 2007). So, we propose that our observed changes in 

Golgi proteins and structure may be a direct consequence of hyperglycosylation within the 

Golgi and may further impact on glycosylation processes within the Golgi. Of note, we did not 

investigate whether these glycosylation specific Golgi alterations impact on Golgi stress and 

Golgi-Phagy. We neither analyzed if other ER stress-related proteins, besides BIP, are 

altered in Gmppa KO mice and if transport processes between Golgi, ER and lysosomes are 

affected.  

Since α-DG has been shown to be part of a signal transduction pathway involving GRB2 

(Russo et al. 2000), a mediator of the Ras-related signal pathway, α-DG hyperglycosylation 

may also activate ERK signaling thus explaining ERK activation either upon knockdown of 
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Gmppa in myoblasts or in Gmppa KO skeletal muscle lysates. Several studies reported ERK 

activation in skeletal muscle or myotubes during regeneration after injury. Briefly, satellite 

cells are activated by factors released by the muscle, enter the cell cycle, proliferate, migrate 

and are submitted to myogenesis. In all these processes, ERK signaling takes place (Krauss 

2010, Cuenda and Cohen 1999, Yeow et al. 2002, Perdiguero et al. 2007, Segalés et al. 

2016). So, ERK activation in Gmppa KO mice and myotubes might be due to an altered 

regeneration in skeletal muscle. For analysis of muscle regeneration, one might look for 

regeneration marker proteins, such as PAX7 or developmental MHC. 

 

Therapeutic strategy 

As patients with mutations in the gene encoding Phosphomannose Isomerase benefit from 

oral mannose supplementation (Niehues et al. 1998), we considered that a mannose-

depleted diet might improve symptoms in Gmppa KO mice and patients. Mechanistically we 

assumed that a mannose-depleted food with reduced glucose and fructose levels will lead to 

a reduced amount of serum mannose resulting in lower mannose-1-phosphate levels and 

thus a decreased substrate amount for GMPPB leading to decreased GDP-mannose 

abundance. This hypothesis still needs to be further addressed by measuring tissue levels of 

mannose, mannose-1-phosphate and GDP-mannose.  

To test our hypothesis, we fed Gmppa KO and WT mice with a mannose-depleted diet with a 

reduced amount of glucose and fructose starting at P14 up to 8 months of age. Indeed, α-DG 

hyperglycosylation as well as general skeletal muscle tissue hyperglycosylation, especially 

hypermannosylation, were almost normalized to normal levels. Motor performance and 

muscle strength were significantly improved and did not decline with age. Therefore, we 

claim that the AAMR syndrome may be a treatable condition and that the severity of clinical 

symptoms possibly depends on dietary habits. Whether ECM, Z-disc and NMJ alterations 

observed in 12-months-old Gmppa KO mice are corrected with a mannose-free diet for 12 

months is under investigation. If initiation of the diet at a later stage of the disease shows 

similar effects, is as of yet unclear and requires future studies. Up to now, it is not known 

whether a mannose-free diet during pregnancy may be effective to prevent muscle and 

cognitive impairments in KO mice. We did not address if a mannose-enriched diet worsens 

the observed symptoms in Gmppa KO mice. So far, there are no studies considering whether 

and to which extent a mannose-free diet or a mannose-enriched diet alters glycosylation in 

WT mice and/or humans.  
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Conclusions and perspectives 

We established a Gmppa KO mouse model to study the function of GMPPA and to elucidate 

the pathophysiology of AAMR syndrome.  

We show that GMPPA directly interacts with the N-terminal domain of GMPPB via its C-

terminal domain and that Gmppa KO mice as well as patients exhibit elevated GDP-mannose 

levels. This suggests that GMPPA might act as an allosteric feedback inhibitor of GMPPB. 

However, data on the allosteric feedback mechanism are still missing. GMPPB activity 

assays with recombinant proteins, changing GDP-mannose levels and GMPPA WT and 

mutant proteins will provide more insight into the potential feedback mechanism of GMPPA. 

Gmppa KO mice do not show obvious signs of swallowing difficulties or reduced tear 

production compared to human patients. However, we do see increased mannosylation in 

lacrimal gland and esophageal sphincter sections as well as structural changes in the 

Laminin signal in the lacrimal gland. These findings suggest that disease-related events are 

taking place in both tissues. Future studies will elucidate whether swallowing difficulties or 

reduced tear production as well as structural changes appear in old (15-18 months) or 

geriatric (24 months) KO mice and if these symptoms are treatable with a mannose-free diet. 

These studies might include esophageal motility studies and assessment of tear production 

in mice.  

Gmppa KO mice display cognitive impairments and a decreased neuronal density in the 

cortex. Until now, we do not know whether brain development is affected in Gmppa KO mice 

due to altered glycosylation. Future studies will focus on the GMPPA function in brain 

development and aging. For this purpose, Tamoxifen-inducible knockout mouse models 

might be useful. For instance, Tamoxifen-treatment of either adolescent or middle-aged mice 

will highlight developmental and age-related changes. 

Loss of GMPPA leads to Golgi alterations, but does not obviously affect the ER. Since we 

addressed just some Golgi-associated proteins and proteins involved in ER stress, future 

studies might address whether and under which conditions the ER stress response as well 

the Golgi stress response are activated upon loss of GMPPA.  

Gmppa KO mice show a progressive gait disorder with progressive muscle weakness due to 

protein hyperglycosylation. In addition, we demonstrated that a mannose-depleted diet 

rescues the observed motor phenotype and the hyperglycosylation. Up to date, we do not 

know whether we might rescue the observed ECM, sarcomere and NMJ alterations in 

skeletal muscle with a mannose-free diet. Therefore, a mannose-depleted diet for at least 12 

months upon P14 is essential. Further studies might address whether a mannose-depleted 

diet starting at later stages of life might show a similar beneficial effect. Furthermore, it is of 
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great interest to study whether initiation of treatment during pregnancy will be even more 

effective to prevent the myopathy and possibly also cognitive defects in Gmppa KO mice.  

Mannose supplementation may aggravate the phenotype of Gmppa KO mice.  

Conditional KO mice would be also helpful to verify whether the observed myopathy in 

Gmppa KO mice is only due a muscle intrinsic pathology by means of a skeletal muscle-

specific KO mouse using the Myf5Cre line. 

As GMPPA is important for skeletal muscle function, future studies will focus on the impact of 

GMPPA in heart function. Until now, we did not observe premature death in Gmppa KO mice, 

but cardiac complications in CDGs have been reported (Marques-da-Silva et al. 2017). 

Because AAMR patients show the same muscle alterations and cognitive impairments as 

Gmppa KO mice, future studies will address whether a mannose-free or mannose-reduced 

diet is also beneficial for human patients.  

Finally, our findings stipulate the idea that symptoms of patients with a GMPPB-related 

disorder might profit from dietary mannose supplementation.  
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