
24th EACSL Annual Conference
on Computer Science Logic

CSL 2015, September 7–10, 2015, Berlin, Germany

Edited by

Stephan Kreutzer

LIPIcs – Vo l . 41 – CSL 2015 www.dagstuh l .de/ l i p i c s



Editor
Stephan Kreutzer
Technische Universität Berlin
Ernst-Reuter Platz 7
10587 Berlin, Germany
stephan.kreutzer@tu-berlin.de

ACM Classification 1998
A.0 Conference Proceedings, C.2.4 Distributed Systems, D.2.4 Software/ Programs Verifications, D.3.1
Formal Definitions and Theory, D.3.3 Languages Constructs and Features, I.2.4 Knowledge Representations
Formalisms and Methods, F Theory of Computation, F.4.1 Mathematical Logic

ISBN 978-3-939897-90-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-90-3.

Publication date
September, 2015

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CSL.2015.i

ISBN 978-3-939897-90-3 ISSN 1868-8969 http://www.dagstuhl.de/lipics

mailto:stephan.kreutzer@tu-berlin.de
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.i
http://www.dagstuhl.de/dagpub/978-3-939897-90-3
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics


iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

CSL 2015

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics




Contents

Preface
Stephan Kreutzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

The Ackermann Award 2015
Anuj Dawar, Dexter Kozen, and Simona Ronchi Della Rocca . . . . . . . . . . . . . . . . . . . . . xv

Invited Talks

The Prophecy of Timely Rollback
Martín Abadi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Temporal Logics with Local Constraints
Claudia Carapelle and Markus Lohrey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Thinking Algorithmically About Impossibility
R. Ryan Williams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Contributed Talks

Simple Parsimonious Types and Logarithmic Space
Damiano Mazza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

First-Order Queries on Finite Abelian Groups
Simone Bova and Barnaby Martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

A Definability Dichotomy for Finite Valued CSPs
Anuj Dawar and Pengming Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Evidence for Fixpoint Logic
Sjoerd Cranen, Bas Luttik, and Tim A.C. Willemse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Elementary Elimination of Prenex Cuts in Disjunction-free Intuitionistic Logic
Matthias Baaz and Christian G. Fermüller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Tree Grammars for the Elimination of Non-prenex Cuts
Stefan Hetzl and Sebastian Zivota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Automata Theoretic Account of Proof Search
Aleksy Schubert, Wil Dekkers, and Henk P. Barendregt . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Maximal Partition Logic: Towards a Logical Characterization of Copyless Cost Register
Automata

Filip Mazowiecki and Cristian Riveros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Aperiodic Two-way Transducers and FO-Transductions
Olivier Carton and Luc Dartois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

On Relative and Probabilistic Finite Counterability
Orna Kupferman and Gal Vardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A Model Checking Procedure for Interval Temporal Logics based on Track Representatives
Alberto Molinari, Angelo Montanari, and Adriano Peron . . . . . . . . . . . . . . . . . . . . . . . . . 193

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/


vi Contents

Contextuality, Cohomology and Paradox
Samson Abramsky, Rui Soares Barbosa, Kohei Kishida, Raymond Lal, and Shane
Mansfield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A Model for Behavioural Properties of Higher-order Programs
Sylvain Salvati and Igor Walukiewicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Reachability Analysis of First-order Definable Pushdown Systems
Lorenzo Clemente and Sławomir Lasota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Relational Semantics of Linear Logic and Higher-order Model Checking
Charles Grellois and Paul-André Melliès . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

A Van Benthem Theorem for Modal Team Semantics
Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer . . . 277

Axiomatizing Propositional Dependence Logics
Katsuhiko Sano and Jonni Virtema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Static Analysis for Logic-based Dynamic Programs
Thomas Schwentick, Nils Vortmeier, and Thomas Zeume . . . . . . . . . . . . . . . . . . . . . . . . 308

Sub-classical Boolean Bunched Logics and the Meaning of Par
James Brotherston and Jules Villard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Classical and Intuitionistic Arithmetic with Higher Order Comprehension Coincide on
Inductive Well-Foundedness

Stefano Berardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Functions out of Higher Truncations
Paolo Capriotti, Nicolai Kraus, and Andrea Vezzosi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Leaving the Nest: Nominal Techniques for Variables with Interleaving Scopes
Murdoch J. Gabbay, Dan R. Ghica, and Daniela Petrişan . . . . . . . . . . . . . . . . . . . . . . . . 374

Rank Logic is Dead, Long Live Rank Logic!
Erich Grädel and Wied Pakusa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Two-Restricted One Context Unification is in Polynomial Time
Adrià Gascón, Manfred Schmidt-Schauß, and Ashish Tiwari . . . . . . . . . . . . . . . . . . . . . 405

Confluence of Layered Rewrite Systems
Jiaxiang Liu, Jean-Pierre Jouannaud, and Mizuhito Ogawa . . . . . . . . . . . . . . . . . . . . . . 423

A Unified Approach to Boundedness Properties in MSO
Łukasz Kaiser, Martin Lang, Simon Leßenich, and Christof Löding . . . . . . . . . . . . . . . 441

Deciding the First Levels of the Modal µ Alternation Hierarchy by Formula Construction
Karoliina Lehtinen and Sandra Quickert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Infinite and Bi-infinite Words with Decidable Monadic Theories
Dietrich Kuske, Jiamou Liu, and Anastasia Moskvina . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

A Coalgebraic Decision Procedure for WS1S
Dmitriy Traytel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Weak Subgame Perfect Equilibria and their Application to Quantitative Reachability
Thomas Brihaye, Véronique Bruyère, Noémie Meunier, and Jean-François Raskin 504



Contents vii

What are Strategies in Delay Games? Borel Determinacy for Games with Lookahead
Felix Klein and Martin Zimmermann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

On Unambiguous Regular Tree Languages of Index (0,2)
Jacques Duparc, Kevin Fournier, and Szczepan Hummel . . . . . . . . . . . . . . . . . . . . . . . . . 534

Least and Greatest Fixed Points in Ludics
David Baelde, Amina Doumane, and Alexis Saurin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Modelling Coeffects in the Relational Semantics of Linear Logic
Flavien Breuvart and Michele Pagani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

On Classical PCF, Linear Logic and the MIX Rule
Shahin Amini and Thomas Ehrhard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

Uniform One-Dimensional Fragments with One Equivalence Relation
Emanuel Kieroński and Antti Kuusisto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Finite-Degree Predicates and Two-Variable First-Order Logic
Charles Paperman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

Two-variable Logic with Counting and a Linear Order
Witold Charatonik and Piotr Witkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631

Binding Forms in First-Order Logic
Fabio Mogavero and Giuseppe Perelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

CSL 2015





Preface

The annual conference Computer Science Logic (CSL 2015) of the European Association for
Computer Science Logic (EACSL) was held in Berlin, Germany, from 7 to 10 September
2015. CSL started as a series of international workshops on Computer Science Logic, and
became at its sixth meeting the Annual Conference of the EACSL. This conference was the
29th workshop and 24th EACSL conference. The conference was organised by the Logic and
Semantics Research Group of the Technical University Berlin.

A total of 99 abstracts were registered for the conference. After a two week electronic
meeting, the programme committee selected 39 papers for presentation at the conference
and publication in the proceedings. Each paper was assigned to at least three programme
committee members. The overall quality of the submissions was very high with essentially
no bad papers submitted. This made the work of the programme committee a difficult task.
Due to lack of space, the programme committee had to reject several very good papers in
the end.

In 2015, CSL followed a selective rebuttal strategy. There was no general rebuttal phase
but whenever questions arose during the discussion or in a review that could meaningfully
be posed to the authors, the authors were notified and asked for clarification. The average
response time by the authors was less than a day, even for difficult questions, making this a
valuable tool for the programme committee discussion. As a result of this selective rebuttal
system, two papers were withdrawn by the authors due to flaws in their arguments that
could not be fixed. For several other papers, the referees’ concerns could be clarified by the
authors or the authors were able to present simple fixes for factual mistakes in their papers
which were verified and accepted by the programme committee.

The programme committee was assisted by a number of external reviewers providing
additional expertise. The list of external reviewers is included in these proceedings. On
behalf of the programme committee I wish to express my sincere gratitude to the external
referees for the time and energy they spent on assessing submissions to CSL 2015.

In addition to the contributed talks, CSL 2015 had four invited speakers:
Martín Abadi (Google),
Elham Kashefi (Edinburgh),
Markus Lohrey (Siegen), and
Ryan Williams (Stanford).

Some invited speakers have contributed an abstract which is included in the proceedings.
The Ackermann Award is the EACSL Outstanding Dissertation Award for Logic in

Computer Science. This year, the eleventh Ackermann Award was presented at CSL 2015.
The jury decided to give the Ackermann Award for 2015 to Hugo Férée and Mickael Randour.
The awards were officially presented at the conference on 9 September 2015. The citation of
the awards, an abstract of the theses and a biographical sketch of the recipients written by
Anuj Dawar is included in the proceedings.

I wish to warmly thank all members of the programme committee and all external
reviewers for the time and energy spent on reviewing and discussing the papers.

Very special thanks go to Christoph Dittmann who collected the papers from the authors
and compiled them into these proceedings, solving numerous LATEX-issues and checking the
papers for layout consistency. Many thanks also to Marc Herbstritt from the Dagstuhl/LIPIcs
team for assisting us in the publication process and the final production of the proceedings.

Finally, I also want to thank the members of the organising committee, especially
24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer
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x Preface

Christoph Dittmann, Jana Pilz, Roman Rabinovich and Sebastian Siebertz, for their pro-
active, thoughtful, reliable and energetic help in organising CSL 2015.

The conference received support from the Technical University Berlin, from the European
Association for Computer Science Logic (EACSL) and from the Deutsche Forschungsge-
meinschaft (DFG). I thank these organisations for their generous support.

Stephan Kreutzer
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The Ackermann Award 2015

Anuj Dawar, Dexter Kozen, and Simona Ronchi Della Rocca

Members of the Jury of the EACSL Ackermann Award

Abstract
The eleventh Ackermann Award is presented at CSL’15 in Berlin, Germany. This year, again, the
EACSL Ackermann Award is generously sponsored by the Kurt Gödel Society. Besides providing
financial support for the Ackermann Award, the Kurt Gödel Society has also committed to
inviting the recipients of the Award for a special lecture to be given to the Society in Vienna.

The 2015 Ackermann Award was open to PhD dissertations in topics specified by the CSL
and LICS conferences, which were formally accepted as theses for the award of a PhD degree at
a university or equivalent institution between 1 January 2013 and 31 December 2014. The Jury
received ten nominations for the Ackermann Award 2015. The candidates came from a number
of different countries across the world. The institutions at which the nominees obtained their
doctorates represent eight countries in Europe, North America, and the Middle East.

The topics covered a wide range of Logic and Computer Science as represented by the LICS
and CSL Conferences. All submissions were of a very high standard and contained remarkable
contributions to their particular fields. The Jury wishes to extend its congratulations to all
nominated candidates for their outstanding work. The Jury encourages them to continue their
scientific careers and hopes to see more of their work in the future.

The task of the jury proved very difficult, and opinions were divided. In the end, the jury
decided to award the 2015 Ackermann Award jointly to two dissertations. The winners are
(in alphabetical order):

Hugo Férée from France, for his thesis
Complexité d’ordre supérieur et analyse récursive
approved by the Université de Lorraine, France, in 2014,
supervised by Jean-Yves Marion and Mathieu Hoyrup; and
Mickael Randour from Belgium, for his thesis
Synthesis in Multi-Criteria Quantitative Games
approved by the Université de Mons, Belgium, in 2014,
supervised by Véronique Bruyère and Jean-François Raskin.

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.xv

1 Hugo Férée

Citation. Hugo Férée receives the 2015 Ackermann Award of the European Association of
Computer Science Logic (EACSL) for his thesis

Complexité d’ordre supérieur et analyse récursive.

His thesis establishes deep and original results related to a variety of topics in the
complexity of analytic and higher-order functions. By identifying the intrinsic limitations of
the traditional approaches, they enable one to see beyond them. They provide a higher-order
complexity theory which has been lacking and will certainly be recognized and used in the
future. A brief survey of the content of the thesis follows, organized thematically.

© Anuj Dawar, Dexter Kozen, and Simona Ronchi Della Rocca;
licensed under Creative Commons License CC-BY
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xvi The Ackermann Award 2015

Complexity of higher order real functionals. The study of computability over real numbers
dates back to Turing’s 1936 paper and has been an active area of research ever since. In the
early 1980s serious work began on studying resource-bounded computability over the reals.
That is, understanding what is and is not feasibly computable over the reals for various
notions of computational feasibility. Férée starts from the results of Kawamura and Cook
about functionals over C[0, 1], the space of continuous functions over the unit interval. Namely
he studies the case of norms over real functions defined on such a space and obtains several
results allowing us to understand how imposing restrictions on the computational resources
of these functionals affects their analytical properties. He introduces a new analytical notion
expressing that the norm of a function highly depends on the value of the function at a point.
He relates this analytical notion to computability and complexity: if a norm highly depends
on a point then in order to compute the norm of a function, this function has to be evaluated
at this point. In particular if a norm is efficiently computable then it cannot depend on too
many points.

Complexity in analysis. The extension of computability theory from the natural numbers
to objects coming from mathematical analysis is now well understood. However complexity
theory is more problematic, but some extensions are available. Kawamura and Cook developed
complexity theory for spaces that can be suitably represented by functions from finite strings
to finite strings (functions of order type 1). The problem is then to understand when this
approach can be used. Férée obtains results identifying a topological property of the space
that is necessary for this approach to work. More precisely, if the space C(X, R) of continuous
functions from a space X to the real numbers admits a representation making the complexity
of the evaluation, from C(X, R) × X → R, well-defined, then X must be σ-compact. This
result suggests that using higher order functions to represent objects may help in extending
complexity notions to other spaces.

Higher order complexity. Until now, no satisfactory notion of complexity at higher-types
has been given. Classical complexity theory provides notions of complexity for functions
from N→ N (order 1 functions, for instance the class FPTIME) as well as functions from N→ N
to N → N (order 2 functions, for instance the class BFF). The class BFF is defined for any
finite type, however it is not a complexity class in the sense that it is not defined as a class
of functions computable with limited resources (such as polynomial time). One reason for
that is that there is no obvious notion of size for inputs, when they are themselves higher
order functionals. Férée makes use of game semantics in order to represent the computation
of higher order functionals and to measure their size and complexity. More precisely, he uses
as inputs strategies in some sequential games whose size is supplied through a computation
model called a higher-order Turing machine, consisting of a Turing machine that dialogues
with its oracle describing the input. Then, using higher-order polynomials, a higher-order
analogue of the usual polynomials, he defines a class of polynomial-time computable strategies.
Finally, he applies this framework to the games used to solve the full abstraction problem
for the class of higher-order computable PCF-functions, so supplying a notion of complexity
over PCF.

Biographical Sketch. Hugo Férée was born on 20 September 1988 in Nancy. After com-
pleting his schooling there, he was a student at the École Normale Supérieure in Lyon from
2008, obtaining a Master’s degree in Theoretical Computer Science in 2011, awarded jointly
with the Université Claude Bernard. He then returned to Lorraine to pursue a PhD, which
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he successfully defended in December 2014. He currently holds a post-doctoral position at
the Technische Universität Darmstadt in Germany.

2 Mickael Randour

Citation. Mickael Randour receives the 2015 Ackermann Award of the European Association
of Computer Science Logic (EACSL) for his thesis

Synthesis in Multi-Criteria Quantitative Games.

His thesis contains important theoretical and practical contributions to the analysis of
quantitative games and the synthesis of winning strategies. The contributions are technically
challenging and practically relevant. Several notions introduced in the thesis significantly
advance the state of the art and open important new research perspectives.

Background. Reactive systems are computer systems that maintain a continuous interaction
with their environment. Examples of reactive systems include controllers embedded in cars
and aeroplanes, computer system device drivers, and communication protocols in networks.
Producing reactive systems that behave correctly is a notoriously challenging problem due
to factors such as concurrency, uncertainty, and real-time constraints. Moreover, their
correctness is often critical, as they frequently appear in contexts in which lives are at stake.
A reactive system is typically modelled as a game between two players, the system and
its environment. The correctness of the system is then expressed in terms of a winning
condition in the game. Often these winning conditions involve quantitative measures such as
mean-payoff, total-payoff, or energy constraints. The analysis of such games is notoriously
difficult.

Contributions of the thesis. Randour makes a number of contributions that advance our
understanding of the quantitative games, the algorithms for solving them, and the complexity
of the associated decision problems. In doing so, he introduces innovative concepts that can
have a lasting impact on the research field.

One important innovation is the first analysis of multiple simultaneous objectives. Another
is the introduction and analysis of so-called window objectives, a conservative approximation
of the standard mean-payoff and total-payoff objectives. It is shown that window objectives
provide a conservative approximation of the classical mean-payoff and total-payoff measures,
with complexities that break the previous barriers. Finally, the thesis studies tradeoffs
between traditional worst-case and expected-case analysis. Previously, classical games
typically involve an environment which is purely antagonistic and ask for strict guarantees,
whereas stochastic models attempt to optimize the expected payoff, with no guarantee on
individual outcomes. In this thesis, Randour has shown that one can find a reasonable
trade-off between these aspects: good expected performance in the everyday situations while
ensuring a strict performance threshold even in the event of unlikely worst-case circumstances.

Biographical Sketch. Mickael Randour was born on 9 July 1984 in La Louvière. All of his
higher education was completed at the Université de Mons, where he obtained a Bachelor’s
degree in 2008, a Master’s degree in 2010 and a PhD in April 2014, all of them in Computer
Science. In 2010 he was the recipient of an award from the Fondation Emile Cornez for the
best graduating student from the university. He is currently a postdoctoral researcher at the
École Nomrale Supérieure de Cachan in France.
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xviii The Ackermann Award 2015

3 Jury

The Jury for the Ackermann Award 2015 consisted of eight members, two of them ex
officio, namely, the president and the vice-president of EACSL. This year, for the first time,
the jury also included a representative of SigLog (the ACM Special Interest Group on Logic
and Computation).

The members of the jury were:
Thierry Coquand (Chalmers University of Gothenburg),
Anuj Dawar (University of Cambridge), the president of EACSL,
Dexter Kozen (Cornell University), SigLog representative,
Orna Kupferman (Hebrew University of Jerusalem),
Daniel Leivant (Indiana University, Bloomington),
Luke Ong (University of Oxford),
Jean-Éric Pin (CNRS and Université Paris 7),
Simona Ronchi Della Rocca (University of Torino), the vice-president of EACSL.

3.1 Previous winners
Previous winners of the Ackermann Award were:

2005, Oxford:
Mikołaj Bojańczyk from Poland,
Konstantin Korovin from Russia, and
Nathan Segerlind from the USA.

2006, Szeged:
Balder ten Cate from The Netherlands, and
Stefan Milius from Germany.

2007, Lausanne:
Dietmar Berwanger from Germany and Romania,
Stéphane Lengrand from France, and
Ting Zhang from the People’s Republic of China.

2008, Bertinoro:
Krishnendu Chatterjee from India.

2009, Coimbra:
Jakob Nordström from Sweden.

2010, Brno:
no award given.

2011, Bergen:
Benjamin Rossman from USA.

2012, Fontainebleau:
Andrew Polonsky from Ukraine, and
Szymon Toruńczyk from Poland.

2013, Turin:
Matteo Mio from Italy.

2014, Vienna:
Michael Elberfeld from Germany.

Detailed reports on their work appeared in the CSL proceedings and are also available on
the EACSL homepage.



The Prophecy of Timely Rollback∗

Martín Abadi

Google
Mountain View, California, USA

Abstract
Techniques for rollback recovery play a central role in ensuring fault-tolerance in many distributed
systems [5]. This talk addresses the formal specification and analysis of those techniques. In par-
ticular, we will discuss the relevance of prophecy variables [4] (auxiliary program variables whose
values are defined in terms of current program state and future behavior) to reasoning about
systems with undo operations [1]. We will then focus on a model for data-parallel computation
with a notion of virtual time [6, 2]. In this model, rollbacks allow the selective undo of work at
particular virtual times [3]. A refinement theorem ensures the consistency of rollbacks.

This talk is largely based on joint work with Michael Isard.
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Temporal Logics with Local Constraints∗

Claudia Carapelle1 and Markus Lohrey2
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Abstract
Recent decidability results on the satisfiability problem for temporal logics, in particular LTL,
CTL∗ and ECTL∗, with constraints over external structures like the integers with the order or
infinite trees are surveyed in this paper.
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1 Linear Time Temporal Logic with Constraints

Temporal logics are a very popular family of logical languages, used to specify properties
of abstracted systems. Pnueli [27] was the first who used linear temporal logic, briefly
denoted by LTL, for reasoning about reactive systems. Since then, LTL has become one of
the most prominent specification languages used in verification and model checking. Both,
model-checking and satisfiability for LTL are PSPACE-complete [28].

In the last few years, many extensions of temporal logics have been proposed in order to
address the need to express more than just abstract properties, see for instance [2, 4, 16, 17, 32].
In some of these studies we can find languages which allow to reason about time intervals,
space regions, data values from dense domains like the real numbers or discrete domains like
the integers or natural numbers.

A general approach for creating such formalisms is described by Demri and D’Souza
in [15], where they show how to extend LTL with the ability to express properties of data
values from an arbitrary relational structure D, which is often called a concrete domain. An
example of a concrete domain can be (Z, <), whose universe is the set Z of integers and <
is the standard linear order on Z, viewed as a binary relation. The approach from [15] is
also used in the field of description logics (DLs), where Baader and Hanschke first described
a way to integrate arbitrary concrete domains into the knowledge-representation language
ALC [3].

The logic defined in [15] is called constraint LTL, briefly CLTL. The idea behind this
language is the following: Fix a set of variables X and another one of propositions P, both
countably infinite, for the rest of the paper. Moreover, fix a relational signature σ, which is
a set of relational symbols R, each having an arity aR. We assume that σ is either finite or
countably infinite. A σ-structure is a tuple D = (D, (RD)R∈σ), where RD ⊆ DaR is a relation
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C. Carapelle and M. Lohrey 3

of arity aR. In the following, we always identify the relational symbol R with the associated
relation RD if the structure D is clear from the context. Then the set of CLTL-formulas
over D is defined by the following syntax, where p ∈ P, R ∈ σ, k = aR, i1, . . . , ik ∈ N, and
x1, . . . , xk ∈ X :

ϕ ::= p | R(Xi1x1, . . . ,Xikxk) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ (1)

A formula of the form

R(Xi1x1, . . . ,Xikxk) (2)

is called a D-constraint, or simply constraint if D is clear from the context. We do not assume
that the variables x1, . . . , xk are pairwise distinct. A CLTL-formula over D is interpreted
over an infinite word

w = (A0, η0)(A1, η1)(A2, η2) · · · , (3)

where for i ≥ 0, Ai ⊆ P is a set of propositions and ηi : X → D assigns a value from D to
every variable. One can think of D-registers attached to the system states. Words of the
form (3) are also known as multi-data words. For i ≥ 0 we define the suffix w[i :] as the
multi-data word (Ai, ηi)(Ai+1, ηi+1)(Ai+2, ηi+2) · · · .

The satisfaction relation w |= ϕ where w = (A0, η0)(A1, η1)(A2, η2) · · · is a multi-data
word and ϕ is a CLTL-formulas over D is inductively defined as follows (all cases except for
the case that ϕ is a constraint of the form (2) are as for ordinary LTL without constraints):

w |= p iff p ∈ A0 for p ∈ P.
w |= R(Xi1x1, . . . ,Xikxk) iff (ηi1(x1), . . . , ηik (xk)) ∈ R.
w |= ¬ϕ iff w |= ϕ does not hold.
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2.
w |= Xϕ iff w[1 :] |= ϕ.
w |= ϕ1Uϕ2 iff there is an i ≥ 0 with w[i :] |= ϕ2 and w[j :] |= ϕ1 for all 0 ≤ j ≤ i− 1.

I Example 1. Take the structure D = (Z, <,=, (=a)a∈Z), where < is the order relation
defined above, and =a is the unary predicate that only holds for a. Instead of =a (x) we
write x = a. The CLTL-formula (x < X1y) U (y = 100) holds on a multi-data word if and
only if there is a position where variable y holds the value 100 and for all previous positions
t, the value of x at position t is strictly smaller than the value of y at position t+ 1.

2 Satisfiability for Linear Time Temporal Logic with Constraints

A CLTL-formula ϕ over D is satisfiable if there exists a multi-data word w of the form (3)
such that w |= ϕ. Of course, if Pϕ ⊆ P (resp. Xϕ ⊆ X ) is the finite set of propositions (resp.,
variables) that occur in ϕ then we can assume that Ai ⊆ Pϕ and ηi : Xϕ → D in (3).

Balbiani and Condotta [4] proved a general decidability result for CLTL over concrete
domains D satisfying certain properties. The following outline follows [15], where the result
of Balbiani and Condotta is reproved in an automata theoretic framework. First of all, let us
fix a concrete domain D = (D,R1, . . . , Rn) with only finitely many relations. If ij = 0 for
all 1 ≤ j ≤ k in (2), then we call the D-constraint a point D-constraint (since it refers to
one time point). For a point D-constraint R(x1, . . . , xk) and a mapping η : V → D, where
x1, . . . , xk ∈ V ⊆ X we write η |= R(x1, . . . , xk) if (η(x1), . . . , η(xk)) ∈ R. Given a finite
subset V ⊆ X of variables and a mapping η : V → D we denote with frame(V, η) the set
of all constraints R(x1, . . . , xk) with x1, . . . , xk ∈ V and η |= R(x1, . . . , xk). A frame over
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4 Temporal Logics with Local Constraints

the finite subset V ⊆ X is a set of constraints of the form frame(V, η) for some mapping
η : V → D. In other words, a frame over V is a maximal set of constraints which is still
satisfiable. We say that frame-checking is decidable for D if there exists an algorithm, whose
input is a finite set of constraints C and which checks, whether C is a frame.

For a set of constraints C and a set of variables U ⊆ X we denote with C�U ⊆ C the
set of all constraints R(x1, . . . xk) ∈ C such that x1, . . . , xk ∈ U . A structure D has the
completion property, if for every frame C over V , every subset V ′ ⊆ V , and every mapping
η′ : V ′ → D such that C�V ′ = frame(V ′, η′) there exists an extension η of η′ (meaning that
η′(x) = η(x) for all x ∈ V ′) such that C = frame(V, η).

Now we can present the result of Balbiani and Condotta [4] in the form stated in [15]:

I Theorem 2 ([4, 15]). Let D = (D,R1, . . . , Rn) be a structure having the completion
property. If frame-checking is decidable (resp., in PSPACE), then satisfiability for CLTL over
D is decidable (resp., PSPACE-complete).

Recall that satisfiability for ordinary LTL (without constraints) is already PSPACE-complete.
For the proof of Theorem 2 one follows the classical translation of an LTL-formula (without
constraints) to a Büchi automaton. In addition to a set of subformulas, the Büchi automaton
also has to store a frame over the variables appearing in the CLTL-formula. Along its run,
the Büchi automaton checks whether successive frames fit together in the sense that they can
be extended to a single frame. Moreover, the automaton checks whether the constraints that
belong to the current set of subformulas hold in that combined frame (for this, one has to
assume that i1, . . . , ik ≤ 1, which indeed can be enforced by adding further variables). The
resulting Büchi automaton accepts a non-empty language if and only if the CLTL-formula is
satisfiable. The completion property ensures the correctness of the construction.

Instances of domains with the completion property and decidable frame-checking are
(D,<,=) withD = R orD = Q, and (R2, sw, s, se, w, e, nw, n, ne,=), where the nine relations
illustrate the mutual position of two points in the Cartesian plane (eg. (a, b) sw (c, d) iff
a < c and b < d). In these cases, the dense structure of the real and rational numbers is
fundamental for the completion property. On the other hand, the structures (N, <) and (Z, <)
do not have the completion property: Take for instance the frame consisting of the constraints
x < y, y < z, x < z. Then the mapping η′ : {x, z} → N with η′(x) = 1 and η′(z) = 2 cannot be
extended to a mapping η : {x, y, z} → N such that frame({x, y, z}, η) = {x < y, y < z, x < z}.
In fact, it was shown in [15] that a structure (D,<,=) where (D,<) is an infinite linear order
satisfies the completion property if and only if (D,<) is dense and has neither a smallest nor a
largest element. This originated the question whether satisfiability of CLTL over (Z, <,=) or
(N, <,=) is still decidable. Demri and D’Souza [15] finally answered this question positively
(as in Example 1, =a denotes the unary relation {a}):

I Theorem 3 ([15]). Satisfiability for CLTL over the structures (Z, <,=, (=a)a∈Z) and
(N, <,=, (=a)a∈N) is PSPACE-complete.

In [16], Demri and Gascon extend this result to CLTL with so called IPC∗-constraints. If we
disregard succinctness aspects, this logic is equivalent to CLTL over the structure

Z = (Z, <,=, (=a)a∈Z, (≡a,b)0≤a<b), (4)

where ≡a,b denotes the unary relation {a + xb | x ∈ Z} (expressing that an integer is
congruent to a modulo b). The main result from [16] states that satisfiability of CLTL with
IPC∗-constraints is still PSPACE-complete.
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Constraints over the above structure (4) do not allow to express the successor relation
y = x+ 1, which would be very useful for analyzing counter systems. There is a good reason
for this: Using successor constraints it is easy to reduce the halting problem (and even the
Σ1

1-complete recurrent reachability problem) for two-counter machines to the satisfiability
problem for CLTL over (Z, {(x, x+ 1) | x ∈ Z}). In [15] the authors extend this observation
by showing undecidability of satisfiability for CLTL over every structure with a so called
implicit counting mechanism. A relational structure D with universe D has an implicit
counting mechanism if it contains the equality relation and a binary relation R such that (i)
R = {(x, y) ∈ D ×D | f(x) = y}, where f : D → D is injective and (ii) (D,R) is acyclic.

I Theorem 4 ([15]). If D has an implicit counting mechanism, then satisfiability for CLTL
over D is hard for Σ1

1 (the first existential level of the analytical hierarchy).

Using the structure Z from (4) one can still specify an abstracted version of increment
operations. For example x = y+1 can be abstracted by (y > x)∧

∨2k−1
i=−2k (≡i,2k (x)∧≡i+1,2k (y))

where k is a large natural number. This is why CLTL over Z seems to be a good compromise
between (unexpressive) total abstraction and (undecidable) high concretion.

3 Branching Time Temporal Logics with Constraints

In the same way as outlined for LTL in Section 1, constraints can be also added to branching
time logics like CTL∗ and even ECTL∗ (extended computation tree logic), obtaining CCTL∗

and CECTL∗, respectively. Formulas from these logics are interpreted over decorated Kripke
structures. Fix again a σ-structure D = (D, (RD)R∈σ). A D-decorated Kripke structure is a
tuple K = (V,R, λ, ζ), where V is the set of nodes (or states), R ⊆ V × V is a binary edge
relation such that for every v ∈ V there exists v′ ∈ V with (v, v′) ∈ R, and for every node
v ∈ V , λ(v) ⊆ P is the set of propositions that hold in v, whereas ζ(v) : X → D assigns
values from D to the variables (or registers). Instead of (ζ(v))(x) we also write ζ(v, x). For
v ∈ V , a (K, v)-path is an infinite sequence of nodes ρ = (v0, v1, v2, . . .) such that v0 = v and
(vi, vi+1) ∈ R for i ≥ 0. As for multi-data words we define ρ[i :] = (vi, vi+1, vi+2, . . .).

The syntax of CCTL∗ over D is given by the following grammar, where p ∈ P, R ∈ σ,
k = aR is the arity of R, i1, . . . , ik ∈ N, and x1, . . . , xk ∈ X :

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eψ (5)
ψ ::= ϕ | R(Xi1x1, . . . ,Xikxk) | ¬ψ | ψ ∧ ψ | Xψ | ψUψ (6)

Formulas of the form (5) are state formulas and are interpreted over nodes of a D-decorated
Kripke structure, whereas formulas of the form (6) are path formulas and are interpreted
over paths in K. Note that constraints are path formulas. Here is the inductive definition of
the satsifiability relation, where K = (V,R, λ, ζ) is a D-decorated Kripke structure, v ∈ V
and ρ = (v0, v1, v2, . . .) is a (K, v0)-path (we omit here the obvious cases for the boolean
operators ¬ and ∧):

(K, v) |= p iff p ∈ λ(v) for p ∈ P .
(K, v) |= Eψ iff there is a (K, v)-path % such that (K, %) |= ψ.
(K, ρ) |= ϕ if (K, v0) |= ϕ for a state formula ϕ.
(K, ρ) |= R(Xi1x1, . . . ,Xikxk) if (ζ(vi1 , x1), . . . , ζ(vik , xk)) ∈ R.
(K, ρ) |= Xϕ iff (K, ρ[1 :]) |= ϕ.
(K, ρ) |= ϕ1Uϕ2 iff there is an i ≥ 0 with (K, ρ[i :]) |= ϕ2 and (K, ρ[j :]) |= ϕ1 for all
0 ≤ j ≤ i− 1.
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6 Temporal Logics with Local Constraints

A CCTL∗ state formula ψ over D is satisfiable if there exists a D-decorated Kripke structure
K and a node v from D such that (K, v) |= ψ.

A weak form of CCTL∗ over Z, where only integer variables at the same state can be
compared, was first introduced in [13] and used to describe properties of so called relational
automata. It was shown in [13] that the model checking problem for the above fragment of
CCTL∗ over relational automata is undecidable.

Demri and Gascon [16] asked whether satisfiability of CCTL∗ over the structure Z from
(4) is decidable. This problem was further investigated in [6, 20], where several partial results
where shown: If we replace in Z the binary predicate < by unary predicates <c = {x | x < c}
for c ∈ Z, then satisfiability of CCTL∗ was shown to be decidable in [20]. For the full structure
Z satisfiability was shown to be decidable for CEF+, a fragment of CCTL∗ which contains
both the existential and the universal fragment of CCTL∗, see [6] for details. Later in [7]
Bozzelli and Pinchinat proved that satisfiability of the existential and universal fragment of
CCTL∗ over the domain (Z,=, <) are PSPACE-complete. Finally, in [11], we answered the
question of Demri and Gascon positively:

I Theorem 5 ([11]). CCTL∗ over Z is decidable.

Before we explain the proof techniques from [11], let us first discuss an extension of Therem 5
to ECTL∗ (extended CTL∗) with constraints over Z, which was shown in the long version
[12] of [11] using a straightforward extension of the techniques from [11].

The logic ECTL∗ (without constraints) is a proper extension of CTL∗ (see [29, 31]) in
which path formulas are defined by Büchi-automata or, equivalently, MSO-formulas. In
contrast, CTL∗ can only specify LTL-properties or, equivalently, first-order properties along
paths. To define the constraint version of ECTL∗ over D = (D, (RD)R∈σ) we first have to
define a constraint version of MSO (monadic second-order logic) over infinite words, which
is interpreted over multi-data words. We speak of CMSO (constraint MSO) over D. Fix a
countably infinite set Vel (resp., Vset) of element variables (resp., set variables). The set of
CMSO-formulas over D is defined by the following grammar, where y, y1, y2 ∈ Vel, Y ∈ Vset,
p ∈ P , R ∈ σ, k = aR is the arity of R, i1, . . . , ik ∈ N, and x1, . . . , xk ∈ X :

ϕ ::= p(y) | y1 < y2 | y ∈ Y | [R(Xi1x1, . . . ,Xikxk)](y) | ¬ϕ | ϕ ∧ ϕ | ∃y ϕ | ∃Y ϕ

To define the semantics of CMSO over D we need interpretation functions I1 : Vel → N
and I2 : Vset → 2N. Then, for a multi-data word w = (A0, η0)(A1, η1)(A2, η2) · · · we define
(w, I1, I2) |= ϕ inductively as follows (again we omit the obvious cases for boolean operators):

(w, I1, I2) |= p(y) iff p ∈ Aj where j = I1(y).
(w, I1, I2) |= y1 < y2 iff I1(y1) < I2(y2).
(w, I1, I2) |= y ∈ Y iff I1(y) ∈ I2(Y ).
(w, I1, I2) |= [R(Xi1x1, . . . ,Xikxk)](y) iff (ηj+i1(x1), . . . , ηj+ik (xk)) ∈ R, where j = I1(y).
(w, I1, I2) |= ∃y ϕ iff there exists j ∈ N such that (w, I1[y 7→ j], I2) |= ϕ.
(w, I1, I2) |= ∃y ϕ iff there exists J ⊆ N such that (w, I1, I2[Y 7→ J ]) |= ϕ.

Here, the function I1[y 7→ j] is defined by I1[y 7→ j](y) = j and I1[y 7→ j](y′) = I1(y′) for
y′ 6= y, and similarly for I2[Y 7→ J ]. Moreover, for a pair (K, ρ) consisting of a D-decorated
Kripke structure K = (D,R, λ, ζ) and a (K, v0)-path ρ = (v0, v1, v2, . . .) (for some node
v0 of K) we write (K, ρ, I1, I2) |= ϕ if (w, I1, I2) |= ϕ, where w is the multi-data word
(λ(v0), ζ(v0))(λ(v1), ζ(v1))(λ(v2), ζ(v2)) · · · .

Now we can define CECTL∗ (constraint ECTL∗) over D = (D, (RD)R∈σ) as follows, where
ϕ is an arbitrary CMSO-formula over D in which only the set variables Y1, . . . , Yn occur
freely:

ϕ ::= ¬ϕ | ϕ ∧ ϕ | Eϕ[Y1/ϕ, . . . , Yn/ϕ]
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Such a formula is evaluated in a node v ∈ D of a D-decorated Kripke structure K =
(V,R, λ, ζ) by the following rule (the definition for boolean operator is the obvious one):
(K, v0) |= Eϕ[Y1/ϕ1, . . . , Yn/ϕn] iff there is a (K, v0)-path ρ = (v0, v1, v2, . . .) such that
(K, ρ, I1, I2) |= ϕ, where I1 is arbitrary (note that ϕ is not allowed to have free element
variables) and I2 satisfies I2(Yi) = {j | (K, vj) |= ϕi}. Note that for a CMSO-formula ϕ
without free variables, Eϕ is a CECTL∗ formula that holds in a node v if there is a path
starting in v along which ϕ holds. Satisfiability for CECTL∗-formulas over D is defined as for
CCTL∗. The main result of [12] is:

I Theorem 6 ([12]). Satisfiability for CECTL∗ over Z is decidable.

In the next section, we explain the method that we use to obtain the results from [11, 12],
which we call the EHD-method.

4 EHD-method

The EHD-method yields sufficient conditions on a relational structure D which guarantee
that satisfiability of CECTL∗ over D is decidable. Then, one can show that the structure Z
satisfies these properties.

The structure D = (D, (RD)R∈σ) is negation closed, if for every R ∈ σ the complement
of RD is definable in positive existential first-order logic over D. Moreover, since σ can be
countably infinite we have to require that a positive existential first-order formula for the
complement of RD is computable from the relational symbol R ∈ σ. For instance (Z,=, <)
is negation closed, because ¬x < y iff (x = y ∨ y < x) and ¬x = y iff (x < y ∨ y < x).
Negation closure is needed in order to achieve a strong kind of negation normal form for
CECTL∗, in which the constraints only appear positively.

The second condition on D, the EHD-property, expresses the fact that we can provide
a characterization of all structures which allow a homomorphism into D using a suitable
logical language. Let τ ⊆ σ be a subsignature of σ. A homomorphism h : C → D from a
τ -structure C = (C, (RC)R∈τ ) to the σ-structure D is a mapping h : C → D such that for
every R ∈ τ and every tuple (c1, . . . , ck) ∈ RC (where k = aR is the arity of R) we have
(h(c1), . . . , h(ck)) ∈ RD. We say that the σ-structure D has the property EHD(L) for some
logic L if and only if there is a computable function that maps a finite subsignature τ ⊆ σ to
an L-sentence ϕτ such that for any countable τ -structure C one has:

∃h : C → D homomorphism ⇐⇒ C |= ϕτ .

To make use of this condition for proving satisfiability of CECTL∗, the logic L has to satisfy
two properties: (i) it has to be at least as expressive as MSO and (ii) the satisfiability problem
over the class of infinite node labelled rooted trees has to be decidable for L. In [11, 12] we
used for L the logic Bool(MSO,WMSO+B) (in short BMWB), whose formulas are all boolean
combinations of MSO and WMSO+B formulas. Here, WMSO+B is the extension of weak
monadic second-order logic (where only quantification over finite subsets is allowed) with the
bounding quantifier B: A formula BX ϕ holds in a structure A if and only if there exists a
bound b ∈ N such that for every finite subset B of the domain of A with A |= ϕ(B) we have
|B| ≤ b. Recently, Bojańczyk and Toruńczyk have shown that satisfiability of WMSO+B
over infinite node-labeled trees is decidable [5]. They translate WMSO+B-formulas into a
certain kind of tree automata, which they call puzzles. Since puzzles are equipped with a
parity acceptance condition, it follows easily from [5] that satisfiability over infinite node
labelled trees remains decidable for BMWB. The technical main result from [12] is:
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8 Temporal Logics with Local Constraints

I Theorem 7 ([12]). Let D be a relational structure which is (i) negation closed and (ii) has
the property EHD(BMWB). Then satisfiability of CECTL∗ over D is decidable.

Let us sketch the proof of this result for CCTL∗, which is notationally a bit simpler than
the proof for CECTL∗. So, let ϕ be a CCTL∗ state formula. Using negation closure, we can
assume that ϕ is in a strong negation normal form where negations only appear directly in
front of atomic propositions p ∈ P . For this we have to add dual operators to the logic (e.g.,
the universal path quantifier A). Negation closure allows to eliminate a negation in front of
a constraint. Let r be 1+ the number of subformulas of ϕ of the form Eθ.

Next, it is easy to show that ϕ is satisfiable if and only if it has a model T = (V,R, λ, ζ),
where (V,R) is a rooted tree of degree r, meaning that (T , v0) |= ϕ, where v0 is the root of
(V,R). We call such a structure a D-decorated r-tree. The proof for this tree model property
is the same as for classical CTL∗.

We use the following notation for ancestors in a tree: Let (V,R) be a rooted tree and
let v ∈ V . Then we denote with v1 the parent node of v if it exists. Moreover, for i ≥ 0 let
v0 = v and vi+1 = (vi)1 (the latter does not necessarily exist). So, vi is the i-th ancestor of
v if it exists.

Next we define an abstracted version of ϕ, where every occurrence of a constraint
θ = R(Xi1x1, . . . ,Xikxk) is replaced by Xdpθ, where pθ is a fresh proposition associated with
θ. Here d = max{i1, . . . , ik} is the depth of the constraint. We call the resulting formula
ϕa; it is a pure CTL∗-formula. For a D-decorated r-tree T = (V,R, λ, ζ) we also define an
abstracted version T a = (V,R, λa) (we call it an undecorated r-tree), which is obtained
from T by removing the decoration mapping ζ and adding propositions. More precisely, the
labelling function λa : V → 2P is defined as follows: For every node v ∈ V , λa(v) is the
union of λ(v) and the set of all fresh propositions pθ, where θ is a constraint in ϕ of depth
d and θ holds in the path starting in vd and passing through v. Since θ looks only d steps
into the future, it does not matter how the chosen path continues from v downwards in the
tree; only the initial segment from the d-th ancestor of v to v is relevant. Note that if the
D-decorated r-tree T is a model for ϕ, then T a is a model for ϕa, but the converse does in
general not hold. In order to get an equivalence, we have to add a further condition.

Let P0 be the set of propositions that appear in the abstracted formula ϕa (which contains
the fresh propositions pθ for constraints θ) and let X0 ⊆ X be the finite set of variables that
occur in the initial CCTL∗-formula ϕ. Assume now that S = (V,R, λ) is an undecorated
r-tree, where the propositions from P0 occur. We define a σ-structure CS as follows (σ is the
signature of D): Its universe is the set of all pairs (v, x) ∈ V ×X0. Moreover, for every k-ary
relation symbol R ∈ σ let RCS (the interpretation of R in the structure CS) consist of all
tuples ((vd−i1 , x1), . . . , (vd−ik , xk)) such that v ∈ V , λ(v) contains the proposition θ, θ is the
constraint R(Xi1(x1), . . . ,Xik (xk)), and d is the depth of the constraint. The intuition here
is the following: The universe of CS is obtained by attaching to each node of S copies of the
variables from X0. That a node v is labelled with the proposition pθ indicates that in the
unabstracted version of S (imagine S is the abstracted version T a of a D-decorated r-tree T )
the constraint θ holds in the path starting in vd and passing through v. The relation RCS

contains therefore all tuples that are forced to exist due to the labels pθ for the constraints θ.
With the above definitions, it is not difficult to prove that the following two statements

are equivalent (here, we actually need the fact that constraints only occur positively in ϕ):
There is a D-decorated r-tree T with root v0 such that (T , v0) |= ϕ

There is an undecorated r-tree S with root v0 and a homomorphism h : CS → D such
that (S, v0) |= ϕa.

Now it is fairly easy to finish the proof of Theorem 7. By the EHD(BMWB)-property, there
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exists a BMWB-sentence ψ such that CS |= ψ if and only if there is a homomorphism
h : CS → D. From the definition of the structure CS it is easy to see that it can be obtained
by a so called copying first-order transduction from S. One can therefore construct from
the BMWB-sentence ψ another BMWB-sentence ψ′ such that CS |= ψ if and only if S |= ψ′.
Finally, since CTL∗ can be translated into MSO, one can construct an MSO sentence ψ′′ such
that (S, v0) |= ϕa if and only if S |= ψ′′. Altogether we have that our initial CCTL∗-formula
ϕ is satisfiable if and only if there exists an r-tree S such that S |= ψ′ ∧ ψ′′. By the result of
Bojańczyk and Toruńczyk [5] the latter is decidable. This concludes our proof sketch for
Theorem 7.

By Theorem 7, to prove Theorem 6 it suffices to show that the structure Z from (4) is
negation closed and has the property EHD(BMWB). Negation closure is straightforward to
show. For the EHD(BMWB)-property let us briefly argue why the reduct (Z, <) of Z has
the property EHD(BMWB). For a structure C = (C,R) (where R is an arbitrary binary
relation on C) one can show that there exists a homomorphism from C to (Z, <) if and
only if (i) R is acyclic and (ii) for all a, b ∈ C there is a bound on the length of all paths
in C from a to b. These properties can be easily expressed in WMSO+B, which shows that
(Z, <) has the property EHD(BMWB). Moreover, the above characterization of the existence
of homomorphisms to (Z, <) can be extended to Z. Let us only remark that one has to
consider also structures C (over the same signature as Z), where the equality symbol = is
not interpreted by the identity relation on the universe of C.

Our proof that Z has the property EHD(BMWB) actually only needs rather weak as-
sumptions on the unary predicates (which are satisfied for the unary relations =a and ≡a,b).
In particular, Theorem 6 can be extended to expansions of Z that contain additional unary
predicates like the set of primes and even some undecidable subsets of Z, see [12] for details.

The EHD-method is quite general, and it is tempting to try applying it to other structures.
An interesting candidate in this context (as mentioned in [16]) is the infinite order tree

T∞ = (N∗, <,=,⊥),

where < denotes the prefix order on N∗ and ⊥ denotes the incomparability relation with
respect to <. We add the latter relation in order to obtain a negation closed structure.
Unfortunately, using an Ehrenfeucht-Fraïssé-game for WMSO+B, we proved in [10] that T∞
does not satisfy the property EHD(BMWB):

I Theorem 8 ([10]). There is no BMWB-sentence ψ such that for every countable structure
A over the signature {<,=,⊥} one has: A |= ψ if and only if there is a homomorphism
h : A → T∞.

In other words, BMWB is not expressive enough to distinguish between those {<,=,⊥}-
structures which can be mapped homomorphically to the infinite order tree and those that
cannot.

This shows that the EHD-method cannot be applied to the concrete domain T∞ (or,
equivalently, to the infinite binary tree), but it does not imply that satisfiability for CECTL∗

over T∞ is undecidable. In fact, recently Demri and Deters [14] gave a positive answer for
CCTL∗ over T∞:

I Theorem 9 ([14]). Satisfiability for CCTL∗ over T∞ is decidable and PSPACE-completeness
for the corresponding CLTL-fragment.

The result for CLTL has been recently reproved in [21] using a direct automata theoretic
approach. Demri and Deters prove their results actually for a richer logic, which allows to
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10 Temporal Logics with Local Constraints

compare the length of the longest common prefix for pairs of elements from T∞. Decidability
is obtained by a reduction to the satisfiability problem of CLTL (resp., CCTL∗) over the
domain (N,=, <, (=a)a∈N), which is PSPACE-complete (resp., decidable) by [16] (resp., [11]).
We conjecture that the decidability result for CCTL∗ over T∞ can be extended to CECTL∗.

Despite the fact that the EHD-method fails for T∞, one can apply it to other tree-like
structures, such as semi-linear orders, ordinal trees, and infinitely branching trees of a fixed
height. Semi-linear orders are partial orders that are tree-like in the sense that for every
element x the set of all smaller elements ↓x forms a linear suborder. If this linear suborder
↓x is an ordinal (for every x) then one has an ordinal tree. Ordinal trees are widely studied
in descriptive set theory and recursion theory. Note that a tree is a particular instance of a
semi-linear order which has a smallest element and where for every x the set ↓x is finite.

So far, we have investigated satisfiability for CECTL∗ over one fixed structure D. For
semi-linear orders and ordinal trees it is more natural to consider satisfiability with respect
to a class of concrete domains Γ (over a fixed signature σ): The question becomes, whether
for a given CECTL∗-formula ϕ there is a concrete domain D ∈ Γ such that ϕ holds in a
D-decorated Kripke structure. If a class Γ has a universal structure1 U , then satisfiability
with respect to the class Γ is equivalent to satisfiability with respect to U because there is
a D ∈ Γ such that ϕ holds in a D-decorated Kripke structure if and only if ϕ holds in a
U-decorated Kripke structure. A typical class with a universal structure is the class of all
countable linear orders, for which (Q, <) is universal. Similarly, for the class of all countable
trees the tree T∞ as well as the infinite binary tree are universal.

Using the EHD-method, we proved the following decidability results in [10]:

I Theorem 10 ([10]). Satisfiability of CECTL∗ over each of the following classes is decidable:
the class of all semi-linear orders,
the class of all ordinal trees, and
for each h ∈ N, the class of all order trees of height h.

5 Adding Non-Local Constraints

Notice that the constraints of the form R(Xi1x1, . . . ,Xikxk) which we have considered so
far are local, in the sense that they can compare data values in an n-sized neighborhood
of the state in which they are evaluated, where n = max{i1, . . . , ik} + 1. Other proposed
extensions of temporal logics have the ability to compare data values at arbitrary distance.
Metric temporal logic (MTL) [2] and FreezeLTL [17] are two prominent examples of such
logics. In [15], Demri and D’Souza ask whether satisfiability of CLTL with constraints over
the integers is preserved when adding non-local constraints of the form x = Fy, stating that
there exists a future state where the value of y is equal to the current value of x. Using a
reduction from the Π0

1-complete problem of deciding the existence of an infinite accepting
run of an incrementing counter automaton (see [17]), we answered this question negatively
in [12]:

I Theorem 11 ([12]). Satisfiability for CLTL over (Z,=, <) extended with non-local con-
straints of the form x = Fy is undecidable.

On the other hand, if one adds non-local constraints of the form x < Fy and Fx < y to CLTL,
then one still gets a decidable logic:

1 A structure U is universal for the class Γ if (i) U ∈ Γ and (ii) every structure from Γ is an induced
substructure of U .
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I Theorem 12. Satisfiability for CLTL over Z from (4) extended with non-local order
constraints of the form x < Fy and Fx < y is PSPACE-complete.

This result was shown in the PhD thesis of the first author [8], where it is shown that
non-local order constraints of the form x < Fy and Fx < y can be replaced by local order
constraints. It remains open, whether CCTL∗ over Z (or the reduct (Z,=, <)) extended with
non-local constraints of the form x < Fy and Fx < y is still decidable.

6 Related Work

In the area of knowledge representation, extensions of description logics with constraints on
different concrete domains have been intensively studied, see [23] for a survey. In [24], it
was shown that the extension of the description logic ALC with constraints from (Q, <,=)
has a decidable (EXPTIME-complete) satisfiability problem even in the presence of general
TBoxes. A TBox can be seen as a second ALC-formula that has to hold in all nodes of
a model. Our decidability proof is partly inspired by the construction from [24], which in
contrast to our proof is purely automata-theoretic. Further results for description logics and
concrete domains can be found in [25, 26].

There are other extensions of temporal logics that allow to reason about structures
with data values, especially in the linear time setting. Logical languages like MTL [22, 2]
and TPTL [1] are extensions of LTL often used to specify properties of timed words, i.e.
data words over the real numbers in which the data sequence is monotonically growing, or
monotonic data words over the natural numbers. These logics have however also received
some attention on non-monotonic data words [9, 19]. In general, as soon as one drops the
monotonicity requirement, satisfiability for these logics becomes undecidable and research
has been concentrating on some decidable fragments. An example is freezeLTL, a syntactical
restriction of TPTL that has the ability to check data values only for equality. Satisfiability
for freezeLTL has been shown to be decidable over finite data words, but undecidable over
infinite data words [17]. In contrast to CLTL, the constraints of freezeLTL are of a global
nature.

7 Open Problems

The most important open problem that remains from this work concerns the complexity of
satisfiability for CCTL∗ over (Z, <,=) (or even Z). Clearly, this problem is 2EXPTIME-hard,
since satisfiability of (unconstrained) CTL∗ is 2EXPTIME-complete [18, 30]. To get an upper
complexity bound, one should investigate the complexity of the emptiness problem for puzzles
(the tree automata used in [5] to show that satisfiability of WMSO+B over infinite node
labelled trees is decidable). The WMSO+B-properties used in our decidability result for the
structure (Z, <,=) are very simple, in particular there quantifier nesting depth is small. One
may hope to derive a reasonable complexity bound from this observation. At the same time,
we believe that our decidability result based on the EHD-method, whose upside is its general
nature, may not be the most effective way to devise an efficient decidability procedure for
the specific case of the structure (Z, <,=). The reason behind this statement is the following:
Recall from our proof sketch for Theorem 7 that we have to check whether there exists a
tree S which (i) is a model of the abstracted CTL∗-formula ϕa and (ii) such that there is a
homomorphism from the structure CS to D. Property (i) can be checked in 2EXPTIME. The
complexity theoretic bottleneck in our proof is property (ii). We simply translate it to BMWB
over trees, for which we have no complexity bound. But CS has some interesting properties:
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12 Temporal Logics with Local Constraints

It has bounded degree and bounded tree-width, where the tree-width is determined by the
number of variables occurring in the input formula. Maybe one can exploit this fact to come
up with a more efficient solution. Let us remark that for CECTL∗ satisfiability over any
concrete domain is non-elementary since path properties are specified in MSO (for which
satisfiability is non-elementary). Of course one may replace MSO by Büchi automata (as in
[29, 31]), which might then lead to an elementary complexity bound.

Another interesting question is whether there exists a linear order (A,<) such that
satisfiability for CECTL∗ (or even CCTL∗ or CLTL) over (A,<,=) is undecidable. Such a
linear order must be necessarily scattered, i.e., (Q, <) cannot be embedded into (A,<).
If (Q, <) can be embedded into (A,<), then satisfiability over (A,<,=) is equivalent to
satisfiability over (Q, <,=). Finally, it would be interesting to know, whether there exists
a concrete domain D such that satisfiability for CLTL over D is decidable but the more
expressive CCTL∗ over D is undecidable.
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Abstract
Complexity lower bounds like P 6= NP assert impossibility results for all possible programs of
some restricted form. As there are presently enormous gaps in our lower bound knowledge, a
central question on the minds of today’s complexity theorists is how will we find better ways to
reason about all efficient programs?

I argue that some progress can be made by (very deliberately) thinking algorithmically about
lower bounds. Slightly more precisely, to prove a lower bound against some class C of programs,
we can start by treating C as a set of inputs to another (larger) process, which is intended to
perform some basic analysis of programs in C. By carefully studying the algorithmic “meta-
analysis” of programs in C, we can learn more about the limitations of the programs being
analyzed.

This essay is mostly self-contained; scant knowledge is assumed of the reader.
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1 Introduction

We use the term lower bound to denote an assertion about the computational intractability
of a problem. For example, the assertion “factoring integers of 2048 bits cannot be done with
a Boolean circuit of 106 gates” is a lower bound which we hope is true (or at least, if the
lower bound is false, we hope that parties with sinister motivations have not managed to
find this magical circuit).

The general problem of mathematically proving computational lower bounds is a mystery.
The stability of modern commerce relies on certain lower bounds being true (most prominently
in cryptography and computer security). Yet for practically all of the prominent lower bound
problems, we do not know how to begin proving them true – we do not even know step
zero. (For some major open problems, such as the Permanent versus Determinant problem in
arithmetic complexity [15], we do have good candidates for step zero, and possibly step one.)
Many present lower bound conjectures may simply be false. In spite of our considerable
intuitions about lower bounds, we must admit that our formal understanding of them is
awfully weak. This translates to a lack of understanding about algorithms as well.

∗ Supported in part by NSF CCF-1212372 and a Sloan Fellowship. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

© R. Ryan Williams;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 14–23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


R. R. Williams 15

1.1 Barriers
Why are lower bounds so difficult to prove? There are formal reasons, which are often
called “complexity barriers.” These are theorems which demonstrate that the usual tools
for reasoning about computability and lower bounds – such as universal simulators – are
simply too abstract to distinguish modes of computation like P and NP. There are three
major classes of barriers known.

Relativization, Algebrization, Natural Proofs. Many ways of reasoning about algorithm
complexity are equally valid when one adds “oracles” to the computational model: that
is, one adds an instruction that can call an arbitrary function O : {0, 1}? → {0, 1} in one
step, as a black box. When a proof of a theorem is true no matter which O is added to
the instruction set, we say that the proof “relativizes.” A relativizing proof is generally a
quite powerful and broadly applicable object. However, relativizing proofs are of limited use
in lower bounds: for instance, P = NP when some oracles O are added to polynomial-time
and nondeterministic-polynomial-time algorithms, but P 6= NP when some other oracles O′

are added (as proved by Baker, Gill, Solovay [3]). Practically all other open lower bound
conjectures exhibit a similar resistance to arbitrary oracles, and a surprisingly large fraction
of theorems in complexity theory do relativize.

The more recent “algebrization” barrier [1] teaches a similar lesson, applied to a broader
set of algebraic techniques that was designed to get around relativization. (Instead of
looking at oracles, they look at a more general algebraic object.) To scale relativization and
algebrization, it is necessary to crack open the guts of programs, and reason more closely
about their behavior relative to their simple instructions.1

The Razborov-Rudich “natural proofs” barrier [19] has a more subtle pedagogical point
compared to the other two: informally, they show that strong lower bound proofs cannot
produce a polynomial-time algorithm for determining whether a given function is hard or
easy to compute – otherwise, such an algorithm would (in a formal sense) refute stronger
lower bounds that we also believe to hold. It turns out that many lower bound proofs from
the 1980s and 1990s have such an algorithm embedded in them.

1.2 Intuition and Counter-Intuition
There are also strong intuitive reasons for why lower bounds are hard to prove. The most
common one is that it seems extraordinarily difficult to reason effectively about the infinite
set of all possible efficient programs, including programs that we will never see or execute,
and argue that none of them can solve an NP-complete problem. Based on this train of
thought, some famous computer scientists such as our colleague Donald Knuth have dubbed
problems like P versus NP to be “unknowable” [11].

But how difficult is it, really, to reason about all possible efficient programs? Let us give
some counter-intuition, which will build up to the point of this article, starting with the
observation that while reasoning about lower bounds appears to be difficult, reasoning about
worst-case algorithms does not suffer from the same appearance. Reasoning computationally
about an infinite number of finite objects is commonplace in the analysis of worst-case
algorithms. There, we have a function f : Σ? → Σ? in mind, and we prove that some
known efficient procedure P outputs f(x) on all possible finite inputs x. That is, often in

1 There are definitely “non-relativizing” and even “non-algebrizing” techniques in complexity theory, but
they are a minority; see Section 3.4 in Arora and Barak [2] for more discussion.
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algorithm analysis we manage to reason about all possible x, even those x’s we will never
see or encounter in the real world. The idea is that, if we consider computational problems
which
(a) treat their inputs as programs,
(b) determine interesting properties of the function computed by the input program, and
(c) have interesting algorithms,
then we can hope to import ideas from the design and analysis of algorithms into the theory
of complexity lower bounds. (Yes, this is vague, but it is counter-intuition, after all.)

Sanity Check: Computability Theory. We must be careful with this counter-intuition.
Which computational problems actually satisfy those three conditions? Undergraduate
computability theory (namely, Rice’s theorem [20]) tells us that, if x encodes a program
that takes arbitrarily long inputs, it is undecidable to determine non-trivial properties of
the problem solved by x. The source of this undecidability is the “arbitrary length” of
inputs; if x encodes a program that takes only finitely many inputs, say only inputs of a fixed
length, then we can produce the entire function computed by x, and decide some non-trivial
properties of that function. To simplify the discussion (and without significantly losing
generality), we might as well think of x as encoding a Boolean circuit over AND, OR, and
NOT gates, taking some n bits of input and outputting some m bits. Now, x simply encodes
a directed acyclic graph with additional labels on its nodes, and a procedure P operating on
x’s can be said to be reasoning about the finitary behavior of finite computational objects.

However, one of the major lessons of the theory of NP-hardness is that, while reasoning
about arbitrary programs may be undecidable, reasoning about arbitrary circuits is often
decidable but is still likely to be intractable. Probably the simplest possible circuit analysis
problem is: given a Boolean circuit C, does C compute the all-zeroes function? This problem
is already very difficult to solve; it is equivalent to the NP-complete problem Circuit
Satisfiability (which asks if there is some input on which C outputs 1). From this point
of view, the assertion P 6= NP tells us that arbitrary programs are hard to analyze even
over finitely many inputs: we cannot feasibly determine if a given circuit is trivial or not.
As circuit complexity is inherently tied to P versus NP, the assertion P 6= NP appears to
have negative consequences for its own provability; this looks depressing. (This particular
intuition has been proposed many times before; for instance, the Razborov-Rudich work on
“natural proofs” [19] may be viewed as one way to formalize it.)

Slightly Faster SAT Algorithms? The hypothesis P 6= NP only says that very efficient
circuit analysis is impossible. More precisely, for circuits C with k bits of input encoded in n

bits, P 6= NP means there is no kO(1) · nO(1) time algorithm for detecting if C is satisfiable.
There is a giant gap between this sort of bound and the 2k · nO(1) time bound obtained by
simple exhaustive search over all possible inputs to the circuit. What if we simply asked for
a non-trivial running time for detecting the satisfiability of C, something merely faster than
exhaustive search?

I would like to argue that finding any asymptotic improvement over 2k time for Circuit
Satisfiability is already a very interesting problem. This is not an obvious point to argue.
First off, without any further knowledge of its inner workings, a 1.9k time algorithm would
not be terribly more useful in practice than a 2k one: only for small values of k would one
see a difference, and the rest of the instances would remain intractable.2 Work on worst-case

2 This attitude is not shared in cryptography, where any improvement in exhaustive search over all keys
may be considered a “break” in the cryptosystem.
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algorithms for SAT for many years (such as [13, 6, 14, 12, 18, 9, 22, 17, 23, 5], see the
survey [7]) was primarily motivated by the intrinsic interest in understanding whether trivial
exhaustive search is optimal.

The Non-Black-Box-ness of Circuit SAT Algorithms. There is also a deeper reason to
pursue minor improvements in SAT algorithms. Any algorithm for Circuit SAT running
in (say) time 1.9k · nO(1) must necessarily provide a “non-relativizing” analysis of the given
circuit C, an analysis which relies on the structure and encoding of C. If you were asked to
design a Circuit SAT algorithm which could only access C as an oracle, obtaining outputs
from inputs and no other information, then your algorithm would necessarily require at least
2k steps in the worst case. The reason is simple: if you are completely blind to the insides of
the circuit C, then even a small (kO(1) size) circuit could hide a satisfying k-bit input from
you. To thwart you, I may choose a small circuit which only outputs 1 on the “last” input
you will call it on, and since you only see 0-outputs, you will need to call the circuit on all 2k

inputs to determine satisfiability. Therefore, a 1.9k · nO(1) time algorithm for Circuit SAT
must necessarily use the fully-given representation of the circuit in some critical ways, to
work faster than exhaustive search. Even an algorithm running in O(2k/k) time on circuits
of size O(k) would be interesting, for the same reason.3

A Possible Road to Circuit Complexity. The ability to analyze a given circuit more
efficiently than analyzing a black box suggests a further implication: a Circuit SAT
algorithm running faster than exhaustive search could potentially be used to prove a circuit
complexity limitation. At the very least, if the Circuit SAT problem can be solved faster
than exhaustive search on a given collection of circuits C (some of which encode the all-zero
function, and some which do not), then the collection C fails to obfuscate the all-zeroes
function from some algorithm running in less than 2k steps. That is, the assumed Circuit
SAT algorithm can “efficiently” distinguish all circuits encoding the all-zeroes function from
those circuits which do not; these circuit cannot hide satisfying inputs as well as oracles can.
This points to a potential deficiency in C that the Circuit SAT algorithm takes advantage
of. Surprisingly, this intuitive viewpoint can be made formal.

Outline. In the remainder of this article, we first describe some known connections between
circuit satisfiability algorithms and circuit complexity lower bounds (Section 2). Then, we
turn to a more recent example of how algorithms and lower bounds are tied to each other, in
a way that we believe should be of interest to the union of logicians and computer scientists
(Section 3). In particular, we reconsider the basic problem of testing circuit functionality via
input-output examples, define the data complexity as a way of measuring the difficulty of
testing, and describe how circuit complexity lower bounds are equivalent to data complexity
upper bounds. We conclude the article with some hopeful thoughts.

3 Perhaps you do not believe that Circuit SAT can be solved any faster than 2k · nO(1) steps. This belief
turns out to be inessential for the main intuition and the formal theorems that follow. For example, you
may instead believe that we can non-deterministically approximate the fraction of satisfying assignments
to a k-input circuit of size n in 1.9k · nO(1) time; this is also something that oracle access to a circuit
cannot accomplish. Furthermore, if you do not believe even this, then your lack of faith in algorithms
requires you to have strong beliefs in the power of Boolean circuits – they would be powerful enough to
solve nondeterministic exponential-time problems. See [10, 26].
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2 Circuit SAT versus Circuit Complexity

Let us briefly review some relevant notions from the theory of circuit complexity; for more,
see the textbook of Arora and Barak ([2], Chapter 6).

Circuit Complexity. A Boolean circuit with n inputs and one output is a directed acyclic
graph with n sources and one sink, and labels of AND/OR/NOT on all other nodes. Each
circuit computes some finite function f : {0, 1}n → {0, 1}. To compute infinite languages,
of the form L : {0, 1}? → {0, 1}, we extend our computational model to have an infinite
family of circuits F = {Cn}∞

n=1, where Cn has n inputs and one output. For such a family
F , we say that F computes L if for all x ∈ {0, 1}? we have C|x|(x) = L(x). For a function
s : N → N, a family F has size s(n) if for all n, the number of nodes (i.e., gates) in Cn is
at most s(n). A language L has polynomial-size circuits if there is a polynomial p(n) and
a family C of size p(n) that computes L. The class of all languages having polynomial-size
circuits is denoted by P/poly. One should think of P/poly as the class of computations for
which the minimum “sizes” of computations do not grow considerably with the input length
to those computations.

The class P/poly is poorly understood animal. It could be enormously powerful, or it
could be fairly weak. It is easy to see that every language over the single alphabet symbol 0
is in P/poly; however, a simple counting argument shows there are undecidable subsets over
a single alphabet symbol. Therefore P/poly can “compute” some undecidable languages. In
that sense, P/poly is powerful, but this really stems from the fact that the computational
model defining P/poly can have infinite-length descriptions. (This observation also shows that
traditional thought in computability theory is not going to be very helpful in understanding
the power of P/poly.) However, P/poly also looks obviously limited, in another sense: for
each input length n, only polynomial-in-n resources need to be spent in order to decide
all 2n inputs of that length. A counting argument shows that for every n, some function
f : {0, 1}n → {0, 1} requires circuits of size exponential-in-n; in fact, most functions do.

A prominent question in complexity theory is: How does P/poly relate to the Turing-based
classes of classical complexity theory, like P, NP, PSPACE, etc.? It is pretty easy to see that
P ⊂ P/poly: every “finite segment” of a polynomial-time algorithm can be simulated with
a polynomial-size circuit. It is conjectured that NP 6⊂ P/poly (which would in turn imply
P 6= NP). But it is an open problem to prove that NEXP 6⊂ P/poly! That is, every language
in the exponential-time version of NP could in fact have polynomial-size circuits. It looks
amazing that a problem like this is still open. Fifty years ago, Hartmanis and Stearns [8]
showed that some O(n3)-time computations are more powerful than all O(n)-time ones; how
is it possible that we can’t distinguish exponential time from polynomial size? This open
problem demonstrates how truly difficult it is to prove lower bounds on circuit complexity;
maybe the infinite circuit model is powerful!

2.1 Enter Circuit SAT
Let’s return to thinking about the role of Circuit Satisfiability. We were arguing that a
faster algorithm for satisfiability points to a deficiency in the power of circuits, being unable
to hide satisfying inputs from algorithms running in less than 2k steps. We want to say:
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The existence of a “faster” algorithm A solving Circuit SAT,
for all circuits C from a class of circuits C

=⇒
The existence of a function f : {0, 1}? → {0, 1},

that is not computable by all circuit families from that class C

Written this way, the logical quantifiers match up nicely, and the whole idea of using an
algorithm to prove a circuit complexity lower bound looks less counter-intuitive.

Indeed, we can say a formal statement as described in the above box. Here is one version:

I Theorem 2.1 ([26, 28]). Suppose for all polynomials p, satisfiability of circuits with n

inputs and p(n) size is decidable in O(2n/n10) time. Then NEXP 6⊂ P/poly. That is, there are
functions computable in nondeterministic exponential time that do not have polynomial-size
circuits.

(The polynomial n10 is almost certainly not optimal, but it suffices.) Notice the required
improvement over exhaustive search: it would normally take 2n · p(n) time; in order to solve
satisfiability fast enough, we need to “divide by an arbitrary polynomial” in the running
time. This is a much weaker requirement than bounds like 1.9n time, which had been the
primary focus of researchers.

How Does The Proof Work? In this article, we can only briefly describe the proof of
Theorem 2.1; for more technical details, see the surveys [24, 21, 16]. The informal statement
in the box above says that a Circuit SAT algorithm A implies a hard function f . One might
think that the algorithm A solving Circuit SAT may appear somewhere in the definition
of f . That would be a very interesting property, but the proofs that we know do not do this
explicitly. Instead, the proofs of Theorem 2.1 proceed by contradiction. We assume:
1. there is a Circuit SAT algorithm A running in 2n/n10 time, and
2. every function f ∈ NEXP has polynomial-size circuits. (It is equivalent to assume that

a single function, complete for NEXP under polynomial-time reductions, is computable
with polynomial-size circuits.)

These two assumptions are inherently algorithmic in nature: item (1) asserts that Circuit
SAT can be solved faster, and item (2) asserts that a huge class of decidable problems can
be computed with polynomial-size circuit families. Then we utilize these two assumptions to
construct another algorithm which is provably impossible. Namely, these assumptions imply
every function computable in nondeterministic time 2n is computable in nondeterministic
time 2n/n2, which contradicts the time hierarchy theorem for nondeterminism [29]. At a
very high level, the 2n/n2 time algorithm works by:

nondeterministically guessing small circuits for time 2n computations, asserted to exist
by item (2), and
deterministically verifying the correctness of those circuits, using the Circuit SAT
algorithm asserted by item (1).

The verification step is a subtle process. If a circuit happens to agree with our nondeter-
ministic 2n time function, it is not at all clear how we might use a circuit satisfiability call to
check that circuit. Roughly speaking, we show that one can guess a small circuit C that is
intended to succinctly encode an accepting computation history of the nondeterministic 2n
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time computation, and set up a larger circuit D (with C embedded in it) which is unsatisfiable
if and only if C does encode an accepting history. This circuit D is carefully constructed so
that its number of inputs is essentially n, logarithmic in the running time of the computation
it is verifying. Then, a faster circuit satisfiability algorithm can check a 2n time computation
in less than 2n steps.

While it yields the desired outcome, this style of proof is indirect and feels lacking.
It is an interesting open problem to find simpler and/or more informative proofs of this
algorithms-to-lower-bounds connection.

Applying the Connections. The framework behind Theorem 2.1 has been generalized so
that circuit satisfiability algorithms for various circuit classes C imply lower bounds for
computing functions in NEXP with circuits from C. So far, through the design of new circuit
satisfiability algorithms, this framework has led to three unconditional circuit lower bound
results:

NEXP does not have so-called ACC0 circuits of polynomial size [28],
NE/1 ∩ coNE/1 (a potentially weaker class) does not have ACC0 circuits of polynomial
size [25], and
NEXP does not have ACC0 circuits of polynomial size, augmented with a layer of neurons
(linear threshold gates) that connect directly to the inputs [27].

The first and third results were obtained by designing explicit circuit satisfiability algo-
rithms for relevant circuit classes; the second was obtained by sharpening the complexity-
theoretic arguments. It is possible that we might prove NEXP 6⊂ P/poly without providing
a new Circuit SAT algorithm: it might be that the assumption NEXP ⊂ P/poly could
imply the existence of algorithms sufficient for proving NEXP 6⊂ P/poly. (It is known that
NEXP ⊂ P/poly implies faster algorithms for solving some NP problems, but Circuit SAT
is not known to be among them.)

3 Circuit Complexity and Testing Circuits With Data

We now turn to a problem related to program verification, and describe an emerging connection
to circuit complexity. In practice, programs are often verified by the quick-and-dirty method
of trial and error: the program is executed on a suite of carefully chosen inputs, and one
checks that the outputs of the program are what is expected. For a given function to compute,
it is natural to ask when trial and error can be efficient: when does it suffice to use a small
number of input-output examples, and determine correctness of the program?

If we had no constraints on what the program could be, then there would not be much to
say about this problem: without any further information, the program is a black box and
one would simply have to try all possible inputs to know for sure. But in testing, we’re never
given a program as a black box; we know something about it, such as its size. Could side
information such as program size be useful for the testing problem?

Recently with Brynmor Chapman [4], we have proposed the general problem of data
design. Suppose we are given a function f : {0, 1}? → {0, 1}, and a class C of size-s circuits.
The task of data design is to select a small suite of input-output test data that can be used
to determine whether a given n-input circuit C from C computes f restricted to n-bit inputs.
More formally, the data complexity of f (as a function of the circuit size s) is defined to be
the minimum number of input-output examples such that, for any n-input circuit C of size
s, one can determine with certainty whether C computes f (on all n-bit inputs), by calling
C on the examples. Every function f that depends on all of its inputs has data complexity
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O(2s): the test suite may contain all possible input-output pairs for f on all input lengths
n = 1, . . . , s. When can test suites be made small?

While the data design problem certainly has practical motivation, we are interested in
the problem due to its intriguing inversion of the roles of program and input. The circuit
computing f is the input to the data design problem; the program for testing the circuit is
the collection of input-output examples. We have uncovered a surprising correspondence
between upper bounds on data design and lower bounds on circuit complexity. Generally
speaking, designing good suites of data for testing whether C-circuits compute f is equivalent
to proving C-circuit lower bounds on computing f . For example:

I Corollary 3.1 ([4]). A function f is in P/poly if and only if for some ε > 0, the data
complexity of testing circuits for f is greater than 2sε for almost every s.

So if we wanted to prove that (for example) that NEXP 6⊂ P/poly, it would be necessary
and sufficient to design test suites of subexponential data complexity for a function in NEXP.

Intuitively, such a correspondence is possible because the circuit design problem and
the data design problems work with similar types of unknowns. The circuit designed must
compute f on all n-bit inputs, and the data designed must test the functionality of f for all
s-size circuits. There are two parts to the equivalence:

If f has an n-input circuit of size at most s, then standard arguments show that our test
suite essentially needs all 2n input-output pairs for f on n bits, to distinguish “good”
circuits computing f from slightly different circuits which give the wrong answer on one
input.
If f does not have an n-input circuit of size s, then arguments from the theory of zero-sum
games show that the test suite only needs poly(s) examples on n-inputs in order to test
all circuits of size at most s/n.

Putting the two items together, one can show that upper bounds on data design for f

are equivalent to lower bounds on the circuit complexity of f . Therefore, reliable exhaustive
circuit testing and proving circuit lower bounds are deeply related tasks, in ways that are not
fully understood yet. Not only would small test suites detect errors efficiently, they would
also be useful for formal verification. Assuming the circuit being tested is in the appropriate
class C, passing a test suite would be a proof of correctness on all inputs. In turn, proving
that a small test suite works is equivalent to proving a limitation on C. This “constructive”
algorithmic viewpoint on lower bounds is still in its early stages of development, and it
remains to be seen how effectively one can prove new (or old!) lower bounds with it.

4 Conclusion

I believe that knowledge from all areas of theoretical computer science could contribute
significantly to the general projects outlined here. Computer scientists will have to develop
new methods of argument in order to make a serious dent in the major lower bound problems,
and it is worth trying every sort of reasonable argument we can think of (at least once).
Perhaps the logic side of computer science will provide some of these new proof methods.
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Abstract
We present a functional characterization of deterministic logspace-computable predicates based
on a variant (although not a subsystem) of propositional linear logic, which we call parsimonious
logic. The resulting calculus is simply-typed and contains no primitive besides those provided by
the underlying logical system, which makes it one of the simplest higher-order languages capturing
logspace currently known. Completeness of the calculus uses the descriptive complexity charac-
terization of logspace (we encode first-order logic with deterministic closure), whereas soundness
is established by executing terms on a token machine (using the geometry of interaction).
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1 Introduction

Implicit computational complexity (ICC) is a research field at the intersection of logic,
computational complexity and the theory of programming languages, arising from the
seminal contributions of, among others, Bellantoni and Cook [3], Leivant and Marion [18],
and Jones [16]. ICC may be thought of as the proof-theoretic counterpart of descriptive
complexity [15], which is based on model theory instead. They both invoke logic as a guideline
for understanding the nature of complexity classes, seeking alternatives to the notion of
complete problem which is proper of structural complexity theory.

Linear logic has proved to be quite valuable for ICC, spurring a fruitful line of research
[12, 14, 25, 9] which we continue with the present paper: we show how an affine propositional
logical system characterizes in a natural way the class L of logspace computable predicates.
Such a logical system stems from previous work by the author on the infinitary affine
λ-calculus [19, 20]. In particular, the latter work introduced the so-called parsimonious
stratified λ-calculus, which was shown to capture (non-uniform) polytime computation.
In that paper, parsimony was considered merely as a restriction to be added on top of
stratification in order to keep the complexity under control. Later, the author realized that
parsimony has an independent logical meaning, i.e., it corresponds to a well-defined logical
system which is a variant (but not a subsystem) of linear/affine logic.

In its intuitionistic form, parsimonious logic is multiplicative affine logic (i.e., with linear
implication (, multiplicative conjunction ⊗ and free weakening; categorically, the free
SMCC with terminal unit) endowed with an exponential modality satisfying what we call
Milner’s law !A ∼= A⊗ !A. The implication !A( A⊗ !A, sometimes called absorption, holds
in linear logic but its converse, which we deem co-absorption, does not.1 It does hold in

1 To be fair, in linear logic one should look for !A ∼= (A& 1) ⊗ !A. Nevertheless, although implications in
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differential linear logic (it is the type of the derivative operator), but it is not the inverse of
absorption. Therefore, Milner’s law is not verified in any known variant of linear/affine logic.

From the computational point of view, Milner’s law asserts that !A is the type of
streams of type A: absorption is “pop” and co-absorption is “push”. The fact that these
operations are inverses of each other is why we speak of (infinite) streams rather than (finite)
stacks. Accordingly, the λ-calculus arising from parsimonious logic natively supports streams.
Remember that parsimony arises from an infinitary affine calculus, so we are in principle
capable of dealing with truly infinite streams. This yields non-uniform computation (in the
same sense as circuit families) and is the object of [20, 21]. However, in the present paper
we focus on uniform computation, which means that the streams will be morally finite: we
will consider only terms of the form u1 :: · · · :: un :: !t where !t ≡ t :: !t, i.e., the stream is
ultimately constant. In [21], it is proved that the non-uniform simply-typed parsimonious
λ-calculus captures L/poly (non-uniform logspace). Although closely related, this does not
imply the results presented here, it rather complements them.

The question we address here is: what is the expressive power of the simply-typed
parsimonious λ-calculus? More precisely, if Str := !(o ( o) ( !(o ( o) ( o ( o is the
affine version of the type of Church binary strings and Bool := o⊗ o( o⊗ o is the affine
type of Booleans, what languages are decidable by simply-typed parsimonious terms of type
Str[A]( Bool?2 If we call PL the class of such languages, as anticipated above we have:

I Theorem 1. PL = L.

By contrast, the analogous question for the usual simply-typed λ-calculus, or for propositional
linear logic, lacks to our knowledge such a straightforward, standard answer. This, we believe,
supports the claim that parsimony is an interesting and natural notion.

The proof of Theorem 1 is of course in two parts. Completeness (L ⊆ PL, Sect. 3) is shown
by programming in PL the descriptive complexity characterization of L (i.e., first-order logic
with deterministic transitive closure). The non-trivial part is, essentially, solving reachability
for directed forests, a paradigmatic L-complete problem.

The main ingredient of soundness (PL ⊆ L, Sect. 5) consists of proof nets. These allow
turning the normalization of terms into the execution of an automaton, Danos and Regnier’s
interaction abstract machine (IAM) [8], based on Girard’s geometry of interaction (GoI) [11].
In its IAM formulation, the GoI computes the normal form of a proof net π by considering a
token traveling through the nodes of π, instead of applying rewriting rules. To control the
movements of the token, the machine has to keep track of a certain amount of information,
consisting of two stacks S and B. The stack S is binary, and its length is bounded by the
height of the types of π. The length of B is bounded by the depth of π (the maximum number
of nested exponential modalities in the types of π) but, in linear logic, its elements may be
quite complex. In parsimonious logic, the elements of B are just integers: they correspond
to positions within streams. Therefore, running the IAM on a proof net π of size s, height h
and depth d needs space O(log s+ h+ d logm): log s is for the token’s position, h for the S
stack and d logm for the B stack, if m is the largest integer stored in it during execution.

The interesting case is when π is the translation of t w, with t : Str[A]( Bool and w a
Church string. Then, s is O(|w|), whereas h and d are O(1) (they only depend on A, which
is fixed). Therefore, if we manage to prove that m is polynomial in s, we have a logarithmic

both directions are provable, they are not inverses of each other.
2 Str[A] denotes Str where the base type o is replaced by an arbitrary simple type A. In the absence of

polymorphism, it is common to allow such type expansions.
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bound in |w|, as desired. Such a bound on m may be proved directly, as done in [21], or by
combining the bound we previously gave in [20] with a nice result of Gaboardi, Roversi and
Vercelli [10], which is the strategy we adopt here.

Related work

Implicit characterizations of L abound: of recursive-theoretic nature [22, 17], using imperative
languages [16, 4] and higher-order languages [24, 25, 6]. Of these, only the latter are immedi-
ately comparable to our work. Another paper explicitly relating streams and logarithmic
space is [23], which however does not have much of a connection with our work: the authors
consider there corecursive definitions, i.e., algorithms on infinite streams (as opposed to finite
strings) and the space complexity they refer to is not the usual decision problem complexity.

The GoI plays a key role in both [25, 6]. The difference here is not so much in the use
of the GoI, which is quite similar, but in the underlying programming language: in that
work, the author(s) take the standpoint that the fundamental primitive of sublinear space
computation is interaction (a point of view already taken in [24]) and forge their programming
language around this. This leads, for instance, to the use of non-standard types for encoding
strings, namely Nat( Three (a binary string x is seen as a function mapping i to xi or to
⊥ if i ≥ |x|), whereas the language of [24] has an explicit list type.

With respect to the above, we believe that the highlight of our characterization is that it
is closer to the original spirit of applying linear logic to ICC [12]: it is purely logical (there is
no primitive datatype) and employs standard types. Our characterization also improves on
previous ones in terms of simplicity: the types of [25] include full polymorphism and indexed
exponential modalities, whereas the categorical construction of [6], while elegant, also yields
a sort of indexed exponential modality in types, making type inference not straightforward
(see [7]). By contrast, our calculus is simply-typed, has only 9 typing rules (Fig. 1) which are
essentially syntax-directed, so type inference is easier. Programming is of course restricted
but, as hopefully showcased by Sect. 3, quite reasonably so if we consider that all programs
must run in logarithmic space.

2 The Parsimonious Lambda-Calculus

2.1 Terms and reduction
We let a (resp. x) range over a countably infinite set of affine (resp. exponential) variables. An
occurrence of exponential variable is of the form xi, where i ∈ N. Occurrences of exponential
variables are naturally ordered by xi ≤ yj whenever x = y and i ≤ j. Let Θ be a set of
occurrences of exponential variables. We write ↑Θ for the upward closure of Θ. We denote
by Θ \ {x} the set obtained from Θ by removing all occurrences of the form xi (if any).

Parsimonious terms belong to the grammar

t, u ::= a | λa.t | tu | let a⊗ b = u in t | t⊗ u | xi | let !x = u in t | !t | t :: u.

However, they obey several constraints on how variables may appear, so we introduce them
by means of a well-forming relation Θ; Φ B t, where t is a (parsimonious) term, Φ is the
set of its free affine variables and Θ is the set of its free virtual occurrences of exponential
variables (which may be infinite):
∅; {a} B a and {xi}; ∅ B xi always hold;
if Θ; Φ B t, then Θ; Φ \ {a} B λa.t;
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if Θ; Φ B t and Θ′; Φ′ B u and Θ ∩ Θ′ = Φ ∩ Φ′ = ∅, then Θ ∪ Θ′; Φ ∪ Φ′ B tu,
Θ ∪Θ′; Φ ∪ Φ′ B t⊗ u, Θ ∪Θ′; Φ ∪ Φ′ B t :: u, Θ ∪Θ′; Φ \ {a, b} ∪ Φ′ B let a⊗ b = u in t
and Θ \ {x} ∪Θ′; Φ ∪ Φ′ B let !x = u in t;
if Θ; ∅ B t and every exponential variable has at most one occurrence in Θ, then ↑Θ; ∅ B !t.

Let Θ; Φ B t. We denote by t++ the term obtained from t by substituting each free
occurrence xi with xi+1. We have Θ++; Φ B t++, where Θ++ is defined in the obvious way.

Terms of the form !t are called boxes. Apart from disallowing free affine variables, the
main purpose of the well-forming condition for boxes is to ensure that, if x occurs free in a
parsimonious term t, then it occurs free in at most one box and at most once therein and,
moreover, the index of such an occurrence, denoted by maxindx(t), is the greatest in t.

Streams are terms generated by u ::= !t | t :: u. Structural equivalence is the contextual
closure of the equation !t ≡ t :: !(t++). This justifies the name “stream”: the term
u := u1 :: · · · :: un :: !t is morally an infinite stream u1 :: · · · :: un :: t :: t++ :: (t++)++ :: · · · .
Accordingly, given i ∈ N, we define u(i) to be ui+1 if i < n and t++(i−n times) if i ≥ n. We
also define |u| := n.

We now define reduction. To avoid the commutative rules induced by the presence of let
binders, we use Accattoli’s contextual approach (see for instance [1]). We define let-contexts
as

L ::= [·] | let p = t inL,

where p stands for a⊗ b or !x. We denote by L[t] the substitution of the term t for the hole
[·] in the let-context L. We may now introduce the reduction rules:

L[(λa.t)]u →β L[t[u/a]]
let a⊗ b = L[u⊗ v] in t →⊗ L[t[u/a, v/b]]

let !x = L[u] in t →! L[t{u/x}]

Modulo the presence of let-contexts, the rules β and ⊗ are standard. In the ! rule, in case x
appears in a box in t, we require that maxindx(t) ≥ |u|. If x does not appear in a box, the
rule may always be applied. In any case, t{u/x} stands for t in which every xi is substituted
by u(i). All rules are readily verified to preserve parsimony.

One-step reduction, denoted by →, is defined as the contextual closure of the above rules,
plus closure under structural equivalence, i.e., t ≡ t′ → u′ ≡ u implies t→ u.

Reduction may be shown to be confluent. However, termination is not guaranteed: if
we let ∆ := λ!x.x0!x1 and Ω := ∆!∆, we have Ω ≡ ∆(∆ :: !∆) → Ω. In fact, the untyped
parsimonious λ-calculus is Turing-complete. This follows from observing that, although
parsimony seems to exclude general fixpoint combinators, we do have affine fixpoints and
these are enough to encode partial recursive functions, because the minimization scheme is
an affine recurrence.3

Note how the syntax allows one to recover unambiguously whether a variable is affine
or exponential. For this reason, we will occasionally use any letter to denote any kind of
variable. It will also be convenient to use the abbreviations

λa⊗ b.t := λc.let a⊗ b = c in t λ!x.t := λa.let !x = a in t,

as well as combinations such as λa⊗ !x.t := λc.let a⊗ d = c in let !x = d in t.

3 The function g(x) := (µy.f(x, y) = 0) may be defined as g(x) := h(0, x) where h(n, x) := if (f(x, n) =
0) thenn elseh(n+ 1, x). This recursive definition is affine because h appears only once on the right.
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Γ; ∆, a : A ` a : A
ax

Γ; ∆, a : A ` t : B
Γ; ∆ ` λa.t : A( B

(I
Γ; ∆ ` t : A( B Γ′; ∆′ ` u : A

Γ,Γ′; ∆,∆′ ` tu : B
(E

Γ; ∆ ` t : A Γ′; ∆′ ` u : B
Γ,Γ′; ∆,∆′ ` t⊗ u : A⊗B

⊗I
Γ′; ∆′ ` u : A⊗B Γ; ∆, a : A, b : B ` t : C

Γ,Γ′; ∆,∆′ ` let a⊗ b = u in t : C
⊗E

; a : Γ ` t : A
x : Γ;` !t[x0/a] : !A

!I
Γ′; ∆′ ` u : !A Γ, x : A; ∆ ` t : C

Γ,Γ′; ∆,∆′ ` let !x = u in t : C
!E

Γ, x : A; ∆, a : A ` t : C
Γ, x : A; ∆ ` tx++[x0/a] : C

abs
Γ; ∆ ` t : A Γ′; ∆′ ` u : !A

Γ,Γ′; ∆,∆′ ` t :: u : !A
coabs

Figure 1 The simply typed parsimonious calculus PL.

2.2 Simple types
The simple types are the formulas of intuitionistic propositional linear logic, generated by

A,B ::= o | A( B | A⊗B | !A,

where o is a ground type (we consider only one, although of course our results hold for any
number of ground types). If A and B are types, we denote by A[B] the type obtained by
replacing every occurrence of o in A with B.

The type system we consider, which we call PL (for parsimonious logic), is defined in
Fig. 1. In the abs rule, tx++ is defined like t++ but only the free occurrences of x are
re-indexed. A straightforward induction on the last rule of the derivation gives

I Lemma 2. Let Γ; ∆ ` t : A. Then:
parsimony: t is parsimonious;
typical ambiguity: for any type B, Γ[B]; ∆[B] ` t : A[B].

In fact, the type assignment is an instance of the Curry-Howard correspondence: if we
forget term annotations, the type derivations are proofs in natural deduction and reduction
of terms corresponds to normalization. The underlying logical system is the parsimonious
logic mentioned in the introduction. The isomorphism !A ∼= A⊗ !A is realized by the terms

λ!x.x0 ⊗ !x1 : !A( A⊗ !A λa⊗ !x.a :: !x0 : A⊗ !A( !A,

which use absorption and co-absorption, respectively.
In the sequel, we will sometimes write A[] for A[B] when the type B 6= o is unimportant.

This lack of information is harmless for composition: point 2 of Lemma 2 guarantees that
terms of type A[X]( B and B[Y ]( C may be composed to yield A[X[Y ]]( C. The only
delicate point is iteration (see below), which requires a flat typing, i.e., of the form A( A.

3 Simply-typed Parsimonious Programming

3.1 Basic data types
The types Nat, Bool and Str of unary (Church) integers, Booleans and binary strings,
respectively, are defined in Fig. 2, together with the encoding of integers and Booleans. For
binary strings, the encoding is similar: if w = w1 · · ·wn ∈W, we have

w := λ!s0.λ!s1.λz.sw1
0 (. . . swn

i z . . .),



D. Mazza 29

Nat := !(o( o)( o( o, Bool := o⊗ o( o⊗ o, Str := !(o( o)( !(o( o)( o( o

n := λ!s.λz.s0(. . . sn−1z . . .) : Nat
succ := λn.λ!s.λz.s0(n !(s1) z) : Nat( Nat
pred := λn.λ!s.λz.n ((λa.a) :: !s0) z : Nat( Nat
dup := λn.It(n, λm1 ⊗m2.(succ m1)⊗ (succ m2), 0⊗ 0) : Nat[]( Nat⊗ Nat
store := λn.It(n, λ!x.!(succ x0), !0) : Nat[]( !Nat
tt := λc⊗ d.c⊗ d, ff := λc⊗ d.d⊗ c : Bool
not := λb.λc⊗ d.b(d⊗ c) : Bool( Bool
xor := λb.λb′.λc.b(b′c) : Bool( Bool( Bool
and := λb.λb′.let c⊗ d = b(b′ ⊗ ff) in c : Bool[]( Bool( Bool
len := λw.It(w, succ, succ, 0) : Str[]( Nat
shift := λ!x.!x1 : !A( !A
toStrm := λw.It(w, λs.(ff :: s), λs.(tt :: s), !ff) : Str[]( !Bool
leq := λm.λn.let !x = It(n, shift, It(m,λs.(ff :: s), !tt)) inx0 : Nat[]( Nat[]( Bool
isOne := λw.λn.let !x = It(n, shift, toStrmw) inx0 : Str[]( Nat[]( Bool

Figure 2 Data types, encodings and basic functions.

where the j-th occurrence of s0 from the left has index j − 1, and similarly for s1. For
instance, 001 = λ!s0.λ!s1.λz.s0

0(s0
1(s1

0z)).
The type Nat supports iteration It(n, step, base) := n !(step′) base, typed as:

; ∆ ` step : A( A Γ; Σ ` base : A
Γ,∆′; Σ, n : Nat[A] ` It(n, step′, base) : A

where ∆′ and step′ are the results of systematically replacing linear variables by exponential
ones. Note that the type of step must be flat.

Unary successor and predecessor are implemented as in Fig. 2. Since their types are
flat, they may be iterated to obtain addition and subtraction, of type Nat[]( Nat( Nat.
This is again flat with respect to the second argument, so a further iteration on addition
leads to multiplication, of type Nat[] ( Nat[] ( Nat. Unary integers are duplicable and
storable as shown in Fig. 2. Using addition, multiplication, subtraction and duplication we
may represent any polynomial with integer coefficients as a closed term of type Nat[]( Nat.

These constructions can all be extended to the type Str, which also supports iteration,
flat successors and predecessor, concatenation, and is duplicable and storable.

For the Booleans, we adopt the multiplicative type Bool used in [26]. This type too
is duplicable and storable. An advantage of multiplicative Booleans is that they support
flat exclusive-or in addition to flat negation (see Fig. 2). On the other hand, conjunction
(and disjunction) has one non-flat argument (see again Fig. 2). This would be the case
of exclusive-or too if we had chosen the traditional Boolean type o ( o ( o. We write
if b then t elseu for let c⊗_ = b (t⊗ u) in c, which has type A if t, u : A and b : Bool[A].

In the sequel we will abusively use affine variables of duplicable types non-linearly, e.g.,
if n : Nat[] we write n⊗ n meaning letn′ ⊗ n′′ = dup[n] inn′ ⊗ n′′. Similarly, if a term step
contains a free affine variable a of storable type A, we will abusively consider the result of its
iteration to still have a free variable a : A[] (instead of an exponential variable of type !A),
by implicitly composing with store.

It will be useful to consider for loops, derived from iteration. Given step[i] : A ( A

containing a free affine variable i : Nat[], we define step+ := λ!j ⊗ a.!(succ j1)⊗ (step[j0/i] a) :
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strmToW := λ!x.λm.m !(if x0 then succ1 else succ0) ε : !Bool[]( Nat[]( Str
forall := λw.It(w, λb.ff, λb.b, tt) : Str[]( Bool
Univ := λ!R.λm.forall(strmToW(for k < m from !ff doλs.(Rmk) :: s))

mkDepR := if (Rmi j) thenλb⊗ !x⊗ !y.(xor b x0)⊗ !x1 ⊗ ff :: !y0

elseλb⊗ !x⊗ !y.b⊗ !x1 ⊗ x0 :: !y0

rev := λs.let s′ ⊗_ = It(m,λ!x⊗ !y.(y0 :: !x0)⊗ !y1, !ff ⊗ s) in s′ : !Bool( !Bool
mkFunR := λs.let s′ ⊗_ = for j < m from !ff ⊗ s do

λp⊗ q.let b⊗_⊗ q′ = (for i < m from (ff ⊗ q ⊗ !ff) do mkDepR[m, i, j]) in
(b :: p)⊗ (rev q′)

in rev s′

DTCR := λm.λn.λn′.for k < m from ff do
let !x = It(n′, shift, It(k,mkFunR[m], It(n, λp.ff :: p, tt :: !ff))) in
if x0 thenλb.tt elseλb.b

Figure 3 Encoding universal quantification and deterministic transitive closure.

!Nat[]⊗A( !Nat[]⊗A and, given base : A, we set

for i < n from base do step := It(n, step+, !0⊗ base).

3.2 Expressing logspace computation
The class L of languages decidable by deterministic Turing machines with a logarithmically
bounded work tape has a nice presentation in terms of descriptive complexity, due to
Immerman [15]: it corresponds to first-order logic over totally ordered finite structures
with the addition of a deterministic transitive closure operator. This may be equivalently
presented in recursion-theoretic terms, as we do below.

We consider the following set of basic functions: the constant 0 ∈ N; negation not : B→ B
and conjunction and : B2 → B; the functions leq : N2 → B, sum, times : N3 → B corresponding
to the integer relations m ≤ n, m+ n = k and m · n = k; the function len : W→ N returning
the length of a string and isOne : W × N → B s.t. isOne(w, i) = 1 iff the i-th bit of w is 1.
Now call L the smallest set of functions containing the above basic functions and closed by
composition and the following schemata:

universal quantification: if R : Γ × N2 → B ∈ L, then ∀R : Γ × N → B mapping
(γ,m) 7→ 1 iff R(γ,m, i) = 1 for all i < m is also in L;
deterministic transitive closure: let R : Γ× N2k+1 → B ∈ L. This induces a partial
map R∗ : Γ× Nk+1 → Nk mapping (γ,m, n) 7→ n′ if n′ is unique s.t. R(γ,m, n, n′) = 1,
or undefined otherwise. Then, L also contains DTC(R) : Γ × N2k+1 → B mapping
(γ,m, n, n′) 7→ 1 iff there exist n0, . . . , nl ∈ Nk, with n0 = n, nl = n′ and ni ∈ {0, . . . ,m−
1}k for all 0 < i ≤ l, such that R∗(γ,m, ni) = ni+1 for all 0 ≤ i < l.

The class L corresponds exactly to the predicates W→ B in L.
We have already seen that the basic functions are representable in PL: they are either

in Fig. 2 or were discussed in the previous section. The universal quantification schema
is represented by the higher order term Univ : !(Nat[] ( Nat[] ( Bool[]) ( Nat[] ( Bool
defined in Fig. 3. The idea is the following: given R : N2 → B and m ∈ N, we use iteration
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to build a stream of Booleans whose first m bits contain R(m, 0), . . . , R(m,m− 1); then, we
use strmToW to convert this into a string and we check that it consists entirely of ones.

Note that the variable !R representing the relation on which universal quantification
is applied is exponential because it appears free in the subterm λs.(Rmk) :: s, which is
iterated. This means that, when we want to apply universal quantification to t : Γ (
Nat[] ( Nat[] ( Bool representing a function in L, we will first have to convert it to a
term of type !Γ( !(Nat[]( Nat[]( Bool) and then apply Univ to obtain a term of type
!Γ( Nat[]( Bool. The extra modalities in !Γ may then be removed because all types in Γ
are storable (they are either Nat, Bool or Str). The same remark applies below.

Let us turn to representing DTC(R) with R : Γ → N2k+1 → B. First of all, we will
restrict to the case k = 1. The general case may be treated by encoding a pairing function,
which we omit here for briefness. Second, we observe that the particular determinization R∗
of R used in the definition of DTC is inessential: we may as well define R∗(γ,m, i) to be the
smallest j such that R(γ,m, i, j) = 1, or undefined otherwise. Indeed, the important case is
when R is already deterministic (i.e., a partial function), in which the determinization is
irrelevant. We will adopt the second definition here; it is possible to deal with the first at
the expense of a more complex encoding.

The representation DTCR : Nat[]( Nat[]( Nat[]( Bool is given in Fig. 3, which we
now explain. If R : N3 → B, computing DTC(R)(m,n, n′) amounts to determining whether
there is a path from n to n′ in a graph G whose nodes are [m] := {0, . . . ,m − 1} and s.t.
there is an edge (n, n′) iff R∗(m,n) = n′, so the out-degree of G is at most 1. To do this,
we imagine a token traveling in G, its position being represented by a stream of type !Bool
which is ff everywhere except where the token is. The edges of G may now be seen as a
stream transformation ϕ : !Bool( !Bool. Initially, the stream is tt at position n; applying ϕ
will make the token move, and we may determine the existence of a path by checking the
value at position n′ after at most m applications of ϕ.

The idea behind the definition of ϕ is best explained with an example. Suppose that m = 4
and that the edges of G are {(0, 1), (1, 1), (3, 2)}. Then, ϕ = λ!x.ff :: (xor x0 x1) :: x3 :: ff :: !x4.
This works because the input stream !x contains exactly one bit set to tt, so at most one
of x0, x1 will be tt and exclusive-or is equivalent to disjunction. We cannot use disjunction
because it is not flat. Observe by the way that the simultaneous presence of flat disjunction
and flat duplication (i.e., if dup had type Bool ( Bool ⊗ Bool instead of its present type
Bool[Bool⊗ Bool]( Bool⊗ Bool) would allow this solution to work for arbitrary relations
(i.e., graphs of arbitrary out-degree) and we would be able to compute arbitrary transitive
closures, which is impossible unless L = NL.

The tricky task now is to compute ϕ from R. This is realized by mkFunR : !Bool( !Bool,
which operates by manipulating two streams p and q, the latter being initialized as the
input stream s. For each j ∈ [m], we determine its dependencies, i.e., those i ∈ [m] s.t.
R(m, i, j) = 1. This is done by iterating over all i ∈ [m] the term mkDepR : C ( C (where
C := Bool⊗ !Bool⊗ !Bool): if R(m, i, j) = 0, the i-th element is saved in an auxiliary stream
(it may contain the token, so we must preserve it); otherwise, we xor the current result with
the i-th element and set this element to ff, so that it won’t be considered later (if the token
was there, it has now moved). This yields the determinization of R we defined above. At
the end of this, the result is pushed to p and we start over with the (possibly) modified q (q
also needs to be reversed because traversing it and pushing its elements into an auxiliary
stream reversed their order). When we exit the outer loop, p contains the desired stream
(but, again, in reverse order).

Finally, the term DTCR does nothing but looping through all 0 ≤ k < m to determine
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Figure 4 Cells for building nets, with their typing annotations.
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Figure 5 Cut-elimination steps on nets. On the top, • = ⊗ and ◦ = `, or • = ! and ◦ = ?.

whether, after k iterations of mkFunR, the token has moved from n to n′.

4 Upper Bounds

4.1 Nets and cut-elimination (via stratification)

We will consider here classical simple types, generated by:

A,B ::= o | o⊥ | A⊗B | A`B | !A | ?A.

Linear negation A⊥ is defined as usual via De Morgan.
We use the standard definition of net, which is a labelled graph built by connecting the

cells given in Fig. 4, respecting the orientation given therein. Each cell has a number of
ports depending on the symbol it carries; the incoming are called premises and the outgoing
conclusions. The conclusions which are not premise of any cell are called conclusions of
the net, and so are their types. The rightmost cell in Fig. 4 is called a box; the conclusion
labelled by !A is called its principal port, the other are the auxiliary ports. A box contains a
net π, whose conclusions are in bijection with the conclusions of the box itself.

The size of a net π is the number of its cells. Its height is the maximum height of its
types (as trees). The depth of a cell or port of π is the number of nested boxes it is contained
in. The depth of π is the maximum depth of its cells.

Nets are usually required to satisfy some form of correctness, yielding proof nets. We will
not specify any correctness criterion here, we will rather take “proof net” as a synonym of
sequentializable net, i.e., corresponding to a sequent calculus proof (or to a typing derivation
of PL, which will be our case).

Cut-elimination steps are defined in Fig. 5. Types (and orientations) are omitted because
they can be recovered without ambiguity from Fig. 4. We prove cut-elimination for our nets
using an idea of Gaboardi, Roversi and Vercelli [10] and which resorts to stratification.

We add the formula §A to our classical types and a corresponding cell in nets, with
premise A and conclusion §A, with the following cut-elimination step:
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→§ §

In this context, we call plain a net which contains no § in its types.

I Definition 3 (Indexing, stratified net, level [2]). A weak indexing of a net π whose set of
ports is P is a function I : P −→ Z satisfying the following:

if p, p′ are the conclusions (resp. premises) of an ax (resp. cut) cell of π, then I(p) = I(p′);
if p is the conclusion of a ⊗ or ` cell whose premises are q, q′, then I(p) = I(q) = I(q′);
if p is the conclusion of a ! or ? cell whose left and right premises are l and r, then
I(p) = I(r) = I(l)− 1;
if p is the conclusion of a box containing π and q is the conclusion of π corresponding to
p, then I(p) = I(q)− 1;
if p is the conclusion of a § cell whose premise is q,then I(p) = I(q)− 1.

An indexing for π is a weak indexing I further satisfying that, for any two conclusions p, p′
of π, I(p) = I(p′). A stratified net is a net admitting an indexing.

Note that, if I is a weak indexing, its range rgI is obviously a finite set. The level of I is
`(I) := max rgI −min rgI.

Of course, one may easily verify that cut-elimination preserves stratification [2].
Now, the calculus we introduced in [20] (where parsimony was first introduced) is also

stratified, i.e., its terms may be mapped to stratified proof nets, in a way entirely analogous
to the definitions we will give in Sect. 5.1 below. The polynomial-time normalization result
of [20] was proved using linear explicit substitutions (in the style of [1]), which essentially
amounts to using proof nets. Therefore, we have:

I Proposition 4. Let π be a stratified proof net of size s and level l. Then, π normalizes
while keeping the size of all reducts bounded by O(sk(l)), where k depends only on l.

Proof. The proof is similar to the usual normalization proofs for stratified systems of linear
logic, such as those in [12, 2]. It actually gives a polynomial bound also on the length of the
reduction and holds even in absence of types, although we will not need this. See Lemma 5
of [20]. J

The discovery of [10] is that simply typed nets embed in stratified nets, in a way compatible
with cut-elimination.

I Proposition 5 (Embedding [10]). There is an embedding (−)§ of plain nets into stratified
nets such that, for all π of height h:
1. (π)§ is of level at most h;
2. π → π′ implies (π)§ →∗ (π′)§.

Proof. Part 1 follows from [10, Proposition 1] and part 2 is precisely [10, Proposition 2]. The
only delicate point is that those results are proved for linear logic and parsimonious logic is not
a subsystem of it, because of coabsorption (the other difference is linearity vs. affinity, but it
is inessential). The key observation is that indexings are oblivious to the distinction between
! and ?, so coabsorption behaves exactly as absorption, and coabsorption-free parsimonious
logic is a subsystem of linear logic.

More precisely, given a net π, we may consider the net π− in which all ! and ? are replaced
by a self-dual modality ], with suitable links coming from those for ! and ?, and on which
indexings behave accordingly. This net will be well typed because ] is self-dual. Then, one
may check that π is stratified iff π− is: an indexing of π induces an indexing of π− and vice
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versa. Now, it is not hard to check that, because of the above obliviousness, the embedding
of [10, Proposition 1] works just as well for proof nets of the form π−. J

I Proposition 6. A plain proof net π of size s and height h normalizes while keeping the
size of all reducts bounded by O(k′(h) · sk(h)), where k, k′ depend solely on h.

Proof. A consequence of point 2 of Proposition 5 and Proposition 4. The only thing to check
is the size of (π)§. Let n be the maximum number of § cells added under a single axiom;
the number of axioms is bounded by s, so the size of (π)§ is bounded by (n+ 1)s. But n,
in turn, is bounded by h. Finally, what is the level of (π)§? Since § cells are only added to
balance out the presence of exponential cells in π, the level will not exceed the depth of π,
which is also bounded by h. So Proposition 4 gives us the size bound (h+ 1)k(h)sk(h) (k is
monotonic). J

4.2 Geometry of interaction
In the following definition, we use the wildcards • ∈ {⊗,`} and † ∈ {!, ?}.
I Definition 7 (Interaction Abstract Machine). A stack is a finite string over {p, q} ∪ N. We
use S to range over stacks and write α · S for a stack whose first symbol is α. A stack S
matches a formula A if: S = ε and A = o or A = o⊥; S = m ·S′ with m ∈ {p, q}, A = A′ •A′′
and S′ matches one of A′, A′′; S = n · S′ for some n ∈ N, A = †A′ and S′ matches A′.

A box identifier is a finite string over N, ranged over by B. If B = n1 · · ·nk, we define
‖B‖ := max{n1, . . . , nk}.

Given a net π, we define an automaton IAM(π) as follows. Its states are tuples (d, p,B, S),
where d ∈ {↑, ↓} is a direction, p is a port of π, B is a box identifier and S is a stack. Such a
state is admissible if the length of B equals the depth of p and S matches the type of p. The
transition relation  is the smallest such that:
ax: (↑, p, B, ε) (↓, p′, B, ε) whenever p, p′ are the conclusions of an ax cell;
cut: (↓, p, B, S) (↑, p′, B, S) whenever p, p′ are the premises of a cut cell;
•: (↓, p, B, S) (↓, p′, B,m · S) whenever p is the left (resp. right) premise of a • cell and p′

its conclusion, in which case m = p (resp. m = q);
†l: (↓, p, B, S) (↓, p′, B, 0 ·S) whenever p is the left premise of a † cell and p′ its conclusion;
†r: (↓, p, B, n · S) (↓, p′, B, (n+ 1) · S) whenever p is the right premise of a † cell and p′

its conclusion;
†b: (↓, p, n ·B,S) (↓, p′, B, n · S) whenever q is the conclusion of a box containing π and

p is the conclusion of π corresponding to q;
∗: (d′∗, p′, B′, S′)  (d∗, p, B, S) whenever (d, p,B, S)  (d′, p′, B′, S′), with ↑∗:=↓ and
↓∗:=↑.

Observe that the transitions are deterministic and that they preserve admissible states.
We write  π when we want to specify that the transition relation is that of IAM(π) (as

opposed to that induced by a different net).
A sequence of transitions s ∗ s′ of IAM(π) is maximal if s is admissible and the ports

of s and s′ are conclusions of π (not necessarily distinct). In that case, we write s max s′.

The following is a standard property of the GoI. It tells us that IAM(π) behaves identically
if we put π inside a box.

I Lemma 8. Let p, p′ be conclusions. Then, (↑, p, B, S)  ∗ (↓, p′, B′, S′) implies B′ = B

and (↑, p, B0, S) ∗ (↓, p′, B0, S
′) for all B0.

Proof. Standard. J
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Note that cut-elimination steps preserve the number and ordering of conclusions. Hence,
in the following, when π → π′, we implicitly identify the conclusions of π′ with those of π.

I Proposition 9 (Soundness of the GoI). Let π be a net and let π → π′. Then,  max
π′ = max

π .

Proof. The multiplicative steps are completely standard and pose no problem, so we assume
that the cut-elimination step applied is exponential.

Let s  max
π s′. We need to show that s  max

π′ s′. We say that the sequence crosses
the left hand side of the rule if it can be decomposed into s ∗π s1  ∗π s2  ∗π s

′ such that
the ports p1, p2 (not necessarily distinct) of the states s1, s2 belong to the interface of the
left hand side of the rule. We will show that each crossing s1  ∗π s2 induces a sequence
s1  ∗π′ s2. This is enough to conclude, because the segments which are not crossings also
exist in π′ for trivial reasons (they concern subnets in which π′ is identical to π).

We refer to Fig. 5, with the content of the box being renamed to ρ (since π is the proof
net being reduced). Let us fix some notation. In the left hand side, we call a1, . . . , an
the auxiliary ports and a∗ the principal port of the box, and b1, . . . , bn, b∗ the associated
conclusions of ρ; and q, q′, r the left and right premise and the conclusion, respectively, of
the ? cell. In the right hand side, we call b′1, . . . , b′n, b′∗ the conclusions of the copy of ρ which
is outside the box, while the other copy still has conclusions bi; the auxiliary ports of the
box are a′1, . . . , a′n; the ports at the interface, as well as the principal port, are called as in
the left hand side. We have three cases:
1. p1, p2 ∈ {q, q′};
2. p1, p2 ∈ {a1, . . . , an};
3. p1 ∈ {q, q′} and p2 ∈ {a1, . . . , an}.
Actually, case 3 has a symmetric version with the roles of p1, p2 exchanged, but one reduces
to the other thanks to the reversibility of transitions.

Case 1 works also in full linear logic. It is easy to see that we must have p1 = p2 and
that everything goes well.

For case 2, let s1 = (↑, ai, B, n · S). Then, we have s1  π (↑, bi, n · B,S)  ∗ρ (↓
, bj , n · B,S′)  π (↓, aj , B, n · S′) = s2. In π′, ai becomes the conclusion of a ? link,
so we have two cases: either n = 0, and then s1  π′ (↑, b′i, B, S)  ∗ρ (↓, b′j , B, S′)  π′ (↓
, aj , B, 0·S′) = s2; or n > 0, and then s1  π′ (↑, a′i, B, (n−1)·S) π′ (↑, bi, (n−1)·B,S) ∗ρ
(↓, bj , (n− 1) ·B,S′) π′ (↓, a′j , B, (n− 1) · S′) π′ (↓, aj , B, n · S′) = s2. In both cases we
used Lemma 8.

For case 3, suppose p1 = q. We have s1 = (↓, q, B, S) π (↓, r, B, 0 · S) π (↑, a∗, B, 0 ·
S)  π (↑, b∗, 0 · B,S)  ∗ρ (↓, bi, 0 · B,S′)  π (↓, ai, B, 0 · S′) = s2. In π′, we have s1  π′

(↑, a′∗, B, S)  ∗ρ (↓, b′i, B, S′)  π′ (↓, ai, B, 0 · S′) = s2. Suppose now p1 = q′. Then,
s1 = (↓, q′, B, n·S) π (↓, r, B, (n+1)·S) π (↑, a∗, B, (n+1)·S) π (↑, b∗, (n+1)·B,S) ∗ρ
(↓, bi, (n+1) ·B,S′) π (↓, ai, B, (n+1) ·S′) = s2. In π′, we have s1  π′ (↑, a∗, B, n ·S) π′

(↑, b∗, n · B,S)  ∗ρ (↓, bi, n · B,S′)  π′ (↓, a′i, B, n · S′)  π′ (↓, ai, B, (n+ 1) · S′) = s2. We
used again Lemma 8.

The above shows that  max
π ⊆  max

π′ . The converse is entirely analogous. J

I Lemma 10. Let π be a proof net with no occurrence of ! in its conclusions, of size s and
height h, let p0 be a conclusion of π of type A containing no exponential modality and let
(↑, p0, ε, S0) ∗ (d, p1, B1, S1). Then, ‖B1‖ = O(k′(h) · sk(h)).

Proof. Before starting the proof, let us clarify on the restriction on A: we need it so that we
have no problem in eliminating all cuts, similarly to Proposition 11 below.
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When visiting the ports of π via the execution of IAM(π), we may visit several times
the same port. It is well known (cf. [5]) that the box identifier tells us which “copy” of the
current port we are visiting (whence the name). For example, a box identifier of the form
3 · 0 · 1 tells us that π contains three nested boxes B1 ⊆ B2 ⊆ B3 and that we are now in copy
number 3 of B1, which is inside copy number 0 of B2, which is inside copy number 1 of B3
(in the usual GoI, box identifiers are more complex, in our nets they take this simple form).
Therefore, in order to bound the integers appearing in box identifiers, it is enough to bound
the number of times each box will be duplicated by an exponential rule while reducing π to
its normal form. But this is precisely what is given by Proposition 6. J

5 From Simply Typed Terms to Logspace Algorithms

5.1 Translating the calculus into nets
Simple intuitionistic types are mapped to classical types in the usual way: LoM := o; LA(
BM := LAM⊥ ` LBM; LA⊗BM := LAM⊗ LBM; and L!AM := !LAM.

Given a type derivation of Γ; ∆ ` t : A, we associate with it a net of conclusions
?LΓM⊥, L∆M⊥, LAM. The definition is by induction on the last rule of the type derivation.
The multiplicative cases are standard; η-expansion nets, defined as usual, are employed to
translate the ax rule. The exponential rules (except !E, which is just a cut) are given below:

L!uM :=
. . .

!

LuM
a

x

!

LtM LuM

Ltx++[x0/a]M :=

LtM

?
xa

x

Lt :: uM :=

To avoid cluttering the pictures, we only drew the conclusions corresponding to those types in
the context which play a role in the typing rules and we marked them with the corresponding
variable. Also, types are omitted as they may be inferred from Fig. 1. In the following, we
will abusively denote by LtM the translation of a typing derivation of a term t.

The cut-elimination rules we considered are not enough to simulate reduction in the
calculus. To obtain something intelligible, we must add garbage collection, i.e., elimination
of cuts on w cells. We define

. . .
π w

→
w w
. . .

as soon as π = LtM for some term t.

I Proposition 11. Let Γ; ∆ ` t : A contain no positive (resp. negative) occurrence of ! in
A (resp. Γ) and let t′ be the normal form of t. Then, LtM →∗ Lt′M (possibly with garbage
collection steps).

Proof. The fact that cut-elimination in proof nets simulates reduction in the λ-calculus is
standard, as is our translation. The type restriction here is necessary because, for conciseness,
we omitted the rules reducing cuts on the auxiliary ports of boxes. J

We may forget about garbage collection steps, because our real interest is the following:

I Corollary 12. Let Γ; ∆ ` t : A and t′ be as in Proposition 11 and let s max
Lt′M s′. Then, we

also have s max
LtM s′.
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Proof. We know that LtM →∗ Lt′M by possibly using garbage collection steps. Now, it is a
standard and easy fact (see for instance [5]) that these may always be postponed, i.e., we
have a net π such that LtM→∗ π →∗gc Lt′M, where →∗gc denotes a reduction sequence consisting
entirely of garbage collection steps while the first sequence contains none. But garbage
collection does not alter maximal GoI transition sequences, because it substitutes “dead
ends”, i.e., subnets which no maximal transition sequence may use, with shorter dead ends.
Therefore, we already have s max

π s′ and we may conclude by Proposition 9. J

5.2 Synthesis of logspace algorithms
We are at last ready to prove the inclusion PL ⊆ L. Let t : Str[A] ( Bool. We have to
synthesize a deterministic logspace algorithm which, on input w ∈ W, decides whether
t w →∗ tt. In the following, every dependency (or lack thereof) is expressed w.r.t. |w|.

By looking at the net translation of the Boolean tt and using Corollary 12, we know that
the above problem is equivalent to determining whether (↑, p, ε, pp) max

π (↓, p, ε, qp), where
p is the only conclusion of the net π := Lt wM. As observed in the introduction, the size of π
is O(|w|): LtM is constant and the size of LwM is c(|w|+ 1) + 2|w|+ 4, where c is a constant
depending on A (it is the size of the η-expansion of A⊥, A). By Lemma 10, the greatest
integer that will ever appear in the B stack is bounded by k′(h)sk(h), where s and h are
the size and height of π, respectively. This is polynomial because h is constant (it depends
only on A). The depth of π is also constant: it is the maximum between the depth of LtM
(constant) and the depth of LwM (also constant, equal to the nesting of exponentials in A).
Therefore, by the space bound given in the introduction, we may seemingly conclude.

There is however a subtlety: while we may assume LtM to be wired into our algorithm, we
still need to build LwM from w. Actually, instead of building the net, it will be enough to
predict the behavior of IAM(LwM). In fact, the only conclusion of π is a conclusion of LtM, so
evaluation may start independently of w. At some point, the simulation of the automaton
will reach (after crossing a cut at depth 0) a state of the form (↑, q, ε, S), with q being where
the conclusion of LwM should be. Our algorithm will then compute a stack S1, according to
the following cases:
1. S = q · q · q ·S′: the automaton is asking for the first bit of w; if this is 1, S1 := q · p · 0 ·S′;

if this is 0, S1 := p · 0 · S′;
2. S = q·q·p·S′: the automaton is asking for the last bit of w; if this is 1, S1 := q·p·(n1−1)·S′,

where n1 is the number of 1’s in w; if this is 0, S1 := p · (n0 − 1) · S′, where n0 is the
number of 0’s in w;

3. S = q · p ·n ·m ·S′: the automaton is asking for the value of the neighbor of the (n+ 1)-th
bit of w whose value is 1, e.g., if w = 001101 and n = 1, the “second 1” is 001101, its left
neighbor is 1, which is the “first 1”, and its right neighbor is 0, which is the “third 0”). A
request for the right (resp. left) neighbor corresponds to m = p (resp. m = q). If there
is no “(n+ 1)-th 1”, the algorithm terminates immediately with a negative answer (the
transition sequence sought in IAM(π) does not exist). Otherwise, let b be the value of
the requested neighbor, and let n′ be its position (as the “(n′ + 1)-th 1 or 0”). If b = 1,
S1 := q · p · n′ · S′; if b = 0 and this is the m-th zero of w, S1 := p · n′ · S′;

4. S = p ·n ·m ·S′: the automaton is asking for the neighbor of the (n+ 1)-th bit of w whose
value is 0. The same procedure as above is applied, with the roles of 0 and 1 reversed.

After computing S1, the algorithm resumes the simulation of IAM(π) from the state (↓,
q, ε, S1).

To understand where the four cases above come from, it is enough to look at the type
of LwM, namely LStr[A]M = ?(A ⊗ A⊥) ` ?(A ⊗ A⊥) ` A⊥ ` A, which is composed of four
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subformulas combined by `’s. The stack S must match that type; the cases correspond to the
four subformulas, from right to left. The last two cases, which are similar, correspond both
to ?(A⊗A⊥); the integer and the constant m in the stack are there to match this formula.
The stack S′ matches A, and is returned unchanged because in LwM there are η-expansions of
that type, acting as the identity on stacks.

The remaining details may be understood by looking at how the bits of w are represented
in LwM, but this is not really essential. What is important is to observe that predicting the
behavior of IAM(LwM) only requires inspecting w and updating counters bounded by |w|,
which is all doable in logarithmic space.

6 Discussion and Perspectives

As mentioned in the introduction, we believe that our system PL gives the simplest functional
characterization of L currently known. We also want to stress that parsimony offers a truly
novel approach to applying linear logic to ICC, which is not just a variant of existing “light
logics” (such as bounded, light or soft linear logic) or of systems such as those of [13, 14].
The most prominent difference with respect to “light logics” is the absence of stratification
or other structural principles enforcing bounded-time cut-elimination: as mentioned above,
the untyped parsimonious λ-calculus is Turing-complete, whereas light λ-calculi normalize
with the same runtime independently of types. This is because parsimony is not about the
global complexity of normalization but the local complexity of single reduction steps, via the
notion of continuous linear approximations originally introduced in [19]. This allows dealing
with non-uniform computation [20, 21], a perspective not offered by previous work on ICC.

If we add to PL the constant ⊥ (typable with all types), we obtain finitary terms as
terms whose boxes are all of the form !⊥. Essentially, these are purely multiplicative affine
terms, or multiplicative proof nets: their size bounds the number of steps to normal form
and they may be related to Boolean circuits [26]. A parsimonious term t induces a family of
finitary approximations (btcn)n∈N: btcn is defined by taking t and truncating all the streams
appearing in it to length n (“truncating” means replacing the tail of the stream with !⊥). We
know from [19] that reduction is continuous w.r.t. these approximations. Parsimony refines
this by giving a polynomial “modulus of continuity” [20]: if t w →∗ b with b a Boolean value,
then there exists m polynomial in |w| s.t. btcm w →∗ b, i.e., a polynomial-size approximation
of t is sufficient to compute the result.

Now, an arbitrary family of simply-typed finitary terms (un)n∈N : Str[]( Bool decides a
language L in the same sense as a family of circuits. It is shown in [21] that, if the size of un
is polynomial in n, then L ∈ L/poly (and conversely). If the un happen to be approximations
of a generic PL term t : Str[]( Bool, the family is uniform, and indeed we proved here that
L ∈ L. But how uniform is it? We can show that it is at least logspace-uniform, but we
suspect the uniformity to be stronger (e.g. UE-uniform) and plan to investigate further on
this.

Another interesting research direction is to consider second-order quantification, i.e.,
parsimonious system F. In [21], it is shown that linear polymorphism (i.e., comprehension
restricted to !-free formulas) yields P/poly (non-uniform polynomial time). In the uniform
case, we should of course obtain P, whereas we conjecture that the full parsimonious system
F captures exactly primitive recursion.
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We study the computational problem of checking whether a logical sentence is true in a finite
abelian group. We prove that model checking first-order sentences on finite abelian groups is
fixed-parameter tractable, when parameterized by the size of the sentence. We also prove that
model checking monadic second-order sentences on finite abelian groups finitely presented by
integer matrices is not fixed-parameter tractable (under standard assumptions in parameterized
complexity).
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1 Introduction

The model checking problem for first-order logic is the problem of deciding whether a
given first-order sentence is true in a given finite structure; it encompasses a wide range of
fundamental combinatorial problems. The problem is trivially decidable in O(nk) time, where
n is the size of the structure and k is the size of the sentence, but it is not polynomial-time
decidable or even fixed-parameter tractable when parameterized by k (under complexity
assumptions in classical and parameterized complexity, respectively).

Restrictions of the model checking problem to fixed classes of structures have been
intensively investigated from the perspective of parameterized algorithms and complexity.
Starting from seminal work by Courcelle [4] and Seese [18], structural properties of graphs
sufficient for fixed-parameter tractability of model checking have been identified, culminating
in the recent result by Grohe, Kreutzer, and Siebertz that model checking first-order logic
on classes of nowhere dense graphs is fixed-parameter tractable [10]. On graph classes
closed under subgraphs the result is known to be tight; at the same time, there are classes
of somewhere dense graphs (not closed under subgraphs) with fixed parameter tractable
first-order (and even monadic second-order) logic model checking; the prominent examples
are graph classes of bounded clique-width solved by Courcelle, Makowsky, and Rotics [5].

In contrast to its mature understanding on graphs, the model checking problem has been
very little investigated on classes of structures characterized by mathematical properties,
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42 First-Order Queries on Finite Abelian Groups

such as ordered structures or algebraic structures [9]. Recent work has redressed the former,
ordered case [1, 2, 8], but hitherto little has been done in the latter, algebraic case.

Finite groups are fundamental in mathematics and computer science, and are perhaps
the most prominent candidate to propose an investigation in this domain. Computational
problems on finite groups are important and challenging. The notorious group isomorphism
problem has long been known to be solvable in quasipolynomial time; it remains a huge open
problem whether this can be improved to polynomial [16].

In contrast to general finite groups, the nice structure of finite abelian groups makes their
associated problems simpler, both technically and computationally; isomorphism queries can
be answered in linear time [13]. Yet, abelian groups remain a very important subclass; in
finite model theory they appear in the literature on constraint satisfaction problems since
the seminal work of Feder and Vardi [6].

Contribution. In this paper, we study the problem of model checking first-order logic on
finite abelian groups. Our first contribution is a positive answer to a question posed by
Grohe [9, Problem 8.2].

I Result 1. Model checking first-order sentences on finite abelian groups, parameterized by
the size of the sentence, is fixed-parameter tractable in linear time with a nonelementary
parameter dependence.

The proof is based on a revisiting of Baur-Monk’s theorem on quantifier elimination in
modules [11, Theorem A.1.1], which provides fresh insight into this classical result, both on
important computational aspects of the class of sentences where quantifiers are eliminated,
and on the mechanics the elimination procedure itself.

The theorem provides an effective procedure for reducing a first-order sentence ψ to
a boolean combination of invariant sentences that is equivalent to ψ on abelian groups;
formally, invariant sentences are first-order sentences, in the prefix class Σ2, of the form

∃x1 . . . ∃xk(
∧

1≤i≤k

φ1(xi) ∧
∧

1≤i<j≤k

¬φ2(xi − xj))

where φ1 = ∃y1 . . . ∃yl

∧
i αi and φ2 = ∃z1 . . . ∃zm

∧
j βj are primitive positive formulas in

one free variable (and k, l, and m grow with ψ).
It is unclear whether invariant sentences can be model checked in polynomial time on

finite abelian groups;1 if true, this would immediately imply a fixed-parameter tractable
algorithm for model checking first-order logic on finite abelian groups. However, invariant
sentences express bounds on the index of primitively positively definable subgroups (of an
abelian group) into each other; for instance, the example above states that the index of the
subgroup defined by φ1 ∧ φ2 in the subgroup defined by φ1 is at least k. Therefore, if the
underlying (abelian) group is finite, by Lagrange’s theorem checking an invariant sentence
reduces to computing the ratio between the orders of φ1 and φ1 ∧ φ2, which is in turn the
problem of counting the number of elements satisfying a primitive positive formula in one
free variable in a finite abelian group.

The latter is feasible in polynomial time, and indeed in two ways: either by reducing to a
linear number of calls to the algorithm by Bulatov and Dalmau for constraint satisfaction

1 Owing to Szmielew [20], we can even assume l = m = 1. In this case, we can eliminate y1 and z1 by
instantiating on all elements in the target structure, and then reduce to (a disjunction of) existentially
closed conjunctions of equalities and inequalities. But this syntactic form is readily verified to be
computationally hard in general.
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problems on Maltsev constraints [3]; or, more directly, by reducing to a quadratic check of a
formula in 2-variable logic (that is, built using only two variable symbols) using algebraic
techniques.

We conclude the commentary of our first result remarking that the actual implementation
of the elimination procedure, described in Section 4, is technically nontrivial, and is explicit
enough to enlighten an upper bound (albeit a nonelementary one) on its complexity (which
remains fairly hidden in the rather concise presentations of Baur-Monk elimination available
in the literature).

In a quest to provide a measure of tightness for our first result, we investigated the problem
of model checking monadic second-order logic on finite abelian groups, yet another question
posed by Grohe [9]. Unfortunately we cannot answer this question, but at least we can prove
the following.

I Result 2. Model checking monadic second-order sentences on succinctly presented finite
abelian groups, parameterized by the size of the sentence, is not fixed-parameter tractable
(unless W[1] ⊆ FPT).

In this setup, the group is not given as usual by its multiplication table (whose size is
quadratic in the order of the group), but instead it is given by what we call a succinct
presentation. This is a finite presentation in the usual sense [17], encoded by an integer
matrix whose entries are encoded in binary as it is customary, for instance, in computational
group theory and computer algebra systems. Roughly, a finite presentation is a formula
of size O(log n) capable of representing a group of size n; in succinct presentations, such a
representation power is already attained by formulas of size O(log log n).

It is clear that checking formulas on structures represented succinctly is, in principle,
harder. Indeed, we establish our second result by giving a fixed-parameter tractable reduction
from the clique problem (parameterized by the size of the clique) to the problem of model
checking monadic second-order sentences on succinctly presented finite abelian groups
(parameterized by the size of the sentence).

The idea of the reduction is as follows. By the fundamental theorem [17], every finite
abelian group admits a canonical decomposition as a direct sum of prime power order cyclic
groups. Now, each vertex of the given graph is associated to a prime number and each
edge to a positive integer; and the finite abelian group derived from the graph has a direct
summand for each edge leaving each vertex (hence the direct summands are twice as much
as the edges), whose prime power order is equal to the prime associated to the vertex raised
to the positive integer associated to the edge (this group has a succinct presentation of linear
size).

Then the key technical observation is that, despite monadic second-order logic cannot
express that two sets have the same size, it can indeed express that two subsets of two cyclic
subgroups of a group have the same size. Building on this, we can express by monadic
second-order formulas that two direct summands of the group have the same base, or the
same exponent, and therefore easily reduce a clique query on the given graph to an equivalent
monadic second-order query (only depending on the size of the clique) on the derived group.

Organization. The paper is organized as follows. In Section 2, we prepare terminology
and notation. In Section 3, we establish the crucial lemmas in preparation of the result
on first-order logic, presented in Section 4. In Section 5, we present the result on monadic
second-order logic.
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44 First-Order Queries on Finite Abelian Groups

2 Preliminaries

We recall some basic terminology and notation on logic, groups, and complexity, and refer
the reader to any standard textbook for further details [17, 7].

For n ≥ 1 integer, we let [n] denote {1, . . . , n}.

Logical Formulas. Throughout the paper, we work on the vocabulary γ = {+,−, 0}, where
+ is a binary operation symbol, − is a unary operation symbol, and 0 is a constant symbol.
An atom has the form t = s where t and s are terms built using the operation symbols in γ.
We freely use the shortcut nx for the term x+ · · ·+ x if n > 0, or the term −(x+ · · ·+ x) if
n < 0, where x occurs n times; we also write x− y instead of x+ (−y). A literal is an atom
or a negated atom. For every set {x1, . . . , xl} of variables, we let FO(x1, . . . , xl) denote the
class of all first-order formulas (with equality) built over γ and having free variables among
x1, . . . , xl. We let FO denote the class of all first-order sentences (with equality) built over
γ. A first-order formula in FO(x1, . . . , xl) is primitive positive if it is built from atoms using
conjunction (∧) and existential quantification (∃). We let PP(x1, . . . , xl) denote the class of
all primitive positive formulas in FO(x1, . . . , xl), and PP denote the class of all primitive
positive sentences in FO. Similarly, for every set {X1, . . . , Xm} of set variables and every
set {x1, . . . , xl} of individual variables, we letMSO(X1, . . . , Xm, x1, . . . , xl) denote the class
of all monadic second-order formulas (with equality) built over γ and having free variables
among X1, . . . , Xm, x1, . . . , xl. We letMSO denote the class of all monadic second-order
sentences (with equality) built over γ. We freely use standard shortcuts, for instance X ⊆ Y
instead of (∀x)(x ∈ X → x ∈ Y ), et cetera, and occasionally write φ1

...
φn


instead of (φ1 ∧ · · · ∧ φn).

If A is a structure and ψ(X1, . . . , Xm, x1, . . . , xl) is a formula, both on the same vocabulary,
and f is an assignment of X1, . . . , Xm in P(A) and x1, . . . , xl in A, we write A, f |= ψ if ψ is
true in A under the assignment f . We also liberally write A |= ψ(A1, . . . , Am, a1, . . . , al) to
indicate that ψ is true in A under the assignment sending Xi to Ai ∈ P(A) and xi to ai ∈ A.
Moreover, we write ψ(X1, . . . , Xm, x1, . . . , xl)A, or ψA in short, to denote the set of all tuples
((A1, . . . , Am), (a1, . . . , al)) in P(A)m ×Al such that A |= ψ(A1, . . . , Am, a1, . . . , al).

Group Theory. We view a group as a structure G = (G,+G,−G, 0G) on vocabulary γ where
+G is an operation satisfying the group axioms, 0G denotes its identity element, and −Gg

denotes the inverse element of g ∈ G. The group is finite if its order, |G|, is finite.
Let G be a group. A nonempty subset S ⊆ G is (the universe of) a subgroup S of G if

0G ∈ S, −Gs ∈ S for all s ∈ S, and s+G s′ ∈ S for all s, s′ ∈ S. It is known that S ⊆ G is a
subgroup of G if and only if S is nonempty and s −G s′ ∈ S for all s, s′ ∈ S; in the finite,
S ⊆ G is a subgroup of G if and only if S is nonempty and s+G s′ ∈ S for all s, s′ ∈ S.

Let G be a group, let S be a subgroup of G, and let g ∈ G. The (right) coset of S in G
with respect to g, denoted by S + g, is the set {s+G g : s ∈ S}. It is known that the cosets
of S in G are either identical or disjoint, and all have the same size (equal to the order of S,
as S is itself a coset). Hence, the set of all cosets of S in G forms a partition of G. Consider
the case where G is finite. Then, by Lagrange’s theorem, the order of S divides the order of
G, and |G|/|S| is the number of cosets of S partitioning G, known as the index of S in G.
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A group G is abelian if the operation +G is commutative. We let AGfin denote the class
of finite abelian groups. Let Z(p, e) denote the cyclic group of order pe (or equivalently
the additive group modulo pe, that is {0, 1, . . . , pe − 1} equipped with addition modulo pe),
where p is a prime number and e a positive integer. Every finite abelian group is isomorphic
to a direct sum of prime power order cyclic groups, called primary decomposition,

Z(p1, e1,1)⊕ · · · ⊕ Z(p1, e1,n1)⊕ · · · ⊕ Z(pm, em,1)⊕ · · · ⊕ Z(pm, em,nm
),

where the pi are prime numbers and the exponents ei,j are positive integers uniquely
determined by the isomorphism type of the group.

A succinct presentation of an abelian group is a finite presentation of an abelian group
encoded by an integer matrix, whose entries are encoded in binary, as customary in com-
putational group theory. The abelian group finitely presented by the m× n integer matrix
A ∈ Zm×n is the abelian group generated by the n generators x1, . . . , xn, subject to the
m relations ai,1x1 + . . .+ ai,nxn = 0 for i ∈ [m]. Intuitively, a binary (instead of a unary)
encoding for the integer entries of the matrix corresponds to encode a term ax in size
logarithmic (instead of linear) in the absolute value of a, which motivates our terminology.
We let AGspfin denote the class of all succinctly presented finite abelian groups.

Model Checking. We study the parameterized complexity of the following two computa-
tional problems. First, the problem of model checking first-order logic on finite abelian
groups, in symbols MC(AGfin,FO), that is the problem of deciding, given A ∈ AGfin and
ψ ∈ FO, whether A |= ψ. Second, the problem of model checking monadic second-order
logic on succinctly presented finite abelian groups, in symbols MC(AGspfin,MSO), that is
the problem of deciding, given a succinct presentation A ∈ Zm×n of a finite abelian group
A and a sentence ψ ∈MSO, whether A |= ψ. We regard both problems as parameterized
problems, where instance (A, ψ) is parameterized by the size of ψ.

3 Basic Facts

In this section we collect some crucial facts about the combinatorics of cosets in finite groups
and about primitive positive logic over abelian groups.

We start mining, from the proof of Baur-Monk quantifier elimination theorem [11,
Theorem A.1.1], a nice combinatorial property of cosets in finite groups. Roughly, in a finite
group, the size of a union of cosets equals the size of the corresponding union of subgroups,
hence computing the size of a union of cosets reduces to an elementary counting problem on
the corresponding subgroups.

I Lemma 1. Let A be a finite group. Let G and Hi (i ∈ I) be subgroups of A. Let C be a
coset of G in A and let Di be a coset of Hi in A (i ∈ I). Then C ⊆

⋃
i∈I Di if and only if

0 =
∑

J

(−1)|J|
|G ∩

⋂
i∈J Hi|

|G ∩
⋂

i∈I Hi|

where J ranges over all subsets of I such that C ∩
⋂

i∈J Di 6= ∅.

Proof. Let N denote the subgroup of A with universe N = G ∩
⋂

i∈I Hi. Let C/N =
{N + c : c ∈ C}. In words, C/N is the set of (right) cosets of N in A with respect to elements
in C ⊆ A. Similarly, let Di/N = {N + d : d ∈ Di}, i ∈ I.
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46 First-Order Queries on Finite Abelian Groups

Since C is a coset of G in A, and N is a subgroup of G, C is a (disjoint) union of cosets
of N in A. Similarly, Di is a (disjoint) union of cosets of N in A (i ∈ I), and hence

⋃
i∈I Di

is a (disjoint) union of cosets of N in A. Therefore, C ⊆
⋃

i∈I Di if and only if

C/N ⊆
⋃
i∈I

Di/N .

Since A is finite, C/N and Di/N for all i ∈ I are finite. By elementary combinatorics, if
B,B1, . . . , Bn are finite sets, then B ⊆

⋃
i∈[n]Bi if and only if 0 =

∑
I⊆[n](−1)|I||B∩

⋂
i∈I Bi|

[12, Proposition 3.2]. Hence, C/N ⊆
⋃

i∈I Di/N if and only if

0 =
∑
J⊆I

(−1)|J||C/N ∩
⋂
i∈J

Di/N |.

Moreover, C/N ∩
⋂

i∈J Di/N = (C ∩
⋂

i∈J Di)/N for all J ⊆ I, hence we reduce to

0 =
∑
J⊆I

(−1)|J||(C ∩
⋂
i∈J

Di)/N |.

If C ∩
⋂

i∈J Di = ∅ for some J ⊆ I, then the corresponding term does not contribute to
the sum. Otherwise, |(C ∩

⋂
i∈J Di)/N | = |(G ∩

⋂
i∈J Hi)/N |, and by Lagrange’s theorem

|(G ∩
⋂

i∈J Hi)/N | = |G ∩
⋂

i∈J Hi|/|N |, thus reducing to

0 =
∑

J

(−1)|J|
|G ∩

⋂
i∈J Hi|

|G ∩
⋂

i∈I Hi|

where J ranges over all subsets of I such that C ∩
⋂

i∈J Di 6= ∅. J

We now make a few observations about primitive positive logic on abelian groups, starting
from the folklore fact that, on abelian groups, primitive positive formulas in one free variable
(respectively, with parameters) define subgroups (respectively, cosets).

I Proposition 1. Let A be an abelian group.
Let π ∈ PP(x). Then πA is a subgroup of A.
Let π ∈ PP(x1, . . . , xl) and f : {x1, . . . , xl−1} → A. If πA,f 6= ∅, then πA,f is a coset in
A of the subgroup π(0, . . . , 0, xl)A of A.

We conclude the section describing an algorithm that, given a primitive positive formula
in one free variable, returns a primitive positive formula, equivalent on abelian groups,
written using only two distinct variable symbols. The algorithm is based on the computation
of the Smith normal form of an integer matrix [15]; this algebraic technique is known to
improve the syntactic form of primitive positive formulas [11, Lemma A.2.1], but its link
with 2-variable logic is firstly and fruitfully observed here.

I Proposition 2. There exists a single exponential time algorithm that, given a formula
π ∈ PP(x), returns a formula ρ ∈ PP(x) of the form

ρ =
∧

i

∃y(cix = diy), (1)

ci, di ∈ Z, such that ρ is equivalent to π on abelian groups.
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Proof. Note that π ∈ PP(x) is equivalent on abelian groups to

∃z1 . . . ∃zm

∧
i∈[n]

(rix =
∑

j∈[m]

sijzj)

where ri, sij ∈ Z, which can be displayed in matrix notation as

∃z1 . . . ∃zm

R ( x ) = S

 z1
...
zm


 (2)

where R ∈ Zn×1 and S ∈ Zn×m. By Smith’s theorem, there exist invertible (square) matrices
X and Y of orders m and n respectively such that XSY is diagonal. Therefore, upon
replacing R by XR = C, S by XSY = D, and (z1, . . . , zm)T by Y −1(z1, . . . , zm)T , we have
that (2) is equivalent on abelian groups to

∃w1 . . . ∃wm

C ( x ) = D

 w1
...
wm


 (3)

where C ∈ Zn×1 and D ∈ Zn×m is diagonal.
Putting (3) back in formula notation and proceeding by logical principles, we have the

following chain of equivalences on abelian groups, leading to the desired form:

π ≡ ∃z1 . . . ∃zm

∧
i∈[n]

(rix =
∑

j∈[m]

sijzj)

≡ ∃w1 . . . ∃wm

∧
i∈[n]

(cix =
∑

j∈[m]

dijwj)

≡ ∃w1 . . . ∃wm

∧
i∈[n]

(cix = diiwi)

≡
∧

i∈[n]

∃wi(cix = diiwi)

≡
∧

i∈[n]

∃y(cix = diiy).

We conclude showing that ρ is computable in time single exponential in the size of
π. There is an algorithm that computes D, X, and Y in time polynomial in m, n, and
s∗ = maxi∈[m],j∈[n] |sij |; the integer entries in D and X have (absolute) value bounded above
singly exponentially in max{m,n} and log s∗ [19, Proposition 7.20 and Proposition 8.10].
2 Since m, n, and s∗, as well as the entries in R, are bounded above by the size of π, it
follows that the integers entries in C and D are bounded singly exponentially by the size
of π. Hence ρ has size single exponential in the size of π, and is computable in time single
exponential in the size of π. J

The nice algorithmic consequence of Proposition 2 is that we reduce the problem of
computing |πA|, where π is a primitive positive formula on one free variable, to the problem

2 The model of computation is an arithmetic RAM, but the algorithm translates into a polynomial-time
algorithm on a standard RAM.
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of computing |ρA|, where ρ is a formula using only two variables. The latter merely requires
quadratic work in the size of the structure: namely, there exists an algorithm that, given a
finite abelian group A and a primitive positive formula ρ(x) as in (1), computes the size of
ρA = {a ∈ A : A |= ρ(a)} in O(k|A|2) time, where k is the size of ρ.

Alternatively, for primitive positive formulas π(x) on one free variable, it is possible to
show that the problem of determining |πA| is solvable in time polynomial in the size of A
and π by calling |A| times the algorithm by Bulatov and Dalmau for constraint satisfaction
problems on Maltsev constraints [3]. We prefer the elementary approach of Proposition 2, as
for our algorithmic result the exponential increase in size of ρ with respect to π is negligible.

4 First-Order Queries

In this section, we prove that model checking first-order logic on finite abelian groups is
fixed-parameter tractable. Let A be a finite abelian group and let ψ be a first-order sentence
in prenex form,

ψ = Q1x1 . . . Qmxmφ (4)

where the Qi are quantifiers, ∃ or ∀, and φ is a boolean combination of atoms.
We describe the algorithm referring to the pseudocode below (where B denotes a comment,

and � denotes an assignment). The subprocedure FO2(·) on Lines 7 and 10 is the algorithm
in the statement of Proposition 2. The input is a pair (A, ψ), where A is a finite abelian
group and ψ is a first-order sentence specified as above (Line 1).

The algorithm loops on l = m, . . . , 1 and constructs a first-order sentence

ψl−1 = Q1x1 . . . Rl−1xl−1φl−1,

where Rl−1 ∈ {∃,¬∃}, such that A |= ψl−1 if and only if A |= ψ, and φl−1 is a boolean
combination of primitive positive formulas with free variables among x1, . . . , xl−1 (Lines 2-23).
Intuitively, the algorithm computes ψl−1 from ψl by “eliminating” the quantifier on variable
xl (Lines 6-14).

It follows that ψ0 is a boolean combination, denote it by bool(µ1, . . . , µL), of primitive
positive sentences µ1, . . . , µL (Line 24). Moreover, A |= ψ if and only if A |= ψ0. Since each
primitive positive sentence is true in A, it holds that A |= ψ0 if and only if A |= bool(>, . . . ,>),
which is easily checked (Lines 25-26).

ModelCheck(A, ψ)
1 B ψ as in (4)
2 if Qm = ∃ then ψm � Q1x1 . . . Qm−1xm−1∃xmdnf(φ)
3 else ψm � Q1x1 . . . Qm−1xm−1¬∃xmdnf(¬φ)
4 for l = m, . . . , 1
5 B ψl = Q1x1 . . . Ql−1xl−1Rlxl

∨
i∈I(πi ∧

∧
j∈Ji
¬πij) where πi, πij ∈ PP(x1, . . . , xl)

6 forall i ∈ I,M ⊆ Ji, X ⊆ P(M)
7 σi,M � FO2((πi ∧

∧
j∈M πij)(0, . . . , 0, xl))

8 Ci,M � |σA
i,M |

9 forall Y ∈ X
10 ρi,Y � FO2((πi ∧

∧
j∈Y πij)(0, . . . , 0, xl))

11 Ci,Y � |ρAi,Y |
12 if 0 =

∑
Y ∈X(−1)|Y |(Ci,Y /Ci,M ) then θi,M,X � > else θi,M,X � ⊥
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13 θi,M �
∧

X⊆P(M)

(( ∧
Y ∈X ∃xl(πi ∧

∧
j∈Y πij)∧

Y ∈P(M)\X ¬∃xl(πi ∧
∧

j∈Y πij)

)
→ θi,M,X

)

14 φl−1 � ¬
∧

i∈I

∧
M⊆Ji


 ∃xlπi∧

j∈M ∃xlπij∧
j∈Ji\M ¬∃xlπij

→ θi,M


15 B φl−1 boolean combination of primitive positive formulas with x1, . . . , xl−1 free
16 case Ql−1 = ∃, Rl = ∃ :
17 ψl−1 � Q1x1 . . . ∃xl−1dnf(φl−1)
18 case Ql−1 = ∃, Rl = ¬∃ :
19 ψl−1 � Q1x1 . . . ∃xl−1dnf(¬φl−1)
20 case Ql−1 = ∀, Rl = ∃ :
21 ψl−1 � Q1x1 . . .¬∃xl−1dnf(¬φl−1)
22 case Ql−1 = ∀, Rl = ¬∃ :
23 ψl−1 � Q1x1 . . .¬∃xl−1dnf(φl−1)
24 B ψ0 = bool(µ1, . . . , µL) boolean combination of primitive positive sentences
25 if A |= bool(>, . . . ,>) then accept
26 reject

We now prove that the algorithm is correct.

I Lemma 2. Let A be a finite abelian group and ψ be a first-order sentence specified as in
(4). Then A |= ψ if and only if ModelCheck(A, ψ) accepts.

Proof. Let ψ = Q1x1 . . . Qmxmφ, where φ is a boolean combination of atoms. For l ∈
{0, 1, . . . ,m}, let

ψl = Q1x1 . . . Ql−1xl−1Rlxlφ
′
l,

be the formula computed by ModelCheck(A, ψ) either on Line 2 or 3 (l = m), or on
Line 16, 18, 20, or 22 (l < m). Here, Rl ∈ {∃,¬∃}.

By induction on l = m, . . . , 0, we prove that:
(I1) A |= ψ if and only if A |= ψl;
(I2) φ′l =

∨
i∈I(πi ∧

∧
j∈Ji
¬πij), where the πi and πij are primitive positive formulas on

free variables x1, . . . , xl.

It follows that A |= ψ if and only if A |= ψ0. Since ψ0 is a boolean combination of primitive
positive sentences, each true in A, the correctness of the algorithm follows (Lines 24-26). We
now give the inductive argument.

Base Case (l = m). Invariants (I1) and (I2) clearly hold if ψm is set as in Line 2 or 3.
The operator dnf(·), given a boolean combination of atoms, returns a logically equivalent
disjunctive normal form.

Inductive Step (l − 1, l ≤ m). By (I1) and (I2), we have inductively

ψl = Q1x1 . . . Ql−1xl−1Rlxlφ
′
l,

Rl ∈ {∃,¬∃}, such that A |= ψ if and only if A |= ψl. Intuitively, the algorithm constructs
the first-order sentence

ψl−1 = Q1x1 . . . Rl−1xl−1φ
′
l−1,
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satisfying invariants (I1) and (I2), by “eliminating” the quantifier on variable xl in ψl, as
follows.

Consider the case where Ql−1 = Rl = ∃ (Line 16), so that

ψl = Q1x1 . . . ∃xl−1∃xlφ
′
l

= Q1x1 . . . ∃xl−1∃xl

∨
i∈I

(πi ∧
∧

j∈Ji

¬πij)

where the πi and πij are formulas in PP(x1, . . . , xl) by the induction hypothesis on ψl. The
remaining cases (Line 18, Line 20, and Line 22) reduce to this case by handling negations as
described in the pseudocode (Lines 18-23).

For readability, we first introduce the following notation. The operator P(·), given a
finite set, returns its powerset. For i ∈ I, M ⊆ Ji, and X ⊆ P(M) let:

αi,M = ∃xlπi ∧
∧

j∈M

∃xlπij ∧
∧

j∈Ji\M

¬∃xlπij (5)

βi,M,X =
∧

Y ∈X

∃xl(πi ∧
∧

j∈Y

πij) ∧
∧

Y ∈P(M)\X

¬∃xl(πi ∧
∧

j∈Y

πij) (6)

We now claim that,

∃xlφ
′
l = ∃xl

∨
i∈I

(πi ∧
∧

j∈Ji

¬πij) (7)

≡
∨
i∈I

∃xl(πi ∧
∧

j∈Ji

¬πij) (8)

≡ ¬
∧
i∈I

∀xl(πi →
∨

j∈Ji

πij) (9)

≡ ¬
∧
i∈I

∧
M⊆Ji

(αi,M → ∀xl(πi →
∨

j∈M

πij)) (10)

≡A ¬
∧
i∈I

∧
M⊆Ji

(αi,M →
∧

X⊆P(M)

(βi,M,X → θi,M,X)) (11)

= φl−1 (12)

where θi,M,X ∈ {⊥,>}.
Before proving the claim, note that φl−1 in (12) is the formula on Line 14. By the above

chain of equivalences, φl−1 is equivalent in A to ∃xlφ
′
l. Therefore, the formula ψl−1 defined

on Line 17 is equivalent to ψ on A. Hence ψl−1 satisfies invariant (I1). Moreover, since
θi,M,X is either ⊥ or > (Line 12), by inspection of Lines 13 and 14 (or (5) and (6), where we
observe that the variable xl is existentially quantified in each πi and πij), φl−1 is a boolean
combination of formulas in PP(x1, . . . , xl−1). Therefore, the formula ψl−1 defined on Line 17
by taking the disjunctive normal form of φl−1 also satisfies invariant (I2), as desired.

We now prove the claim. The equivalences (8)-(9) hold by logical principles, and the
equivalence (10) is readily verified. It remains to show that (11) holds, which is the crucial
step of the construction. Here, the notation ≡A means that this equivalence is relative to the
structure A (as opposed to the previous equivalences, that are logical equivalences holding
for all structures).

By inspection of (11), it is sufficient to show that for all i ∈ I, M ⊆ Ji, and all
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f : {x1, . . . , xl−1} → A such that A, f |= αi,M , the following are equivalent:

A, f |= ∀xl(πi →
∨

j∈M

πij) (13)

A, f |=
∧

X⊆P(M)

(βi,M,X → θi,M,X) (14)

First we show that (13) is equivalent to a certain combinatorial statement involving
cosets of primitive positive definable subgroups of A, next we show that (14) is equivalent to
A, f |= θi,M,X∗ for a suitably chosen X ∈ P(P(M)), and we conclude showing the equivalence
of the combinatorial statement and A, f |= θi,M,X∗ .

First, since A, f |= αi,M , we have that πA,f
i and πA,f

ij are nonempty for all j ∈M . Hence,
by Proposition 1, πA,f

i is a coset in A of the subgroup πi(0, . . . , 0, xl)A, and πA,f
ij is a coset in

A of the subgroup πij(0, . . . , 0, xl)A for all j ∈M . We therefore have that (13) is equivalent
to

πA,f
i ⊆

⋃
j∈M

πA,f
ij (15)

where πA,f
i and πA,f

ij are the described cosets in A.
Next, observe that there exists exactly one X ⊆ P(M) such that A, f |= βi,M,X . Indeed,

note that P(M) is partially ordered by the inclusion relation. Then the unique choice of
X in P(P(M)) is determined as follows: X contains exactly those Y ∈ P(M) contained in
some Y ′ ∈ P(M) that is maximal with the property that A, f |= ∃xl(πi ∧

∧
j∈Y ′ πij). Let

X∗ denote this unique choice of X in P(P(M)). It follows that (14) is equivalent to

A, f |= θi,M,X∗ (16)

We are now in a position to conclude the argument. By Lemma 1, it holds that (15) is
equivalent to

0 =
∑

Y

(−1)|Y |
|(πi ∧

∧
j∈Y πij)(0, . . . , 0, xl)A|

|(πi ∧
∧

j∈M πij)(0, . . . , 0, xl)A|
(17)

where Y ranges on all subsets of M such that (πi ∧
∧

j∈Y πij)A,f 6= ∅. Since A, f |= βi,M,X∗ ,
it holds that X∗ is exactly the set of all subsets Y of M such that (πi ∧

∧
j∈Y πij)A,f 6= ∅.

Hence (17) is equivalent to

0 =
∑

Y ∈X∗

(−1)|Y |
|(πi ∧

∧
j∈Y πij)(0, . . . , 0, xl)A|

|(πi ∧
∧

j∈M πij)(0, . . . , 0, xl)A|
(18)

By Proposition 2, the subprocedure FO2(·), given a primitive positive formula in one
free variable, returns a primitive positive formula written using only 2 distinct variable
symbols that is equivalent on abelian groups. Then, σi,M on Line 7 is equivalent in A to (πi∧∧

j∈M πij)(0, . . . , 0, xl), and ρi,Y on Line 10 is equivalent in A to (πi ∧
∧

j∈Y πij)(0, . . . , 0, xl).
It follows that, on Line 8 and 11, we have that Ci,M = |(πi ∧

∧
j∈M πij)(0, . . . , 0, xl)A| and

Ci,Y = |(πi ∧
∧

j∈Y πij)(0, . . . , 0, xl)A|. Hence (18) is equivalent to

0 =
∑

Y ∈X∗

(−1)|Y |(Ci,Y /Ci,M ) (19)
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which happens exactly when θi,M,X∗ is settled to > on Line 12, which is in turn equivalent
to (16).

Summarizing, (13) is equivalent to (14), which settles (11), and hence the claim. The
proof is complete. J

We analyze the runtime of the algorithm. We let expi+1
b (·) = expb(expi

b(·)) = bexpi
b(·).

I Lemma 3. Let A be a finite abelian group and ψ be a first-order sentence in prenex form
with m quantifiers. Then ModelCheck(A, ψ) runs in expm+2

2 (O(k)) · |A|2 time, where k is
the size of ψ.

Proof. For l = m, . . . , 1, let

ψl = Q1x1 . . . Ql−1xl−1Rlxl

∨
i∈Il

(πi ∧
∧

j∈Jl,i

¬πij) (20)

where Rl ∈ {∃,¬∃}, and πi and πij are in PP(x1, . . . , xl) for all i ∈ Il and j ∈ Jl,i. Note
that ψl is the formula created on Lines 2-3 and Lines 16-23. For l = m, . . . , 1, we define a set
El ⊆ PP(x1, . . . , xl) as follows

El = {πi, πij : i ∈ Il, j ∈ Jl,i},

and we let Sl be the size of the largest formula in El. We now prove by induction on
l = m, . . . , 1 that

|El| ≤ expm−l
2 (k) (21)

Sl ≤ k
m∏

j=l+1
|Ej | (22)

where as usual the empty product equals 1 and exp0
2(k) = k.

The size of Em is bounded above by the number of atoms in the sentence ψ given in
input and the size of a formula in Em is bounded above by the size of ψ, hence

|Em| ≤ k
Sm ≤ k

For l ≤ m, let |El| = expm−l
2 (k) and Sl = k

∏m
j=l+1 |Ej |. Suffices to show that the

following inequalities hold:

|El−1| ≤ 2|El|

Sl−1 ≤ |El|Sl

Indeed, the formula φl−1 obtained in Line 15 (used to build ψl−1 on Lines 16-23) is a boolean
combination of the primitive positive formulas with free variables among x1, . . . , xl−1 created
on Line 13 and 14 by existentially quantify the variable xl in conjunctions of the form

πi ∧
∧
j∈S

πij

where S is a subset (of the index set) of El. Thus there are at most 2|El| formulas in El−1.
Moreover, by the same token, the size of a formula in El−1 is bounded above by the number
of formulas in El times the size Sl of the largest such formula.
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We now analyze the runtime of the algorithm. Lines 2-3 are feasible in time single
exponential in the size of the input sentence ψ. We claim that, for l = m, . . . , 1, the time
spent on the corresponding iteration of the loop on Lines 4-23 is in O(expm−l+3

2 (k) · |A|2). It
follows that the whole loop on Lines 4-23 is feasible in expm+2

2 (O(k)) · |A|2 time (note that
m ≤ k), and the statement is settled.

We conclude the proof showing that, for l = m, . . . , 1, the corresponding iteration of the
loop on Lines 4-23 is feasible in O(expm−l+3

2 (k) · |A|2) time.
In view of (20), first note the following (i ∈ Il and j ∈ Jl,i):
|Il| ≤ 3|El|, as there are at most 3c clauses on c distinct variables (here, a formula in El

plays the role of a variable);
|Ji,l| ≤ |El|, because Ji,l is a subset (of indices) of formulas in El.

As M ⊆ Ji,l and X ∈ P(P(M)), it follows that the loop on Line 6 is executed at most

|Il| · |P(Ji,l)| · |P(P(Ji,l))| ≤ 3|El| · 2|El| · 22|El|

times which is in O(expm−l+2
2 (k)).

For each iteration, FO2(·) in Line 7 requires time single exponential in the size of the
formula given in input, by Proposition 2; the latter is a formula in El, hence its size is
bounded above by |El+1|Sl+1, in turn in O(|El+1|) by (22). Hence σi,M has size single
exponential in |El+1|. Then Line 8 requires time single exponential in |El+1| and quadratic
in |A|, by the remark following Proposition 2.

Line 9 iterates at most 2|El| times as |X| ≤ |P(M)| ≤ |P(Ji,l)| ≤ 2|El|. Each iteration
requires as above time single exponential in |El+1| and quadratic in |A| on Lines 10 and 11,
again by Proposition 2 and the surrounding discussion.

Line 12 sums at most |X| ≤ 2|El| integer numbers not larger than |A|.
The formula θi,M on Line 13 has size at most |P(P(M))| ≤ 22|El| (the size of the index

set of the outermost conjunction), times |P(M)| ≤ 2|El| (the number of formulas on the left
of the implication symbol in each conjunct), times Sl (the size of the largest such formula,
as they belong in El). Thus θi,M has size at most 22|El|2|El|Sl, which is in O(expm−l+2

2 (k)),
and is computable in the same time.

The formula φl−1 on Line 14 has size at most |Il| ≤ 3|El| times |P(M)| ≤ 2|El| (the
sizes of the index sets of the two outermost conjunctions) times an upper bound on the
size of the conjuncts. Each conjunct has one part on the left and one part on the right of
the implication symbol. The part on the right is θi,M of size O(expm−l+2

2 (k)) by the above
argument. The part on the left has size at most |M | ≤ |El| (the number of formulas on the
left of the implication symbol in each conjunct) times Sl (the size of the largest such formula,
as they belong in El). Hence, each conjunct has size at most O(expm−l+2

2 (k)). Therefore,
φl−1 has size at most O(expm−l+2

2 (k)), and is computable in the same time.
Line 17 (or 19, or 21, or 23) are feasible in time single exponential in the size of the

formula φl−1 on Line 14, hence in O(expm−l+3
2 (k)) time. Summarizing, iteration l is feasible

in O(expm−l+3
2 (k) · |A|2) time. J

As the encoding of A has size quadratic in |A|, we conclude the following.

I Theorem 4. MC(AGfin,FO) is fixed-parameter tractable in linear time (with a nonele-
mentary parameter dependence).

5 Monadic Second-Order Queries

In this section, we prove that model checking monadic second-order logic is not fixed-parameter
tractable on succinctly presented finite abelian groups.
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We proceed in two steps. First, we define a family of monadic second order formulas.
Next, we use these formulas to define a suitable reduction.

In the scope of this section,

A = Z(p1, e1,1)⊕ · · · ⊕ Z(p1, e1,d1)⊕ · · · ⊕ Z(pn, en,1)⊕ . . .⊕ Z(pn, en,dn) (23)

is a finite abelian group, presented by its primary decomposition, where the pi are pairwise
distinct prime numbers, and the ei,j are positive integers.

We now introduce a family of monadic second order formulas, and describe their meaning
in A. First, we identify subgroups of A as follows. Let:

Sg(X)� 0 ∈ X ∧ (∀x, y ∈ X)(x+ y ∈ X)
Sg(X,Y )� X ⊆ Y ∧ Sg(X) ∧ Sg(Y )

The following is readily verified.
A |= Sg(S) if and only if S ⊆ A is (the universe of) a subgroup of A (a nonempty subset
of a finite group is a subgroup if and only if it is closed under the group operation).
A |= Sg(R,S) if and only if R ⊆ S ⊆ A and R and S are (universes of) subgroups R and
S of A. It follows that R is a subgroup of S.

We now identify cyclic groups and their generators in A as follows. Let:

Cycl(X,x)� (∀Y ⊆ X)((0 ∈ Y ∧ (∀y ∈ Y )(y + x ∈ Y ))→ Y = X)
Cycl(X)� (∃x ∈ X)(∀Y )((x ∈ Y ∧ Sg(Y,X))→ Y = X)

I Claim 1. Let S be a subgroup of A with universe S ⊆ A and let g ∈ S. Then A |= Cycl(S, g)
if and only if S is cyclic generated by g.

If S is a subgroup of A with universe S ⊆ A, it follows that A |= Cycl(S) if and only if S
is cyclic. Among cyclic subgroups of A, we identify prime power order cyclic subgroups of A
as follows. Let:

PrPow(X)� (∀Y,Z)((Sg(Y,X) ∧ Sg(Z,X))→ (Y ⊆ Z ∨ Z ⊆ Y ))

I Claim 2. Let S be a nontrivial cyclic subgroup of A with universe S ⊆ A. Then A |=
PrPow(S) if and only if |S| = pe for some prime number p and some positive integer e.

Call the prime power order cyclic subgroups of A that do not have proper prime power
order cyclic supergroups in A prime terms of A. Let PrPowCyclSg(X)� Sg(S) ∧Cycl(S) ∧
PrPow(S) and

PrTerm(X)�

 PrPowCyclSg(X)

(∀Y )
((

PrPowCyclSg(Y )
X ⊆ Y

)
→ Y = X

) 
By the above, it follows immediately that the A |= PrPowCyclSg(S) if and only if S is a

prime power order cyclic subgroup of A, where S ⊆ A. Moreover, for S ⊆ A, it holds that
A |= PrTerm(S) if and only if S is a prime term of A.

We now make a key observation. Despite monadic second order logic cannot express that
two sets have the same size [14, along the lines of Proposition 7.12], indeed it can express
that two subsets of two cyclic subgroups of a group have the same size. The details follow.
Let:

Eq(X,Y ) = (∃Z)
(

(∀x ∈ X)(∃!y ∈ Y )(x+ y ∈ Z)
(∀y ∈ Y )(∃!x ∈ X)(x+ y ∈ Z)

)
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I Claim 3. Let C ⊆ A and D ⊆ A be subsets (of universes) of prime terms of A.3 Then
A |= Eq(C,D) if and only if |C| = |D|.

Proof. For the sake of notation, let T1 and T2 be respectively the first and second term in the
primary decomposition of A, of order l and m respectively (where l and m are prime powers),
and let C and D be subsets of the prime terms of A isomorphic to T1 and T2, respectively.
Then C = {(c1, 0, . . . , 0), . . . , (cl′ , 0, . . . , 0)} and D = {(0, d1, . . . , 0), . . . , (0, dm′ , . . . , 0)},
where {c1, . . . , cl′} ⊆ {0, 1, . . . , l − 1} and {d1, . . . , dm′} ⊆ {0, 1, . . . ,m− 1}.

Assume |C| = |D|, and let b′ : C → D be a bijection. Clearly, b′ is completely
characterized by a bijection b : {c1, . . . , cl′} → {d1, . . . , dm′}; in particular, l′ = m′. Let
f(Z) = {(c1, b(c1), . . . , 0), . . . , (cl′ , b(cl′), . . . , 0)}. We show that

A, f |= (∀x ∈ C)(∃!y ∈ D)(x+ y ∈ Z) ∧ (∀y ∈ D)(∃!x ∈ C)(x+ y ∈ Z).

Let (c, 0, . . . , 0) ∈ C. Then, there exists exactly one d ∈ D such that c+A d ∈ f(Z), namely
d = (c, b(c), . . . , 0). Similarly, let (0, d, . . . , 0) ∈ D. Then, there exists exactly one c ∈ C such
that c+A d ∈ f(Z), namely c = (b−1(d), d, . . . , 0).

Conversely, let B ⊆ A be such that

A |= (∀x ∈ C)(∃!y ∈ D)(x+ y ∈ B) ∧ (∀y ∈ D)(∃!x ∈ C)(x+ y ∈ B). (24)

Then for all c ∈ C, there exists exactly one d ∈ D, such that c+A d ∈ B. Let b : C → D be
the function defined by the above condition, that is b(c) = d if and only if c+A d ∈ B. We
show that b is a bijection.

For injectivity, let c, c′ ∈ C be such that b(c) = b(c′) = d ∈ D. Then, c +A d ∈ B and
c′ +A d ∈ B. By (24), there exists exactly one c′′ ∈ C such that c′′ +A d ∈ B. Hence c = c′.

For surjectivity, let d ∈ D. By (24), there exists c ∈ C such that c+A d ∈ B. Let b(c) = d′.
Then, by definition of b, it holds that c+A d′ ∈ B. Hence, c+A d ∈ B and c+A d′ ∈ B. By
(24), there exists exactly one d′′ ∈ D such that c+A d′′ ∈ B. Hence d = d′. Then b(c) = d,
and b is surjective. J

Let C and D be prime terms of A. We conclude defining formulas that establish whether
the prime power order of C and D have the same base or the same exponent. First, we deal
with the base:

Base(X,Y )�
(

Sg(Y,X) ∧ Y 6= {0}
(∀Z)((Sg(Z, Y ) ∧ Z 6= {0})→ Z = Y )

)

EqBase(X,Y )� (∃X ′, Y ′)

 Base(X,X ′)
Base(Y, Y ′)
Eq(X ′, Y ′)


I Claim 4. Let C ⊆ A be the universe of a prime term C of A, say isomorphic to Z(p, e),
and let B ⊆ C. Then A |= Base(C,B) if and only if B is (the universe of) the subgroup of C
is isomorphic of Z(p).

Claim 3 and Claim 4 imply the following.

I Claim 5. Let C,D ⊆ A such that C and D are distinct prime terms of A, say isomorphic
to Z(p, e) and Z(q, d) respectively. Then A |= EqBase(C,D) if and only if p = q.

3 Along similar lines, the statement can be proved more generally for cyclic subgroups of A whose
intersection is trivial (contains only the identity).
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Finally, we deal with exponents:

Exp(X,Y )� (∀Z)(Sg(Z,X)→ (∃!y ∈ Y )Cycl(Z, y))

EqExp(X,Y )� (∃X ′, Y ′)

 Exp(X,X ′)
Exp(Y, Y ′)
Eq(X ′, Y ′)


Recall that every subgroup of a cyclic subgroup is cyclic. The following is clear.

I Claim 6. Let C ⊆ A such that C is a prime term of A, say isomorphic to Z(p, e), and
let E ⊆ C. Then A |= Exp(C,E) if and only if E contains exactly one generator for each
(necessarily, cyclic) subgroup of C.

Claim 3 and Claim 6 imply the following.

I Claim 7. Let C,D ⊆ A such that C and D are distinct prime terms of A, say isomorphic
to Z(p, e) and Z(q, d) respectively. Then A |= EqExp(C,D) if and only if e = d.

We now describe the reduction. A graph G = (G,EG) is a relational structure on a
binary relation symbol E, where EG ⊆ G2 is symmetric and irreflexive; we liberally view
EG as a subset of 2-element subsets of G. The clique problem, Clique, is to decide, given a
graph G and an integer k ≥ 0, whether G contains a clique on k vertices. We regard Clique
as a parameterized problem, where instance (G, k) is parameterized by k.

We give a fixed-parameter tractable reduction from Clique to MC(AGspfin,MSO). Let
(G, k) be an instance of Clique. Let G = (G,EG), where G = {v1, . . . , vn} and EG =
{e1, . . . , em}. For vi ∈ G, let {fi,1, . . . , fi,di} = {e ∈ EG : vi ∈ e}, and let degree(vi) = di

denote the degree of vi in G. For each i ∈ [n] and j ∈ [di], let m(i, j) ∈ [m] be such that
fi,j = em(i,j).

We construct an instance (A, φ) of MC(AGspfin,MSO), as follows. The succinct pre-
sentation A is a (square) diagonal integer matrix of order

∑
i∈[n] di defined as follows. Let

p1, . . . , pn be the first n prime numbers.

A = diag(pm(1,1)
1 , . . . , p

m(1,d1)
1 , p

m(2,1)
2 , . . . , p

m(2,d2)
2 , . . . , pm(n,1)

n , . . . , pm(n,dn)
n )

It is readily verified that the abelian group presented by A is (finite and) isomorphic to

A = Z(p1,m(1, 1))⊕ · · · ⊕ Z(p1,m(1, d1))⊕ · · · ⊕ Z(pn,m(n, 1))⊕ . . .⊕ Z(pn,m(n, dn))

I Example 5. Let G = (G,EG) where G = {v1, v2, v3, v4}, EG = {e1, e2, e3, e4, e5}, e1 =
{v1, v2}, e2 = {v1, v4}, e3 = {v2, v3}, e4 = {v2, v4}, and e5 = {v3, v4}. Then p1 = 2, p2 = 3,
p3 = 5, and p4 = 7. Let m(1, 1) = 1, m(1, 2) = 2, m(2, 1) = 1, m(2, 2) = 3, m(2, 3) = 4,
m(3, 1) = 3, m(3, 2) = 5, m(4, 1) = 2, m(4, 2) = 4, and m(4, 3) = 5. We therefore have that
the succinct presentation presents the finite abelian group

Z(2, 1)⊕ Z(2, 2)⊕ Z(3, 1)⊕ Z(3, 3)⊕ Z(3, 4)⊕ Z(5, 3)⊕ Z(5, 5)⊕ Z(7, 2)⊕ Z(7, 4)⊕ Z(7, 5)

We now define a monadic second order formula φ, as follows. Let K = [k]× [k − 1]. Let
ck : K → K be the permutation of K uniquely determined by the following conditions:

ck(i, j) = (i′, j′) if and only if ck(i′, j′) = (i, j), that is, ck decomposes into k(k − 1)/2
disjoint cycles of length 2;
ck(i, j) = (j + 1, i) for all (i, j) ∈ K such that 1 ≤ i ≤ j < k.
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Note that the number of pairs (i, j) ∈ K such that 1 ≤ i ≤ j < k is equal to
(

k
2
)
, the number

of edges in a clique on k vertices. The following example illustrates how ck relates to a clique
on k vertices.

I Example 6. We have c4(1, 1) = (2, 1), c4(1, 2) = (3, 1), c4(1, 3) = (4, 1), c4(2, 1) = (1, 1),
c4(2, 2) = (3, 2), c4(2, 3) = (4, 2), c4(3, 1) = (1, 2), c4(3, 2) = (2, 2), c4(3, 3) = (4, 3). c4
decomposes into 6 disjoint cycles,

c4 = ((1, 1)(2, 1))((1, 2)(3, 1))((1, 3)(4, 1))((2, 2)(3, 2))((2, 3)(4, 2))((3, 3)(4, 3)),

and the edges of a 4-clique on vertices {1, 2, 3, 4} are obtained by projecting the pairs in each
cycle onto their first coordinate: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

We now define φ as follows:

φ = ( ∃
(i,j)∈K

Xi,j)


∧

(i,j),(i′,j′)∈K,(i,j)6=(i′,j′)Xi,j ∩Xi′,j′ = {0}∧
(i,j)∈K PrTerm(Xi,j)∧

i∈[k]
∧

j,j′∈[k−1] EqBase(Xi,j , Xi,j′)∧
(i,j)∈K EqExp(Xi,j , Xck(i,j))

 (25)

I Claim 8. (G, k) ∈ Clique if and only if (A, φ) ∈MC(AGspfin,MSO).

Proof. Recall that the number of pairs (i, j) ∈ K = [k]× [k − 1] such that 1 ≤ i ≤ j < k is
equal to

(
k
2
)
, the number of edges in a clique on k vertices.

(⇒) Let the vertices {ui : i ∈ [k]} ⊆ G and the edges {f(i,j) : (i, j) ∈ K} ⊆ EG form a
clique on k vertices in G such that the following holds:

f(i,j) ∩ f(i,j′) = ui,
f(i,j) = {ui, ck(i, j)1},

where ck(i, j)1 denotes the projection of ck(i, j) onto the first coordinate. For i ∈ [k],
let n(i) ∈ [n] be such that ui = vn(i), and for (i, j) ∈ K, let m(i, j) ∈ [m] be such that
f(i,j) = em(i,j).

For (i, j) ∈ K, let Ci,j be (the universe of) the subgroup Ci,j of A satisfying the following:
Ci,j is isomorphic to Z(pn(i),m(i, j));
Ci,j has no prime power order cyclic proper supergroup in A.

By construction such subgroup Ci,j of A exists and is unique, hence the above definition is
sound. It is easy to verify that the family of Ci,j ’s witnesses the truth of (25) in A.

(⇐) Let Ci,j ⊆ A for (i, j) ∈ K witnesses that φ holds in A. Therefore, the Ci,j form
a family of

(
k
2
)
prime terms of A (by the first two lines in (25)). By the third line in (25),

the Ci,j ’s partition into k blocks V1, . . . , Vk such that the orders of groups in block Vl are all
powers of the same prime pil

∈ {p1, . . . , pn}.
Let vi1 , . . . , vik

⊆ G be the vertices of G corresponding to the primes pi1 , . . . , pik
. We

claim that there are
(

k
2
)
edges between the vertices vi1 , . . . , vik

; since G does not contain
loops nor multiedges, it follows that the vertices vi1 , . . . , vik

form a clique of size k in G.
We first observe that for all l, l′ ∈ [k], l 6= l′, there is an edge between vil

and vil′ . By
the fourth line in (25) and the definition of ck, we have that V1 ∪ · · · ∪ Vk partitions into

(
k
2
)

2-element sets {C,C′} such that C in Vl and C′ in Vl′ (l, l′ ∈ [k], l 6= l′) such that the orders
of C and C′ have the same exponent. By construction, such exponent is the index of an edge
between the vertices corresponding to the (prime) base of the orders of C and C′. Since, by
construction, the index of each edge is the exponent of exactly two prime terms of A, distinct
2-element sets of the form above contribute distinct edges, thus contributing

(
k
2
)
edges in

total between vertices vi1 , . . . , vik
. J

CSL 2015



58 First-Order Queries on Finite Abelian Groups

The construction of φ only depends on k. The complexity of constructing A is determined
by:

the time to generate the first |G| = n prime numbers p1, . . . , pn which is roughly in O(n3)
as the nth prime is bounded above by n2 and the sieve of Eratosthenes finds all primes
not larger than l in time O(l log log l);
the size of A, a square integer matrix of order at most n(n− 1) whose integer entries are
bounded above by pm

n ≤ n2n2 , thus at most n4 entries each of size in O(n2 log n).
Therefore (A, φ) is computable from (G, k) in time f(k)poly(n) for some computable function
f over the natural numbers. We thus conclude the following.

I Theorem 7. MC(AGspfin,MSO) is not fixed-parameter tractable (unless W[1] ⊆ FPT).

6 Discussion

We proved that first-order logic is fixed-parameter tractable on finite abelian groups, and
monadic second-order logic is W[1]-hard on succinctly presented finite abelian groups. What
is the complexity of model checking monadic second-order logic on finitely presented abelian
groups (without the succinctness condition)? On finite abelian groups?

Our work suggests some questions on general groups, reasonable in that they do not settle
the isomorphism problem. For example, model checking the conjunctive positive fragment
(first-order sentences on the group vocabulary built using ∀, ∃, ∧, and =) on finite abelian
groups is polynomial-time tractable; this fact can be derived from the literature or established
directly by our elimination technique. How hard is model checking conjunctive positive
queries on finite groups? Yet, the outstanding open question concerns the parameterized
complexity of first-order (and monadic second-order) properties of finite groups.

Acknowledgments. The authors thank Carlo Toffalori for a clarification on Baur-Monk
theorem.
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Abstract
Finite valued constraint satisfaction problems are a formalism for describing many natural op-
timization problems, where constraints on the values that variables can take come with rational
weights and the aim is to find an assignment of minimal cost. Thapper and Živný have recently
established a complexity dichotomy for finite valued constraint languages. They show that each
such language either gives rise to a polynomial-time solvable optimization problem, or to an
NP-hard one, and establish a criterion to distinguish the two cases. We refine the dichotomy by
showing that all optimization problems in the first class are definable in fixed-point language with
counting, while all languages in the second class are not definable, even in infinitary logic with
counting. The definability dichotomy is not conditional on any complexity-theoretic assumption.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases descriptive complexity, constraint satisfaction, definability, fixed-point
logic, optimization

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.60

1 Introduction

Constraint Satisfaction Problems (CSPs) are a widely-used formalism for describing many
problems in optimization, artificial intelligence and many other areas. The classification
of CSPs according to their tractability has been a major area of theoretical research ever
since Feder and Vardi [8] formulated their dichotomy conjecture. The main aim is to classify
various constraint satisfaction problems as either tractable (i.e. decidable in polynomial time)
or NP-hard and a number of dichotomies have been established for special cases of the CSP
as well as generalizations of it. In particular, Cohen et al. [5] extend the algebraic methods
that have been very successful in the classification of CSPs to what they call soft constraints,
that is constraint problems involving optimization rather than decision problems. In this
context, a recent result by Thapper and Živný [12] established a complexity dichotomy for
finite valued CSPs (VCSPs). This is a formalism for defining optimization problems that can
be expressed as sums of explicitly given rational-valued functions (a more formal definition is
given in Section 2). As Thapper and Živný argue, the formalism is general enough to include
a wide variety of natural optimization problems. They show that every finite valued CSP is
either in P or NP-hard and provide a criterion, in terms of the existence of a definable XOR
function, that determines which of the two cases holds.

In this paper we are interested in the definability of constraint satisfaction problems in a
suitable logic. Definability in logic has been a significant tool for the study of CSPs for many
years. A particular logic that has received attention in this context is Datalog, the language
of inductive definitions by function-free Horn clauses. A dichotomy of definability has been
established in the literature, which shows that every constraint satisfaction problem on a
fixed template is either definable in Datalog or it is not definable even in the much stronger
Cω—an infinitary logic with counting. This result has not been published as such but is
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an immediate consequence of results in [2] where it is shown that every CSP satisfying a
certain algebraic condition is not definable in Cω, and in [3] where it is shown that those
that fail to satisfy this condition have bounded width and are therefore definable in Datalog.
The definability dichotomy so established does not line up with the (conjectured) complexity
dichotomy as it is known that there are tractable CSPs that are not definable in Datalog.

In the context of the definability of optimization problems, one needs to distinguish
three kinds of definability. In general an optimization problem asks for a solution (which
will typically be an assignment of values from some domain D to the variables V of the
instance) minimising the value of a cost function. This problem is standardly turned into a
decision problem by including a budget b in the instance and asking if there is a solution
that achieves a cost of at most b. Sentences in a logic naturally define decision problems,
and in the context of definability a natural question is whether the decision problem is
definable. Asking for a formula that defines an actual optimal solution may not be reasonable
as such a solution may not be uniquely determined by the instance and formulas in logic are
generally invariant under automorphisms of the structure on which they are interpreted. An
intermediate approach is to ask for a term in the logic that defines the cost of an optimal
solution and this is our approach in this paper.

Our main result is a definability dichotomy for finite valued CSPs. In the context of
optimization problems involving numerical values, Datalog is unsuitable so we adopt as
our yardstick definability in fixed-point logic with counting (FPC). This is an important
logic that defines a natural and powerful proper fragment of the polynomial-time decidable
properties (see [6]). It should be noted that Cω properly extends the expressive power of
FPC and therefore undefinability results for the former yield undefinability results for the
latter. We establish that every finite valued CSP is either definable in FPC or undefinable in
Cω. Moreover, this dichotomy lines up exactly with the complexity dichotomy of Thapper
and Živný. All the valued CSPs they determine are tractable are in fact definable in FPC,
and all the ones that are NP-hard are provably not in Cω. Unlike the complexity dichotomy,
the definability dichotomy is not conditional on any complexity- theoretic assumption. Even
if it were the case that P = NP, the finite valued CSPs still divide into those definable in FPC
and those that are not on these same lines. It should be noted that this is a feature of the
classification discovered by Thapper and Živný. They identify the tractable cases with those
that can be solved using the basic linear programming (BLP) relaxation and those which have
the (XOR) property, and this classification is not conditional on any complexity-theoretic
assumption

The positive direction of our result builds on the recent work of Anderson et al. [1]
showing that solutions to explicitly given instances of linear programming are definable in
FPC. Thapper and Živný show that the optimal solutions to the tractable VCSPs can be
found by solving their BLP relaxation. Thus, to establish the definability of these problems
in FPC it suffices to show that the reduction to the BLP is itself definable in FPC, which we
do in Section 4.

For the negative direction, we use the reductions used in [12] to establish NP-hardness
of VCSPs and show that these reductions can be carried out within FPC. We start with
the standard CSP form of 3-SAT, which is not definable in Cω as a consequence of results
from [2]. Details of all these reductions are presented in Section 5.

There is one issue with regard to the representation of instances of VCSPs as relational
structures which we need to consider in the context of definability. An instance is defined
over a language which consists of a set Γ of functions from a finite domain D to the rationals.
If Γ is a finite set, it is reasonable to fix the relational signature to have a relation for each
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function in Γ, and the FPC formula defining the class of VCSPs would be in this fixed
relational signature. However, we can also consider the uniform definability of VCSP(Γ)
when Γ is infinite (note that only finitely many functions from the language Γ are used
in constraints in any instance). A natural way to represent this is to allow the functions
themselves to be elements of the relational structure coding an instance. We can show that
our dichotomy holds even under this uniform representation. For simplicity of exposition,
we present the results for finite Γ and then, in Section 6, we explain how the proof can be
modified to the uniform case where the functions are explicitly given as elements of the
structure.

2 Background

Notation. We write N for the natural numbers, Z for the integers, Q for the rational
numbers and Q+ to denote the positive rationals.

We use bars v̄ to denote vectors. A vector over a set A indexed by a set I is a function
v̄ : I → A. We write va for v̄(a). Often, but not always, the index set I is {1, . . . , d}, an
initial segment of the natural numbers. In this case, we also write |v̄| for the length of v̄, i.e.
d. A matrix M over A indexed by two sets I, J is a function M : I × J → A. We use the
symbol ∪̇ for the disjoint union operator on sets.

If v̄ is an I-indexed vector over A and f : A→ B is a function, we write f(v̄) to denote
the I-indexed vector over B obtained by applying f componentwise to v̄.

2.1 Valued Constraint Satisfaction
We begin with the basic definitions of valued constraint satisfaction problems. These
definitions are based, with minor modifications, on the definitions given in [12].

I Definition 1. Let D be a finite domain. A valued constraint language Γ over D is a set of
functions, where each f ∈ Γ has an associated arity m = ar(f) and f : Dm → Q+.

I Definition 2. An instance of the valued constraint satisfaction problem (VCSP) over a
valued constraint language Γ is a pair I = (V,C), where V is a finite set of variables and C
is a finite set of constraints. Each constraint in C is a triple (σ, f, q), where f ∈ Γ, σ ∈ V ar(f)

and q ∈ Q+.
A solution to an instance I of VCSP(Γ) is an assignment h : V → D of values in D to

the variables in V . The cost of the solution h is given by costI(h) :=
∑

(σ,f,q)∈C q · f(h(σ)).
The valued constraint satisfaction problem is then to find a solution with minimal cost.

In the decision version of the problem, an additional threshold constant t ∈ Q is given,
and the question becomes whether there is a solution h with costI(h) ≤ t.

Given a valued constraint language Γ, there are certain natural closures Γ′ of this set
of functions for which the computational complexity of VCSP(Γ) and VCSP(Γ′) coincide.
The first we consider is called the expressive power of Γ, which consists of functions that can
be defined by minimising a cost function given by a fixed VCSP(Γ)-instance I over some
projection of the variables in I. The second closure of Γ we consider is under scaling and
translation. Both of these are given formally in the following definition.

I Definition 3. Let Γ be a valued constraint language over D. We say that a function
f : Dm → Q, is expressible in Γ, if there is some instance If = (Vf , Cf ) ∈ VCSP(Γ) and a
tuple of distinct elements v̄ = (v1, . . . , vm) ∈ V mf such that

f(x̄) = min
h∈Hx̄

costIf
(h),
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where Hx̄ := {h : Vf → D | h(vi) = xi , 1 ≤ i ≤ m}. We then say the function f is expressed
by the instance If and the tuple v̄, and call the set of all functions that can be expressed by
an instance of VCSP(Γ) the expressive power of Γ, denoted by 〈Γ〉.

Furthermore, we write f ′ ≡ f if f ′ is obtained from f by scaling and translation, i.e.
there are a, b ∈ Q, a > 0 such that f ′ = a · f + b. For a valued constraint language Γ, we
write Γ≡ to denote the set {f ′ | f ′ ≡ f for some f ∈ Γ}.

The next two lemmas establish that closing Γ under these operations does not change
the complexity of the corresponding problem. The first of these is implicit in the literature,
and we prove a stronger version of it in Lemma 13.

I Lemma 4. Let Γ and Γ′ be valued constraint languages on domain D such that Γ′ ⊆ Γ≡.
Then VCSP(Γ′) is polynomial-time reducible to VCSP(Γ).

I Lemma 5 (Theorem 3.4, [5]). Let Γ and Γ′ be valued constraint languages on domain D
such that Γ′ ⊆ 〈Γ〉. Then VCSP(Γ′) is polynomial-time reducible to VCSP(Γ).

In the study of constraint satisfaction problems, and of structure homomorphisms more
generally the core of a structure plays an important role. The corresponding notion for
valued constraint languages is given in the following definition.

I Definition 6. We call a valued constraint language Γ over domain D a core if for for all
a ∈ D, there is some instance Ia ∈ VCSP(Γ) such that in every minimal cost solution over
Ia, some variable is assigned a. A valued constraint language Γ′ over a domain D′ ⊆ D is a
sub-language of Γ if it contains exactly the functions of Γ restricted to D′. We say that Γ′ is
a core of Γ, if Γ′ is a sub-language of Γ and also a core.

I Lemma 7 (Lemma 2.4, [12]). Let Γ′ be a core of Γ. Then, minh costI(h) = minh costI′(h)
for all I ∈ VCSP(Γ) and I ′ ∈ VCSP(Γ′) where I ′ is obtained from I by replacing each
function of Γ by its restriction in Γ′.

Finally, we consider the closure of Γ under parameterized definitions. That is, we define
Γc, the language obtained from Γ by allowing functions that are obtained from those in Γ by
fixing some parameters.

I Definition 8. Let Γ be a core over D, we denote by Γc the language that contains exactly
those functions f : Dm → Q for which there exists

a function g ∈ Γ, with g : Dn → Q with n ≥ m,
a set of indices Tf ⊆ {1, . . . , n},
a mapping sf : {1, . . . , n}\Tf → {1, . . . ,m},
and a partial assignment tf : Tf → D,

such that f is g restricted on tf , i.e. f(x1, . . . , xm) = g(t(1), . . . , t(n)), where t(i) = tf (i) if
i ∈ Tf , and t(i) = xsf (i) otherwise. Furthermore, we fix a mapping γ : Γc → Γ that assigns
each f ∈ Γc a function g = γ(f) ∈ Γ with the above properties.

For example, if g ∈ Γ, then the function f defined by f(x1, x2) := g(x1, a, x2) for some fixed
a ∈ D is in Γc.

2.2 Linear Programming
I Definition 9. Let QV be the rational Euclidean space indexed by a set V . A linear
optimization problem is given by a constraint matrix A ∈ QC×V and vectors b̄ ∈ QC , c̄ ∈ QV .
Let PA,b̄ := {x̄ ∈ QV |Ax̄ ≤ b̄} be the set of feasible solutions. The linear optimization
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problem is then to determine either that PA,b̄ = ∅, or to find a vector ȳ = argmaxx̄∈PA,b̄
c̄T x̄,

or to determine that maxx̄∈PA,b̄
c̄T x̄ is unbounded.

We speak of the integer linear optimization problem, if the set of feasible solutions is
instead defined as PA,b̄ := {x̄ ∈ ZV |Ax̄ ≤ b̄}.

In the decision version of the problem, an additional constant t ∈ Q is given, and the
task is determine whether there exists a feasible solution x̄ ∈ PA,b̄, such that c̄T x̄ ≥ t.

It is often convenient to describe the linear optimization problem (A, b̄, c̄) as a system of
linear inequalities Ax̄ ≤ b̄ along with the objective maxx̄∈PA,b̄

c̄T x̄. We may also alternatively,
describe an instance with a minimization objective. It is easy to see that such a system can
be converted to the standard form of Defintion 9.

Let Γ now be a valued constraint language over D, and let I = (V,C) be an instance of
VCSP(Γ). We associate with I the following linear optimization problem in variables λc,ν
for each c ∈ C with c = (σ, f, q) and ν ∈ Dar(f), and µx,a for each x ∈ V and a ∈ D.

min
∑
c∈C

∑
ν∈Dar(f)

λc,ν · q · f(ν) where c = (σ, f, q) (1)

subject to the following constraints.
For each c ∈ C with c = (σ, f, q), each i with 1 ≤ i ≤ ar(f) and each a ∈ D, we have∑
ν∈Dar(f):νi=a

λc,ν = µσi,a; (2)

for each x ∈ V , we have∑
a∈D

µx,a = 1; (3)

and for all variables λc,ν and µx,a we have

0 ≤ λc,ν ≤ 1 and 0 ≤ µx,a ≤ 1. (4)

A feasible integer solution to the above system defines a solution h : V → D to the
instance I, given by h(x) = a iff µx,a = 1. Equations 2 then ensure that λc,ν = 1 for
c = (σ, f, q) just in case h(σ) = ν. Thus, it is clear that an optimal integer solution gives us
an optimal solution to I.

If we consider rational solutions instead of integer ones, we obtain the basic LP-relaxation
of I, which we denote BLP(I). The following theorem characterises for which languages Γ
BLP(I) has the same optimal solutions as I.

For the statement of the dichotomy result from [12], we need to introduce an additional
notion. We say that the property (XOR) holds for a valued constraint language Γ over
domain D if there are a, b ∈ D, a 6= b, such that 〈Γ〉 contains a binary function f with
argmin f = {(a, b), (b, a)}.

I Theorem 10 (Theorem 3.3, [12]). Let Γ be a core over some finite domain D.
Either for each instance I of VCSP(Γ), the optimal solutions of I are the same as BLP(I);
or property (XOR) holds for Γc and VCSP(Γ) is NP-hard.

2.3 Logic
A relational vocabulary (also called a signature or a language) τ is a finite sequence of relation
and constant symbols (R1, . . . , Rk, c1, . . . , cl), where every relation symbol Ri has a fixed
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arity ai ∈ N. A structure A = (dom(A), RA
1 , . . . , R

A
k , c

A
1 , . . . , c

A
l ) over the signature τ (or a

τ -structure) consists of a non-empty set dom(A), called the universe of A, together with
relations RA

i ⊆ dom(A)ai and constants cA
j ∈ dom(A) for each 1 ≤ i ≤ k and 1 ≤ j ≤ l.

Members of the set dom(A) are called the elements of A and we define the size of A to be
the cardinality of its universe.

2.3.1 Fixed-point Logic with Counting
Fixed-point logic with counting (FPC) is an extension of inflationary fixed-point logic with
the ability to express the cardinality of definable sets. The logic has two sorts of first-order
variables: element variables, which range over elements of the structure on which a formula
is interpreted in the usual way, and number variables, which range over some initial segment
of the natural numbers. We write element variables with lower-case Latin letters x, y, . . .
and use lower-case Greek letters µ, η, . . . to denote number variables.

The atomic formulas of FPC[τ ] are all formulas of the form µ = η or µ ≤ η, where µ, η
are number variables; s = t where s, t are element variables or constant symbols from τ ;
and R(t1, . . . , tm), where each ti is either an element variable or a constant symbol and R
is a relation symbol (i.e. either a symbol from τ or a relational variable) of arity m. Each
relational variable of arity m has an associated type from {elem, num}m. The set FPC[τ ]
of FPC formulas over τ is built up from the atomic formulas by applying an inflationary
fixed-point operator [ifpR,x̄φ](t̄); forming counting terms #xφ, where φ is a formula and x an
element variable; forming formulas of the kind s = t and s ≤ t where s, t are number variables
or counting terms; as well as the standard first-order operations of negation, conjunction,
disjunction, universal and existential quantification. Collectively, we refer to element variables
and constant symbols as element terms, and to number variables and counting terms as
number terms.

For the semantics, number terms take values in {0, . . . , n}, where n = dom(A) and
element terms take values in dom(A). The semantics of atomic formulas, fixed-points and
first-order operations are defined as usual (c.f., e.g., [7] for details), with comparison of
number terms µ ≤ η interpreted by comparing the corresponding integers in {0, . . . , n}.
Finally, consider a counting term of the form #xφ, where φ is a formula and x an element
variable. Here the intended semantics is that #xφ denotes the number (i.e. the element of
{0, . . . , n}) of elements that satisfy the formula φ. For a more detailed definition of FPC, we
refer the reader to [7, 10].

We also consider Cω—the infinitary logic with counting, and finitely many variables. We
will not define it formally (the interested reader may consult [11]) but we need the following
two facts about it: its expressive power properly subsumes that of FPC, and it is closed
under FPC-reductions, defined below.

It is known by the Immerman-Vardi theorem [7] that fixed-point logic can express all
polynomial-time properties of finite ordered structures. It follows that in FPC we can express
all polynomial-time relations on the number domain. In particular, we have formulas with
free number variables α, β for defining sum and product, and we simply write α + β and
α · β to denote these formulas. For a number term α and a non-negative integer m, we write
α = m as short-hand for the formula that says that α is exactly m. We write BIT(α, β) to
denote the formula that is true just in case the β-th bit in the binary expansion of α is 1.
Finally, for each constant c, we assume a formula MULTc(W,x, y) which works as follows.
If B is an ordered set and W ⊆ B is a unary relation that codes the binary representation
of an integer w, then MULTc defines a binary relation R ⊆ B2 which on the lexicographic
order on B2 defines the binary representation of c · w.
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2.3.2 Reductions
We frequently consider ways of defining one structure within another in some logic L, such
as first-order logic or FPC. Consider two signatures σ and τ and a logic L. An m-ary
L-interpretation of τ in σ is a sequence of formulae of L in vocabulary σ consisting of: (i) a
formula δ(x̄); (ii) a formula ε(x̄, ȳ); (iii) for each relation symbol R ∈ τ of arity k, a formula
φR(x̄1, . . . , x̄k); and (iv) for each constant symbol c ∈ τ , a formula γc(x̄), where each x̄, ȳ or
x̄i is an m-tuple of free variables. We call m the width of the interpretation. We say that an
interpretation Θ associates a τ -structure B to a σ-structure A if there is a surjective map h
from the m-tuples {ā ∈ dom(A)m | A |= δ[ā]} to B such that:

h(ā1) = h(ā2) if, and only if, A |= ε[ā1, ā2];
RB(h(ā1), . . . , h(āk)) if, and only if, A |= φR[ā1, . . . , āk];
h(ā) = cB if, and only if, A |= γc[ā].

Note that an interpretation Θ associates a τ -structure with A only if ε defines an equivalence
relation on dom(A)m that is a congruence with respect to the relations defined by the
formulae φR and γc. In such cases, however, B is uniquely defined up to isomorphism and
we write Θ(A) := B. Throughout this paper, we will often use interpretations where ε is
simply defined as the usual equality on ā1 and ā2. In these instances, we omit the explicit
definition of ε.

The notion of interpretations is used to define logical reductions. Let C1 and C2 be two
classes of σ- and τ -structures respectively. We say that C1 L-reduces to C2 if there is an
L-interpretation Θ of τ in σ, such that Θ(A) ∈ C2 if and only if A ∈ C1, and we write
C1 ≤L C2.

It is not difficult to show that formulas of FPC compose with FPC-reductions in the
sense that, given an interpretation Θ of τ in σ and a τ -formula φ, we can define a σ-formula
φ′ such that A |= φ′ if, and only if, Θ(A) |= φ. Moreover Cω is closed under FPC-reductions.
So if C2 is definable in Cω and C1 ≤L C2, then C1 is also definable in Cω.

2.3.3 Representation
In order to discuss definability of constraint satisfaction and linear programming problems,
we need to fix a representation of instances of these problems as relational structures. Here,
we describe the representation we use.

Numbers and Vectors. We represent an integer z as a relational structure in the following
way. Let z = s ·x, with s ∈ {−1, 1} being the sign of z, and x ∈ N, and let b ≥ dlog2(x)e. We
represent z as the structure z with universe {1, . . . , b} over the vocabulary τZ = {X,S,<},
where < is interpreted the usual linear order on {1, . . . , b}; Sz is a unary relation where
Sz = ∅ indicates that s = 1, and s = −1 otherwise; and Xz is a unary relation that encodes
the bit representation of x, i.e. Xz = {k ∈ {1, . . . , b} | BIT(x, k) = 1}. In a similar vein, we
represent a rational number q = s · xd by a structure q over the domain τQ = {X,D, S,<},
where the additional relation Dq encodes the binary representation of the denominator d in
the same way as before.

In order to represent vectors and matrices over integers or rationals, we have multi-sorted
universes. Let T be a non-empty set, and let v be a vector of integers indexed by T . We
represent v as a structure v with a two-sorted universe with an index sort T , and bit sorts
{1, . . . , b}, where b ≥ dlog2(|m|)e, m = maxt∈T vt, over the vocabulary (X,D, S,<). Now,
the relation S is of arity 2, and Sv(t, ·) encodes the sign of the integer vt for t ∈ T . Similarly,
X is a binary relation interpreted as Xv = {(t, k) ∈ T × {1, . . . , b} | BIT(vt, k) = 1}. In
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order to represent matrices M ∈ ZT1×T2 , indexed by two sets T1, T2, we allow three-sorted
universes with two sorts of index sets. The generalisation to rationals carries over from the
numbers case. We write τvec to denote the vocabulary for vectors over Q and τmat for the
vocabulary for matrices over Q.

Linear Programs. Let an instance of a linear optimization problem be given by a constraint
matrix A ∈ QC×V , and vectors b̄ ∈ QC , c̄ ∈ QV over some set of variables V and constraints
C. We represent this instance in the natural way as a structure over the vocabulary
τLP = τvec ∪̇ τmat.

We can now state the result from [1] that we require, to the effect that there is an FPC
interpretation that can define solutions to linear programs.

I Theorem 11 (Theorem 11, [1]). Let an instance (A ∈ QC×Q, b̄ ∈ QC , c̄ ∈ QV ) of
a LP be explicitly given by a relational representation in τLP . Then, there is a FPC-
interpretation that defines a representation of (f ∈ Q, v̄ ∈ QV ), such that f = 1 if and only
if maxx̄∈PA,b̄

c̄T x̄ is unbounded, v̄ /∈ PA,b̄ if and only if there is no feasible solution, and
f = 0, v̄ = argmaxx̄∈PA,b̄

c̄T x̄ otherwise.

CSPs. We next examine how instances of VCSP(Γ) for finite Γ are represented as relational
structures. We return to the case of infinite Γ in Section 6.

For a fixed finite language Γ = {f1, . . . , fk}, we represent an instance I of VCSP(Γ)
as a structure I = (dom(I), <, (RI

f )f∈Γ,W
I
N ,W

I
D) over the vocabulary τΓ. The universe

dom(I) = V ∪̇ C ∪̇ B is a three-sorted set, consisting of variables V , constraints C, and a
set B of bit positions. We assume that |B| is at least as large as the number of bits required
to represent the numerator and denominator of any rational weight occurring in I. The
relation < is a linear order on B. The relation RI

f ⊆ V ar(f)×C contains (σ, c) if c = (σ, f, q)
is a constraint in I. The relations W I

N ,W
I
D ⊆ C ×B encode the weights of the constraints:

W I
N (c, β) (or W I

D(c, β)) holds if and only if the β-th bit of the bit-representation of the
numerator (or denominator, respectively) of the weight of constraint c is one. For the decision
version of the VCSP, we have two additional unary relations TN and TD in the vocabulary
which encode the binary representation of the numerator and denominator of the threshold
constant of the instance.

We are now ready to define what it means to express VCSP(Γ) in a logic such as FPC.
For a fixed finite langauge Γ, we say that the decision version of VCSP(Γ) is definable in
a logic L if there is some τΓ ∪ {TN , TD}-sentence φ of L such that I |= φ if, and only if,
I is satisfiable, i.e the value of the optimal solution to I is below the given target value.
For the optimization problem, we say that VCSP(Γ) is definable in FPC if there is an FPC
interpretaion Θ of the vocabulary τQ in τΓ such that for any I, Θ(I) codes the value of an
optimal solution for the instance I. Note that if VCSP(Γ) is definable (in FPC or Cω) in
the above sense, then so is the corresponding decision problem.

The reductions we define between VCSPs in many cases preserve the optimum value
between instances. Formally, an optimum preserving L-reduction from VCSP(Γ′) to
VCSP(Γ) is an L-interpretation Θ from τΓ′ to τΓ, such that I has the same optimal value as
Θ(I). It is clear that optimum preserving reductions serve also as reductions between the
corresponding decision problems.

3 Definable Reductions

An essential part of the machinery that leads to Theorem 10 is that the computational
complexity of VCSP(Γ) is robust under certain changes to Γ. In other words, closing the class
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of functions Γ under certain natural operations does not change the complexity of the problem.
This is established by showing that the distinct problems obtained are inter-reducible under
polynomial-time reductions. Our aim in this section is to show that these reductions can be
expressed as interpretations in a suitable logic (in some cases first-order logic suffices, and in
others we need the power of counting). These reductions are used as essential links in our
proofs in Section 5.

The following lemma is analogous to Lemma 5 and shows that the reductions there can
be expressed as logical interpretations.

I Lemma 12. Let Γ and Γ′ be valued constraint languages of finite size over domain D such
that Γ′ ⊆ 〈Γ〉. Then VCSP(Γ′) ≤FPC VCSP(Γ), by an optimum-preserving reduction.

Proof. The construction of the reduction follows closely the proof of Theorem 3.4. in [5],
while ensuring it is definable in FPC.

Let I = (V,C) be a given instance of VCSP(Γ′). We fix for each function f ∈ Γ′ of arity
m an instance If = (Vf , Cf ) of VCSP(Γ) and a m-tuple of distinct elements v̄f ∈ V mf that
together express f in the sense of Definition 3. The idea is now to replace each constraint
c = (σ, f, q) ∈ C by a copy of If where the variables vf1, . . . , vfm in If are identified with
σ1, . . . , σm, and the remaining variables are fresh. Since each If is an instance of VCSP(Γ),
the instance J = (U,E) obtained after all replacements is again an instance of VCSP(Γ).
Furthermore, by Definition 3 it has the same optimal solution as I.

Formally, we define the instance J = (U,E) as follows. The set of variables U consists of
the variables in V plus a fresh copy of the variables in Vf for each constraint in C that uses
the function f , so we can identify U with the following set.

U = V ∪̇ {(v, c) | c ∈ C, v ∈ Vf}.

Each constraint c = (σ, f, q) ∈ C gives rise to a set of constraints Ec, representing a copy of
the constraints in Cf .

Ec = {(hc(ν), g, q · r) | (ν, g, r) ∈ Cf},

where hc : Vf → U is defined as the mapping hc(v) = σi, if v = vfi, and hc(v) = (v, c)
otherwise. The set of constraints E is then simply the union of all sets Ec.

Let τΓ = (<, (Rf )f∈Γ,WN ,WD) and τΓ′ = (<, (Rf )f∈Γ′ ,WN ,WD) be the vocabularies
for instances of VCSP(Γ) and VCSP(Γ′) respectively. We aim to define an FPC reduction
Θ = (δ̄, ε, φ<, (φRf

)f∈Γ, φWN
, φWD

) such that J = Θ(I) corresponds to the above construction
of the instance J .

Let an instance I = (V,C) of VCSP(Γ′) be given as a structure I over τΓ′ with the
three-sorted universe dom(I) = V ∪̇ C ∪̇ B. For each m-ary function f ∈ Γ we have fixed
an instance If = (Vf , Cf ) and a tuple v̄f = (vf1, . . . , vfm) that together express f . As
the construction of J depends on these instances, we fix an encoding of them in an initial
segment of the natural numbers. To be precise, as the sets V̂ =

⋃
f∈Γ′ Vf and Ĉ =

⋃
f∈Γ′ Cf

are of fixed size (independent of I), let nV̂ = |V̂ | and nĈ = |Ĉ|. We then fix bijections
var : V̂ → {1, . . . , nV̂ } and con : Ĉ → {1, . . . , nĈ} such that for each f ∈ Γ′, there are
intervals Vf = [lvf , rvf ] and Cf = [lcf , rcf ] such that var(Vf ) = Vf and con(Cf ) = Cf . We
assume that dom(I) is larger than max(nV̂ , nĈ) so that we can use number terms to index
the elements of V̂ and Ĉ. There are only finitely many instances I smaller than this, and
they can be handled in the interpretation Θ individually.

In defining the formulas below, for an integer interval I we write µ ∈ I as shorthand for
the formula

∨
m∈I µ = m.
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The universe of J is a three-sorted set dom(J) = U ∪̇ E ∪̇ B′ consisting of variables U ,
constraints E, and bit positions B′. The set U is defined by the formula

δU (x, µ) =

x ∈ C ∧ ∨
f∈Γ′

(∃ȳ ∈ V ar(f) : Rf (ȳ, x) ∧ µ ∈ Vf )

 ∨ (µ = 0 ∧ x ∈ V ).

In other words, the elements of U are pairs (x, µ), where x ∈ V ∪ C and µ is a number and
we make the following case distinction: Either x ∈ C and there is a constraint x = (ȳ, f, q) in
I, and a variable v ∈ Vf with var(v) = µ; then the pair represents one of the fresh variables
in C × V̂ . Or, x ∈ V and µ = 0 and the pair represents an element of V .

Similarly, the constraints E are given by

δE(x, µ) = x ∈ C ∧
∨
f∈Γ′

(∃ȳ ∈ V ar(f) : Rf (ȳ, x) ∧ µ ∈ Cf ).

Again, the elements of E are pairs (x, µ), with x ∈ C and µ an element of the number
domain, and we require that if there is a constraint of the form x = (ȳ, f, q), then there is a
constraint c ∈ Cf with con(c) = µ.

For the domain of bit positions, we just need to make sure that the set is large enough to
encode all weights in J . Taking B′ = B2 suffices, so

δB′(x1, x2) = x1, x2 ∈ B

and we take φ<(x̄, ȳ) to be the formula that defines the lexicographic order on pairs.
The constraints of J are encoded in the relations Rg, g ∈ Γ. For an m-ary function g,

this is defined by a formula φRg in the free variables (x1, µ1, . . . , xm, µm, e, ν) where each
(xi, µi) ranges over elements of U , and (e, ν) ranges over elements of E. To be precise, we
define the formula by:

φRg
=
∨
f∈Γ′

(
∃ȳ ∈ V ar(f) : Rf (ȳ, e) ∧ ν ∈ Cf

∧
∨

e′=(ρ,g,r)∈Cf

ν = con(e′) ∧
∧

i:ρi∈v̄f

(xi = e ∧ µi = var(ρi))

∧
∧

i:ρi 6∈v̄f

(xi = yi ∧ µi = 0)

 .

Finally, we define the weight relations. The weight of a constraint ē = (e1, e2) is assigned
the product of the weight of e1 ∈ C and the weight of e2 ∈ Ĉ. We have

φWN
(ē, β̄) =

∨
e′∈Ĉ

e2 = con(e′) ∧MULTw(WN (e1, ·), β̄),

where w is the numerator of the weight of the constraint e′. The definition of the denominator
relation is analogous. J

The next lemma similarly establishes that the reduction in Lemma 4 can be realised as
an FPC interpretation.

I Lemma 13. Let Γ and Γ′ be valued languages of finite size over domain D such that
Γ′ ⊆ Γ≡. Then VCSP(Γ′) ≤FPC VCSP(Γ), by an optimum-preserving reduction.
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Proof. Note that adding constants to the value of constraints does not change the optimal
solution of the instance. Hence, we only need to adapt to the scaling of the constraint
functions. This can be achieved by changing the weights accordingly.

Let I = (V,C) be an instance of VCSP(Γ′), given as the relational structure I =
(dom(I), (Rf )f∈Γ′ ,WN ,WD). We aim to construct an instance J = (U,E) of VCSP(Γ) with
the same optimal solution.

The set of variables of J is V . For any f ∈ Γ′ we fix a function S(f) ∈ Γ such that
S(f) ≡ f . Then, the formula φRg (σ, d) =

∨
f∈Γ′;g=S(f)Rf (σ, d) defines the constraints of J .

Let d = (σ, g, r) be any constraint in E, and c = (σ, f, q) be the corresponding constraint
in C where g = S(f), and g = a · f + b for some a, b ∈ Q. We then set the weight r of the
constraint d to be a · q. This can again be defined by a formula in FPC. J

Next, we show that there is a definable reduction from VCSP(Γ) to the problem defined
by a core of Γ.

I Lemma 14. Let Γ be a valued language over D, and Γ′ a core of Γ. Then, VCSP(Γ) ≤FO
VCSP(Γ′), by an ptimum-preserving reduction.

Proof. Since the functions in Γ′ are exactly those in Γ, only restricted to some subset of D,
we can interpret any instance of VCSP(Γ) directly as an instance of VCSP(Γ′). Since the
optimum of both instances is the same, by Lemma 7, this constitutes a reduction. J

The next two Lemmas together show that VCSP(Γ) and VCSP(Γc) are FPC-equivalent for
a core language Γ. The proof follows closely the proof from [9] that they are polynomial-time
equivalent.

I Lemma 15 (Lemma 2, [9]). Let Γ be a core over domain D. There exists an instance Ip
of VCSP(Γ) with variables V = {xa | a ∈ D} such that hid(xa) = a is an optimal solution of
Ip and for every optimal solution h, the following hold:
1. h is injective; and
2. for every instance I ′ of VCSP(Γ) and every optimal solution h′ of I ′, the mapping sh ◦ h′

is also an optimal solution, where sh(a) := h(xa).

I Lemma 16. Let Γ be a core over a domain D of finite size. Then, VCSP(Γc) ≤FPC
VCSP(Γ), by an optimum-preserving reduction.

Proof. Let Ic = (Vc, Cc) be an instance of VCSP(Γc), and let Ip = (Vp, Cp) be an instance
of VCSP(Γ) that satisfies the conditions of Lemma 15. We construct an instance I = (V,C)
of VCSP(Γ) as follows. The set of variables V is

V := Vc ∪̇ Vp = Vc ∪̇ {xa | a ∈ D}.

By Definition 8, each function f ∈ Γc is associated with some function g = γ(f) ∈ Γ, such
that f is obtained from g by fixing the values of some set of variables of g. Let Tf be the
corresponding index set, tf : Tf → D the corresponding partial assignment of variables of
g, and sf the injective mapping between parameter positions of f and g. Then, we add for
each constraint c′ = (σ′, f, q) ∈ Cc the constraint c = (σ, g, q) to C, where we replace each
parameter of g that is fixed to a ∈ D by the variable xa, or formally, σi = xtf (i) if i ∈ Tf ,
and σi = σ′

s−1
f

(i) otherwise. Additionally, we add each constraint of Cp to C with its weight
multiplied by some sufficiently large factor M such that every optimal solution to I, when
restricted to {xa | a ∈ D}, constitutes also an optimal solution to Ip. For instance, M can
be chosen as M :=

∑
(σ,g,q)∈C\Cp

q ·maxf∈Γc;x̄ f(x̄). Note that since the domain and the
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constraint language are finite, and the functions are finite valued, the value of maxf∈Γc;x̄ f(x̄)
exists and is a constant. Together, the set of constraints C is defined as

C ={(σ, g, q) | ∃σ′, f : g = γ(f), (σ′, f, q) ∈ Cc, ∀i ∈ Tf : σi = tf (i), ∀i /∈ Tf : σi = σ′
s−1

f
(i)}

∪ {(σ, g,M · q) | (σ, g, q) ∈ Cp}.

To see that this construction is a reduction, consider an optimal solution hc of Ic. This
gives rise to an optimal solution h of I, where h(x) = hc(x) for x ∈ Vc, and h(x) = hid(x)
for x ∈ Vp. In the other direction, let h be an optimal solution to I, and its restriction to Vp,
hp := h|Vp

is an optimal solution to Ip. By Lemma 15, the operation shp is a permutation
on D, and in particular, by repeatedly applying the second part of Lemma 15, the inverse
permutation s−1

hp
is an optimal solution to Ip as well. Now, again by application of the second

part of Lemma 15, we obtain an optimal solution h′ := s−1
hp
◦ h to I, for which h′(xa) = a for

each a ∈ D. Thus, the restriction of h′ to Vc is an optimal solution to Ic.
We now formulate the above construction as an FPC interpretation.
Let Ic be given as a structure Ic over τΓc

= (<, (Rf )Γc
,WN ,WD). Furthermore, let

Ip = (Vp, Cp) be some fixed instance of VCSP(Γ) that satisfies the conditions of Lemma 15. We
construct an FPC-interpretation Θ = (δ̄, ε, φ<, (φRf

)f∈Γ, φWN
, φWD

) that defines I = Θ(Ic).
The universe dom(Ic) is the three-sorted set Vc ∪̇ Cc ∪̇ Bc. In the same way, the universe of
the structure I is a three sorted set V ∪̇ C ∪̇ B. Just as in the proof of Lemma 12, to code
elements of Vp and Cp, we fix bijections var : Vp → {1, . . . , |Vp|} and con : Cp → {1, . . . , |Cp|}

The sets V and C are then defined by the formulas

δV (x) = x ∈ Vc ∨ x ∈ {1, . . . , |Vp|}; and δC(x) = x ∈ Cc ∨ x ∈ {1, . . . , |Cp|}.

The set B needs to be large enough to code all weights. We can take B = B2
c .

δB(x1, x2) = x1, x2 ∈ Bc,

and let φ< define the lexicographic order on B2
C .

For each m-ary function g ∈ Γ, we have the formula

φRg
(x̄, c) =

∨
e=(ρ,g,r)∈Cp

c = con(e) ∧
∧

1≤i≤m
xi = var(ρi)


∨

f :γ(f)=g

∃ȳ ∈ V ar(f)
c : Rf (ȳ, c) ∧

∧
i∈Tf

xi = var(tf (i))
∧
i/∈Tf

xi = ys−1
f

(i)

 .

The weights are given by

φWN
(c, β̄) = (c ∈ Cc ∧WN (c, β)) ∨

∨
e=(ρ,g,r)∈Cp

(c = con(e) ∧MULTr·L(Bc, β̄)),

where L is given by

L = max
f∈Γc;x̄∈Dar(f)

f(x̄).

The denominator is given by

φWD
(c, β̄) = (c ∈ Cc ∧WD(c, β)) ∨

∨
e∈Cp

(c = con(e) ∧ BIT(1, β)).

Here, another case distinction is in place. Either we have c ∈ Cc, and the weight is simply
the same as given by WN and WD. Or, the constraint c corresponds to some constraint
e = (ρ, g, r) ∈ Cp, and we assign the weight L · 2|Bc| · r to c. J
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4 Expressibility Result

The fact that VCSP(Γ) is definable in FPC whenever Γc does not have the (XOR) property
is obtained quite directly from Theorems 10 and 11. Here we state the result in somewhat
more general form.

I Theorem 17. For any valued constraint language Γ over a finite domain D, there is an
FPC interpretation Θ of τQ in τΓ that takes an instance I to a representation of the optimal
value of BLP(I).

Proof. We show that it is possible to interpret BLP(I) as a τLP -structure in I by means of
an FPC-interpretation. The statement then follows by Theorem 11 and the composition of
FPC-reductions.

Let I = (V,C) be given as the τΓ structure I with universe dom(I) = V ∪̇ C ∪̇ B.
Our goal is to define a τLP -structure P representing BLP(I) given by (A, b̄, c̄). The set
of variables of P is the union of the two sets λ = {λc,ν | c = (σ, f, q) ∈ C, ν ∈ D|σ|} and
µ = {µx,a | x ∈ V, a ∈ D}. In order to refer to elements of D in our interpretation, we fix a
bijection dom : D → {1, . . . , |D|} between D and an initial segment of the natural numbers.

Then, the sets λ and µ are defined by

λ(c, ν̄) =
∨
f∈Γ

∃ȳ ∈ V ar(f) : Rf (ȳ, c) ∧
∧

1≤i≤ar(f)

∨
a∈D

νi = dom(a)

 .

Here, we assume that ν̄ is a tuple of number variables of length maxf∈Γ ar(f). This creates
some redundant variables, related to constraints whose arity is less than the maximum. We
also have

µ(x, α) = x ∈ V ∧
∨
a∈D

y = dom(a).

For the set of linear constraints, we observe that the constraints resulting from the
equalities of the form (2) can be indexed by the set

J(2) = {jc,i,a,b | c = (σ, f, q) ∈ C, i ∈ {1, . . . , |σ|}, a ∈ D, b ∈ {0, 1}},

since we have for each c ∈ C, i ∈ {1, . . . , |σ|}, and a ∈ D a single equality, and hence two
inequalities, one for each value of b. This can be expressed by

J(2)(c, ι, α, β) =c ∈ C ∧
∨
f∈Γ
∃ȳ ∈ V ar(f) : Rf (ȳ, c)

∧ ι ≤ ar(f) ∧
∨
a∈D

α = dom(a) ∧ β ∈ {0, 1}.

Similarly, the constraints resulting from (3) can be indexed by J(3) = {jx,b | x ∈ V, b ∈
{0, 1}}, defined by the formula,

J(3)(x, β) = x ∈ V ∧ β ∈ {0, 1}.

Finally, we have two inequalities bounding the range of each variable, indexed by J(4) =
{jv,b | v ∈ λ ∪ µ, b ∈ {0, 1}}, defined by

J(4)(v̄, β) = λ(v̄) ∨ µ(v̄) ∧ β ∈ {0, 1}.
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The universe dom(L) is then the three-sorted set Q ∪̇ R ∪̇ B′ with index sets Q and R
for columns and rows respectively, and a domain for bit positions B′, defined by

δQ(x̄) = λ(x̄) ∨ µ(x̄); δR(x̄) = J(2)(x̄) ∨ J(3)(x̄) ∨ J(4)(x̄); and δB′(x) = x ∈ B.

The entries in the matrix A ∈ QQ×R, and the two vectors b̄ ∈ QQ and c̄ ∈ QR consist
only of elements of {0, 1,−1} and the weight of some constraint in C. It is easily seen that
these can be suitably defined in FPC. J

Combining this with Theorem 10 gives the positive half of the definability dichotomy.

I Corollary 18. If Γ is a valued constraint language such that property (XOR) does not hold
for Γc, then VCSP(Γ) is definable in FPC.

5 Inexpressibility Result

We now turn to the other direction and show that if VCSP(Γ) is such that Γc has the
(XOR) property then VCSP(Γ) is not definable in FPC. In fact, we will prove the stronger
inexpressibility result that those VCSPs are not even definable in the stronger logic Cω.

Our proof proceeds as follows. The main result in [12] characterizes the intractable
constraint languages Γ as exactly those languages whose extension Γc has the property
(XOR), by constructing a polynomial time reduction from MAXCUT to VCSP(Γ). We show
that this reduction can also be carried out in FPC. It is then left to show that MAXCUT
itself is not definable in Cω. To this end, we describe a series of FPC-reductions from 3-SAT
to MAXCUT which roughly follow known polynomial time counterparts. Finally, results of
[4] and [2] establish that 3-SAT is not definable in Cω, concluding the proof.

We consider the problem MAXCUT, where one is given an undirected graph G = (V,E)
along with a weight function w : E → Q+ and is looking for a bipartition of vertices
p : V → {0, 1} that maximises the payout function b(p) =

∑
(u,v)∈E;p(u)6=p(v) w(u, v). In the

decision version of the problem, an additional constant t ∈ Q+ is given and the question is
then whether there is a partition p with b(p) ≥ t.

An instance of (decision) MAXCUT is given as a relational structure I over the vocabulary
τMAXCUT = (E,<,WN ,WD, TN , TD). The universe dom(I) is a two-sorted set U = V ∪̇ B,
consisting of vertices V , and a set B of bit positions, linearly ordered by <. In addition to
the edge relation E ⊆ V × V , there are two weight relations WN ,WD ⊆ V × V ×B which
encode the numerator and denominator of the weight between two vertices. Finally, the
unary relations TN , TD ⊆ B encode the numerator and denominator of the threshold.

I Lemma 19. If Γ is a language for which (XOR) holds, then, MAXCUT ≤FPC VCSP(〈Γ〉≡).

Proof. Let I = (V,E,w, t) be a given MAXCUT instance. We define an equivalent instance
J = (U,C, t′) of VCSP(Γ≡) as follows. Since (XOR) holds for Γ, there are two distinct
elements a, b ∈ D for which 〈Γ〉≡ contains a binary function f , such that f(a, b) = 1 if a = b

and f(a, b) = 0 otherwise. By creating a variable for each vertex in V and adding a constraint
((u, v), f, w(e)) for each edge e = (u, v) ∈ E, we obtain a VCSP with the same optimal
solution. The threshold constant t′ is then set to t′ = M − t, where M :=

∑
e∈E w(e).

We now turn this into an FPC-interpretation Θ of τ〈Γ〉≡ in τMAXCUT. Let I be the
relational representation of I over τMAXCUT with the two-sorted universe V ∪̇ B.

The structure J = Θ(I) has a three-sorted universe dom(J) = U ∪̇ C ∪̇ B′ consisting of
variables U = V , constraints C = V 2, and bit positions B′ = B × {1, . . . , |E|}.

δU (x) = x ∈ V ; δC(x1, x2) = x1, x2 ∈ V ; and δB′(x, µ) = x ∈ B ∧ µ ≤ #y,zE(y, z).
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Since M ≤ |E|maxe∈E w(e), and each w(e) can be represented by |B| bits, |E| · |B| bits
suffice to represent the threshold M − t.

Each edge e = (u, v) gives rise to a constraint ((u, v), e, w(e)), which is encoded in Rf .

φRf
(x̄, c̄) = E(x̄) ∧ x̄ = c̄.

The weights are simply carried over.

φWN
(c̄, b) = WN (c̄, b) and φWD

(c̄, b) = WD(c̄, b)

The threshold is set to M − t. As FPC can define any polynomial-time computable function
on an ordered domain, it is possible to write formulas φTN

and φTD
defining the numerator

and denominator of the threshold M − t on the ordered sort B′.
The remaining relations Rg corresponding to functions in g ∈ 〈Γ〉≡\{f} are empty. J

The next ingredient is to show that the classical series of polynomial time reductions from
3-SAT to MAXCUT can also be carried out within FPC. The chain of reductions involves
three steps. The first one is a reduction from 3-SAT to 4-NAESAT (Not All Equal SAT),
followed by a reduction from 4-NAESAT to 3-NAESAT, and finally 3-NAESAT is reduced
to MAXCUT. We begin with defining the relational representations of these problems.

An instance of 3-SAT is given as a relational structure over the vocabulary τ3SAT =
(R000, . . . , R111) with eight ternary relations. The universe of the instance is a set of variables
V and we say the instance is satisfiable if there is a map h : V → {0, 1} such that for
any a, b, c ∈ V if (a, b, c) ∈ Rijk then it is not the case that h(a) = i and h(b) = j and
h(c) = k. Similarly, 3-NAESAT is a class of structures over τ3NAESAT = (N000, . . . , N111) and
an instance over the universe V is satisfiable if there is a map h : V → {0, 1} such that for any
a, b, c ∈ V if (a, b, c) ∈ Nijk then the values of h(a)⊕i, h(b)⊕j and h(c)⊕k are not all the same.
Finally, 4-NAESAT is defined similarly over the vocabulary τ4NAESAT = (N0000, . . . , N1111)
with sixteen 4-ary relations.

I Lemma 20. 3-SAT ≤FPC MAXCUT.

Proof. 3-SAT ≤FO 4-NAESAT: Let I = (V,R000, . . . , R111) be any given 3-SAT instance.
Consider a 4-NAESAT instance J = (U,N0000, . . . , N1111) with V ⊂ U , i.e. there is at least
one variable in U not contained in V . Furthermore, let (a, b, c, z) ∈ Nijk0 hold if, and only
if, (a, b, c) ∈ Rijk and z ∈ U\V , and let the relations Nijk1 be empty. The instance J is
now satisfiable if, and only if, I is satisfiable: Whenever there is a satisfying assignment
for I, the same assignment extended with z = 0 for all z ∈ U\V will also be a satisfying
assignment for J. In the other direction, if there is a satisfying assignment for J, there is
always a satisfying one that sets z = 0 for all z ∈ U\V , since negating every variable does
not change the value of a NAE-clause, and each clause only contains one variable in U\V .
In terms of a FPC-interpretation, this construction looks as follows.

We take as universe dom(J) the set V 2, and interpret an element (a, a) as representing
the variable a ∈ V , and any element (a, b), a 6= b as a fresh variable in U\V .

δU (x1, x2) = x1, x2 ∈ V

φNijk0(x̄, ȳ, z̄, w̄) = Rijk(x1, y1, z1) ∧ w1 6= w2 ∧
∧

v̄∈{x̄,ȳ,z̄}

v1 = v2

φNijk1(x̄, ȳ, z̄, w̄) = False
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4-NAESAT ≤FPC 3-NAESAT: Let I = (V,N0000, . . . , N1111) be an instance of
4-NAESAT. Note that we can split every clause NAE(a, b, c, d) into two smaller 3-NAESAT
clauses NAE(a, b, z) and NAE(¬z, c, d) for some fresh variable z. The following interpretation
realises this conversion.

In order to introduce a fresh variable for each clause of the 4-NAESAT instance, the
universe of the 3-NAESAT instance will consist of tuples from V 4 × {0, 1}5, where the first
eight components encode a clause in I and the last component is a flag indicating whether
the element represents a fresh variable or one that appears already in V . The convention is
then that an element of the form (a, a, a, a, 0, . . . , 0) represents the variable a ∈ V , and an
element of the form (a, b, c, d, i, j,m, n, 1) represents the fresh variable that is used to split
the clause Nijmn(a, b, c, d). The remaining relations are defined as empty.

3-NAESAT ≤FPC MAXCUT: The following construction transforms a given 3-NAESAT
instance I = (V,N000, . . . , N111) into an equivalent (decision) MAXCUT instance J =
(dom(J), E,WN ,WD, TN , TD). Let m be the number of clauses in I, and fix M := 10m. For
each variable v ∈ V , we have two vertices denoted v0 and v1, in our graph, along with an
edge (v0, v1) of weight M . For each tuple (x, y, z) ∈ Nijk we add a triangle between the
vertices xi, yj , and zk with edge-weight 1. Setting the cut threshold to t := |V | ·M + 2m
gives us an equivalent instance: If I is satisfiable, say by an assignment f , then the partition
given by p(vi) = f(v) + i mod 2 cuts through every edge of the form (v0, v1), and through
two edges in every triangle, resulting in a payout of |V | ·M + 2m. On the other hand, any
bipartition of payout larger or equal to |V | ·M + 2m has to cut through all edges of the
form (v0, v1), since it can only cut through two edges in each triangle. Hence, any such
bipartition induces a satisfying assignment to the 3-NAESAT instance. We use the following
FPC-interpretation to realise this construction.

The universe of J is defined as a two-sorted set dom(J) = U ∪̇ B, consisting of vertices
U = V × {0, 1} and bit positions B = {1, . . . , α} for some sufficiently large α. In particular,
α has to be chosen larger than log2 t. Since m is at most |V |3, taking α = |V |4 suffices.

δU (x1, x2) = x1 ∈ V, x2 ∈ {0, 1} and δB(µ̄) =
∧

1≤i≤4
µi ≤ #vv ∈ V.

The edge relation is given by

φE(x̄, ȳ) = x1 = y1 ∧ x2 6= y2∨
i,j,k∈{0,1}

∃u, v, w ∈ V : Nijk(u, v, w) ∧ x̄, ȳ ∈ {(u, i), (v, j), (w, k)}.

The edge weights and the cut threshold are defined by

φWN
(x̄, ȳ, β) = x1 = y1 ∧ x2 6= y2 ∧ BIT(1, β)

∨ BIT

10 ·
∑

i,j,k∈{0,1}

#u,v,wNijk(u, v, w), β

 ,

φTN
(β) = BIT

(2 + 10 ·#vv ∈ V ) ·
∑

i,j,k∈{0,1}

#u,v,wNijk(u, v, w), β

 ,

φWD
(x̄, ȳ, β) = BIT(1, β),

φTD
(β) = BIT(1, β).

Note that the weights and the cut threshold are integer, hence the denominator relations
simply code 1. J
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I Lemma 21. 3-SAT is not expressible in Cω.

Proof. Note that a 3-SAT instance I = (V,RI
000, . . . , R

I
111) can also be interpreted as an

instance of CSP(Γ3SAT) for Γ3SAT = {R000, . . . , R111} and Rijk = {0, 1}3\(i, j, k). Hence,
we can apply results from the algebraic classification of CSPs to determine the definability
of 3-SAT. In this context, it has been shown in [4] that the algebra of polymorphisms
corresponding to Γ3SAT contains only essentially unary operations. It follows from the result
in [2] that 3-SAT is not definable in Cω. J

I Theorem 22. Let Γ be a valued constraint language of finite size and let Γ′ be a core of Γ.
If (XOR) holds for Γ′c, then VCSP(Γ) is not expressible in Cω.

Proof. Assume property (XOR) holds for Γ′c. By Lemma 19, MAXCUT FPC-reduces to
VCSP(〈Γ′c〉≡). Lemmas 12 to 16 provide a chain of FPC-reductions from VCSP(〈Γ′c〉≡) to
VCSP(Γ). Since Cω is closed under FPC-reductions, Lemmas 20 and 21 together show that
MAXCUT is not definable in Cω, and hence neither is VCSP(Γ). J

6 Constraint Languages of Infinite Size

In representing the problem VCSP(Γ) as a class of relational structures, we have chosen to
fix a finite relational signature τΓ for each finite Γ. An alternative, uniform representaation
would be to fix a single signature which allows for the representation of instances of VCSP(Γ)
for arbitrary Γ by coding the functions in Γ explicitly in the instance. In this section, we
give a description of how this can be done. Our goal is to show that our results generalise to
this case, and that the definability dichotomy still holds.

Let Γ now be a valued constraint language over some finite domain D. The challenge
of fixing a relational signature for instances of VCSP(Γ) is that different instances may use
different sets of functions of Γ in their constraints, and hence, we cannot represent each
function as a relation in the signature. Instead, we make the functions part of the universe,
together with tuples over D of different arities as their input. Let I be an instance of
VCSP(Γ) where the constraints use functions from a finite subset ΓI ⊂ Γ, and let m be
the maximal arity of any function in ΓI . We then represent I as a structure I with the
multi-sorted universe dom(I) = V ∪̇ C ∪̇ B ∪̇ F ∪̇ T , where V is a set of variables, C a set of
constraints, B a set of numbers on which we have a linear order, F a set of function symbols
corresponding to functions in ΓI , and T is a set of tuples from D ∪D2 ∪ . . . ∪Dm, over the
signature τD = (<,Rfun, Rscope,WN ,WD,DefN ,DefD,Enc). Here, the relations encode the
following information.

Rfun ⊆ C × F : This relation matches functions and constraints, i.e. (c, f) ∈ Rfun denotes
that c = (σ, f, q) is a constraint of the instance for some scope σ and weight q.
Rscope ⊆ C × V ×B: This relation fixes the scope of a constraint, i.e. (c, v, β) ∈ Rscope
denotes that c = (σ, f, q) is a constraint for some function f and weight q, where the β-th
component of σ is v.
WN ,WD ⊆ C × B: This is analogous to the finite case. These two relations together
encode the rational weights of the constraints.
DefN ,DefD ⊆ F ×T ×B: These two relations together fix the definition of some function
symbol in F . That is, (f, t, β) ∈ DefN denotes that the β-th bit of the numerator of the
value of f on input t is 1, and similarly for DefD and the denominator.
Enc ⊆ T × D × B: This relation fixes the encoding of tuples as elements in T , i.e.
(t, a, β) ∈ Enc denotes that the β-th component of the tuple t is the element a ∈ D.
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The above signature allows now for instances I, I ′ with different sets of functions ΓI and ΓI′
to be represented as structures of the same vocabulary. Since the set of function symbols
is part of the universe, the relations DefN ,DefD are required to give concrete meaning to
these function symbols.

We now say, for a (potentially infinite) valued constraint language Γ that VCSP(Γ)
is uniformly definable in FPC if there is an FPC-interpretation of τQ in τD which takes
an instance I of VCSP(Γ) to the cost of its optimal solution. Our inexpressibility result,
Theorem 22, immediately carries over to this setting as it is easy to construct an FPC
reduction from the τΓ representation of VCSP(Γ) to the τD representation.

I Theorem 23. Let Γ be a valued constraint language and let Γ′ be a core of Γ. If (XOR)
holds for Γ′c, then VCSP(Γ) is not uniformly definable in Cω.

For the positive direction, i.e. to show that VCSP(Γ) is uniformly definable in FPC in all
other cases, we simply need to adapt the proof of Theorem 17 to fit the new representation.

I Theorem 24. Let Γ be a valued constraint language and let Γ′ be a core of Γ. If (XOR)
does not hold for Γ′c, then VCSP(Γ) is uniformly definable in FPC.
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Abstract
For many modal logics, dedicated model checkers offer diagnostics (e.g., counterexamples) that
help the user understand the result provided by the solver. Fixpoint logic offers a unifying
framework in which such problems can be expressed and solved, but a drawback of this framework
is that it lacks comprehensive diagnostics generation. We extend the framework with a notion
of evidence, which can be specialised to obtain diagnostics for various model checking problems,
behavioural equivalence and refinement checking problems. We demonstrate this by showing how
our notion of evidence can be used to obtain diagnostics for the problem of deciding stuttering
bisimilarity. Moreover, we show that our notion generalises the existing notions of counterexample
and witness for LTL and ACTL* model checking.
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1 Introduction

Many of the techniques and tools developed for the purpose of verification of software and
hardware systems – such as model checkers for various temporal logics, and refinement
checkers for various behavioural equivalences and preorders – perform checks that can also
be encoded in fixpoint extensions of first-order logic. Rather than having specialised tools
to compute answers to specific verification problems, one can then use a solver for fixpoint
logic to compute answers to such problems. This approach is, e.g., taken by the mCRL2 tool
set [7], which solves model checking problems for transition systems (which are essentially
described by first-order structures) by translating the model checking problem to the problem
of checking validity of a formula in fixpoint logic [15]; in a similar vein, the tool set offers
tools that decide whether there is a behavioural equivalence between two transition systems
by translating the decision problem to fixpoint logic [3].

While using fixpoint logic as a unifying framework for verification problems is desirable
from a theoretical point of view, there are some practical aspects that need to be considered to
prepare such a framework for large scale use. One pertinent problem is the issue of diagnostic
generation. Many specialised tools for, e.g., LTL model checking, provide diagnostics (for
instance in the form of counterexample traces). For fixpoint logic in general, no such notion
yet exists to our knowledge, and it is not immediately obvious how diagnostics generation
for specific verification problems can be fit into the more generic framework of fixpoint logic.

Our contribution is an approach to diagnostic generation in fixpoint logic. As a starting
point for our investigation, we use the notion of a proof graph [9] for a particular fixpoint
logic called parameterised Boolean equation systems (PBES) [16]. Proof graphs for PBESs
are loosely based on the notion of support set of Tan and Cleaveland [23], and provide a
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formal representation of an argument for the validity or invalidity of a fixpoint formula in a
first-order structure. They capture only relevant information about predicates defined by
fixpoints, and their interdependencies; in particular, they abstract from general first-order
reasoning. To build a general theory of evidence for fixpoint logics based on proof graphs,
we need to adapt the notion of proof graph proposed in [9] in two ways:

we include nodes to reveal information about first-order predicates in our proof graphs,
capturing some extra information needed for evidence extraction, and
we integrate the concept of negation (of fixpoint formulas) into our proof graphs, which
was not yet needed in the context of PBES.

Intuitively, evidence is that part of a first-order structure that captures all relevant
information in an argument for the validity or invalidity of a fixpoint formula. Given a proof
graph representing such an argument, we propose to define evidence as a weak substructure
in which all information referred to in the proof graph is still available. The weakest such
substructure we call the evidence projection associated with the proof graph.

We confirm the usefulness of our definition of evidence by suitably instantiating it to
get formal notions of counterexample and witness in the context of behavioural equivalence
checking, and in the context of model checking. First, we define stuttering bisimilarity on
Kripke structures as a general fixpoint formula, and then show how a counterexample can be
obtained using the notion of evidence presented earlier. Second, we show how to retrieve
counterexamples of a linear form (traces) for LTL model checking, and tree-like ones (as
presented by Clarke et al. in [4]) for ∀CTL*/∃CTL* model checking.

The theory of proof graphs has much in common with other formal systems for representing
proofs in the context of logics and calculi including notions of fixpoints or inductively defined
predicates, such as the various tableaux systems for fixpoint logics [17, 11], proof systems for
recursive types (see, e.g., [12] for an overview), and the proof systems for inductively defined
predicates discussed in [1]. It also has a close resemblance with parity games [13]. The notion
of proof graph, however, serves a different purpose, as a stepping stone towards a formal
notion of evidence for fixpoint logics with a focus on the predicates defined as fixpoints. It
therefore only captures relevant information about first-order predicates, predicates defined
by fixpoints, and their interdependencies; in particular, it abstracts from general first-order
reasoning.

To simplify the presentation, we discuss our results in the context of Least Fixpoint
Logic (LFP) which we introduce in Section 2.1 In Section 3 we recap and adapt the notion
of proof graph, and extend it with a notion of evidence for LFP. In Section 4.1, we first
define stuttering bisimilarity on Kripke structures as a general LFP formula, and then show
how a counterexample can be obtained using our notion of evidence. We illustrate how our
proof graphs can also be used to generate counterexamples and witnesses for model checking
problems in Section 4.2, and we conclude in Section 5.

2 Least fixpoint logic

We recall the syntax and semantics of LFP, an extension of first-order logic with least and
greatest fixpoint operators, and we fix some additional notation and concepts needed in the
rest of the paper.

1 In [6] it is shown that they also hold for a more general fixpoint logic that encompasses both LFP and
PBES.
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Let Σ = 〈R,F , ar〉 be a signature consisting of a set of relation symbols R, a set of
function symbols F , and a function ar : R∪ F → N that assigns an arity to every symbol
in R and F . Furthermore, we assume a countably infinite set of first-order variables. We
inductively define a term to be either a first-order variable, or a function symbol of arity n
applied to a sequence of n terms; a term is open if it contains variables, and closed otherwise.
We also presuppose a set X of second-order variables, each with an associated arity; a
second-order variable X of arity n can be thought of as ranging over n-ary relations. Then,
the set of LFP formulas over Σ is defined by the following grammar:

ϕ,ψ ::= Xt̄ | Rt̄ | t1 = t2 | ¬ϕ | ϕ ∨ ψ | ∃x ϕ | [lfpXx̄. ϕ]t̄

with X ranging over the second-order variables in X , R ranging over the relation symbols in
R, x ranging over first-order variables, t1 and t2 ranging over terms, and x̄ and t̄ ranging
over finite sequences of first-order variables and terms of appropriate length. Not all LFP
formulas generated by the grammar above are considered well-formed; for formulas of the
form [lfpXx̄. ϕ]t̄ we impose the additional syntactic requirement that all occurrences of X
in ϕ are positive, i.e., in the scope of an even number of negations. Henceforth, we will only
consider well-formed LFP formulas. We write ϕ v ψ if ϕ is a subformula of ψ.

A (first-order) structure A is a tuple 〈A,Σ, I〉 in which A is a set (the domain of discourse),
Σ is a signature and I is an interpretation function. The interpretation function I is a
mapping that associates with every relation symbol R in Σ a relation RA on A of appropriate
arity, and with every function symbol f in Σ a function fA on A of appropriate arity.

A structure B is a weak substructure of structure A, denoted B vw A, if it has a domain
of discourse B ⊆ A, the same relation and function symbols as A, and an interpretation
function such that for every n-ary relation symbol R we have RB ⊆ RA ∩Bn, and for every
n-ary function symbol f we have that fB(b̄) = fA(b̄) ∈ B for all b̄ ∈ Bn.

Terms and LFP formulas are evaluated on a first-order structure A in a given environment
θ that maps first-order variables to elements of A and second-order variables to relations on A
of appropriate arity. If t is a term, then tA,θ is the element of A denoted by t in environment
θ defined in the usual way (i.e., if t is a variable, then tA,θ = θ(t), and if t = f(t0, . . . , tn),
then tA,θ = fA(tA,θ0 , . . . , tA,θn )). The evaluation of LFP formulas is less straightforward due
to the fixpoint operators. The idea is that, given a second-order variable X of arity n, a
sequence of first-order variables x̄ of length n, and an environment θ, we can associate with
every formula ϕ an operator TA,θ

X,x̄,ϕ on the complete lattice of n-ary relations on A. If all
occurrences of X in ϕ are positive, then the operator TA,θ

X,x̄,ϕ – which is to be defined precisely
below – is monotone on the lattice of n-ary relations on A. Therefore, it has a unique least
fixpoint (see [24]), which we will denote by lfp TA,θ

X,x̄,ϕ. We proceed to define the relation
A, θ |= ϕ and the operators TA,θ

X,x̄,ϕ : An → An (n the arity of X) simultaneously by induction
on the structure of ϕ:

A, θ |= Rt̄ iff t̄A,θ ∈ RA A, θ |= Xt̄ iff t̄A,θ ∈ θ(X)
A, θ |= t1 = t2 iff tA,θ1 = tA,θ2 A, θ |= ¬ϕ iff not A, θ |= ϕ

A, θ |= ϕ ∨ ψ iff A, θ |= ϕ or A, θ |= ψ A, θ |= ∃x ϕ iff A, θ[x 7→ a] |= ϕ for some a ∈ A
A, θ |= [lfpXx̄. ϕ]t̄ iff t̄ ∈ lfp TA,θ

ϕ,X,x̄, where TA,θ
ϕ,X,x̄(R) = {ā | A, θ[X 7→ R, x̄ 7→ ā] |= ϕ}

If A, θ |= ϕ, then we say that ϕ is valid in A and θ. If A, θ |= ϕ for all environments θ, then
we simply say that ϕ is valid in A and write A |= ϕ. We write A, θ 6|= ϕ to indicate that
A, θ |= ϕ does not hold.

To get a more succinct presentation, whenever A, θ, ϕ, X and x̄ are clear from the



S. Cranen, B. Luttik, and T. A. C. Willemse 81

s0 s1 s2

a
a

a

b

Figure 1 An LTS as a first-order structure.
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a
a

s1 s2
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Figure 2 Evidence for ϕ1 and ϕ2 in A.

context, we will omit the super- and subscripts of TA,θ
ϕ,X,x̄ and simply write T. For an

in-depth treatment of fixpoint theory, see e.g. [19, 20].
The notions of free and bound variables of a formula ϕ are defined as usual. By fv(ϕ) we

denote the set of all variables with a free occurrence in ϕ. We sometimes need to express
that environments θ and θ′ agree on the free variables of some formula ϕ; we write θ ≡fv(ϕ) θ

′

if θ(x) = θ′(x) for all first-order variables x ∈ fv(ϕ) and θ(X) = θ′(X) for all second-order
variables X ∈ fv(ϕ). Furthermore, we assume a unique-naming convention, by which a
variable does not have both free and bound occurrences in the formula, and by which a
variable is only bound by a single binder. Only in a few concrete examples we deviate from
this convention in favour of readability.

The constructs ∧, ∀_ _ and [gfp__._]_ are usually treated as syntactic abbreviations:
ϕ∧ψ for ¬(¬ϕ∨¬ψ), ∀x ϕ for ¬∃x ¬ϕ, and [gfpXx̄. ϕ]t̄ for ¬[lfpXx̄.¬ϕ[X 7→ ¬X]]t̄, where
ϕ[X 7→ ¬X] denotes the formula obtained from ϕ by replacing all free occurrences of X in ϕ
by ¬X. For our theory of evidence, to be presented in the next section, it will be convenient,
however, to associate proof graphs directly with formulas in the extended syntax, including,
in particular, the syntactic construct [gfp__._]_ as first-class citizen.

If a formula ψ has a subformula of the form [σXx̄. χ]t̄ (with σ ∈ {lfp,gfp}), then we say
that X is defined in ψ, refer to the subformula [σXx̄. χ]t̄ as the subformula defining X, and
refer to χ as the definition of X. We also let σψ,X = σ, x̄ψ,X = x̄ and ϕψ,X = χ. Usually,
the intended formula ψ will be clear from the context, and can therefore be safely omitted
as a subscripts in these notations. By dv(ψ) we denote the set of all second-order variables
defined in ψ. The formula ψ induces a partial order <ψ on dv(ψ) defined by X <ψ Y if, and
only if, the subformula defining Y is a subformula of the subformula defining X.

I Example 1. A labelled transition system can be seen as a first-order structure with the
set of states as domain of discourse, a binary relation symbol →a for every transition label a,
and a constant symbol for every state (see Figure 1).

LFP formulas can be used to express properties of a transition system. For instance,

ϕ1 = [lfpXs. ∀s′ s →a s′ =⇒ Xs′]s1

expresses that only finitely many consecutive a-transitions can be taken from the state
denoted by the constant s1; this formula is not valid on the labelled transition system in
Figure 1. The LFP formula

ϕ2 = [gfpXs. [lfpY s′. ∃s′′ (s′ →a s′′ ∧ Y s′′) ∨ (s′ →b s′′ ∧Xs′′)]s]s1

expresses – about a system in which every transition is labelled with either a or b – that
from the state s1 there is a path with infinitely many b-transitions; this formula is valid on
the labelled transition system in Figure 1.

3 Evidence based on proof graphs

In this section, we adapt proof graphs, which were originally introduced in [9] for PBESs, to
the setting of LFP. Intuitively, a proof graph serves to capture the essence of a reasoning

CSL 2015



82 Evidence for Fixpoint Logic

〈f, X, [s1]〉 〈f, X, [s0]〉

〈t,→a , [s0, s0]〉〈t,→a , [s1, s0]〉

〈t, X, [s1]〉 〈t, Y, [s1]〉 〈t,→a , [s1, s2]〉

〈t, Y, [s2]〉 〈t,→b , [s2, s1]〉

Figure 3 Proof graphs for A 6|= ϕ1 and A |= ϕ2.

that proves or refutes the validity of an LFP formula in a first-order structure. The notion
of proof graph will be tailored for the purpose of identifying evidence for the validity or
invalidity of an LFP formula inside the first-order structure. Such evidence is a, preferably
smaller, weak substructure that still admits the reasoning for the validity or invalidity as
captured by the proof graph.

Before we formally introduce the notion of proof graph and the associated notion of
evidence, we illustrate the idea by means of some examples.

I Example 2. Consider the LFP formulas of Example 1. To support our claim that ϕ1 is
not valid on the labelled transition system in Figure 1, we construct the proof graph depicted
on the left in Figure 3. Let us represent by 〈f, X, [s1]〉 the statement that the relation defined
by X in ϕ1 does not hold on s1. According to the definition of X in ϕ1, to refute that X
holds on s1 it is enough to find a state s′ such that s1 →a s′ and then refute that X holds on
s′. The state s0 appears to be a good candidate for s′; in our proof graph we will therefore
include dependencies from 〈f, X, [s1]〉 to both 〈t,→a , [s1, s0]〉 (expressing that s1 →a s0) and
〈f, X, [s0]〉 (expressing that X does not hold on s0). Similarly, to refute that X holds on s0
it suffices to include a dependency from 〈f, X, [s0]〉 to 〈t,→a , [s0, s0]〉 and to itself.

Note that the reasoning expressed by this graph only involves the states s0 and s1 and the
transitions s0 →a s0 and s1 →a s0, which suggests that the weak substructure of A depicted
on the left in Figure 2 provides sufficient evidence for the invalidity of ϕ1 in A.

A similar reasoning can be held to construct the proof graph on the right in Figure 3 to
show that ϕ2 is valid in A, resulting in the evidence depicted on the right in Figure 2.

The proof graphs constructed in the example above explain the validity or invalidity of
an LFP formula in a presupposed first-order structure in terms of primitive relations defined
directly on the structure and the relations defined as fixpoints in the formula. Thus, they
abstract from the standard first-order reasoning involved. Proof graphs are going to be the
starting point for our theory of diagnostics for LFP formulas. We shall define evidence for
the validity or invalidity of an LFP formula ϕ in a first-order structure A, based on a proof
graph G, as a weak substructure of A for which G is still a proof graph. For the approach to
be valid, the information about A that is included in G should be both correct and sufficient.
Correctness means that whenever a proof graph includes a node 〈α, V, ā〉, then, depending on
whether α is t or f, the sequence ā should or should not be in the relation on A denoted by
V . Sufficiency means that G includes enough information from A to facilitate reconstruction
of the reasoning reflected by G in every weak substructure of A that inherits at least that
information from A.

We shall now first formally define the notion of proof graph for a first-order structure A,
an LFP formula ϕ, and an environment θ, and then explain how it gives rise to a formal
notion of evidence.

3.1 Proof graphs
The nodes of a proof graph are tuples of the form 〈α, V, ā〉 in which α is either t or f, V is
either a relation symbol or a second-order variable, and ā is a sequence of elements of A the
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length of which corresponds to the arity of V . We denote by S the set of all such nodes, and,
for Y ⊆ R ∪ X , we denote by SY the subset of S consisting of all nodes of which the second
element is from Y, i.e.,

SY = {〈α, V, ā〉 ∈ {t, f} × Y ×A∗ | ar(X) = |ā|}.

We will often use the subscript to refer to nodes in which only specific relations or variables
occur, e.g., S{X} for all nodes of which the second element is the second-order variable X.
To concisely express that the statement represented by a node 〈α, V, ā〉 is true in a structure
A and an environment θ, we write

A, θ |= 〈α, V, ā〉 for
{

ā ∈ θ(V ) ⇐⇒ α = t if V ∈ X , and
ā ∈ V A ⇐⇒ α = t if V ∈ R.

The purpose of the dependency relation of a proof graph is to reflect a sound and complete
reasoning for the truth of each of its nodes of the form 〈α,X, ā〉, with X a variable defined
in ϕ. Our definition of proof graph, below, will impose requirements on the dependency
relation to ensure that the reflected reasoning is sound and complete. First, we present a
local requirement on the dependency relation to ensure that the truth of a node 〈α,X, ā〉 can,
according to the definition of X in ϕ, be inferred from the truth of all its successors together.
This local requirement should, moreover, be satisfied in every substructure with sufficient
information from the perspective of the reflected reasoning. Thus, we obtain the intermediate
notion of dependency graph, which only admits reasonings of which every individual inference
step is justified. To obtain a suitable notion of proof graph, we then still need to add a global
requirement that excludes non-wellfounded reasonings to the extent that they are invalid.
We shall establish that the resulting notion of proof graph is sound and complete: all nodes
in a proof graph for A, θ and ϕ are true in A and θ, and if a node is true in A and θ, then
there is a proof graph that includes it.

Consider a node v = 〈α,X, ā〉, with X a variable defined in ϕ, and let ϕX be the definition
of X in ϕ. We denote by v• the set of successors (the postset) of v. To express that if
the elements of v• are all true, then ϕX forces v to be true as well, we need to be able to
influence the values of the second-order variables defined in ϕX . Let us denote by fo(ϕX)
the formula obtained from ϕX by replacing every [lfpY x̄. ψ]t̄ v ϕX by Y t̄. We can then
consider environments satisfying the nodes in v•, and require that such environments satisfy
fo(ϕX) if, and only if, α = t. To avoid having to distinguish between the different values for
α every time, we introduce the following shorthand notation:

A, θ α|=ϕ denotes A, θ |= ϕ ⇐⇒ α = t.

Recall that we want to use proof graphs to define a notion of evidence for the validity
or invalidity within a first-order structure A. Given a proof graph with nodes S, we will be
looking at weak substructures of A that have a domain of discourse that includes all the
elements that are referenced by the nodes in S. We denote by A � S the smallest (with
respect to vw) weak substructure of A of which the domain of discourse is a superset of
{a ∈ A | ∃〈α,V,c̄〉∈S a ∈ c̄}. Note that, according to the definition of weak substructure, if I
is the interpretation function of A � S, then I(R) = ∅ for all first-order relation symbols R.

We enforce consistency of the reasoning represented by the graph by requiring that the
successors of a node are never contradictory: a relation → ⊆ S × S is consistent if and only
if for all v, X and ā, not both 〈t, X, ā〉 ∈ v• and 〈f, X, ā〉 ∈ v•.

I Definition 3 (dependency graph). A dependency graph for A, θ and ϕ is a directed graph
〈S,→〉 with S ⊆ S and → ⊆ S × S, such that → is consistent, and for all 〈α, V, ā〉 ∈ S:
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if V ∈ dv(ϕ):

for all A � S vw B vw A and all η such that η ≡fv(ϕ) θ,

if B, η |= v for all v ∈ 〈α, V, ā〉• then B, η[x̄V 7→ ā] α|= fo(ϕV )

if V /∈ dv(ϕ):
A, θ |= 〈α, V, ā〉 and 〈α, V, ā〉• = ∅

I Example 4. Let A be the transition system in Figure 1. The left graph in Figure 3 is a
dependency graph for A, any θ and ϕ1, and the right graph in Figure 3 is a dependency
graph for A, any θ and ϕ2. Let us verify in some detail that the left graph in Figure 3 indeed
satisfies the conditions of dependency graphs.

Clearly, the dependency relation of the graph in Figure 3 is consistent. Furthermore, the
nodes 〈t,→a , [s0, s0]〉 and 〈t,→a , [s1, s0]〉 do not have successors and they are true in A.

For the nodes 〈f, X, [s0]〉 and 〈f, X, [s1]〉 we need to check the first condition of Definition 3.
We show how to check the condition for 〈f, X, [s0]〉, the check for 〈f, X, [s1]〉 is similar.
Consider a weak substructure B of A and an environment η (η ≡fv(ϕ1) θ holds for every η
because fv(ϕ1) = ∅) such thatB, η |= 〈f, X, [s0]〉 andB, η |= 〈t,→a , [s0, s0]〉. The latter means
that B, η |= s0 →a s0, and the former means that B, η 6|= Xs0, so B, η 6|= s0 →a s0 =⇒ Xs0.
This is equivalent to B, η f |= fo(ϕX).

A least fixpoint is proved by an inductive argument, which is necessarily well-founded. A
greatest fixpoint is proved by a coinductive argument, which need not be well-founded. In
fact, a coinductive argument of a statement can be thought of as a reasoning that argues the
absence of a well-founded reasoning for the negation of the statement. The quantification
over all well-founded reasonings gives rise to a reasoning that is inherently not well-founded.
A dependency graph admits reasonings that are not well-founded without taking into account
whether such reasonings are justified. We formulate an extra requirement on dependency
graphs to filter out invalid non-well-founded reasonings. Let IX(π) denotes the set of indices
i on path π such that πi ∈ S{X}.

I Definition 5 (proof graph). A dependency graph G = 〈S,→〉 for A, θ and ϕ is a proof
graph iff for every infinite path π in G, for all X minimal w.r.t. <ϕ such that IX(π) is infinite
it holds that:

if σX = lfp, then {i ∈ IX(π) | ∃ā πi = 〈t, X, ā〉} is finite; and
if σX = gfp, then {i ∈ IX(π) | ∃ā πi = 〈f, X, ā〉} is finite.

I Example 6. As we saw in Example 4, the graphs in Figure 3 are dependency graphs; it
remains to verify that they satisfy the condition of Definition 5 to conclude that they are proof
graphs. For the proof graph on the right in Figure 3 the reasoning is as follows: On every
infinite path π in the graph, each of the three nodes 〈t, X, [s1]〉, 〈t, Y, [s1]〉, and 〈t, Y, [s2]〉
occur infinitely often. Note that X is the (only) <ϕ2 -minimal second-order variable on such an
infinite path. We have that σϕ2,X = gfp, and, indeed, the set {i ∈ IX(π) | ∃ā πi = 〈f, X, ā〉}
is finite.

The following theorem, which is proved for an equally expressive, but syntactically more
general fixpoint logic (it has LFP as a normal form) in [6], establishes that the notion of
proof graph defined above is sound and complete for capturing reasoning about the validity
of relations defined by fixpoints in LFP formulas. Soundness here means that whenever a
proof graph for a structure A, an environment θ and a formula ϕ includes a node 〈α,X, ā〉
with X a second-order variable defined in ϕ, then 〈α,X, ā〉 expresses a true statement with
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respect to A, θ and ϕ. That is, the relation on A associated with X by ϕ includes ā if α = t,
and the relation on A associated with X by ϕ does not include ā if α = f. Conversely,
completeness means that if 〈α,X, ā〉 expresses a true statement with respect to A, θ and ϕ,
then there exists a proof graph for A, θ and ϕ including this node.

I Theorem 7. Let A be a first-order structure, let θ be an environment, let ϕ be an LFP
formula, and let X be a second-order variable defined in ϕ. Then, for all 〈α,X, ā〉 ∈ S{X},
the following are equivalent:

There exists a proof graph for A, θ and ϕ that includes the node 〈α,X, ā〉.
ā ∈ σXTA,θ

ϕX ,X,x̄X
⇐⇒ α = t,

The notion of proof graph defined above deviates in two respects from the notion
introduced for PBESs in [9]. Firstly, the new notion requires nodes to be included that
capture the information about the first-order relations in the original structure that is needed
in the reasoning reflected by the proof graph. These nodes will be used in Section 3.2 to
extract an appropriate weak substructure that can serve as evidence. Secondly, the new notion
includes an extra {t, f}-element in a node, which facilitates the inclusion in a proof graph of
both positive and negative statements as to whether relations hold for certain sequences of
elements, and an associated additional consistency requirement for the dependency relation.
Such a facility was not needed in the setting of PBESs by the absence of negation.

3.2 Evidence
We proceed to define a general notion of evidence based on proof graphs. In Section 4 we
illustrate how this notion can be used to provide diagnostics for behavioural equivalence
checking, and we will show that this notion specialises to familiar notions of evidence in the
context of model checking.

It follows from Theorem 7 that for LFP formulas of the form [σXx̄. ϕ]t̄ we have that

A, θ α|=[σXx̄. ϕ]t̄ iff there exists a proof graph for A, θ and [σXx̄. ϕ]t̄
that includes a node 〈α,X, t̄A,θ〉.

We shall refer to a proof graph for A, θ and [σXx̄. ϕ]t̄ that includes the node 〈α,X, t̄A,θ〉
as a proof graph for A, θ α|=[σXx̄. ϕ]t̄. Since, in fact, every LFP formula ψ is equivalent to
[lfpX0. ψ], provided that X0 /∈ dv(ψ) ∪ fv(ψ), we may use the terminology more generally:
a proof graph for A, θ α|=ψ is a proof graph for A, θ α|=[lfpX0. ψ] if ψ is not already of
the form [σXx̄. ϕ]t̄ for some X, x̄, ϕ and t̄. We now propose the following definition of
evidence for LFP formulas, which formalises that evidence based on some proof graph for
the (in)validity of an LFP formula in a first-order structure is that part of the structure that
facilitates the reasoning reflected by that proof graph.

I Definition 8 (evidence). By evidence for A, θ α|=ϕ we mean a weak substructure B vw A

such that there is a proof graph for B, θ α|=ϕ that is also a proof graph for A, θ α|=ϕ.

Naturally, we would like evidence to be as concise as possible, and so we would like to
obtain, given a proof graph for A, θ α|=ϕ, the smallest weak substructure of A that serves as
suitable evidence.

I Definition 9 (evidence projection). Given a proof graph 〈S,→〉 for A, θ α|=ϕ, define
ev(〈S,→〉) as the smallest B vw A such that for each node 〈β, V, ā〉 ∈ S (with V ∈ R ∪ X )
we have ā ∈ B∗, and for each v ∈ S \ SX we have B, θ |= v.
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It is easy to see that ev(〈S,→〉) as defined in the preceding definition always exists, and
that it can be computed straightforwardly from A � S by adding, for every node 〈t, R, ā〉,
the sequence ā to the interpretation of relation symbol R.

I Theorem 10. If G is a proof graph for A, θ α|=ϕ, then ev(G) is evidence for A, θ α|=ϕ.

Our notion of evidence projection results in the smallest evidence for A, θ α|=ϕ given a
particular proof graph. There may, however, be many proof graphs for A, θ α|=ϕ, and it
appears that, roughly speaking, smaller proof graphs lead to smaller evidence. A proof graph
may contain redundant information; a subgraph that contains no redundant nodes or edges is
called a minimal proof graph. We refer to [9] for a more elaborate discussion on minimality.

4 Counterexamples and witnesses

Some problems that can be encoded in fixpoint logic consist of checking an ‘implementation’
against a ‘specification’. For instance, if the behaviour of some system is described as a Kripke
structure, and we want to establish correctness properties on that Kripke structure, then we
may view it as an ‘implementation’ of sorts, which we could check against a set of CTL*
formulas, the ‘specifications’. We might also want to check if this Kripke structure refines
another, more abstract Kripke structure. In this case, the ‘specification’ is not a formula,
but another Kripke structure. We refer to such problems as model checking problems.

For problems that have this characteristic of a division into implementation and specific-
ation, we tend to think of the specification as being given and well-understood, whereas
the implementation may contain mistakes that need to be clarified with diagnostics. Such
diagnostics should highlight the parts of the implementation that cause a problem, but should
not include details from the specification. To achieve this, we propose a general scheme that
combines an implementation A with a specification B, and that extracts the information
from A from evidence relating to the combined structure. These combination and extraction
operations are defined in terms of the operators ∪ and ∩. Essentially, the ∪ operator must
merge two structures A and B together, and the ∩ operator must be able to retrieve a
weak substructure of A again from the merged structure. Natural candidates to implement
these operations on the domain of discourse of the two structures are the set union and set
intersection operations. The function and relation symbols are also obtained by taking the
set union or intersection of the symbols in A and B.

If R is a relation symbol with interpretations in both A and B, then RA∪B = RA ∪RB

and RA∩B = RA∩RB, and if R only has an interpretation in A (resp. B), then RA∪B = RA

(resp. RA∪B = RB). A natural way to define the interpretation of a function symbol f in
A ∩B is to define fA∩B as the restriction of fA to the new domain of discourse, A ∩ B.
Defining the interpretation for f in A∪B is problematic however, if fA and fB do not agree
on the intersection of their domains. If they do agree on this intersection, we can define
fA∪B such that it assigns to every input the same output as fA does if the input is in the
domain of fA, or the output of fB if the input is in the domain of fB.

For pairs of structures in which the interpretation of the function symbols are compatible
in this way – we will call such structures composable – we define union and intersection
operators ∪ and ∩ as described above. Using these operators, witnesses and counterexamples
can be extracted as follows.

I Definition 11. If A and B are composable structures, E vw A ∪B, θ is an environment
and ϕ is an LFP formula such that E is evidence for A ∪B, θ α|=ϕ, then we call E ∩ A an
A-witness if α = t. We call it an A-counterexample if α = f.
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If, from the context, it is clear which structure was used to extract the A-witness, we
simply refer to the resulting structure as a witness; likewise for counterexamples. A desirable
property of a witness is that it can be related to the structure from which it is derived.
Furthermore, a witness should contain all the information that is essential in proving the
same LFP formula ϕ.

I Theorem 12 ([6]). If A and B are composable, θ is an environment, ϕ is an LFP formula
over A ∪B, and C is an A-counterexample or A-witness for A ∪B, θ α|=ϕ, then

C vw A and C ∪B, θ α|=ϕ.

Usually, ϕ will be a closed formula, in which case the value of θ is irrelevant. In such cases,
we will not explicitly mention θ, but assume that an arbitrary environment is given. In the
following sections we will give an example of a formula that encodes stuttering equivalence
checking, in which case A and B are Kripke structures, and an example of a formula that
encodes ∃ECTL* model checking, in which case A is a Kripke structure, and B is a structure
that represents an ∃ECTL* formula. This approach differs from those in [3, 14, 15], in which
a different fixpoint formula is generated for every A and B.

4.1 Counterexamples for stuttering bisimulation checking
To illustrate the use of the ∪ and ∩ operators on structures, and to illustrate how counter-
examples can be extracted for an equivalence checking problem, we consider the problem
of checking that two systems are stuttering bisimilar. We use Namjoshi’s formulation of
stuttering bisimulation [21], because it already closely resembles our definition in LFP.

I Definition 13. Given a Kripke structure 〈A,AP,→, `〉, a relation X ⊆ A×A is a stuttering
bisimulation if and only if it is symmetric, and there exist a well-founded order 〈W,≺〉 and
some mapping rank : A×A×A→W such that for all s, t such that Xst:

`(s) = `(t) ∧ ∀u s→ u =⇒ ((Xut ∧ rank(u, u, t) ≺ rank(s, s, t)) ∨
∃v t→ v ∧ ((Xsv ∧ rank(u, s, v) ≺ rank(u, s, t)) ∨Xuv)).

States s and t are said to be stuttering bisimilar, denoted s ' t, if a stuttering bisimulation
exists that relates s and t.

I Proposition 1 ([6]). Let A be a Kripke structure 〈A,AP,→, `〉.

Φlr , [gfpXst.Xts ∧ `(s) = `(t) ∧
[lfpY st. ∀u s→ u =⇒ ((Xut ∧ Y ut) ∨

[lfpZsut. ∃v t→ v ∧ ((Xsv ∧ Zsuv) ∨Xuv))]sut]st]lr

If l and r are terms of A and s = lA and t = rA, then A |= Φlr if and only if s ' t.

Consider the following two Kripke structures, that are stutter trace equivalent, but not
stutter bisimulation equivalent.

L =
l0{a}

l1 {a} l2 {c}l3{b}
R =

r0{a}

r1{b} r2 {c}

Let A = L ∪R, and suppose that lL = l0 and rR = r0. Consider the following proof graph
for A |=/ Φlr.
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〈f, X, [l0, r0]〉 〈f, Y, [l0, r0]〉 〈f, Z, [l0, l1, r0]〉
〈f, X, [l0, r2]〉
〈f, X, [l1, r2]〉

〈f, X, [l0, r1]〉
〈f, X, [l1, r1]〉

〈t,→, [l0, l1]〉 〈f, X, [l1, r0]〉

〈f, X, [r0, l1]〉

〈f, Y, [r0, l1]〉

〈f, X, [r2, l1]〉〈t,→, [r0, r2]〉

〈f, Z, [r0, r2, l1]〉
〈f, X, [r0, l3]〉
〈f, X, [r2, l3]〉

To extract evidence from this proof graph, we construct an evidence projection as per
Definition 9. That is, we construct a substructure B vw A which must contain at least those
states from L and R referred to in the proof graph (all states from L and R), and which
satisfies l0 → l1 and r0 → r2. This yields the following Kripke structure B as evidence. Note
that B ∩ L and B ∩R return the offending parts of L and R, respectively.

l0{a}

l1 {a} l2 {c}l3{b}

r0{a}

r1{b} r2 {c}

Observe that in B, l0 and r0 are again not stuttering bisimilar, and moreover, they can
be shown not to be equivalent with the same reasoning: the transition from l0 to a state
unrelated to r0 with label a cannot be mimicked by r0. All the states from A are retained
in the evidence, because the existential quantifier requires an explanation for the invalidity
of every X-node in the proof graph. Taking the projection of the proof graph minimised
with respect to B would yield evidence in which only the reachable states from l0 and r0 are
included.

Other proof graphs are possible, leading to different evidence. For instance, if we
had chosen 〈f, X, [l0, r0]〉 to depend on 〈f, X, [r0, l0]〉 (using the symmetry of stuttering
bisimulation), we could have obtained evidence in which only the edge r0 → r1 was retained.
The explanation here is that it is sufficient to show that r0 can reach an equivalence class
labelled with b, without moving through another class first, whereas l0 cannot do so.

We would like to remark that there are alternatives to our notion of evidence for bisimula-
tion and stuttering bisimulation. For instance, a common notion is a distinguishing formula
in Hennessy-Milner logic (for bisimulation [5]) or CTL*\X (for stuttering bisimulation [18]).
However, in our experience, such formulas tend to get very unwieldy and do not always offer
much insight. We believe that our notion of evidence can be a more practical alternative to
distinguishing formulas in such cases.

4.2 Counterexamples for LTL and ACTL* model checking
In [4], Clarke et al. noted that for certain model checking problems, instead of generating
substructures, one can generate counterexamples of a specific form: for LTL model checking,
counterexamples are usually defined as a single (possibly infinite) trace through the model
that does not satisfy the specification. These traces can again be seen as Kripke structures
that do not satisfy the desired property. For model checking ∀CTL* – a subset of CTL*
which adds to LTL universal quantification over branches – counterexamples consist of a
number of traces that are attached to each other in a tree-like fashion. More formally, a
tree-like counterexample is a Kripke structure that can be simulated by the system under
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scrutiny, which does not satisfy the desired property, in which every strongly connected
component (SCC) consists of a single cycle, and of which the SCC decomposition is a tree.

In the remainder of this section, we show that these special types of counterexample
can be obtained from proof graphs. To simplify presentation, we consider the dual problem
of generating witnesses for ∃CTL*. Furthermore, to also capture the expressivity of the
ω-regular extensions used in [4], we consider the extended logic ∃ECTL* (originally presented
in [25]), which uses Büchi automata as primitives. We note that it is also possible to define
what follows directly for ∃CTL*, but this requires encoding the translation of LTL to Büchi
automata in first-order logic, as was done in [8].

An ∃ECTL* formula f can be described by a structure Bf over a domain that includes
at least one element for every subformula and every set of subformulas of f, and for each
subformula of the form E(B) a unique element for every state of B. We let Bf contain an
element representing AP and an element representing the set F of accepting Büchi states.
We assume that it also includes the usual relations on sets, relations to recover the structure
of formulas, and a ternary transition relation → for the Büchi automata. To distinguish
CTL* operators from Boolean connectives, we add a dot to the CTL* operators: ¬· for CTL*
negation, and ∧· ,∨· for CTL* conjunction and disjunction. A structured LFP encoding of the
∃ECTL* model checking problem is given below.

I Proposition 2. Let Φ be defined as:

Φsf , [lfpXsf.



(f ∈ AP ∧ f ∈ `(s))
∨ ∃g (f = ¬· g ∧ g /∈ `(s))
∨ ∃g,h (f = g∨· h ∧ (Xsg ∨Xsh))
∨ ∃g,h (f = g∧· h ∧Xsg ∧Xsh))
∨ ∃b (f = E(B(b)) ∧Ψsb)

]sf

Ψsb , [gfpY sb.

[lfpZsb. ∃s′,b′,g s→ s′ ∧ b →g b′ ∧Xsg ∧
((b′ ∈ F ∧ Y s′b′) ∨ (b′ /∈ F ∧ Zs′b′))]sb]sb

Let A be a Kripke structure over AP, and let f be an ∃ECTL* formula over AP. If s is a
term of A and f is a term of B, and â = sA and b̂ = fBf , then A ∪Bf |= Φsf if and only
if A, â |= b̂.

Let G be a minimal proof graph for A ∪Bf |= Φsf . Firstly, the first element of all nodes in
G that are also in SX is equal to t. Notice that per Definition 5, G cannot contain cycles
that pass through S{X}. Because G is minimal, nodes from S{Y,Z} have exactly one successor
in S{Y,Z}. Therefore, the only cycles in G are cycles through S{Y,Z}, and every node in the
proof graph can be in at most one cycle, leading to the following property:

I Property 1. Let G be a minimal proof graph for A ∪Bf |= Φsf . Then every SCC in G
consists of a single cycle.

I Example 14. Consider the ∃ECTL* formula E(B(b0))∧· E(B(b1)), where b0 and b1 are
states of the Büchi automata below; the formula expresses that there are infinite y-paths
and infinite x-paths.

b0 b1

x y

k0

{x, y}
k1

{y}
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〈t, X, [k0, E(B(b0))∧· E(B(b1))]〉〈t, X, [k0, E(B(b0))]〉

〈t, Y, [k0, b0]〉

〈t, Z, [k0, b0]〉

〈t,→, [b0, b0]〉

〈t, F, [b0]〉

〈t, X, [k0, x]〉

〈t,∈, [x, {x, y}]〉〈t,∈, [x, AP]〉

〈t, X, [k0, E(B(b1))]〉

〈t, Y, [k0, b1]〉

〈t, Z, [k0, b1]〉〈t, F, [b1]〉 〈t, X, [k0, y]〉

〈t,∈, [y, {x, y}]〉

〈t,∈, [y, AP]〉〈t, Y, [k1, b1]〉

〈t, Z, [k1, b1]〉 〈t, X, [k1, y]〉

〈t,→, [b1, b1]〉

〈t,→, [k0, k0]〉

〈t,→, [k0, k1]〉

〈t,→, [k1, k0]〉 〈t,∈, [y, {y}]〉

Figure 4 A proof graph explaining that state k0 satisfies E(B(b0))∧· E(B(b1)).

The state k0 of the Kripke structure satisfies the ∃ECTL* formula. Following Proposition 2,
Φk0(E(B(b0))∧· E(B(b1))) must therefore hold. Indeed, a proof graph explaining this is given
in Figure 4. This proof graph is minimal: none of its edges or nodes are redundant. The
proof graph contains two SCCs, and no cycle passes through nodes from S{X}. The witness
obtained from the proof graph of Figure 4, consisting of all Kripke structure states and
relations defined by the shaded proof graph nodes, is essentially the original Kripke structure.

Our goal is to obtain a tree-like witness from a proof graph for A ∪Bf |= Φsf , if state
â satisfies ∃ECTL* formula b̂. We do so by first finding a witness in which every SCC is
again a single cycle. We can however not use the witness obtained from G by Definition 11,
because disjoint cycles in G may correspond to cycles in A that share nodes. This may lead
to a witness with SCCs that are no longer simple cycles.

To ensure that SCCs become simple cycles, in [4], cycles that share a subset of their
nodes are ‘unrolled’. In ibid. this is done by running a model checking algorithm not on
A, but on a bisimilar indexed Kripke structure Aω, which contains for every cycle in A an
infinitely unrolled path. We adopt the same approach: we transform G to a proof graph for
Aω ∪Bf |= Φsf , and then use Definition 11 to extract a witness from this proof graph.

I Definition 15. Given a Kripke structure A = 〈A,AP,→, `〉, its corresponding indexed
Kripke structure Aω is the Kripke structure 〈Aω,AP,→ω, `ω〉 such that:

Aω = A× N,
→ω is such that 〈a, i〉 →ω 〈a′, j〉 iff a→ a′ (for all a, a′, i and j),
`ω is such that `ω(〈a, i〉) = `(a).

Note that every a ∈ A is bisimilar to all 〈a, i〉 ∈ Aω. Therefore, fixing some i ∈ N
and replacing every a ∈ A occurring as a parameter of a node in G by 〈a, i〉 yields a valid
proof graph Gi (for Aω ∪Bf ). For distinct i and j, the sets of nodes of Gi and Gj that
have outgoing edges are disjoint, so Gi ∪ Gj is again a valid proof graph. By the same
reasoning, so is Gω =

⋃
i∈NG

i. Associate with every node v of G a distinct number k(v),
fixing k(〈t, X, [â, b̂]〉) = 0, and extend k to nodes of Gω by defining for v in G and v′ in Gω
that k(v′) = k(v) iff v′ is equal to v in which every a ∈ A is replaced by 〈a, i〉.

For every v in Gω ∩S{Z}, we replace every edge v → 〈t, V, [〈a, i〉, b]〉 with V ∈ {Y,Z} and
i 6= k(v) by v → 〈t, V, [〈a, k(v)〉, b]〉. Note that v also has a successor 〈t,→, [〈a′, i〉, 〈a, i〉]〉.
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Replace this successor by the node 〈t,→, [〈a′, i〉, 〈a, k(v)〉]〉. Let Gt be the result of this
transformation, restricted to the part that is reachable from v0 = 〈t, X, [〈â, 0〉, 〈b̂, 0〉]〉. This
transformation preserves Property 1:

I Property 2. Every SCC in Gt consists of a single cycle.

Gt is a valid dependency graph again; the restriction to the reachable part from v0 is easily
seen to preserve the conditions of Definitions 3 and 5. In the replacements we made, only the
first and last conjunct in the right-hand side of the equation for Z are affected by a different
choice for s′. These two conjuncts are represented by the new successors we introduced,
satisfying the constraint from Definition 3.

To see that Gt is also a proof graph for Aω ∪Bf |= Φsf , notice that no ‘bad’ cycles were
introduced during the transformation: if we view proof graphs as Kripke structures in which
two nodes are labelled identically if and only if they differ only in the index of a state in Aω

(i.e., if they are of the form 〈t, V, [〈a, i〉, b]〉 and 〈t, V, [〈a, j〉, b]〉), then all identically labelled
nodes in Gω are bisimilar. Moreover, we only replaced edges v → u by v → u′ such that u
and u′ are bisimilar.

I Example 16. Consider the nodes 〈t, Z, [〈k0, j〉, b0]〉 in Gω. Note that these have edges
to 〈t, Y, [〈k0, j〉, b0]〉. Let k(〈t, Z, [k0, b0]〉) = 1. The transformation then yields edges
〈t, Z, [〈k0, j〉, b0]〉 → 〈t, Y, [〈k0, 1〉, b0]〉. Likewise, the successors 〈t,→, [〈k0, j〉, 〈k0, j〉]〉 are all
replaced with 〈t,→, [〈k0, j〉, 〈k0, 1〉]〉; see the small snippet of Gt depicted below (left). A
witness from Gt, as per Definition 11 is depicted below (right); note that it is tree-like.

〈t, Z, [〈k0, 0〉, b0]〉〈t,→, [〈k0, 0〉, 〈k0, 1〉]〉

. . .
〈t, Y, [〈k0, 1〉, b0]〉

〈t, Z, [〈k0, 1〉, b0]〉

. . .

〈t,→, [〈k0, 1〉, 〈k0, 1〉]〉

〈k0, 0〉{x, y}

〈k0, 1〉{x, y}

〈k1, 2〉 {y}

〈k0, 3〉 {x, y}

〈k1, 3〉 {y}

We now define a witness C as defined in Definition 11, i.e., C = ev(Gt)∩Aω. The following
theorem characterises the shape of C; the theorem essentially follows from a correspondence
between the transition relation of Gt and C.

I Theorem 17 ([6]). Every SCC in C consists of a single cycle and C is weakly connected.

If the SCC decomposition of C is not a tree, C can be transformed to a bisimilar, tree-like
structure Ct by duplicating SCCs with more than one incoming transition. A simulates Ct
because A is bisimilar to Aω, C vw Aω, and C is again bisimilar to Ct. The fact that f holds
on C follows from Proposition 2, so we may conclude that f also holds on the bisimilar Ct.

I Corollary 18. Ct is a tree-like witness.

In ∃ELTL model checking there is at most one Büchi automaton in the formula and
therefore at most one cycle in G. The SCC duplication described above is then unnecessary.

I Corollary 19. If f was an ∃ELTL formula, then C is a linear witness.

5 Concluding remarks

The diagnostics generation framework presented in this paper is inspired by Tan’s attempt
at diagnostics generation from support sets [23], which was shown to be flawed in [9]. The
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diagnostics generation frameworks by Chechik and Gurfinkel [2], and Shoham and Grumberg
[22] generate counterexamples and witnesses for CTL, for the purpose of counterexample
guided abstraction refinement. The game-based approach of these frameworks is similar to
ours, but aimed at a specific application, and in case of [22], at efficient computation. Our
framework is more general in comparison, because it defines counterexamples and witnesses
for a large variety of model checking problems, and also provides a notion of evidence for the
more general setting of least fixpoint logic. Our contribution lies in providing a framework in
which diagnostics for a wider variety of problems can be understood in the same way, while
focusing less on how such diagnostics are obtained (although suggestions on how to do this
are given in [6]).

In order to define our notion of evidence, we have adapted the notion of proof graph from
[9] to include constructs that deal with negation. A side effect is that these proof graphs also
induce a semantics for non-monotone formulas; for instance, one could assert that the formula
[lfpXn. n = 0 ∨ ¬X(n− 1)]4 holds on the first-order structure 〈Z,−, 0〉, because there is a
proof graph that witnesses it. It would be interesting to investigate whether this yields a
usable semantics, and in particular, how it relates to the fixpoint theorem for non-monotonic
functions in [10].

Our notion of evidence projection (see Definition 9) yields that part of a first-order
structure that is relevant for the particular proof or refutation of a fixpoint formula captured
by a proof graph. In some cases, the evidence projection alone will provide sufficient insight
as to why the formula holds or does not hold, but in other cases it may be necessary to
combine the evidence projection with additional information from the proof graph. We leave
it as future work to further develop a theory of practical diagnostics based on the notions of
proof graph and evidence discussed here.

Acknowledgements. The authors would like to thank the CSL reviewers for their construct-
ive feedback and useful suggestions.
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Abstract
The size of shortest cut-free proofs of first-order formulas in intuitionistic sequent calculus is
known to be non-elementary in the worst case in terms of the size of given sequent proofs with
cuts of the same formulas. In contrast to that fact, we provide an elementary bound for the
size of cut-free proofs for disjunction-free intuitionistic logic for the case where the cut-formulas
of the original proof are prenex. To emphasize the non-triviality of our result, we establish
non-elementary lower bounds for classical disjunction-free proofs with prenex cut-formulas and
intuitionistic disjunction-free proofs with non-prenex cut-formulas.
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1 Introduction

The elimination of cuts (viz. lemmas) from given sequent calculus proofs has remained in
the focus of proof theory ever since Gentzen’s seminal paper [4] from 1934/35. It is well
known that the worst case complexity of cut-elimination is non-elementary for first-order
intuitionistic as well as classical logic [8, 7, 3]. More precisely, there is a sequence of formulas
〈Fi〉i∈ω, where Fi has an LI-proof of length ≤ f(i), for some elementary function f(i), while
the shortest cut-free LI-proof of Fi is of length ≥ g(i) for some non-elementary function

g(i). (This means that g(i) grows faster than 2. . .2i

, for any stack of 2s that is of constant
height). Here LI is Gentzen’s sequent calculus for first-order intuitionistic logic. The same
result holds for the classical sequent calculus LK. The result is very robust: it does not
matter whether we define the length of a proof as the number of symbols, formulas or just
inference steps in it; moreover we may use any of the many known variants of Gentzen’s
original calculus.

It seems to be difficult to extract tight upper bounds from Gentzen’s original cut-
elimination procedure for LI [4]. Hudelmaier [5] provides a quadruple exponential upper
bound for a suitable variant of propositional LI. However no elementary upper bound for cut-
elimination seems to be known for non-trivial genuine first-order fragments of intuitionistic
logics. The purpose of this paper is to show that one can in fact eliminate cuts involving

∗ This work was partly supported by Austrian Science Fund (FWF) projects P25417 and P26976.
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only prenex cut-formulas from disjunction-free intuitionistic sequent proofs without non-
elementary increase in the size of proofs. To obtain that elementary bound a new type of a
cut-elimination argument is presented. The result is sharp in at least two respects. As we will
show, in the following cases there exist non-elementary lower bounds for cut-elimination: (1)
classical disjunction-free sequent derivations with prenex cut-formulas, and (2) intuitionistic
disjunction-free sequent derivations with non-prenex cut-formulas.

The paper is organized as follows. In Section 2 we introduce the sequent calculus LI−∨m for
disjunction-free intuitionistic logic and fix corresponding terminology. We then present the
overall procedure for eliminating prenex cut-formulas from LI−∨m -derivations in three steps.
First, in Section 3, we consider the special case, where all cut-formulas in the given derivation
are quantified atomic formulas. We then use this result in Section 4 in a transformation that
trades arbitrarily complex prenex cut-formulas for propositional cut-formulas. In Section 5 we
show how the remaining propositional cut-formulas can be eliminated from LI−∨m -derivations.
In all three cases the depth of the resulting derivation will be elementarily bounded by the
depth of the derivation we start with. In Section 6, we show that not only the depth, but also
the size of the final cut-free proof is elementarily bounded in terms of the size of the original
proof with arbitrary complex prenex cuts. While this follows straightforwardly for languages
without function symbol, a further transformation step is involved in the presence of function
symbols. In Section 7 we contrast the elementary upper bound for the elimination of prenex
cuts with two cases where there exists a non-elementary lower bound for cut-elimination:
disjunction-free classical logic with prenex atomic cuts and disjunction-free intuitionistic
logic with non-prenex cuts.

2 Preliminaries

We work in a standard first-order language without identity. Terms are built up from
constants and variables using function symbols, as usual. We follow Gentzen in syntactically
distinguishing free variables a1, a2, . . . and bound variables x1, x2, . . . , y1, . . .. Atomic formulas
– atoms, for short – are of the form P (t1, . . . , tn), where P is a n-ary predicate symbol and
t1, . . . , tn are terms. Formulas of (general) intuitionistic logic are built up from atoms using
the propositional connectives ¬, ∧, ∨, ⊃ and the quantifiers ∀, ∃. If there are no occurrences
of ∨ we speak of disjunction-free intuitionistic logic. The size |F | of a formula F is the
number of symbols occurring in it. A formula is prenex if it is of the form Q1x1 . . .QnxnA,
where A is propositional, ie., quantifier-free. If the quantifier-free part A of a prenex formula
is an atom we speak of a prenex atom.

We consider the following variant of Gentzen’s original calculus LI that we will refer
to as LI−∨m . There is at most one formula at the right side of the sequent arrow, denoted
here as `; whereas on the left hand side we may have any finite multiset of formulas. In the
following rules Γ and Π denote arbitrary finite multisets of formulas, ∆ is either a single
formula or empty. Multiset-union is denoted not by the comma, as usual. As usual, we write
Γ,Π instead of Γ ] Π and Γ, A instead of Γ ] {A}, etc, where ] is the union operator for
multisets.

Axioms:
A ` A where A is atomic

Cut Rule:
Γ ` A A,Π ` ∆

Γ,Π ` ∆
(cut)
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Structural Rules:
Γ, A,A ` ∆

Γ, A ` ∆
(contr)

Γ ` ∆
A,Γ ` ∆

(weak, l)
Γ `

Γ ` A
(weak, r)

Logical Rules (Propostional and Quantifier Rules):
Γ, A `
Γ ` ¬A

(¬, r)
Γ ` A

Γ,¬A `
(¬, l)

Γ, A ` B
Γ ` A ⊃ B

(⊃, r)
Γ ` A B,Π ` ∆
Γ,Π, A ⊃ B ` ∆

(⊃, l)

Γ ` A Π ` B
Γ,Π ` A ∧B

(∧, r)
Γ, A ` ∆

Γ, A ∧B ` ∆
(∧1, l)

Γ, B ` ∆
Γ, A ∧B ` ∆

(∧2, l)

Γ ` A(a)
Γ ` ∀xA(x)

(∀, r)
Γ, A(t) ` ∆

Γ, ∀xA(x) ` ∆
(∀, l)

Γ ` A(t)
Γ ` ∃xA(x)

(∃, r)
Γ, A(a) ` ∆

Γ, ∃xA(x) ` ∆
(∃, l)

In (∀, r) and (∃, l) a denotes an eigenvariable, i.e., a variable that does not occur in Γ. In
(∀, l) and (∃, r) t denotes an arbitrary term.

Besides the missing rules for disjunction, LI−∨m differs from Gentzen’s original intuitionistic
sequent calculus LI in the following respects: (1) LI−∨m is based on multisets instead of
Gentzen’s sequences of formulas, which allows us to dispense with the exchange rule of LI.
(2) Whereas Gentzen uses additive rules for introducing connectives, the logical rules of LI−∨m
are multiplicative, except for the left conjunction rules. The subscript m in LI−∨m is intended
as a reminder on this fact. (3) We insist on atomic axioms; i.e., axioms where the exhibited
formula is atomic.

An LI−∨m -derivation of an end-sequent Γ ` ∆ is an upward growing tree of sequents,
obtained from instantiating the above rules as usual, starting with the root node Γ ` ∆. If
the end-sequent is ` F we speak of a proof of F .

We need a few further technical notions for investigating LI−∨m -derivations. The exhibited
formula occurrence (A) in the left and right upper sequents of the cut-rule is called cut-
formula. The exhibited formula occurrence in the lower sequent of a structural, propositional
or quantifier rule is called the principal formula (occurrence) of the corresponding inference.
The formula occurrences exhibited in the upper sequent are called immediate ancestors of
the corresponding principal formula in the lower sequent. The formulas in Γ, Π, ∆ are called
side formulas. Each occurrence of a side formula, say F , in the lower sequent of a rule has a
unique corresponding occurrence of the same side formula F in (one of) the corresponding
upper sequent(s). This upper occurrence of F is called the immediate predecessor of the
lower occurrence of F .

Given a derivation γ, any occurrence F of a formula in γ spawns an ancestor tree τγ(F )
defined inductively as follows:

the given occurrence of F is the root of τγ(F );
if G is a node in τγ(F ), where G is principal formula of an inference in γ, then the
immediate ancestor(s) of G in γ are (is) the successor node(s) of G;
if G is a node in τγ(F ), where G is a side formula of an inference in γ, then the immediate
predecessor of G in γ is the successor node of G.

The height h(τγ(F )) of the ancestor tree is defined as usual, where h(τγ(F )) = 0 if τγ(F )
consists only of the root F . Note that an ancestor tree only branches at nodes that are
occurrences of principal formulas of contractions, i.e., applications of (contr), or else of the
rules (⊃, l) or (∧, r). Every leaf node of an ancestor tree occurs either in axiom or at the
lower sequent of a weakening, i.e. an application of (weak, l) or (weak, r).

A derivation π is regular if each application of (∀, r) and (∃, l) in π is associated with a
unique eigenvariable, which is converted into a bound variable by the corresponding inference.
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A derivation π is pruned if every branch of π contains any sequent at most once and moreover
each formula occurs at most three times on the left hand side of any sequent.

The size |π| of a derivation π (in LI−∨m or any other sequent calculus) is the sum of
the sizes of all formulas occurrences in π. The height h(π) of π is the largest number of
consecutive inferences in π. (In other words, h(π) is the maximal length of a branch of π.)

3 Prenex atomic cut-formulas

As outlined in the Introduction, we present the overall cut-elimination procedure in three
stages. First, in this section, we consider the special case, where all cut-formulas in the given
LI−∨m -derivation are quantified atoms.

We start with the following simple, but crucial observation.

I Lemma 1. Let γ be a cut-free LI−∨m -derivation of Γ ` A, where A is a quantified atom
Q~xP (~t). Then the ancestor tree τγ(A) is not branching. I.e., τγ(A) consists in a unique
thread of formula occurrences A1, . . . , An, where A1 is the indicated occurrence of A = Q~xP (~t)
and Ai+1 is either the immediate ancestor or the immediate predecessor of Ai in γ.

Proof. It suffices to observe that all nodes in τγ(A) are quantified or unquantified atomic
formulas that occur on the right hand side of a sequent. Therefore, each non-leaf node
in τγ(A) has a unique successor that is either its immediate predecessor in γ or else the
immediate ancestor of it for an inference (∀, r) or (∃, r). J

Remember that Gentzen [4] replaced the cut-rule by the mix-rule in order to formulation
his argument for the eliminability of cuts. We will use a different generalization of (cut),
called multi-cut rule (cut+):

Γ1 ` A1 · · · Γn ` An A1, . . . , An,Π ` ∆
Γ1, . . . ,Γn,Π ` ∆ (cut+)

Clearly, for n = 1 (cut+) coincides with the ordinary cut-rule (cut). On the other hand,
(cut+) is readily simulated by n applications of (cut). In the the following, we will assume
that in LI−∨m (cut) is replaced by by (cut+).

We will call the rightmost upper sequent of an instance of (cut+) its main premise. Let us
call the occurrences of A1, . . . , An in the main premise lhs cut-formulas (since they occur on
the left hand side of the sequent). By the lhs-depth of an instance of the multi-cut rule in a
derivation γ we mean the maximal height of the ancestor trees max(d(τγ(A1)), . . . , d(τγ(An)),
where A1, . . . , An are the lhs cut-formulas of this instance of (cut+).

I Theorem 2. Let π be an LI−∨m -derivation of Γ ` ∆, where each cut-formula is a prenex
atom. Then there exists an elementary function f , such that the following holds: there exists
a cut-free LI−∨m -derivation π0 of Γ ` ∆, such that h(π0) ≤ f(h(π)).

Proof. Throughout the proof we will assume implicitly that π is regular and that regularity
is restored at each transformation step by using variable-renamed copies of sub-derivations
where needed. We first focus on the elimination of (multi-)cuts and investigate the increase
in complexity separately. Therefore we may assume without loss of generality that the last
inference of π is the only instance of (cut+) in π. In contrast to Gentzen’s procedure (and its
variants) we do not need nested induction in our case, but only induction over the lhs-depth
d of the (only) multi-cut.

d = 0:
This entails that n = 1, since otherwise one of the lhs cut-formulas must have been introduced
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already earlier in π (i.e., above the main premise), contradicting the assumption that the
ancestor trees of the lhs cut-formulas consist of only those formulas themselves. There are
two cases:
(1): If the main premise is an axiom then the application of the cut-rule is clearly redundant.
(2): If the cut-formula in the main premise has been introduced by weakening, then π has

the form

...
Γ ` A

...
Π ` ∆
A,Π ` ∆ (weak, l)

Γ,Π ` ∆ (cut+)

and therefore the end-sequent Γ,Π ` ∆ can be obtained without cut by continuing the
upper right sub-derivation of Π ` ∆ by iterated weakening to restore Γ.

d > 0:
We distinguish the following cases according to the type of the inference that has the main
premise of the multi-cut as its lower sequent. We will refer to this inference as the ‘relevant
inference’ in the following.
(1): If the principal formula of the relevant inference is not among the cut-formula the

following subcases arise.
(1.1): The relevant inference is a unary propositional rule. We only present the case for

(∧1, l), since (∧1, r), (⊃, r), (¬, l), (¬, r) are treated analogously. π thus has the form

...
Γ1 ` A1 · · ·

...
Γn ` An

...
A1, ..., An, C,Π ` ∆

A1, ..., An, C ∧D,Π ` ∆ (∧1, l)

Γ1, ...,Γn, C ∧D,Π ` ∆ (cut+)

To decrease d, π is transformed into
...

Γ1 ` A1 · · ·
...

Γn ` An

...
A1, ..., An, C,Π ` ∆

Γ1, ...,Γn, C,Π ` ∆ (cut+)

Γ1, ...,Γn, C ∧D,Π ` ∆ (∧1, l)

(1.2): The relevant inference is a binary propositional rule, We present the case for (∧, r);
the case for (⊃, l) is similar. π has the form

...
Γ1 ` A1 · · ·

...
Γn ` An

...
A∗l ,Πl ` C

...
A∗r ,Πr ` D

A1, ..., An,Π ` C ∧D
(∧, r)

Γ1, ...,Γn,Π ` C ∧D
(cut+)

where Πl ] Πr = Π and A∗l ] A∗r = A1, ..., An, by which we mean that the multiset
Π partitions into the disjoint sub-multisets Πl and Πr. Similarly A∗l = Ai1 , ...Aik
and A∗r = Aj1 , ...Ajm , where {i1, ...ik} ∪ {j1, ...jm} = {1, . . . , n} are disjoint subsets of
indices.
Let γl denote the derivation

...
Γi1 ` Ai1 · · ·

...
Γik ` Aik

...
A∗l ,Πl ` C

Γi1 , ...,Γik ,Πl ` C
(cut+)
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and let γr denote the derivation
...

Γj1 ` Ajm
· · ·

...
Γj1 ` Ajm

...
A∗r ,Πr ` C

Γj1 , ...,Γjm ,Πr ` C
(cut+)

Then π is replaced by

γl γr
Γ1, ...,Γn,Π ` C ∧D

(∧, r)

(1.3): The relevant inference is a quantifier rule. We only present the case for (∀, r); the
case for (∃, l) is analogous. The cases for (∀, l) and (∃, r) are similar, but even simpler,
since they not involve variable renaming. For (∀, r) π has the form

...
Γ1 ` A1 · · ·

...
Γn ` An

... δ
A1, ..., An,Π ` F (a)
A1, ..., An,Π ` ∀xF (x)

(∀, r)

Γ1, ...,Γn,Π ` ∀xF (x) (cut+)

To decrease d, π is transformed into

...
Γ1 ` A1 · · ·

...
Γn ` An

... δ′

A1, ..., An,Π ` F (b)
Γ1, ...,Γn,Π ` F (b) (cut+)

Γ1, ...,Γn,Π ` ∀xF (x)
(∀, r)

where b is a free variable that does not occur in Γ1, ...,Γn and δ′ arises from the δ by
renaming a to b everywhere in this derivation.

(1.4): If the relevant inference is a structural rule, then the application of (cut+) can
straightforwardly be shifted upwards, similarly to the cases above.

(2): If the principal formula of the relevant inference is a cut-formula then the following
sub-cases arise.
(2.1): If the relevant inference is a contraction (contr) operating on one of the cut-

formulas, then π has the form

... δ
Γ1 ` A1 · · ·

...
Γn ` An

...
A1, A1, ..., An,Π ` ∆
A1, ..., An,Π ` ∆ (contr)

Γ1, ...,Γn,Π ` ∆ (cut+)

To decrease d, π is transformed into

... δ′

Γ1 ` A1

...
Γ1 ` A1 · · ·

...
Γn ` An

...
A1, A1, ..., An,Π ` ∆

Γ1,Γ1, ...,Γn,Π ` ∆ (cut+)

Γ1, ...,Γn,Π ` ∆ (contr)∗

where (contr)∗ denotes a series of contractions and the sub-derivation δ′ is obtained
from δ by renaming free variables to ensure regularity (if needed).
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(2.2): The relevant inference introduces a cut-formula by weakening. Then π has the
form

...
Γ1 ` A1 · · ·

...
Γn ` An

...
A2, ..., An,Π ` ∆

A1, A2..., An,Π ` ∆ (weak, l)

Γ1, ...,Γn,Π ` ∆ (cut+)

To decrease d, π is transformed into
...

Γ2 ` A2 · · ·
...

Γn ` An

...
A2, ..., An,Π ` ∆

Γ2, ...,Γn,Π ` ∆ (cut+)

Γ1,Γ2, ...,Γn,Π ` ∆ (weak, l)∗

where (weak, l)∗ denotes a series of weakenings.
(2.3): The relevant inference introduces a quantifier of a cut-formula. We present the

case for (∃, l). (The case for (∀, l) is similar.) Thus π has the form

... δ
Γ1 ` ∃xA(x) · · ·

...
Γn ` An

... η
A(a), A2..., An,Π ` ∆
∃xA(x), A2..., An,Π ` ∆

(∀, r)

Γ1, ...,Γn,Π ` ∆ (cut+)

where we first assume that the derivation δ has the following form:
... γ0

Π1 ` A(t)
Π1 ` ∃xA(x)

(∃, r)

γ−
. . .
...

Γ1 ` ∃xA(x)

By Lemma 1, the ancestor tree of the occurrence of ∃xA(x) in the end-sequent of δ
consists in a single branch σ of formula occurrences. The indicated instance of (∃, r)
denotes the location in σ, where ∃xA(x) has A(t) as its immediate ancestor; γ− denotes
the part of δ that is obtained by removing the sub-derivation γ0 of Π1 ` ∃xA(x) from δ.
The derivation replacing π, whereby d is decreased, can now be presented as

... γ0
Π1 ` A(t) · · ·

...
Γn ` An

... η′

A(t), A2..., An,Π ` ∆
Π1, ...,Γn,Π ` ∆ (cut+)

γ+ . . .
...

Γ1, ...,Γn,Π ` ∆

where η′ is obtained from η by substituting all occurrences of a by t and γ+ is obtained
from γ− by replacing the occurrences of ∃xA(x) in the ancestor tree σ by ∆ and
additionally adding Γ2, . . . ,Γn,Π at the left hand side of those sequents where ∆ has
replaced ∃xA(x).
The other subcase arises if the uppermost occurrence of ∃xA(x) in the derivation δ is
not introduced by an application of (∃, r), as above, but by weakening. In other words
γ0 ends in Π1 `. This derivation leads to a cut-free derivation of Γ1 ` and therefore
also one of Γ1, ...,Γn,Π ` ∆ by iterated weakening.
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This concludes the description of steps for shifting and eventually eliminating an uppermost
cut. By repeating the argument, we arrive at the desired cut-free proof π0 of Γ ` ∆.

As for the complexity bound, we first investigate the increase in the height of the derivation
for the elimination of a single cut. To this aim, note that for any sequent in the original
derivation π the maximal number of occurrences of formulas at the left hand side is not
increased throughout the cut-elimination procedure. This number is clearly exponentially
bounded in terms of h(π). Next we look at single steps of moving the cut upwards in the
derivation, as indicated in the various cases of the inductive proof. No increase in height
arises at the first base case (d = 0, cut with an axiom). For the other base case (d = 0,
cut with a cut-formula introduced by (weak, l)), the weakenings needed to turn Γ ` ∆ into
Γ,Π ` ∆ in the new derivation without cut may increase its height by at most h. For the
cases where d > 0, we observe that in the cases (1.1), (1.2), (1.3), and (1.4) the height
of the derivation is increased at most by 1. In case (2.1) the height may be increased by
the additional applications of (contr); in case (2.2) the height may be increased by the
additional applications of (weak, l); in case (2.3) the height may be increased by appending
the derivation γ+ below the cut. In all three cases the increase is again bounded by h. Since
the lhs-depth d is decreased at each step and since d ≤ h, we arrive at a bound h2 for the
height of a derivation where an uppermost cut in π is eliminated. In repeating the argument
for the next cut to be eliminated, we have to replace h by h2, resulting in the bound h22 = h4.
Continuing in this manner until the last cut is eliminated, we obtain that the height h(π0) of
the final derivation π0 is bounded by h(2h), which is clearly elementary in h(π). J

I Remark. Clearly tighter complexity bounds could be extracted. However we are only
interested in the contrast between an elementary and a non-elementary increase, here.

I Remark. Our argument essentially differs in several respects from other cut-elimination
proofs, in particular also from Gentzen’s original [4]. That unnested induction over the
lhs-depth of a (multi-)cut suffices in our case is due to the observation stated as Lemma 1.
It only holds in the absence of disjunction.

4 Complex prenex cut-formulas

In Section 3 we have seen that cuts with prenex atomic cut-formulas can be eliminated from
LI−∨m -derivations without incurring a non-elementary increase in the height of proofs. In this
section we show that arbitrary complex prenex cut-formulas can be replaced by atomic ones
for the price of introducing propositional cuts, i.e., applications of cut, where the cut-formula
is quantifier free. The complexity of this transformation is negligible in our context.

I Theorem 3. Let π be an LI−∨m -derivation of Γ ` ∆, where each cut-formula is prenex. Then
there exists an LI−∨m -derivation πp0 of Γ ` ∆ that only contains propositional cut-formulas,
such that h(πp0) ≤ f(h(π)) for some elementary function f .

Proof. We first present the transformation of π into πp0 in three separate stages and investigate
the corresponding increase in height afterwards. (Again, regularity is assumed without further
mentioning throughout the proof.)
Stage 1: We first consider the case, where the last inference of π is the only cut in π. The
case where the cut-formula is a prenex atom is covered by Theorem 2. Therefore we assume
that the cut-formula is of the form ~Q~xB, where B is a compound propositional formula and
~Q~x denotes a non-empty string Q1x1 . . .Qnxn of quantifier occurrences, where Qi ∈ {∀, ∃}
for 1 ≤ i ≤ n. We first make the following observation.
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I Fact 1. If either the ancestor tree of the left cut-formula in π or the ancestor tree of the
right cut-formula in π only contains quantified formulas, then the corresponding cut-formula
can be traced back to ancestors that have been introduced by weakening. In that case the cut
can be eliminated just like in the analogous cases in the proof of Theorem 2.

In the remaining (general) case π can be depicted as follows.

...
Γ′ ` ρB

. . .
...

(Qn, r)

Γ ` ~Q~xB

...
σB,Π′ ` ∆′

. . .
... . .

.
(Qn, l)

~Q~xB,Π ` ∆
Γ,Π ` ∆ (cut)

where ρB denotes a quantifier-free formula occurrence in the ancestor tree of the cut-formula
at the left premise of (cut), where (Qn, r) introduces the innermost quantifier Qnxn of
~Q~xB. Analogously, for σB and (Qn, l) at the right part of the derivation. ρ and σ are the
substitutions that replace the bound variables in B by appropriate free variables or terms,
respectively.

Let A = PB(a1, . . . , an, b1, . . . , bm) be an atom, where PB is a new predicate symbol,
a1, . . . , an are free variables corresponding to the bound variables occurring in B, and
b1, . . . , bm are free variables corresponding to the free variables occurring in B. We then
introduce implications that define A as ‘abbreviation’ of B. Accordingly π is transformed
into the following derivation π′.

...
Π ` ρB

...
ρA ` ρA

ρB ⊃ ρA,Π ` ρA (⊃, l)

∀~x(B ⊃ A),Π ` ρA
(∀, l)∗

. . .
...

(Q1, r)

∀~x(B ⊃ A),Γ ` ~Q~xA

...
Π ` σA

...
σB ` σB

σA, σA ⊃ σB,Π′ ` ∆′
(⊃, l)

σA, ∀~x(A ⊃ B),Π′ ` ∆′
(∀, l)∗

. . .
... . .

.
(Q1, l)

~Q~xA, ∀~x(A ⊃ B),Π ` ∆
∀~x(B ⊃ A), ∀~x(A ⊃ B),Γ,Π ` ∆

(cut)

This transformation is repeated for every cut-formula that is not already a prenex atomic
formula.

Stage 2: The derivation π′ obtained from Stage 1 contains only prenex atomic cut-formulas.
Therefore we can apply Theorem 2 to obtain a cut-free derivation π′0 of Π,Γ ` ∆, where Π
denotes the ‘defining implications’ introduced in Stage 1.

Stage 3: For every cut-formula ~Q~xB of the original derivation π, we replace all occurrences
of (instances of) the atoms A, introduced in Stage 1, by (corresponding instances of) B. This
results in sub-derivations that have the following form.

...
Ψl ` ρB

...
ρB,Ψr ` Λ′

ρB ⊃ ρB,Ψl,Ψr ` Λ′
(⊃, l)

. . .
... . .

.

∀~x(B ⊃ B),Ψl,Ψr,Ψ ` Λ
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The indicated instance of (⊃, l) can be replaced by an instance of (cut) to obtain

...
Ψl ` ρB

...
ρB,Ψr ` Λ′

Ψl,Ψr ` Λ′
(cut)

. . .
... . .

.

Ψl,Ψr,Ψ ` Λ

Note that the replacement of the atom A by the compound formula B actually results in a
derivation that is not a proper LI−∨m -derivation, since it will contain leaf nodes of the form
C ` C, where C is a compound propositional formula. However such ‘improper axioms’ can
readily be replaced by derivations from atomic axioms. This finally results in the derivation
πp0 of Γ ` ∆ that trades prenex atomic cuts for propositional cuts.

It remains to investigate the increase in the height of the derivation. In Stage 1, in the
case covered by Fact 1 we argue like in the corresponding case in the proof of Theorem 2:
a cut-formula introduced by weakening is eliminated for the (possible) price of at most
h additional weakenings, where h = h(π) + 1. In the general case, exhibited above, the
transformation in Stage 1 may increase the depth by the additional introductions of universal
quantifiers as indicated. There are as many such inferences as there are quantifier occurrences
in the corresponding cut-formula. But these quantifier occurrences have been introduced by
corresponding instances of quantifier rules already in the original derivation π and therefore
the increase in height is again bounded by h. Repeating this for all cut-formulas, we obtain
an overall bound of h2 for Stage 1.

For Stage 2 we obtain an elementary bound from Theorem 2.
In Stage 3 the increase in height arises from the augmented derivations of improper

(non-atomic, but propositional) axioms C ` C. The height of such derivations is bounded
by the size of C, which in turn is not greater than h(π), since C must already have been
introduced from (atomic) axioms in π. (Remember that we have eliminated cut-formulas
that trace back to ancestors introduced by weakening.) Moreover there are at most h(π)
such formulas.

Summing up, we obtain that the height of the final derivation πp0 is elementarily bounded
in the height of the original derivation π. J

5 Eliminating propositional cuts

We complete our cut-elimination proof by showing that propositional cuts can always be
eliminated from LI−∨m -derivations without incurring a non-elementary increase in proof size.

I Theorem 4. Let π be an LI−∨m -derivation of Γ ` ∆, where each cut-formula is propositional.
Then there exists a cut-free LI−∨m -derivation π0 of Γ ` ∆, such that h(π0) ≤ f(h(π)) for some
elementary function f .

Proof. We will not directly argue about the (ordinary) height h(π) of a derivation π,
but instead consider the variant h̄(π), defined like h(π), except that applications of the
contraction and weakening rules are not counted. In other words h̄(π) is the maximal number
of applications propositional and quantifier rules occurring in any branch of π. We will also
talk of the depth of a formula occurrence F in a derivation π. By this we mean the height
h̄(π′) without counting contractions and weakenings in the sub-derivation π′ of π that has as
its root the sequent containing the indicated formula occurrence F .
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Let CF (π) denote the set of different propositional formulas that occur as cut-formulas
in π, augmented by all their subformulas. Starting with a cut-formula F of maximal size we
will stepwise reduce CF (π) until it is empty. The following cases arise.

(1) F is atomic: We consider all sub-derivations of π that end in a cut, where the atomic
cut-formula F is a deepest occurrence of F in π. Let

... δ
Γ ` F

F ` F · · · F ` F
. . .

...
γ
. .
.

F,Π ` ∆
Γ,Π ` ∆ (cut)

be such a sub-derivation, where the exhibited axioms in γ are those where the occurrence
of F at the left side is in the ancestor tree of the exhibited cut-formula F . (Note that, by
assumption, neither δ nor γ contains a cut with F .) The cut is eliminated by replacing
theses axioms with copies of the sub-derivation δ, resulting in

... δ
Γ ` F · · ·

... δ
Γ ` F

. . .
... . .
.

Γ, . . . ,Γ,Π ` ∆
Γ,Π ` ∆ (contr)∗

The above picture is in fact only adequate if all leaf nodes of the mentioned ancestor
tree of the cut-formula F occur in axioms. But such ancestors of the cut-formula may
also result from applications of (weak, l). In each such case the introduction of the
corresponding occurrence of F is redundant, which in turn might render also applications
of the contraction rule that lead to the cut-formula itself redundant. In fact it can happen
that there is no axiom at all that contains an ancestor of the cut-formula. In that case,
the cut, together with corresponding applications of (weak, l) and possibly also (contr)
is redundant as well.
Another processing step that is left implicit in the above picture is the restoration of
regularity to ensure that the eigenvariable condition for quantifier rules is preserved in
further transformation steps. This is readily achieved by using variable-renamed copies
of the sub-derivation δ.
We additionally eliminate other cuts with the cut-formula F occurring γ in the same
manner, i.e., by replacing the axioms that contain the leaf nodes of the ancestor tree
of the cut-formula F at the right upper sequent of the corresponding cut by δ (and/or
eliminating redundant applications of weakening and contraction). While this renders
the left upper sequent of the cut – say Π′ ` F – redundant we have to add the missing
multiset Π′ of formulas by applying additional weakenings at the position, where originally
the cut-rule was applied.
As already indicated, the above transformation is to be applied simultaneously to all
deepest occurrences of the atomic formula F as cut-formula in π. There might be further
occurrences of F as cut-formulas in the resulting derivation π′, entailing CF (π′) = CF (π).
However note that each such occurrence of F must be less deep in π, than the deepest
occurrences of F as cut-formula in π. Furthermore note that h̄(π′) ≤ h̄(π) + h̄(δ).
By iterating the transformation (always applied to all currently deepest occurrence of
the cut-formula F ) we arrive at a derivation π′′, where CF (π′′) = CF (π) − {F} and
h̄(π′′) ≤ h̄(π) · h̄(δ) ≤ h̄(π)2.
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(2) F is not atomic: We only consider the case, where F is of the form A ⊃ B; the cases
for negation and conjunction are similar. We depict π as follows:

. . .
δ

...
Γ0, A ` B

Γ0 ` A ⊃ B
(⊃, r)

...
Γ ` A ⊃ B

... γA1
Π′1 ` A

... γB1
B,Π′′1 ` ∆1

A ⊃ B,Π1 ` ∆1
(⊃, l) · · ·

... γAn
Π′n ` A

... γBn
B,Π′′n ` ∆n

A ⊃ B,Πn ` ∆n
(⊃, l)

. . .
...
γ . .

.

A ⊃ B,Π ` ∆
Γ,Π ` ∆ (cut)

where Πi = Π′i ]Π′′i for i ∈ {1, . . . , n}. We first assume that no occurrence of A ⊃ B in
the ancestor trees of the two cut-formulas is introduced by weakening. The exhibited
occurrences of (⊃, r) and of (⊃, l) indicate all locations in π, where the first occurrence
of the cut-formula in the corresponding ancestor tree is introduced. Let δ′ denote the
derivation ending in A,Γ ` B that results from δ by eliminating the exhibited occurrences
of (⊃, r). The exhibited cut is eliminated by transforming π into

... γA
1

Π′1 ` A

... δ′

A,Γ ` B
Γ,Π′1 ` B

(cut)
... γB

1
B,Π′′1 ` ∆1

Γ,Π1 ` ∆1
(cut) · · ·

... γA
n

Π′n ` A

... δ′

A,Γ ` B
Γ,Π′n ` B

(cut)
... γB

n

B,Π′′n ` ∆1

Γ,Πn ` ∆n
(cut)

. . .
... . .

.

Γ, . . . ,Γ,Π ` ∆
Γ,Π ` ∆ (contr)∗

where the various copies of the sub-derivation δ′ are variable-renamed to ensure the
eigenvariable condition. If an occurrence of A ⊃ B in the ancestor tree of one of the two
cut-formulas is introduced by weakening, rather than by an implication rule, then the cut
can be eliminated as usual at the possible expense of additional weakening to keep the
side formulas of the redundant upper sequents of the cut in the derivation.
Like in case (1) we also eliminate all other cuts with cut-formula A ⊃ B that occur in γ
(i.e., above the right upper sequent of the exhibited deepest cut in π) in an analogous
manner to obtain a derivation π′, where the deepest occurrence of A ⊃ B as cut-formula
is smaller than in π. Also like in case (1), we have h̄(π′) ≤ h̄(π) + h̄(δ) and, by iterating
the transformation, obtain a derivation π′′, where CF (π′′) = CF (π) − {A ⊃ B} and
h̄(π′′) ≤ h̄(π) · h̄(δ) ≤ h̄(π)2 ≤ h(π)2.

We have seen that the elimination of a single formula from CF (π) may be achieved at a
quadratic expense in terms of h = h(π). Eliminating a second cut-formula from CF (π)
therefore results in a derivation of height ≤ (h2)2 = h4. By repeating the transformation for
all n formulas in CF (π) we thus obtain the bound h(2n) for a cut-free proof π′0 of the original
end-sequent Γ ` ∆. Since n ≤ 2h, we have h̄(π′0) ≤ g(h(π)) for some elementary function g.

Note that in extracting this bound from our cut-elimination procedure we made essential
use of the fact that applications of the contraction and weakening rules are not counted
in h̄(π′0). To establish an elementary bound in terms of the ordinary height, as stated in
the theorem, we finally have to remove redundant copies of sequents as well as redundant
formula occurrences from sequents in π′0. More precisely, we prune π′0 to obtain π0 as follows.
(A similar pruning process is already implicit in [4] and described in more detail in [3].)
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(1) Suppose π′0 contains a redundant copy of a sequent Ψ ` Λ. Then we replace

... γ
Ψ ` Λ
. . .
... . .
.

Ψ ` Λ
. . .
... . .
.

Γ ` ∆

by

... γ
Ψ ` Λ
. . .
... . .
.

Γ ` ∆

(2) To ensure that each sequent contains at most three occurrences of the same formula at
the left hand side of any sequent, we proceed as follows. Tracing the derivation downwards
from the axioms, we apply the contraction rule immediately below any sequent containing
two copies of the same formula at the left hand side. (More than one such application
of (contr) may be needed, since a binary inference rule may result in several pairs of
copies of the same formula.) This leaves us with a derivation, where a formula A may
disappear altogether from a lower sequent of an inference rule. In case A is needed as the
immediate ancestor of a principal formula in a later inference step, we simply add A by
weakening, immediately before the corresponding inference.

A sequent in a pruned derivation has at most 3k + 1 formula occurrences, where k is
the number of different formulas that occur in it. Therefore, there are at most (m+ 1)3m+1

different sequents in the pruned cut-free derivation π0 of Γ ` ∆, if m is the number of
different subformulas occurring in π′0. Clearly, (m+ 1)3m+1 also limits the height h(π0) of π0.
To complete the proof of Theorem 4, it remains to check that m is elementarily bounded in
terms of h̄(π′0) and h(π). To this aim it suffices to observe that every formula occurring in π′0
that does not appear in Γ ` ∆ must appear in the ancestor tree of the principal formula of
an application of a quantifier rule in π′0. Therefore there are less than 2h̄(π′

0) such formulas.
On the other hand, every formula that occurs in Γ ` ∆, must either occur in an axiom or
as the principal formula of an inference in π, which bounds the number of such formulas
by 2h(π). J

6 Elementary bounds on the size of cut-free derivations

Let us bring together the results of the previous sections and see how bounds on the height
of cut-free derivations translate into bounds on the size (number of symbols) of derivations.
This yields the main result of this paper, which can be formulated as the following corollary
to Theorems 2, 3, and 4.

I Corollary 5. Let π be an LI−∨m -derivation of Γ ` ∆, where each cut-formula is a prenex
formula. Then there exists a cut-free LI−∨m -derivation π0 of Γ ` ∆, such that |π0| ≤ f(|π|)
for some elementary function f .

Proof. The following three observations suffice.
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(1) The class of elementary functions is closed under composition. Therefore, by applying
first Theorem 3 (which in turn uses Theorem 2) and then Theorem 4, we obtain an
elementary upper bound on the height h(π0) of the cut-free derivation π0 in terms of the
height h(π) and consequently also the size |π| of the original derivation π.

(2) As we have seen at the end of the proof of Theorem 4, π0 can be assumed to be pruned.
But both, the number of sequents as well as the number of formula occurrences in any
pruned derivation are elementary bounded by its height.

(3) If the language does not contain function symbols then theorem follows immediately
from (1) and (2), since then the size of (number of symbols in) a derivation is linear in
the number of formula occurrences in it.
The case for languages with function symbols is somewhat more involved. We argue that
every cut-free proof π0 can be transformed into one where the size of terms occurring in
it is elementary bounded by the size of terms occurring in the end-sequent of π0 and the
number of formula occurrences in π0. To this aim, the derivation is processed upwards
(i.e., from the end-sequent towards the axioms) as follows. Whenever an inference of
type (∀, r) or (∃, l), introducing ∀xA(x) or ∃xA(x), respectively, is encountered, replace
the corresponding the eigenvariable a in all ancestors of those occurrences of ∀xA(x) or
∃xA(x) by a new constant. Whenever an inference of type (∀, l) or (∃, r) is encountered,
a term t in the upper sequents must have been replaced by a bound variable. Replace all
corresponding occurrences of t in all ancestors of the principal formula of this inference
by a new variable. The resulting tree of sequents γ is not a valid derivation, in general.
However by applying everywhere in γ the most general simultaneous unifier of the pairs of
atoms at the left and right side of leaf nodes of γ, these leaf nodes are restored to proper
axioms. Finally we re-substitute fresh variables for the new constants introduced earlier.
Since the applied substititution (unifier) is most general it is guaranteed that the newly
introduced constants turn into variables that satisfy the eigenvariable condition. We thus
obtain a proper cut-free derivation, where not only the number of formula occurrences,
but also their sizes are properly bounded. (We use the fact that the size of terms in a
most general unifier is exponentially bounded by size of terms in the unified atom [6].)

This concludes the proof. J

7 Non-elementary lower bounds for related cases of cut-elimination

To emphasize the non-triviality of our main result – elementary cut-elimination for LI−∨m –
we contrast it with the following two facts.
(1) There exists a non-elementary lower bound for cut-elimination in classical disjunction-free

proofs with prenex atomic cuts.
(2) There exists a non-elementary lower bound for cut-elimination in intuitionistic disjunction-

free proofs with non-prenex cuts.

To state (1) more precisely, let LK−∨m be the classical sequent calculus with multiplicative
rules, but without rules for disjunction. (In fact it does not really matter which version of
the sequent calculus we use. The following result is very robust.)

We say that elimination of certain types of cuts for a given sequent calculus is not
elementary bounded if there exists a sequence π1, π2, . . . of derivations of sizes |π1|, |π2|, . . .,
where |πi| ≤ f(i) (i ≥ 1) for some elementary function f , but |π∗i | ≥ g(i) for some non-
elementary function g, where π∗i is the shortest cut-free derivation of the end-sequent of πi.

I Theorem 6. The elimination of prenex atomic cuts is not elementary bounded for LK−∨m ,
even if the language does not contain function symbols.
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Proof. By Theorem 3.3 of [1] a derivation with arbitrary cut-formulas can be reduced to
a derivation with only prenex cut-formulas at a quadratic expense in terms of its size.
(The number of cuts may increase in this transformation.) Since we are in classical logic,
disjunction-freeness is inessential: A ∨B may be replaced by ¬A ⊃ B everywhere at linear
expense. We may then use the argument of Theorem 3 in Section 4 to obtain a derivation
of the same end-sequent, with only prenex atomic cut-formulas. (The argument does not
depend on the restricted form of intuitionistic sequents.) By Corollary 5 the increase in size is
elementarily bounded. The formula sequence used by Orevkov [7] to obtain a non-elementary
lower bound on cut-elimination for the classical sequent calculus LK does not contain function
symbols. In this manner we obtain the required non-elementary lower bound for the size of
cut-free derivations with respect to the size of corresponding derivations with only prenex
atomic cut-formulas. J

Corresponding to statement (2), above, we have the following.

I Theorem 7. The elimination of non-prenex cuts is not elementary bounded for LI−∨m , even
if the language does not contain function symbols.

Proof. As in the proof of Theorem 6, we may assume without loss of generality that a
classical derivation does not contain disjunctions. We translate any such LK−∨m -derivation
into an LI−∨m -derivation using the following inductively defined formula mapping: A+ = ¬¬A
if A is an atom, (A ◦B)+ = ¬¬A+ ◦ ¬¬B+ for ◦ ∈ {¬,∧,⊃}, and (QxA)+ = ¬¬QxA+ for
Q ∈ {∃, ∀}. Moreover let (¬¬A)¬ be ¬A and write A− instead of (A+)¬. For a multiset
of formulas Γ = {A1, . . . , An}, we define Γ+ = {A1

+, . . . , An
+} and Γ− = {A1

−, . . . , An
−}.

We translate a given LK−∨m -derivation of the end-sequent A1, . . . , An ` B1, . . . , Bm into an
LI−∨m -derivation of A1

+, . . . , An
+, B1

−, . . . , Bm
− ` by induction on its depth.

Axioms: A ` A is replaced by a derivation of ¬¬A,¬A `.
Structural rules: For applications of (cut)

Π ` Ψ, A A,Γ ` ∆
Π,Γ ` Ψ,∆ (cut) translates into

Π+,Ψ−, A− `
Π+,Ψ− ` A+ (¬, r)

A+,Γ+,∆+ `
Π+,Γ+,Ψ−,∆− `

(cut)

The translations for weakenings and contractions are obvious.
Logical rules: We present the translation for (∧1, l) and (∧, r); the other cases are analogous.

A,Γ ` ∆
A ∧B,Γ ` ∆ (∧1, l) translates into

A+,Γ+,∆− `
A+ ∧B+,Γ+,∆− `

(∧1, l)

Γ+,∆− ` ¬(A+ ∧B+)
(¬, r)

¬¬(A+ ∧B+)[= (A ∧B)+],Γ+,∆− `
(¬, l)

Γ ` Ψ, A Π ` ∆, B
Γ,Π ` Ψ,∆, A ∧B (∧, r) translates into

Γ+,Ψ−, A− `
Γ+,Ψ− ` A+ (¬, r)

Π+,∆−, B− `
Π+,∆− ` B+ (¬, r)

Γ+,Π+,Ψ−,∆− ` A+ ∧B+ (∧, r)

¬(A+ ∧B+)[= (A ∧B)−],Γ+,Π+,Ψ−,∆− `
(¬, l)

Any sequence of short LK−∨m -derivations, where the corresponding shortest cut-free
derivations grow non-elementarily, leads to a sequence of short LI−∨m -derivations under this
translation. (See [8] for an example with weak prenex quantifiers only in the end-sequent,
where disjunctions are readily removed). Note that a lower bound for shortest cut-free
derivations corresponds, modulo an exponential increase, to the Herbrand complexity, i.e. the
size of the shortest Herbrand sequent (see [2]). Since Herbrand sequents are propositionally
valid, they remain valid when double negations are removed. J
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I Remark. Since classical derivations with arbitrary many cuts can be elementarily trans-
formed into derivations with a single cut (see [2]) we could in fact sharpen Theorem 7
accordingly.

8 Conclusion

We have shown that cut-elimination is elementary for disjunction-free intuitionistic logic
with prenex cut-formulas. To achieve this result we had to come up with novel techniques.
The first step – elimination of prenex atomic cuts – is specific to the case at hand: it only
works for disjunction-free intuitionistic logic. The second step – trading complex prenex
cut-formulas for atomic prenex and propostional cuts – uses a scheme that can also be applied
in other contexts. The final step – elementary elimination of propositional cuts – although
presented in a way tailored to LI−∨m , should also be adaptable to other sequent calculi, thus
rendering our results of potential significance beyond disjunction-free intuitionistic logic.
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Abstract
Recently a new connection between proof theory and formal language theory was introduced.
It was shown that the operation of cut elimination for proofs with prenex Π1-cuts in classical
first-order logic corresponds to computing the language of a particular type of tree grammars.
The present paper extends this connection to arbitrary (i.e. non-prenex) cuts without quantifier
alternations. The key to treating non-prenex cuts lies in using a new class of tree grammars,
constraint grammars, which describe the relationship of the applicability of its productions by a
propositional formula.
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1 Introduction

The constructive content of proofs has always been a central topic of proof theory. A helpful
perspective on the constructive content of proofs in classical first-order logic is provided by
Herbrand’s theorem [7] (see also [2]). It states that from a valid first order formula one can
obtain a quantifier-free tautology by expanding existential quantifiers to finite disjunctions of
instances and universal quantifiers to finite conjunctions of instances. Provided one is willing
to speak about provability instead of validity this result even extends to higher-order logic,
see e.g. [17].

It is straightforward to read off a Herbrand expansion from a cut-free proof. On the
other hand, proofs with cut can be non-elementarily shorter than the shortest Herbrand
expansion [20, 18, 19]. Therefore, in order to compute a Herbrand expansion from a proof
with cut, cut-elimination (or another equivalent normalization process) is necessary.

This paper is part of a line of research which was started in [8] and is dedicated to applying
methods from formal language theory in proof theory. In [8] a class of tree grammars has
been introduced which describe the Herbrand expansion obtained from proofs with prenex
Π1-cuts. The size of the grammar is bound by the size of the proof from which it is read off.
The language of the grammar is a Herbrand expansion of size exponential in the size of the
grammar. Thus by computing the language of this grammar, the cumbersome computational
process of cut-elimination can be circumvented. These grammars owe their simplicity to
the fact that they fully abstract from the propositional structure of the proof by speaking
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only about witness terms. There are other formalisms which allow to compute a Herbrand
expansion in a way that abstracts from the propositional structure: the historically first such
formalism is Hilbert’s ε-calculus [14]. In [5] Gerhardy and Kohlenbach adapt Shoenfield’s
variant of Gödel’s Dialectica interpretation to a system of pure predicate logic. Recent work,
more similar to proof nets, is that of Heijltjes [6] and McKinley [16]. An approach similar
to [6, 16] in the formalism of expansion trees [17] can be found in [13].

What sets the grammars introduced in [8] and treated in the present paper apart from the
above-mentioned formalisms is that they do not only allow to compute a Herbrand expansion
but provide a (well-understood) abstract description of its structure. On the one hand
this has the consequence that problems from formal language theory such as membership,
inclusion, etc. assume a proof-theoretic meaning and hence standard algorithms can be used
for solving the corresponding proof-theoretic problems, usually with smaller asymptotic
complexity than the naive algorithms which rely on computing the normal form(s), see
e.g. [15]. On the other hand, the strong grip on the structure of a Herbrand expansion
afforded by a formal grammar opens the door to the following interesting theoretical and
applied investigations:

From strengthening the result of [8] one can show that all (infinitely many) normal
forms of the non-erasing Gentzen reduction lead to the same Herbrand expansion, see [12].
This property has been called Herbrand-confluence in [12]. Grammars have been used for a
cut-introduction algorithm in [11, 10]. This algorithm has been implemented and empirically
evaluated with good results in [9] and it has recently been extended to induction in [4]. In [3]
an incompressible sequence of word languages is constructed which via the result of [8] yields
a sequence of first-order formulas all of whose cut-free proofs are essentially incompressible
by Π1-cuts.

All of the results so far are limited to prenex Π1 cuts (with the exception of [1] which
treats prenex Π2 cuts) and consequently all of the applications mentioned above are so
as well. In this paper, which is a generalization and an improved presentation of the
results obtained in [21], we remove the limitation to prenex formulas by employing a more
general class of grammars. This opens the way for extending the results and techniques
of [12, 11, 10, 9, 4, 3, 1] to non-prenex cuts and induction formulas.

2 Previous Work

In this paper we will use the proof system LK which was introduced by Gentzen in the 1930s.
It is a sequent calculus, which means that unlike most other proof systems, derivations do
not operate directly on formulas, but rather on so-called sequents. A sequent is a structure of
the form Γ ` ∆, where Γ and ∆ are multisets of formulas, respectively called the antecedent
and succedent of the sequent. The natural interpretation of Γ ` ∆ is “the conjunction over Γ
implies the disjunction over ∆”.

We shall now define the inference rules of LK as used in this paper. They are easily seen
to be sound given the above interpretation.

I Definition 1 (Rules of LK).
1. Axioms: A ` A with A atomic.
2. Contraction:

A,A,Γ ` ∆
A,Γ ` ∆

cl
Γ ` ∆, A,A

Γ ` ∆, A
cr
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3. Weakening:

Γ ` ∆
A,Γ ` ∆

wl
Γ ` ∆

Γ ` ∆, A
wr

4. Propositional rules:

A,Γ ` ∆ B,Π ` Λ
A ∨B,Γ,Π ` ∆,Λ

∨l
Γ ` ∆, A,B

Γ ` ∆, A ∨B
∨r

A,B,Γ ` ∆
A ∧B,Γ ` ∆

∧l
Γ ` ∆, A Π ` Λ, B
Γ,Π ` ∆,Λ, A ∧B

∧r

Γ ` ∆, A
¬A,Γ ` ∆

¬l
A,Γ ` ∆

Γ ` ∆,¬A
¬r

5. Quantifier rules:

A[x \ t],Γ ` ∆
∀xA,Γ ` ∆ ∀l

Γ ` ∆, A[x \α]
Γ ` ∆, ∀xA ∀r

A[x \α],Γ ` ∆
∃xA,Γ ` ∆ ∃l

Γ ` ∆, A[x \ t]
Γ ` ∆, ∀xA ∃r

Here, t is any term, while α is a variable that does not occur in Γ, ∆ or A, called an
eigenvariable. The inferences that use eigenvariables are called strong quantifier inferences,
the others weak quantifier inferences.

6. The cut rule:
Γ ` ∆, A A,Π ` Λ

Γ,Π ` ∆,Λ cut

The formula A is called the cut formula of the inference. We call a cut quantified if its
cut formula contains quantifiers. In the sequel, we will refer to the set of quantified cuts
in a proof π as QCuts(π).

In all of these cases, the sequents above the line are called premises and the one below
is called the conclusion. Additionally, the emphasized formulas in the premises are called
auxiliary formulas, while the emphasized formula in the conclusion is called the main or
principal formula. Note that some rules (e.g. weakening) do not have auxiliary formulas and
the cut rule does not have a main formula.

Often a given formula will occur several times in a proof and these occurrences have
different properties. We will mark important formula occurrences like this: A[µ], B[ν], etc.

We can formalize the notion of a formula occurrence being an ancestor of another: µ
is an immediate ancestor of ν if there is an inference such that µ is its auxiliary formula
and ν its main formula. The “ancestor” relation is then simply the transitive closure of
the “immediate ancestor” relation. When we say that a formula is an “ancestor of the end
sequent”, we mean “ancestor of a formula in the end sequent”.

We often visualize proofs as two-dimensional structures with axioms at the top and
the conclusion at the bottom. In this context, it makes sense to say that an inference is
“above” or “below” another or to talk about “left” and “right” subproofs. We also generally
regard proofs as being constructed top-down, so we say for instance that the weakening rule
“introduces” a formula.

Gentzen proved that every LK-proof can be algorithmically transformed into a cut-free
proof, i.e. one that does not contain any cut inferences. The standard proof of cut-elimination
in LK employs the following set of cut-reduction rules.
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I Definition 2 (Cut reduction). Let c be a cut in a proof π and let Ac be the cut formula of
c. We define the following steps of cut reduction according to the inferences immediately
above the cut:

1. On one side of c, there is a unary or binary inference r whose active formula is not Ac:

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π′ ` Λ′
Ac,Π ` Λ

r

Γ,Π ` ∆,Λ cut

 

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π′ ` Λ′

Γ,Π′ ` ∆,Λ′ cut

Γ,Π ` ∆,Λ
r

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π1 ` Λ1

(ψ2)
Π2 ` Λ2

Ac,Π ` Λ
r

Γ,Π ` ∆,Λ cut

 

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π1 ` Λ1

Γ,Π1 ` ∆,Λ1
cut

(ψ3)
Π2 ` Λ2

Γ,Π ` ∆,Λ
r

The case where r is on the left side of c works entirely symmetrically.

2. Ac is introduced by an axiom on one side of c:

Ac ` Ac
(ψ)

Ac,Γ ` ∆
Ac,Γ ` ∆ cut

 
(ψ)

Ac,Γ ` ∆

3. Ac is introduced by a weakening on one side of c:

(ψ1)
Γ ` ∆

Γ ` ∆, Ac
wr

(ψ2)
Ac,Π ` Λ

Γ,Π ` ∆,Λ cut

 
(ψ1)

Γ ` ∆
Γ,Π ` ∆,Λ w∗

The case where the weakening is on the right side is symmetrical.

4. Ac is the main formula of a contraction on one side of c:

(ψ1)
Γ ` ∆, Ac, Ac

Γ ` ∆, Ac
cr

(ψ2)
Ac,Π ` Λ

Γ,Π ` ∆,Λ cut

 

(ψ1)
Γ ` ∆, Ac, Ac

(ψ′′2 )
Ac,Π ` Λ

Γ,Π ` ∆,Λ, Ac
cut

(ψ′2)
Ac,Π ` Λ

Γ,Π,Π ` ∆,Λ,Λ cut

Γ,Π ` ∆,Λ c∗

Here, ψ′2 and ψ′′2 each arise from ψ2 by replacing all eigenvariables introduced in ψ2 with
fresh copies. The case where the contraction is on the right is treated analogously.

5. Ac = ∃xB and Ac is introduced by ∃-inferences immediately above the cut:

(ψ1)
Γ ` ∆, B[x \ t]

Γ ` ∆, ∃xB ∃r

(ψ2)
B[x \ t],Π ` Λ
∃xB,Π ` Λ ∃l

Γ,Π ` ∆,Λ cut

 
(ψ1)

Γ ` ∆, B[x \ t]
(ψ2[α \ t])

B[x \ t],Π ` Λ
Γ,Π ` ∆,Λ cut

6. Ac = ∀xB: Analogous to the previous case, but with switched sides.
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7. Ac = B ∧ C and Ac is introduced by ∧-inferences immediately above the cut:

(ψ1)
Γ1 ` ∆1, B

(ψ2)
Γ2 ` ∆2, C

Γ ` ∆, B ∧ C
∧r

(ψ3)
B,C,Π ` Λ
B ∧ C,Π ` Λ

∧l

Γ,Π ` ∆,Λ cut

 

 
(ψ1)

Γ1 ` ∆1, B

(ψ2)
Γ2 ` ∆2, C

(ψ3)
C,B,Π ` Λ

B,Γ2,Π ` ∆2,Λ
cut

Γ,Π ` ∆,Λ cut

8. Ac = B ∨ C: Analogous to the previous case.
9. Ac = ¬B and both ¬-inferences introducing Ac are immediately above the cut:

(ψ1)
B,Γ ` ∆

Γ ` ∆,¬B
¬r

(ψ2)
Π ` Λ, B
¬B,Π ` Λ

¬l

Γ,Π ` ∆,Λ cut

 
(ψ2)

Π ` Λ, B
(ψ1)

B,Γ ` ∆
Γ,Π ` ∆,Λ cut

If π′ arises from π by finitely many applications of these rules, then we write π  ∗ π′.

It will often be useful to consider signed formulas, i.e. formulas annotated as either
occurring in the antecedent or the consequent of a sequent. The former will be written as
A `, the latter as ` A.

I Definition 3 (Herbrand set). Let S = A1, . . . , Am ` B1, . . . , Bn be a sequent. An Herbrand
set of S is a set H for which the following two conditions hold:
1. H = Ha∪̇Hs where

Every element of Ha is of the form A ` with A an instance of some Ai
Every element of Hs is of the form ` B with B an instance of some Bj

2. Let H′ be the image of H under the function
{
A ` 7→ ¬A,
` B 7→ B

. Then
∨
H′ is a tautology.

For the sake of simplicity, we abbreviate the latter condition as “H is a tautology”.

It is straightforward to extract an Herbrand set of S from a cut-free proof of S. By
extension, one could in principle also extract an Herbrand set from a proof with cuts by
performing cut elimination. There is another possibility, however: an Herbrand set can be
viewed as a finite tree language by viewing both · ` and ` · as well as the propositional
connectives and the predicate symbols as function symbols. Finite tree languages can be
compactly represented by tree grammars. Our aim is to extract a tree grammar from a
proof with cuts such that computing the language’s grammar corresponds to performing cut
reduction on the proof.

It is well-known that cut-elimination leads to a non-elementary increase in proof length [20,
18, 19]. On the other hand, the size of a Herbrand set is closely related to the length of
a cut-free proof. Consequently, for this approach to make sense, the tree grammar must
be polynomial in the length of the proof with cut. It thus provides a representation of a
Herbrand set as compressed as the proof with cut.

I Definition 4 (Regular tree grammar). A regular tree grammar is a tuple G = 〈ϕ,N,Σ, P 〉,
where
1. Σ is a finite ranked alphabet; its elements are called terminal symbols (or terminals for

short);
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2. N is a finite set, disjoint from Σ; its elements are called nonterminals;
3. ϕ ∈ N is the starting symbol ;
4. P is the set of productions, i.e. elements of the form α→ t where α ∈ N and t is a term

over N ∪ Σ.

Let G be a regular tree grammar. A derivation in G is a finite sequence d = 〈ϕ =
t0, t1, . . . , tn〉 such that ti can be obtained from ti−1 by application of a production of G;
that is, there is a production αi → si ∈ P such that replacing one occurrence of αi in ti−1
with si yields ti. We say that tn can be derived in G.

Now we can define the language L(G) of G: L(G) is the set of terms over Σ that can be
derived in G.

I Example 5. Consider the regular tree grammar G = 〈ϕ,N,Σ, P 〉 with

N = {ϕ, x, y}
Σ = {a/0, b/0, g/1, f/2}
P = {ϕ→ f(x, y), x→ a|g(y), y → a|b}.

The language of G is {f(a, a), f(a, b), f(g(a), a), f(g(a), b), f(g(b), a), f(g(b), b)}.

I Definition 6. A totally rigid tree grammar is a regular tree grammar G = 〈ϕ,N,Σ, P 〉
with an additional restriction on derivations. Let d be a derivation of G in the sense of
regular tree grammars. Then d is a derivation of the totally rigid grammar G if for each
α ∈ N , at most one production beginning with α is used in d.

I Example 7. Let G be the grammar from Example 5. If we view it as a totally rigid
grammar, its language is reduced to {f(a, a), f(a, b), f(g(a), a), f(g(b), b)}.

It is easy to see that the language of a totally rigid grammar is always finite.
The following theorem was proved in [8].

I Theorem 8. Let π be a proof with the following properties:
1. The end sequent of π is of the form ` ∃x̄A with A quantifier-free;
2. All cut formulas in π are of the form ∃yB with B quantifier-free.
Then there is a totally rigid tree grammar G(π) such that L(G(π)) is an Herbrand set of
∃x̄A. Moreover, if |G| is the number of productions of G and |π| the number of inferences in
π, then |G| ≤ |π|.

In this paper we will generalize this result to non-prenex cut formulas and arbitrary end
sequents. In order to do that, we will need more powerful grammars.

3 Constraint grammars

Totally rigid grammars are obtained from regular tree grammars by placing restrictions on
how many productions can be used per nonterminal in a derivation. Similarly, constraint
grammars allow us to restrict which combinations of productions of different nonterminals
can be used. This is essential if we want to deal with cut formulas that are non-prenex and
contain more than one quantifier.

I Definition 9 (Constraint grammar). A constraint grammar is a tuple G = 〈ϕ,N,Σ, P, C〉
consisting of a totally rigid grammar G′ = 〈ϕ,N,Σ, P 〉 together with a constraint formula C,
which is a propositional formula that uses the productions in P as atoms.
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When writing constraint formulas, we will use the symbol “→” to denote productions
and “⇒” for implications.

Any derivation d of the underlying totally rigid grammar of G induces an interpretation
vd of C in the following manner: If α ∈ N such that α does not occur in d, then vd(p) = >
for all p ∈ Pα. If α occurs in d, vd evaluates the α-productions used in d as > and the others
as ⊥. This leads to the definition of a valid derivation of G: d is valid iff vd(C) = > (i.e. vd
is a model of C).

A term over Σ is derivable in G if it is derivable in G′ via a valid derivation.
Note that determining whether a given derivation is valid for G can be done in linear

time relative to the size of d and C.

I Example 10. Let G be the totally rigid grammar from Example 7. If we extend it to
a constraint grammar G′ by adding the constraint formula C := x → a ∨ y → a, then
L(G′) = {f(a, a), f(a, b), f(g(a), a)}.

4 The grammar of a proof

In this section we will give the central definition of this paper: the constraint grammar
induced by a proof.

When working in sequent calculus, it is customary to distinguish between weak and strong
quantifiers. Briefly, a quantifier is said to be “strong” if it is universal and below an even
number of negations or existential and below an odd number of negations. Conversely, it
is called “weak” if it is universal and below an odd number of negations or existential and
below an even number. Note that in this context, both the left side of an implication and
the antecedent of a sequent count as one negation each.

In the sequel, we always place some restrictions on the proofs we consider.
The names of bound variables in the end sequent are distinct. This can always be ensured
via renaming.
There are no strong quantifiers in the end sequent. This assumption is justified because
we can perform validity-preserving Skolemization, i.e. replace all strong quantifiers by
Skolem symbols.
Each cut formula contains only weak or strong quantifiers, but not both. We call a cut
formula Σ1 or Π1 accordingly.

From now on, we will call proofs with these properties simple.
The above restriction on cut formulas allows us to define the “weak side” and the “strong

side” of a cut: Let Ac be the cut formula of a cut c and assume that Ac contains quantifiers.
If Ac is Σ1, each quantifier in c is introduced via a weak quantifier inference in the left
subproof of c and a strong inference in the right subproof. Consequently, the left and right
subproof are called the “weak” and “strong” side, respectively. In the case of a Π1 cut
formula, the sides are switched. Each quantifier in Ac may be introduced several times on
both the weak and the strong side of c; this happens via eigenvariables on the the strong
side and arbitrary terms on the weak side. We refer to those eigenvariables and terms as
“belonging to” or “being associated with” the quantifier.

We shall now define a constraint grammar G(π) = 〈ϕ,N(π),Σ, P (π), C(π)〉 piece by piece.

IDefinition 11 (Terminals and nonterminals of G(π)). Let π be a simple proof of A1, . . . , Am `
B1, . . . , Bn.
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Terminals: The terminal symbols Σ of G(π) consist of the language of π together with a
new symbol w. w will be used to mark places where a formula is introduced by weakening
in π.
Nonterminals: We define sets NES(π) and NCuts(π). Let BV (A) be the set of bound
variables in the formula A and ϕ a new symbol. Then NES(π) = {ϕ} ∪

⋃m
i=1BV (Ai) ∪⋃n

i=1BV (Bi). Since there are no strong quantifiers in the end sequent of π, all strong
quantifier inferences must act on ancestors of cut formulas. Thus each eigenvariable is
uniquely associated with a particular cut. We write EV (c) for the eigenvariables associated
with cut c and EV (π) for all eigenvariables in π. This leads to NCuts(π) = EV (π).

Finally, N(π) := NES(π) ∪NCuts(π).

For any formula A, let Â be the matrix of A, i.e. the formula that results from deleting
all quantifiers from A.

I Definition 12 (Productions of G(π)). Let π be a simple proof of A1, . . . , Am ` B1, . . . , Bn.
We define sets PES(π) and PCuts(π):

For i = 1, . . . ,m, (ϕ→ Âi `) ∈ PES(π). For j = 1, . . . , n, (ϕ→` B̂j) ∈ PES(π).

For x ∈ NES(π), if π contains an inference Γ ` ∆, A[x \ t]
Γ ` ∆, ∃xA ∃r, then x → t ∈ PES(π).

Moreover, if x is introduced by weakening at least once in π, then x→ w ∈ PES(π).
Let α ∈ NCuts(π), then α is used to introduce a strong quantifier on some variable z

in a cut formula. If the weak side of the cut contains an inference Γ ` ∆, B[z \ s]
Γ ` ∆, ∃zB ∃r, then

z → s ∈ PCuts(π). Moreover, if z is introduced by weakening at least once on the weak side
of the cut, then z → w ∈ PCuts(π). P (π) := PES(π) ∪ PCuts(π).

I Definition 13 (Constraint formula of G(π)). Let π be a simple proof and µ any formula
occurrence in π. We define a formula q(µ, π) by induction:

If µ is quantifier-free, then q(µ, π) := >.
If µ is introduced by a weakening, then let z1, . . . , zk be the weakly bound variables in
µ. There are two cases to consider. If µ is ancestor of a cut formula, then for each i let
αi,1, . . . αi,ni

be the eigenvariables used to introduce the quantifier over zi on the strong
side and q(µ, π) :=

∧k
i=1
∧ni

j=1 αi,j → w. If µ is ancestor of a formula in the end sequent,
then q(µ, π) :=

∧k
i=1 zi → w.

If µ is introduced by a quantifier rule, i.e.
Γ ` ∆, (A[x \ t])[µ′]

Γ ` ∆, (∃xA)[µ]
∃r, then we make a similar

case distinction as in the previous case. If µ is ancestor of a cut formula, then let
α1, . . . , αn be the eigenvariables of the quantifier of x on the strong side of the cut and
q(µ, π) :=

(∨n
j=1 αj → t

)
∧ q(µ′, π). Otherwise, q(µ, π) := x→ t∧ q(µ′, π). The case of a

∀l-inference is analogous.

If µ is introduced by a ∧r-rule, as in
Γ1 ` ∆1, A[ν1] Γ2 ` ∆2, B[ν2]

Γ ` ∆, (A ∧B)[µ]
∧r, then q(µ, π) :=

q(ν1, π) ∧ q(ν2, π). An ∨l-inference is treated analogously.

If µ is introduced by a ∧l-rule, as in
A[ν1], B[ν2],Γ ` ∆
(A ∧B)[µ],Γ ` ∆

∧l, then q(µ, π) := q(ν1, π) ∧

q(ν2, π), and analogously for ∨r.

If µ arises from a contraction on the right, i.e.
Γ ` ∆, A[ν1], A[ν2]

Γ ` ∆, A[µ]
cr, then q(µ, π) :=

q(ν1, π) ∨ q(ν2, π), and analogously for a contraction on the left.
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If µ is introduced by a ¬r rule, as in
Γ, A[ν] ` ∆

Γ ` ∆, (¬A)[µ]
¬r, then q(µ, π) := q(ν, π). A

¬l-inference is treated analogously.
We skip over all inferences whose active formula is not µ.
Now let A be any formula and µ1, . . . , µm and ν1, . . . , νn the occurrences of A in the

antecedent and the succedent of the end sequent, respectively. Then

CantA (π) := (ϕ→ Â `)⇒
m∨
i=1

q(µi, π)

CsucA (π) := (ϕ→` Â)⇒
n∨
j=1

q(νj , π)

This yields the constraint formula of the end sequent:

CES(π) :=
∧

A∈ES(π)

(CantA (π) ∧ CsucA (π))

Furthermore, let c ∈ QCuts(π) and µ0 the weak occurrence of its cut formula. Then

Cc(π) := q(µ0, π).

Finally we obtain

C(π) := CES(π) ∧
∧

c∈QCuts(π)

Cc(π), (1)

the constraint formula of π.
I Definition 14 (Grammar of a proof). Let π be a simple proof. The constraint grammar
G(π) := 〈ϕ,N(π),Σ(π), P (π), C(π)〉 is called the grammar of π.

The purpose of C(π) is to describe the set of tuples of instances that actually occur in
the proof.
I Example 15. Let π be the following proof:

(π1)
P (f(a, c)) ∨Q(b) ` Ac

(π2)
Ac ` ∃xP (x), ∃yQ(y)

P (f(a, c)) ∨Q(b) ` ∃xP (x), ∃yQ(y)
cut[c]

P (f(a, c)) ∨Q(b) ` ∃xP (x) ∨ ∃yQ(y)
∨r

where

π1 =

P (f(a, c)) ` P (f(a, c))
P (f(a, c)) ` ∃z2P (f(a, z2)) ∃r

P (f(a, c)) ` ∃z2P (f(a, z2)), Q(a)
wr

P (f(a, c)) ` ∃z2P (f(a, z2)) ∨Q(a)
∨r

P (f(a, c)) ` Ac
∃r

Q(b) ` Q(b)
Q(b) ` ∃z2P (f(b, z2)), Q(b)

wr

Q(b) ` ∃z2P (f(b, z2)) ∨Q(b)
∨r

Q(b) ` Ac
∃r

P (f(a, c)) ∨Q(b) ` Ac, Ac
∨l

P (f(a, c)) ∨Q(b) ` Ac
cr

π2 =

P (f(α, β)) ` P (f(α, β))
P (f(α, β)) ` ∃xP (x) ∃r

∃z2P (f(α, z2)) ` ∃xP (x) ∃l
Q(α) ` Q(α)
Q(α) ` ∃yQ(y) ∃r

∃z2P (f(α, z2)) ∨Q(α) ` ∃xP (x), ∃yQ(y)
∨l

Ac ` ∃xP (x), ∃yQ(y) ∃l

Here, Ac is the formula ∃z1(∃z2P (f(z1, z2)) ∨Q(z1)). The various parts of G(π) are:
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Terminals: P/1, Q/1, f/2, a/0, b/0, c/0, w/0
Nonterminals: ϕ, x, y, α, β
Productions:

ϕ→ P (f(a, c)) ∨Q(b) ` | ` P (x) ∨Q(y),
x→ f(α, β),
y → α,

α→ a|b,
β → c|w.

Constraint formula:

CES(π) = ((ϕ→` P (x) ∨Q(y))⇒(x→ f(α, β) ∧ y → α))
∧ ((ϕ→ P (f(a, c)) ∨Q(b) `)⇒>),

Cc(π) = (α→ a ∧ β → c) ∨ (α→ b ∧ β → w),
C(π) = CES(π) ∧ Cc(π).

Consequently, the language of G(π) is

L(G(π)) = {P (f(a, c)) ∨Q(b) ` , ` P (f(a, c)) ∨Q(a) , ` P (f(b, w)) ∨Q(b)}

The following theorem is the main result of this paper.

I Theorem 16. Let π be a simple proof of Γ ` ∆. Then L(G(π)) is an Herbrand set of
Γ ` ∆.

The first step towards proving this result will be to show that L(G(π)) is a Herbrand set
if π is almost cut-free, more precisely: if π contains only cuts without quantifiers.

I Lemma 17. Let π be a simple proof of Γ ` ∆ in which no cut formula contains a quantifier.
Then L(G(π)) is an Herbrand set of Γ ` ∆.

Proof. By induction on the length of π. The case of π a one-line proof of an axiom is trivial.
Now we consider the various possibilities for the lowest inference of π. We only consider
one of the cedents in each case; the other one is treated analogously. Moreover, we only
show the validity of the language; the fact that it consists of instances of the end sequent is
immediately obvious. Recall that we say ”L(G(π)) is a tautology” to mean “the image of

L(G(π)) under the function
{
A ` 7→ ¬A,
` B 7→ B

is a tautology”.

Weakening: Let π =
(π′)

Γ ` ∆
Γ ` ∆, A

wr
. Let x1, . . . , xn be the bound variables in A. Obviously

L(G(π)) = L(G(π′)) ∪ {` A[x1 \w, . . . , xn \w]} is an Herbrand set if L(G(π′)) is.

Contraction: Let π =
(π′)

Γ ` ∆, A[µ1], A[µ2]

Γ ` ∆, A[µ]
cr
. It is easy to see that the constraint formulas,

nonterminals and productions are unchanged between π and π′. Therefore, L(G(π)) =
L(G(π′)).
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Negation: Let π =
(π′)

A[µ′],Γ ` ∆
Γ ` ∆, (¬A)[µ]

¬r. Observe that if

CantA (π′) = (ϕ→ Â `)⇒(q(µ′, π′) ∨ B1),

Csuc¬A (π′) = (ϕ→` ¬Â)⇒B2,

then

CantA (π) = (ϕ→ Â `)⇒B1,

Csuc¬A (π) = (ϕ→` ¬Â)⇒(q(µ, π) ∨ B2).

It follows that ` ¬Â is derivable in G(π) iff Â ` is derivable in G(π′). Clearly, L(G(π))
is an Herbrand set if L(G(π′)) is.

Disjunction: Let π =
(π′)

Γ ` ∆, A[µ1], B[µ2]

Γ ` ∆, (A ∨B)[µ]
∨r

. The language of G(π′) can be written as

L`A ∪ L`B ∪ LΓ`∆, where L`A contains those derivable formulas that are obtained by
starting with the production ϕ→` Â, and analogously for L`B and LΓ`∆. Note that these
sets are not necessarily disjoint; for instance, A and B might coincide or one of them might
occur in the context. In G(π), the nonterminals and the constraint formula are unchanged,
but ϕ has the production ϕ →` Â ∨ B̂. This means that L(G(π)) = L`A∨B ∪ LΓ`∆,
where L`A∨B = {` A′ ∨ B′ : ` A′ ∈ LA,` B′ ∈ LB}. It follows that if L(G(π′)) is a
tautology, so is L(G(π)).

Conjunction: Let π =
(π′)

Γ ` ∆, A[µ1]

(π′′)
Π ` Λ, B[µ2]

Γ,Π ` ∆,Λ, (A ∧B)[µ]
∧r

. Similarly to the previous case,

write

L(G(π′)) = L`A ∪ LΓ`∆,

L(G(π′′)) = L`B ∪ LΠ`Λ,

L(G(π)) = L`A∧B ∪ LΓ`Π ∪ L∆`Λ

Given any interpretation of the atoms in L(G(π)), there are two possibilities. If any
element of LΓ`Π or L∆`Λ is true under the interpretation, we are done. If all of them
are false, then some ` A′ ∈ L`A and ` B′ ∈ L`B must be true by induction. This means
that ` A′ ∧B′ ∈ L`A∧B is also true. Thus, L(G(π)) is a tautology.

Existential quantifier: Let π =
(π′)

Γ ` ∆(A[x \ t])[µ′]

Γ ` ∆, (∃xA)[µ]
∃r [ι]

. In G(π), the production ϕ →

Â[x \ t] that exists in G(π′) is replaced by ϕ → Â and x → t. If C(π′) contains the
subformulas

CsucA[x \ t](π′) = (ϕ→ Â[x \ t])⇒(q(µ′, π′) ∨ B1),

Csuc∃xA(π′) = (ϕ→ Â)⇒B2,

then C(π) contains

CsucA[x \ t](π) = (ϕ→ Â[x \ t])⇒B1,

Csuc∃xA(π) = (ϕ→ Â)⇒(((x→ t) ∧ q(µ′, π)) ∨ B2).
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If ` C (or C `) ∈ L(G(π′)) is an instance of a formula in the context, then it can still
be derived in G(π). If ` C is an instance of A[x \ t] and d′ a derivation leading to it, d′
must begin with ϕ→ Â[x \ t]. We can transform d′ into a valid derivation d of G(π) by
replacing this first step with ϕ→ Â→ Â[x \ t]. Thus, the two languages coincide.
Cut: Let

L(G(π′)) = L′`A ∪ LΓ`∆,

L(G(π′′)) = L′′A` ∪ LΠ`Λ,

L(G(π)) = LΓ,Π`∆,Λ = LΓ,Π` ∪ L`∆,Λ

as before. Our goal is to show that
∨
LΓ,Π`∆,Λ is tautological. First of all, note that the

cut formula is quantifier-free and hence its occurrences only contribute one instance each
to the languages of their respective grammars, namely respectively ` A and A `. Now
pick any interpretation. If any element of LΓ,Π` is true, we are done. Otherwise either an
element of L`∆ or A must be true because L(G(π′)) is a tautology. In the former case we
are, again, done; in the latter case, an element of L(G(π′′)) must be true. This element
can be neither A itself nor anything in L`Π, so it must be an element of LΛ. Thus, under
each interpretation, an element of L(G(π)) evaluates to true. J

5 Cut elimination and grammars

I Definition 18 (≤ relation for formulas). We define a relation ≤ between formulas: A ≤ B
if B can be obtained by replacing occurrences of w in A with terms. Note that different
occurrences of w may be replaced with different terms. A strict semantic definition of A ≤ B
can be achieved in the following manner: Let A′ be the formula that results from making
all the occurrences of w in A distinct, i.e. replacing each w with a new constant symbol wi.
Then ∀w̄A′⇒B is valid.
≤ is clearly transitive and reflexive. For sets of formulas M and N , let M ≤ N if for each

A ∈M there is a B ∈ N such that A ≤ B.

I Lemma 19. Let π, π′ be simple proofs and π  π′ by one of the cut reduction steps defined
in 2, except contraction. Then L(G(π′)) ≤ L(G(π)).

Proof. None of the reduction steps for rule permutations, axioms, or propositional inferences
change the grammar1. Therefore, the only interesting cases are those of quantifier rules and
weakening. Let us consider quantifier inferences first. Let ι be the quantifier inference under
discussion. Obviously, there is only a single production for α in G(π), namely α→ t , and

Cc(π) = α→ t ∧ C′c(π).

In G(π′), α and its single production are deleted and any production β → s ∈ P (π) is
replaced by β → s[α \ t]. Moreover, the constraint formula of G(π′) is obtained by replacing
Cc(π) with C′c(π) and α with t, respectively, in C(π). Clearly, all other cuts are unaffected by
the transformation.

Let d = ϕ → . . . → C be a valid derivation of G(π). The derivation d′ of G(π′) that
is obtained from d by deleting all applications of α→ t and then simply replacing α with
t obviously generates C, so we only need to show that it is valid. There are two cases to

1 Note, though, that a binary propositional reduction “moves” a conjunction from the constraint formula
of one cut to between constraint formulas of two cuts, which makes no semantic difference.
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consider here. If α does not occur in d, then d = d′ and the validity of d′ follows immediately.
Now suppose α occurs in d. For every atom β → s in C(π) such that vd(β → s) = >, clearly
vd′(β → s[α \ t]) = >. This implies vd′(C(π′)) = > and hence d′ is valid in G(π′). The other
direction is proved similarly. Thus, L(G(π′)) = L(G(π)).

Now let’s consider the case that a cut formula is introduced by weakening on the weak
side of c. Let µ be a formula occurrence in the premise on the strong side of c, but not
the cut formula, and let x1, . . . , xn be the bound variables in µ. Assume further that µ
is an ancestor of a formula occurrence ν in the succedent of the end sequent. If d is any
derivation in G(π) that begins with ϕ →` ν̂, the xi are eventually replaced with terms
ti in d. Call the end result of this derivation A(t1, . . . , tn). Now consider that in π′, µ is
introduced via weakening. This means that each xi has the production xi → w in G(π′).
Consequently, we can construct a derivation d′ of A(w, . . . , w) that is valid for G(π′). Clearly,
A(w, . . . , w) ≤ A(t1, . . . , tn).

If the cut formula is introduced by weakening on the strong side, c has no nonterminals
and hence contributes nothing to the grammar. In this case, removing the cut clearly changes
nothing. J

We will need a minor proof transformation that allows us to make some simplifying
assumptions later on. The motivation behind this transformation is the following observation:
It is never necessary to introduce a strong quantifier twice on the same branch of a proof.

I Definition 20 (Pruning). Let π and π′ be proofs of the same end sequent. We say that
π′ is the result of “pruning” π, written as π  π′, if π′ is obtained from π by the following
subproof transformation:

(ψ)
A[x \β],Γ′′ ` ∆′′

∃xA,Γ′′ ` ∆′′ ∃l
....

A[x \α],Γ′ ` ∆′

∃xA,Γ′ ` ∆′ ∃l
....

C[∃xA], C[∃xA],Γ ` ∆
C[∃xA],Γ ` ∆

cl

 

(ψ[β \α])
A[x \α],Γ′′ ` ∆′′

∃xA,A[x \α],Γ′′ ` ∆′′
wl

....
A[x \α], A[x \α],Γ′ ` ∆′

A[x \α],Γ′ ` ∆′
cl

∃xA,Γ′ ` ∆′ ∃l
....

C[∃xA], C[∃xA],Γ ` ∆
C[∃xA],Γ ` ∆

cl

We say that a proof is “pruned” if it cannot be pruned further.

I Lemma 21. Let π, π′ be simple proofs such that π′ is obtained from π by pruning. Then
L(G(π′)) ⊆ L(G(π)).

Proof. We show that every derivation that is valid for G(π′) can be transformed to one
that is valid for G(π). This is possible because the eigenvariables that are identified by
pruning are associated with the same quantifier and thus have the same productions. Given
a derivation d′ that is valid for G(π′), suppose α, β are as in the definition of pruning and
d′ uses a production ν → t[β \α]. Clearly, ν → t is a production of G(π) and due to the
above considerations, α and β have the same productions. We can therefore replace the step
ν → t[β \α] in d′ with ν → t and add the required β-productions at any point after that. J

For technical reasons, we only allow the reduction of minimal cuts in this lemma. We
call a cut minimal if its strong side does not intersect with the weak side of any other cut. It
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is easy to prove that a minimal cut always exists. The nonterminals of a minimal cut never
occur on the right side of productions of other cuts.

I Lemma 22. Let π be a pruned simple proof and c a minimal cut in π. If π  π′ by
reducing c according to a contraction rule, then L(G(π)) = L(G(π′)).

Proof. We assume that c is Σ1; the case of a Π1-cut can be treated by switching the strong
and weak sides. Let G(π′) = 〈ϕ,N ′, ρ′,Σ, P ′, C′〉.

First, suppose that the contraction that is reduced is on the left-hand (weak) side of c. The
first thing we note is that the only nonterminals that are affected by the proof transformation
are those introduced in ψ2. Due to the minimality of c, there are no quantified cuts in ψ2
and hence the only eigenvariables therein are those of cuts below c and those of c itself. Let
EV (c) = {α1, . . . , αn}. In G(π′), each αi is replaced by two new copies α′i and α′′i . Moreover,
if c̃ is a cut in π such that c is on the strong side of c̃, then there might be eigenvariables of c̃
that are introduced within ψ2. Let β1, . . . , βm be all such eigenvariables; it follows that π′
contains two new copies β′i, β′′i for each of them.

Let us now consider the effects of the reduction on the nonterminals and productions of
the end sequent. Let p : z → t be a production of the end sequent. If t contains no αi or βi,
p is unchanged; otherwise, p arises from some quantifier inference in ψ2 that is duplicated
along with ψ2. This means that in G(π′), p is replaced by two new productions

p′ : z → t[α1 \α′1, . . . , αn \α′n, β1 \β′1, . . . , βm \β′m],
p′′ : z → t[α1 \α′′1 , . . . , αn \α′′n, β1 \β′′1 , . . . , βm \β′′m].

Now we consider the rest of the grammar. If µ′ and µ′′ are the two occurrences of Ac on
the weak side of c, then one of them is arbitrarily designated as the cut formula of c′ and
the other as the cut formula of c′′; w.l.o.g we assume that µ′ is the cut formula of c′ and
µ′′ the cut formula of c′′. The productions of αi are split between α′i and α′′i accordingly,
that is, if αi → t is a production of G(π) and t introduces a quantifier in µ′, then α′i → t is a
production of G(π′) and analogously if t introduces a quantifier in µ′′. Note that these cases
are not mutually exclusive.

As for the βi, each of them originates from a cut below c whose weak side is entirely
unaffected by the duplication of ψ2, so β′i and β′′i simply inherit the productions of βi.

Let us now turn to the constraint formula. First of all, the constraint formula of c is
necessarily of the form B′ ∨ B′′; it follows that the constraint formulas of c′ and c′′ are B′
and B′′, respectively, up to replacement of nonterminals by their fresh copies:

Cc′(π′) = B′{α1 \α′1, . . . , αn \α′n},
Cc′′(π′) = B′′{α1 \α′′1 , . . . , αn \α′′n}

Moreover, if ν is any formula occurrence in the conclusion of c originating from ψ2, then

q(ν, π′) = q(ν, π){α1 \α′1, . . . , αn \α′n, β1 \β′1, . . . , βm \β′m}∨
∨ q(ν, π){α1 \α′′1 , . . . , αn \α′′n, β1 \β′′1 , . . . , βm \β′′m}

because ν is contracted in π′.
If c is above the strong side of c̃, then eigenvariables of c̃ might be duplicated, as noted

above. In that case, we obtain the new constraint formula of c̃ by replacing each βi → t in
C c̃(π) with β′i → t ∨ β′′i → t.

Now let d = ϕ →∗ s be a valid derivation of G(π). If no nonterminals belonging to c
are used in d then all we have to do to obtain a valid derivation of G(π′) is replace each
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βi that occurs in d with β′i. If, on the other hand, such nonterminals are used, then all of
them must be produced from nonterminals of the end sequent due to the minimality of c.
Let αi1 , . . . , αim be those nonterminals of c that occur in d and assume that each αij is later
replaced by a term tj . Then either all of these terms are above µ′ or all of them are above
µ′′. To see this, assume w.l.o.g. that αi1 is later replaced by a term t1 that introduces a
quantifier in µ′, but not in µ′′ and αi2 by a term t2 for which the converse is true. Since d is
valid, the atom αij → tj in C(π) is assigned the value > by vd and all other atoms beginning
with αij are assigned ⊥, due to rigidity. Cc(π) is certainly of the form B̃′ ∨ B̃′′. Since d is
valid, either vd(B̃′) = > or vd(B̃′′) = >; say the former w.l.o.g. But all αi2 -atoms that occur
in B̃′ evaluate to ⊥, which is a contradiction.

We now consider the case where all terms produced from the αij introduce quantifiers in
µ′. In this case, replacing all αij in d with α′ij yields productions of G(π′). An analogous
substitution applied to the c-nonterminals that are introduced by other end sequent nonter-
minals gives a new derivation d′. The derivation d might also contain some of the βi. Since
the β′i and the β′′i have the same productions in P ′ as the βi do in P , we can simply replace
their productions as necessary.

Thus, we obtain a derivation d′′ that consists of productions of G(π′); we now need to
show that it is in fact valid. First of all, note that by construction, d′′ obeys local rigidity.
As for the constraint formula, it is clearly sufficient to show that vd′′ validates the various
conjuncts of C(π′).

If c̃ is a cut with an eigenvariable among the βi, say βi0 , and βi0 has an associated term
t, then the atom βi0 → t in C c̃(π) is replaced with β′i0 → t ∨ β′′i0 → t in C c̃(π′) and since
vd(C c̃(π))↔ >, the same holds for vd′′(C c̃(π′)).
Clearly, vd′′(Cc′′(π′)) = > because none of the α′′i -productions are evaluated by vd′′ .
vd′′(Cc′(π′)) = > follows immediately from vd(Cc(π)) = >.
The constraint formulas of other cuts and the end sequent are easily seen to be valid
under vd′′ .

Conversely, suppose that we have a derivation d′ of G(π′). The first thing we need to
establish is that d′ can only contain nonterminals of c′ or c′′, but not both. This is the case
because there is no production that contains nonterminals of both and and CES(π′) forces
us to choose either ψ′2 or ψ′′2 in each derivation. We thus obtain a derivation d of G(π) by
replacing all α′i, β′i, α′′i , β′′i with their original versions. This d does not violate rigidity due to
the considerations above. As in the argument for the other direction, the satisfiability under
d of the various parts of C follows readily from the satisfiability of the corresponding parts of
C′.

Now suppose that the contraction happens on the strong side of c. Reducing the
contraction leaves us with two new cuts c′, c′′ whose cut formulas are both Ac. Let µ′ and
µ′′ be the occurrences of Ac that serve as cut formulas for c′ and c′′ respectively. Each
eigenvariable α of c introduces a quantifier in either µ′ or µ′′ and consequently belongs to
either c′ or c′′ accordingly. Consequently, EV (c) = EV (c′)∪̇EV (c′′), where either set on the
right-hand side might be empty. Thus, let EV (c) = {α1, . . . , αn} and assume for the sake of
simplicity that EV (c′) = {α1, . . . , αk} and EV (c′′) = {αk+1, . . . , αn}.

The duplication of the left subproof ψ1 has extensive effects on the grammar. We will
discuss these effects separately for each c̃ ∈ QCuts(π). First, if c̃ is below c, then c must
be on the strong side of c̃ due to c’s minimality. As a consequence, it is possible that there
are eigenvariables of c̃ that are introduced within ψ1. If γ is such an eigenvariable, then
γ is duplicated, giving rise to eigenvariables γ′ and γ′′. Each such γ′ and γ′′ inherits the
productions of γ in G(π). The constraint formulas of c̃ changes in a straightforward manner,



S. Hetzl and S. Zivota 125

by replacing γ → t with γ′ → t ∨ γ′′ → t for each γ that is duplicated. In the sequel, let
{γ1, . . . , γl} be all eigenvariables of the original proof duplicated in this manner.

Next, assume that c̃ is located in ψ1. In this case, c̃ is replaced with two new cuts c̃′ and
c̃′′. If {β1, . . . , βm} are all eigenvariables that belong to such cuts, then clearly each of them
is replaced by two new copies β′i and β′′i . The productions of these duplicates work out to

P ′β′ = Pβi
{β̄ \ β̄′, γ̄ \ γ̄′},

P ′β′′ = Pβi
{β̄ \ β̄′′, γ̄ \ γ̄′′}

for each i ∈ {1, . . . ,m}. Similarly, c̃′ and c̃′′ have the constraint formulas

C c̃′ = C c̃{β1 \β′1, . . . , βm \β′m},
C c̃′′ = C c̃{β1 \β′′1 , . . . , βm \β′′m}

respectively. The final case to consider is that of c itself: The productions of the αi in G(π′)
work out to

P ′αi
= Pαi [β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′l ] for i ≤ k,

P ′αi
= Pαi

[β1 \β′′1 , . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′l ] for i > k.

The constraint formula of c′ can be obtained from Cc by replacing each literal αi → t that
occurs in it with αi → t[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k] (for i ≤ k) or removing it
(for i > k). An analogous transformation yields Cc′′ . If c̃ is any other quantified cut, then c̃
is either within the strong side of c or on a different branch of the proof from c. The first
case is impossible due to minimality of c and in the second case, c̃ is unaffected by the proof
transformation.

The last thing that needs to be taken care of are the productions and constraint formula
of the end sequent. Each production zi → t is replaced by

zi → t[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k] and
zi → t[β1 \β′′1 , . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′k ].

If t does not contain any βi or γi, then both of these duplicates obviously coincide with the
original production and it simply carries over to G(π′). As for CES(π′), there are formulas
B1, . . . ,Br such that

CES(π) = C[B1, . . .Br] and
CES(π′) = C[B1[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k]∨

∨ B1[β1 \β′′1 , . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′k ],
. . .

Br[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k]∨
∨ Br[β1 \β1, . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′k ]].

Let d be a valid derivation of G(π). If nonterminals of c occur in d, then due to the
minimality of c they can only be introduced from nonterminals of the end sequent. Let
αi1 , . . . , αir be those nonterminals of c that are used in d and are later replaced by terms
t1, . . . , tr. For each ij , we replace the production αij → tj with αij → tj [β̄ \ β̄′, γ̄ \ γ̄′] if
ij ≤ k or αij → tj [β̄ \ β̄′′, γ̄ \ γ̄′′] if ij > k. Also, if zi → t is a production of the end sequent
in d, we replace it with zi → t[β̄ \ β̄′, γ̄ \ γ̄′], obtaining a new derivation d′. This can lead to
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d′ containing both β′i and β′′i for some i, and similarly for the γi. Due to total rigidity, d uses
at most one production for each βi and γi and we can simply replace any such production by
one or both of its two variants in the new grammar, according to whether one or both copies
of the respective nonterminal occur in d′. We call the derivation obtained by this process d′′.

As before, it is sufficient to show that d′′ is totally rigid and validates the conjuncts
of C(π′). vd′′(Cc′) = > because up to renaming, the literals of Cc′ are a subset of those of
Cc and vd(Cc) = >. The satisfiability of vd′′(Cc′′) is shown in an analogous manner. The
constraint formulas of all other cuts are similarly easy to deal with because they contain the
same substitutions relative to their original counterparts as d′′ does to d. vd′′(CES(π′)) = >
is immediately obvious.

Now suppose that we have a valid derivation d′ of G(π′). First of all, there are some
important conclusions to be drawn from the form of CES(π′): Let x, y be nonterminals of
the end sequent such that x dominates y. If some production x → t(ᾱ) is used in d′, no
production of y that is used in d′ can contain any of the β′i or γ′i (or their ′′-versions), and vice
versa. Moreover, if there is a production x→ ti(β̄′, γ̄′) in d′, then productions y → tj(β̄′′, γ̄′′)
cannot occur in d′, and analogously with the ′- and ′′-nonterminals changed around. Since
π is pruned, no term in ψ2 contains two eigenvariables that introduce the same quantifier.
These facts imply that we can simply replace all ′- and ′′-nonterminals by their original
versions without violating total rigidity. The argument that the resulting derivation d is
valid then goes through just as in the previous cases. J

We can now finally prove the main result of this paper:

I Theorem 16. Let π be a simple proof of Γ ` ∆. Then L(G(π)) is an Herbrand set of
Γ ` ∆.

Proof. By combining Lemmas 17, 19, 21, and 22. J

6 Conclusion

In this paper we have given a description of the Herbrand set induced by a proof with
non-prenex Π1 and Σ1 cuts in terms of a tree grammar. This is a considerable extension of
the previously existing work for prenex formulas [8] since the structure of sequent calculus
proofs and the dynamics of cut-elimination changes significantly when non-prenex cuts
are allowed. The central tool for this description are constraint grammars, which permit
capturing the dependencies of the quantifier instantiations in the proof.

Applications of the connection between formal language theory and proof theory de-
scribed in [8] for prenex Π1 and Σ1 cuts include results on Herbrand-confluence [12], cut-
introduction [11, 10, 9], inductive theorem proving [4], and proof complexity [3]. In addition,
this connection has recently been extended to prenex Π2 and Σ2 cuts [1]. In this line of
research, this paper is the first to consider non-prenex formulas and thus opens the way for
extending the above results and techniques to non-prenex cuts and induction formulas.
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Abstract
Techniques from automata theory are developed that handle search for inhabitants in the simply
typed lambda calculus. The resulting method for inhabitant search, which can be viewed as
proof search by the Curry-Howard isomorphism, is proven to be adequate by a reduction of the
inhabitant existence problem to the emptiness problem for appropriately defined automata. To
strengthen the claim, it is demonstrated that the latter has the same complexity as the former.
We also discuss the basic closure properties of the automata.
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These approaches have as natural limitation that they do not make it possible to recognise
the collection of all inhabitants. For this a method is needed to deal with the infinite alphabet
in the language. Automata that work with infinite alphabets were proposed by Kaminski
and Francez [11] for strings and by Kaminski and Tan [12] for trees. These automata have,
in addition to the standard control arranged through states, a fixed set of registers where
data from an infinite set may be stored. Data elements stored in registers can be checked for
equality with data elements from the input. This restricted check operation on an infinite
domain makes it possible to work with such automata similarly to the usage of standard
finite automata. Still, these automata do not fit well with the type inhabitation problem,
as storing a fixed finite number of bound variable names is not sufficient to represent all
potential normal inhabitants. To overcome this limitation we propose here a different notion
of register, such that a set of data elements may be kept there and the check operation
verifies whether a data element from the input belongs to the set. It turns out that this
method recognises all trees that can be reasonably regarded as inhabitants of a particular
type. Moreover, we show how it relates to earlier approaches, in which the total discharge
forms are recognised.

Related work. Various kinds of finite automata have been proposed for dealing with
semantics of the simply typed λ-calculus. The work of Salvati and Walukiewicz expresses
the semantics through Krivine machines [15]. Another approach expresses semantics by
description of β-reduction in the context of the higher-order matching problem (Ong and
Tzevelekos [13], Stirling [17]). Another interesting related work goes in a different direction.
Broda and Damas [4] proposed the formula-tree proof method, which partially realises the
program of the current work, and concretisises the proof search procedure as a data structure.
We believe that the automata theoretic view proposed here has the additional benefit of
bridging proof theory with the rich theory of automata, enabling mutual influence.

Organisation of the paper. We fix the notation in Section 2. Next, we define our inhabita-
tion machines in Section 3. This is continued by demonstration of the PSPACE-completeness
of the emptiness problem for the machines in Section 4. We summarise the account in
Section 5 by giving conclusions and showing the potential for further work.

2 Preliminaries

To make this paper self-contained we introduce some basic notation. In the automata
theoretic setting it is convenient to use the notion of a signature, usually denoted by Σ,
that is an indexed family of sets that contain elements called symbols. We sometimes abuse
the notation by identifying Σ with

⋃
Σ and write e.g. a ∈ Σ for some symbol a in one of

the members of Σ. The indices of the family are natural numbers and are called arities.
The arity of a symbol f is written arity(f). For a natural number k we write k for the set
{0, . . . , k − 1}. The set of all subsets of a given set A is written P (A), and for the set of all
finite subsets of A we write Pfin(A). Concatenation of two sequences π, π′ of elements from
some set A is written π · π′. A special case here is when π′ is a single symbol i ∈ A, then the
concatenation is π · i. The prefix order on sequences of natural numbers is written �. A set
C of finite sequences over N that is closed on the prefixes can be used as a domain of a tree.
A labelled tree over L is a function t : C → L where L is called the set of labels. We write
dom(t) for C. Elements of dom(t) are called nodes in the tree t. We write t|π for the subtree
rooted at the node π ∈ dom(C), i.e. the tree with the domain C ′ = {π′ | π · π′ ∈ dom(t)}
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130 Automata Theoretic Account of Proof Search

and labelling t′ defined as t′(π′) = t(π · π′) being t restricted to C ′. Usually, the set of labels
is a signature (flattened to

⋃
Σ) and then we assume that the tree respects the arity, i.e. if

arity(t(π)) = n then π · i ∈ dom(t) for i ∈ n. For a function f : A→ B we define its update
f [a 7→ b] for a ∈ A and b ∈ B as f [a 7→ b](x) = f(x) for x 6= a and f [a 7→ b](a) = b.

3 Automata account of the inhabitation problem

In what follows we use a slightly modified exposition from [1]. The simply typed λ-calculus
λ→ in the Church style is a language of expressions that have the following syntax expressed
in simplified syntax BNF :

T 3 τ ::= α | τ0 → τ1
Λ→ 3 M ::= xτ |M0M1 | λxτ .M0

This means that the parentheses are left implicit in the grammar above. The elements of
T and Λ→ are called types and terms, respectively. We assume here that α are type atoms
that are from an infinite, countable set A. We use metavariables σ, τ etc. for types. Term
variables, noted x, y, F etc. are from an infinite countable set V. Compound expressions of
the form xτ are called typed term variables and the set that contains all of them is VΛ

→. As
usual we distinguish the set of free variables FV(M) and define it structurally over terms so
that the binding operation is λ, and xτ is bound in λxτ .M0. A term that has no occurrences
of free variables is called closed. The λ-terms are identified up to α-conversion that makes it
possible to rename bound variables. A context, usually written as Γ with possible ornaments,
is a finite set of typed term variables.

We follow here a slightly non-standard take on contexts since we make it possible for
a context to contain both xτ and xτ ′ for τ 6= τ ′. Observe that this solution is not essential
since the type makes the variables to be sufficiently distinct. One must only ensure that
when a type erasure operation is performed, such two variables are made distinct, which can
be done in different ways, e.g. by making the type a part of the variable name.

Terms of type τ in the context Γ, written ΛΓ
→(τ), are a family of sets defined as the

smallest family that satisfies the conditions:
xτ ∈ ΛΓ

→(τ) when xτ ∈ Γ,
if M0 ∈ ΛΓ

→(σ → τ) and M1 ∈ ΛΓ
→(σ) then M0M1 ∈ ΛΓ

→(τ),
if M0 ∈ ΛΓ∪{xσ}

→ (σ′) then λxσ.M0 ∈ ΛΓ
→(σ → σ′) where σ → σ′ = τ .

We often abbreviate Λ∅→(τ) as Λ→(τ).
Proof search procedures usually look for proof terms in normal form, i.e. ones that do

not use a form of the cut rule. In the context of λ-calculi, the cut operation is represented as
a beta redex. In case of λ→ in the Church style, this redex is

(λxτ .M0)M1 →β M0[xτ := M1]

where M0[xτ := M1] is understood as the term that results from M0 by replacing all
occurrences of the typed variable xτ with M1. This substitution, as usual, renames bound
variables in M0 so that no free variable in M1 is captured by binding λ operators in M0.
The relation →β is defined by syntax closure of the above mentioned redexes. The reflexive-
transitive closure of →β is written in →∗β . It is known that the relation →β is strongly
normalising, i.e. each sequence of terms M0,M1, . . ., such that Mi →β Mi+1, has a finite
number of elements ([1, Theorem 2.2.1]).

It is easy to see that normal terms of type τ in the context Γ, written ΛΓ
n,→(τ), are

a family of sets defined as the smallest family that satisfies the conditions stated below. This
definition uses a supplementary set ΛΓ

s,→(τ) (the letter ‘s’ stands for ‘spine’ here).
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if xτ ∈ Γ then xτ ∈ ΛΓ
n,→(τ) and xτ ∈ ΛΓ

s,→(τ),
if M0 ∈ ΛΓ

s,→(σ → τ) and M1 ∈ ΛΓ
n,→(σ) then M0M1 ∈ ΛΓ

s,→(τ) and M0M1 ∈ ΛΓ
n,→(τ),

if M0 ∈ ΛΓ∪{xσ}
n,→ (σ′) then λxσ.M0 ∈ ΛΓ

n,→(σ → σ′) where σ → σ′ = τ .
A standard inductive argument shows the following proposition.

I Proposition 1. If N is a subterm of M ∈ ΛΓ
n,→(τ) then N ∈ ΛΓ′

n,→(σ) where Γ ⊆ Γ′ and
all types in Γ′ and σ are either subexpressions of τ or subexpressions of types in Γ.

Note that the context Γ′ may contain variables that do not occur in N .
The proof search when considered in the field of λ-calculi turns out to be, due to the Curry-

Howard isomorphism, the search of inhabitants for types. Here is the precise formulation of
the inhabitation problem.

I Definition 2 (inhabitation problem). The inhabitation problem for λ→ (or the decision
problem for implicational fragment of propositional intuitionistic logic) is defined as follows
Input: A type τ .
Question: Is there a closed Church-style term M such that M has type τ?

I Example 3. Consider types 1 = 0→ 0, 2 = 1→ 0 and 3 = 2→ 0. A normal inhabitant
of the type must have the form λF 2.Ma where Ma is of type 0 (we use here the variable F
instead of x to underline that it represents a functional). Next the only option we have is to
use the typed variable F 2, so Ma = F 2Mb where Mb is of type 1. Subsequently, we cannot
use F 2 so Mb must start with λ. Thus Mb = λy0.Mc where Mc must be of type 0. We can
now complete the process and let Mc = y0, but we can continue the process by steps similar
to the ones we used for Ma and obtain a sequence of terms

λF 2.F 2(λy0.y0), λF 2.F 2(λy0.F 2(λy0
1 .y

0
1)), λF 2.F 2(λy0.F 2(λy0

1 .F
2(λy0

2 .y
0
2))), . . . (1)

Note that this sequence does not exhaust the whole set of inhabitants of 3 since only the
last variable of form y0

i is used here while we have the liberty to use any of them.

In the following a special kind of terms called total discharge terms (or terms in Prawitz
natural deduction style) [14, 19] is used as a technical device that helps in effective search for
witnesses for non-emptiness. Suppose that we have an injection φ : T→ V. Let us represent
φ(τ) as xτ . We can now define a set of terms Λcnst

→ as the smallest subset of Λ→ such that
all xττ belong to Λcnst

→ ,
if M0,M1 belong to Λcnst

→ then M0M1 does,
if M0 belongs to Λcnst

→ and xττ is a typed variable then λxττ .M0 does.
The following proposition holds for λ→.

I Proposition 4. For each context Γ if ΛΓ
→(τ) 6= ∅ then ΛbΓc→ (τ) ∩ Λcnst

→ 6= ∅, where bΓc =
{xττ | yτ ∈ Γ}.

Proof. Assume that some M ∈ ΛΓ
→(τ). We can now show by induction on the structure of

M that there is a term M ′ ∈ Λcnst
→ that belongs to ΛbΓc→ (τ). Details are left to the reader. J

I Example 5. The sequence of terms in (1) corresponds to the following sequence of terms
in total discharge form.

λF 2.F 2(λy0.y0), λF 2.F 2(λy0.F 2(λy0.y0)), λF 2.F 2(λy0.F 2(λy0.F 2(λy0.y0))), . . .

Note that we use here y0 only instead multiple y0
1 , y

0
2 . . . since in total discharge form only

one variable for a type is allowed.
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132 Automata Theoretic Account of Proof Search

Figure 1 The tree representing the term λF 2.F 2(λy0.y0).

3.1 Terms as trees
We identify terms in the Church style with trees in the following way. Let Tσ be the set of
all subexpressions of σ. We define ΣσT as the family with symbols {Varτ | τ ∈ Tσ} of arity 0,
symbols {λτ | τ ∈ Tσ} of arity 1 and the symbol @ of arity 2. For a term M ∈ ΛΓ

n,→(τ) the
tree tM it corresponds to is defined inductively as follows:

for M = xτ it is a tree with a single node labelled with 〈Varτ , x〉 and we write the tree as
〈Varτ , x〉,
for M = M0M1 it is a tree t such that tM |i = tMi , for i = 0, 1 and t(ε) = @, we write the
tree as @(tM0 , tM1),
for M = λxτ .M0 it is a tree t such that tM |0 = tM0 and t(ε) = 〈λτ , x〉, we write the tree
as 〈λτ , x〉(tM0).

A tree that represents the first term in the sequence (1) in Example 3 is presented in Figure 1.
We can identify terms of λ-calculus with such trees since the sets are clearly in bijection

one with the other. We introduce now the notion of α-conversion for trees and identify
α-equivalent trees. First, let us define variable renaming.

I Definition 6 (variable renaming). We define inductively t[y := x]τ in the following way
〈Varτ

′
, z〉[y := x]τ = 〈Varτ

′
, z〉 for z 6= y or τ ′ 6= τ ,

〈Varτ , y〉[y := x]τ = 〈Varτ , x〉,
@(t0, t1)[y := x]τ = @(t0[y := x]τ , t1[y := x]τ ),
〈λτ ′

, z〉(tM0)[y := x]τ = 〈λτ ′
, z〉(tM0 [y := x]τ ) when z 6= y, z 6= x or τ ′ 6= τ ,

〈λτ , x〉(tM0)[y := x]τ = 〈λτ , z〉(tM0 [x := z]τ [y := x]τ ) where z 6= y and z 6= x,
〈λτ , y〉(tM0)[y := x]τ = 〈λτ , y〉(tM0).

The α-equivalence itself is defined as follows.

I Definition 7 (α-equivalence). For each variable x such that t does not have a free occurrence
of the node 〈Varτ , x〉 and each variable y we let 〈λτ , y〉(t) ≡0

α 〈λτ , x〉(t[y := x]τ ). The closure
of ≡0

α over the structure of trees is defined as ≡sα. The α conversion ≡α is defined as the
reflexive-transitive closure of ≡sα.

As we can see, this definition is slightly non-standard since it makes it possible to use the
same variable name in two different types as if they were two different variables. Indeed the
variables are made different by their types. We admit that the term λxα→α.λxα.xα→αxα

is probably not legible for humans, but for machines it is as good as λxα→α.λyα.xα→αyα.
Note that this does not work well for Curry-style terms where there is no way to distinguish
different variables through their types. The advantage of this style is that it requires fewer
variable names to represent λ-terms.

3.2 Inhabitation machines
The proof search associated with the inhabitation problem can be done in two fashions.
In the generative fashion, we start with axioms and step-wise apply rules associated with
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connectives bottom-up until the desired goal is reached. Another approach, called analytic
fashion, consists in step-wise decomposition of the formula top-down until axioms are reached.
Our definition of automaton follows the latter approach so it is a version of top-down tree
automata.

I Definition 8 (inhabitation machines). A (multiple assignment) inhabitation machine (IM) A
is a tuple 〈Σ, N,Q, qI ,R, δ〉 where Σ is a finite signature, N is an infinite set of data elements,
Q is a finite set of states, qI ∈ Q is the initial state, R is a finite set (of register names), and
δ ⊆ Σ×Q×Pfin(R)×Pfin(Q)×Pfin(R) is a set of rules written as a, q,R q0, q1, . . . , qn−1,W

where a ∈ Σ, q, q0, . . . , qn−1 ∈ Q, and R,W ∈ Pfin(R).

The machine traverses labelled trees where the set of labels is Σ × N ∪ Σ. The arity of
a pair 〈a, x〉 ∈ Σ×N is the arity of a. We assume that all the rules respect the arity so that
arity(a) = n in the rule above. In case all the rules are such that R,W are either empty or
singleton sets, the machines are called single assignment inhabitation machines.

Observe that the transition rules of the machine do not include elements of the set N of
data elements.

The operational semantics for such a machine is as follows. Configurations of A in a tree t
are elements of Config = dom(t)×Q×Reg where Reg = R → Pfin(N). Note that an element
of Reg models a situation when a finite set of elements is held in a register of a given name
from R. Suppose we are in a configuration 〈π, q, f〉. Consider a rule

a, q,R q0, q1, . . . , qn−1,W.

This rule is applicable in the configuration when
R = W = ∅ and t(π) = a, or
t(π) = 〈a, x〉 and x ∈ f(r) for all r ∈ R.

As a result of such a rule the machine splits its control and moves to all n sons of the node π
(recall that the arity must be respected both by the tree and by the rule) and for i ∈ n the
i-th resulting configuration is 〈π · i, qi, fW↓ 〉 where fW↓ : R → Pfin(N) is defined as

fW↓ (l) =
{
f(l) for l 6∈W,
f(l) ∪ {x} for l ∈W. (2)

Note that in case W = ∅ the condition in the second case of the definition is not possible so
this pattern defines fW↓ equal to f . We drop the superscript W whenever the set is clear
from the context.

Whenever it does not lead to confusion we flatten the rules and instead of

a, q, {i0, . . . , ik} q0, q1, . . . , qn−1, {j0, . . . , jl} (3)

we write simply a, q, i0, . . . , ik  q0, q1, . . . , qn−1, j0, . . . , jl.

A run of a machine A on a tree t is a function r : dom(t) → Config that respects the
rules of δ, i.e. for each node π ∈ dom(t) there is a rule a, q,R q0, q1, . . . qn−1,W ∈ δ that
is applicable in the configuration r(π) and for each son i of the node π the configuration
r(π · i) is the i-th resulting configuration of the rule.

We say that a machine A accepts a tree t from a configuration 〈π, q, f〉 when there
is a correct run on t|π of A that starts with the configuration 〈ε, q, f〉. Let us define
fI : R → Pfin(N) so that fI(r) = ∅ for all r ∈ R. We say that the machine A accepts a tree
t when there is a correct run of the machine that starts in 〈ε, qI , fI〉. The set of all trees t
such that A accepts t is written L(A).
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I Remark (a version for the Curry style). A slightly different notion of machine is necessary
to deal with terms in the Curry style. The definition of the resulting configuration must be
modified. The state of the registers should change in a different way and the definition of
the functions fW↓ from (2) should be replaced with the following one

fW↓ (l) =
{
f(l)\{x} for l 6∈W,
f(l) ∪ {x} for l ∈W. (4)

In this way, we maintain the interpretation that a particular variable name is active in
a given scope for only one λ binder. The whole development of this paper could be redone
for machines that use this version of register update. Its full examination is left for the full
version of the paper.

Hereafter, a theorem is presented that relates inhabitation in λ→ and our machines.
Before we formulate it, we define a crucial machine that is used there. The machine Aτ is
〈ΣτT ,V, Q, qI ,R, δ〉 where

ΣτT ,V are defined as in Section 3.1,
Q = {qσ, qsσ | σ is a subexpression of τ},
qI = qτ ,
R is the set of subexpressions of τ .

The rules of δ are as follows:
1. Varσ, qσ, σ  ∅,
2. Varσ, qsσ, σ  ∅,
3. @, qσ, ∅ qsσ′→σ, qσ′ , ∅,
4. @, qsσ, ∅ qsσ′→σ, qσ′ , ∅,
5. λσ, qσ→σ′ , ∅ qσ′ , σ.

Note that these rules are such that the resulting machine is a single assignment IM.

I Example 9. Let us see how this construction works for the type 3. First note that subex-
pressions of 3 form the set R3 = {0,1,2,3}. The automaton A3 = 〈Σ3

T ,V, Q3, q3,R3, δ3〉
where Σ3 = {Var0,Var1,Var2, Var3, λ0, λ1, λ2, λ3,@}, Q3 = {q0, q1, q2, q3, q

s
0, q

s
1, q

s
2, q

s
3}. The

rules of δ3 are

Var0, q0, 0 ∅, Var1, q1,1 ∅, Var2, q2,2 ∅, Var3, q3,3 ∅,
Var0, qs0, 0 ∅, Var1, qs1,1 ∅, Var2, qs2,2 ∅, Var3, qs3,3 ∅,
@, q0, ∅ qs0→0, q0, ∅, @, q0, ∅ qs1→0, q1, ∅, @, q0, ∅ qs2→0, q2, ∅,
@, qs0, ∅ qs0→0, q0, ∅, @, qs0, ∅ qs1→0, q1, ∅, @, qs0, ∅ qs2→0, q2, ∅,
λ0, q0→0, ∅ q0, 0, λ1, q1→0, ∅ q0,1, λ2, q2→0, ∅ q0,2.

The construction presented here is a little bit not optimal as not all states and rules are
reachable from the initial configuration. Yet, it is still simple in formulation and therefore
convenient to handle in proofs.

Figure 2 presents the states of A3 reachable from the initial configuration. An annotation
next to an edge there indicates the alphabet symbol that is used to traverse it. For comparison
with the machine in the book by Barendregt, Dekkers, and Statman [1, p. 36], the thick
edges in the picture correspond directly to the edges there, while the thin edges should be
collapsed to one edge labelled with F .

To demonstrate the operation of the automaton, we present here its run that witnesses
that A3 accepts the tree presented in Figure 1.
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Figure 2 The automaton A3 after removing non-reachable states.

1. 〈ε, q3 , 0 1 2 3 〉 We start at the root position in the initial state and with empty
registers. The only possible rule to use is λ2, q2→0, ∅ q0,2.

2. 〈0, q0 , 0 1 2 3
F

〉 The register 2 was filled with a variable (F ). We cannot apply
the rule Var0, q0, 0 ∅ since the register 0 is empty. The only
rules that remain are @, q0, ∅  qsσ, q0, ∅ where σ ∈ {0 → 0,
1 → 0,2 → 0}. After a while of analysis we can see that options
where σ 6= 1 → 0 cannot lead to a successful computation. Thus,
we follow the rule with σ = 1 → 0 and the computation forks to
points 3. and 4. below.

3. 〈0, qs1→0, 0 1 2 3
F

〉 Since 1 → 0 = 2 and the register 2 is not empty, we can apply
the rule Var2, qs2,2 ∅ and successfully terminate this branch
of computation.

4. 〈0, q1 , 0 1 2 3
F

〉 The register 1 is empty so we cannot apply the rule Var1, q1,1 
∅. Therefore, the only option is to use λ0, q0→0, ∅ q0, 0 here
and come back to q0.

5. 〈0, q0 , 0 1 2 3
y F

〉 The register 0 is no longer empty so we can apply this time the
rule Var0, q0, 0 ∅, which concludes the run of the automaton.

In step 5. we could use the rule with @ as in the step 2. and get into another turn of the
loop visible in Figure 2. Looping there makes it possible to obtain trees representing other
terms from (1) on page 131.

I Theorem 10. For each type τ the language L(Aτ ) is the set of normal forms that are
closed inhabitants of τ .

Proof. Given a state of registers f ∈ Reg we can define a context Γf as Γf = {xσ | x ∈ f(σ)}.
Similarly, given a context Γ we can define a state of registers fΓ : R → Pfin(V) determined
as fΓ(σ) = {xσ | xσ ∈ Γ} where σ is a subexpression of τ . We have now the following fact:

1. Let σ be a subexpression of τ . If Γ is a context that contains only elements of
the form xσ

′ where σ′ is a subexpression of τ and M ∈ ΛΓ
n,→(σ) (M ∈ ΛΓ

s,→(σ))
then there is a tree tM such that Aτ accepts tM from a configuration 〈ε, qσ, fΓ〉
(〈ε, qsσ, fΓ〉, respectively).

2. If Aτ accepts a tree t from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then there is a term
M ∈ ΛΓf

n,→(σ) (M ∈ ΛΓf
s,→(σ), respectively), where M is such that t = tM .
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The proof of (1) is by induction over the structure of M

In case M = xσ, we observe that xσ ∈ ΛΓ
n,→(σ) is possible only when xσ ∈ Γ. This implies,

as σ is a subexpression of τ , that xσ ∈ fΓ(σ). As a result Aτ accepts the tree 〈Varσ, x〉 from
the configuration 〈ε, qσ, fΓ〉 through the rule Varσ, qσ, σ  ∅. Similar argument applies for
xσ ∈ ΛΓ

s,→(σ), but we have to use the rule Varσ, qsσ, σ  ∅.
In case M = M0M1, we observe that M0M1 ∈ ΛΓ

n,→(σ) is possible only when M0 ∈
ΛΓ
s,→(σ′ → σ) and M1 ∈ ΛΓ

n,→(σ′). By Proposition 1, the types σ′ → σ and σ′ are
subexpressions of τ . Note that by the induction hypothesis we obtain a tree tM0 such that
Aτ accepts it from the configuration 〈ε, qsσ′→σ, f

Γ〉 through a run r0 and a tree tM1 such that
Aτ accepts it from the configuration 〈ε, qσ′ , fΓ〉 through a run r1. Let us construct a tree
tM = @(tM0 , tM1) and a run r over tM such that r(ε) = 〈ε, qσ, fΓ〉, r(0 · π) = 〈0 · π, q′, f ′〉
where r0(π) = 〈π, q′, f ′〉, and r(1 · π) = 〈1 · π, q′, f ′〉 where r1(π) = 〈π, q′, f ′〉. It is easy to see
that the rule @, qσ, ∅ qsσ′→σ, qσ′ , ∅ is applicable in the root node of t and for other nodes
the function r respects δ as r0 and r1 did.

Similar argument applies for M0M1 ∈ ΛΓ
s,→(σ), but we have to use the rule @, qsσ, ∅ 

qsσ′→σ, qσ′ , ∅.
In case M = λxσ

′
.M0 we observe that λxσ′

.M0 ∈ ΛΓ
n,→(σ′ → τ ′) is possible only when

M0 ∈ ΛΓ
n,→(τ ′). By the induction hypothesis we obtain a tree tM0 such thatAτ accepts it from

the configuration 〈ε, qτ ′ , fΓ,xσ
′

〉 through a run r0. Let us consider the tree tM = 〈λσ′
, x〉(tM0)

and a run r over t such that r(ε) = 〈ε, qσ′→τ ′ , fΓ〉, and r(0 · π) = 〈0 · π, q′, f ′〉 where
r0(π) = 〈π, q′, f ′〉. It is easy to see that the rule λσ′

, qσ′→τ ′ , ∅ qτ ′ , σ′ is applicable in the
root node of tM , and for other nodes the function r respects δ as r0 did.

The proof of (2) is by induction over the structure of t

In case t = 〈Varτ
′
, x〉 and Aτ accepts it from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then it can

happen only because a rule of the form

Varσ, qσ, σ  ∅ (or Varσ, qsσ, σ  ∅)

was used. Such a rule is applicable only when τ ′ = σ and the register σ contains x. As
a result xσ is in Γf . This means xσ ∈ ΛΓf

n,→(σ) (xσ ∈ ΛΓf
s,→(σ), respectively) and thus the set

is not empty.
In case t = @(t0, t1) and Aτ accepts t from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then it

can happen only because a rule of the form

@, qσ, ∅ qsσ′→σ, qσ′ , ∅ (or @, qsσ, ∅ qsσ′→σ, qσ′ , ∅)

was used. The machine Aτ accepts the tree t0 from the configuration 〈ε, qsσ′→σ, f〉 and
Aτ accepts t1 from the configuration 〈ε, qσ′ , f〉. By the induction hypothesis we obtain
that some M0 ∈ ΛΓf

s,→(σ′ → σ) and M1 ∈ ΛΓf
n,→(σ′). As a result M0M1 ∈ ΛΓf

n,→(σ) (or
M0M1 ∈ ΛΓf

n,→(σ), respectively).
In case t = 〈λσ′

, x〉(t0) and Aτ accepts t from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then it
can happen only because a rule of the form

λσ
′
, qσ′→τ ′ , ∅ qτ ′ , σ′

was used, where σ′ → τ ′ = σ. The machine Aτ accepts t0 from the configuration 〈ε, f ′, qτ ′〉
where f ′ = f [σ′ 7→ f(σ′) ∪ {x}]. By the induction hypothesis we obtain that some M0 ∈
ΛΓf

′

n,→(τ ′), which gives us that λxσ′
.M0 ∈ ΛΓf

n,→(σ′ → τ ′) = ΛΓf
n,→(σ).

A direct check verifies that the terms M constructed above have the property that t = tM .
We can apply the proven above fact to the subexpression τ ′ = τ and obtain the desired

conclusion of Theorem 10. J
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The proof of the theorem above easily generalises to the formulation that involves open
terms as follows – given a fixed set Γ of free variables, type τ the language L(AΓ

τ ) is the set
of normal forms that are closed inhabitants of τ with free variables in Γ. It is simply enough
to start the automaton with registers appropriately filled with variables from Γ.

Although a precise account of the remark below goes beyond the scope of this paper, it is
worth observing that we could omit from the construction the (spine) states of the form qsσ
and we would still obtain representations of typable terms. These terms would not need to
be in normal form, though. Still, we would not be able to obtain all typable terms as we are
limited by the finite number of registers that hold variables of types being subexpressions of
the original type. Notably, this kind of restriction is natural in certain scenarios, in particular
non-normal accessible terms considered in the decidability proofs for various versions of the
higher-order matching problem could be accepted by our machines.

3.3 Invariance of α-conversion
The machines accept trees that are constructed from a particular set of variables. Still,
λ-terms are understood up to renaming of bound variables, i.e. α-conversion. To establish
the connection with terms rather than their α-representants we need to establish that the
languages of trees accepted by the IM’s defined before the proof of Theorem 10 cannot
separate two different α-equivalent trees. Let us start with a definition which are the machines
of interest here.

I Definition 11 (variable consistent IM’s). Let A = 〈Στ
T ,V, Q, qI ,R, δ〉 where R is the set

of subexpressions of τ . We say that A is a variable consistent IM when all its rules with
symbols Varσ have the form Varσ, q, σ  W for some σ ∈ R.

I Proposition 12. If t1, t2 are trees representing λ-terms such that t1 ≡0
α t2 and A is

a variable consistent IM that accepts t1 from a configuration 〈ε, q, f〉 then it accepts t2 from
the same configuration.

Proof. Observe that t1 ≡0
α t2 means that t1 = 〈λτ , y〉(t) and t2 = 〈λτ , x〉(t[y := x]τ ). Let

A = 〈ΣσT ,V, Q, qI ,R, δ〉. The proof is by induction over the size of the tree t.
In case t = 〈Varτ

′
, z〉 we observe that A accepts t1 from the configuration 〈ε, q, f〉, it

must be the case that two rules are used to accomplish this

λτ , q1, R q2,W, Varτ
′
, q2, R

′  W ′ (5)

where R,W,R,W ′ ∈ Pfin(R).
We have now two subcases, (a) τ = τ ′ with z = y, (b) τ = τ ′ with z 6= y or τ 6= τ ′. In

case (a), we have t1 = 〈λτ , y〉(〈Varτ , y〉), t2 = 〈λτ , x〉(〈Varτ , x〉). By a direct check we can
verify that the same two rules can be used to accept t2. The only non-trivial case is when
R′ 6= ∅, and then the check for presence of element in a register i ∈ R′ in both cases is
positive since either i 6∈ W and then in both cases f(i) is the same or i ∈ W and then in
both cases the variable being checked is exactly the one that was added.

In case (b), we observe first that the case τ 6= τ ′ is impossible in variable consistent IM’s.
Thus, we obtain that t1 = 〈λτ , y〉(〈Varτ , z〉), t2 = 〈λτ , x〉(〈Varτ , z〉). In this case, W ∩R = ∅
as otherwise the presence of z in any register of the intersection would mean z = y. This
implies that only registers that were not modified by the rule with λτ can be checked and
this makes the rules in (5) trivially accept t2.

In case t = @(t0, t1), we observe that A accepts t1 with a run that starts with the rules

λτ , q1, R q2,W, @, q2, ∅ q′0, q
′
1, ∅.
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Note that once the machine is started in the initial configuration 〈ε, q, f〉 where q = q1,
it moves to two configurations 〈i, qi, f↓〉 for i = 0, 1 where f↓ = f in case W = ∅ or
f↓ = f [r1 7→ f(r1) ∪ {y}] · · · [rl 7→ f(rl) ∪ {y}] when W = {r1, . . . , rl}. We accept ti from
configurations 〈ε, q′i, f↓〉 for i = 0, 1. We take now two mild modifications Ai for i = 0, 1 of
A obtained by adding the transition

λτ , q•, ∅ q′i,W

respectively, where q• is a fresh state. We can directly verify that for Ai with the configuration
〈ε, q•, f〉 at the root of ti1 = 〈λτ , y〉(ti), the resulting configuration is 〈0, q′i, f↓〉, and this
configuration accepts ti1 provided that the machine accepts ti from 〈ε, q′i, f〉 for i = 0, 1. This
is guaranteed by the fact that this holds for A and each its run is also a run of Ai. We
can now use the induction hypothesis to verify that Ai accept ti2 = 〈λτ , x〉(ti[y := x]τ ) from
respective configurations for i = 0, 1. Note that the runs arrive at the configurations 〈0, q′i, f↓〉
respectively. They can be then turned to runs that accept ti[y := x]τ from 〈ε, q′i, f〉. As the
initial state does not occur on the right-hand sides of the rules they are actually runs of A
too. Since the rule λτ , q1, R q2,W transforms the initial configuration to a tuple 〈i, q′i, f↓〉
and these are accepting when 〈ε, q′i, f↓〉 are accepting for ti, we obtain our conclusion that A
accepts 〈λτ , x〉(t[y := x]τ ).

In case t = 〈λτ , x〉(t) the proof is similar as in the previous case. The details are left to
the reader. J

In case the machines are not variable consistent, we can find two trees, namely t1 =
〈λτ , y〉(〈Varσ, z〉) and t2 = 〈λτ , x〉(〈Varσ, z〉), that are in the relation ≡0

α but t1 is accepted
by a machine that rejects t2.

I Proposition 13. For any variable consistent IM A, if t1 ≡sα t2 and t1 ∈ L(A) then
t2 ∈ L(A).

Proof. The proof is by a straightforward induction over the structure of t1. Details are left
to the reader. J

I Theorem 14 (invariance of α-conversion). For any variable consistent IM A, if t1 ≡α t2
and t1 ∈ L(A) then t2 ∈ L(A).

Proof. The proof is by induction on the number n of ≡sα steps to obtain t1 ≡α t2. The case
of 0 steps is trivial since then t1 = t2. In case n > 0 we have t′2 such that t1 ≡α t′2 ≡sα t2 and
t1 ≡α t′2 requires less than n steps of ≡sα. We obtain that t′2 ∈ L(A) by Proposition 13 and
then t1 ∈ L(A) by the induction hypothesis. J

3.4 Closure properties
The advantage of automata is that they make it possible to easily give constructs for the
sum or intersection of languages. This is done through closure constructions. We present
these for the (multiple assignment) IM’s proposed here.

I Theorem 15. For all tree languages L1, L2 over a signature Σ if there are IM’s Ai such
that Li = L(Ai) for i = 1, 2 then
1. there is a machine A such that L(A) = L1 ∪ L2,
2. there is a machine A such that L(A) = L1 ∩ L2.
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Proof. Let us first assume that Ai = 〈Σ, N,Qi, qi,I ,Ri, δi〉 for i = 1, 2 where Q1 ∩Q2 = ∅
and R1 ∩R2 = ∅. This assumption does not weaken our proof.

For the proof of (1) we define the machine whose states are the sum of states from A1 and
A2 with registers R1 ∪R2. In addition the machine has a fresh initial state from which one
can move non-deterministically either to states of A1 or to states of A2 and then continue
the run according to the set of rules from the chosen this way machine. More precisely,
A = 〈Σ, N,Q′, q′I ,R′, δ′〉 where Q′ = Q1 ∪Q2 ∪ {q′I}, q′I is a fresh state, R′ = R1 ∪R2, and
at last

δ′ = δ1 ∪ δ2∪ {a, q′I , R q0, q1, . . . , qn−1,W | a, q1,I , R q0, q1, . . . , qn−1,W ∈ δ1} ∪
{a, q′I , R q0, q1, . . . , qn−1,W | a, q2,I , R q0, q1, . . . , qn−1,W ∈ δ2}.

The details of demonstration that this machine indeed recognises L1 ∪ L2 are left to the
reader.

For the proof of (2) we define the machine whose states are the product of the states from
A1 and A2 with registers R1 ∪R2. The resulting machine simulates a run of A1 on the first
coordinate and a run of A2 on the second one. When a set of registers R1 is read in a rule of
A1 and R2 is read in a rule of A2 we combine them in a rule of the resulting machine by
taking R1 ∪R2. Similarly for registers to write to. In this way, each time a set of registers is
checked for presence of the current element of data all the registers in the rule from A1 are
checked as well as ones for the rule from A2. Similarly for writes. In more detail the resulting
machine is A = 〈Σ, N,Q′, q′I ,R′, δ′〉 where Q′ = Q1 × Q2, qI = 〈q1,I , q2,I〉, R′ = R1 ∪ R2,
and at last

δ′ = {a,〈q1,0, q2,0〉, R1 ∪R2  〈q1,1, q2,1〉, 〈q1,2, q2,2〉, . . . 〈q1,n, q2,n〉,W1 ∪W2 |
a, q1,0, R1  q1,1, q1,2, . . . q1,n,W1 ∈ δ1, and
a, q2,0, R2  q2,1, q2,2, . . . q2,n,W2 ∈ δ2}.

The details of demonstration that this machine recognises L1 ∩ L2 are left to the reader. J

The constructions above use multiple assignments. An observant reader may have spotted
that the proof of Theorem 10 requires only singleton sets in rules of machines. As a result, the
machines there are single assignment IM’s. It is an open question if the automata are closed
on intersection. Therefore, we decided to introduce to the general model multiple register
manipulations in the fashion of multiple assignment automata considered by Kaminski and
Francez [11] where the closure can be obtained as above.

An immediate application of the above closure properties is the extension of the language
of closed terms typed in the simply typed λ-calculus to the calculus of intersection types of
rank 1 [20] or sum types of rank 1 [8].

4 The emptiness problem

To see how the design of the machines fits the inhabitation problem we show that the
emptiness problem for the machines has the same complexity as the one for λ→. For this,
we need to introduce another kind of automata for which the decidability of the emptiness
problem can be dealt with more straightforwardly. Although we do not explore this connection
in detail, the automata can be viewed as a reformulation of the term recognition by grammars
proposed by Takahashi et al. [18].

We give here a construction that works for single assignment IM’s with yet another
restriction. This restriction covers the machines defined for the proof of Theorem 10. The
general case requires more work and its demonstration would depart too much from the topic
of inhabitation for the simply typed λ-calculus.
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I Definition 16 (one operation machines). A single assignment IM A is a one operation
machine when its rules have form a, q, R  q0, . . . , qn−1,W where at most one of the sets
R,W is non-empty.

I Definition 17 (binary automata). A binary automaton (BA) A is a tuple 〈Σ, Q, qI ,R, δ〉
where Σ is a finite signature, Q is a finite set of states, qI ∈ Q is the initial state, R is a finite
set (of available register names), and δ is a set of rules of the form a, q,R q0, q1, . . . , qn−1,W

where a ∈ Σ, q, q0, . . . , qn−1 ∈ Q, and R,W ∈ {{r} | r ∈ R} ∪ {∅}.

The automaton traverses labelled trees where the set of labels is Σ. As before, we assume
that all the rules respect the arity so that arity(a) = n in the definition above.

The operational semantics for such automaton is as follows. Configurations of A in
a tree t are elements of Config = dom(t)×Q× Regb where Regb = R → {0, 1}. Suppose we
are in a configuration 〈π, q, f〉. Consider a rule

a, q,R q0, q1, . . . , qn−1,W

the rule is applicable when
R = ∅ and t(π) = a, or
R = {r} for some r ∈ R, t(π) = a, and f(r) = 1.

When the rule is applied, the automaton forks the computation to all n sons of the tree (note
that the arity must be respected both by the tree and by the rule) and for a node i ∈ n the
i-th resulting configuration is 〈π · i, qi, fW⇓ 〉 where fW⇓ : R → {0, 1} is defined as

fW⇓ (l) =
{
f(l) for l 6∈W,
1 for l ∈W. (6)

Note that in case W = ∅ the condition in the second case of the definition is not possible so
this pattern defines fW⇓ equal to f . Again, we drop W whenever it is clear from the context.

A run of an automaton A on a tree t is a function r : dom(t)→ Config that respects the
rules of δ, i.e. for each node π ∈ dom(t) there is a rule

a, q, R q0, q1, . . . , qn−1,W ∈ δ

that is applicable in the configuration r(π) and for each son i of the node π the configuration
r(π · i) is the i-th resulting configuration of the rule.

We say that an automaton A accepts a tree t from a configuration 〈π, q, f〉 when there
is a correct run of A on t|π that starts with the configuration 〈ε, q, f〉. Let us define the
function fI : R → {0, 1} so that fI(r) = 0 for r ∈ R. We say that the automaton A accepts
a tree t when there is a correct run of the automaton that starts in 〈ε, qI , fI〉. The set of all
trees that A accepts is written L(A).

We define a translation of one operation IM’s to binary automata. Given a one operation
inhabitation machine A = 〈Σ, N,Q, qI ,R, δ〉 we fix a set N0 ⊆ N of size equal to |R| together
with a bijection from R to N0. We write nr for the result of the bijection on an element
r ∈ R. We define a binary automaton B = 〈ΣB, QB, qB,I ,RB, δB〉 where ΣB = Σ ∪ Σ×N0,
QB = Q, qB,I = qI , RB = R, δB contains for each rule

a, q, R q0, q1, . . . , qn−1,W ∈ δ the rule a′, q, R q0, q1, . . . , qn−1,W

where
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a′ = a when R = W = ∅,
a′ = 〈a, nr〉 when R = ∅ and W = {r},
a′ = 〈a, nr〉 when R = {r} and W = ∅.

We can now define the transformation operations for registers.

I Definition 18 (register transformations). For f : R → Pfin(N) we define f• : R → {0, 1} as
f•(r) = 0 when f(r) = ∅ and f•(r) = 1 otherwise.

For f : R → {0, 1} we define f• : R → Pfin(N) as f•(r) = ∅ when f(r) = 0 and
f•(r) = {nr} where nr ∈ N0 otherwise.

I Proposition 19.
1. If A accepts a tree t from a configuration 〈ε, q, f〉 then there is some t′ such that B accepts

t′ from the configuration 〈ε, q, f•〉.
2. If B accepts a tree t from a configuration 〈ε, f, q〉 then A accepts t from the configuration
〈ε, q, f•〉.

Proof. Both the proof of (1) and the proof of (2) are by induction over t. We only sketch
the proof due to the lack of space. For illustration we present here a fragment of the proof
for (1). The subcase concerns an internal node of the tree t. We know that a rule of the form

a, q,R q0, q1, . . . , qn−1,W ∈ δ

was applied in the configuration 〈ε, q, f〉 to accept t. We consider the subcase when R = ∅,
W = {r} and t(ε) = 〈a, x〉. We can consider the trees t|i and configurations 〈ε, qi, f↓〉 for
i ∈ n where f↓ is defined as in the pattern (2) on page 133. The automaton A accepts
these trees from respective configurations. By the induction hypothesis there are trees t′i for
i ∈ n that B accepts from the configurations 〈ε, qi, (f↓)•〉 for i ∈ n respectively. Note now
that (f↓)• = (f•)⇓ so actually B accepts the trees from the configurations 〈ε, qi, (f•)⇓〉. We
can now define the tree t′ = 〈a, nr〉(t′0, . . . , t′n−1) and by the definition of B the automaton
contains the rule a, q, ∅ q0, . . . , qn−1, r ∈ δB. This rule is applicable in the configuration
〈ε, q, f•〉 and leads to the mentioned above acceptable configurations 〈ε, qi, (f•)⇓〉, which
guarantees that B accepts t′. J

I Proposition 20. The emptiness problem for one operation IM’s is in PSPACE.

Proof. To certify that the emptiness problem is in PSPACE we give a polynomial time
alternating algorithm that given a machine A = 〈Σ, N,Q, qI ,R, δ〉 checks for emptiness of
L(A). We first transform A to its corresponding binary automaton B. Next, the algorithm
keeps in its memory the configuration of B and a counter i of the number of steps. The
initial configuration is 〈ε, qI , f〉 and the initial counter i = 0. The algorithm proceeds by
executing in loop the following three steps
1. it non-deterministically chooses a transition a, q,R q0, . . . , qn−1,W ∈ δB and then
2. it universally moves to n configurations that result from applying the rule and that have

q1, . . . , qn in their coordinates,
3. it increments i and in case i > imax = k · |Q| it leaves the loop with failure.
Observe that the loop is finished not only in step (3), but also in step (1) when a rule is
chosen so that there are no states on the right-hand side of the chosen rule. In case the
algorithm leaves the loop in this way it accepts. The bound k · |Q| is chosen so that in case
there are more steps the state with register content must repeat (note that once a register is
set to 1 it cannot be turned back to 0).

In this way the algorithm creates a potential tree t along a correct run on it. A closer
examination of the procedure shows that this tree is in total discharge form. J

CSL 2015



142 Automata Theoretic Account of Proof Search

I Proposition 21. The emptiness problem for IM’s is hard for PSPACE.

Proof. In Theorem 10, we defined machines that express inhabitation in λ→, which is
PSPACE-hard [16]. J

As an immediate corollary of Proposition 20 and 21 we obtain the following theorem.

I Theorem 22. The emptiness problem for one operation IM’s is PSPACE-complete.

5 Conclusions and further work

We have presented a model of automata and discussed how it corresponds to the inhabitation
problem for the simply typed λ-calculus. As this was done for syntax with named binders, it
is interesting to see how this would look like with de Bruijn indices. The binary automata
presented in Section 4 recognise the language of terms in total discharge form. It would be
interesting to see their version for depth bounded calculus of Dyckhoff-Hudelmeier [5, 10].

In addition to the presented closure properties for sum and intersection of languages one
traditionally considers other operations such as substitution of languages, or cilindrification.
The question concerning the closure for the operations remains open. Another interesting
direction of study would be to give automata that deal with full propositional intuitionistic
logic (i.e. one that includes logical alternative, conjunction, and negation). Automata for
infinite tree languages with Büchi acceptance conditions can give a similar account to the
one obtained in our Theorem 10 for Böhm trees.

We believe that Theorem 14 concerning the invariance of α-conversion can be generalised
to a wider class of binding operators and to α-conversion that is expressed as a permutation
of variables. In this way we would effectively obtain automata adequate for the Gabbay and
Pitts [7] approach to binder syntax.

One more interesting direction would be to augment our automata with additional
primitives that make it possible to recognise expressions in the relation of β-reduction. We
believe that the automata with global equality constraints [2] can give here promising results.
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Abstract
It is highly desirable for a computational model to have a logic characterization like in the seminal
work of Büchi that connects MSO with finite automata. For example, weighted automata are
the quantitative extension of finite automata for computing functions over words and they can
be naturally characterized by a subfragment of weighted logic introduced by Droste and Gastin.
Recently, cost register automata (CRA) were introduced by Alur et al. as an alternative model for
weighted automata. In hope of finding decidable subclasses of weighted automata, they proposed
to restrict their model with the so-called copyless restriction. Unfortunately, copyless CRA do
not enjoy good closure properties and, therefore, a logical characterization of this class seems to
be unlikely.

In this paper, we introduce a new logic called maximal partition logic (MP) for studying the
expressiveness of copyless CRA. In contrast to the previous approaches (i.e. weighted logics),
MP is based on a new set of “regular” quantifiers that partition a word into maximal subwords,
compute the output of a subformula over each subword separately, and then aggregate these
outputs with a semiring operation. We study the expressiveness of MP and compare it with
weighted logics. Furthermore, we show that MP is equally expressive to a natural subclass of
copyless CRA. This shows the first logical characterization of copyless CRA and it gives a better
understanding of the copyless restriction in weighted automata.
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1 Introduction

Weighted automata are an extension of finite state automata to compute functions over
strings [8]. They have been extensively studied since Schützenberger [21], and its decidability
problems [15, 2], extensions [7], and applications [18, 6] have been deeply investigated. From
the logic-side, Weighted MSO logic (WMSO) has been introduced and investigated in [7, 14].
This logic is a quantitative extension of MSO to define functions over strings and its natural
fragment gives a logic-based characterization of weighted automata.

Recently, Alur et al. [3] introduced the computational model of cost register automata
(CRA), an alternative model to weighted automata for computing functions. The main
idea of this model is to enhance deterministic finite automata with registers that can be
combined with semiring operations, but the registers cannot be used for taking decisions
during a computation. Alur et al. show in [3] that a fragment of CRA is equally expressive
to weighted automata, but the general model is strictly more expressive.
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The main advantage of introducing a new model is that it allows to study natural
subclasses of functions that do not arise naturally in the classical framework. This is the
case for the class of copyless CRA that where proposed in [3]. The idea of the so-called
copyless restriction is to use each register at most once in every transition. Intuitively, the
automaton model is register-deterministic in the sense that it cannot copy the content of each
register, similar to a deterministic finite automaton that cannot make a copy of its current
state. Copyless CRA is also an excellent candidate for having good decidability properties.
It was stated in [3] that the existing proofs of undecidability in weighted automata rely on
the unrestricted non-deterministic nature of the model and, thus, it might be possible that
copyless CRA can have good decidability properties [3]. Despite that this is a natural and
interesting model for computing functions, research on this line has not been pursued further
and not much is known about copyless CRA.

In this paper, we introduce a new logic called Maximal Partition Logic (MP) to define
functions over strings. In contrast to the previous approaches (WMSO), MP is based on
a different set of quantifiers and it does not need to distinguish between a boolean or
quantitative level of evaluation (see [7, 14]). MP is based on regular quantifiers that partition
a string into maximal substrings, compute a subformula over each substring separately and
then aggregate these outputs with respect to a semiring operation. Recently in [5] a logic
with a similar flavor has been proposed but in a different context, namely for data words. The
authors define a syntactically restricted fragment of MSO formulas with two free variables
called rigid MSO-formulas. Each assignment of the free variables can be seen as choosing the
substrings between the assigned positions. The rigid formulas put restrictions in the chosen
set of substrings that coincides with our restriction of choosing maximal substrings.

WMSO has the drawbacks of its automata counterpart (weighted automata) – the lack of
good decidability properties [2, 7, 14, 15]. We show that MP is less expressive than WMSO
and even less expressive than weighted automata. Interestingly, MP can still define natural
functions and it is strictly more expressive than finitely ambiguous weighted automata, a
subclass of weighted automata, which has good decidability properties. In this paper we
study the expressiveness of MP and compare its expressiveness with WMSO and fragments of
WMSO. By this comparison, MP might be a good candidate for a logic with good decidability
properties.

The main result of this paper is that MP is equally expressive to a natural fragment of
copyless CRA, called bounded alternation copyless CRA (BAC). This fragment of copyless
CRA has good closure properties and, at the same time, it does not lose much in terms of
expressibility. Most examples in [3] and this paper are definable by BAC automata. This
result could also be the first step in proving the decidability of MP. For example a positive
answer to a decidability problem for copyless CRA will imply a positive answer for the same
decidability problem for MP.

Organization. In Section 2 we introduce CRA and some basic definitions. In Section 3 we
introduce MP and compare it with other formalisms. In particular we discuss the connection
between this logic and rigid formulas. In Section 4 we define BAC automata and prove
that that this class of automata is equally expressive to MP. In Section 5 we compare the
expressiveness of MP with WMSO. We conclude in Section 6 with possible directions for
future research. Due to the page limit some proofs are moved to the appendix, available
online.
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2 Preliminaries

In this section, we summarize the notation and definitions used for finite automata, regular
expressions, MSO logic and cost register automata.

Finite automata over strings. Let Σ be a finite set of symbols. We denote by Σ∗ the set
of all finite strings over Σ and by ε the empty string in Σ∗. The length of a string w ∈ Σ∗ is
denoted by ∣w∣. Furthermore, for any a ∈ Σ the number of a-symbols in w is denoted by ∣w∣a.

A finite automaton [11] over Σ∗ is a tuple A = (Q,Σ, δ, q0, F ) where Q is a finite set of
states, δ ⊆ Q ×Σ ×Q is a finite transition relation, q0 is the initial state and F is the set of
final states. A run ρ of A is a sequence of transitions of the form: p0

a1Ð→ p1
a2Ð→⋯ anÐ→ pn where

(pi, ai+1, pi+1) ∈ δ for every i < n. We say that ρ (like above) is a run of A over w = a1 . . . an

if p0 = q0. Furthermore, we say that ρ is an accepting run if pn ∈ F . A string w is accepted
by A if there exists an accepting run of A over w. We denote by L(A) the language of all
strings accepted by A. A finite automaton A is called deterministic if δ is a function of the
form δ ∶ Q ×Σ→ Q.

Regular expressions. Let Σ be an alphabet. The syntax of regular expressions [11] over Σ
is given by:

R ∶= ∅ ∣ ε ∣ a ∣ R ⋅R ∣ R +R ∣ R∗

where a ∈ Σ. The semantics of regular expressions over strings is defined as usual [11]. We
write L(R) to denote the set of all strings that satisfy the regular expression R.

MSO. Let Σ be an alphabet. The syntax of an MSO-formula over Σ-strings is given by:

ϕ ∶= Pa(x) ∣ x ≤ y ∣ x ∈X ∣ (ϕ ∨ϕ) ∣ ¬ϕ ∣ ∃x. ϕ ∣ ∃X. ϕ

where a ∈ Σ, x and y are first-order variables and X is a set of variables. Let w = a1 . . . an ∈
Σ∗ be a string. We represent the string w as a structure ({1, . . . , n},≤, (Pa)a∈Σ), where
Pa = {i ∣ ai = a}. Further, we denote by dom(w) = {1, . . . , n} the domain of w as a structure.
Given a finite set x̄ of first-order and second-order variables, an (x̄,w)-assignment σ is a
function that maps every first order variable in x̄ to dom(w) and every second order variable
in x̄ to 2dom(w). Furthermore, we denote by σ[x→ i] the extension of the (x̄,w)-assignment
σ such that σ[x → i](x) = i and σ[x → i](y) = σ(y) for all variables y ≠ x. Consider an
MSO-formula ϕ(x̄) and a (x̄,w)-assignment σ. We write w ⊧ ϕ(σ) if (w,σ) satisfies ϕ(x̄)
using the standard MSO-semantics.

Semirings and functions. A semiring is a structure S = (S,⊕,⊙,0,1) where (S,⊕,0) is
a commutative monoid, (S − 0,⊙,1) is a monoid, multiplication distributes over addition,
and 0 ⊙ s = s ⊙ 0 = 0 for each s ∈ S. If the multiplication is commutative, we say that
S is commutative. In this paper, we always assume that S is commutative. For the
sake of simplicity, we usually denote the set of elements S by the name of the semiring
S. As standard examples of semirings we will consider the semiring of natural numbers
N(+, ⋅) = (N,+, ⋅,0,1), the min-plus semiring N∞(min,+) = (N∞,min,+,∞,0) and the max-
plus semiring N−∞(max,+) = (N−∞,max,+,−∞, 0) which are standard semirings in the field
of weighted automata [8].

In this paper, we study the specification of functions from strings to values, namely, from
Σ∗ to S. We say that a function f ∶ Σ∗ → S is definable by a computational system A (e.g.
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weighted automaton, or CRA) if f(w) = ⟦A⟧(w) for any w ∈ Σ∗ where ⟦A⟧ is the semantics
of A over strings. For any string w, we denote by wr the reverse string. We say that a class
of functions F is closed under reverse [3] if for every f ∈ F there exists a function fr ∈ F
such that fr(w) = f(wr) for all w ∈ Σ∗.

Variables, expressions, and substitutions. Fix a semiring S = (S,⊕,⊙,0,1) and a set of
variables X disjoint from S. We denote by Expr(X ) the set of all syntactical expressions that
can be defined from X , constants in S, and the syntactical signature of S. For any expression
e ∈ Expr(X ) we denote by Var(e) the set of variables in e. We call an expression e ∈ Expr(X )
without variables (i.e. Var(e) = ∅) a ground expression. For any ground expression we define
⟦e⟧ ∈ S to be the evaluation of e with respect to S.

A substitution over X is defined as a mapping σ ∶ X → Expr(X ). We denote the set
of all substitutions over X by Subs(X ). A ground substitution σ is a substitution where
each expression σ(x) is ground for each x ∈ X . Any substitution σ can be extended to a
mapping σ̂ ∶ Expr(X ) → Expr(X ) such that, for every e ∈ Expr(X ), σ̂(e) is the resulting
expression e[σ] of substituting each x ∈ Var(e) by the expression σ(x). For example, if
σ(x) = 2x and σ(y) = 3y, and e = x + y, then σ̂(e) = 2x + 3y. By using the extension σ̂, we
can define the composition substitution σ1 ○ σ2 of two substitutions σ1 and σ2 such that
σ1 ○ σ2(x) = σ̂1(σ2(x)) for each x ∈ X .

A valuation is defined as a substitution of the form ν ∶ X → S. We denote the set of
all valuations over X by Val(X ). Clearly, any valuation ν composed with a substitution σ
defines an expression without variables that can be evaluated as ⟦ν ○ σ(x)⟧ for any x ∈ X .

In this paper, we say that two expressions e1 and e2 are equal (denoted by e1 = e2) if
they are equal up to evaluation equivalence, that is, ⟦ν̂(e1)⟧ = ⟦ν̂(e2)⟧ for every valuation
ν ∈ Val(X ). Similarly, we say that two substitutions σ1 and σ2 are equal (denoted by σ1 = σ2)
if σ1(x) = σ2(x) for every x ∈ X .

Cost register automata. A cost register automaton (CRA) over a semiring S [3] is a tuple
A = (Q,Σ,X , δ, q0, ν0, µ) where Q is a set of states, Σ is the input alphabet, X is a set of
variables (we also call them registers), δ ∶ Q ×Σ → Q × Subs(X ) is the transition function,
q0 is the initial state, ν0 ∶ X → S is the initial valuation, and µ ∶ Q → Expr(X ) is the final
output function. A configuration of A is a tuple (q, ν) where q ∈ Q and ν ∈ Val(X ) represents
the current values in the variables of A. Given a string w = a1 . . . an ∈ Σ∗, the run of A over
w is a sequence of configurations: (q0, ν0) a1Ð→ (q1, ν1) a2Ð→ . . . anÐ→ (qn, νn) such that, for every
1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi) and νi(x) = ⟦νi−1 ○ σi(x)⟧ for each x ∈ X . The output of A over
w, denoted by ⟦A⟧(w), is ⟦ν̂n(µ(qn))⟧.

The run of A over w can be equally defined in terms of ground expressions rather than
values. A ground configuration of A is a tuple (q, ς) where q ∈ Q and ς ∈ Subs(X ) is a ground
substitution. Given a string w = a1 . . . an ∈ Σ∗, the ground run of A over w is a sequence of
ground configurations: (q0, ς0) a1Ð→ . . . anÐ→ (qn, ςn) such that for 1 ≤ i ≤ n, δ(qi−1, ai) = (qi, σi),
ς0 = ν0 and ςi(x) = ς̂i−1(σi(x)) for each x ∈ X . We denote the output ground expression of A
over a string w by ∣A∣(w) = ς̂n(µ(qn)). Notice that, in contrast to ordinary runs, ground runs
keep ground expressions as partial values of the run. It is easy to see that ⟦A⟧(w) = ⟦∣A∣(w)⟧.

Copyless restriction and copyless CRA. We say that an expression e ∈ Expr(X ) is copyless
if e uses every variable from X at most once. For example, x ⋅(y+z) is copyless but x ⋅y+x ⋅z
is not copyless (because x is mentioned twice). Notice that the copyless restriction is a
syntactical constraint over expressions. Furthermore, we say that a substitution σ is copyless
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if for every x ∈ X the expression σ(x) is copyless and Var(σ(x)) ∩Var(σ(y)) = ∅ for every
pair of different registers x, y ∈ X . Copyless substitutions, similar to copyless expressions, are
restricted in such a way that each variable is used at most once in the whole substitution.

A CRA A is called copyless if for every transition δ(q1, a) = (q2, σ) the substitution σ is
copyless; and for every state q ∈ Q the expression µ(q) is copyless, where µ is the output
function of A. In other words, every time that registers from A are operated, they can be
used just once. In the following, we give some examples of copyless CRA.

I Example 1. Let S be the max-plus semiring N−∞(max,+) and Σ = {a, b}. Consider the
function f1 that for a given string w ∈ Σ∗ computes the longest substring of b’s. This can be
easily defined by the following CRA A1 with two registers x and y.

x, y ∶= 0

max{x, y}

a
x ∶= 0
y ∶= max{x, y}

b
x ∶= x + 1
y ∶= y

A1 stores in the x-register the length of the last suffix of b’s and in the y-register the length of
the longest substring of b’s seen so far. After reading a b-symbol A1 adds one to x (the b-infix
has increased by one) and it keeps y unchanged. Furthermore, after reading an a-symbol
it resets x to zero and updates y by comparing the substring of b’s that has just finished
(i.e. the previous x-content) with the length of the longest substring of b’s (i.e. the previous
y-content) that has been seen so far. Finally, it outputs the maximum between x and y.

One can easily check that the previous CRA satisfies the copyless restriction and, therefore,
it is a copyless CRA. Indeed, each substitution is copyless and the final output expression
max{x, y} is copyless as well.

I Example 2. Again, let S be the max-plus semiring N−∞(max,+) and Σ = {a, b,#}.
Consider the function f2 such that, for any w ∈ Σ∗ of the form w0#w1# . . .#wn with
wi ∈ {a, b}∗, it computes the maximum number of a’s or b’s for each substring wi (i.e.
max{∣wi∣a, ∣wi∣b}) and then it sums these values over all substrings wi, that is, f2(w) =
∑n

i=0 max{∣wi∣a, ∣wi∣b}. One can check that the copyless CRA A2 defined below computes f2:

x, y, z ∶= 0

z +max{x, y}

# x, y ∶= 0
z ∶= z +max{x, y}

a x ∶= x + 1
b y ∶= y + 1

In the above diagram of A2, we omit an assignment if a register is not updated (i.e. it keeps
its previous value). For example, for the a-transition we omit the assignments y ∶= y and
z ∶= z for the sake of presentation of the CRA. Similarly, we also omit the assignment x ∶= x
and z ∶= z for the b-transition. One should keep in mind these assignments because of the
copyless restriction.

The copyless CRA A2 follows similar ideas to A1: the registers x and y count the number
of a’s and b’s, respectively, in the longest suffix without # and the register z stores the
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partial output without considering the last suffix of a’s and b’s. When the last substring wi

over {a, b} is finished (i.e. there comes a #-symbol or the input ends), then A2 adds the
maximum number of a’s or b’s in wi to z (i.e. z ∶= z +max{x, y}).

Trim assumption. For technical reasons, in this paper we assume that our finite automata
and cost register automata are always trim, namely, all their states are reachable from some
initial states (i.e., they are accessible) and they can reach some final states (i.e., they are co-
accessible). It is worth noticing that verifying if a state is accessible or co-accessible is reduced
to a reachability test in the transition graph [19]; and this can be done in NLogSpace.
Thus, we can assume without lost of generality that all our automata are trimmed.

3 A quantitative logic based on partitions

3.1 Regular selectors
In this subsection we extend regular expressions for selecting intervals from a string. Our
approach is similar to the one in [9, 12], but we restrict the selection to just a set of intervals
(i.e. spans in [9]) instead of relations of intervals.

Fix a string w ∈ Σ∗. An interval of w is a pair (i, j) such that 1 ≤ i ≤ j ≤ ∣w∣. We
write Int(w) for the set of all intervals of w. For an interval (i, j), we denote by w[i, j] the
substring between positions i and j, by w[⋅, j] the prefix of w until position j and by w[i, ⋅]
the suffix of w starting from position i. For the sake of simplification, we define w[⋅, i] and
w[i, ⋅] equal to ε whenever i ∉ {1, . . . , ∣w∣}.

A regular selector (RS) over Σ (or just selector or triple) is a triple (R,S,T ) where R,
S, and T are regular expressions over Σ. The set of all selectors over Σ is denoted by RSΣ.
We usually write R⟨S⟩T instead of (R,S,T ). The main motivation of a selector (R,S,T ) is
to select intervals (i, j) from a string w by dividing w into w = xyz such that x, y, and z
match R, S, and T , respectively, and w[i, j] = y. Specifically, we say that an interval (i, j)
of a string w is selected by a triple R⟨S⟩T if, and only if, w[⋅, i − 1] ∈ L(R), w[i, j] ∈ L(S),
and w[j + 1, ⋅] ∈ L(T ). The set of all intervals of w selected by R⟨S⟩T is defined as:

Sel(w,R⟨S⟩T ) = { (i, j) ∈ Int(w) ∣ w[⋅, i−1] ∈ L(R) ∧w[i, j] ∈ L(S) ∧w[j+1, ⋅] ∈ L(T ) }

I Example 3. Let Σ = {a, b}. Suppose that we want to define all maximal intervals that
define substrings of b-symbols in a string. This can be defined by the following regular
selector:

((a + b)∗a + ε) ⟨b+⟩ (a(a + b)∗ + ε)
The purpose of a selector R⟨S⟩T is to extract all intervals that satisfy the regular

expression S under the context defined by R and T . In our logic, we restrict the semantics
of selectors to consider just intervals that are maximal in terms of containment. More
precisely, we say that an interval (i1, j1) is contained in an interval (i2, j2) (denoted by
(i1, j1) ⊑ (i2, j2)) if, and only if, i2 ≤ i1 and j1 ≤ j2. The ⊑-relation basically defines a partial
order between intervals and we can talk about the ⊑-maximal intervals of a set. We write
Max⊑(I) to denote the set of all maximal intervals in I with respect to the partial order ⊑
for any set I of intervals. Given a selector R = R⟨S⟩T and a string w, we define the set of
intervals selected by R over w under maximal semantics by:

Max(w,R⟨S⟩T ) = Max⊑(Sel(w,R⟨S⟩T ))

That is, under the maximal semantics we select just intervals that are maximal with respect
to the partial order ⊑. This new semantics simplifies selectors from Example 3.
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I Example 4. With the maximal semantics, we can easily define the the set of maximal
intervals that define substrings of b-symbols like in Example 3. By using the maximal
semantics we can define this set of intervals easily as follows:

(a + b)∗ ⟨b+⟩ (a + b)∗

We usually do not need the context R and T when we are using the maximal semantics. For
instance, in the previous example R and S were equal to (a + b)∗ and could be omitted. For
the sake of simplification, we usually omit R, T and the angular brackets whenever R and T
are both equivalent to Σ∗. We can simplify the above selector and just write b+ to select the
maximal intervals of b’s.

3.2 Maximal partition logic
For a fixed semiring S = (S,⊕,⊙,0,1) and an alphabet Σ we define the maximal partition
logic (MP). This is a logic for computing functions similar to weighted logics [7] but with a
different set of quantifiers that are parametrized by regular selectors. Formally, the formulas
of MP over a semiring S = (S,⊕,⊙,0,1) and an alphabet Σ are defined by the following
grammar:

ϕ ∶= s ∣ (ϕ⊕ϕ) ∣ (ϕ⊙ϕ) ∣ ⊕R. ϕ ∣ ⊙R. ϕ

where s ∈ S and R ∈ RSΣ is a regular selector. Similar as in [7], our formulas use constants
s ∈ S and moreover constants are the only atomic formulas in MP. Our logic also includes the
binary sum ⊕ and product ⊙ like it is common in weighted or quantitative logics [7, 14]. Of
course, the signature of these operators depends on the semiring that is chosen, for example
max{ϕ1, ϕ2} or ϕ1 +ϕ2 are MP-formulas for the max-plus semiring N−∞(max,+). The new
quantifiers here are the formulas of the form ⊕R. ϕ or ⊙R. ϕ. We say that ⊕R. and ⊙R.
are partition quantifiers. We stress again that the signature of these quantifiers depends on
the signature of the semiring. The idea here is that, over any input w ∈ Σ∗, R will select the
set of maximal intervals I of w and then ϕ will be computed over each substring w[i, j] for
(i, j) ∈ I. The outputs of ϕ over w[i, j] will be aggregated under the ⊕ or ⊙ operation. It
is important to remark that ϕ will be computed over a substructure of w and not over the
whole string. This differs from the classical logic semantics where an element, set or relation
is chosen and the subformulas are evaluated over the whole structure plus an assignment over
the variables. Here we have taken a different direction and we consider just the substructure
induced by the interval provided by the regular selector.

Formally, each MP-formula ϕ defines a function ⟦ϕ⟧ from Σ∗ to S. The semantics of
MP-formulas is defined recursively over any string w ∈ Σ∗ as follows:

⟦s⟧(w) ∶= s

⟦ϕ1 ⊕ϕ2⟧(w) ∶= ⟦ϕ1⟧(w)⊕ ⟦ϕ2⟧(w)

⟦ϕ1 ⊙ϕ2⟧(w) ∶= ⟦ϕ1⟧(w)⊙ ⟦ϕ2⟧(w)

⟦⊕R. ϕ⟧(w) ∶= ⊕
(i,j)∈Max(w,R)

⟦ϕ⟧(w[i, j])

⟦⊙R. ϕ⟧(w) ∶= ⊙
(i,j)∈Max(w,R)

⟦ϕ⟧(w[i, j])

for any MP-formulas ϕ, ϕ1, and ϕ2; and for any regular selector R over Σ. For the special
case when Max(w,R) = ∅, we define ⟦⊕R. ϕ⟧(w) = 0 and ⟦⊙R. ϕ⟧(w) = 1.

In the sequel we give some examples in order to understand the syntax and semantics of
the logic.
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I Example 5. Suppose that we want to compute the number of b-symbols in a string and
we want to specify this function with MP-formulas over the max-plus semiring N−∞(max,+).
Here, we use max{⋅, ⋅} and + for the binary operators, and Max R. ϕ, ∑R. ϕ for the partition
quantifiers. Then the number of b-symbols in a string can be computed easily with the
following formula:

ϕ1 ∶= ∑ b. 1

To understand ϕ1, we need to first understand the regular selector given by the simple
expression b. Recall that this is a shorthand for (a+ b)∗⟨b⟩(a+ b)∗. Thus, the regular selector
b is choosing all the maximal intervals with just one b-symbol, that is, all substrings of the
form b. Then for each b-symbol in the input the formula is outputting 1 and, by aggregating
them all, it is calculating the number of b-symbols in a string.

By definition for any fixed string u, a formula of the form ∑u. 1 counts how many times
the u-string appears in the input. It is interesting to compare how simple and readable is
this formula in comparison to any equivalent formula in other logics (e.g. weighted logics [7])
or other formalism (e.g. weighted expressions [20]) for computing function over strings.

MP also has the ability of defining regular properties in a simple way. For example, let R
be a regular expression and suppose one wants to output 1 if the input is definable by R
and 0 otherwise. This is defined by the expression ⊕ ε⟨R⟩ε. 1. Here, the prefix and suffix of
the selected interval are ε, thus the regular selector chooses the whole string depending if
it belongs to R. If the string belongs to R the formula outputs 1; otherwise it outputs 0.
Therefore, MP has a native use of regular expressions embedded in the language.

I Example 6. Suppose that one wants to compute the length of the maximum substring of
b-symbols. The following formula shows how to define this function in MP logic over the
semiring N−∞(max,+):

ϕ2 ∶= Max b+. ∑ b. 1

In the previous formula, the partition quantifier Max b+ is breaking the input into maximal
substrings of b-symbols and passing each substring to the subformula ∑ b. 1 that counts the
number of b-symbols in the substring. Finally we maximize over all maximal substrings of
b-symbols.

We want to highlight again how declarative is ϕ2 in comparison to other logics. Here the
words are partitioned into maximal substrings of b-symbols and the length of each substring
is counted. In the end it is maximized over all lengths.

The next example defines a more complicated function.

I Example 7. Let Σ = {a, b,#} and suppose that we want to compute the same function
as in Example 4, that is, for each subinterval between #-letters, we want the maximum
between its number of a- or b-symbols, and then sum these values over all intervals. This
complicated function can be easily defined by the following MP formula over the max-plus
semiring N−∞(max,+):

ϕ3 ∶= ∑ (a + b)+. max { ∑a. 1 , ∑ b. 1 }

One can easily understand the function from the definition of the MP-formula ϕ3. The first
quantifier ∑ (a + b)+ is dividing the word into maximal substrings of a- and b-symbols or,
in other words, substrings that are between #-symbols (or the prefix and the suffix). Then
for each of these substrings the subformula max { ∑a. 1 , ∑ b. 1 } is taking the maximum
between the number of a-symbols or b-symbols. In the end these values are summed over all
maximal substrings of a- and b-symbols.
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3.3 Design decisions behind MP
MP uses regular selectors for choosing intervals from the input and computing a subformula
over the selected substrings. Here we are taking two design decisions about this new logic:
(1) we decided to use regular expressions for selecting intervals and (2) we consider only the
maximal intervals. In the following we give evidence of how these decisions are related with
previous work.

Regular expressions have been used from the beginning for extracting intervals from
strings [1, 10]. For example, regular expressions are used in practice for matching substrings
from files or documents [10]. Similar to regular selectors, a RegExp-engine (like egrep)
parses a regular expression R and an input document D, and extracts all words from D that
match with R. RegExp-engines even use parentheses “(⋅)” for declaring that the subword
that matches the subexpressions between parentheses must be output. Furthermore, in
RegExp-engines the parentheses semantics is greedy, namely, they select the larger subword
that matches the subexpression inside parentheses. This semantics is similar to the maximal
semantics of regular selectors with the exception that the greedy-semantics is even more
restrictive since the selected interval depends on how the input is parsed from left-to-right [10].
Despite this fact, it is interesting that even a more restricted flavor of the maximal semantics
is already presented in practice which supports the decision of including it for MP.

Recently, regular expressions for substring selection have been considered in the context
of information extraction [9, 12]. In [9], the authors propose a regular expression language
enhanced with variables, called regex, to extract relations of substrings from an unstructured
document. Regular selectors can be seen as a restrictive subfragment of regex, where only
one variable is used. We note that we could have used regex language or any other formalism
with the maximal semantics for selecting intervals from a string. However, we believe that
regular selectors are very simple, flexible and concise, and they include the best features of
previous works without loosing expressibility [9].

Finally, we could have also chosen MSO logic with two free variables for selecting intervals
instead of regular expressions (i.e. with respect to the normal semantics), namely, for any
MSO-formula ϕ(x, y) to extract the set Sel(w,ϕ(x, y)) of all intervals (i, j) over a string
w such that: w ⊧ ϕ(i, j). Of course, both formalism for selecting intervals are equivalent.
Namely, it is easy to show that for every MSO-formula ϕ(x, y) there exists a finite set of
regular selectors R1, . . . ,Rn such that ⋃n

i=1 Sel(w,Ri) = Sel(w,ϕ(x, y)) and vice versa. Notice
that with this definition of selecting intervals by MSO formulas we can assume that formulas
additionally satisfy x ≤ y.

Regarding the maximal semantics of regular selectors, it is important to note that a
similar semantics was studied before. In [5] the authors define a subset of MSO formulas
with two free variables called rigid MSO-formulas. Formally, an MSO-formula ϕ(x, y) over
strings is called rigid if for all strings w ∈ Σ∗ and all positions i ∈ dom(w) there is at most
one position j ∈ dom(w) such that w ⊧ ϕ(i, j), and at most one j′ ∈ dom(w) such that
w ⊧ ϕ(j′, i); in other words, ϕ(x, y) defines two partial injective functions on dom(w). One
can easily check that intervals defined by a regular selector with the maximal semantics
are also definable by a rigid MSO-formula. Indeed, for any regular selector R suppose that
ϕR(x, y) is an equivalent MSO formula that defines the same set of intervals (i.e. with the
normal semantics). Then Max(w,R) = Sel(w,ϕ∗R(x, y)), where:

ϕ∗R(x, y) ∶= ϕR(x, y) ∧ ∀x′.∀y′. (ϕR(x′, y′) ∧ x′ ≤ x ∧ y ≤ y′)→ (x′ = x ∧ y′ = y)

The formula ϕ∗R(x, y) is restricting the intervals that satisfy ϕR(x, y) to be maximal. In
particular, one can easily check that ϕ∗R(x, y) is indeed a rigid formula. This implies that



F. Mazowiecki and C. Riveros 153

the maximal semantics can be expressed by rigid formulas. The next proposition shows that
rigid formulas can also be defined by sets of regular selectors with the maximal semantics.

I Proposition 8. For every regular selector R there exists a rigid formula ϕR(x, y) such that
Max(w,R) = Sel(w,ϕR(x, y)) for every w ∈ Σ∗. Furthermore, for every rigid formula ϕ(x, y)
there exists a set of regular selectors R1, . . . ,Rn such that Sel(w,ϕ(x, y)) = ⋃n

i=1 Max(w,Ri)
for every w ∈ Σ∗.

4 Automata-based characterization of MP

In [17] (see Corollary 1) it was shown that the class of functions defined by copyless CRA
is not closed under reverse, that is, the run of copyless CRA is asymmetric with respect
to the input. Intuitively, this fact is contrary to the spirit of a logical characterization
for a computational model: a logic should express properties over the whole string and
its expressiveness should not depend on the orientation of the input. This implies that a
characterization of copyless CRA in terms of a logic is far to be possible. To solve this,
we introduce the subclass of bounded alternation copyless CRA (in short BAC) which is a
restricted variant of copyless CRA. We show that BAC have good closure properties and,
moreover, this is the right model to capture the expressiveness of maximal partition logic.

The alternation of an expression e ∈ Expr(X ) is defined as the maximum number of
switches between ⊕ and ⊙ operations over all branches of the parse-tree of e. Formally, let
⊗ ∈ {⊕,⊙} and ⊗̄ be the dual operation of ⊗ in S. We define the set of expressions Expr⊗0 (X )
with 0-alternation by Expr⊗0 = X∪S. For anyN ≥ 1, we define the set of expressions Expr⊗N(X )
as the ⊗-closure of Expr⊗̄N−1(X ), namely, Expr⊗N(X ) is the minimal set of expressions that
contains Expr⊗̄N−1(X ) and satisfies e1 ⊗ e2 ∈ Expr⊗N(X ) for all e1, e2 ∈ Expr⊗N(X ). We denote
by ExprN(X ) = Expr⊕N(X ) ∪Expr⊙N(X ) the set of all expressions with alternation bounded
by N .

We say that a copyless CRA A has bounded alternation if there exists N ∈ N such that
for every w ∈ Σ∗ it holds that ∣A∣(w) ∈ ExprN(X ), that is, the number of alternations of all
ground expressions output by A is uniformly bounded by a constant. A copyless CRA A is
called a bounded alternation copyless CRA (in short BAC) if A has bounded alternation.
All the examples of copyless CRA presented in this paper have bounded alternation. For
example, functions in Examples 1 and 2 are part of the BAC-class.

Bounding the alternation of expressions or formulas is a standard assumption in logic [16]
and here we used it to syntactically restrict the expression constructed by a copyless CRA.
One can easily check that this syntactical property can be verified in NLogSpace in the
size of the copyless CRA. Indeed, a copyless CRA has unbounded alternation iff there exists
a loop that alternates between ⊙ and ⊕ in its transition graph. Of course, the existence of
such loops can be determined by standard reachability tests in NLogSpace [19].

The fact that we can express the BAC automata in Examples 1 and 2 by MP-formulas in
Examples 6 and 7 , respectively, is not a coincidence. In the following theorem, we present
the main result of the paper.

I Theorem 9. Maximal partition logic and bounded alternation copyless CRA are equally
expressive, that is:

for every MP-formula ϕ there exists a BAC Aϕ such that ⟦ϕ⟧ = ⟦Aϕ⟧;
for every BAC A there exists a MP-formula ϕA such that ⟦A⟧ = ⟦ϕA⟧.

Proof. We present here sketch proofs of the two directions. Due to the space limit, the full
proofs are moved to the appendix (available online).
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From logic to automata. Let ϕ be a MP-formula. We sketch the definition of a BAC A
that specifies the same function as ϕ. The proof is by induction over the size of ϕ. The
interesting case is when ϕ = ⊗R⟨S⟩T. ψ where R⟨S⟩T is a regular selector and ψ is an
MP-formula for which there exists a BAC B such that ⟦ψ⟧ = ⟦B⟧. The main idea behind
the definition of A is to keep many copies of the automaton B and each copy is responsible
for evaluating the formula ψ on intervals defined by R⟨S⟩T . For ⊗-aggregating the outputs
of the B-copies, A uses one additional register x∗ that, each time an interval is closed, the
output of the B-copy is ⊗-operated with x∗ and then stored in x∗.

Let AR, AS , and AT be the finite automata recognizing the regular languages R, S, and
T , respectively. The first issue we have to deal with is that the number of B-copies cannot
depend on the input string w. We prove that, for every k-position in w, the number of
maximal intervals defined by R⟨S⟩T and containing k is uniformly bounded. Moreover this
bound is universal for all strings, i.e., it depends only on the size of AS . To see this, suppose
that I is the set of maximal intervals defined by R⟨S⟩T and containing k. Furthermore,
suppose that the size of I is bigger than the number of states in AS . If we assign to every
interval in I the state of AS in position k, then there are two intervals i1 and i2 with the
same state assigned. It is easy to see that we can merge these two intervals into one interval
that is selected by R⟨S⟩T but is bigger than i1 and i2. This is clearly a contradiction with
the fact that both i1 and i2 are maximal.

The second issue is to recognize the maximal intervals selected by R⟨S⟩T while A is
reading the input. The main observation here is that one can rewrite R⟨S⟩T into a new
regular selector that does not needs maximal semantics, i.e., there exists a regular selector
R′⟨S′⟩T ′ that defines with the normal-semantics all maximal intervals selected by R⟨S⟩T .
Thus, we can assume that R⟨S⟩T is already in this form and we focus on all selected intervals.

Now that A does not have to deal with checking whether an interval is maximal or not,
it has to decide whether an interval will be selected by R⟨S⟩T . Of course, A can keep track
of runs of AR, AS , and AT over w to find new potential intervals selected by R⟨S⟩T . The
problem is that, in the end, the intervals can turn out to be spurious (e.g. the remaining suffix
does not belong to the language defined by T ) and we cannot afford to keep all potential
intervals since the number of B-copies is bounded. To deal with this issue we use Theorem 2
in [17] which shows that BAC are closed under regular-lookahead, that is, the model can be
extended with regular look-ahead and this does not add more expressibility to the model.
This extension allows BAC to make decisions based on whether the remaining suffix of the
input word belongs to a regular language or not. By using this extension, A can determine
in advance whether an interval is going to be selected by R⟨S⟩T and solve the problem with
the spurious intervals.

The final automaton A works as follows. Whenever A finds a new interval selected by
R⟨S⟩T , it starts evaluating a B-copy over this interval. With regular look-ahead it also
checks if an interval is closing. If that is the case, then the output of the B-copy in charge of
this interval is aggregated with the additional register x∗ and the registers in this B-copy are
reset to the values defined by the initial function of B. Finally, the output function of A is
defined by aggregating x∗ with all intervals closed in the last step of A.

From automata to logic. Let A = (Q,Σ,X , δ, q0, ν0, µ) be a bounded alternation copyless
CRA. We sketch the definition of the formula ϕA that defines the same function as A. The
proof is by induction over the alternation bound N of A.

The first step is to understand the ground expressions defined by A. Let g be the
ground expression defined by the run of A on a string w. By applying the associativity and
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commutativity of S, one can show that g can be rewritten into an expression g∗ of the form
⊗c∈C c⊗⊗e∈E e for some operation ⊗ ∈ {⊕,⊙}, where C ⊆ S is a multiset of constants and
E is a multiset of expressions whose alternation is strictly lower than N . Interestingly, one
can define MP-formulas ϕ⊗C and ϕ⊗E each taking care of ⊗c∈C c and ⊗e∈E e, respectively. To
define ϕ⊗C , we use a set of regular selectors that chooses all 1-letter intervals where each
constant in C was generated by a transition of A. Here we define the selectors in such a way
that in each position we are able to retrieve the state and substitution used in the run of A.
The formula ϕ⊗C is then defined by aggregating the right constants (i.e. the ones in C) used
by substitutions of the run of A over w.

The formula ϕ⊗E requires more effort. For every expression e ∈ E we define a BAC Ae, a
modified variant of A, such that Ae outputs e on a substring w[ie, je]. We modify only q0,
ν0, and µ, and the other components X , Q and δ remain the same. Thus, the number of
new automata does not depend on the size of E but only on A. Given that the expressions
in E have alternation strictly less than N , then by induction we can find a formula ϕAe

for every automaton Ae. The main difficulty in the proof is to define regular selectors that
find the intervals (ie, je), where Ae or, more concretely ϕAe , must be applied. Indeed, it is
easy to define a set of expressions that find these intervals but the problem is the maximal
semantic, in particular, the set of intervals {(ie, je) ∣ e ∈ E} does not have to be a set of
maximal intervals. To solve this problem we define the intervals by rigid formulas instead of
using the maximal semantics. By Proposition 8, one can turn a rigid formula into a sum of
selectors that define the same set of intervals on every string.

Summing up, having the formulas ϕ⊗C and ϕ⊗E defined, it is easy to define the final formula
ϕA. Notice that for the base cases of the induction (i.e. when N = 0,1) we do not need the
formula ϕ⊗E and, therefore, ϕ⊗C includes the base case. Of course, there are some exceptional
cases not discussed in this proof-sketch because of space restrictions. The full proof includes
all these cases. J

Theorem 9 gives a logic-based characterization of bounded alternation copyless CRA.
This is useful to show new results in the automata model that are implications from the logic
counterpart. For example, one can easily show that MP is invariant under the orientation of
a word.

I Proposition 10. For every formula ϕ in MP there exists a formula ϕr such that for all
words ⟦ϕ⟧(w) = ⟦ϕr⟧(wr), where wr is the reverse word of w.

Interestingly, Proposition 10 and Theorem 9 implies that the BAC-class is closed under
reverse. Note that this result is unexpected if we try to prove it directly from the automata
model.

I Corollary 11. For every BAC A there exists a BAC Ar that computes the reverse function,
that is, ⟦A⟧(w) = ⟦Ar⟧(wr) for every w ∈ Σ∗.

The logic-based characterization of BAC and its good closure properties suggest that
these automata are a robust class in the world of weighted automata. In the next section,
we compare its expressibility with respect to weighted MSO and weighted automata.

5 Weighted MSO vs MP

In this section we compare MP with Weighted MSO, a quantitative logic that was proposed
as the logic counterpart of weighted automata. Recall that formulas of Weighted MSO [7]
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(WMSO) over a semiring S = (S,⊕,⊙,0,1) and an alphabet Σ are defined by the following
grammar (note that we use the modern syntax from [4, 14]):

θ ∶= ϕ ∣ s ∣ (θ ⊕ θ) ∣ (θ ⊙ θ) ∣ ⊕x. θ(x) ∣ ⊙x. θ(x) ∣ ⊕X. θ(X)

where ϕ is an MSO-formula over Σ, s ∈ S, x is a first-order variable, and X is a set of
variables. The syntax of WMSO is given by boolean formulas (for the MSO fragment) and
quantitative formulas (for the rest of the syntax). Let w = w1 . . .wn be a string over Σ and σ
a (x̄,w)-assignment. The semantics ⟦ϕ⟧(w,σ) of a boolean formula ϕ over w and σ is equal
to 1 if w ⊧ ϕ(σ) and 0 otherwise. The semantics of a quantitative formula θ over w and σ is
defined as follows.

⟦s⟧(w,σ) ∶= s

⟦(θ1 ⊗ θ2)⟧(w,σ) ∶= ⟦θ1⟧(w,σ)⊗ ⟦θ2⟧(w,σ) for ⊗ ∈ {⊕,⊙}

⟦⊗x. θ(x)⟧(w,σ) ∶=
n

⊗
i=1
⟦θ(x)⟧(w,σ[x→ i]) for ⊗ ∈ {⊕,⊙}

⟦⊕X. θ(X)⟧(w,σ) ∶= ⊕
I⊆[1,n]

⟦θ(X)⟧(w,σ[X → I])

I Example 12. One can compare WMSO with MP by defining WMSO formulas for the
functions in Examples 5 and 6. We start with the WMSO-formula for counting the number
of b-symbols in a string:

∑x.max{Pb(x) + 1,0} (1)

To understand formula (1), recall that in the semiring N−∞(max,+) the operations and
constants are defined as follows: 0 = −∞, 1 = 0, ⊕ =max and ⊙ = +. For any position i and
assignment x→ i, if i is labeled with b then Pb(x) evaluates to 0; otherwise Pb(x) evaluates
to −∞. Now it is easy to understand formula (1): we are summing 1 over all positions with
a b-symbol and 0 over all other positions.

To define the length of the maximum substring of b-symbols, as in Example 6, one can
write the following WMSO-formula:

Maxx.∑y.max {(x ≤ y ∧ ∀z.(x ≤ z ∧ z ≤ y)→ Pb(z)) + 1,0} (2)

The formula (2) selects all pairs (x, y). The boolean subformula is satisfied if (x, y) is an
interval of b’s; then such a pair contributes 1, otherwise it contributes 0. For a fixed x the
formulas sums over all y that vary through all elements of the interval (x, y). Since we take
maximum over all variables x, we get the desired formula.

WMSO was proposed by Droste and Gastin as the logic counterpart of weighted automata
but it turns out to be more expressive. In [7] it is shown that by restricting the nesting
and alternation of semiring quantifiers ⊕x, ⊙x, and ⊕X one can capture exactly the
expressiveness of weighted automata. For more details we refer the reader to the paper [7].
We shall use their notation to define different fragments of WMSO. The fragment of WMSO
equally expressive to weighted automata is denoted WMSO[⊕X⊙1

x]. Furthermore, in [14] it
was shown that two natural fragments of weighted automata, namely, finitely ambiguous
weighted automata and polynomial ambigous weighted automata are equally expressive to the
fragments denoted respectively by WMSO[⊙1

x] and WMSO[⊕x⊙1
x]. By results in [13, 14]

this shows that in terms of expressiveness, these fragments are strictly contained in each
other:

WMSO[⊙1
x] ⊊ WMSO[⊕x⊙1

x] ⊊ WMSO[⊕X⊙1
x]
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We compare the expressiveness of MP with WMSO by exploiting the relation with copyless
CRA (Theorem 9). The first question is whether MP is more expressive than WMSO[⊕X⊙1

x].
At a first sight, one could believe that this is possible, since the syntax of MP is symmetric
with respect to both semiring operations, that is, there is no syntactical restriction on ⊕- and
⊗-quantifiers. Interestingly, in terms of expressiveness, MP is contained in WMSO[⊕X⊙1

x].
We prove this by showing that functions definable by copyless CRA are also definable by
weighted automata. This result combined with Theorem 9 proves the following proposition.

I Proposition 13. For every formula in MP there exists a formula in WMSO[⊕X⊙1
x]

defining the same function.

The previous upper-bound opens the question of what is a good lower-bound for the express-
iveness of MP. An answer to this question is given in the next result which shows that MP
contains the fragment WMSO[⊙1

x]. We prove this result (see the appendix) by showing
that every function definable by a finitely ambiguous weighted automaton is definable by a
bounded alternation copyless CRA. This combined with the results in [14] and Theorem 9
proves the next proposition.

I Proposition 14. For every formula in WMSO[⊙1
x] there exists a formula in MP defining

the same function.

The examples presented in Section 3 tell us a bit more about the expressiveness of MP. For
example, it was shown in [13] that the function from Example 4 is not definable by any
finitely ambiguous weighted automata. This proves that WMSO[⊙1

x] is strictly contained in
MP. On the other hand, in [17] it is shown that there exists a function that is definable by
polynomial ambiguous weighted automata but it is not definable by any copyless CRA. This
shows that MP is strictly contained in WMSO[⊕X⊙1

x] and, moreover, is does not contain
WMSO[⊕x⊙1

x]. Summing up, we get the following diagram representing the expressiveness
of MP in terms of WMSO.

WMSO[⊙1
x] WMSO[⊕X⊙1

x]

WMSO[⊕x⊙1
x]

MP
⊊ ⊊

⊊ ⊊

⊈

We conjecture that MP is not contained in WMSO[⊕x⊙1
x], such a result would complete

the diagram. We guess that this can be shown by proving that the function from Example 2
is not definable by any polynomial ambiguous weighted automata.

6 Conclusions and future work

In this paper we proposed and investigated maximal partition logic. Our main result shows
that MP is a logic characterization of BAC, a natural restriction of copyless CRA. MP has
no syntactical restrictions and, in contrast to Weighted MSO, there is no division between
the boolean and the quantitative parts of the logic. A mild restriction is put in the semantics
of the logic since we allow only maximal intervals. Thanks to this semantic our formulas are
usually more readable and easy to write (see Example 3).

For future work we would like to extend MP and copyless CRA beyond semirings. It
seems that in our proofs we need the commutativity, associativity and the neutral element of
each operator separately, but we do not use the distributivity. For this reason we think that
we could extend the semiring with additional operators and the results proved in this work
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will still hold. The comparison of MP with WMSO shows that this logic is in the edge of
decidability. It lays between finite ambiguous weighted automata, a class of functions with
good decidability properties, and weighted automata for which most interesting problems are
undecidable. For this reason, we believe that for future work it is important to understand
the decidability properties of MP and copyless CRA.
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Abstract
Deterministic two-way transducers on finite words have been shown by Engelfriet and Hooge-
boom to have the same expressive power as MSO-transductions. We introduce a notion of
aperiodicity for these transducers and we show that aperiodic transducers correspond exactly
to FO-transductions. This lifts to transducers the classical equivalence for languages between
FO-definability, recognition by aperiodic monoids and acceptance by counter-free automata.
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1 Introduction

The regularity of a language of finite words is a central notion in theoretical computer science.
Combining several seminal results, it is equivalent whether a language is
(a) accepted by a (non-)deterministic one-way or two-way automaton [22] and [27],
(b) described by a regular expression [17],
(c) defined in (Existential) Monadic Second Order (MSO) logic [8],
(d) the preimage by a morphism into a finite monoid [20].
Since then, the characterization of fragments of MSO has been a very successful story. Using
this equivalence between different formalisms, several fragments of MSO have been charac-
terized by algebraic means and shown to be decidable. Combining results of Schützenberger
[25] and of McNaughton and Papert [19] yields, for instance, that a language of finite words
is First Order (FO) definable if and only if all the groups contained in its syntactic monoid
are trivial (aperiodic). From the results of Schützenberger [26] and others [28], it is also
known that a language is First Order definable with two variables (FO2) if and only if its
syntactic monoid belongs to the class DA which is easily decidable.

Automata can be equipped with output to make them compute functions and relations.
They are then called transducers. Note then that all variants are no longer equivalent as
they are as acceptors. Deterministic transducers compute a subclass of rational functions
called sequential functions [9]. Two-way transducers are also more powerful than one-way
transducers (see Example 1). The study of transducers has many applications. Transducers
are used to model coding schemes (compression schemes, convolutional coding schemes, coding
schemes for constrained channels, for instance). They are also widely used in computer
arithmetic [15], natural language processing [24] and programs analysis [11].
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The equivalence between automata and MSO has been first lifted to transducers and
the functions they realize by Engelfriet and Hoogeboom [13]. They show that a function
from words to words can be realized by a deterministic two-way transducer if and only
it is a MSO-transduction. First, this result deals surprisingly with two-way transducers
rather than one-way transducers which are much simpler. Second, the MSO-definability
used for automata is replaced by MSO graphs transductions defined by Courcelle [12]. A
MSO-transduction is a function where the output graph is defined as a MSO-interpretation
into a fixed number of copies of the input graph. In the result of Engelfriet and Hoogeboom,
words are seen as linear graphs whose vertices carry the symbols.

1.1 Contribution
In this paper, we combine the approach of Engelfriet and Hoogeboom with the one of
Schützenberger, McNaughton and Papert. We introduce a notion of aperiodicity for two-way
transducers and we show that it corresponds to FO-transductions. By FO-transduction,
we mean MSO-transduction where the interpretation is done through FO-formulas. The
definition of aperiodicity is achieved by associating a transition monoid with each two-way
transducer. The construction of this algebraic object is already implicit in the literature
[27, 21, 6]. In order to obtain our result, we have considered a different logical signature for
transductions from the one used in [13]. In [13], the signature contains the symbol predicates
to check symbols carried by vertices and the edge predicate of the graph. Since words are
viewed as linear graphs, this is the same as the signature with the successor relation on words.
In our result, the signature contains the symbol predicates and the order (of the linear graph).
This is equivalent for MSO-transductions since the order can easily be defined with the
successor by a MSO-formula. This is however not equivalent any more for FO-transductions
that we consider. With this signature, the definition of FO-transduction requires that the
order on the output word can be defined by a FO-formula. The change in the signature is
necessary to obtain the result.

1.2 Related work
The aperiodic rational functions, that is, functions realized by a one-way transducer with an
aperiodic transition monoid have already been characterized in [23]. This characterization is
not based on logic but rather on the inverse images of aperiodic languages.

The notion of aperiodic two-way transducer was already defined and studied in [18],
although their model defined length-preserving functions and the transducers had both their
reading and writing heads moving two-way. The assumption that the function is length
preserving makes the relation between the input and the output easier to handle.

Recently, Bojanczyk, in [7], also characterized first-order definable transducers for ma-
chines using a finer but more demanding semantic, the so-called origin semantic.

In [3], Alur and Černý defined the streaming string transducers, a one-way deterministic
model equivalent to deterministic two-way transducers and MSO transductions. More
recently, Filiot, Krishna and Trivedi proposed in [14] a definition of transition monoid for
this model. They also proved that aperiodic and 1-bounded streaming string transducers
have the same expressive power as FO transductions, which is one of the models considered
by our main result.

1.3 Structure
The paper is organized as follows. Definitions of two-way transducers and FO-transductions
are provided in Section 2. The construction of the transition monoid associated with a
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input w:

run

output: f(w) = aabbab

Figure 1 A transducer and its run over w = aababb.

transducer is given there. The main result is stated in Section 3. Section 4 focuses on one
aspect of the stability by composition of functions realized by aperiodic two-way transducers.
It is one of the main ingredients used in the proof of the main result. The proof itself is
sketched in Sections 5 and 6.

2 Definitions

In this section, we present the different models that will be used throughout the article.

2.1 Two-way transducers
A transducer is an automaton equipped with outputs. While an input word is processed
along a run by the transducer, each used transition outputs some word. All these output
words are concatenated to form the output of the run. The automaton might be one-way or
two-way but we mainly consider two-way transducers in this paper. When the transducer is
non-deterministic, there might be several runs and therefore several output words for a single
input word. All two-way transducers considered in this paper are deterministic. For each
input word, there is then at most one valid run and one output word. The partial function
which maps each input word to the corresponding output word is said to be realized by the
transducer. The automaton obtained by forgetting the outputs is called the input automaton
of the transducer.

A two-way transducer is a very restricted variant of a Turing machine with an input and
an output tape. First, the input tape is read-only. Second, the output tape is write-only
and the head on this tape only moves forwards. Written symbols on this tape cannot be
over-written later by other symbols.

I Example 1. Let A be the alphabet {a, b}. Let us consider, as a running example, the
function f : A∗ → A∗ which maps each word w = ak0bak1 · · · bakn to the word f(w) =
ak0bk0ak1bk1 · · · aknbkn obtained by adding after each block of consecutive a a block of
consecutive b of the same length. Since each word w over A can be uniquely written
w = ak0bak1 · · · bakn with some ki being possibly equal to zero, the function f is well defined.
The word w = aababb = a2ba1ba0ba0 is mapped to f(w) = a2b2a1b1a0b0a0b0 = aabbab.

This function is realized by the transducer depicted in Figure 1. This transducer proceeds
as follows to compute f(w) from the input word w. While being in state 1 and moving
forwards, it copies a block of consecutive a to the output. While in state 2 and moving
backwards, the corresponding block of b is written to the output. While being in state 3, the
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transducer moves forwards writing nothing until it reaches the next block of consecutive a.
Note that this function cannot be realized by a one-way transducer.

Formally, a two-way transducer is defined as follows:

I Definition 2 (Two-way transducer). A (deterministic) two-way transducer A is a tuple
A = (Q,A,B, δ, γ, q0, F )) defined as follows:

Q is a finite state set.
A and B are the input and output alphabet.
δ : Q× (A]{`,a})→ Q×{−1, 0,+1} is the transition function. Contrary to the one-way
machines, the transition function also outputs an integer, corresponding to the move of
the reading head. The alphabet is enriched with two new symbols ` and a, which are
endmarkers that are added respectively at the beginning and the end of the input word,
such that for all q ∈ Q, we have δ(q,`) ∈ Q× {0,+1} and δ(q,a) ∈ Q× {−1, 0}.
γ : Q× (A ] {`,a})→ B∗ is the production function.
q0 ∈ Q is the initial state.
F ⊆ Q is the set of final states.

The transducer A processes finite words over A. If at state p the symbol a is processed
and δ(p, a) = (q, d), then A moves to state q, moves the reading head to the left or right
depending on d, and outputs γ(p, a).

Let w = a1 · · · an be a fixed finite word over A and a0 = ` and an+1 = a. Whenever
δ(p, am) = (q, d) and γ(p, am) = v, we write (p,m) |v−−→ (q, n) where n = m + d. We do
not write the input over the arrow because it is always the symbol below the reading head,
namely, am. In this notation, the pairs represent the current configuration of a machine with
the current state and the current position of the input head. A run of the transducer over w
is a finite sequence of consecutive transitions

(p0,m0) |v1−−→ (p1,m1) · · · (pn−1,mn−1) |vn−−−→ (pn,mn)

and we write (p0,m0) |v−−→ (pn,mn) where v = v1v2 · · · vn. We also refer to finite runs over
words w when all positions mi in the run but the last are between 1 and |w|. The last
position mn is allowed to be between 0 and |w|+ 1. It is 0 if the run leaves w on the left end
and it is |w|+ 1 if it leaves |w| on the right end.

A run (p0,m0) |v−−→ (pn,mn) over a marked word `ua is accepting if it starts at the first
position in the initial state and ends on the right endmarker a in a final state. Then v is the
image of u by A, denoted A(u) = v.

2.2 Transition monoid
In order to define a notion of aperiodicity for a transducer, we associate with each two-way
automaton a monoid called its transition monoid. A transducer is then called aperiodic if
the transition monoid of its input automaton is aperiodic. Let us recall that a monoid is
called aperiodic if it contains no trivial group [2]. Equivalently, a monoid M is aperiodic
if there exists a smallest integer n, called the aperiodicity index, such that for any element
x of M , we have xn = xn+1. Note first that the transition monoid of a transducer is the
transition monoid of its input automaton and does not depend of its outputs. Note also that
our definition is sound for either deterministic or non-deterministic automata/transducers
although we only use it for deterministic ones. Lastly, remark that it extends naturally the
notion of transition monoid for one-way automata.
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w

p

q

Figure 2 A left-to-left behavior (p, q) of a word w.

The transition monoid is, as usual, obtained by quotienting the free monoid A∗ by a
congruence which captures the fact that two words have the same behavior in the automaton.
In an one-way automaton A, the behavior of a word w is the set of pairs (p, q) of states
such that there exists a run from p to q in A. Two words are then considered equivalent if
their respective behaviors contain the same pairs of states. In a two-way automaton, the
behavior of a word is also characterized by the runs it contains but since the reading head
can move both ways, the behavior is split into four behaviors called left-to-left, left-to-right,
right-to-left and right-to-right behaviors. We only define the left-to-left behavior bh``(w) of
a word w. The three other behaviors bh`r(w), bhr`(w) and bhrr(w) are defined analogously.

Let A be a two-way automaton. The left-to-left behavior bh``(w) of w in A is the set of
pairs (p, q) such that there exists a run which starts at the first position of w in state p and
leaves w on the left end in state q (see Figure 2).

Before defining the transition monoid, we illustrate the notion of behavior on the trans-
ducer depicted in Figure 1.

I Example 3. Consider the transducer depicted in Figure 1 and the word w = aab. From
the run depicted in Figure 1, it can be inferred that

bh``(w) = {(1, 2), (2, 2)} bhr`(w) = {(1, 2)}
bh`r(w) = {(3, 1)} bhrr(w) = {(2, 3), (3, 1)}.

I Definition 4 (Transition monoid). Let A = (Q,A, δ, q0, F ) be a two-way automaton. The
transition monoid of A is A∗/∼A where ∼A is the conjunction of the four relations ∼``, ∼`r,
∼r` and ∼rr defined for any words w, w′ of A∗ as follows :

w ∼`` w
′ if bh``(w) = bh``(w′).

w ∼`r w
′ if bh`r(w) = bh`r(w′).

w ∼r` w
′ if bhr`(w) = bhr`(w′).

w ∼rr w
′ if bhrr(w) = bhrr(w′).

The neutral element of this monoid is the class of the empty word ε, whose behaviors bhxy(ε)
is the identity function if x 6= y, and is the empty relation otherwise.

These relations are not new and were already evoked in [21, 6] for example. Moreover,
the left-to-left behavior was already introduced in [27] to prove the equivalence between
one-way and two-way automata.

For a deterministic two-way automaton, the four behaviors bh``(w), bh`r(w), bhr`(w)
and bhrr(w) are partial functions. In the non-deterministic case, these four relations are not
functions but relations over the state set Q because there might exist several runs with the
same starting state and different ending states. Furthermore, for deterministic automaton,
the domains of the functions bh``(w) and bh`r(w) (resp. bhr`(w) and bhrr(w)) are disjoint,
since there is a unique run starting in state p at the first (resp. last) position of w. Thus a
run starting at the first (resp. last) position leaves w either on the left or the right. For a
deterministic two-way automaton, the four behaviors bh``(w), bh`r(w), bhr`(w) and bhrr(w)
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[a] = a+

[b] = b

[ab] = a+b

[ba] = ba+

[aba] = aA∗bA∗a

[abb] = aA∗bA∗b

[bba] = bA∗bA∗a

[bb] = bA∗b

∗1

∗a b

ab ba

∗aba ∗abb

∗bba ∗bb

Figure 3 The equivalence classes of the transition monoid and its D-class representation

can be seen as a single partial function fw from Q×{`, r} to Q×{`, r} where fw(p, x) = (q, y)
whenever (p, q) ∈ bhxy(w) for any x, y ∈ {`, r}.

I Lemma 5. Let A be a two-way transducer. Then the relation ∼A is a congruence of finite
index.

It is pure routine to check that ∼A is indeed a congruence. It is of finite index since
each of the four relations ∼``, ∼`r, ∼r` and ∼rr has at most 2|Q|2 classes. Note that the
composition of the behaviors is not as straightforward as in the case of one-way automata,
the four relations being intertwined. For example, the composition law of the bh`r relation is
given by the equality bh`r(uv) = bh`r(u)

(
bh``(v) bhrr(u)

)∗ bh`r(v) which follows from the
decomposition of a run in uv.

I Example 6. We illustrate the notion of a transition monoid by giving the one of the
transducer depicted in Figure 1. We have omitted all words containing one of the two
endmarkers since these words cannot contribute to a group. The eight classes of the
congruence ∼A for the remaining words are given in Figure 3 on the left. The D-class
representation of this monoid is also given for the aware reader on the right. It can be
checked that this monoid is aperiodic. The transducer of Figure 1 is then aperiodic.

2.3 FO graph transductions

The MSO-transductions defined by Courcelle [12] are a variant of the classical logical
interpretation of a relational structure into another one. Let us recall that a relational
structure S has a L-interpretation, for some logic L, into a structure T if it has an isomorphic
copy in T defined by L-formulas. More precisely, this means that there exists a L-formula ϕS

with one first-order free variable and a one-to-one correspondence f between the domain
of S and the subset T ′ of elements of T satisfying ϕS . Furthermore, for each relation R

of S with arity r, there exists a L-formula ϕR with r first-order free variables such that R is
isomorphic via f to the r-tuples of T ′ satisfying ϕR.

A MSO-transduction defines for each input structure a new structure obtained by MSO-
interpretation into a fixed number of copies of the input structure. In this case, the relations
are the letter predicates and the successor relation, which are of arity one and two respectively.
To fit into this framework, words are viewed as linear graphs. Each word w = a1 · · · an is
viewed as a linear graph with n vertices carrying the symbols a1, . . . , an. Linear means here
that if the vertex set is {1, 2, . . . , n}, the edge set is {(k, k + 1) : 1 ≤ k ≤ n− 1}.
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Figure 4 The linear graph of u = aababb and the output structure of T over u.

When restricted to linear graphs, the MSO-transductions has been proved to have the
same expressive power as two-way transducers [13]. We are interested in this article in FO
graph transductions, the restriction to first order formulas. Since we consider transductions
whose domain is not the set of all graphs, there is an additional closed formula ϕdom which
determines whether the given graph is in the domain of the transduction.

Before giving the formal definition, we give below an example of a FO-transduction.
Note that when considering FO transductions, the successor relation is replaced by the order
relation.

I Example 7. We give here a FO graph transduction that realizes the function f introduced
in Example 1. So let T = (A,A,ϕdom, C, ϕpos, ϕ6) be the FO graph transduction defined as
follows :

A = {a, b} is both the input and output alphabet,
C = {1, 2},
ϕdom is a FO formula stating that the input is a linear graph,
ϕ1

a(x) = ϕ2
b(x) = a(x), the other position formulas being set as false,

the order formulas are defined now :
ϕi,i
6 (x, y) = x 6 y for i = 1, 2,

ϕ1,2
6 (x, y) = x 6 y ∨ (∀z y 6 z 6 x→ a(z)),

ϕ2,1
6 (x, y) = ∃z x 6 z 6 y ∧ b(z).

I Definition 8. A FO-graph transduction is a tuple T = (A,B,ϕdom, C, ϕpos, ϕ6) defined
as follows:

A is the input alphabet.
B is the output alphabet.
ϕdom is the domain formula. A graph is accepted as input if it satisfies the domain
formula.
C is a finite set, denoting the copies of the input that can exist in the output.
ϕpos is a set of formulas with one free variable ϕc

b(x), for b ∈ B and c ∈ C. Given c, the
formulas ϕc

b(x), for b ∈ B, are mutually exclusive. The c copy of a node i is labelled by b
if, and only if, the formula ϕc

b(x/i) is true.
ϕ6 is a set of formulas with two free variables ϕc,c′

6 (x, y), for c, c′ ∈ C. There exists a
path from the c copy of a node i to the c′ copy of a node j if, and only if, the formula
ϕc,c′

6 (x/i, y/j) is true.
All formulas are required to be in FO[<] and are evaluated on the input graph.

The output graph is defined as a substructure of the C copies of the input linear graph,
in which a node exists if it satisfies one position formula, and is labelled accordingly, and the
order is defined according to the order formulas.

In this article, we are only interested in linear graph transductions, which only accept
words seen as linear graphs as input. An input word has an image by a FO graph transduction
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if the associated linear graph satisfies its domain formula and the order relation of the output
graph, defined by the order formulas, defines a linear graph corresponding to a word. If one
condition fails, then the function is undefined on the given input. One should note that the
fact that a graph is linear and corresponds to a word is FO-definable.

In Figure 4, we give the output structure of T over the linear graph u = aababb. Note
that for the sake of readability, we do not draw the whole order relation, but simply the
successor relation.

3 Main result

We are now ready to state the main result of this article, as an extension of the result by
McNaughton and Papert [19] and Schützenberger [25] in the context of two-way transducers
and MSO transductions established by Engelfriet and Hoogeboom [13].

I Theorem 9. The functions realized by aperiodic two-way transducers are exactly the
functions realized by FO graph transductions over words.

The theorem is proved in Sections 5 and 6. The first inclusion relies on Theorem 13,
while the second inclusion stems from the conjunction of Theorems 18, 19 and 20. The next
Section is devoted to the composition of transducers, which is a key tool of the proof.

4 Composition of transducers

As transducers realize functions over words, the natural question of the compositionality
occurs. In a generic way, this question is : given two functions realized by some machine,
can we construct a machine that realizes the composition of these functions. This question
has been considered in [16] for generic machines, and resolved positively in the case of
deterministic two-way transducers in [10].

This result can also be obtained using the equivalence of two-way transducers with MSO
transductions, since these are easily proved to be stable by composition (see [12]). However,
the reduction from MSO transductions to two-way transducers established in [13] makes an
extensive use of a weaker version of this result, which is that the composition of a one-way
deterministic, called sequential in the following, transducer with a two-way transducer can
be done by a two-way transducer, which was first proved in [1].

In this section, we follow this approach, and now prove that this result holds for aperiodic
transducers, in the sense that if the two input transducers are aperiodic, then we can construct
an aperiodic transducer realizing the composition.

I Theorem 10. Let A be a sequential transducer that can be composed with a two-way
transducer B, both deterministic and aperiodic. Then we can effectively construct an aperiodic
and deterministic two-way transducer C such that C = B ◦ A.

5 From aperiodic two-way transducers to FO transductions

Let us consider a deterministic and aperiodic two-way transducer. We aim to construct a
first-order graph transduction that realizes the same function.

In order to do that, we need to define a formula ϕdom for the input domain, formulas
ϕpos for each copies of a position and each output letter of A, and, contrary to the generic
case of MSO graph transductions where only the successor is defined, we need here to define
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order formulas ϕ6 that describe the order relation on the output depending on the copies of
the nodes from the input.

The following result simply stems from the equivalence of aperiodic monoids and first
order logic established in [25, 19], but is an essential step to link aperiodicity to first-order,
as it is used in the next theorem, which proves that the order relation between positions is
first-order definable.

I Lemma 11. Let A = (Q,A, δ) be an aperiodic two-way automaton. Then the relation
classes of ∼``, ∼`r, ∼r`, ∼rr and consequently ∼A of A are FO-definable.

I Lemma 12. Let A be an aperiodic two-way automaton. Then for any pair of states q and
q′ of A, there exists a FO-formula ϕq,q′(x, y) such that for any word u in the domain of A
and any pair of positions i and j of u,

u |= ϕq,q′
(x/i, y/j)

if, and only if, the run of A over u starting at position i in state q eventually reaches the
position j in state q′.

We now state the main result of this section and construct the first-order transduction
that realizes A.

I Theorem 13. Let A be an aperiodic two-way transducer. Then we can effectively construct
a FO-graph transduction that realizes the same function as A.

Proof. For simplicity of the proof, we consider a transducer A = (Q,A,B, δ, γ, i, F ) where the
production of any transition is at most one letter. This can be done without loss of generality,
since any given transducer can be normalized this way by increasing the number of states.
We now give the formal definition of the FO transduction T = (A,B, ϕdom, Q, ϕpos, ϕ6) that
realizes A.

As we consider string transductions within the scope of graph transductions, the domain
formula also has to ensure that the input is a linear graph. This can be done in FO by a
formula stating that there is one position that has no predecessor, one position that has
no successor, every other position has exactly one successor and one predecessor and every
pair of positions is comparable. Then the domain formula of T is the formula describing the
language recognized by the input automaton of A conjuncted with the linear graph formula.
By Lemma 11, as A is aperiodic the domain formula is FO-definable. The order formulas
are given by Lemma 12, where obviously ϕq,q′

6 (x, y) = ϕq,q′(x, y).
The ϕq

b(x) formulas, where q ∈ Q and b ∈ B, express that the production of A at the
position quantified by x in state q is b, but also that the run of A over u reaches the said
position in state q. Should we define Ab,q = {a ∈ A | γ(a, q) = b}, then the first condition
is expressed as

∨
a∈Ab,q

a(x). The second condition is then equivalent to saying that there
exists a run from the initial state of A to the current position, which is expressed by the
formula ∃y∀z y 6 z ∧ ϕi,q(y, x). The formula ϕq

b(x) is thus defined as the conjunction of
these two formulas.

The transduction T is now defined. All formulas are expressed in the first order logic,
and it realizes the same function as A, proving the theorem. J

6 From FO transductions to aperiodic two-way transducers

The proof scheme for this inclusion is adapted from the one in [13] proving that MSO
transductions are realized by two-way deterministic transducers. We prove that we can
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construct an aperiodic two-way transducer with FO look around from a FO transduction,
and that the constructions given in [13] suppressing the look around part preserve the
aperiodicity.

We define in the next subsection the models of transducers with look-around that are
used in the proof. We then give an alternative definition of aperiodicity which can be applied
to transducers with logic look-around before explaining the constructions that lead up to the
result.

6.1 Transducers with look-around
Here, we define two kinds of transducers with look-around. The first one is a restriction of
two-way transducers with regular look-around, where we limit the regular languages used
in the tests to Star-free languages, which is the rational characterization of first-order logic.
These transducers differ from the classic ones by their transitions, where the tests are not
determined by the letter read, but also by the prefix and suffix which can be evaluated
according to some regular languages.

The second extension we consider is transducers with first-order look around. In this case,
the selection of a transition, as well as the movements of the reading head, are determined
by formulas. Formal definitions are given below.

In both cases only the definition of transition is changed, the definition of run and
accepting run remaining the same.

I Definition 14 (two-way transducer with Star-Free look around). Two-way transducers with
Star-Free look around are a subclass of two-way transducers with regular look around defined
in [13], where all languages in the tests are Star-Free.

Formally, it is a machine A = (Q,A,B,∆, i, F ) where Q, A, B, i and F are the same as
for two-way transducers, and transitions and productions are regrouped in ∆, and are of
the form (q, t, q′, v,m) where q and q′ are states from Q, v ∈ B∗ is the production of the
transition, m ∈ {−1, 0,+1} describes the movement of the reading head and t is a test of
the form (Lp, a, Ls) where a is a letter of A ] {`,a}, and Lp and Ls are Star-Free languages
over the same alphabet. A test (Lp, a, Ls) is satisfied if the reading head is on a position
labelled by the letter a, the prefix of the input word up to the position of the reading head
belongs to Lp, and symmetrically the suffix belongs to Ls.

Such a machine is deterministic if the tests performed in a given state are mutually
exclusives.

I Definition 15 (two-way transducer with FO look around). Two-way transducers with FO
look around are a subclass of two-way transducers with MSO look around where formulas
are restricted to the first-order.

Formally, it is a machine A = (Q,A,B,∆, i, F ) where Q, A, B, i and F are the same as
two-way transducers, and transitions of ∆ are of the form (q, ϕ(x), q′, v, ψ(x, y)) where q and
q′ are states from Q, v ∈ B∗ is the production of the transition and ϕ(x) and ψ(x, y) are FO
formulas with respectively one and two free variables. A transition (q, ϕ(x), q′, v, ψ(x, y)) can
be taken if the formula ϕ(x) holds on the input word, where x quantifies the current position
i of the reading head, say `ua |= ϕ(x/i). Then the reading head moves to a position j such
that `ua |= ψ(x/i, y/j).

Such a machine is deterministic if the unary tests appearing in a given state are mutually
exclusive, and if for any input word u, any movement formula ψ(x, y) and any position i,
there exists at most one position j such that `ua |= ψ(x/i, y/j).
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6.2 Aperiodicity by path contexts
The reading head of transducers with logic look-around can jump several positions at a time
and in any direction. Then the notion of behavior for such transducers becomes blurry, since
behaviors would have to be considered starting at any position, and moreover the direction
taken while exiting a word is not decided locally, but depends on the context.

We thus give an equivalent characterization of the aperiodicity of a transducer through
all contexts at a time, for machines whose reading head does not move position by position.

We recall that given a (deterministic) transducer A = (Q,A,B,∆, init, F ) and u an input
word of A, the accepting path of A over u, denoted path(u), is the sequence (q0, i0) . . . (qn, in)
of pairs from Q× [0, |u|+ 1] (the length of u plus the endmarkers) describing the behavior of
the reading head of A while reading u, as defined in Subsection 2.1.

We now define the projection of paths, as a way to highlight some information and forget
the rest. It is applied to contexts in order to only retain the influence of a word on its
context.
I Definition 16 (Projection and context paths). Let I = [i1, . . . , ik] be an ordered sequence
of integers. We define pathI(u) as the sequence of pairs from Q×{1, . . . , k} such that for any
pairs (q, j) and (q′, j′), (q, j) appears before (q′, j′) in pathI(u) if, and only if, (q, ij) appears
before (q′, ij′) in path(u). Informally, this corresponds to selecting pairs whose position is in
I and renaming them according to the set I.

Abusing notations, we will note the context path pathvw(vuw) = pathI(vuw) where I is
the set of positions of v and w.

Then pathvw(vuw) is the trace of the run over u on the context v, w and two words
u and u′ are A-equivalent if for any context v, w, we have equality of the paths contexts
pathvw(vuw) = pathvw(vu′w). Then by definition of the aperiodicity, a transducer or an
automaton A is aperiodic if there exists a positive integer n such that for any words u, v
and w on the input alphabet of A, the context paths pathvw(vunw) and pathvw(vun+1w)
are equals. One should remark that on two-way transducers, this notion is equivalent to the
aperiodicity of the transition monoid. The next lemma serves as the link from the first-order
logic to the aperiodicity by context paths.
I Lemma 17. Let T be a FO graph transduction. There exists a positive integer n such that
for any input words u, v and w such that vunw is in the domain of T , vun+1w is also in
the domain of T and the two words satisfy the same formulas of T , when the free variables
quantify positions of v or w.
Proof. First consider the domain formula of T . Since it is a FO formula, it has an aperiodicity
index n, in the sense that for any words u, v and w, vunw is in the domain of T if, and only
if, vun+1w is in the domain of T .

We now prove the result in the case where i ranges over v and j ranges over w, but similar
proofs hold for i and j ranging independently over v and w. Consider a pair c, c′ of copies in
C, and integers 0 6 i < |v| and 0 6 j < |w|. Then a word with positions i and j quantified
respectively by x and y can be seen as a word over the alphabet A×{0, 1}2, where all letters
have (0, 0) as second component, except (vi, 1, 0) and (wj , 0, 1). The formula ϕc,c′

6 (x, y) can
then be equivalently seen as a closed formula over this enriched alphabet. This formula being
in FO, it describes an aperiodic language, and then there exists an integer n′ such that vun′

w

satisfies ϕc,c′

6 (x/i, y/|vun′ |+ j) if, and only if, vun′+1w satisfies ϕc,c′

6 (x/i, y/|vun′+1|+ j).
A similar argument also holds for the node formulas ϕc

b(x). As there is a finite number of
formulas, there exists an integer, the maximum of the index of each formulas, such that the
result holds. J
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This lemma means that the transducer has an aperiodicity index, in the sense that un

and un+1 behave the same way for the same context. It also corresponds to the notion of
aperiodicity defined earlier in this section, where the sequence ranges over pairs of copy and
position.

6.3 Construction of the aperiodic transducer
We now hold all the necessary tools to prove the reduction from FO transductions to aperiodic
two-way transducers.

We present the first construction, from a FO transduction to a two-way transducer with
FO look around. The construction is quite simple. By putting the copy set of the graph
transduction as the set of states of the transducer, we can use the fact that the reading head
of a transducer with logic look around jumps between positions to strictly follow the output
structure of the input transduction. We then use Lemma 17 to prove the aperiodicity of the
construction.

I Theorem 18. Let T be a FO graph transduction. Then we can effectively construct an
aperiodic two-way transducer with FO look around that realizes the same function over words.

We have now constructed an aperiodic two-way machine from the input FO transduction.
But even though two-way transducers with MSO look around are known to be equivalent to
two-way transducers [13], we need to prove that we can suppress the FO look around while
preserving the aperiodicity of the construction. This is done by the two following theorems,
using Star-free look around as an intermediate step. We show that the construction evoked
in [13] do preserve the aperiodicity, leading to the result.

I Theorem 19. Given an aperiodic two-way transducers with FO look around, we can
construct an aperiodic two-way transducers with Star-Free look around that realizes the same
function.

Proof. In order to prove this theorem, we rely on the proof of Lemma 6 from [13], which
proves that two-way transducers with MSO look around can be expressed by two-way
transducers with regular look around. This is done by constructing a transducer whose
regular tests stem directly from the MSO formulas. Then the reading head simulates the
jumps of the reading head of the transducer with MSO look around by moving step by step
up to the required position.

We aim to prove on one hand that if the formulas are defined in the first-order, then the
resulting two-way transducer only uses Star-free look around, and on the other hand that if
moreover the input transducer is aperiodic, then the output transducer is also aperiodic.

The first claim is proved by noticing that the languages used in the regular look around
construction are languages defined by formulas of the input transducer with FO look around
with free variables. Then if the free variables are seen as an enrichment of the alphabet,
similarly to what is done in the proof of Lemma 17, the formula remains first-order, and
consequently all the languages used in look around tests are Star-free.

Now let us compare the moves of the reading head of the resulting transducer with
Star-free look around with the ones of the head of the input transducer with FO look around.
The path of the resulting transducer over any word can entirely be deduced from the path of
the input transducer, by adding step by step walks between the jumps of the reading head.
Then, if the input transducer is aperiodic with index n, given three words u, v and w, the
context paths pathvw(vunw) and pathvw(vun+1w) are equal, and thus the context paths for
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the transducer with Star-free look around, that are deduced from it, are equal too, proving
the aperiodicity of the resulting transducer. J

We finally prove that we can suppress the Star-free look around tests while preserving
the aperiodicity, which concludes the proof of the main theorem.

I Theorem 20. Given an aperiodic two-way with Star-free look around, we can construct an
aperiodic two-way transducers that realizes the same function.

Proof. Here again, we consider the construction from [13], Lemma 4, proving that we can
suppress the regular look around tests. Our goal is then to prove that this operation preserves
the aperiodicity when the input transducer only uses Star-free languages.

The construction relies heavily on the fact that the composition of a two-way transducer
with a one-way transducer can be done by a two-way transducer. It is used to preprocess
the input by adding the result of each regular tests from the transitions at each position.
Given the test (Lp, a, Ls) of a transition, a left-to-right pass simulates Lp and reproduces
the input where each position is enriched with the information : does its prefix belong to Lp.
Symmetrically, a right-to-left transducer adds the same information for Ls. Let us remark
that since these languages are Star-free, the input automaton of the transducers simulating
these languages are aperiodic.

Then the information regarding every transition is added to the input, and lastly we can
construct a two-way transducer that acts in the same way as the input transducer, but where
all the look around have been suppressed and are done locally by looking at the enrichment
part of the letter. This two-way transducer without look around is aperiodic if the input
transducer is aperiodic, since they share the same paths, and thus context paths.

Finally, the input transducer is given as the composition of a single aperiodic two-way
transducer with a finite number of aperiodic one-way transducers. Should we first remark
that, by symmetry of the problem, Theorem 10 also holds for right sequential transducers,
through several uses of this composition result we finally obtain a unique two-way transducer
that realizes the input transducer with Star-free look around. J

7 Conclusion

We recall that a similar work has been done for streaming string transducers by Filiot,
Krishna and Trivedi [14]. Then through FO transductions, this result and Theorem 9 prove
the equivalence of aperiodicity for the two models of transducers.

There exists algorithms that input a two-way transducer and construct directly an
equivalent streaming string transducer (see [4] for example). It would be interesting to check
first if the aperiodicity is preserved through these algorithms, and secondly to compare the
size and aperiodicity indexes of the two transition monoids. Although unknown from the
authors, a reciprocal procedure and its study would hold the same interest.

On a more generic note, one can ask which fragments of logic preserve their algebraic
characterization in the scope of two-way transducers and MSO transductions. For example,
are J -trivial transducers equivalent to BΣ1 transductions ? The main challenges for this
question are the stability by composition of these restricted classes of transducers on one
hand, and on the other hand the very definition of logic transductions for restricted fragments,
as a fragment must retain some fundamental expressive properties, such as being able to
characterize linear graphs.

Finally, we would like to point out the fact that even if we can decide if a given two-
way transducer is aperiodic, it is still open to decide if the function realized by a two-way
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transducer can be realized by an aperiodic one. An promising approach for this problem
might be to consider machine-independent descriptions of functions, as defined recently for
streaming string transducers in [5] for example. This was successfully done in [7] for machines
with origin semantic. We also think that this question could be solved by the notion of
canonical object of a function over words, which has yet to be defined.

Acknowledgements. We would like to thank Antoine Durand-Gasselin, Pierre-Alain Reynier
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Orna Kupferman and Gal Vardi

School of Engineering and Computer Science, Hebrew University, Israel

Abstract
A counterexample to the satisfaction of a linear property ψ in a system S is an infinite computation
of S that violates ψ. When ψ is a safety property, a counterexample to its satisfaction need not
be infinite. Rather, it is a bad-prefix for ψ: a finite word all whose extensions violate ψ. The
existence of finite counterexamples is very helpful in practice. Liveness properties do not have
bad-prefixes and thus do not have finite counterexamples.

We extend the notion of finite counterexamples to non-safety properties. We study counterable
languages – ones that have at least one bad-prefix. Thus, a language is counterable iff it is not
liveness. Three natural problems arise: (1) Given a language, decide whether it is counterable, (2)
study the length of minimal bad-prefixes for counterable languages, and (3) develop algorithms
for detecting bad-prefixes for counterable languages. We solve the problems for languages given
by means of LTL formulas or nondeterministic Büchi automata. In particular, our EXPSPACE-
completeness proof for the problem of deciding whether a given LTL formula is counterable, and
hence also for deciding liveness, settles a long-standing open problem.

In addition, we make finite counterexamples more relevant and helpful by introducing two
variants of the traditional definition of bad-prefixes. The first adds a probabilistic component to
the definition. There, a prefix is bad if almost all its extensions violate the property. The second
makes it relative to the system. There, a prefix is bad if all its extensions in the system violate
the property. We also study the combination of the probabilistic and relative variants. Our
framework suggests new variants also for safety and liveness languages. We solve the above three
problems for the different variants. Interestingly, the probabilistic variant not only increases
the chances to return finite counterexamples, but also makes the solution of the three problems
exponentially easier.
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Design Aids, F.1.1 Models of Computation

Keywords and phrases Model Checking, Counterexamples, Safety, Liveness, Probability
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1 Introduction

In model checking, we verify that a system meets a desired property by checking that a
mathematical model of the system meets a formal specification that describes the property.
Safety and liveness [2] are two classes of system properties. Essentially, a safety property
states that something “bad” never happens and a liveness property states that something
“good” eventually happens. Formally, consider a language L of infinite words over an alphabet
Σ. A finite word x ∈ Σ∗ is a bad-prefix for L if for all infinite words y ∈ Σω, the concatenation
x · y is not in L. Thus, a bad-prefix for L is a finite word that cannot be extended to a word
in L. A language L is safety if every word not in L has a bad-prefix, and is liveness if it has
no bad-prefixes. Thus, every word in Σ∗ can be extended to a word in L.

The classes of safety and liveness properties have been extensively studied. From a
theoretical point of view, their importance stems from their topological characteristics.
Consider the natural topology on Σω, where similarity between words corresponds to the
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length of the prefix they share. Formally, the distance between w and w′ is 2−i, where
i ≥ 0 is the position of the first letter in which w and w′ differ. In this topology, safety and
liveness properties are exactly the closed and dense sets, respectively [2]. This, for example,
implies that every linear property can be expressed as a conjunction of a safety and a liveness
property [2, 3].

From a practical point of view, reasoning about safety and liveness properties require
different methodologies, and the distinction between them pinpoints different challenges of
formal methods. In liveness, one has to demonstrate progress towards fulfilling eventualities.
Thus, liveness is the concept behind fairness [15], and behind the need for rich ω-regular
acceptance conditions [37], progress measures [30, 27], and many more. On the other hand, in
safety one can reason about finite computations of the system [35]. The latter has significant
advantages in symbolic methods [23], bounded model checking [7], run-time verification [17],
synthesis [25], and many more.

An important advantage of model-checking tools is their ability to accompany a negative
answer to the correctness query by a counterexample to the satisfaction of the specification in
the system. Thus, together with a negative answer, the model checker returns some erroneous
execution of the system. These counterexamples are not only essential in detecting subtle
errors in complex systems [9], but also in improving the modeling of systems. For example, in
CEGAR, counterexamples are used in order to guide the refinement of abstract models [8]. In
the general case, the erroneous execution of the system is infinite. It is known, however, that
for linear temporal logic (LTL) properties, there is always a lasso-shaped counterexample –
one of the form uvω, for finite computations u and v. Clearly, the simpler the counterexample
is, the more helpful it is for the user, and indeed there have been efforts for designing
algorithms that return short counterexamples [33, 22]. The analysis of counterexamples
makes safety properties even more appealing: rather than a lasso-shaped counterexample,
it is possible to return to the user a bad-prefix. This enables the user to find errors as
soon as they appear. In addition, the analysis of bad-prefixes is often more helpful, as they
point the user not just to one erroneous execution, but rather to a finite execution all whose
continuations are erroneous.

We extend the notion of finite counterexamples to non-safety specifications. We also make
finite counterexamples more relevant and helpful by introducing two variants of the traditional
definition of bad-prefixes. The first adds a probabilistic component to the definition. The
second makes it relative to the system. We also consider the combination of the probabilistic
and relative variants. Before we describe our contribution in detail, let us demonstrate the
idea with the following example. Consider a system S and a specification ψ stating that
every request is eventually followed by a response. There might be some input sequence
that leads S to an error state in which it stops sending responses. While ψ is not safety, the
system S has a computation with a prefix that is bad with respect to S: all its extensions
in S do not satisfy ψ. Returning this prefix to the user, with its identification as bad with
respect to S, is more helpful than returning a lasso-shaped counterexample. Consider now a
specification ϕ stating that the system eventually stops allocating memory. There might be
some input sequence that leads S to a state in which every request is followed by a memory
allocation. A computation that reaches this state almost surely violates the specification.
Indeed, it is possible that requests eventually stop arriving and the specification would be
satisfied, but the probability of this behavior of the input is 0. Thus, the system S has a
computation with a prefix that is bad with respect to S in a probabilistic sense: almost all
of its extensions in S do not satisfy ϕ. Again, we want to return this prefix to the user,
identified as bad with high probability.
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Recall that a language L is liveness if every finite word can be extended to an infinite
word in L. Equivalently, L has no bad-prefixes. We say that L is counterable if it has a
bad-prefix. That is, L is counterable iff it is not liveness. Note that a language, for example
a∗ · b · (a + b + c)ω, may be counterable and not safety. When a system does not satisfy
a counterable specification ψ, it may contain a bad-prefix for ψ, which we would like to
return to the user. Three natural problems arise: (1) Given a language, decide whether it is
counterable, (2) study the length of minimal bad-prefixes for counterable languages, and (3)
develop algorithms for detecting bad-prefixes for counterable languages.

In fact, the last two problems are open also for safety languages. Deciding whether a given
language is safety is known to be PSPACE-complete for languages given by LTL formulas
or nondeterministic Büchi word automata (NBWs, for short). For the problem of deciding
whether a language is counterable, an EXPSPACE upper-bound for languages given by LTL
formulas is not difficult [35], yet the tight complexity is open. This is surprising, as recall that
a language is counterable iff it is not liveness, and one could expect the complexity of deciding
liveness to be settled by now. As it turns out, the problem was studied in [29], where it is
stated to be PSPACE-complete. The proof in [29], however, is not convincing, and indeed
efforts to solve the problem have continued, and the problem was declared open in [4] (see also
[26]). Our first contribution is an EXPSPACE lower bound, implying that the long-standing
open problem of deciding liveness (and hence, also counterability) of a given LTL formula is
EXPSPACE-complete. In a recent communication with Diekert, Muscholl, and Walukiewicz,
we have learned that they recently came-up with an independent EXPSPACE lower bound,
in the context of monitoring or infinite computations [14]. For languages given by means of
an NBW, the problem is PSPACE-complete [35, 29]. Thus, interestingly, while in deciding
safety the exponential succinctness of LTL with respect to NBWs does not make the problem
more complex, in deciding liveness it makes the problem exponentially more complex. This
phenomenon is reflected also in the solutions to the problems about the length and the
detection of bad-prefixes. We also show that when a language given by an LTL formula is
safety, the solutions for the three problems become exponentially easier.

Let us return to our primary interest, of finding finite counterexamples.

Consider a system modelled by a Kripke structure K over a set AP of atomic propositions.
Let Σ = 2AP , and consider an ω-regular language L ⊆ Σω. We say that a finite computation
x ∈ Σ∗ of K is a K-bad-prefix , if x cannot be extended to an infinite computation of K
that is in L. Formally, for all y ∈ Σω, if x · y is a computation of K, then it is not in L.
Once we define K-bad-prefixes, the definitions of safety and counterability are naturally
extended to the relative setting: A language L is K-counterable if it has a K-bad-prefix
and is K-safety if every computation of K that is not in L has a K-bad-prefix. Using a
product of K with an NBW for L, we are able to show that the solutions we suggest for the
three problems in the non-relative setting apply also to the relative one, with an additional
NLOGSPACE or linear-time dependency in the size of K. We also study K-safety, and
the case L is K-safety. We note that relative bad prefixes have already been considered in
the literature, with different motivation and results. In [18], where the notion is explicitly
defined, as well as in [5, 34], where it is implicit, the goal is to lift the practical advantages of
safety to liveness properties, typically by taking the finiteness of the system into an account.
In [29], the idea is to relay on fairness conditions known about the system in order to simplify
the reasoning about liveness properties, especially in a setting where an abstract model of
the system is used.
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We continue to the probabilistic view.1 A random word over Σ is a word in which all
letters are drawn from Σ uniformly at random.2 In particular, when Σ = 2AP , then the
probability of each atomic proposition to hold in each position is 1

2 . Consider a language
L ⊆ Σω. We say that a finite word x ∈ Σ∗ is a prob-bad-prefix for L if the probability of an
infinite word with prefix x to be in L is 0. Formally, Pr({y ∈ Σω : x · y ∈ L}) = 0. Then, L
is prob-counterable if it has a prob-bad-prefix. Now, given a Kripke structure K, we combine
the relative and probabilistic views in the expected way: a finite computation x ∈ (2AP )∗ of
K is a K-prob-bad-prefix for L if a computation of K obtained by continuing x with some
random walk on K, is almost surely not in L. Thus, a computation of K that starts with x
and continues according to some random walk on K is in L with probability 0. We show
that this definition is independent of the probabilities of the transitions in the random walk
on K. Again, L is K-prob-counterable if it has a K-prob-bad-prefix.

We note that a different approach to probabilistic counterexamples is taken in [1]. There,
the focus is on reachability properties, namely properties of the form “the probability of
reaching a set T of states starting from state s is at most p”. Accordingly, a counterexample
is a set of paths from s to T , such that the probability of the event of taking some path
in the set is greater than p. We, on the other hand, cover all ω-regular languages, and a
counterexample is a single finite path – one whose extension result in a counterexample in
high probability.

We study the theoretical properties of the probabilistic setting and show that an ω-regular
language L is prob-counterable iff the probability of a random word to be in L is less than 1.
We also show that ω-regular languages have a “safety-like” behavior in the sense that the
probability of a word not to be in L and not to have a prob-bad-prefix is 0. Similar properties
hold in the relative setting and suggest that attempts to return to the user prob-bad-prefixes
and K-prob-bad-prefixes are likely to succeed.

From a practical point of view, we show that the probabilistic setting not only increases
our chances to return finite counterexamples, but also makes the solution of our three basic
problems easier: deciding prob-counterability and K-prob-counterability for LTL formulas is
exponentially easier than deciding counterability and K-counterability! Moreover, the length
of bad-prefixes is exponentially smaller, and finding them is exponentially easier. Our results
involve a careful analysis of the product of K with an automaton for L. Now, the product
is defined as a Markov chain, and we also need the automaton to be deterministic. Our
construction also suggest a simpler proof to the known probabilistic NBW model-checking
result of [11]. While the blow-up determinization involves is legitimate in the case L is
given by an NBW, it leads to a doubly-exponential blow-up in the case L is given by an
LTL formula ψ. We show that in this case, we can avoid the construction of a product
Markov chain and, adopting an idea from [11], generate instead a sequence of Markov chains,
each obtained from its predecessor by refining the states according to the probability of the
innermost temporal subformula of ψ.

It is easy to see that there is a trade-off between the length of a counterexample and its
“precision”, in the sense that the longer a finite prefix of an erroneous computation is, the
larger is the probability in which it is a K-prob-bad-prefix. We allow the user to play with
this trade-off and study both the problem in which the user provides, in addition to K and

1 In [19], the authors study safety and liveness in probabilistic systems. The setting, definitions, and
goals are different from ours here, and focus on the safety and liveness fragments of the probabilistic
branching-time logic PCTL.

2 Our definitions and results apply for all distributions in which all letters are drawn with a positive
probability.
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ψ, also a probability 0 < γ < 1, and gets back a shortest finite computation x of K such
that the probability of a computation of K that starts with x to satisfy ψ is less than γ, and
the problem in which the user provides a length m ≥ 1 and gets back a finite computation x
of K of length at most m such that the probability of a computation of K that starts with x
to satisfy ψ is minimal.

Due to lack of space, detailed proofs can be found in the full version, in the authors’
home pages.

2 Preliminaries

2.1 Automata and LTL
A nondeterministic automaton on infinite words is a tuple A = 〈Σ, Q,Q0, δ, α〉, where Q is a
set of states, Q0 ⊆ Q is a set of initial states, δ : Q× Σ→ 2Q is a transition function, and
α is an acceptance condition whose type depends on the class of A. A run of A on a word
w = σ0 ·σ1 · · · ∈ Σω is a sequence of states r = q0, q1, . . . such that q0 ∈ Q0 and qi+1 ∈ δ(qi, σi)
for all i ≥ 0. The run is accepting if it satisfies the condition α. We consider here Büchi
and parity automata. In a Büchi automaton, α ⊆ Q and the run r satisfies α if it visits
some state in α infinitely often. Formally, let inf (r) = {q : q = qi for infinitely many i’s} be
the set of states that r visits infinitely often. Then, r satisfies α iff inf (r) ∩ α 6= ∅ [6]. In
a parity automaton, α : Q → {0, . . . , k} maps each state to a color in {0, . . . , k}. A run r
satisfies α if the minimal color that is visited infinitely often is even. Formally, the minimal
color c such that inf (r) ∩ α−1(c) 6= ∅ is even. A word w ∈ Σω is accepted by A if there is
an accepting run of A on w. The language of A, denoted L(A), is the set of words that A
accepts. When |Q0| = 1 and |δ(q, σ)| = 1 for all q ∈ Q and σ ∈ Σ, then A is deterministic.
When a state q ∈ Q is such that no word is accepted from q (equivalently, the language
of A with initial state q is empty), we say that q is empty. We use the acronyms NBW,
DBW, NPW, and DPW to denote nondeterministic and deterministic Büchi and parity word
automata, respectively. We also refer to the standard nondeterministic and deterministic
automaton on finite words, abbreviated NFW and DFW, respectively. We define the size of
A, denoted |A|, as the size of δ.

An automaton A induces a graph GA = 〈Q,E〉 where (q, q′) ∈ E iff there is σ ∈ Σ such
that q′ ∈ δ(q, σ). When we refer to the strongly connected sets (SCSs) of A, we refer to the
SCSs of this graph. Formally, a set C ⊆ Q of states is an SCS of A if for all q, q′ ∈ C, there
is a path from q to q′ in GA. An SCS C is maximal if for all sets C ′ such that C ′ 6⊆ C, the
set C ∪ C ′ is no longer an SCS. A maximal SCS is termed a strongly connected component
(SCC). An SCC C is accepting if a run that visits exactly all the states in C infinitely often
satisfies α. For example, when α is a parity condition, then C is accepting if the minimal
color c such that C ∩ α−1(c) 6= ∅ is even. An SCC C is ergodic iff for all (q, q′) ∈ E, if q ∈ C
then q′ ∈ C. That is, an SCC is ergodic if no edge leaves it.

The logic LTL is a linear temporal logic [32]. Formulas of LTL are constructed from a
set AP of atomic proposition using the usual Boolean operators and the temporal operators
G (“always”), F (“eventually”), X (“next time”), and U (“until”). The semantics of LTL
is defined with respect to infinite computations over AP . We use w |= ψ to indicate that
the computation w ∈ (2AP )ω satisfies the LTL formula ψ. The language of an LTL formula
ψ, denoted L(ψ), is the set of infinite computations that satisfy ψ. For the full syntax and
semantics of LTL see [32]. We define the size of an LTL formula ψ, denoted |ψ|, to be the
number of its Boolean and temporal operators. Given an LTL formula ψ, one can construct
an NBW Aψ that accepts exactly all the computations that satisfy ψ. The size of Aψ is, in
the worst case, exponential in |ψ| [37].
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We model systems by Kripke structures. A Kripke structure is a tuple K = 〈AP,W,W0, R,

l〉, where W is the set of states, R ⊆W ×W is a total transition relation (that is, for every
w ∈W , there is at least one state w′ such that R(w,w′)), W0 ⊆W is a set of initial states,
and l : W → 2AP maps each state to the set of atomic propositions that hold in it. A
path in K is a (finite or infinite) sequence w0, w1, . . . of states in W such that w0 ∈ W0
and for all i ≥ 0 we have R(wi, wi+1). A computation of K is a (finite or infinite) sequence
l(w0), l(w1), . . . of assignments in 2AP for a path w0, w1, . . . in K. We assume that different
states of K are labeled differently. That is, for all states w,w′ ∈ W such that w 6= w′, we
have l(w) 6= l(w′). The assumption makes our setting cleaner, as it amount to working with
deterministic systems, so all the nondeterminism and probabilistic choices are linked to the
specification and the distribution of the inputs, which is our focus. The simplest way to
adjust nondeterministic systems to our setting is to add atomic propositions that resolve
nondeterminism. The language of K, denoted L(K), is the set of its infinite computations.
We say that K satisfies an LTL formula ψ, denoted K |= ψ, if all the computations of K
satisfy ψ, thus L(K) ⊆ L(ψ). We define the size of a Kripke structure K, denoted |K|, as
|W |+ |R|.

For a set AP of atomic propositions, we define the Kripke structure KAP = 〈AP, 2AP , 2AP ,
2AP × 2AP , l〉, where l(w) = w for all w ∈ 2AP . Thus, KAP is a 2AP -clique satisfying
L(KAP ) = (2AP )ω.

2.2 Safety, Liveness, and Counterable Languages

Consider an alphabet Σ, a language L ⊆ Σω, and a finite word u ∈ Σ∗. We say that u is a
prefix for L if it can be extended to an infinite word in L, thus there is v ∈ Σω such that
uv ∈ L. Then, u is a bad-prefix for L if it cannot be extended to an infinite word in L, thus
for every v ∈ Σω, we have that uv 6∈ L. Note that if u is a bad-prefix, so are all its finite
extensions. We denote by pref(L) the set of all prefixes for L.

The following classes of languages have been extensively studied (c.f., [2, 3]). A language
L ⊆ Σω is a safety language if every word not in L has a bad-prefix. For example, {aω} over
Σ = {a, b, c} is safety, as every word not in L has a bad-prefix – one that contains the letter
b or c. A language L is a liveness language if every finite word can be extended to a word in
L. Thus, pref(L) = Σ∗. For example, the language (a+ b+ c)∗ · aω is a liveness language: by
concatenating aω to every word in Σ∗, we end up with a word in the language. When L is
not liveness, namely pref(L) 6= Σ∗, we say that L is counterable. Note that while a liveness
language has no bad-prefix, a counterable language has at least one bad-prefix. For example,
L = a∗ · b · (a+ b+ c)ω is a counterable language. Indeed, c is a bad-prefix for L. It is not
hard to see that if L is safety and L 6= Σω, then L is counterable. The other direction does
not hold. For example, L above is not safety, as the word aω has no bad-prefix.

We extend the definitions and classes above to specifications given by LTL formulas or
by NBWs. For example, an LTL formula ψ is counterable iff L(ψ) is counterable.

3 Probabilistic and Relative Counterability

In this section we introduce and make some observations on two variants to counterability.
The first variant adds a probabilistic component to the definitions. The second makes them
relative to a Kripke structure. We also consider the combination of the probabilistic and
relative variants.
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3.1 Probabilistic Counterability
For a finite or countable set X, a probability distribution on X is a function Pr : X → [0, 1]
assigning a probability to each element in X. Accordingly,

∑
x∈X Pr(x) = 1. A finite

Markov chain is a tupleM = 〈V, pin, p〉, where V is a finite set of states, pin : V → [0, 1] is a
probabilistic distribution on V that describes the probability of a path to start in the state,
and p : V × V → [0, 1] is a function describing a distribution over the transitions. Formally,
for v ∈ V , let pv : V → [0, 1] be such that pv(u) = p(v, u) for all u ∈ V . For all v ∈ V , the
function pv is a probabilistic distribution on V . The Markov chainM induces the directed
graph G = 〈V,E〉 in which for all u, v ∈ V , we have that (u, v) ∈ E iff p(u, v) > 0. Thus, G
includes transitions that have a positive probability inM. When we talk about the SCCs of
M, we refer to these of G.

A random walk onM is an infinite path v0, v1, . . . in G such that v0 is drawn at random
according to pin and the i-th state vi is drawn at random according to pvi−1 . More formally,
there is a probability space 〈V ω,F , P rM〉 defined on the set V ω of infinite sequences of
states. The family of measurable sets F is the σ-algebra (also called Borel field) generated
by C = {C(x) : x ∈ V ∗} where C(x) is the set of infinite sequences with prefix x. The
measure PrM is defined on C (and can be extended uniquely to the rest of F) as follows:
PrM[C(x0, . . . , xn)] = pin(x0) · p(x0, x1) · . . . · p(xn−1, xn). For more background on the
construction of this probability space, see, for example, [20]. A random walk onM from a
state v ∈ V is a random walk on the Markov chainMv = 〈V, pvin, p〉, where pvin(v) = 1.

I Lemma 1 ([20]). Consider a Markov chain M = 〈V, pin, p〉 and a state v ∈ V .
1. An infinite random walk on Mv reaches some ergodic SCC with probability 1.
2. Once a random walk onMv reaches an ergodic SCC, it visits all its states infinitely often

with probability 1.

A labeled finite Markov chain is a tuple S = 〈Σ, V, pin, p, τ〉, where Σ is an alphabet,
M = 〈V, pin, p〉 is a finite Markov chain, and τ : V → Σ maps each state in V to a
letter in Σ. We extend τ to paths in the expected way, thus for π = v0, v1, . . . ∈ V ω, we
define τ(π) = τ(v0), τ(v1), . . .. A random walk on S is a random walk on M. The chain
S induces a probability space on Σω, induced from M. That is, for L ⊆ Σω, we have
PrS [L] = PrM[{π ∈ V ω : τ(π) ∈ L}]. It is known that ω-regular languages are measurable
in S (c.f., [36]).

Consider an alphabet Σ. A random word over Σ is a word in which for all indices i, the
i-th letter is drawn from Σ uniformly at random. We denote by Pr[L] the probability of
a language L ⊆ Σω in this uniform distribution. For a finite word u ∈ Σ∗, we denote by
Pru[L] the probability that a word obtained by concatenating an infinite random word to
u is in L. Formally, Pru[L] = Pr[{v ∈ Σω : uv ∈ L}]. For example, let Σ = {a, b, c} and
L = a∗ · b · (a+ b+ c)ω. Then, Pr[L] =

∑∞
i=1

1
3i = 1

2 , Pr
a[L] = Pr[L] = 1

2 , Pr
ab[L] = 1, and

Prc[L] = 0.
Consider a language L ⊆ Σω. We say that a finite word u ∈ Σ∗ is a prob-bad-prefix for

L if Pru[L] = 0. That is, u is a prob-bad-prefix if an infinite word obtained by continuing u
randomly is almost surely not in L. We say that L is prob-counterable if it has a prob-bad-
prefix. Consider for example the language L = a · (a+ b)ω + bω over Σ = {a, b}. All the words
u ∈ b+ are not bad-prefixes for L, but are prob-bad-prefixes, as Pru[L] = Pr[bω] = 0. As
another example, consider the LTL formula ψ = (req ∧GF grant) ∨ (¬req ∧ FG¬grant). The
formula ψ is a liveness formula and does not have a bad-prefix. Thus, ψ is not counterable.
All finite computations in which a request is not sent in the beginning of the computation
are, however, prob-bad-prefixes for ψ, as the probability of satisfying FG¬grant is 0. Hence,
ψ is prob-counterable.
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Prob-counterability talks about prefixes after which the probability of being in L is 0. We
can relate such prefixes to words that lead to rejecting ergodic SCCs in DPWs that recognize
L, giving rise to the following alternative definitions:

I Theorem 2. Consider an ω-regular language L. The following are equivalent:
1. The language L is prob-counterable.
2. Pr[L] < 1. That is, the probability of an infinite random word to be in L is strictly

smaller than 1.
3. Every DPW that recognizes L has a rejecting ergodic SCC.

Analyzing the SCCs of DPWs for L also implies that ω-regular languages have a “safety-
like” behavior in the following probabilistic sense:

I Theorem 3. For every ω-regular language L, we have Pr[{v ∈ Σω : v 6∈ L and v does not
have a prob-bad-prefix}] = 0.

Note that if L is prob-counterable, thus Pr[v 6∈ L] > 0, then Pr[v has a prob-bad-prefix |
v 6∈ L] = 1.

3.2 Relative Counterability
Recall that the standard definitions of bad-prefixes consider extensions in Σω. When Σ = 2AP
and the language L is examined with respect to a Kripke structure K over AP , it is interesting
to restrict attention to extensions that are feasible in K. Consider a finite word u ∈ Σ∗. We
say that u is a bad-prefix for L with respect to K (K-bad-prefix, for short) if u is a finite
computation of K that cannot be extended to a computation of K that is in L. Thus,
u ∈ pref(L(K)) \ pref(L(K) ∩ L). We say that L is safety with respect to K (K-safety, for
short) if every computation of K that is not in L has a K-bad-prefix. We say that L is
counterable with respect to K (K-counterable, for short) if the language L has a K-bad-prefix.
Thus, pref(L(K)) 6⊆ pref(L(K) ∩ L).

I Theorem 4. Consider an ω-regular language L ⊆ (2AP )ω.
1. L is safety iff L is K-safety for every Kripke structure K over AP .
2. For every Kripke structure K over AP , we have that L is K-safety iff L(K)∩L is safety.

Recall that if L ⊆ Σω is safety and L 6= Σω, then L is counterable. Also, if L is K-
safety and L(K) 6⊆ L then L is K-counterable. Note that it is possible that L(K) ∩ L is
counterable but L is not K-counterable. For example, we can choose K and L such that
L(K) ⊆ L 6= (2AP )ω. Then, L is not K-counterable, but a word u that is not a computation
of K is a bad-prefix for L(K), making it also a bad-prefix for L(K) ∩ L. Hence, L(K) ∩ L is
counterable.

3.3 Probabilistic Relative Counterability
We combine the probabilistic and relative definitions. Consider a Kripke structure K =
〈AP,W,W0, R, l〉. A K-walk-distribution is a tuple P = 〈pin, p〉 such that MK,P = 〈2AP ,W,
pin, p, l〉 is a labeled Markov chain that induces a graph that agrees with K. Thus, pin(w) > 0
iff w ∈ W0, and p(w,w′) > 0 iff R(w,w′). A random walk on K with respect to P is a
random walk on the Markov chain 〈W,pin, p〉. We define the probability of an ω-regular
language L ⊆ (2AP )ω with respect to K and P as PrK,P [L] = PrMK,P

[L]. Namely, PrK,P [L]
is the probability that a computation obtained by a random walk on K with respect to
P is in L. Let u be a finite computation of K and let w0, . . . , wk ∈ W ∗ be such that
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u = l(w0), . . . , l(wk). We say that an infinite computation u′ is a continuation of u with
a random walk on K with respect to P if u′ = l(w0), . . . , l(wk−1), l(w′0), l(w′1), . . ., where
w′0, w

′
1, . . . is obtained by a random walk on K from wk with respect to P (recall that

we assume that different states in K are labeled differently). We define PruK,P [L] as the
probability that a computation obtained by continuing u with a random walk on K with
respect to P is in L. Formally, we define PruK,P using a conditional probability: PruK,P [L] =
PrK,P [L| the word starts with u]. We extend the definition to every labeled Markov chain
M; that is PruM[L] = PrM[L| the word starts with u]. Thus, PruK,P [L] = PruMK,P

[L].
Consider a Kripke structure K over AP and an ω-regular language L ⊆ (2AP )ω. We say

that u ∈ (2AP )∗ is a prob-bad-prefix for L with respect to K (K-prob-bad-prefix, for short)
if u is a finite computation of K such that PruK,P [L] = 0, for some K-walk-distribution
P . Thus, a computation obtained by continuing u with some random walk on K is almost
surely not in L. As we show in Lemma 5 below, the existential quantification on the K-walk-
distribution P can be replaced by a universal one, or by the specific K-walk-distribution
that traverses K uniformly at random. We say that L is prob-counterable with respect to K
(K-prob-counterable, for short) if it has a K-prob-bad-prefix.

Note that if L is counterable, then L is prob-counterable. Also, if L is K-counterable then
L is K-prob-counterable. As we have seen above, a language may be prob-counterable but
not counterable. Taking K = KAP , this implies that a language may be K-prob-counterable
but not K-counterable. As an example with an explicit dependency in K, consider the
counterable LTL formula ψ = G(req → Xack) ∧ FG(idle). Let K over AP = {req, ack, idle}
be such that the atomic propositions in AP are mutually exclusive and L(K) contains exactly
the computations that start in req and in which every req is immediately followed by ack, or
computations in which idle is always valid. Note that while ψ is not K-counterable, it is K-
prob-counterable, as every finite computation of K that starts with req is a K-prob-bad-prefix
for ψ.

Consider an NBW A. By [36, 11], deciding whether PrK,P [L(A)] = 0 or whether
PrK,P [L(A)] = 1 is independent of the K-walk-distribution P . Consequently, we have the
following.

I Lemma 5. [36, 11] Let u be a finite computation of a Kripke structure K over AP , and
let L ⊆ (2AP )ω be an ω-regular language. For all pairs P and P ′ of K-walk-distributions, we
have that PruK,P [L] = 0 iff PruK,P ′ [L] = 0 and PruK,P [L] = 1 iff PruK,P ′ [L] = 1.

We can now point to equivalent definitions of K-prob-counterability.

I Theorem 6. Consider an ω-regular language L ⊆ (2AP )ω and a Kripke structure K over
AP . The following are equivalent:
1. The language L is K-prob-counterable.
2. There is a finite computation u of K and a K-walk-distribution P such that PruK,P [L] < 1.
3. There is a finite computation u of K such that for all K-walk-distribution P , we have

PruK,P [L] < 1.
4. There is a K-walk-distribution P s.t. PrK,P [L] < 1.
5. For all K-walk-distributions P , we have PrK,P [L] < 1.

We can also generalize Theorem 3, and show that ω-regular languages have “safety-like”
behaviors also with respect to Kripke structures, in the following probabilistic sense:

I Theorem 7. Consider an ω-regular language L ⊆ (2AP )ω, a Kripke structure K over AP ,
and a K-walk-distribution P . Then, PrK,P [{u ∈ (2AP )ω : u 6∈ L and u does not have a
K-prob-bad-prefix for L}] = 0.
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If L is also K-prob-counterable then we also have PrK,P [u has a K-prob-bad-prefix for
L | u 6∈ L] = 1 for every K-walk-distribution P .

Conceptually, Theorem 6 implies that if an error has a positive probability to occur in
a random execution of the system, then the specification is prob-counterable with respect
to the system. Theorem 7 then suggests that in this case, a computation of the system
that does not satisfy the specification, almost surely has a prob-bad-prefix with respect to
the system. Thus, almost all the computations that violate the specification start with a
prob-bad-prefix with respect to the system. Hence, attempts to find and return to the user
such bad-prefixes are very likely to succeed.

4 Deciding Liveness

Recall that a language L is counterable iff L is not liveness. As discussed in Section 1, the
complexity of the problem of deciding whether a given LTL formula is liveness is open [4].
In this section we solve this problem and prove that it is EXPSPACE-complete. The result
would be handy also for our study of the probabilistic and relative variants.

I Theorem 8. The problem of deciding whether a given LTL formula is liveness is EXPSPACE-
complete.

Proof. The upper-bound is known [35], and follows from the fact that every LTL formula ψ
can be translated to an NBW Aψ with an exponential blow-up [37]. By removing empty
states from Aψ and making all other states accepting, we get an NFW for pref(L(ψ)), which
is universal iff ψ is liveness. The latter can be checked on-the-fly and in PSPACE, implying
the EXPSPACE upper bound.

For the lower bound, we show a reduction from an exponent version of the tiling problem,
defined as follows. We are given a finite set T , two relations V ⊆ T×T and H ⊆ T×T of tiles,
an initial tile t0, a final tile tf , and a bound n > 0. We have to decide whether there is some
m > 0 and a tiling of a 2n×m-grid such that (1) The tile t0 is in the bottom left corner and the
tile tf is in the top left corner, (2) A horizontal condition: every pair of horizontal neighbors
is in H, and (3) A vertical condition: every pair of vertical neighbors is in V . Formally, we
have to decide whether there is a function f : {0, . . . , 2n− 1}×{0, . . . ,m− 1} → T such that
(1) f(0, 0) = t0 and f(0,m− 1) = tf , (2) For every 0 ≤ i ≤ 2n − 2 and 0 ≤ j ≤ m− 1, we
have that (f(i, j), f(i+ 1, j)) ∈ H, and (3) For every 0 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ m− 2, we
have that (f(i, j), f(i, j + 1)) ∈ V . When n is given in unary, the problem is known to be
EXPSPACE-complete.

We reduce this problem to the problem of deciding whether an LTL formula is not liveness.
Given a tiling problem τ = 〈T,H, V, t0, tf , n〉, we construct a formula ϕ such that τ admits
tiling iff ϕ has a good-prefix – one all whose extensions satisfy ϕ. Formally, x ∈ Σ∗ is a good
prefix for ϕ iff for all y ∈ Σω, we have that x · y satisfies ϕ. Therefore, for ψ = ¬ϕ, we have τ
admits tiling iff ψ is not liveness. The idea is to encode a tiling as a word over T , consisting
of a sequence of rows (each row is of length 2n). Such a word represents a proper tiling if it
starts with t0, has a last row that starts with tf , every pair of adjacent tiles in a row are in
H, and every pair of tiles that are 2n tiles apart are in V . The difficulty is in relating tiles
that are far apart. To do that we represent every tile by a block of length n, which encodes
the tile’s position in the row. Even with such an encoding, we have to specify a property
of the form “for every i, if we meet a block with position counter i, then the next time we
meet a block with position counter i, the tiles in the two blocks are in V ”. Such a property
can be expressed in an LTL formula of polynomial length, but there are exponentially many
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i’s to check. The way to use liveness in order to mimic the universal quantification on all
i’s is essentially the following: the good prefix for ϕ encodes the tiling. The set of atomic
propositions in ϕ includes a proposition $ that is not restricted beyond this prefix. The
property that checks V then has to hold in blocks whose counter equals the counter of the
block that starts at the last $ in the computation. Thus, universal quantification in i is
replaced by the explicit universal quantification on suffixes in the definition of good prefixes.
A detailed description of the reduction is included in the full version of the paper. J

When a language is given by an NBW, the complexity of deciding its liveness is much
simpler:

I Theorem 9. The problem of deciding whether a given NBW is liveness is PSPACE-
complete.

5 On Counterability

In this section we study the problem of deciding whether a given language is counterable as
well as the length of short bad-prefixes and their detection. In order to complete the picture,
we also compare the results to those of safety languages.

We start with the complexity of deciding safety and counterability. The results for safety
are from [35]. These for counterability follow from Theorems 8 and 9 and the fact that L is
counterable iff it is not liveness.

I Theorem 10. Consider a language L.
1. [35] The problem of deciding whether L is safety is PSPACE-complete for L given by an

LTL formula or by an NBW.
2. The problem of deciding whether L is counterable is EXPSPACE-complete for L given by

an LTL formula and is PSPACE-complete for L given by an NBW.

We find Theorem 10 surprising: both safety and counterability ask about the existence of
bad-prefixes. In safety, a bad-prefix should exist to all bad words. In counterability, not all
bad words have a bad-prefix, but at least some should have. Theorem 10 implies that there
is something in LTL, yet not in NBWs, that makes the second type of existence condition
much more complex.

We now turn to study the length of shortest bad-prefixes. Both (non-valid) safety
and counterable languages have bad-prefixes. As we show, however, the complexity of
counterability continues, and a tight bound on shortest bad-prefixes for counterable languages
is exponentially bigger than that of safety languages. The gap follows from our ability to
construct a fine automaton Afine

ψ for all safety LTL formulas ψ [21]. The NFW Afine
ψ is

exponential in |ψ|, it accepts only bad-prefixes for ψ, and each computation that does not
satisfy ψ has at least one bad-prefix accepted by Afine

ψ . A shortest witness to the nonemptiness
of Afine

ψ can serve as a bad-prefix. On the other hand, nothing is guaranteed about the
behavior of Afine

ψ when constructed for a non-safety formula ψ, thus it is of no help in the
case of counterable languages that are not safety. In particular, the LTL formula used in the
proof of Theorem 8 is neither safety nor its complement is safety, thus its doubly-exponential
shortest bad-prefix does not contradict upper bounds known for these classes of languages.

I Theorem 11. The length of shortest bad-prefixes for a language given by an LTL formula
ψ is tightly exponential in |ψ| in case ψ is safety, and is tightly doubly-exponential in |ψ| in
case ψ is counterable.
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When the specification formalism is automata, the difference between safety and counter-
able languages disappears:

I Theorem 12. The length of shortest bad-prefixes for a safety or a counterable language
given by an NBW A is tightly exponential in |A|.

6 On Relative Counterability

In this section we add a Kripke structure K to the setting and study K-counterablity and
shortest K-bad-prefixes. Our results use variants of the product of automata for K and L,
and we first define this product below. Consider a Kripke structure K = 〈AP,W,W0, R, l〉
and an NBW A = 〈2AP , Q,Q0, δ, α〉. Essentially, the states of the product AK×A are pairs
in W × Q. Recall that the states in K are differently labeled. Thus, we can define the
product so that whenever it reads a letter in 2AP , its next W -component is determined.
Formally, we define the NBW AK×A = 〈2AP , (W ∪ {s0})×Q, {s0} ×Q0, ρ,W × α〉, where
for all σ ∈ 2AP , we have 〈w′, q′〉 ∈ ρ(〈s0, q〉, σ) iff w′ ∈ W0 and l(w′) = σ and q′ ∈ δ(q, σ),
and for w ∈ W we have 〈w′, q′〉 ∈ ρ(〈w, q〉, σ) iff R(w,w′) and l(w′) = σ and q′ ∈ δ(q, σ).
Thus, when the product AK×A proceeds from state 〈w, q〉 with σ, its new W -component
is the single successor of w that is labeled σ, paired with the σ-successors of q. It is easy
to see that L(AK×A) = L(K) ∩ L(A). When A corresponds to an LTL formula ψ (that is,
L(A) = L(ψ)), we denote the product by AK×ψ.

We start with the problem of deciding relative safety. By Theorem 4, a language L is
K-safety iff L(K) ∩ L is safety. Thus, the check can be reduced to checking the safety of
AK×A (respectively AK×ψ). This check, however, if done naively, is PSPACE in |AK×A|
(respectively |AK×ψ|), which is PSPACE in |K|. The technical challenge is to find a more
efficient way to do the check, and the one we describe in the proof is based on decomposing
AK×A so that the complementation that its safety check involves is circumvented. As for the
lower bound, note that using the Kripke structure KAP , one can reduce traditional safety
to relative safety.3 Our reduction, however, shows that the complexity of deciding K-safety
coincides with that of model checking in both its parameters.

I Theorem 13. Consider a Kripke structure K over AP and a language L ⊆ (2AP )ω. The
problem of deciding whether L is K-safety is PSPACE-complete for L given by an NBW or
by an LTL formula. In both cases it can be done in time linear and space polylogarithmic in
|K|.

We continue to relative counterability. We first show that the complexity of deciding
counterability is carried over to the relative setting. For the upper bound, note that a
language L is K-counterable iff pref(L(K)) ∩ comp(pref(L(K) ∩ L)) 6= ∅. Again, this check,
if done naively, is PSPACE in |K|, and the challenge in the proof is to use the deterministic
behavior of AK×A with respect to the W -component of its states in order to avoid a blow-up
in K in its complementation.

I Theorem 14. Consider a Kripke structure K over AP and a language L ⊆ (2AP )ω.
The problem of deciding whether L is K-counterable and finding a shortest K-bad-prefix is
PSPACE-complete for L given by an NBW and is EXPSPACE-complete for L given by an
LTL formula. In both cases it can be done in time linear and space polylogarithmic in |K|.

3 Indeed KAP is exponential in |AP |, but safety is known to be PSPACE-hard also when the number of
atomic propositions is fixed.
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We now study the length of K-bad-prefixes. The upper bounds follow from the proof of
Theorem 14, and for the lower ones, we rely on KAP and the constructions described in the
proofs of Theorems 11 and 12 in order to prove the dependency on |ψ| and |A|, and describe
a family of Kripke structures requiring linear dependency in |K|:

I Theorem 15. The length of a shortest K-bad-prefix for a K-counterable language L is
tightly doubly-exponential in |ψ|, in case L is given by means of an LTL formula ψ, and is
tightly exponential in |A|, in case L is given by an NBW A. In both cases, it is also tightly
linear in |K|.

Interestingly, when the LTL formula is K-safety, deciding its K-counterability and finding
a K-bad-prefix can be done more efficiently, and its K-bad-prefixes are shorter. For the
decidability problem, note that if an LTL formula ψ is K-safety, then ψ is K-counterable iff
K 6|= ψ. Also, by Theorem 4, the fact ψ is K-safety implies that the NBW AK×ψ is safety,
which is useful in the construction of fine automata. Formally, we have the following.

I Theorem 16. Let K be a Kripke structure and let ψ be a K-safety LTL formula. Deciding
whether ψ is K-counterable and finding a K-bad-prefix is PSPACE-complete in |ψ|. The
length of shortest K-bad-prefixes is tightly exponential in |ψ|.

Note that the space complexity of the algorithm described in the proof of Theorem 16
in also polylogarithmic in |K|. Finally, when the specification formalism is automata, the
difference between K-safety and K-counterable languages disappears, and a short K-bad-
prefix for a K-safety or K-counterable language given by an NBW A is tightly exponential
in |A| and linear in |K|.

7 On Probabilistic Relative Counterability

In this section we study K-prob-counterability. By Theorem 6, an ω-regular language L is
K-prob-counterable iff PrK,P [L] < 1 for some K-walk-distribution P . This, together with
[11], imply the upper bound for the corresponding decision problem:

I Theorem 17. Consider a language L ⊆ (2AP )ω and a Kripke structure K over AP .
Deciding whether L is K-prob-counterable can be done in time O(|K| · 2O(|L|)) or in space
polynomial in |L| and polylogarithmic in |K|, for L given by an LTL formula ψ, in which
case |L| = |ψ|, or by an NBW A, in which case |L| = |A|. In both cases, the problem is
PSPACE-complete.

Thus, deciding whether an LTL formula is K-prob-counterable is exponentially easier
than in the non-probabilistic case.

Recall that the study of K-counterability involved reasoning about the product of K
and a nondeterministic automaton for the language. In the probabilistic setting, we need
the automaton for the language to be deterministic. Let D = 〈2AP , S, s0, δD, α〉 be a
DPW for a language L and let K = 〈AP,W,W0, R, l〉 be a Kripke structure. We define
DK×D = 〈2AP ,W × S,W0 × {s0}, ρ, α′〉 as the product DPW of K and D. Formally, we
have α′(〈w, s〉) = α(s), and 〈w′, s′〉 ∈ ρ(〈w, s〉, σ) iff [l(w) = σ, R(w,w′) and s′ = δD(s, σ)].
Note that L(DK×D) = L(K)∩L(D). Also, note that all of the successors of a state in DK×D
share the same second component.

In the probabilistic setting, we also need to define the product as a Markov chain. Let D
and K be as above and let P = 〈pin, p〉 be a K-walk-distribution. We define a labeled Markov
chain M ′ = 〈2AP ,W × S, p′in, p′, l′〉, where p′ : (W × S) × (W × S) → [0, 1] is such that
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p′(〈w, s〉, 〈w′, s′〉) = p(〈w,w′〉) if δD(s, l(w)) = s′, and otherwise p′(〈w, s〉, 〈w′, s′〉) = 0. Also,
p′in : W ×S → [0, 1] is such that p′in(〈w, s〉) = pin(w) if s = s0, and otherwise p′in(〈w, s〉) = 0.
Finally, l′ : W × S → 2AP is such that l′(〈w, s〉) = l(w). Thus, p′in and p′ attribute the
states of M = MK,P by the deterministic behavior of D. In particular, note that for every
〈w, s〉 ∈W × S, we have

∑
〈w′,s′〉∈W×S p

′(〈w, s〉, 〈w′, s′〉) =
∑
w′∈W p〈w,w′〉 = 1.

Let g : W × S →W be a function that projects pairs in W × S on their W -component,
namely g(〈w, s〉) = w. Consider random walks X = X1, X2 . . . and X ′ = X ′1, X

′
2 . . . on M

and M ′, respectively. Let Y = Y1, Y2, . . . be the projection of X ′ on W , thus Yi = g(X ′i) for
i = 1, 2, . . .. Note that the processes X and Y both take values in Wω and that they have
the same distribution. Therefore, we have PrM [L] = PrM ′ [L]. Also, for a finite computation
u = l(w0), . . . , l(wn) of K, we have PruM [L] = PruM ′ [L]. Note that w0, . . . , wn induces a single
finite path 〈w0, s0〉, . . . , 〈wn, sn〉 in DK×D, and that every infinite path in K induces a single
infinite path in DK×D. For a finite computation u, let reach(u) be the state reached in DK×D
after traversing u. Thus, reach(u) = 〈wn, sn〉. By the above, PruM ′ [L] is the probability that
a random walk in M ′ from reach(u) is an accepting run in DK×D. For a state x of M ′, we
denote by γx the probability that a random walk from x in M ′ is an accepting run in DK×D.
Note that a finite computation u is a K-prob-bad-prefix iff γreach(u) = 0.

I Lemma 18. Deciding whether γx is 0, 1 or in (0, 1), for all states x in M ′, can be done
in time linear in |D| and in |K| or in space polylogarithmic in |D| and in |K|. Furthermore,
the probability γx can be calculated in time polynomial in |D| and in |K|.

We turn to study the complexity of probabilistic relative counterability of ω-regular
languages. Handling a language given by an NBW can proceed by an exponential translation
to a DPW [31]. For languages given by LTL formulas, going to DPWs involves a doubly-
exponential blow-up. We show that in order to find a K-prob-bad-prefix for an LTL formula,
we can carefully proceed according to the syntax of the formula and do exponentially better
than an algorithm that translates the formulas to automata. We note that the PSPACE-
hardness in Theorem 17 is by a reduction from the universality problem. Thus, we cannot
hope to obtain a PSPACE algorithm by translating LTL formulas to NBWs, unless the
structure of the latter is analyzed to a level in which it essentially follows the structure of
the LTL formula (see, for example, [12] for such an approach applied in probabilistic LTL
model checking).

7.1 On probabilistic relative counterability of NBWs
We start with an algorithm for finding a shortest K-prob-bad-prefix for a language given by
an NBW A. For that, we need to find a shortest word whose path in M ′ reaches a state x
for which γx = 0. By Lemma 18, we thus have the following:

I Theorem 19. Consider an NBW A over the alphabet 2AP and a Kripke structure K over
AP . Finding a shortest K-prob-bad-prefix for L(A) can be done in space polynomial in |A|
and polylogarithmic in |K| or in time exponential in |A| and linear in |K|. Furthermore,
the length of the shortest K-prob-bad-prefix for L(A) is tightly exponential in |A| and tightly
linear in |K|.

Consider a Kripke structure K over AP and a language L ⊆ (2AP )ω that is K-prob-
counterable. In practice, the user of the model-checking tool often has some estimation of the
likelihood of every transition in the system. That is, we assume that the user knows what
the typical K-walk-distribution P in a typical behavior of the system is. Clearly, there is a
trade-off between the length of a counterexample and its “precision”, in the sense that the
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longer a finite prefix of an erroneous computation is, the larger is the probability in which it
is a K-prob-bad-prefix. We want to allow the user to play with this trade-off and thus define
the following two problems:

The shortest bounded-prob-K-bad-prefix problem is to return, given K, L, and 0 < γ < 1,
a shortest finite computation u of K such that PruK,P [L] < γ.
The bounded-length prob-K-bad-prefix problem is to return, given K, L, and m ≥ 1, a
finite computation u of K such that |u| ≤ m and PruK,P [L] is minimal.

Using Lemma 18, we can carefully reduce both problems to classical problems in graph
algorithms, applied to DK×D:

I Theorem 20. The shortest bounded-prob-K-bad-prefix and the bounded-length prob-K-bad-
prefix problems, for a language given by an NBW A, can be solved in time exponential in |A|
and polynomial in |K|.

We note that using our construction of M ′, together with Lemma 18, we can reduce the
calculation of PrK,P [L(A)] or the problem of its classification to 1, 0, or (0, 1) to a sequence
of calculations in M ′, simplifying the known result of [11] (Theorem 4.1.7 there).

7.2 On Probabilistic Relative Counterability of LTL formulas
We describe an algorithm for finding a K-prob-bad-prefix for an LTL formula θ. Like
the model-checking algorithm in [11], our algorithm proceeds by iteratively replacing the
innermost temporal subformula of θ by a fresh atomic proposition and adjusting K so that
the probability of a computation obtained by a random walk to satisfy the specification
is maintained. In more detail, we construct a sequence K0,K1, . . . of Kripke structures
and a sequence θ0, θ1, . . . of LTL formulas such that K0 = K and θ0 = θ, and Ki+1 is
obtained from Ki by applying a transformation that depends on the innermost temporal
operator in θi, which is replaced by a fresh atomic proposition in θi+1. We show that a
Ki-prob-bad-prefix for θi can be constructed by extending a Ki+1-prob-bad-prefix for θi+1,
resulting in a recursive construction of a K-prob-bad-prefix for θ.

I Theorem 21. Finding a K-prob-bad-prefix for a K-prob-counterable LTL formula θ can be
done in time O(|K|·2|θ|) or in space polynomial in |θ| and polylogarithmic in |K|. Furthermore,
the K-prob-bad-prefix that is found is of length O(|K| · 2|θ|).

We now study the length of shortest K-prob-bad-prefixes.

I Theorem 22. The length of a shortest K-prob-bad-prefix for a K-prob-counterable language
given by an LTL formula ψ is tightly exponential in |ψ| and tightly linear in |K|.

Note that the K-prob-bad-prefix that our algorithm finds is not necessarily the shortest,
however it matches the lower bound from Theorem 22.

Thus, we showed that the probabilistic approach for relative bad prefixes for LTL formulas
is exponentially better than the non-probabilistic approach both in its complexity and in the
length of the prefixes.

8 On Probabilistic Counterability

In this section we study prob-counterability. The solutions to the three basic problems are
specified in Theorems 23, 24, and 25 below. The upper bound for the first follows from the
fact that, by Theorem 2, an ω-regular language L is prob-counterable iff Pr[L] < 1, which,
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by [11], can be checked in PSPACE. The latter two follow from the results in Section 7,
taking the Kripke structure to be KAP .

I Theorem 23. The problem of deciding whether a language L is prob-counterable is PSPACE-
complete for L given by an LTL formula or by an NBW.

I Theorem 24. Let A be an NBW. Finding a shortest prob-bad-prefix for L(A) can be done
in time exponential in |A|, or in space polynomial in |A|. Furthermore, the length of the
shortest prob-bad-prefix is tightly exponential in |A|.

I Theorem 25. Finding a prob-bad-prefix for a prob-counterable LTL formula ψ can be done
in time 2O(|ψ|) or in space polynomial in |ψ|. Furthermore, the prob-bad-prefix that is found
is of length 2O(|ψ|). The shortest prob-bad-prefix for ψ is tightly exponential in |ψ|.

Thus, the exponential advantage of the probabilistic approach in the case the language is
given by an LTL formula is carried over to the non-relative setting. When the specification
is given by means of an NBW, the complexities of the probabilistic and non-probabilistic
approaches coincide. The probabilistic approach, however, may return more bad prefixes.

9 Discussion

We extended the applicability of finite counterexamples by introducing relative and probabilis-
tic bad-prefixes. This lifts the advantage of safety properties, which always have bad-prefixes,
to ω-regular languages that are not safety. We believe that K-bad-prefixes and K-prob-bad-
prefixes may be very helpful in practice, as they describe a finite execution that leads the
system to an error state. From a computational point of view, finding a K-bad-prefix for an
LTL formula ψ is unfortunately EXPSPACE-complete in |ψ|. Experience shows that even
highly complex algorithms often run surprisingly well in practice. Also here, the complexity
originates from the blow-up in the translation of LTL to automata, which rarely happens in
practice. In cases the complexity is too high, we suggest the following two alternatives, which
do not go beyond the PSPACE complexity of LTL model checking (and, like model checking,
are NLOGSPACE in K): (1) Recall that when ψ is K-safety and K 6|= ψ, then finding a
K-bad-prefix can be done in PSPACE. Thus, we suggest to check ψ for K-safety with the
algorithm from Theorem 13, and then apply the algorithm from Theorem 16. (2) Recall
that finding a K-prob-bad-prefix is only PSPACE-complete. Thus, we suggest to apply the
algorithm from Theorem 21. Note that the probabilistic approach is not only exponentially
less complex, but may be essential when ψ is K-prob-counterable and not K-counterable.

When a user gets a lasso-shaped counterexample, he can verify that indeed it does not
satisfy the specification. For finite bad-prefixes, the user knows that they lead the system
to an error state, and it is desirable to accompany the prefix with information explaining
why these states are erroneous. We suggest the following three types of explanations. (1)
A K-bad-prefix leads the product K ×Aψ to states 〈w, S〉 that are empty. Recall that the
states of Aψ consist of subsets of subformulas of ψ, and that 〈w, S〉 being empty means that
w does not satisfy the conjunction of the formulas in S [37]. Returning S to the user explains
what makes w an error state. (2) Researchers have studied certified model checking [24],
where a positive answer of model checking (that is, K |= ψ) is accompanied by a certificate –
a compact explanation as to why K ×A¬ψ is empty. In our setting, certificates can provide
a compact explanation as to why K × Aψ with initial state 〈w, S〉 is empty. (3) When a
K-prob-bad-prefix u that is not a K-bad-prefix is returned, it may be helpful to accompany u
with an infinite lasso-shaped computation τ of the system that starts with u and does satisfy
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the specification. Thus, the user would get an exception: he would know that almost all
computations that start in u except for τ (and possibly more computations, whose probability
is 0) violate ψ. The exceptional correct behavior would help the user understand why almost
all other behaviors are incorrect.
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Abstract
Model checking is commonly recognized as one of the most effective tools for system verification.
While it has been systematically investigated in the context of classical, point-based temporal
logics, it is still largely unexplored in the interval logic setting. Recently, a non-elementary model
checking algorithm for Halpern and Shoham’s modal logic of time intervals HS, interpreted over
finite Kripke structures, has been proposed, together with a proof of the EXPSPACE-hardness
of the problem. In this paper, we devise an EXPSPACE model checking procedure for two
meaningful HS fragments. It exploits a suitable contraction technique that allows one to replace
sufficiently long tracks of a Kripke structure by equivalent shorter ones.
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1 Introduction

Given a formal specification of the desired properties of a system and a model of its behaviour,
model checking algorithms allow one to verify the former against the latter [6]. While the
model checking problem has been systematically investigated in the context of classical,
point-based temporal logics, it is still largely unexplored in the interval logic setting.

Interval temporal logic (ITL) has been proposed as a more expressive formalism for
temporal representation and reasoning than standard point-based one [9, 24]. On the positive
side, expressiveness of ITLs makes them well suited for a number of applications in a variety
of fields, including formal verification, computational linguistics, and planning, e.g., [20, 22].
On the negative side, in most cases their satisfiability problem turns out to be undecidable,
and, in the few cases of decidable ITLs, the standard proof machinery, like Rabin’s theorem,
is usually not applicable.

A prominent position among ITLs is occupied by Halpern and Shoham’s modal logic of
time intervals (HS, for short) [9]. HS features one modality for each of the 13 possible ordering
relations between pairs of intervals (the so-called Allen’s relations [1]), apart from the equality
relation. In [9], it has been shown that the satisfiability problem for HS interpreted over all
relevant (classes of) linear orders is highly undecidable. Since then, a lot of work has been
done on the satisfiability problem for HS fragments, which has shown that undecidability
prevails over them (see [2] for an up-to-date account of undecidable fragments). However,
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meaningful exceptions exist, including the interval logic of temporal neighbourhood and the
interval logic of sub-intervals [3, 4, 5, 19].

In this paper, we focus our attention on the model checking problem for ITLs. Unlike the
case of satisfiability checking, little work has been done on model checking [13, 14, 16, 18] (it
is worth pointing out that, in contrast to the case of point-based, linear temporal logics, there
is not an easy reduction from the model checking problem to the validity/satisfiability one).
In the classical formulation of the model checking problem [6], systems are usually modelled
as (finite) labelled state-transition graphs (Kripke structures), and point-based temporal
logics are used to analyse, for each path/track in a Kripke structure, how proposition letters
labelling the states change from one state to the next one along the path. To check interval
properties of computations, one needs to collect information about states into computation
stretches. This amounts to interpreting each finite path of a Kripke structure as an interval,
and to suitably defining its labelling on the basis of the labelling of the states that compose
it.

In [13, 14], Lomuscio and Michaliszyn address the model checking problem for epistemic
extensions of some HS fragments. In [13], they focus their attention on the fragment
HS[B,E,D] of Allen’s relations started-by, finished-by, and contains extended with epistemic
modalities. They consider a restricted form of model checking which verifies the given
specification against a single (finite) initial computation interval (not all possible initial
computation intervals), and prove that it is a PSPACE-complete problem. Moreover, they
show that the problem for the purely temporal fragment of the logic is in PTIME. In [14],
they show that the picture drastically changes with other HS fragments that allow one to
access infinitely many tracks/intervals. In particular, they prove that the model checking
problem for the fragment HS[A,B,L] of Allen’s relations meets, starts, and before, extended
with epistemic modalities, is decidable with a non-elementary upper bound.

In [16, 18], Montanari et al. outline a general characterization of the model checking
problem for full HS, interpreted over finite Kripke structures (under the homogeneity assump-
tion [23]). Their semantic assumptions differ from those made in [13], making it difficult
to compare the two research contributions. In both cases, formulas of ITL are evaluated
over finite paths/tracks obtained from the unravelling of a finite Kripke structure. However,
in [18] a proposition letter holds over an interval (track) if and only if it holds over all
its states (homogeneity principle), while in [13] truth of proposition letters is defined over
pairs of states (the endpoints of tracks/intervals). In [18], the authors introduce the basic
elements of the picture, namely, the interpretation of HS formulas over (abstract) interval
models, the mapping of finite Kripke structures into (abstract) interval models, the notion
of track descriptor, and a small model theorem proving (with a non-elementary procedure)
the decidability of the model checking problem for full HS against finite Kripke structures.
However, technical details of the proofs are not fully worked out and no lower bound to the
complexity of the problem, that is, no hardness result, is given. In addition, they outline a
PSPACE model checking procedure for two HS fragments, but it turns out to be flawed. In
[16], Molinari et al. work out the model checking problem for full HS in all its details, and
prove that it is EXPSPACE-hard.

In this paper, we prove that the model checking problem for two large HS fragments,
namely, the fragment HS[A,A,B,B,E] of Allen’s relations meets, met-by, started-by, starts
and finishes, and the fragment HS[A,A,E,B,E] of Allen’s relations meets, met-by, finished-
by, starts and finishes, is in EXPSPACE. Moreover, we prove that it is NEXP-hard, provided
that a succinct encoding of formulas is used (otherwise, we can only give an NP-hardness
result).
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Table 1 Allen’s interval relations and corresponding HS modalities.

Allen’s relation HS Definition w.r.t. interval structures Example
x y

v z

v z

v z

v z

v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

The paper is organized as follows. In Section 2 we provide some background knowledge.
In Section 3 we introduce the key notion of descriptor sequence for a track of a finite Kripke
structure, and we exploit it to define an indistinguishability (equivalence) relation over
tracks. In Section 4 we prove a small model theorem, showing that we can select a track
representative of bounded length from each equivalence class, we outline a model checking
procedure, and we provide a lower bound to the complexity of the problem. Conclusions
give a short assessment of the work done and describe future research directions. Due to
space limitations, all proofs are omitted; they can be found in [17].

2 Background Knowledge

2.1 The interval temporal logic HS
An interval algebra to reason about intervals and their relative order was first proposed by
Allen [1]; then, a systematic logical study of ITLs was done by Halpern and Shoham, who
introduced the logic HS featuring one modality for each Allen’s interval relation [9], except
for equality. Table 1 depicts 6 of the 13 Allen’s relations together with the corresponding HS
(existential) modalities. The other 7 are equality and the 6 inverse relations (given a binary
relation R , the inverse relation R is such that bR a if and only if aR b).

The language of HS features a set of proposition letters AP , the Boolean connectives ¬
and ∧, and a temporal modality for each of the (non trivial) Allen’s relations, namely, 〈A〉,
〈L〉, 〈B〉, 〈E〉, 〈D〉, 〈O〉, 〈A〉, 〈L〉, 〈B〉, 〈E〉, 〈D〉 and 〈O〉. HS formulas are defined as follows:

ψ ::= p | ¬ψ | ψ ∧ ψ | 〈X〉ψ | 〈X〉ψ, with p ∈ AP , X ∈ {A,L,B,E,D,O}.

We will make use of the standard abbreviations of propositional logic. Moreover, for
all X, dual universal modalities [X]ψ and [X]ψ are respectively defined as ¬〈X〉¬ψ and
¬〈X〉¬ψ.

We will assume the strict semantics of HS: only intervals made of at least two points
are allowed.1 All HS modalities can be expressed in terms of 〈A〉, 〈B〉, and 〈E〉, and the
transposed modalities 〈A〉, 〈B〉, and 〈E〉 as follows: 〈L〉ψ ≡ 〈A〉 〈A〉ψ, 〈L〉ψ ≡ 〈A〉 〈A〉ψ,
〈D〉ψ ≡ 〈B〉 〈E〉ψ, 〈O〉ψ ≡ 〈E〉 〈B〉ψ, 〈D〉ψ ≡ 〈B〉 〈E〉ψ, and 〈O〉ψ ≡ 〈B〉 〈E〉ψ.

Given any subset of Allen’s relations {X1, · · · , Xn}, we denote by HS[X1, · · · , Xn] the
fragment of HS that features modalities X1, · · · , Xn only.

1 HS modalities are mutually exclusive and jointly exhaustive only in the strict semantics, i.e., exactly
one of them holds between any two intervals. However, the strict semantics can easily be “relaxed” to
include point intervals, and all results we are going to prove hold for the non-strict semantics as well.
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v0
p

v1
q

Figure 1 The Kripke structure KEquiv.

HS can be viewed as a multi-modal logic with the 6 primitive modalities 〈A〉, 〈B〉, 〈E〉,
〈A〉, 〈B〉, and 〈E〉. Accordingly, HS semantics can be defined over a multi-modal Kripke
structure, called here an abstract interval model, in which (strict) intervals are treated as
atomic objects and Allen’s relations as simple binary relations between pairs of them.

I Definition 1 ([16]). An abstract interval model is a tuple A = (AP , I, AI, BI, EI, σ), where
AP is a finite set of proposition letters, I is a possibly infinite set of atomic objects (worlds),
AI, BI, EI are three binary relations over I and σ : I 7→ 2AP is a (total) labeling function
which assigns a set of proposition letters to each world.

Intuitively, in the interval setting, I is a set of intervals, AI, BI, and EI are interpreted as
Allen’s interval relations A (meets), B (started-by), and E (finished-by), respectively, and σ
assigns to each interval the set of proposition letters that hold over it.

Given an abstract interval model A = (AP , I, AI, BI, EI, σ) and an interval I ∈ I, the truth
of an HS formula over I is defined by structural induction on the formula as follows:
(i) A, I |= p iff p ∈ σ(I), for any proposition letter p ∈ AP ;
(ii) A, I |= ¬ψ iff it is not true that A, I |= ψ;
(iii) A, I |= ψ ∧ φ iff A, I |= ψ and A, I |= φ;
(iv) A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there exists J ∈ I such that I XI J and A, J |= ψ;
(v) A, I |= 〈X〉ψ, for X ∈ {A,B,E}, iff there exists J ∈ I such that J XI I and A, J |= ψ.

2.2 Kripke structures and abstract interval models
In this section, we define a mapping from Kripke structures to abstract interval models that
makes it possible to specify properties of systems by means of HS formulas.

I Definition 2. A finite Kripke structure K is a tuple (AP ,W, δ, µ, w0), where AP is a set of
proposition letters, W is a finite set of states, δ ⊆ W ×W is a left-total relation between
pairs of states, µ : W 7→ 2AP is a total labelling function, and w0 ∈W is the initial state.

For all w ∈W , µ(w) is the set of proposition letters which hold at that state, while δ is the
transition relation which constrains the evolution of the system over time.

Figure 1 depicts a Kripke structure, KEquiv, with two states (the initial state is identified
by a double circle). Formally, KEquiv is defined by the following quintuple:

({p, q}, {v0, v1}, {(v0, v0), (v0, v1), (v1, v0), (v1, v1)}, µ, v0),

where µ(v0) = {p} and µ(v1) = {q}.

I Definition 3. A track ρ over a finite Kripke structure K = (AP ,W, δ, µ, w0) is a finite
sequence of states v0 · · · vn, with n ≥ 1, such that for all i ∈ {0, · · · , n− 1}, (vi, vi+1) ∈ δ.

Let TrkK be the (infinite) set of all tracks over a finite Kripke structure K . For any
track ρ = v0 · · · vn ∈ TrkK , we define: |ρ| = n+ 1, ρ(i) = vi, states(ρ) = {v0, · · · , vn} ⊆ W ,
intstates(ρ) = {v1, · · · , vn−1} ⊆ W , fst(ρ) = v0 and lst(ρ) = vn; moreover ρ(i, j) = vi · · · vj
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is a subtrack of ρ for 0 ≤ i < j ≤ |ρ| − 1. Finally, Pref(ρ) = {ρ(0, i) | 1 ≤ i ≤ |ρ| − 2} is the
set of all proper prefixes of ρ, and Suff(ρ) = {ρ(i, |ρ| − 1) | 1 ≤ i ≤ |ρ| − 2} is the set of all
proper suffixes of ρ. Notice that the length of tracks, prefixes, and suffixes is greater than 1,
as they will be mapped into strict intervals. If fst(ρ) = w0, ρ is said to be an initial track. In
the following, we will denote by ρ · ρ′ the concatenation of the tracks ρ and ρ′, and by ρn the
track obtained by concatenating n copies of ρ.

An abstract interval model (over TrkK ) can be naturally associated with a finite Kripke
structure by interpreting every track as an interval bounded by its first and last states.

I Definition 4 ([16]). The abstract interval model induced by a finite Kripke structure
K = (AP ,W, δ, µ, w0) is the abstract interval model AK = (AP , I, AI, BI, EI, σ), where
I = TrkK , AI = {(ρ, ρ′) ∈ I× I | lst(ρ) = fst(ρ′)}, BI = {(ρ, ρ′) ∈ I× I | ρ′ ∈ Pref(ρ)}, EI =
{(ρ, ρ′) ∈ I× I | ρ′ ∈ Suff(ρ)}, and σ : I 7→ 2AP with σ(ρ) =

⋂
w∈states(ρ) µ(w) for all ρ ∈ I.

In Definition 4, relations AI, BI, and EI are interpreted as Allen’s interval relations A,B, and
E, respectively. Moreover, according to the definition of σ, a proposition letter p ∈ AP holds
over ρ = v0 · · · vn if and only if it holds over all the states v0, . . . , vn of ρ. This conforms to
the homogeneity principle, according to which a proposition letter holds over an interval if
and only if it holds over all of its subintervals.

Satisfiability of an HS formula over a finite Kripke structure can be given in terms of
induced abstract interval models.

I Definition 5 (Satisfiability of HS formulas over Kripke structures). Let K be a finite Kripke
structure, ρ be a track in TrkK , and ψ be an HS formula. We say that the pair (K , ρ) satisfies
ψ, denoted by K , ρ |= ψ, if and only if it holds that AK , ρ |= ψ.

The model checking problem for HS over finite Kripke structures is the problem of deciding
whether K |= ψ.

I Definition 6. Let K be a finite Kripke structure and ψ be an HS formula. We say that
K models ψ, denoted by K |= ψ, if and only if for all initial tracks ρ ∈ TrkK , it holds that
K , ρ |= ψ.

Some meaningful properties of tracks that are expressible in HS can be found in [16]. For
instance, the formula [B]⊥ can be used to select all and only the tracks of length 2. Indeed,
given any ρ with |ρ| = 2, independently of K , it holds that K , ρ |= [B]⊥, because ρ has no
(strict) prefixes. On the other hand, it holds that K , ρ |= 〈B〉> if (and only if) |ρ| > 2. Let
`(k) be a shorthand for [B]k−1⊥ ∧ 〈B〉k−2>: it holds that K , ρ |= `(k) if and only if |ρ| = k.

2.3 The notion of Bk-descriptor
For any finite Kripke structure K , one can find a corresponding induced abstract interval
model AK , featuring one interval for each track of K . Since K has loops (each state must
have at least one successor), the number of its tracks, and thus the number of intervals of
AK , is infinite. In [16], given a finite Kripke structure and an HS formula ϕ, the authors
show how to obtain a finite representation for each (possibly infinite) set of tracks which are
equivalent with respect to satisfiability of HS formulas of the same structural complexity as
ϕ. By making use of such a representation, they prove that the model checking problem for
(full) HS is decidable (with a non-elementary upper bound) and it is EXPSPACE-hard if a
suitable encoding of HS formulas is exploited [16]. In this paper, we restrict our attention to
HS[A,A,B,B,E] (and the symmetric HS[A,A,E,B,E]) and we provide a lower complexity
model checking algorithm for it. We start with the definition of some basic notions.
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I Definition 7. Let ψ be an HS[A,A,B,B,E] formula. The B-nesting depth of ψ, denoted
by NestB(ψ), is defined by induction on the complexity of the formula as follows:
(i) NestB(p) = 0, for any proposition letter p ∈ AP ;
(ii) NestB(¬ψ) = NestB(ψ);
(iii) NestB(ψ ∧ φ) = max{NestB(ψ),NestB(φ)};
(iv) NestB(〈B〉ψ) = 1 + NestB(ψ);
(v) NestB(〈X〉ψ) = NestB(ψ), for X ∈ {A,A,B,E}.

Making use of Definition 7, we can introduce a relation of k-equivalence over tracks.

I Definition 8. Let K be a finite Kripke structure and ρ and ρ′ be two tracks in TrkK . We
say that ρ and ρ′ are k-equivalent if and only if, for every HS[A,A,B,B,E] formula ψ with
NestB(ψ) = k, K , ρ |= ψ if and only if K , ρ′ |= ψ.

It can be easily proved that k-equivalence propagates downwards.

I Proposition 9. Let K be a finite Kripke structure and ρ and ρ′ be two tracks in TrkK . If
ρ and ρ′ are k-equivalent, then they are h-equivalent, for all 0 ≤ h ≤ k.

We are now ready to define the key notion of descriptor for a track of a Kripke structure.

I Definition 10 ([16]). Let K = (AP ,W, δ, µ, v0) be a finite Kripke structure, ρ ∈ TrkK , and
k ∈ N. The Bk-descriptor for ρ is a labelled tree D = (V,E, λ) of depth k, where V is a finite
set of vertices, E ⊆ V × V is a set of edges, and λ : V 7→W × 2W ×W is a node labelling
function, inductively defined as follows:

for k = 0, the Bk-descriptor for ρ is the tree D = (root(D), ∅, λ), where λ(root(D)) =
(fst(ρ), intstates(ρ), lst(ρ));
for k > 0, the Bk-descriptor for ρ is the tree D = (V,E, λ), where λ(root(D)) =
(fst(ρ), intstates(ρ), lst(ρ)), which satisfies the following conditions:
1. for each prefix ρ′ of ρ, there exists v ∈ V such that (root(D), v) ∈ E and the subtree

rooted in v is the Bk−1-descriptor for ρ′;
2. for each vertex v ∈ V such that (root(D), v) ∈ E, there exists a prefix ρ′ of ρ such that

the subtree rooted in v is the Bk−1-descriptor for ρ′;
3. for all pairs of edges (root(D), v′), (root(D), v′′) ∈ E, if the subtree rooted in v′ is

isomorphic to the subtree rooted in v′′, then v′ = v′′ (here and in the following, we
write subtree for maximal subtree).

Condition 3 of Definition 10 simply states that no two subtrees whose roots are siblings
can be isomorphic. A B0-descriptor D for a track consists of its root only, which is denoted
by root(D). A label of a node will be referred to as a descriptor element.

Basically, for any k ≥ 0, the label of the root of the Bk-descriptor D for ρ is the triple
(fst(ρ), intstates(ρ), lst(ρ)). Each prefix ρ′ of ρ is associated with some subtree whose root is
labelled with (fst(ρ′), intstates(ρ′), lst(ρ′)) and is a child of the root of D. Such a construction
is then iteratively applied to the children of the root until either depth k is reached or a
track of length 2 is being considered on a node.

Hereafter, two descriptors will be considered equal up to isomorphism.
As an example, in Figure 2 we show the B2-descriptor for the track ρ = v0v1v0v0v0v0v1

of KEquiv (Figure 1). It is worth noticing that there exist two distinct prefixes of ρ, that
is, the tracks ρ′ = v0v1v0v0v0v0 and ρ′′ = v0v1v0v0v0, which have the same B1-descriptor.
Since, according to Definition 10, no tree can occur more than once as a subtree of the same
node (in this example, the root), in the B2-descriptor for ρ prefixes ρ′ and ρ′′ are represented
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(v0, {v0, v1}, v1)

(v0, ∅, v1)(v0, {v1}, v0)

(v0, ∅, v1)

(v0, {v0, v1}, v0)

(v0, ∅, v1)(v0, {v1}, v0)

(v0, {v0, v1}, v0)

(v0, ∅, v1)(v0, {v1}, v0)(v0, {v0, v1}, v0)

Figure 2 The B2-descriptor for the track v0v1v0v0v0v0v1 of KEquiv.

by the same tree (the first subtree of the root on the left). In general, it holds that the root
of a descriptor for a track with h proper prefixes does not necessarily have h children.

In general, B-descriptors do not convey enough information to determine which track
they were built from; however, they can be exploited to determine which HS[A,A,B,B,E]
formulas are satisfied by the track from which they were built.

In [16], the authors prove that, for a finite Kripke structure K , there is a finite number
(non-elementary w.r.t. |W | and k) of possible Bk-descriptors; moreover the number of nodes
of a descriptor has a non-elementary upper bound as well. Since the number of tracks of
K is infinite, and for any k ∈ N the set of Bk-descriptors for its tracks is finite, at least
one Bk-descriptor must be the Bk-descriptor of infinitely many tracks; thus Bk-descriptors
naturally induce an equivalence relation of finite index over the set of tracks of a finite Kripke
structure (k-descriptor equivalence relation).

I Definition 11. Let K be a finite Kripke structure, ρ, ρ′ ∈ TrkK , and k ∈ N. We say that
ρ and ρ′ are k-descriptor equivalent (ρ ∼k ρ′) iff the Bk-descriptors for ρ and ρ′ coincide.

The following lemma holds.

I Lemma 12. Let k ∈ N, K = (AP ,W, δ, µ, v0) be a finite Kripke structure and ρ1, ρ′1,
ρ2, ρ′2 be tracks in TrkK such that (lst(ρ1), fst(ρ′1)) ∈ δ, (lst(ρ2), fst(ρ′2)) ∈ δ, ρ1 ∼k ρ2 and
ρ′1 ∼k ρ′2. Then ρ1 · ρ′1 ∼k ρ2 · ρ′2.

The next proposition immediately follows from Lemma 12.

I Proposition 13 (Left and right extensions). Let K = (AP ,W, δ, µ, v0) be a finite Kripke
structure, ρ, ρ′ be two tracks in TrkK such that ρ ∼k ρ′, and ρ ∈ TrkK . If (lst(ρ), fst(ρ)) ∈ δ,
then ρ · ρ ∼k ρ′ · ρ, and if (lst(ρ), fst(ρ)) ∈ δ, then ρ · ρ ∼k ρ · ρ′.

The next theorem proves that, for any pair of tracks ρ, ρ′ ∈ TrkK , if ρ ∼k ρ′, then ρ and
ρ′ are k-equivalent (see Definition 8). Since the set of Bk-descriptors for the tracks of a finite
Kripke structure K is finite (or, in other words, the equivalence relation ∼k has a finite index),
there always exists a finite number of Bk-descriptors that “satisfy” an HS[A,A,B,B,E]
formula ψ with NestB(ψ) = k (this can be formally proved by a quotient construction [16]).

I Theorem 14 ([16]). Let K be a finite Kripke structure, ρ and ρ′ be two tracks in TrkK ,
AK be the abstract interval model induced by K , and ψ be a formula of HS[A,A,B,B,E]
with NestB(ψ) = k. If ρ ∼k ρ′, then AK , ρ |= ψ ⇐⇒ AK , ρ

′ |= ψ.

3 Clusters and descriptor element indistinguishability

A Bk-descriptor provides a finite encoding for a possibly infinite set of tracks (the tracks
associated with that descriptor). Unfortunately, the representation of Bk-descriptors as trees
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v0

v1

v2

v3

Figure 3 An example of finite Kripke structure.

labelled over descriptor elements is highly redundant. For example, given any pair of subtrees
rooted in some children of the root of a descriptor, it is always the case that one of them
is a subtree of the other: the two subtrees are associated with two (different) prefixes of a
track and one of them is necessarily a prefix of the other. In practice, the size of the tree
representation of Bk-descriptors prevents their direct use in model checking algorithms, and
makes it difficult to determine the intrinsic complexity of Bk-descriptors.

In this section, we devise a more compact representation of Bk-descriptors. Each class
of the k-descriptor equivalence relation is a set of k-equivalent tracks. For every such class,
we select a track representative whose length is (exponentially) bounded in both the size
of W (the set of states of the Kripke structure) and k. In order to set such a bound, we
consider suitable ordered sequences (possibly with repetitions) of descriptor elements of a
Bk-descriptor. Let us define the descriptor sequence for a track as the ordered sequence of
descriptor elements associated with its prefixes. In a descriptor sequence, descriptor elements
can obviously be repeated: we devise a criterion to avoid such repetitions whenever they
cannot be distinguished by any HS[A,A,B,B,E] formula of B-nesting depth up to k.

I Definition 15. Let ρ = v0v1 . . . vn be a track of a finite Kripke structure. The descriptor
sequence ρds for ρ is d0 . . . dn−1, where di = ρds(i) = (v0, intstates(v0 . . . vi+1), vi+1), for
i ∈ {0, . . . , n− 1}. We denote the set of descriptor elements occurring in ρds by DElm(ρds).

For example, let us consider the finite Kripke structure of Figure 3 and the track
ρ = v0v0v0v1v2v1v2v3v3v2v2. The descriptor sequence for ρ is:

ρds = (v0, ∅, v0) (v0, {v0}, v0) (v0, {v0}, v1)(v0, {v0, v1}, v2)

(v0,Γ, v1)(v0,Γ, v2) (v0,Γ, v3) (v0,∆, v3)(v0,∆, v2)(v0,∆, v2) , (*)

where Γ = {v0, v1, v2}, ∆ = {v0, v1, v2, v3}. DElm(ρds) is the set {(v0, ∅, v0), (v0, {v0}, v0),
(v0, {v0}, v1), (v0, {v0, v1}, v2), (v0,Γ, v1), (v0,Γ, v2), (v0,Γ, v3), (v0,∆, v2), (v0,∆, v3)}.

To express the relationships between descriptor elements occurring in a descriptor sequence,
we introduce a binary relation, Rt. Intuitively, given two descriptor elements d′ and d′′ of a
descriptor sequence, the relation d′Rt d

′′ holds if d′ and d′′ are the descriptor elements of
two tracks ρ′ and ρ′′, respectively, and ρ′ is a prefix of ρ′′.

I Definition 16. Let ρds be the descriptor sequence for a track ρ and let d′ = (vin, S′, v′fin)
and d′′ = (vin, S′′, v′′fin) be two descriptor elements in ρds. Then, d′Rt d

′′ iff S′∪{v′fin} ⊆ S′′.

The relation Rt is transitive: for all descriptor elements d′, d′′, d′′′, if d′Rt d
′′ and d′′Rt d

′′′,
then S′ ∪ {v′fin} ⊆ S′′ and S′′ ∪ {v′′fin} ⊆ S′′′; it follows that S′ ∪ {v′fin} ⊆ S′′′, and thus
d′Rt d

′′′. Rt is neither an equivalence relation nor a quasiorder, since Rt is neither reflexive
(e.g., (v0, {v0}, v1)�Rt(v0, {v0}, v1)), nor symmetric (e.g., (v0, {v0}, v1) Rt(v0, {v0, v1}, v1) and
(v0, {v0, v1}, v1)�Rt(v0, {v0}, v1)), nor antisymmetric (e.g., (v0, {v1, v2}, v1) Rt(v0, {v1, v2}, v2)
and (v0, {v1, v2}, v2) Rt (v0, {v1, v2}, v1), but the two elements are distinct).

It can be easily shown that Rt pairs descriptor elements of increasing prefixes of a track.
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I Proposition 17. Let ρds be the descriptor sequence for the track ρ = v0v1 · · · vn. Then,
ρds(i) Rt ρds(j) for all 0 ≤ i < j < n.

We now introduce a distinction between two types of descriptor elements.

I Definition 18. A descriptor element (vin, S, vfin) is a Type-1 descriptor element if vfin /∈ S,
while it is a Type-2 descriptor element if vfin ∈ S.

It can be easily checked that a descriptor element d = (vin, S, vfin) is Type-1 if and only
if Rt is not reflexive in d: (i) if d�Rt d, then S ∪ {vfin} 6⊆ S, and thus vfin /∈ S, and (ii) if
vfin /∈ S, then d�Rt d. It follows that a Type-1 descriptor element cannot occur more than
once in a descriptor sequence. On the other hand, Type-2 descriptor elements may occur
multiple times in a descriptor sequence, and if a descriptor element occurs more than once,
then it is necessarily of Type-2.

I Proposition 19. If both d′Rt d
′′ and d′′Rt d

′ for d′ = (vin, S′, v′fin) and d′′ = (vin, S′′, v′′fin)
then v′fin ∈ S′, v′′fin ∈ S′′ and S′ = S′′; thus both d′ and d′′ are Type-2 descriptor elements.

We are now ready to give a general characterization of the descriptor sequence ρds for
a track ρ: ρds is composed of some (maximal) subsequences, consisting of occurrences of
Type-2 descriptor elements on which Rt is symmetric, separated by occurrences of Type-1
descriptor elements. This can be formalized by means of the notion of cluster.

I Definition 20. A cluster C of (Type-2) descriptor elements is a maximal set of descriptor
elements {d1, . . . , ds} ⊆ DElm(ρds) such that di Rt dj and dj Rt di for all i, j ∈ {1, . . . , s}.

Thanks to maximality, clusters are pairwise disjoint: if C and C ′ are distinct clusters, d ∈ C
and d′ ∈ C ′, either dRt d

′ and d′�Rt d, or d′Rt d and d�Rt d
′.

It can be easily checked that the descriptor elements of a cluster C are contiguous in ρds
(in other words, they form a subsequence of ρds), that is, occurrences of descriptor elements
of C are never shuffled with occurrences of descriptor elements not belonging to C .

I Definition 21. Let ρds be a descriptor sequence and C be one of its clusters. The
subsequence of ρds associated with C is the subsequence ρds(i, j), with i ≤ j < |ρds|,
including all and only the occurrences of the descriptor elements in C .

Notice that two subsequences associated with two distinct clusters C and C ′ in a descriptor
sequence must be separated by at least one occurrence of a Type-1 descriptor element. For
example, with reference to the descriptor sequence (*) for ρ = v0v0v0v1v2v1v2v3v3v2v2 of the
Kripke structure in Figure 3, the subsequences associated with clusters are enclosed in boxes.

While Rt allows us to order any pair of Type-1 descriptor elements, as well as any Type-1
descriptor element with respect to a Type-2 descriptor element, it does not give any means
to order Type-2 descriptor elements belonging to the same cluster. This, together with the
fact that Type-2 elements may have multiple occurrences in a descriptor sequence, implies
that we need to somehow limit the number of occurrences of Type-2 elements in order to
give a bound on the length of track representatives of Bk-descriptors.

To this end, we introduce an equivalence relation that allows us to put together indis-
tinguishable occurrences of the same descriptor element in a descriptor sequence, that is,
to detect those occurrences which are associated with prefixes of the track with the same
Bk-descriptor. The idea is that a track representative for a Bk-descriptor should not include
indistinguishable occurrences of the same descriptor element.
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Figure 4 The track ρ = v0v1v2v3v3v2v3v3v2v3v2v3v3v2v3v2v1v3v2v3v2v1v2v1v3v2v2v3v2 of
the finite Kripke structure depicted in Figure 3 generates the descriptor sequence ρds =
(v0, ∅, v1)(v0, {v1}, v2)(v0, {v1, v2}, v3)abaababaababcababcbcabbab, where a, b, and c stand for
(v0, {v1, v2, v3}, v3), (v0, {v1, v2, v3}, v2), and (v0, {v1, v2, v3}, v1), respectively. Here we show the
subsequence ρds(3, |ρds| − 1) associated with the cluster C = {a, b, c}. Pairs of k-indistinguishable
consecutive occurrences of descriptor elements are connected by a rounded edge labelled by k. Edges
labelled by × link occurrences which are not 1-indistinguishable. The values of all missing edges can
be derived from the properties established by Proposition 24 and 26. At the bottom of the figure,
for each position, we give the associated configurations: c(3) = (2, 1, 0, 0, 0, 0), c(4) = (1, 2, 0, 0, 0, 0),
and so forth.

I Definition 22. Let ρds be a descriptor sequence and k ≥ 1. We say that two occur-
rences ρds(i) and ρds(j), with 0 ≤ i < j < |ρds|, of the same descriptor element d are
k-indistinguishable if (and only if):

(for k = 1) DElm(ρds(0, i− 1)) = DElm(ρds(0, j − 1));
(for k ≥ 2) for all i ≤ ` ≤ j − 1, there exists 0 ≤ `′ ≤ i− 1 such that ρds(`) and ρds(`′)
are (k − 1)-indistinguishable.

From Definition 22, it follows that two indistinguishable occurrences ρds(i) and ρds(j) of the
same descriptor element necessarily belong to the same subsequence of ρds associated with
a cluster. In general, it is always the case that DElm(ρds(0, i− 1)) ⊆ DElm(ρds(0, j − 1))
for i < j; 1-indistinguishability also guarantees DElm(ρds(0, i− 1)) = DElm(ρds(0, j − 1)).
From this, it easily follows that the two first occurrences of a descriptor element are not
1-indistinguishable.

Proposition 23 and 24 state some basic properties of the k-indistinguishability relation.

I Proposition 23. Let k ≥ 2 and ρds(i) and ρds(j), with 0 ≤ i < j < |ρds|, be two
k-indistinguishable occurrences of the same descriptor element in a descriptor sequence ρds.
Then, ρds(i) and ρds(j) are also (k − 1)-indistinguishable.

I Proposition 24. Let k ≥ 1 and ρds(i) and ρds(m), with 0 ≤ i < m < |ρds|, be two
k-indistinguishable occurrences of the same descriptor element in a descriptor sequence ρds.
If ρds(j) = ρds(m), for some i < j < m, then ρds(j) and ρds(m) are k-indistinguishable.

In Figure 4, we give some examples of k-indistinguishability relations, for k ∈ {1, 2, 3},
for a track of the finite Kripke structure depicted in Figure 3.

The next theorem establishes a fundamental connection between k-indistinguishability of
descriptor elements and k-descriptor equivalence of tracks.

I Theorem 25. Let ρds be the descriptor sequence for a track ρ. Two occurrences ρds(i)
and ρds(j), with 0 ≤ i < j < |ρds|, of the same descriptor element are k-indistinguishable if
and only if ρ(0, i+ 1) ∼k ρ(0, j + 1).

Notice that k-indistinguishability between occurrences of descriptor elements is defined
only for pairs of prefixes of the same track, while the relation of k-descriptor equivalence can
be applied to pairs of any tracks of a Kripke structure.

The next proposition easily follows from Theorem 25.
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I Proposition 26. Let ρds(i), ρds(j), and ρds(m), with 0 ≤ i < j < m < |ρds|, be three
occurrences of the same descriptor element. If both the pair ρds(i) and ρds(j) and the pair
ρds(j) and ρds(m) are k-indistinguishable, for some k ≥ 1, then ρds(i) and ρds(m) are
k-indistinguishable, as well.

4 A model checking procedure based on track representatives

In this section, we will exploit the k-indistinguishability relation between descriptor elements
in a descriptor sequence ρds for a track ρ to possibly replace ρ by a k-descriptor equivalent,
shorter track ρ′ of bounded length. This allows us to find, for each Bk-descriptor DBk

(witnessed by a track of the considered finite Kripke structure K ), a track representative ρ̃ in
K such that (i) DBk

is the Bk-descriptor for ρ̃ and (ii) the length of ρ̃ is bounded. Thanks
to property (ii), we can check all the track representatives of a finite Kripke structure by
simply visiting its unravelling up to a bounded depth.

The notion of track representative can be explained as follows. Let ρds be the descriptor
sequence for a track ρ. If there are two occurrences of the same descriptor element ρds(i)
and ρds(j), with i < j, which are k-indistinguishable (we let ρ = ρ(0, j + 1) · ρ, with
ρ = ρ(j + 2, |ρ| − 1)), then we can replace ρ by the k-descriptor equivalent, shorter track
ρ(0, i+ 1) ·ρ: by Theorem 25, ρ(0, i+ 1) and ρ(0, j+ 1) have the same Bk-descriptor and thus,
by Proposition 13, ρ = ρ(0, j+ 1) ·ρ and ρ(0, i+ 1) ·ρ have the same Bk-descriptor. Moreover,
since ρds(i) and ρds(j) are occurrences of the same descriptor element, ρ(i+ 1) = ρ(j + 1)
and so the track ρ(0, i + 1) · ρ is witnessed in the finite Kripke structure. By iteratively
applying such a contraction method, we can find a track ρ′ which is k-descriptor equivalent
to ρ, whose descriptor sequence is devoid of k-indistinguishable occurrences of descriptor
elements. A track representative is a track that fulfils this property.

We now show how to give a bound to the length of track representatives. We start by
stating some technical properties. The next proposition provides a bound to the distance
within which we observe a repeated occurrence of some descriptor element in the descriptor
sequence for a track. We preliminarily observe that, for any track ρ, |DElm(ρds)| ≤ |W |2 + 1,
where W is the set of states of the finite Kripke structure. Indeed, in the descriptor sequence,
the sets of internal states of prefixes of ρ increase monotonically with respect to the “⊆”
relation. As a consequence, at most |W | distinct sets may occur, excluding ∅ which can occur
only in the first descriptor element. Moreover, these sets can be paired with all possible final
states which are at most |W |.

I Proposition 27. For each track ρ of K , associated with a descriptor element d, there exists
a track ρ′ of K , associated with the same descriptor element d, such that |ρ′| ≤ 2 + |W |2.

Proposition 27 will be used in the unravelling Algorithm 1 as a termination criterion (referred
to as 0-termination criterion) for unravelling a finite Kripke structure when it is not necessary
to observe multiple occurrences of the same descriptor element: to get a track representative
for all descriptor elements, witnessed in a finite Kripke structure with set of states W and
initial state v, we can avoid considering tracks longer than 2 + |W |2, while exploring the
unravelling of the Kripke structure from v.

Let us now consider the problem of establishing a bound for tracks devoid of pairs of
k-indistinguishable occurrences of descriptor elements. We first notice that, in a descriptor
sequence ρds for a track ρ, there are at most |W | occurrences of Type-1 descriptor elements.
On the contrary, Type-2 descriptor elements can occur multiple times and thus, to bound
the length of ρds, one has to constrain the number and the length of the subsequences of ρds
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associated with clusters. As for their number, it suffices to observe that they are separated
by Type-1 descriptor elements, and hence at most |W | of them, related to distinct clusters,
can occur in a descriptor sequence.

As for their length, we can proceed as follows. First, for any cluster C , it holds that
|C | ≤ |W | as all (Type-2) descriptor elements of C share the same set S of internal states
and their final states vfin must belong to S. In the following, we consider the (maximal)
subsequence ρds(u, v) of ρds associated with a specific cluster C , for some 0 ≤ u ≤ v ≤ |ρds|−1,
and when we mention an index i, we implicitly assume that u ≤ i ≤ v, that is, i refers to a
position in the subsequence. We sequentially scan such a subsequence suitably recording
the multiplicity of occurrences of descriptor elements into an auxiliary structure. To detect
indistinguishable occurrences of descriptor elements up to indistinguishability s ≥ 1, we
use s+ 3 arrays Q−2(), Q−1(), Q0(), Q1(), . . ., Qs(). Array elements are sets of descriptor
elements of C . Given an index i, the sets at position i, Q−2(i), Q−1(i), Q0(i), Q1(i), . . .,
Qs(i), store information about indistinguishabilty for multiple occurrences of descriptor
elements in the subsequence up to position i > u. To exemplify, if the scan function finds an
occurrence of the descriptor element d ∈ C at position i, that is, ρds(i) = d, we have that:
1. Q−2(i) contains all descriptor elements of C which have never occurred in ρds(u, i);
2. d ∈ Q−1(i) if d has never occurred in ρds(u, i− 1) and ρds(i) = d, that is, ρds(i) is the

first occurrence of d in ρds(u, i);
3. d ∈ Q0(i) if d occurs at least twice in ρds(u, i) and the occurrence ρds(i) of d is not

1-indistinguishable from the last occurrence of d in ρds(u, i− 1);
4. d ∈ Qt(i) (for some t ≥ 1) if the occurrence ρds(i) of d is t-indistinguishable, but not

(t+ 1)-indistinguishable, from the last occurrence of d in ρds(u, i− 1).

In particular, at position u (the first of the subsequence), Q−1(u) contains only the
descriptor element d = ρds(u), Q−2(u) is the set C \ {d}, and Q0(u), Q1(u), . . . are empty
sets.

In general, arrays Q−2(), Q−1(), Q0(), Q1(), . . ., Qs() satisfy the following constraints:
for all i,

⋃s
m=−2 Qm(i) = C and, for all i and all m 6= m′, Qm(i) ∩Qm′(i) = ∅.

Intuitively, at every position i, Q−2(i), Q−1(i), Q0(i), Q1(i), . . ., Qs(i) describe a state of
the scanning process of the subsequence. The change of the state produced by the transition
from position i − 1 to position i while scanning the sequence is formally defined by the
function f , reported in Figure 5, which maps the descriptor sequence ρds and a position i to
the tuple of sets

(
Q−2(i), Q−1(i), Q0(i), Q1(i), . . . , Qs(i)

)
.

Notice that, whenever a descriptor element ρds(i) = d is such that d ∈ Qz(i − 1) and
d ∈ Qz′(i), with z < z′ (cases (a), (b) and (d) of the definition of f), all Qz′′(i), with z′′ > z′,
are empty sets and, for all z′′ ≥ z′, all elements in Qz′′(i − 1) belong to Qz′(i). Consider,
for instance, the following scenario: in a subsequence of ρds, associated with some cluster C ,
ρds(h) = ρds(i) = d ∈ C and ρds(h′) = ρds(i′) = d′ ∈ C , for some h < h′ < i < i′ and d 6= d′,
and there are not other occurrences of d and d′ in ρds(h, i′). If ρds(h) and ρds(i) are exactly
z′-indistinguishable, by definition of the indistinguishability relation, ρds(h′) and ρds(i′) can
be no more than (z′ + 1)-indistinguishable. Thus, if d′ is in Qz′′(i − 1), for some z′′ > z′,
we can safely “downgrade” it to Qz′(i), because we know that, when we meet the next
occurrence of d′ (ρds(i′)), ρds(h′) and ρds(i′) will be no more than (z′ + 1)-indistinguishable.

In the following, we will make use of an abstract characterisation of the state of the arrays
at a given position i, as determined by the scan function f , called configuration, that only
considers the cardinality of the sets of arrays. Theorem 29 states that, when a descriptor
subsequence is scanned, configurations never repeat since the sequence of configurations is
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f(ρds, u) =
(

C \ {d}, {d}, ∅, · · · , ∅
)
with ρds(u) = d;

For all i > u: f(ρds, i) =
(
Q−2(i), Q−1(i), Q0(i), . . . , Qs(i)

)
=

(
Q−2(i − 1) \ {d}, {d} ∪

⋃s

m=−1 Qm(i − 1), ∅, . . . , ∅
)
if ρds(i) is the first occurrence of d in

ρds(u, i); (a)(
Q−2(i − 1), Q−1(i − 1) \ {d}, {d} ∪

⋃s

m=0 Qm(i − 1), ∅, . . . , ∅
)
if ρds(i) = d, d ∈ Q−1(i − 1),

and ρds(i) is at least the second occurrence of d in ρds(u, i) and it is not 1-indistinguishable
from the immediately preceding occurrence of d; (b)(
Q−2(i − 1), Q−1(i − 1), {d} ∪ Q0(i − 1), Q1(i − 1) \ {d}, . . . , Qs(i − 1) \ {d}

)
if ρds(i) = d,

d ∈
⋃s

m=0 Qm(i− 1), and ρds(i) is at least the second occurrence of d in ρds(u, i) and it is not
1-indistinguishable from the immediately preceding occurrence of d; (c)(
Q−2(i− 1) \ {d}, . . . , Qt−1(i− 1) \ {d}, {d} ∪

⋃s

m=tQm(i− 1), ∅, . . . , ∅
)
if ρds(i) = d, ρds(i)

is t-indistinguishable (for some t ≥ 1), but not (t+ 1)-indistinguishable, to the immediately
preceding occurrence of d, and d ∈

⋃t−1
m=−2 Qm(i− 1); (d)(

Q−2(i− 1), · · · , Qt−1(i− 1), {d}∪Qt(i− 1), Qt+1(i− 1) \ {d}, . . . , Qs(i− 1) \ {d}
)
if ρds(i) =

d, ρds(i) is t-indistinguishable (for some t ≥ 1), but not (t + 1)-indistinguishable, to the
immediately preceding occurrence of d, and d ∈

⋃s

m=tQm(i− 1). (e)

Figure 5 Definition of the scan function f .

strictly decreasing according to the lexicographical order >lex. This property will allow us
to establish the desired bound to the length of track representatives.

I Definition 28. Let ρds be the descriptor sequence for a track ρ and i be a position
in the subsequence of ρds associated with a given cluster. The configuration at position
i, written c(i), is the tuple c(i) = (|Q−2(i)|, |Q−1(i)|, |Q0(i)|, |Q1(i)|, · · · , |Qs(i)|), where
f(ρds, i) = (Q−2(i), Q−1(i), Q0(i), Q1(i), · · · , Qs(i)).

An example of a configuration sequence is given in Figure 4.

I Theorem 29. Let ρds be the descriptor sequence for a track ρ and ρds(u, v), for some
u < v, be the subsequence associated with a cluster C . For all u < i ≤ v, if ρds(i) = d, then
it holds that d ∈ Qt(i− 1), d ∈ Qt+1(i), and c(i− 1) >lex c(i), for some t ∈ {−2,−1} ∪ N.

We show now how to select all and only those tracks which do not feature any pair of
k-indistinguishable occurrences of descriptor elements. To this end, we make use of a scan
function f which exploits k+3 arrays (the value k+3 derives from the k of descriptor element
indistinguishability, plus the three arrays Q−2(), Q−1(), Q0()). Theorem 29 guarantees that,
while scanning a subsequence, configurations are never repeated. This allows us to set an
upper bound to the length of a track such that, whenever exceeded, the descriptor sequence
for the track features at least a pair of k-indistinguishable occurrences of a descriptor element.
The bound is essentially given by the number of possible configurations for k + 3 arrays.

By an easy combinatorial argument, we can prove the following proposition.

I Proposition 30. For all n, t ∈ N+, the number of distinct t-tuples of natural numbers
whose sum equals n is ε(n, t) =

(
n+t−1
n

)
=
(
n+t−1
t−1

)
.

Proposition 30 provides two upper bounds for ε(n, t): ε(n, t) ≤ (n+ 1)t−1 and ε(n, t) ≤ tn.
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Since a configuration c(i) of a cluster C is a (k + 3)-tuple whose elements add up to |C |,
Proposition 30 allows us to conclude that there are at most ε(|C |, k + 3) =

(|C |+k+2
k+2

)
distinct

configurations of size (k + 3), whose integers add up to |C |. Moreover, since configurations
never repeat while scanning a subsequence associated with a cluster C , ε(|C |, k + 3) is an
upper bound to the length of such a subsequence.

Now, for any track ρ, ρds has at most |W | subsequences associated with distinct clusters
C1, C2, . . . , and thus if the following upper bound to the length of ρ is exceeded, then
there is at least one pair of k-indistinguishable occurrences of a descriptor element in ρds:
|ρ| ≤ 1 + (|C1| + 1)k+2 + (|C2| + 1)k+2 + · · · + (|Cs| + 1)k+2 + |W |, where s ≤ |W | and the
last addend is to count occurrences of Type-1 descriptor elements. Since clusters are disjoint
and their union is a subset of DElm(ρds), and |DElm(ρds)| ≤ 1 + |W |2, we get two upper
bounds:

|ρ| ≤ 1 + (|C1|+ |C2|+ · · ·+ |Cs|+ |W |)k+2 + |W | ≤ 1 + (|DElm(ρds)|+ |W |)k+2 + |W | ≤
1 + (1 + |W |2 + |W |)k+2 + |W | ≤ 1 + (1 + |W |)2k+4 + |W |,

and, analogously,

|ρ| ≤ 1+(k+3)|C1|+(k+3)|C2 |+ · · ·+(k+3)|Cs |+ |W | ≤ 1+(k+3)|C1|+|C2 |+···+|Cs |+ |W | ≤

1 + (k + 3)|DElm(ρds)| + |W | ≤ 1 + (k + 3)|W |
2+1 + |W |.

The upper bound for |ρ| is then the least of the two given upper bounds:

τ(|W |, k) = min
{

1 + (1 + |W |)2k+4 + |W |, 1 + (k + 3)|W |
2+1 + |W |

}
.

I Theorem 31. Let K be a finite Kripke structure and ρ be a track in TrkK . If |ρ| > τ(|W |, k),
there exists another track in TrkK , whose length is less than or equal to τ(|W |, k), which has
the same Bk-descriptor as ρ.

Theorem 31 allows us to define a termination criterion to bound the depth of the
unravelling of a finite Kripke structure ((k ≥ 1)-termination criterion), while searching for
track representatives for witnessed Bk-descriptors: for any k ≥ 1, to get a track representative
for every Bk-descriptor with initial state v and witnessed in a finite Kripke structure with
set of states W , we can avoid taking into consideration tracks longer than τ(|W |, k) while
exploring the unravelling of the structure from v.

Algorithm 1 (the unravelling algorithm) explores the unravelling of the input Kripke
structure K to find the track representatives for all witnessed Bk-descriptors. The upper
bound τ(|W |, k) on the maximum depth of the unravelling ensures the termination of the
algorithm, which never returns a track ρ if there exist k-indistinguishable occurrences of a
descriptor element in ρds.

The next theorem proves soundness and completeness of Algorithm 1.

I Theorem 32. Let K be a finite Kripke structure, v be a state in W , and k ∈ N. For every
track ρ of K , with fst(ρ) = v and |ρ| ≥ 2, the unravelling algorithm returns a track ρ′ of K ,
with fst(ρ′) = v, such that ρ and ρ′ have the same Bk-descriptor and |ρ′| ≤ τ(|W |, k).

As an example, ρ′ = v0v1v2v3v3v2v3v3v2v3v2v3v2v1v3v2v3v2v1v2v1v3v2 is returned by
Algorithm 1 in place of the track ρ of Figure 4; it can be checked that ρ′ds does not contain
any pair of 3-indistinguishable occurrences of a descriptor element and that ρ and ρ′ have
the same B3-descriptor.
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Algorithm 1 Unrav(K , v, k, direction)
1: if direction = forw then
2: Unravel K starting from v according to � . “�” is an arbitrary order of the nodes of K
3: For every new node of the unravelling met during the visit, return the track ρ from v to the

current node only if:
4: if k = 0 then
5: Apply the 0-termination criterion
6: else
7: if The last descriptor element d of (the descriptor sequence of) the current track ρ is
k-indistinguishable from a previous occurrence of d then

8: do not return ρ and backtrack to ρ(0, |ρ| − 2) · v, where v is the minimum state (w.r.t.
�) greater than ρ(|ρ| − 1) such that (ρ(|ρ| − 2), v) is an edge of K .

9: else if direction = backw then
10: Unravel K starting from v according to � . K is K with transposed edges
11: For every new node of the unravelling met during the visit, consider the track ρ from the

current node to v, and recalculate descriptor elements indistinguishability from scratch (left to
right); return the track only if:

12: if k = 0 then
13: Apply the 0-termination criterion
14: else
15: if There exist two k-indistinguishable occurrences of a descriptor element d in (the descriptor

sequence of) the current track ρ then
16: do not return ρ
17: Do not visit tracks of length greater than τ(|W |, k)

Algorithm 2 ModCheck(K , ψ)
1: k ← NestB(ψ)
2: u← New (Unrav(K , w0, k, forw))
3: while u.hasMoreTracks() do
4: ρ̃← u.getNextTrack()
5: if Check(K , k, ψ, ρ̃) = 0 then
6: return 0: “K , ρ̃ 6|= ψ”
7: return 1: “K |= ψ”

In the forward mode of Algorithm 1 (used to deal with 〈A〉 and 〈B〉 modalities), the
direction of track exploration and that of indistinguishability checking are the same, so we
can stop extending a track as soon as the first pair of k-indistinguishable occurrences of
a descriptor element is found in the descriptor sequence, suggesting an easy termination
criterion for stopping the unravelling of tracks. In the backward mode (exploited in the case of
〈A〉 and 〈E〉 modalities), such a straightforward criterion cannot be adopted, because tracks
are explored right to left (the opposite direction with respect to the edges of the Kripke
structure), while the indistinguishability relation over descriptor elements is computed left
to right. In general, changing the prefix of a considered track requires recomputing from
scratch the descriptor sequence and the indistinguishability relation over descriptor elements.
In particular, k-indistinguishable occurrences of descriptor elements can be detected in the
middle of a subsequence, and not necessarily at the end.

Building on Algorithm 1 we can easily define the model checking procedure ModCheck(K , ψ)
(Algorithm 2). ModCheck(K , ψ) exploits the procedure Check(K , k, ψ, ρ̃) (Algorithm 3) which
checks a formula ψ of B-nesting depth k against a track ρ̃ of the Kripke structure K .
Check(K , k, ψ, ρ̃) basically calls itself recursively on the subformulas of ψ, and uses the
unravelling Algorithm 1 to deal with 〈A〉, 〈A〉, 〈B〉, and 〈E〉 modalities.
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Algorithm 3 Check(K , k, ψ, ρ̃)
1: if ψ = > then
2: return 1
3: else if ψ = ⊥ then
4: return 0
5: else if ψ = p ∈ AP then
6: if p ∈

⋂
s∈states(ρ̃) µ(s) then

7: return 1 else return 0
8: else if ψ = ¬ϕ then
9: return 1 − Check(K , k, ϕ, ρ̃)

10: else if ψ = ϕ1 ∧ ϕ2 then
11: if Check(K , k, ϕ1, ρ̃) = 0 then
12: return 0
13: else
14: return Check(K , k, ϕ2, ρ̃)
15: else if ψ = 〈A〉ϕ then
16: u← New (Unrav(K , lst(ρ̃), k, forw))
17: while u.hasMoreTracks() do
18: ρ← u.getNextTrack()
19: if Check(K , k, ϕ, ρ) = 1 then
20: return 1
21: return 0
22: else if ψ = 〈A〉ϕ then
23: u← New (Unrav(K , fst(ρ̃), k,backw))
24: while u.hasMoreTracks() do
25: ρ← u.getNextTrack()
26: if Check(K , k, ϕ, ρ) = 1 then
27: return 1
28: return 0

29: else if ψ = 〈B〉ϕ then
30: for each ρ prefix of ρ̃ do
31: if Check(K , k − 1, ϕ, ρ) = 1 then
32: return 1
33: return 0
34: else if ψ = 〈B〉ϕ then
35: for each v ∈W s.t. (lst(ρ̃), v) ∈ δ do
36: if Check(K , k, ϕ, ρ̃ · v) = 1 then
37: return 1
38: u← New (Unrav(K , v, k, forw))
39: while u.hasMoreTracks() do
40: ρ← u.getNextTrack()
41: if Check(K , k, ϕ, ρ̃ · ρ) = 1 then
42: return 1
43: return 0
44: else if ψ = 〈E〉ϕ then
45: for each v ∈W s.t. (v, fst(ρ̃)) ∈ δ do
46: if Check(K , k, ϕ, v · ρ̃) = 1 then
47: return 1
48: u← New (Unrav(K , v, k,backw))
49: while u.hasMoreTracks() do
50: ρ← u.getNextTrack()
51: if Check(K , k, ϕ, ρ · ρ̃) = 1 then
52: return 1
53: return 0

The model checking algorithm ModCheck requires exponential working space, as it uses an
instance of the unravelling algorithm and some additional space for a track ρ̃. Analogously,
every recursive call to Check needs an instance of the unravelling algorithm and space for
a track. There are at most |ψ| simultaneously active calls to Check, so the total space
needed by the considered algorithms is (|ψ|+ 1) · O(|W | + NestB(ψ)) · τ(|W |,NestB(ψ))
bits overall, where τ(|W |,NestB(ψ)) is the maximum length of track representatives, and
O(|W |+ NestB(ψ)) bits are needed to represent a state of K , a descriptor element, and a
counter for k-indistinguishability.

Notice that formulas ψ of the fragment HS[A,A,B,E] can be checked in polynomial
space, as for these formulas NestB(ψ) = 0.

We conclude this section by proving that the model checking problem for formulas of
HS[A,A,B,B,E], interpreted over finite Kripke structures, is NEXP-hard when a suitable
encoding of formulas is exploited. Such an encoding is succinct in the sense that the following
binary-encoded shorthands are exploited: 〈B〉k ψ stands for k repetitions of 〈B〉 before ψ,
where k is represented in binary (the same for all the other HS modalities); moreover,∧
i=l,··· ,r ψ(i) denotes a conjunction of formulas which contain some occurrences of the index

i as exponents (l and r are binary encoded naturals), e.g.,
∧
i=1,··· ,5 〈B〉

i>. Finally, we
denote by expand(ψ) the expanded form of ψ, where all exponents k are removed from ψ, by
explicitly repeating k times each HS modality with such an exponent, and big conjunctions
are replaced by conjunctions of formulas without indexes.
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I Theorem 33. The model checking problem for HS[A,A,B,B,E] formulas against finite
Kripke structures is NEXP-hard, if formulas are succinctly encoded; otherwise, it is NP-hard.

This result is obtained by means of a reduction from the acceptance problem for a language
L decided by a non-deterministic one-tape Turing machine M (w.l.o.g.) that halts in O(2nk )
computation steps on any input of size n, where k > 0 is a constant.

Finally, it is not difficult to show that there exists a constant c > 0 such that, for
all succinct HS[A,A,B,B,E] formulas ψ, | expand(ψ)| ≤ 2|ψ|c . Thus the model checking
algorithm still runs in exponential space with respect to the succinct input formula ψ—by
preliminarily expanding ψ to expand(ψ)—as τ(|W |,NestB(expand(ψ))) is exponential in
|W | and |ψ|. This allows us to conclude that the model checking problem for succinct
HS[A,A,B,B,E] formulas is between NEXP and EXPSPACE.

5 Conclusion and future work

In this paper, we devised an EXPSPACE model checking algorithm for the HS fragments
HS[A,A,B,B,E] and HS[A,A,E,B,E] (the known bound for full HS is non-elementary
[18]). The algorithm rests on a contraction method that allows us to restrict the verification
of the input formula to a finite subset of tracks of bounded size, called track representatives.
We also proved that the problem is NEXP-hard, provided that a succinct encoding of formulas
is used; otherwise, we can only prove that it is NP-hard (we conjecture that, in this latter
case, HS[A,A,B,B,E] is PSPACE-hard). As for the other HS fragments, we showed that
HS[A,A,B, E] is in PSPACE, and we conjecture that it is PSPACE-complete. Another
interesting fragment is HS[A,A] (the logic of temporal neighbourhood): it can be easily
shown that it is coNP-hard, but we can only think of PSPACE model checking algorithms.

As for future work, it is worth exploring the model checking problem for full HS and its
fragments under other semantic interpretations, relaxing the homogeneity assumption. In
this respect, existing work on Duration Calculus (DC) model checking seems to be relevant
[7, 8, 10, 12, 15, 21]. DC extends interval temporal logic with an explicit notion of state.
States are denoted by state expressions and characterized by a duration (the time period
during which the system remains in a given state). Recent results on DC model checking as
well as an account of related work can be found in [11].
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Abstract
Contextuality is a key feature of quantum mechanics that provides an important non-classical
resource for quantum information and computation. Abramsky and Brandenburger used sheaf
theory to give a general treatment of contextuality in quantum theory [New Journal of Physics
13 (2011) 113036]. However, contextual phenomena are found in other fields as well, for example
database theory. In this paper, we shall develop this unified view of contextuality. We provide
two main contributions: first, we expose a remarkable connection between contexuality and
logical paradoxes; secondly, we show that an important class of contextuality arguments has a
topological origin. More specifically, we show that “All-vs-Nothing” proofs of contextuality are
witnessed by cohomological obstructions.
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1 Introduction

Contextuality is one of the key characteristic features of quantum mechanics. It has been
argued that it provides the “magic” ingredient enabling quantum computation [14]. There
have been a number of recent experimental verifications that Nature does indeed exhibit this
highly non-classical form of behaviour [33, 32].

The study of quantum contextuality has largely been carried out in a concrete, example-
driven fashion, which makes it appear highly specific to quantum mechanics. Recent work by
the present authors [3, 5] and others [8] has exposed the general mathematical structure of
contextuality, enabling more general and systematic results. It has also made apparent that
contextuality is a general and indeed pervasive phenomenon, which can be found in many
areas of classical computation, such as databases [1] and constraints [4]. The work in [3]
makes extensive use of methods developed within the logic and semantics of computation.

The key idea from [3] is to understand contextuality as arising where we have a family
of data which is locally consistent, but globally inconsistent. This can be understood, and
very effectively visualised (see Fig. 3) in topological terms: we have a base space of contexts
(typically sets of variables which can be jointly measured or observed), a space of data or
observations fibred over this space, and a family of local sections (typically valuations of the
variables in the context) in these fibres. This data is consistent locally, but not globally:
there is no global section defined on all the variables which reconciles all the local data.
In topological language, we can say that the space is “twisted”, and hence provides an
obstruction to forming a global section.
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This provides a unifying description of a number of phenomena which at first sight seem
very different:

Quantum contextuality. The local data arises from performing measurements on compat-
ible sets of observables. The fact that there is no global section corresponds to a no-go
result for a hidden-variable theory to explain the observable data.
Databases. The local data are the relation tables of the database. The fact that there is
no global section corresponds to the failure in general of the universal relation assumption
[11, 18].
Constraint satisfaction. The local data corresponds to the constraints, defined on subsets
of the variables. The fact that there is no global section corresponds to the non-existence
of a solution for the CSP.

In the present paper, we shall develop this unified viewpoint to give a logical perspective
on contextuality. In particular, we shall look at contextuality in relation to logical paradoxes:

We find a direct connection between the structure of quantum contextuality and classic
semantic paradoxes such as “Liar cycles” [10, 30].
Conversely, contextuality offers a novel perspective on these paradoxes. Contradict-
ory cycles of references give rise to exactly the form of local consistency and global
inconsistency we find in contextuality.

Mathematical structure
Sheaf theory [17] provides the natural mathematical setting for our analysis, since it is
directly concerned with the passage from local to global. In this setting, it is furthermore
natural to use sheaf cohomology to characterise contextuality. Cohomology is one of the
major tools of modern mathematics, which has until now largely been conspicuous by its
absence, both in theoretical computer science, and in quantum information. The use of
cohomology to characterise contextuality was initiated in [5]. In the present paper, we take
the cohomological approach considerably further, taking advantage of situations in which
the outcomes of observations have an algebraic structure. This applies, for example, in the
case of the standard Pauli spin observables, which have eigenvalues in Z2.

We study a strong form of contextuality arising from so-called “All-vs-Nothing” arguments
[20]. We give a much more general formulation of such arguments than has appeared
previously, in terms of local consistency and global inconsistency of systems of linear equations.
We also show how an extensive class of examples of such arguments arises in the stabiliser
fragment of quantum mechanics, which plays an important rôle in quantum error correction
[23] and measurement-based quantum computation [28].

We then show how all such All-vs-Nothing arguments are witnessed by the cohomological
obstruction to the extension of local sections to global ones previously studied in [5]. This
obstruction is characterised in more abstract terms than previously, using the connecting
homomorphism of the long exact sequence. Our main theorem establishes a hierarchy of
properties of probability models, relating their algebraic, logical and topological structures.

For further details and development of the ideas, see the full version of the paper [2].

2 The many faces of contextuality

We begin with the following scenario, depicted in Fig. 1 (a). Alice and Bob are agents
positioned at nodes of a network. Alice can access local bit registers a1 and a2, while Bob
can access local bit registers b1, b2. Alice can load one of her bit registers into a processing
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0/1

a1 a2

Alice 0/1

b1 b2

Bob

Target

a2 = 1 b1 = 0
a1 a2 b1 b2

0 1 0 1

...
Source

(a) (b)

Figure 1 (a) Alice and Bob look at bits. (b) A source.

unit, and test whether it is 0 or 1. Bob can perform the same operations with respect to his
bit registers. They send the outcomes of these operations to a common target, which keeps a
record of the joint outcomes.

We now suppose that Alice and Bob perform repeated rounds of these operations. On
different rounds, they may make different choices of which bit registers to access, and they
may observe different outcomes for a given choice of register. The target can compile statistics
for this series of data, and infer probability distributions on the outcomes.

2.1 Logical forms of contextuality
While contextuality can exhibit itself at the level of probability distributions (see [3, 2]), here
we consider a stronger form of contextuality which exhibits itself at the level of the supports
of the distributions, highlighting a direct connection with logic.

Consider the tables in Fig. 2, which depict the kind of scenario we have been considering.
The entries are either 0 or 1. The idea is that a 1 entry represents a positive probability.
Thus we are distinguishing only between possible (positive probability) and impossible (zero
probability). In other words, the rows correspond to the supports of some (otherwise
unspecified) probability distributions. Note that only four entries of the Hardy table are filled
in. Our claim is that just from these entries, referring only to the supports, we can deduce
that there is no classical explanation for the behaviour recorded in the table. Moreover,
this behaviour can be realised in quantum mechanics [13], yielding a stronger form of Bell’s
theorem [6], due to Hardy [13].

What do “observables” observe?
Classically, we would take the view that physical observables directly reflect properties of
the physical system we are observing. These are objective properties of the system, which
are independent of our choice of which measurements to perform, i.e. of our measurement
context. More precisely, this would say that for each possible state of the system, there is
a function λ which for each measurement m specifies an outcome λ(m), independently of
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A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1

a1 b2 0

a2 b1 0

a2 b2 0

A B (0, 0) (1, 0) (0, 1) (1, 1)

a1 b1 1 0 0 1

a1 b2 1 0 0 1

a2 b1 1 0 0 1

a2 b2 0 1 1 0

Figure 2 The Hardy paradox (left) and the PR box (right).

which other measurements may be performed. This point of view is called non-contextuality,
and may seem self-evident. However, this view is impossible to sustain in the light of our
actual observations of (micro)-physical reality.

Consider once again the Hardy table depicted in Fig. 2. Suppose there is a function λ
which accounts for the possibility of Alice observing value 0 for a1 and Bob observing 0
for b1, as asserted by the entry in the top left position in the table. Then this function λ

must satisfy λ(a1) = 0, λ(b1) = 0. Now consider the value of λ at b2. If λ(b2) = 0, then
this would imply that the event that a1 has value 0 and b2 has value 0 is possible. However,
this is precluded by the 0 entry in the table for this event. The only other possibility is that
λ(b2) = 1. Reasoning similarly with respect to the joint values of a2 and b2, we conclude,
using the bottom right entry in the table, that we must have λ(a2) = 0. Thus the only
possibility for λ consistent with these entries is λ :: a1 7→ 0, a2 7→ 0, b1 7→ 0, b2 7→ 1. But
this would require the outcome (0, 0) for measurements (a2, b1) to be possible, and this is
precluded by the table.

We are thus forced to conclude that the Hardy models are contextual. Moreover, we
can say that they are contextual in a logical sense, stronger than the probabilistic form we
saw with the Bell tables, since we only needed information about possibilities to infer the
contextuality of this behaviour.

Strong contextuality

Logical contextuality as exhibited by the Hardy paradox can be expressed in the following
form: there is a local assignment (in the Hardy case, the assignment a1 7→ 0, b1 7→ 0) which
is in the support, but which cannot be extended to a global assignment which is compatible
with the support. This says that the support cannot be covered by the projections of global
assignments. A stronger form of contextuality is when no global assignments are consistent
with the support at all. Note that this stronger form does not hold for the Hardy paradox.

Several much-studied constructions from the quantum information literature exemplify
strong contextuality. An important example is the Popescu–Rohrlich (PR) box [27] shown in
Fig. 2.

This is a behaviour which satisfies the no-signalling principle [27], meaning that the
probability of Alice observing a particular outcome for her choice of measurement (e.g.
a1 = 0), is independent of whether Bob chooses measurement b1 or b2; and vice versa. That
is, Alice and Bob cannot signal to one another, enforcing compatibility with relativistic
constraints.

In fact, there is provably no bipartite quantum-realisable behaviour of this kind which
is strongly contextual [15, 19]. However, as soon as we go to three or more parties, strong
contextuality does arise from entangled quantum states, as we shall see in §4.
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Figure 3 The Hardy table and the PR box as bundles.

Visualizing contextuality
The tables which have appeared in our examples can be displayed in a visually appealing
way which makes the fibred topological structure apparent, and forms an intuitive bridge to
the formal development of the sheaf-theoretic ideas in the next section.

First, we look at the Hardy table from Fig. 2, displayed as a “bundle diagram” on the
left of Fig. 3. Note that all unspecified entries of the Hardy table are set to 1.

What we see in this representation is the base space of the variables a1, a2, b1, b2. There
is an edge between two variables when they can be measured together. The pairs of co-
measurable variables correspond to the rows of the table. In terms of quantum theory, these
correspond to pairs of compatible observables. Above each vertex is a fibre of those values
which can be assigned to the variable – in this example, 0 and 1 in each fibre. There is an
edge between values in adjacent fibres precisely when the corresponding joint outcome is
possible, i.e. has a 1 entry in the table. Thus there are three edges for each of the pairs
{a1, b2}, {a2, b1} and {a2, b2}.

A global assignment corresponds to a closed path traversing all the fibres exactly once.
We call such a path univocal since it assigns a unique value to each variable. Note that there
is such a path, marked in blue; thus the Hardy model is not strongly contextual. However,
there is no such path which includes the edge displayed in red. This shows the logical
contextuality of the model.

Next, we consider the PR box displayed as a bundle on the right of Fig. 3. In this case,
the model is strongly contextual, and accordingly there is no univocal closed path.

Contextuality, logic and paradoxes
The arguments for quantum contextuality we have discussed may be said to skirt the borders
of paradox, but they do not cross those borders. The information we can gather from
observing the co-measurable variables is locally consistent, but it cannot in general be pieced
together into a globally consistent assignment of values to all the variables simultaneously.
Thus we must give up the idea that physically observable variables have objective, “real”
values independent of the measurement context being considered. This is very disturbing
for our understanding of the nature of physical reality, but there is no direct contradiction
between logic and experience. We shall now show that a similar analysis can be applied to
some of the fundamental logical paradoxes.

CSL 2015



216 Contextuality, Cohomology and Paradox

A Liar cycle of length N is a sequence of statements of the following kind.

S1 : S2 is true, S2 : S3 is true, . . . , SN−1 : SN is true, SN : S1 is false.

For N = 1, this is the classic Liar sentence S : S is false. These sentences contain two features
which go beyond standard logic: references to other sentences, and a truth predicate. While
it would be possible to make a more refined analysis directly modelling these features, we
will not pursue this here, noting that it has been argued extensively and rather compellingly
in much of the recent literature on the paradoxes that the essential content is preserved
by replacing statements with these features by boolean equations [31, 10, 30]. For the Liar
cycles, we introduce boolean variables x1, . . . , xn, and consider the equations x1 = x2, . . . ,
xn−1 = xn, xn = ¬x1. The “paradoxical” nature of the original statements is now captured
by the inconsistency of these equations.

Note that we can regard each of these equations as fibered over the set of variables which
occur in it:

{x1, x2} : x1 = x2, . . . , {xn−1, xn} : xn−1 = xn, {xn, x1} : xn = ¬x1.

Any subset of up to n− 1 of these equations is consistent; while the whole set is inconsistent.
Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR box. The

usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to the
attempt to find a univocal path in the bundle diagram on the right of Fig. 3. To relate the
notations, we make the following correspondences between the variables of Fig. 3 and those
of the boolean equations: x1 ∼ a2, x2 ∼ b1, x3 ∼ a1, x4 ∼ b2. Thus we can read the equation
x1 = x2 as “a2 is correlated with b1”, and x4 = ¬x1 as “a2 is anti-correlated with b2”.

Now suppose that we try to set a2 to 1. Following the path in Fig. 3 on the right leads
to the following local propagation of values:

a2 = 1  b1 = 1  a1 = 1  b2 = 1  a2 = 0
a2 = 0  b1 = 0  a1 = 0  b2 = 0  a2 = 1

The first half of the path corresponds to the usual derivation of a contradiction from
the assumption that S1 is true, and the second half to deriving a contradiction from the
assumption that S1 is false.

We have discussed a specific case here, but the analysis can be generalised to a large
class of examples along the lines of [10, 30]. The tools from sheaf cohomology which we will
develop in the remainder of the paper can be applied to these examples. We plan to give an
extended treatment of these ideas in future work.

3 Sheaf formulation of contextuality

In this section we summarise the main ideas of the sheaf-theoretic formalism from [3]. In
§2.1 we saw that logical contextuality can be expressed in terms of a bundle of outcomes
over a base space of measurements and contexts. This idea can be formalized by regarding
the bundle as a sheaf.

For our purposes, it will be sufficient to view the base space as the discrete space on a finite
set X of variables.1 In the quantum case, these variables will be labels for measurements.

1 The fact that our examples involve a discrete base space X does not trivialise our approach, and
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The measurement contexts will be represented by a family M = {Ci}i∈I of subsets of X.
These are the sets of variables which can be measured together – in quantum terms, the
compatible families of observables. We assume thatM covers X, i.e.

⋃
M = X; hence we

callM a measurement cover. We shall also assume thatM forms an antichain, so these are
the maximal contexts. We also assume that all the variables have the same fibre, O, of values
or outcomes that can be assigned to them. Such a triple 〈X,M, O〉 is called a measurement
scenario. We define a presheaf of sets over P(X), namely E :: U 7−→ OU with restriction
E(U ⊆ U ′) : E(U ′) −→ E(U) :: s 7−→ s|U . This presheaf E is in fact a sheaf, called the sheaf
of events. Each s ∈ E(U) is a section, and, in particular, g ∈ E(X) is a global section.

Note that a probability table can be represented by a family {pC}C∈M with pC a
probability distribution on E(C) = OC , where contexts C correspond to the rows of the table.
Similarly, “possibility tables” such as the Hardy model and the PR box (Figs. 2 and 3) can
be represented by boolean distributions. This latter case, with which the logical and strong
forms of contextuality are concerned, can equivalently be represented by a subpresheaf S of
E , where for each context U ⊆ X, S(U) ⊆ OU is the set of all possible outcomes. Explicitly,
S is defined as follows, where supp (pC |U∩C) is the support of the marginal of pC at U ∩ C.

S(U) :=
{
s ∈ OU

∣∣ ∀C ∈M. s|U∩C ∈ supp (pC |U∩C)
}

Abstracting from this situation, we assume we are dealing with a sub-presheaf S of E with
the following properties:
E1. S(C) 6= ∅ for all C ∈M

(i.e. that any possible joint measurement yields some joint outcome), and moreover that
E2. S is flasque beneath the cover, meaning that S(U ⊆ U ′) : S(U ′) −→ S(U) is surjective

whenever U ⊆ U ′ ⊆ C for some C ∈M,
which by [3] amounts to saying that the underlying empirical model satisfies no-signalling.

E3. A compatible family for the coverM is a family {sC}C∈M with sC ∈ S(C), and such
that, for all C,C ′ ∈M: sC |C∩C′ = sC′ |C∩C′ . We assume that such a family induces a
global section in S(X). (This global section must be unique, since S is a subpresheaf of
E , hence separated).

What these conditions say is that S is determined by its values S(C) at the contexts C ∈M,
belowM by being flasque, and aboveM by the sheaf condition.

I Definition 1. By an empirical model on 〈X,M, O〉, we mean a subpresheaf S of E satisfying
(E1), (E2), and (E3).

In [3], we used the term “empirical model” for the probability table {pC}C∈M. In the
present paper, we shall only work with the associated support presheaf S, and so it is more
convenient to refer to this as the model.

We can use this formalisation to characterize contextuality as follows.

I Definition 2. For any empirical model S:
For C ∈M and s ∈ S(C), S is logically contextual at s, written LC(S, s), if s belongs to
no compatible family. S is logically contextual, written LC(S), if LC(S, s) for some s.

certainly does not mean that we are taking the cohomology of a discrete space! It is standard that in a
topological bundle, the interesting twisting occurs in the fibres, not in the base. A classic example is
the Möbius strip, displayed as a fibre bundle over the circle. The circle is not twisted! In our case, it is
clear from our examples that non-trivial twisting does occur. Moreover, our results in Section 6 will
clearly show the non-triviality of our cohomological obstructions.
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S is strongly contextual, written SC(S), if LC(S, s) for all s. Equivalently, it is strongly
contextual if it has no global section, i.e. if S(X) = ∅.

Note that, for every probability table {pC}C∈M that satisfies the no-signalling principle,
the supports of the distributions pC induce an empirical model S, and therefore logical or
strong contextuality can be characterized as above. This formulation of contextuality makes
it natural to use sheaf cohomology, as we will see in §5.

4 All-vs-Nothing arguments

Quantum theory provides many instances of strong contextuality. Among the first to observe
quantum strong contextuality (though not in the general terms that we do) was Mermin [21],
who showed the GHZ state to be strongly contextual using a kind of argument he dubbed
‘all versus nothing’. We show in §4.1 that arguments of this type can in fact be used to prove
strong contextuality for a large class of states in quantum theory, particularly in stabiliser
quantum mechanics, which plays a crucial rôle in quantum computation. Moreover, in §4.2,
we give a much more general formulation of this type of argument that can be used to show
strong contextuality for a much larger class of models.

4.1 All-vs-Nothing for quantum theory
The GHZ state is a tripartite state of qubits, defined as (|↑↑↑〉+ |↓↓↓〉)/

√
2. We assume that

each party i = 1, 2, 3 can perform Pauli measurements in {Xi, Yi}, and each measurement
has outcomes in O = Z2 = {0, 1}.2 Then, following Mermin’s argument, the possible joint
outcomes satisfy these parity equations:

X1 ⊕ Y2 ⊕ Y3 = 1, Y1 ⊕ Y2 ⊕X3 = 1, Y1 ⊕X2 ⊕ Y3 = 1, X1 ⊕X2 ⊕X3 = 0.

These equations are inconsistent because, regardless of the outcomes assigned to the observ-
ables X1, . . . , Y3, the left-hand sides sum to 0 (since each variable occurs twice) whereas the
right-hand sides sum to 1. This shows that the model is strongly contextual, as there is no
global assignment of outcomes to observables consistent with the observed local assignments.

The essence of the argument is that the possible local assignments satisfy systems of
parity equations that admit no global solution. We call this an All-vs-Nothing argument.

In fact, such arguments arise naturally from a much larger class of states in stabiliser
quantum theory [23]. Consider the Pauli n-group Pn, whose elements are n-tuples of Pauli
operators (from {X,Y, Z, I}) with a global phase from {±1,±i}.

I Definition 3. An AvN triple in Pn is a triple 〈e, f, g〉 of elements of Pn with global phases
+1, which pairwise commute, and which satisfy the following conditions:
A1. For each i = 1, . . . , n, at least two of ei, fi, gi are equal.
A2. The number of i such that ei = gi 6= fi, all distinct from I, is odd.

Mermin’s argument, and the other All-vs-Nothing arguments which have appeared in the
literature, can be seen to come down to exhibiting AvN triples.

2 Although the eigenvalues of the Pauli matrices are +1 and −1, we relabel +1, −1, × as 0, 1, ⊕,
respectively. The eigenvalues of a joint measurements A1 ⊗A2 ⊗A3 are the products of the eigenvalues
of the measurements at each site, so they are also ±1. As such, in the usual representation, these joint
measurements are still dichotomic and only distinguish joint outcomes up to parity. Mermin’s argument
shows that this information is sufficient to derive strong contextuality.
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I Theorem 4. Let S be the subgroup of Pn generated by an AvN triple, and VS the subspace
stabilised by S. For every state |ψ〉 in VS, the empirical model realised by |ψ〉 under the Pauli
measurements admits an All-vs-Nothing argument.

Proof. First, we recall the quantum mechanics formula for the expected value of an observable
A on a state v:

〈A〉v = 〈v|A|v〉.

Note that

〈v|A|v〉 = 1 ⇐⇒ A|v〉 = |v〉.

Thus A stabilises the state v iff the expected value is 1. Suppose that A is a dichotomic
observable, with eigenvalues +1, −1 (see footnote 3), and v is a state it stabilises. The
support of the distribution on joint outcomes obtained by measuring A on v must contain
only outcomes of even parity; while if −A stabilises v, then the support will contain only
outcomes of odd parity. If A = P1 · · ·Pn in Pn, the former case translates into the equation

x1 ⊕ · · · ⊕ xn = 0

where we associate the variable xi with Pi; while in the latter case, it corresponds to the
equation

x1 ⊕ · · · ⊕ xn = 1.

If the set of equations satisfied by a state v stabilised by a subgroup S of Pn is inconsistent,
we say that v admits an All-vs-Nothing argument with respect to the measurements h with
global phase +1 such that either h or −h is in S.

We now show that any state v in the subspace VS stabilised by the subgroup S generated
by an AvN triple 〈e, f, g〉 admits an All-vs-Nothing argument. First, by the algebra of the
Pauli matrices, we see from (A1) that if {ei, fi, gi} = {P,Q}, with at least two equal to P ,
the componentwise product eifigi will, disregarding global phase, be Q. By (A2), we see
that the product efg = −h, an element of Pn with global phase −1, which translates into
a condition of odd parity on the support of any state stabilised by these operators for the
measurement h. On the other hand, condition (A1) implies that under any global assignment
to the variables, we can cancel the repeated items in each column, and deduce an even parity
for h. J

If e, f, g have linearly independent check vectors, they generate a subgroup S such that VS
has dimension 2n−3 [23, 9]. Thus we obtain a large class of states admitting All-vs-Nothing
arguments.

4.2 Generalized All-vs-Nothing arguments
Despite their established use in the quantum literature, All-vs-Nothing arguments as con-
sidered above do not exist for all strongly contextual models. However, a natural generalization
applies to more models. For instance, the model called ‘box 25’ in [26] admits no parity
AvN argument, but it still satisfies the following equations, in which the coefficients of each
variable on the left-hand sides add up to a multiple of 3, whereas the right-hand sides do not:

a0 + 2b0 ≡ 0 mod 3 a1 + 2c0 ≡ 0 mod 3
a0 + b1 + c0 ≡ 2 mod 3 a0 + b1 + c1 ≡ 2 mod 3
a1 + b0 + c1 ≡ 2 mod 3 a1 + b1 + c1 ≡ 2 mod 3
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This example suggests using a general Zn instead of just Z2. But once we realize that it
is the ring structure of Zn which plays the key rôle, we can obtain an even more general
version.

Fix a ring3 R, and a measurement scenario 〈X,M, R〉.

I Definition 5. An R-linear equation is a triple φ = 〈C, a, b〉 with C ∈M, a : C −→ R and
b ∈ R. Write Vφ := C. An assignment s ∈ E(C) satisfies φ, written s |= φ, if∑

m∈C
a(m)s(m) = b .

This lifts to the level of systems of equations, or theories, and sets of assignments, or “models”:
A system of equations Γ has a set of satisfying assignments, M(Γ) := {s ∈ E(C) | ∀φ ∈ Γ. s |= φ}.
A set of assignments S ⊆ E(C) determines an R-linear theory, TR(S) := {φ | ∀s ∈ S. s |= φ}.

I Definition 6. Given an empirical model S, define its R-linear theory to be

TR(S) :=
⋃
C∈M

TR(S(C)) = {φ | ∀s ∈ S(Vφ). s |= φ} .

We say that S is AvNR, written AvNR(S), if TR(S) is inconsistent, meaning that there is no
global assignment g : X −→ R such that ∀φ ∈ TR(S). g|Vφ |= φ.

I Proposition 7. An AvNR model is strongly contextual.

Proof. Suppose S is not strongly contextual, i.e. that there is some g ∈ S(X). Then, for
each φ ∈ TR(S), g|Vφ ∈ S(Vφ), hence g|Vφ |= φ. Thus, TR(S) is consistent. J

4.3 Affine closures
We now consider the relationship between R-linear theories and empirical models more closely.
First, we focus on a single context, or set of variables, U ⊆ X. The maps between theories
and models, T : PE(U) −−→←−− Theories : M, form a Galois connection, S ⊆M(Γ) iff T(S) ⊇ Γ,
corresponding to the lifting of the satisfaction relation to the powersets.

We consider the closure operator M ◦ T, which gives the largest set of assignments whose
theory is still the same. First, note that E(U) = RU is a (free) R-module (and, when R

is a field, a vector space over R). Given solutions s1, . . . , st to a linear equation, an affine
combination of them is again a solution4. In other words, the set of solutions M(Γ) to a
system of equations Γ is an affine submodule of E(U). This means that aff ≤M ◦ T, where
aff S stands for the affine closure of a set S ⊆ E(U):

aff S :=
{

t∑
i=1

cisi

∣∣∣∣∣ si ∈ S, ci ∈ R,
t∑
i=1

ci = 1
}

.

In the particular case of vector spaces (i.e. when R is a field), then aff = M ◦ T; affine
subspaces are exactly the possible solution sets of a theory, and there cannot exist two
different affine subspaces with the same theory, as may happen for general rings R.

We now lift this discussion to the level of empirical models. The natural thing to do is to
take the affine closure at each context C ∈M. However, one must be careful to ensure that

3 All rings considered in this paper will be commutative and with unit.
4 Affineness is required because the equations may be inhomogeneous.
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this yields a well-defined empirical model. First, note that the affine closure operation above
is natural on U : it gives a natural transformation aff : P ◦ E −→ P ◦ E , meaning that

(aff S)|U ′ = aff (S|U ′) . (1)

This follows easily from the coordinatewise definitions of the module operations on E(U).

I Definition 8. Let S be an empirical model on the scenario 〈X,M, R〉. We define its affine
closure, Aff S, as the empirical model given by (Aff S)(C) := aff (S(C)) at each C ∈M.

The property (1) guarantees that Aff S can be consistently defined to be flasque below the
cover as (Aff S)(U) = aff (S(U)). This equality, however, does not hold for U above the
cover. In particular, it may be that S(X) = ∅ (S strongly contextual), but (Aff S)(X) 6= ∅.

Since TR(S) is given as the union of the theories at each maximal context, the Galois
connection above lifts to the level of empirical models. One can therefore relate the notion
of S being AvNR to the strong contextuality of the affine closure of S.

I Proposition 9. Let S be an empirical model on 〈X,M, R〉. Then, AvN(S)⇒ SC(Aff S).
If R is a field, the converse also holds.

Proof. From aff ≤M◦T, TR(S) = TR(Aff S). Hence, if S is AvNR, then so is Aff S, implying
by Proposition 7 that it is strongly contextual.

For the converse in the case that R is a field, suppose that TR(S) is consistent. This
means that there is a global assignment g : X −→ R satisfying all the equations in TR(S).
But since for fields MTR(S) = Aff S, we have that g ∈ (Aff S)(X), hence the model Aff S is
not strongly contextual. J

5 Cohomology witnesses contextuality

The logical forms of contextuality are characterised by the existence of obstructions to the
extension of local sections to global compatible families. Thus, it seems natural to apply
the tools of sheaf cohomology, which are well-suited to identifying obstructions of this kind,
in order to provide cohomological witnesses for contextuality. This idea was put forward in
previous work by the authors [5], the main points of which we now summarise. In the next
section, we shall prove that such cohomological witnesses of contextuality exist for the whole
class of AvNR models.

5.1 Čech cohomology
Let X be a topological space,M be an open cover of X, and let F : O(X)op −→ AbGrp be a
presheaf of abelian groups on X. We shall be particularly concerned with the case where X
is a set of measurements, andM is the cover of maximal contexts of a measurement scenario.

I Definition 10. A q-simplex of the nerve of M, is a tuple σ = 〈C0, . . . , Cq〉 of elements
of M with non-empty intersection, |σ| := ∩qi=0Ci 6= ∅. We write N (M)q for the set of
q-simplices.

The 0-simplices are simply the elements of the coverM, and the 1-simplices are the pairs
〈Ci, Cj〉 of intersecting elements of the cover. Given a q + 1-simplex σ = 〈C0, . . . , Cq+1〉, we
can obtain q-simplices

∂j(σ) := 〈C0, . . . , Ĉj , . . . , Cq+1〉, 0 ≤ j ≤ q + 1

by omitting one of the elements. Note that |σ| ⊆ |∂j(σ)|, and so the presheaf F has a
restriction map ρ|∂j(σ)|

|σ| : F(|∂j(σ)|) −→ F(|σ|). We now define the Čech cochain complex.
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I Definition 11. For each q ≥ 0, the abelian group of q-cochains is defined by:

Cq(M,F) :=
∏

σ∈N (M)q
F(|σ|) .

The q-coboundary map, δq : Cq(M,F) −→ Cq+1(M,F), is defined as follows: for each
ω = (ω(τ))τ∈N (M)q ∈ Cq(M,F), and σ ∈ N (M)q+1,

δq(ω)(σ) :=
q+1∑
j=0

(−1)jρ|∂j(σ)|
|σ| ω(∂jσ) .

The augmented Čech cochain complex is the sequence

0 // C0(M,F) // C1(M,F) // · · · .

I Proposition 12. For each q, δq is a group homomorphism, and we have δq+1 ◦ δq = 0.

I Definition 13. For each q ≥ 0, we define:
the q-cocycles Zq(M,F) := ker δq;
the q-coboundaries Bq(M,F) := im δq−1.

By Proposition 12, these are subgroups of Cq(M,F) with Bq(M,F) ⊆ Zq(M,F).

I Definition 14. Ȟq(M,F), the q-th Čech cohomology group, is defined as the quotient
Zq(M,F)/Bq(M,F).

Note that B0(M,F) = 0, and hence Ȟ0(M,F) ∼= Z0(M,F). A 0-cochain ω is a family
{rC ∈ F(C)}C∈M. Since, for each 1-simplex σ = (C,C ′),

δ0(ω)(σ) = rC |C∩C′ − rC′ |C∩C′ ,

ω is a cocycle (i.e. satisfies δ0(c) = 0) if and only if rC |C∩C′ = rC′ |C∩C′ for all maximal
contexts C,C ′ ∈M with non-empty intersection.5

5.2 Relative cohomology and obstructions
In order to solve the problem of extending a local section to a global compatible family, we
need to consider the relative cohomology of F with respect to an open subset U ⊆ X. We
will assume that the presheaf is flasque beneath the cover (as is the case with S).

We define two auxiliary presheaves related to F . First, F|U is defined by

F|U (V ) := F(U ∩ V ) .

5 The condition for a 0-cochain ω = {rC} to be a cocycle almost states that r is a compatible family,
except that it does not require compatibility over restrictions to the empty context. For our present
purposes, we are only interested in connected covers (since one can always reduce the analysis of a
scenario to its connected components), in which case the exception is irrelevant. This is because, given
any two contexts C and C′ with empty intersection, there exists a sequence of contexts

C = C0, C1, . . . , Cn = C′

such that Ci ∩ Ci+1 6= ∅ for all i. Then, for any i, we have

rCi |∅ = rCi |Ci∩Ci+1 |∅ = rCi+1 |Ci∩Ci+1 |∅ = rCi+1 |∅ .

Consequently, rC |C∩C′ = rC |∅ = rC′ |∅ = rC′ |C∩C′ , and so the family is compatible.
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There is an evident presheaf map p : F −→ F|U given as

pV : F(V ) −→ F(U ∩ V ) :: r 7−→ r|U∩V .

Secondly, FŪ is defined by FŪ (V ) := ker (pV ). Thus, we have an exact sequence of presheaves

0 // FŪ // F
p // F|U . (2)

The relative cohomology of F with respect to U is defined to be the cohomology of the presheaf
FŪ .

We now see how this can be used to identify cohomological obstructions to the ex-
tension of a local section. First, recall that in light of Proposition 12, the image of δ0,
B1(M,F), is contained in Z1(M,F). Therefore, the map δ0 can be corestricted to a map
δ̃0 : C0(M,F) −→ Z1(M,F), whose kernel is Z0(M,F) ∼= Ȟ0(M,F) and whose cokernel
is Z1(M,F)/B1(M,F) ∼= Ȟ1(M,F). In summary, we have:

Ȟ0(M,F) ker δ̃0
// C0(M,F) δ̃0

// Z1(M,F) coker δ̃0
// Ȟ1(M,F) .

We now lift the exact sequence of presheaves (2) considered above to the level of cochains. The
map C0(M,F) −→ C0(M,F|U ) is surjective due to flaccidity beneath the cover. Putting
this together with the previous observation, we obtain the diagram below:

0 // C0(M,FŨ ) //

δ̃0

��

C0(M,F) //

δ̃0

��

C0(M,F|U ) //

δ̃0

��

0

0 // Z1(M,FŨ ) // Z1(M,F) // Z1(M,F|U )

whose two rows are short exact sequences. The snake lemma of homological algebra says
that there exists a connecting homomorphism turning the kernels of the first row followed by
the cokernels of the second into a long exact sequence, as shown by the following diagram.

Ȟ0(M,FŨ ) //

��

Ȟ0(M,F) //

��

Ȟ0(M,F|U )

��

//

0 // C0(M,FŨ ) //

��

C0(M,F) //

��

C0(M,F|U ) //

��

0

0 // Z1(M,FŨ ) //

��

Z1(M,F) //

��

Z1(M,F|U )

��
Ȟ1(M,FŨ ) // Ȟ1(M,F) // Ȟ1(M,F|U )

We are interested in the case where U is an element C0 of the coverM. Then Ȟ0(M,F|C0)
is clearly isomorphic to F(C0), meaning that its elements are the local sections at C0.

I Definition 15. Let C0 be an element of the coverM and r0 ∈ F(C0). Then, the cohomo-
logical obstruction of r0 is the element γ(r0) of Ȟ1(M,FC̃0

), where γ : Ȟ0(M,F|U ) −→
Ȟ1(M,FŨ ) is the connecting homomorphism.
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The following proposition justifies regarding these as obstructions.

I Proposition 16. Let the coverM be connected, C0 ∈M, and r0 ∈ F(C0). Then, γ(r0) = 0
if and only if there is a compatible family {rC ∈ F(C)}C∈M such that rC0 = r0.

For a proof of this proposition, see [2].

I Remark. Note that our cohomology obstruction lives in the first cohomology group. In
ordinary homology, the lower groups capture low-dimensional behaviour, and to capture
higher-dimensional behaviour, one must pass to the higher homology groups. The situation
is quite different in sheaf cohomology; there, it is standard that it is the first cohomology
group which captures obstructions to extending local sections to global ones. Of course, it
would also be of interest to find natural uses for the higher cohomology groups.

5.3 Witnessing contextuality
We now apply these tools to analyse the possibilistic structure of empirical models. The
cohomological obstructions of Definition 15 would appear to be ideally suited to the problem
of identifying contextuality. The caveat is that, in order to apply those tools, it is necessary
to work over a presheaf of abelian groups, whereas we are concerned with S, which is merely
a presheaf of sets. We first consider how to build an abelian group from a set.

I Definition 17. Given a ring R, we define a functor FR : Set −→ R-Mod to the category
of R-modules (and thus, in particular, to the category of abelian groups). For each set X,
FR(X) is the set of functions φ : X −→ R of finite support. Given a function f : X −→ Y ,

FRf : FRX −→ FRY :: φ 7−→ λy.
∑

f(x)=y

φ(x) .

This is easily seen to be functorial. We regard a function φ ∈ FR(X) as a formal R-linear
combination of elements of X:

∑
x∈X φ(x) · x. There is a natural embedding x 7→ 1 · x of X

into FR(X), which we shall use implicitly throughout. In fact, FR(X) is the free R-module
generated by X; and in particular, FZ(X) is the free abelian group generated by X.

Given an empirical model S defined on the measurement scenario 〈X,M, O〉, we shall
work with the (relative) Čech cohomology for the abelian presheaf FRS for some ring R.

I Definition 18. With each local section, s ∈ S(C), in the support of an empirical model,
we associate the cohomological obstruction γFRS(s).

If there exists some local section s0 ∈ S(C0) such that γFRS(s0) 6= 0, we say that S is
cohomologically logically contextual, or CLCR(S). We also use the more specific notation
CLCR(S, s0).
If γFRS(s) 6= 0 for all local sections, we say that e is cohomologically strongly contextual,
or CSCR.

The following justifies considering cohomological obstructions as witnessing contextuality.

I Proposition 19 ([5, Proposition 4.3]). CLCR implies LC, and CSCR implies SC.

Proof. Suppose an empirical model e is not logically contextual. Then for every maximal
context C0 ∈M and every s0 ∈ S(C0), there is a compatible family {sC ∈ S(C)}C∈M with
sc0 = s0. As S(C) embeds into FRS(C), {sC} is also a compatible family in FRS. Hence,
by Proposition 16, we conclude that γ(s) = 0. The same argument can be applied to a single
section witnessing the failure of strong contextuality. J
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Thus we have a sufficient condition for contextuality in the existence of a cohomological
obstruction. Unfortunately, this condition is not, in general, necessary. It is possible that
“false positives” arise in the form of families {rC ∈ FRS(C)}C∈M which are not bona fide
global sections in S(X) in which genuine global sections do not exist.

Several examples are discussed in detail in [5]. It is shown that cohomological obstructions
over Z provide witnesses of strong contextuality for a number of well-studied models, including:
the GHZ model [12], the Peres–Mermin “magic” square [25, 22], and the 18-vector Kochen–
Specker model [7], the PR box [27], and the Specker triangle [29, 16]. These results will be
subsumed and greatly generalised in §6.

The coefficients for cohomology can be taken from any commutative ring R. Here is how
the cohomological obstructions obtained with different rings relate to each other:

I Proposition 20. Let h : R′ −→ R be a ring homomorphism. Then, for any C ∈ M and
s ∈ S(C), γFR′S(s) = 0 implies γFRS(s) = 0, and so CSCR ⇒ CSCR′ and CLCR ⇒ CLCR′ .

Proof. If h : R −→ R′ is a ring homomorphism, then for any set X there is a map

Fh : FRX −→ FR′X :: r 7−→ h ◦ r .

which is a group homomorphism. Moreover, this assignment is natural in X. Hence, this
determines a presheaf map FRS −→ FR′S, and compatible families on the former are
mapped to compatible families on the latter. Since the map Fh above leaves the elements
of the generating set fixed, the condition that the family agrees with s0 at context C0 is
preserved. J

We conclude this section with a remark. If {rC ∈ FRS(C)}C∈M is a compatible family,
then the sum of the coefficients of the formal linear combinations rC is the same for all C.
This holds because S(∅) = E(∅) = {?}; so that for any C ∈M, we have

rC |∅(?) =
∑

s∈S(C)

rC(s) ;

i.e. compatibility forces all these restrictions to the empty context to be the same. Therefore,
when the obstruction of a section s0 ∈ S(C0) (more precisely, of the linear combination 1 ·s0 ∈
FRS(C0)) vanishes, the corresponding family of linear combinations {rC ∈ FRS(C)}C∈M
must in fact contain only affine combinations – those whose coefficients sum to one.

6 Cohomology and AvN arguments

The aim of this section is to show that if an empirical model is AvNR, then the cohomological
obstructions witness its strong contextuality. Moreover, it is enough to consider cohomology
with coefficients in the ring R itself.

The result is stated as follows.

I Theorem 21. Let S be an empirical model on 〈X,M, R〉. Then:

AvNR(S) ⇒ SC(Aff S) ⇒ CSCR(S) ⇒ CSCZ(S) ⇒ SC(S) .

The first of the implications was already established in Proposition 9, the third in
Proposition 20, and the fourth in Proposition 19.

In order to prove the second, we use the properties of the functor FR : Set −→ R-Mod
that constructs the R-module of formal R-linear combinations of elements of a set X. As
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already mentioned, FRX is the free R-module generated by X. This means that it is the left
adjoint of the forgetful functor U : R-Mod −→ Set.

Set

FR
**

⊥ R-Mod
U

ii

The unit η of this adjunction is the obvious embedding, which we have been using, taking an
element x ∈ X to the formal linear combination 1 ·x. The counit is the natural transformation
ε : FR ◦ U ⇒ IdR-Mod given, for each R-module M , by the evaluation map

εM : FRU(M) −→M :: r 7−→
∑
x∈M

r(x)x .

We are interested in taking formal linear combinations of subsets of elements. Let us fix
a module M and a subset S ⊆ U(M). Then the map εM , by virtue of being an R-module
homomorphism, maps the formal linear combinations of elements of S, FR(S), which coincide
with the linear span in FRU(M) of η[S] = {1 · s | s ∈ S}, to the linear span of S in M ,
spanM S. Moreover, it maps the formal affine combinations F aff

R (S) = affFRU(M) η[S] to the
affine closure affM S.

Recall that we are dealing with measurement scenarios whose outcomes are identified
with a ring R, hence where E(U) are themselves R-modules, i.e. E : P(X)op −→ R-Mod. As
such, the counit can be horizontally composed to yield a natural transformation, or map of
presheaves, idE ∗ ε : FR ◦ U ◦ E −→ E , given at each context U ⊆ X by εE(U) : FRUE(U) −→
E(U). Now, given an empirical model S, we can apply the observation regarding subsets of
the module at each context. But, since affE(U) S(U) = (Aff S)(U) by definition for U beneath
the cover, and since containment still holds above it, we conclude that the presheaf map
restricts as follows:

F aff
R US

��

// // FRUS

��

// // FRUE

ε

��
Aff S // // SpanS // // E

Proof of Theorem 21. We show the contrapositive. Suppose that S is not CSCR, i.e. that
γFRS(s0) = 0 for some s0 ∈ S(C0). Then, by Proposition 16, this is equivalent to the
existence of a compatible family {rC ∈ FRS(C)}C∈M with rC0 = s0. As observed at the end
of §5.3, all these rC must be formal affine combinations of elements in S(C). But then the
presheaf map F aff

R US −→ Aff S above pushes this compatible family to a compatible family
of Aff S, implying that the model Aff S is not strongly contextual. J

Essentially the same strategy can be used to prove an analogous result for logical
contextuality. The notion of inconsistent theory has to be adapted: instead of asking whether
there is a global assignment satisfying all the equations in the theory, we can ask, given a
partial assignment s0 ∈ E(C0) whether there is such a global assignment with the additional
requirement that it restricts to s0. This can be seen as a generalisation of the notion of robust
constraint satisfaction studied in [4] from the complexity perspective. We write AvNR(e, s0)
if the theory of S has no solution extending s0. Then we have:

AvNR(e, s0) ⇒ LC(Aff S, s0) ⇒ CLCR(S, s0) ⇒ CLCZ(S, s0) ⇒ LC(S, s0) .
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Our results show that, where there is an cohomological obstruction, it witnesses genuine
contextuality. On the other hand, the important class of AvN examples are all captured by
cohomology. It is worth emphasising that all known quantum examples of strong contextuality
are of AvN type, hence all such examples are captured by cohomology.

Discussion
We have shown that for a large class of models, their logical or strong contextuality is
witnessed by cohomology. This subsumes and greatly generalises the results in [5]. Moreover,
these models include a large class of concrete constructions arising from stabiliser quantum
mechanics, going well beyond existing results of this kind in the quantum information
literature. It remains an objective for future work to achieve a precise characterisation of
what cohomology detects, and more generally full equivalences between the various ways of
expressing contextuality. Note that, as already mentioned, the first implication in Theorem 21
can be reversed under the assumption that R is a field. If we use a more abstract notion of
equational consistency, in terms of quotient modules rather than equations expressed in a
“coordinatized” form, then it can be reversed even for general rings. The point of taking the
ground ring to be a field is exactly that it allows coordinatization.

We also remark that the cohomological methods we have developed can be applied to an
elaborated version of the treatment of logical paradoxes we gave in §2, following the lines
of [10, 30]. We aim to give a detailed treatment of this “cohomology of paradox” in future
work. We also note the intriguing resemblances, on the conceptual level at least, to the work
of Roger Penrose in [24].
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Abstract
We consider simply typed lambda-calculus with fixpoints as a non-interpreted functional pro-
gramming language: the result of the execution of a program is its normal form that can be seen
as a potentially infinite tree of calls to built-in operations. Properties of such trees are properties
of executions of programs and monadic second-order logic (MSOL) is well suited to express them.

For a given MSOL property we show how to construct a finitary model recognizing it. In other
words, the value of a lambda-term in the model determines if the tree that is the result of the
execution of the term satisfies the property. The finiteness of the construction has as consequences
many known results about the verification of higher-order programs in this framework.
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1 Introduction

Higher-order functions are being adopted by most mainstream programming languages.
Higher-order functions not only increase modularity and elegance of the code, but also help
to address such fundamental issues as scalability and fault-tolerance. In consequence, higher-
order functions are increasingly used for writing programs interacting with an environment,
like, for example, client-server web applications. To accompany this evolution, new kinds
of analysis tools are needed, focusing on behavioural properties of higher-order functional
programs. For example, some guidelines for secure web programming may require that if a
database access is required infinitely often then calls to a logging function must be made
again and again. Our objective is to develop denotational models for such kinds of properties.

We consider λY -calculus, the simply typed λ-calculus with fixpoints, as an abstraction of
a higher-order programming language that faithfully represents the control flow. Under the
name of recursive program schemes the calculus has been studied since 1960s [11, 5, 6, 7, 13, 19].
The particularity of this approach is to focus on the free interpretation: all constants are
non-interpreted symbols and the interpretation of a term is a tree composed from constants.
In the context of λ-calculus this tree is called the Böhm tree. Figure 1 presents the Böhm
tree of the map function. It is a generic iterator taking a function and a list, and applying
the function to every element of the list. Observe that even for such a simple program its
Böhm tree is infinite and not regular.

Program properties can be grouped in two families. The first, and the most obvious one,
concerns the absence of run-time errors. A slogan “well-typed programs never go wrong”
clearly expresses this idea. More generally, this family contains all kinds of safety properties,
i.e., those determined by a set of finite executions considered as admissible. The other family
is that of liveness properties that talk about infinite executions. For example: “logging
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if l=nil then

if tail(l)=nil then

if tail(tail(l))=nil then

nil cons

nil cons

Figure 1 The map function and its semantics in the form of a (simplified) Böhm tree.

function is called again and again” or “every initiated communication is eventually closed”.
Concerning the map function, we can say for example that if l is a finite list then the call
map(f, l) evokes f only finitely many times. In fact all fairness properties are particular
liveness properties. Such properties are of relevance to servers, web services, operating
systems, and more generally, to all kinds of interactive applications. Regarding liveness
properties, monadic second-order logic (MSOL), or equivalently automata on infinite objects,
sets the standard of expressivity and algorithmic manageability. Moreover, thanks to the
result of Ong [19], it is decidable if the Böhm tree of a given term of the λY -calculus satisfies
a given MSOL property.

In this paper we show how to construct for a given MSOL property a finitary model so
that the value of a term in the model determines if the Böhm tree of the term satisfies the
property. More precisely, we work with the formalism of parity automata instead of MSOL.
We show that the value of a term of the base type in the model constructed from a given
automaton is simply the set of states from which the automaton accepts the Böhm tree of
the term (Theorem 12).

Our model construction shows how to extend Scott models to integrate the parity condition
of a given automaton. Finitary Scott models are the simplest models of the λY -calculus: the
base type is interpreted as a finite lattice, functional types as the sets of monotone functions,
and the fixpoint as the least fixpoint. Such models correspond in a precise sense to safety
properties, or equivalently to finite automata on infinite trees that are Ω-blind and have
trivial acceptance conditions [22]. This implies that in order to capture the expressive power
of parity automata some modification of Scott models is needed. The straightforward idea of
introducing ranks of the parity condition directly in the base type does not seem to work.
Instead our construction introduces ranks only in higher types. The other crucial point is
the interpretation of function spaces: we cannot take all monotone functions but only those
that behave well with respect to ranks. This is formalized with a new domain identity we
call stratification.

The model construction gives a completely compositional approach to verification: the
result of a term is calculated from the results for its subterms. In particular, we give the
meaning of a fixpoint constant as a particular fixpoint of its argument. The construction
implies the transfer theorem for MSOL [21], and with it a number of consequences offered by
this theorem. Finitary models are used in program transformations: during its execution the
program can calculate the values of chosen subterms [22, 9]. In our case it can, for example,
detect if an argument satisfies a particular liveness property.

Our construction is based on the insights from a very influential paper of Kobayashi
and Ong [15], where, amongst other contributions, they give a type system to capture the



S. Salvati and I. Walukiewicz 231

same dependencies inside terms that we represent in our model. Although the quest for
models for behavioural properties has begun some time ago, the results started to appear
only recently. Tsukada and Ong [27] extended the approach from [15] to a type system for
the whole λY -calculus. In this system the fixpoint is still treated externally via games, and
the model underlying the system is not finitary. They use game semantics to understand a
difficult problem of the behaviour of the application operation at the level of Böhm trees.
Also last year, Hofmann and Chen provided a model for verifying path properties expressed
in MSOL [10]. Their construction is restricted only to first-order λY -terms. They use in an
elegant way Wilke algebras that are an algebraic notion of recognizer for languages of infinite
words. One of the problems we are facing here is that there does not exist equally satisfying
notion of an algebraic recognizer for infinite trees. Even if we wanted to stay with properties
of paths, it is not clear how to extend Wilke algebras to higher orders, the problem being to
find an admissible class of fixpoint operations. More recently, Grellois and Mellies [8] have
given a categorical account of the behaviour of ranks in a model. They derive an infinite
model via elegant general constructions. About the same time, we have provided a model
construction for properties expressed in weak MSOL [25]. The model is a sort of layered
Scott model. The restriction to weak MSOL greatly simplifies the integration of ranks in
the model. As a consequence, it was possible to adapt classical arguments from domain
theory to prove the correctness of the model. The present construction does not follow the
line of [25]. Apart from [15], the main influence comes from the work of Mellies [17] clearly
showing the value of using the morphism composition similar to that in Kleisli categories.
Furthermore, the stratification property is essential to get the model to satisfy the required
equations. The proof methods for the correctness of the model are extensions of game based
methods we have developed for the proof of the transfer theorem [21]. With respect to
other proposals [15, 27, 8] (which capture the so-called Ω-blind automata [22]) our model
is capturing automata that are able to detect the divergence symbol Ω: for a run to be
accepting, the ranks assigned to the nodes labelled Ω should be even. On a model side,
stratification condition is essential.

Apart from model based approaches cited above, there is a very active research in
verification of behavioural properties of higher-order programs. Among the closest methods
using the class of properties and programs we consider here we can list [14, 4, 20]. Similar
research objectives are also pursued in different settings. We would like to mention the
work of Naik and Palsberg [18] who make a connection between model-checking and typing.
They consider only safety properties, and focus on first-order imperative programs. Another
interesting line of research is proposed by Jeffrey [12] who shows how to incorporate Linear
Temporal Logic into types using a richer dependent types paradigm. The calculus is intended
to talk about control and data in functional reactive programming framework, and aims at
using SMT solvers.

Organization of the paper: In the next preliminary section we introduce basic definitions,
and present two special cases that allow us to introduce the main concepts in a simpler
setting. Section 3 is devoted to the definition of the model and its properties. The main
theorem of the paper is stated in this section. Section 4 shows some consequences of the
model construction. The conclusions section outlines some directions for further research. A
long version of the paper that gives the details of the proofs is available [24].
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2 Preliminaries

We start by introducing λY -calculus and parity automata. Then we present two simple
special cases of the main result of the paper. The first case shows what can be achieved with
the classical notion of a model for λY -calculus. The second considers only terms of order at
most 1. It allows us to introduce some crucial elements of the general solution.

2.1 λY -calculus
The set of types is constructed from a unique basic type o using a binary operation → that
associates to the right. Thus o is a type and if A, B are types, so is (A→ B). The order of
a type is defined by: order(o) = 0, and order(A→ B) = max(1 + order(A), order(B)). We
work with tree signatures that are finite sets of typed constants of order at most 1. Types of
order 1 are of the form o→ · · · → o→ o that we abbreviate oi → o when they contain i+ 1
occurrences of o. For convenience we assume that o0 → o is just o. If Σ is a signature, we
write Σ(i) for the set of constants of type oi → o.

Simply typed λY -terms are built from the constants in the signature, and constants Y A,
ΩA for every type A. These stand for the fixpoint combinator and undefined term and
they respectively have type (A → A) → A and A. Apart from constants, for each type
A there is a countable set of variables xA, yA, . . . . Terms are built from these constants
and variables using typed application and λ-abstraction. We shall write sequences of λ-
abstractions λx1. . . . λxn. M with only one λ: either λx1 . . . xn. M , or even shorter λ~x. M .
The usual operational semantics of the λ-calculus is given by β-reduction and δ-reduction.
The corresponding contraction rules are (λx.M)N →β M [N/x] and YM →δ M(YM).

The Böhm tree of a term M is obtained by reducing it until one reaches a term of the
form λ~x.N0N1 . . . Nk with N0 a variable or a constant. Then BT (M) is a tree having its root
labelled by λ~x.N0 and having BT (N1), . . . , BT (Nk) as subtrees. Otherwise BT (M) = ΩA,
where A is the type of M . Böhm trees are infinite normal forms of λY -terms. A Böhm tree
of a closed term of type o over a tree signature is a potentially infinite ranked tree: a node
labelled by a constant a of type oi → o has i successors. Among constants ΩA, only constant
Ωo can appear in the Böhm tree of such a term.

2.2 MSOL and parity automata
We are interested in properties of trees expressed in monadic second-order logic (MSOL).
This is an extension of first-order logic with quantification over sets of elements. Over infinite
trees MSOL formulas define precisely regular tree languages. This class of languages has
numerous other characterizations. Here we will rely on the one using parity tree automata.

Automata will work on Σ-labelled trees, where Σ is a tree signature. Trees are partial
functions t : N∗ ·→ Σ ∪ {Ω} such that the number of successors of a node is determined by
the label of the node. In particular, if t(u) ∈ Σ(0) then u is a leaf. The nodes of t, are the
elements of the domain of t. The set of nodes should be prefix closed. A label of a node u is
t(u).

We will use nondeterministic max-parity automata, that we will call parity automata for
short. Such an automaton accepts trees over a fixed tree signature Σ. It is a tuple

A = 〈Q,Σ, {δi}i∈N, rk : Q→ [m]〉

where Q is a finite set of states, rk is the rank function with the range [m] = {0, . . . ,m},
and δi : Q× Σ(i) → P(Qi) is the transition function. Observe that since the signature Σ is
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finite, only finitely many δi are nontrivial. From the definition it follows that, for example,
δ2 : Q× Σ(2) → P(Q×Q) and δ0 : Q× Σ(0) → {∅, {∅}}. We will simply write δ without a
subscript when this causes no ambiguity. We require that δ(q,Ωo) = {∅} if the rank of q is
even, and δ(q,Ωo) = ∅ otherwise1.

A run of A on t from a state q0 is a labelling of nodes of t with the states of A such that:
(i) the root is labelled with q0, (ii) if a node u is labelled q and its k-successors (with k > 0)
are labelled by q1, . . . qk, respectively, then (q1, . . . , qk) ∈ δk(q, t(u)); recall that t(u) is the
letter labelling the node u.

A run is accepting when: (i) for every leaf u of t, if q is the state of the run in u then
δ0(q, t(u)) = {∅}, and moreover (ii) for every infinite path of t, the labelling of the path given
by the run satisfies the parity condition. This means that if we look at the ranks of states
assigned to the nodes of the path then the maximal rank appearing infinitely often is even.
A tree is accepted by A from a state q0 if there is an accepting run from q0 on the tree.

It is well known that for every MSOL formula there is a parity automaton recognizing
the set of trees that are models of the formula. The converse also holds. Let us also recall
that the automata model can be extended to alternating parity automata without increasing
the expressive power. Here, for simplicity of the presentation, we will work only with
nondeterministic automata but our constructions apply also to alternating automata.

In the context of verification of higher-order properties, automata with trivial acceptance
conditions have gathered considerable attention [14]. These are obtained by requiring that
all states have rank 0. In terms of runs it means that every run of such an automaton on
an infinite tree without leaves is accepting. For the reasons that will be apparent in the
next subsection one more simplifying condition is imposed in the literature. An automaton
is Ω-blind if δ(q,Ω) = {∅} for all states q. So Ω-blind automaton unconditionally accepts
divergent computations, while our definition allows to test divergence with the rank of the
state.

A parity automaton together with a state recognizes a language of closed terms of type o:

L(A, q0) = {M :M is closed term of type o, BT (M) is accepted by A from q0} .

2.3 Models with the least fixpoint
A Scott model associates to each type A a finite lattice DA in which λY -terms of type A
can be interpreted. For a type B → C, this lattice is the set of monotone functions f from
DB to DC . The set DB→C is ordered pointwise (f ≤ g when for every b ∈ DB , f(b) ≤ g(b))
making it a lattice. Constants are interpreted as functions of the appropriate type. Fixpoint
operators Y are interpreted as the least fixpoints.

The semantics of a termM of type A in a given valuation υ, denoted [[M,υ]], is an element
of DA. As usual, a valuation is a partial function from variables to elements of the model
respecting types: if defined υ(xA) is an element of DA. We use ∅ for the empty valuation.
The inductive definition of the semantics is presented in Figure 2. For illustration we have
also included a clause for constants and implicitly assumed that Do is of the form P(Q). It
explains the case when we would like to construct a model from an automaton as stated in
the theorem below. Let us remark that Theorem 1 allows to make a boolean combination
Ω-blind automata when constants have arbitrary interpretation in arbitrary finitary Scott
model.

1 This unusual treatment of Ωo is a small but important ingredient of our construction. Any other choice
looses the correspondance between ranks in A and fixpoint alternation in the definition of the fixpoint.
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[[x, υ]] =υ(x) [[a, υ]]h1 . . . hk ={q : ∃(q1,...,qk)∈δ(q,a)qi ∈ hi for all i}
[[λx.M, υ]]h =[[M,υ[h/x]]] [[MN,υ]] =[[M,υ]]([[N, υ]])

[[Y ]] f =
∨
{fn(⊥) | n ∈ N} [[Ω]] =⊥

Figure 2 Semantics in a Scott model.

A Scott model can be used to recognize a set of terms. A subset R of Do is said to
recognize the set of closed λY -terms M of type o whose semantics is in R, i.e. [[M, ∅]] ∈ R.
This notion of recognition [23] generalizes the usual notion of recognition for words by finite
monoids. In this way, finitary Scott models determine a class of languages of λY -terms
they recognize. The following theorem characterizes this class (that Scott domains capture
Ω-blind automata was first established in [1]).

I Theorem 1 ([22]). A language of λY -terms is recognized by a boolean combination of
Ω-blind automata with trivial acceptance condition iff it is recognized by a Scott model where
Y constants are interpreted as the least fixpoint.

This theorem determines the limits of Scott models with least fixpoints. By duality this also
applies to models with greatest fixpoints. So in order to capture more properties we need to
be able to construct some other fixpoints.

2.4 The case of terms of order at most 1
The case of Scott models clearly pointed out the challenge of a model construction for all
parity automata. In this section we will present the special case of our construction for terms
of order at most 1. Such terms have only variables of type o and all their subterms are
of type of order at most 1. We will construct a model for an arbitrary parity automaton.
The advantage of terms of order at most 1 is that we can describe in a direct way what our
semantics expresses. The semantic equations for the general case will be the same as here.
We hope that this presentation will give some general intuitions about what properties of
Böhm trees the model captures, as well as specific intuitions about the operation (·)�r (cf.
Definition 3) that deals with parity acceptance conditions at the level of semantics. One can
see the construction below as a reformulation of the type system of Kobayashi and Ong [15]
in terms of models.

For the rest of the subsection we fix a parity automaton A = 〈Q,Σ, δ, rk : Q→ [m]〉.
Let us first consider terms without fixpoints. If M is a closed term of type o then BT (M)

is a finite tree with internal nodes labelled by constants of types of order 1 and leaves labelled
by constants of type o. It is clear what is an accepting run of automaton A on BT (M).

Suppose now that M has free variables, that are necessarily of type o. If M is of type o
then BT (M) is still a finite tree but it may have nodes labelled by variables. We can thus
consider variables as holes where we can put states and ask whether there is a run. The
parity condition requires to keep more information. So in addition to states, we keep track
of the maximal ranks of states that appear on the paths from the root to the leaves labelled
with variables. This idea is formalized in the following definition and illustrated in Figure 3.

I Definition 2. Let M : o be a term of order at most 1. Let υ be a function assigning to
every free variable of M a value from P(Q× [m]). We say that A accepts BT (M) from q to
v iff there is a run of A on BT (M) starting in q, satisfying the conditions of an accepting
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Figure 3 (q′, i), (q′′, j) ∈ υ(x) as the maximal color seen on a path from the root to occurrences
of x respectively labeled with states q′ and q′′ are i and j.

run from page 233, and such that for every variable x and leaf of BT (M) labelled by x: if q′
is a state of the run in the leaf, and i is the maximal rank of states on the path from the
root to the leaf then (q′, i) ∈ υ(x).

We will define a semantics of λ-terms that captures this notion of acceptance. First we
define semantic domains for types of order at most 1:

Do = P(Q) Ro = P({(q, r) : q ∈ Q and rk(q) ≤ r ≤ m})
Do→···→o→o = Ro → · · · → Ro → Do

So Ro is the set of sets of ranked states, with the restriction that the rank should be at least
as big as the rank assigned to the state in the automaton. The intended meaning of ranks
given by the above definition clearly justifies this restriction. We call the elements of Ro
residuals.

Both Do and Ro are ordered by inclusion, and Doi→o is ordered pointwise.
We now introduce the operation (·)�r that is handling the parity condition at the level of

semantics. Even though the definition may at first sight seem technical, Lemma 4 provides
some rather clear intuitions about how it works.

I Definition 3. For h ∈ Ro, and r ∈ [m] we put

h�r = {(q, i) ∈ h : r ≤ i} ∪ {(q, j) : (q, r) ∈ h, rk(q) ≤ j ≤ r} .

As an example, observe that h�0 = h.

I Lemma 4. For h ∈ Ro, q ∈ Q, and r, r1, r2 ∈ [m]:
(h�r1)�r2 = h�max(r1,r2);
(q, rk(q)) ∈ h�r iff (q,max(r, rk(q))) ∈ h

The above two properties characterize the family of operations (·)�r. So Definition 3 is
imposed on us if we want to have properties listed in the lemma.

The proof of Proposition 6 below, illustrates how we use the two properties from Lemma 4
to capture in a compositional way the acceptance of Böhm trees of Definition 2.

We also use two other operations. The first is a lifting of elements from Do to Ro. The
second projects an element of Ro to Do by taking a sort of diagonal.

f · r ={(q, r) : q ∈ f and rk(q) ≤ r} for f ∈ Do and r ∈ [m]
h∂ ={q : (q, rk(q)) ∈ h} .

Given a valuation υ : V ars → Ro the semantics of a term M of type A is an element
[[M,υ]] ∈ DA. Its definition is presented in Figure 4. Put next to the semantics in a Scott
model from Figure 2, one can clearly see the differences that are due to the presence of ranks.
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[[x, υ]] =(υ(x))∂

[[a, υ]]h1 . . . hk ={q : ∃(q1,...,qk)∈δ(q,a) qi ∈ (hi�rk(q))∂ for all i}

[[λx.M, υ]]h =[[M,υ[h/x]]]

[[MN,υ]] =[[M,υ]]〈〈N, υ〉〉 where 〈〈N, υ〉〉 =
m∨
r=0

(
[[N, υ�r]] · r

)
Figure 4 Semantics in an extension of the Scott model with ranks.

For example, in the variable rule it is necessary to convert the meaning of a variable from
Ro to Do. Later, in the application rule, it is necessary to lift the meaning of N from Do to
Ro. The notation υ�r means υ where (.)�r is applied pointwise.

In our characterization of the semantics we will use step functions. For f1, . . . , fk ∈ Ro
and q ∈ Do we write

f1 7→ . . . 7→ fk 7→ q

for the function h of type Rko → Do such that h(f ′1, . . . , f ′k) = {q} if f ′i ≥ fi for all i = 1, . . . , k
and h(f ′1, . . . , f ′k) = ∅ otherwise. A step function f1 7→ . . . 7→ fk 7→ (q, i) for some (q, i) ∈ Ro
is defined similarly.

I Example 5. Take a signature with three constants a, b, c of arity 2, 1, 0, respectively.
Consider a parity automaton A = 〈{q0, q1},Σ, δ, rk : Q→ [1]〉 where the rank of a state is
given by its index, and the only pairs for which the value of δ is not ∅ are δ(q0, a) = Q×Q,
δ(q1, b) = Q, and δ(q0, b) = δ(q1, c) = {∅}. So from q0 the automaton recognizes the set of
trees with root labelled a and only finitely many b’s on every path.

We are going to evaluate the term a x (f(b x)) in the model induced by A and in the
valuation υ that maps x to {(q1, 1)} and f to the step function {(q1, 1)} 7→ (q0, 0). The
variable f is meant to represent a closed term so as to make the example not too long. We
get [[a x(f(b x)), υ]] = {q0} with the following calculation:

[[x, υ]] = {q1} 〈〈x, υ〉〉 ={(q1, 1)}
[[b x, υ]] ={q1} 〈〈b x, υ〉〉 ={(q1, 1)}

[[f(b x), υ]] ={q0} 〈〈f(b x), υ〉〉 ={(q0, 0)}
[[a x(f(b x)), υ]] ={q0} .

I Proposition 6. [[M,υ]] ≥ f1 7→ . . . 7→ fk 7→ q iff for some fresh variables z1 . . . zk, A
accepts BT (Mz1 . . . zk) from q to υ[f1/z1 . . . fk/zk].

Proof. The case of a variable follows by unrolling the definitions. If BT (M) is just the
variable, A accepts BT (M) from q to υ iff (q, rk(q)) ∈ υ. This is because the maximal rank
of a state seen from the root of BT (M) to the leaf (which are the same nodes) is rk(q).

A more interesting case is that of a constant a, say it is of a type o→ o→ o. For the left
to right implication, suppose [[a, υ]] ≥ f1 → f2 → q. We need to show that az1z2 admits a run
from q to a valuation υ[f1/z1, f2/z2]. From the definition of the semantics we have (q1, q2) ∈
δ(q, a) such that (qi, rk(qi)) ∈ fi�rk(q). By Lemma 4 we get (qi,max(rk(qi), rk(q))) ∈ fi. So
we can take a run on az1z2 assigning q to the root and q1, q2 to the leafs labelled z1, z2,
respectively. Since indeed max(rk(qi), rk(q)) is the maximal rank seen in the run from the
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Figure 5 The case of application.

root to zi this shows that A accepts az1z2 from q to υ. The other direction is analogous
thanks to the equivalence in Lemma 4.

We consider the case of the application. We will only present the left to right direction.
Suppose [[MN,υ]] ≥ f1 7→ · · · 7→ fk 7→ q, and let us look what is the semantics of the
application. Since we are considering only terms of order at most 1, N is of type o and
〈〈N, υ〉〉 is in Ro. We have [[M,υ]]〈〈N, υ〉〉 ≥ f1 7→ · · · 7→ fk 7→ q, which is the same as
[[M,υ]] ≥ 〈〈N, υ〉〉 7→ f1 7→ · · · 7→ fk 7→ q. Now the induction hypothesis tells us that
BT (Mz0z1 . . . zk) is accepted by A from q to υ[〈〈N, υ〉〉/z0, f1/z1, . . . fk/zk]. Now let us look
what it means that (q′, r′) ∈ 〈〈N, υ〉〉. By unfolding the definitions we obtain q′ ∈ [[N, υ�r′ ]].
Using the induction hypothesis for N , we have a run of A on BT (N) from q′ to υ�r′ . From
these observations we construct a required run on BT (MNz1 . . . zk) from q to υ.

Observe that BT (MNz1 . . . zk) is obtained from BT (Mz0z1 . . . zk) by plugging in every
leaf labelled z0 the tree BT (N) (cf. Figure 5). We want to construct on BT (MNz1 . . . zk) a
run from q to υ. For this we just take a run on BT (Mz0z1 . . . zk) from q to the valuation
υ[〈〈N, υ〉〉/z0, f1/z1, . . . fk/zk]. Then for every leaf l of BT (Mz1 . . . zk) labelled z0 with ql
the state of the run in l and rl the maximal rank from the root to l, we prolong the run with
the run on BT (N) from ql to υ�rl

.
To show that this run is as required we take a leaf l2 of BT (MNz1 . . . zk) labelled by

some variable y. We suppose that q2 is the state assigned by the run to l2 and that r is the
maximal rank of states of the run on the path from the root to l2. We want to show that
(q2, r) ∈ υ(y). If l2 is a leaf of BT (Mz0z1 . . . zk) then this directly follows from the definition
of the run. If it is not, then the path to l2 passes through the leaf l1 of BT (Mz0z1 . . . zk)
labelled by z0 and then gets to BT (N); cf. Figure 5. Let q1 be the state labelling l1, let
r1 be the maximal rank from the root to l1, and let r2 be the maximal rank from l1 to l2.
By looking at the part of the run on BT (N) we get (q2, r2) ∈ υ�r1

(y). Lemma 4 then gives
(q2,max(r1, r2)) ∈ υ(y), that is exactly the required property. J

The above proof is so simple because the composition of Böhm trees of terms of order at
most 1 is easy. We can now try to add a fixpoint to our syntax. We consider terms of the
form YM with M of type o→ o. The semantics of a term [[M,υ]] is a function from Ro to
Do. If we want to calculate the semantics of YM then we need to do some manipulation with
the function [[M,υ]] as its domain and co-domain are different. The situation becomes clearer
when we recall that Ro ⊆ P(Q× [m]). So [[M,υ]] is essentially a function of m arguments.
This is very fortunate as we can expect that the computation of the semantics of YM needs
m fixpoints alternating between the least and the greatest fixpoints.

We will give a general formula for calculating the fixpoint in Section 3 when we fully
describe our model. Since we have Y in the syntax, this formula itself should denote an

CSL 2015



238 A Model for Behavioural Properties of Higher-order Programs

element of our model. Here let us show the formula for the case of m = 1. This means that
we have two ranks 0 and 1. Using f : Ro → Do to denote the function [[M,υ]] the semantics
[[YM, υ]] is given by F0 ∈ Do defined by

F0 =νZ0. f
∂(Z0 · 0 ∪ F1 · 1) F1 =µZ1νZ0. (f�1)∂(Z0 · 0 ∪ Z1 · 1)

We omit a, not so short, proof of the correctness of this formula. The proof for the general
case is presented in [24]. The set F0 is the set of states in which the term M is accepted
when it is in a context where the maximal color from the root to it is 0 (this includes the
empty context), while F1 is the set of states in which the term M is accepted when the color
is 1. This distinction is only important for terms with free variables, where, as we have seen,
the values associated to variables by valuations depend on the context. So for closed terms
F0 and F1 are equal.

3 A model recognizing MSOL properties

We now extend the definitions we have given in the previous section to higher orders.
Mellies [16] sketched a definition of fixpoint that only worked for closed terms. We here give
a definition of higher-order fixpoints that work for open terms. As ranks in the model are
used to keep track of the context where variables occur, most of the technical difficulties of
the construction of the model appear in this definition. With this definition, we obtain a
model of the λY -calculus that recognizes terms whose Böhm trees are accepted by a given
parity automaton. More precisely, for every closed λY -term M of type o we will have:

[[M, ∅]] = {q : A accepts BT (M) from q} .

For the rest of this section we fix a parity automaton A = 〈Q,S, δ, rk : Q → [m]〉. In
particular, m is the maximal rank of a state of A.

We start by generalizing the definition of residuals Ro to all types. At the same time we
will generalize the operation (·)�r, as well as define a new operation (·)⇓q. For a residual
f in Ro, we let f⇓q be {r : (q, r) ∈ f}. Now we define RA→B to be the set of monotone
functions f that satisfy the following stratification property:

∀g ∈ RA. ∀q ∈ Q. (f(g))⇓q = (f(g�rk(q)))⇓q (strat)

at the same time we define for every g ∈ RA:

f⇓q(g) = (f(g))⇓q, f�r(g) = (f(g))�r .

The elements of RA are ordered using the pointwise order. It can be shown that this order
makes RA a lattice.

For an intuition behind the (strat) property it may be useful to look back at Figure 5.
Suppose f is the meaning of M and g is the meaning of N . The formula f(g)⇓q then means
that we are interested in the runs on BT (MN) starting from q. As can be seen from the
proof of Proposition 6, in such a run every appearance of BT (N) will be lifted with �r
operation where r is the maximal rank seen from the root to this appearance. We do not
know what this r will be, but it will be at least rk(q), so it is safe to already apply �rk(q)
to g. In other words, for the runs starting in q we should get the same result from f(g) as
from f(g�rk(q)). Yet another more formal intuition comes from the application clause. The
meaning of 〈〈N, υ〉〉 as a function of υ satisfies the (strat) property.
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As in the previous section, we do not interpret λY -terms in the lattices RA, but rather
in the lattices DA that are generalizations at every type of Do. For this we must define f⇓q
for f ∈ DA: we put f⇓q = f ∩ {q} for f ∈ Do; and f⇓q(g) = (f(g))⇓q for f ∈ DA→B, and
g ∈ RA. Using the same notation for the operation ⇓q when it acts on DA or RA should
not confuse the reader as in both cases, it corresponds to focusing on the behaviour of the
function on the state q. With this definition we let DA→B be the set of monotone functions
from RA to DB that satisfy the same (strat) identity.

I Remark. The definitions of (·)�r and (·)⇓q are covariant and they become more intuitive
when we consider types written as A1 → · · · → Ak → o, or in an abbreviated form as ~A→ o.
In this case, using →ms for the set of monotone and stratified functions, we have:

D ~A→o = RA1 →ms · · · →ms RAk
→ms Do

R ~A→o = RA1 →ms · · · →ms RAk
→ms Ro

g⇓q(~h) = (g(~h))⇓q g�r(~h) = (g(~h))�r

where ~h is a vector of elements from RA1 × · · · × RAk
, and the operations ⇓q, �r are applied

only to elements from Do or Ro, depending on whether g is from D ~A→o or R ~A→o.

Before we define the semantics, we observe several properties of the domains and the
operations we have introduced. First, the generalization of (·)�r to higher orders preserves
the properties of Lemma 4.

I Lemma 7. For every type A, both DA and RA are finite complete lattices. When A is
A1 → · · · → Al → o, g ∈ RA, ~h ∈ RA1 × · · · × RAl

and r, r1, r2 ∈ [m] then:
(g�r1

)�r2
= g�max(r1,r2);

(q, rk(q)) ∈ g�r(~h) iff (q,max(rk(q), r)) ∈ g(~h).
For every g1, g2 in RA: (g1 ∨ g2)�r = g1�r ∨ g2�r and (g1 ∧ g2)�r = g1�r ∧ g2�r.

We now extend to higher-orders the operations (·)∂ and (·) · r we have introduced in
Section 2.4. These extensions use the same covariant pattern as the extensions of (·)⇓q and
(·)�r; we first define the operations for objects of type o and then extend them to all higher
types. For g0 ∈ Ro, f0 ∈ Do, g1 ∈ RA→B , f1 ∈ DA→B we have:

g∂0 ={q : (q, rk(q)) ∈ g0} g∂1 (h) =(g1(h))∂

f0 · r ={(q, r) : q ∈ f0, rk(q) ≤ r} (f1 · r)(h) =(f1(h)) · r

Thus g∂ converts an element of RA to an element of DA, and f · r does the opposite.

I Lemma 8. For every type A, every f ∈ DA, g ∈ RA, and r ∈ [m], we have: f · r ∈ RA,
g�r ∈ RA, and g∂ ∈ DA.

The semantics of a term M of some type A, under a given valuation υ is denoted [[M,υ]].
It is an element of DA provided υ is defined for all free variables of M . As in Section 2.4, a
valuation is a function assigning to a variable of type B an element of RB. The semantic
clauses are those from Figure 4, so they are the same as for the order 1 case of Section 2.4.
It remains to define the fixpoint:

[[Y A, υ]]h = fix(h, 0) = νf0.h
∂(f0 · 0 ∨

m∨
i=1

fix(h, i) · i
)
.
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where for l = 0, . . . ,m we define

fix(h, l) = σfl. . . . µf1.νf0. (h�l)∂
( l∨
i=0

fi · i ∨
m∨

i=l+1
fix(h, i) · i

)
.

We use σ to stand for µ or ν depending on whether l is odd or even, respectively.
The structure of this formula may be better visible if we look at fix(h,m), and assume

that m is odd:

µfm.νfm−1 . . . µf1.νf0. (h�m)∂
( m∨
i=0

fi · i
)
.

So we see a rather expected alternation of least and greatest fixpoints, and inside the big
brackets we see an operation of composing fi’s to one residual. This operation is of the same
shape as in the clause for application. Observe that the expression (

∨m
i=0 fi · i) considered as

a function of f0, . . . , fm is a monotone function from Dm+1
A to DA. This remark together

with Lemma 8 and the fact that DA is a complete lattice explains why fix(h, l) is well-defined,
for every l.

We state a couple of lemmas implying that what we have defined is indeed a model.

I Lemma 9. For every type A, if f is in RA→A then for every k, l ∈ [m]: (i) fix(f, l) is in
DA; and (ii) fix(f�k, l) = fix(f,max(k, l)) .

The next lemma implies that for every term M of type A, the value [[M,υ]] assigned by
the semantics is indeed in DA.

Notation: We write (·)�q for (·)�rk(q).

I Lemma 10. For every term M , every υ, and ~f , of appropriate types:
1. If υ ≤ υ′ and ~f ≤ ~g then [[M,υ]]~f ≤ [[M,υ′]]~g.
2. For every q ∈ Q: q ∈ [[M,υ]]~f iff q ∈ [[M,υ]]~f�q iff q ∈ [[M,υ�q]]~f�q.
3. [[M,υ]] and 〈〈M,υ〉〉 satisfy the (strat) property.
4. 〈〈M,υ�q〉〉 = 〈〈M,υ〉〉�q.

The above lemmas allow us to show that the interpretation of terms is invariant under
=βδη, or, put differently, that we have constructed a model of λY -calculus.

I Proposition 11. For every M , N and υ, if M =βδη N , then [[M,υ]] = [[N, υ]] and
〈〈M,υ〉〉 = 〈〈N, υ〉〉 .

It now remains to explain how this model is related to the acceptance of the Böhm trees
of λY -terms by A. This explanation is given by the following theorem which is the main
result of the paper. Recall that we denote the empty valuation by ∅.

I Theorem 12 (Correctness). For a given parity automaton A, the semantics defined above
is such that for every closed term M of type o and every state q of A:

q ∈ [[M, ∅]] iff A accepts BT (M) from state q.

I Example 13. Continuing the example from page 236 we will calculate the value of the term
Mo→o = Y (λfx.a x (f(b x))). This term is a simplified version of the map function from the
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Introduction, in the sense that it has a Böhm tree of a similar shape. In order to show that
every path of BT (Mc) contains only finitely many b’s we show q0 ∈ [[Mc, ∅]]. In the first part
of the example we have established [[a x (f(b x)), υ]] = {q0} where υ that maps x to {(q1, 1)}
and f to the step function {(q1, 1)} 7→ (q0, 0). This implies that [[λfx.a x(f(b x))]] ≥ g where
g = ({(q1, 1)} 7→ {(q0, 0)}) 7→ {(q1, 1)} 7→ q0. We now compute fix(g, 0). We observe that
g(> · 0 ∨ ⊥ · 1) = {(q1, 1)} 7→ q0 and, g(h · 0 ∨ ⊥ · 1) = h, for h = {(q1, 1)} 7→ q0. Therefore
νg0.g(g0 ·0∨⊥·1) = h. Now, g(h ·0∨h ·1) = h which implies that µg1.νg0.g(g0 ·0∨g1 ·1) = h.
With this we have showed [[M, ∅]] ≥ h which finally gives us q0 ∈ [[Mc]].

4 Applications

The model construction we have presented allows us to derive a number of results on
verification of higher-order schemes and the λY -calculus. Since the constructed model is
finite, it implies the decidability of the model-checking problem [19]. More importantly, it
implies the transfer theorem [21]. Actually this theorem is proved in op. cit. also for infinite
terms. This cannot be done solely with the techniques in the present paper. The transfer
theorem gives an effective reduction of the MSOL theory BT (M) to the MSOL theory of
the tree representation of M . The strength of the theorem lies in the fact that the reduction
is uniform for all terms over a fixed set of variables and types.

A term can be represented as a tree with back edges: the nodes of the tree are labelled
with the application symbol, the lambda abstraction, a variable, or a constant. The back
edges go from occurrences of variables to their binding lambdas. This representation makes
it rather clear what it means for a term to be a model of an MSOL formula [21]. We will use
Terms(Σ, T , X) for the set of terms over a signature Σ, such that all their (free or bound)
variables are from X , and all their subterms have types in T .

I Theorem 14 ([21]). Let Σ be a finite tree signature, X a finite set of typed variables, and
T a finite set of types. For every MSOL formula ϕ one can effectively construct an MSOL
formula ϕ̂ such that for every λY -term M ∈ Terms(Σ, T ,X ) of type o:

BT (M) � ϕ iff M � ϕ̂.

Proof. Let A be the automaton equivalent to ϕ. Consider the model DA given by Theorem 12.
The model DA is finite in every type. So the set of possible semantical values of terms from
Term(Σ, T ,X ) is finite.

There is a correspondence between subterms of the term and the nodes of the tree
representation of the term. So the labelling assigning to a node of the tree representation
the meaning of the subterm it represents is a colouring of the tree with colours from a finite
set. Let us call it the semantic colouring. The next observation is that if we are given any
colouring of the tree representation of a term with elements of the model then we can check
if it is the semantic colouring by verifying some local constraints implied by the definition of
the model. For example, the local constraints say that the meaning assigned to the node
labelled by the application symbol is indeed the result of the application of the meaning
assigned to the first child applied to the meaning assigned to the second child. This can
be checked by a looking in a finite table. Now the desired MSOL formula can guess such a
colouring of the tree representation of a term, verify that it satisfies the local constraints,
and that the initial state of the automaton A belongs to the colour of the root node. J

This theorem implies the global model checking property [3]. In particular, a model
clearly explains how to solve the synthesis problem from higher-order modules [21]. The
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synthesized program is composed from modules using application. Since the set of modules is
fixed and finite, we can evaluate the meaning of such a composition using a finite automaton.
Thus the synthesis problem is reduced to the emptiness problem for finite automata on finite
trees.

As described in [22], a model can be used to design program transformations. A general
principle of such a transformation is that during evaluation the program “knows” what is
its meaning in the model. Such a program, or in our case a term of λY-calculus, is called
reflective [2]. This intuitive statement requires some explanation. What we mean is that when
evaluating a term M we reach a head normal form, say bN1N2. Then b is a non-interpreted
symbol that is output as the root of the tree BT (M), and the evaluation process splits to
evaluation of N1 and N2. While at the beginning we can simply calculate the semantics
[[M ]] in the model, it is the reflective program itself that needs to calculate [[N1]] and [[N2]].
Interestingly, this general method of translating a term into a reflective term follows a simple
inductive pattern. We refer to [22] for more details.

5 Conclusions

We have extended Scott models with ranks, and have shown that this extension recognizes
all MSOL properties of λY -terms. The meaning of the fixpoint operator is an alternation of
the least and the greatest fixpoints reminiscent to the fixpoint characterization of winning
positions in a parity game. This is somehow expected since acceptance for parity automata
is expressed in terms of existence of a strategy in a parity game.

The model construction reduces the higher-order verification problem to the evaluation
problem. Surprisingly, even the problem of evaluating terms without fixpoints in a Scott
model is not that well studied (cf. [26]). We believe that the evaluation problem can be
an unifying algorithmic problem for many kinds of program analyses whose theoretical
complexity is “sufficiently high” to justify a semantic approach. Verification of MSOL
properties considered in this paper is one such case. The model we construct is essentially of
the same size as the Scott model so the evaluation approach should be essentially as efficient
as approaches based on intersection types refining simple types. Indeed, every step function
in the model can be represented by such a type.

We hope that our result is a step towards understanding infinitary properties in the usual
frameworks of semantics, and with this to extend semantic methods to reactive programs
and their behaviors. We have tried here to make the presentation as concrete as possible. It
is evident though that a more abstract description bringing out the structure of the model
should be pursued. A more ambitious goal is to find an abstract description of models
recognizing MSOL properties. Let us mention that the expressive power of Scott models with
arbitrary (be it as combinations of least and greatest fixpoints, or other kinds of fixpoints)
interpretations of fixpoints is unknown. In particular, we may wonder whether they capture
properties beyond those expressible with parity automata.
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Reachability Analysis of First-order Definable
Pushdown Systems
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Abstract
We study pushdown systems where control states, stack alphabet, and transition relation, instead
of being finite, are first-order definable in a fixed countably-infinite structure. We show that the
reachability analysis can be addressed with the well-known saturation technique for the wide class
of oligomorphic structures. Moreover, for the more restrictive homogeneous structures, we are
able to give concrete complexity upper bounds. We show ample applicability of our technique
by presenting several concrete examples of homogeneous structures, subsuming, with optimal
complexity, known results from the literature. We show that infinitely many such examples of
homogeneous structures can be obtained with the classical wreath product construction.
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1 Introduction

Context. Pushdown automata (PDS) are a well-known model of recursive programs, with
applications in areas as diverse as language processing, data-flow analysis, security, compu-
tational biology, and program verification. Many interesting analyses reduce to checking
reachability in the infinite configuration graph generated by a PDS, which can be done
in PTIME with the popular saturation algorithm [7, 18] (cf. also the recent survey [11]).
Saturation shows a slightly more general property of PDS graphs, which is sometimes called
effective preservation of regularity: For a regular set of target configurations of a given PDS,
the set of all configurations which can reach the target in a finite number of steps is effectively
regular too. The preservation is effective in the sense that there exists a procedure which
produces, from an NFA recognizing the target set, an NFA recognizing the predecessors. This
is a central theoretical result in the analysis of PDS, with immediate practical applications
as demonstrated by the prominent tool MOPED [17]. Therefore, it is of interest to extend
this conceptually simple and yet powerful method to more general settings.

Several generalizations of the pushdown structure yielding PDS-like models admitting
effective preservation of regularity are known, e.g., tree-pushdown systems [20], ordered
multi-pushdown systems [9, 4], annotated higher-order pushdown systems [25, 10], and
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strongly normed multi-pushdown systems [14]. In this paper, instead of generalizing the
pushdown structure itself, we generalize the contents of the pushdown, by allowing the
pushdown symbols to be drawn from an infinite set. Our model is parametric in the choice
of a countably-infinite logical structure A, called atoms. We introduce and study first-order
definable pushdown systems (FO-definable PDS) over A, which are like usual PDS, except
that control locations, stack alphabet, and transition relation are FO-definable sets over A,
instead of ordinary finite sets. Thus, we do not invent a new model, but we reinterpret the
classical model in a new setting. This covers ordinary PDS as a special case, and allows
the study of non-trivial yet decidable classes of PDS over infinite alphabets. For instance,
by taking A to be equality atoms (D,=), i.e., a countably-infinite set D where only equality
testing is allowed, we obtain (and slightly generalize) pushdown register automata [12, 6, 26].

Contributions and organization. The technical results of this paper and its structure are
as follows. In Sec. 2, we recall the setting of FO-definable sets, FO-definable relations, and
FO-definable NFA. In Sec. 3, we introduce FO-definable PDS. This is done by reinterpreting
the classical model in the FO-definable framework. Our approach has the advantage that we
do not need to define a new model. Instead, we reinterpret the classical model in a generic
logical framework. In Sec. 4, we consider oligomorphic atoms 1 with a decidable first-order
theory, and we show effective preservation of regularity for the backward reachability relation
of configuration graphs of FO-definable PDS. This is obtained via a symbolic implementation
of the classical saturation method, which comes along with a simple proof of correctness. In
Sec. 5, we provide an upper complexity bound in the special case of homogeneous atoms,
and in particular an ExpTime bound in the case of tractable homogenous atoms, matching
the known ExpTime-hardness for equality atoms from [26]. In Sec. 6, we provide many
interesting examples of tractable homogeneous atoms for which we can apply our results,
including equality atoms [26] (as remarked above), but also: total order atoms (Q,≤), which
can be used for modeling densely-ordered data values; equivalence atoms (D, R), where R
is an equivalence relation of infinite index s.t. each equivalence class is infinite, which can
be used to model nested data values; universal tree atoms, which can be used to model
dynamic topologies of concurrent programs with process creation and termination; as well
as other structures, such as universal partial order atoms, universal tournament atoms, and
universal graph atoms [24]. In the same section, we also show that the classic wreath product
construction can be used to generate infinitely many new tractable examples from previous
ones. Our logical approach has the advantage to highlight the general principle behind
decidability, and we can thus prove correctness once and for all for all structures satisfying
the mild assumptions above. As a byproduct, we also obtain tight complexity results for
PDS over natural classes of infinite alphabets. Infinitely many such natural structures can be
found by using the wreath product construction. In Sec. 7, we conclude with some directions
for future work.

2 Preliminaries

Sets with atoms. Let A be a countably-infinite logical structure with finite vocabulary. An
element of the structure we call atom, and the whole structure we call atoms. Examples of
atoms are equality atoms (D,=), i.e., an arbitrary countable infinite set D with equality, and
total order atoms (Q,≤), i.e., the rationals with the dense order. More examples of atoms

1 A structure A is oligomorphic if for every n, the product An is orbit-finite.
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will be discussed in Sec. 6. In the study of atoms, the group Aut(A) of automorphisms2 of A
plays a central role. For instance, automorphisms of equality atoms are all permutations of D,
and automorphisms of total order atoms are monotonic permutations of Q. By using atoms,
we can build sets containing either previously built sets, or atoms themselves. For example,
we build tuples An of fixed length, or disjoint unions thereof. On such sets, we will consider
the natural action of Aut(A), which renames atoms while keeping intact the remaining
structure. For instance, on tuples of atoms the natural action is the point-wise renaming: for
π ∈ Aut(A) and a1, . . . , an ∈ A, π(a1, . . . , an) = (π(a1), . . . , π(an)). Similarly, on disjoint
unions the action is component-wise. The action induces the notion of orbit, which is the
set of elements that can be reached via renaming, i.e., orbit(e) = {π(e) | π ∈ Aut(A)}. The
sets in the sequel will always be equivariant, i.e., invariant under action of automorphisms3.
Every orbit is equivariant by definition, and every equivariant set is a disjoint union of
orbits. For instance, in total order atoms (Q,≤), the set Q2 is the disjoint union of 3
orbits, {(q, q′) | q < q′}, {(q, q′) | q = q′}, and {(q, q′) | q > q′}; and Q2 ] Q3 is the disjoint
union of 16 orbits. A central notion is that of orbit-finite sets, which are finite unions of
orbits (as opposed to arbitrary unions). Intuitively, an orbit-finite set has only finitely many
elements up to renaming by atom automorphisms. Orbit-finiteness generalizes finiteness,
and a substantial portion of results from automata theory carry over to the more general
orbit-finite setting [5]. This paper can be seen as such a case study for the specific case
of pushdown automata. For the sake of concreteness, we restrict in the rest of the paper
to FO-definable sets, to be defined now; we only note that the results of this paper can be
straightforwardly generalized to all orbit-finite sets with atoms.

FO-definable sets. Fix a structure A over a finite vocabulary. We describe infinite sets
symbolically using first-order logic over the vocabulary of A, which we assume to always
include the equality relation =. A first-order formula ϕ(~x) (where we explicit list all
free variables according to an implicit order) with n ≥ 1 free variables defines the subset
[ϕ] ⊆ An of tuples that satisfy ϕ, i.e., [ϕ] = {~a ∈ An | (~x 7→ ~a) � ϕ}. This set is always
equivariant, since a formula can only compare atoms by using symbols from the signature,
and automorphisms by definition respect this signature. The dimension of [ϕ] is the number
n ≥ 1 of free variables of ϕ, denoted by dimϕ. We also allow the tautologically true formula
ϕ ≡ (∀x · x = x); by convention, we take dimϕ = 0 and [ϕ] is a singleton (for a fixed atom
in A). A FO-definable set X over A is a finite indexed union of such sets, i.e.,

X =
⋃
l∈L

{l} × [ϕl], where L is a finite index set.

When we want to omit the formal indexing, we just write X as the finite disjoint union⊎
l∈L[ϕl]. Since FO-definable sets are unions of equivariant sets, they are equivariant too.

When dimϕl = 0 for every l ∈ L, then X is finite and has the same number of elements as
L. Thus, FO-definable sets generalize finite sets.

We use FO-definable sets for control locations and alphabets of automata. In the former
case, an index l ∈ L may be understood as a control location, and a tuple ~a ∈ An as a
valuation of n registers. Under this intuition, ϕl is an invariant that constrains register

2 An automorphism is a bijection of atoms that preserves all relations from the vocabulary.
3 More generally, one can consider finitely supported sets. A set is supported by S ⊆fin A if it is invariant

under automorphisms that preserve elements of S. The results of this paper can be straightforwardly
generalized to finitely supported sets.
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valuations in a control location l. We do not assume that all component sets [ϕl] have the
same dimension, i.e., the number of registers may vary from one control location to another.

FO-definable relations. Along the same lines, we define FO-definable binary relations.
Consider two FO-definable sets X =

⊎
l∈L[ϕl] and Y =

⊎
k∈K [ψk]. An FO-definable relation

R ⊆ X ×Y is an FO-definable set R =
⊎
l∈L,k∈K [ξlk] where the indexing set is the Cartesian

product L × K, and every component set [ξlk] satisfies [ξlk] ⊆ [ϕl] × [ψk]. In particular,
dim ξlk = dimϕl + dimψk. Relations of greater arities can be obtained by iterating the
construction above. We use FO-definable relations to define transition relations of automata.
The formula ξlk may be understood as a constraint on a transition from control location l to
control location k, prescribing how a valuation of registers in l before the transition relates
to a valuation of registers in k after the transition.

FO-definable NFA. As an example application of FO-definable sets and relations, we define
FO-definable NFA. This model will be used later to recognize regular set of configurations
of FO-definable PDS, also defined later. A classical NFA is a tuple A = (Γ, Q, F, δ),
where Γ is a finite input alphabet, Q is a finite set of states, of which those in F ⊆ Q

are the final ones, and δ ⊆ Q × Γ × Q is the transition relation. Once an initial state
is chosen, the definitions of run, accepting run, and language L(A) recognized by A are
standard. By simply replacing “finite” with “FO-definable” in the definition above, we
obtain FO-definable NFA. To fix notation, an FO-definable NFA will be written as a tuple
A = (Γ =

⊎
k∈K [ϕk], Q =

⊎
l∈L[ψl], F =

⊎
l∈L[ψFl ], δ =

⊎
l,l′∈L,k∈L[δlkl′ ]), where w.l.o.g.

we assume that Q and F have the same index set L. Notice that δ is an FO-definable set,
while δlkl′ is a first-order formula.

I Example 1. Let A be the total order atoms (Q,≤), and let the alphabet be Γ = {k} ×Q.
Consider the language M = {(k, a1) · · · (k, an) ∈ Γ∗ | a1 ≥ a2 ≤ a3 ≥ · · · ≤ a2n+1} of non-
empty finite words of odd length of alternating growth. This language can be recognized
from state `I by the NFA

A = (Γ, Q = {`I} ∪ {`0} ×Q ∪ {`1} ×Q, F = {`0} ×Q, δ =
⊎

l,l′∈{`I ,`0,`1}

[δlkl′ ]).

The initial location `I does not contain any register, while control locations `0, `1 both contain
one register, which is used to guess the next input symbol and to ensure the right ordering.
Formally, δ`Ik`0(, y, x′) ≡ x′ ≤ y (we use the notation δ`Ik`0(, y, x′) to emphasize that `I does
not have any register), δ`0k`1(x, y, x′) ≡ (x = y ∧ x′ ≥ y), δ`1k`0(x, y, x′) ≡ (x = y ∧ x′ ≤ y),
and [δlkl′ ] = ∅ for the other cases.

3 First-order definable pushdown systems

In this section we define FO-definable PDS and their reachability problem. According to the
classical definition, a pushdown system (PDS) P = 〈Γ, P, ρ〉 consists of a finite stack alphabet
Γ, a finite set of control states P , and a finite set of transition rules ρ = ρpush ∪ ρpop, which is
partitioned into push rules ρpush ⊆ P × Γ× P × Γ× Γ and pop rules ρpop ⊆ P × Γ× P . In
this paper, we reinterpret this definition in the setting of FO-definable sets, which yields a
more general model. For an atom structure A, FO-definable PDS over A are obtained by
replacing “finite set” with “FO-definable set” in the classical definition. To fix notation, an
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FO-definable PDS is a tuple

P = 〈Γ =
⊎
k∈K

[ϕk], P =
⊎
`∈L

[ξ`], ρ = ρpush ∪ ρpop〉,

where4 ρpush =
⊎
`,`′∈L,k,k′,k′′∈K [ρpush

`k`′k′k′′ ] and ρpop =
⊎
`,`′∈L,k∈K [ρpop

`k`′ ]. As in the classical
case, an FO-definable PDS induces an infinite transition system 〈C,−→〉, where the set of
configurations is C = P × Γ∗, and there is a transition c −→ c′ between two configurations
c = (q, aw) and c′ = (q′, w′) if, and only if, either there exists a push rule (q, a, q′, b, c) ∈ ρpush

s.t. w′ = bcw, or there exists a pop rule (q, a, q′) ∈ ρpop s.t. w = w′. Let −→∗ be the reflexive
and transitive closure of −→. For a set C of configurations, the backward reachability set of
C, denoted Reach−1

P (C), is the set of configurations that can reach some configuration in C:

Reach−1
P (C) = {c ∈ C | c −→∗ c′ for some c′ ∈ C} .

I Example 2. We define an FO-definable PDS P over total order atoms (Q,≤) which
constructs strictly monotonic stacks, the maximal element being on the top of the stack. Let
P = 〈Γ = {k} ×Q, P = {`I} , ρ = ρpush〉, where ρpush

`Ik`Ikk
(, y, , y′, y′′) ≡ (y < y′ ∧ y′′ = y).

This paper concentrates on the reachability analysis for FO-definable PDS. Given an
FO-definable PDS P = 〈Γ, P, ρ〉, two control locations p, q ∈ P , and a stack symbol ⊥ ∈ Γ,
the reachability problem asks whether (p,⊥) ∈ Reach−1

P ({q}×Γ∗). We start with stack ⊥ and
we ignore the stack at the end of the computation. More general analyses can be considered
by imposing regular constraints on the initial and final stack contents. These easily reduce
to reachability of a regular set of configurations, which is the problem considered in the next
section.

4 Preservation of regularity I: Oligomorphic atoms

We solve the reachability problem as a corollary of a general effective preservation of regularity
result for the backward reachability relation of FO-definable PDS. To this end, we use FO-
definable NFA to describe regular sets of configurations. In the following, fix an FO-definable
PDS P = 〈Γ, P, ρ〉, and an FO-definable NFA A = 〈Γ, Q, F, δ〉 s.t. P ⊆ Q. The NFA A
recognizes the following language LP(A) of configurations of P,

LP(A) = {(p, w) ∈ P × Γ∗ | A accepts w from state p} .

Such sets of configurations of P we call regular. We assume w.l.o.g. that states of A that
belong to P do not have incoming transitions, i.e. δ ⊆ Q× Γ× (Q \ P ).

I Example 3. Recall the FO-definable PDS P from Example 2 building strictly monotonic
stacks (maximal element on top). Let N be the following set of configurations

N = {(`I , (k, a1) · · · (k, a2n+1)) ∈ P × Γ∗ | a1 ≥ a2 ≤ a3 ≥ · · · ≤ a2n+1} .

This set is regular, and it is recognized by the NFA A from Example 1, i.e., LP(A) = N .
The backward reachability set is

Reach−1
P (N) = N ∪ {(`I , (k, a2) · · · (k, a2n+1)) ∈ P × Γ∗ | a2 ≤ a3 ≥ · · · ≤ a2n+1} .

We will see below how to compute an FO-definable NFA recognizing Reach−1
P (N).

4 We could have also considered push rules which do not read the top of the stack, i.e., of the form
ρpush =

⊎
`,`′∈L,k′∈K

[ρpush
``′k′ ]. However, these would introduce ε-transitions during our saturation

procedure in Sec. 4, which we want to avoid for simplicity.
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(0) δ′ := δ ∪ ρpop

(1) repeat

(2) δ′ := δ′ ∪ forced(δ′)
(3) until forced(δ′) ⊆ δ′

Figure 1 Abstract saturation algorithm.

We solve the reachability problem for PDS over oligomorphic atoms.5. Oligomorphicity
is an important notion in model theory [24]. Formally, a structure is oligomorphic if, and
only if, for every n ∈ N, the set An is orbit-finite. Not all structures are oligomorphic, as
shown in the following example.

I Remark (Timed atoms). Timed atoms (Q,≤,+1) is a well-known example of non-oligomorphic
structure. They extend total order atoms (Q,≤) with the successor relation (+1) ⊆ Q×Q.
Automorphisms of timed atoms are monotone bijections π of Q that preserve unit intervals,
i.e., π(x+ 1) = π(x) + 1. To see why timed atoms are non oligomorphic, it suffices to see
that already Q2 has infinitely-many orbits. Indeed, for each z ∈ Z, Q2 has a disjoint orbit{

(x, y) ∈ Q2 | x− y = z
}
. (Since automorphisms preserve unit intervals, they preserve all

integer distances.) Working in non-oligomorphic structures like timed atoms requires the
use of specialized techniques, and the generic algorithm presented in this section does not
terminate. We have thoroughly studied the reachability problem for FO-definable pushdown
systems and automata over timed atoms in [13].

Since oligomorphic atoms are very general, we can merely state decidability of the
reachability problem, without any complexity bounds. The only additional assumption that
we require is decidability of the first-order satisfiability problem in the structure A, which
asks, given a first-order formula ϕ(x1, . . . , xn), whether some valuation η : {x1, . . . , xn} → A
of its free variables satisfies ϕ.

I Theorem 4. Let A be an oligomorphic structure with a decidable first-order satisfiability
problem. For FO-definable PDS P over A and an FO-definable NFA A over A recognizing a
regular set of configurations LP(A), one can effectively construct an FO-definable NFA B
over A recognizing LP(B) = Reach−1

P (LP(A)).

We prove Theorem 4 by using the classical saturation technique [7, 18]. We first describe a
simple abstract algorithm manipulating infinite sets of transitions, and then we show how
this can be implemented symbolically at the level of formulas. As in the classical case, the
FO-definable NFA B which is computed by the algorithm is of the form 〈Γ, Q, F, δ′〉 with
δ ⊆ δ′, i.e., it is obtained by adding certain transitions to A. For any relation α ⊆ Q×Γ×Q,
let forced(α) ⊆ Q× Γ×Q be the following set of triples:

forced(α) =
{

(q, a, q′) | ∃(q, a, q′′, b, c) ∈ ρpush, ∃(q′′, b, q′′′) ∈ α, ∃(q′′′, c, q′) ∈ α
}
.

The abstract saturation algorithm is shown in Fig. 1.

5 One could also consider PDS defined by general prefix rewriting, i.e., with transitions in ρ ⊆ P × Γ∗ ×
P × Γ∗. For oligomorphic atoms, our simplified push/pop model can simulate prefix rewriting while
preserving reachability properties (but not configuration graph isomorphism, or even bisimilarity), like
in the classical case.
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INPUT: an FO-definable PDS P = 〈Γ =
⊎
k

[ϕk], P =
⊎
`

[ξ`], ρpush ∪ ρpop〉, with

ρpush =
⊎

`k`′k′k′′

[ρpush
`k`′k′k′′ ], ρpop =

⊎
`k`′

[ρpop
`k`′ ], and an FO-definable NFA

A = 〈Γ, Q =
⊎
`

[ψ`], δ =
⊎
`k`′

[δ`k`′ ]〉, with [ξ`] ⊆ [ψ`], for every ` ∈ L.

(0) for every `, k, `′ : δ′`k`′(~x, ~y, ~x′) := δ`k`′(~x, ~y, ~x′) ∨ ρpop
`k`′(~x, ~y, ~x′)

(1) repeat

(2) for every `, k, `′ : δ′`k`′(~x, ~y, ~x′) := δ′`k`′(~x, ~y, ~x′) ∨ forced(δ′)`k`′(~x, ~y, ~x′)

(3) until(
∧
`,k,`′

∀~x, ~y, ~x′ · forced(δ′)`k`′(~x, ~y, ~x′) =⇒ δ′`k`′(~x, ~y, ~x′))

Figure 2 Concrete saturation algorithm; `, `′ range over L, and k ranges over K.

The algorithm is partially correct for every structure A (even though it might not
terminate). This follows directly from the observation that the saturated NFA B has a
transition (q, a, q′) ∈ δ′ between states q, q′ ∈ P of P if, and only if, P admits a run
(q, a) −→∗ (q′, ε) (we use here the assumption that no transition of A ends in a state q ∈ P
of P). However, on arbitrary structures saturation does not terminate, either because the
inclusion checking on line (3) is not decidable, or because it never actually holds. The first
issue is addressed by the requirement that A has a decidable first-order satisfiability problem,
and the second one by the fact that A is an oligomorphic structure.

We implement the abstract algorithm from Fig. 1 symbolically, by manipulating formulas
instead of actual transitions. We assume w.l.o.g. that the index set of P (the control locations
of P) is the same as the index set of Q (the states of A). First, notice that the set forced(α)
is FO-definable whenever α is so, since it can be expressed as follows:

forced(α)`k`′(~x, ~y, ~x′) :=
∨

`′′,`′′′∈L,k′,k′′∈K

∃~x′′, ~y′, ~y′′, ~x′′′ · ρpush
`k`′′k′k′′(~x, ~y, ~x′′, ~y′, ~y′′) ∧

α`′′k′`′′′(~x′′, ~y′, ~x′′′) ∧ α`′′′k′′`′(~x′′′, ~y′′, ~x′),

where L is the index set of Q, and K is the index set of Γ. Steps (0) (initialization of δ′)
and (2) (update of δ′) of the algorithm are implemented by disjunction of FO-definable sets,
therefore at each stage of the algorithm δ′ is an FO-definable set, and thus an equivariant set
(i.e, a union of orbits). The test (3) is computable whenever first order satisfiability is so. We
obtain the concrete algorithm in Fig. 2. Termination is guaranteed since A is oligomorphic,
which implies orbit-finiteness of Q× Γ×Q. Indeed, δ′ is always a union of orbits at every
stage, and therefore at least one orbit is added to δ′ at every iteration.

I Example 5. We apply the concrete saturation algorithm to the PDS P and NFA A from
Example 3. Recall that P = 〈Γ = {k}∪Q, P = {`I} , ρpush〉, with ρpush

`Ik`Ikk
(, y, , y′, y′′) ≡ (y <

y′∧y′′ = y), and A = 〈Γ, Q = {`I}∪{`0, `1}×Q, F = {`0}×Q, δ〉, with δ`Ik`0(, y, x′) ≡ x′ ≤ y,
δ`0k`1(x, y, x′) ≡ (x = y∧x′ ≥ y), δ`1k`0(x, y, x′) ≡ (x = y∧x′ ≤ y) (omitting the trivial cases).
For the first iteration, let δ0 := δ. We compute forced(δ0), for which the only nontrivial case is
forced(δ0)`Ik`1(, y, x′) ≡ ∃y′, y′′, x′′′ · ρpush

`Ik`Ikk
(, y, , y′, y′′)∧ δ0

`Ik`0
(, y′, x′′′)∧ δ0

`0k`1
(x′′′, y′′, x′),
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which equals

∃y′, y′′, x′′′ · (y < y′ ∧ y′′ = y) ∧ (x′′′ ≤ y′) ∧ (x′′′ = y′′ ∧ x′ ≥ y′′).

By removing quantifiers (thanks to the density of Q), the former is equivalent to x′ ≥ y.
Therefore, δ1 extends δ0 with the new transition δ1

`Ik`1
(, y, x′) ≡ (x′ ≥ y). Since δ1 is

not equivalent to δ0, we go to the next iteration. We compute forced(δ1), for which the
only new case is forced(δ1)`Ik`0(, y, x′) ≡ ∃y′, y′′, x′′′ · ρpush

`Ik`Ikk
(, y, , y′, y′′) ∧ δ1

`Ik`1
(, y′, x′′′) ∧

δ1
`1k`0

(x′′′, y′′, x′), which equals

∃y′, y′′, x′′′ · (y < y′ ∧ y′′ = y) ∧ (x′′′ ≥ y′) ∧ (x′′′ = y′′ ∧ x′ ≤ y′′).

The latter is equivalent to ∃y′ · y < y′ ∧ y ≥ y′ ∧ x′ ≤ y, which is clearly unsatisfiable.
Therefore δ2 is equivalent to δ1, and the algorithms stops. It is immediate to check that
B = 〈Γ, Q = `I ∪ {`0, `1} × Q, F = {`0} × Q, δ1〉 recognizes precisely Reach−1

P (N), where
N = LP(A).

5 Preservation of regularity II: Homogeneous atoms

Relational homogeneous structures are a well-behaved subclass of oligomorphic structures, for
which we are able to give precise complexity upper bounds for our saturation construction. A
relational structure A (i.e., with no function symbols in the vocabulary) is homogeneous if every
isomorphism between two finite induced substructures6 of A extends to an automorphism of
the whole A. This immediately implies that A is oligomorphic.

I Proposition 1. Let A be a relational homogeneous structure. For n ≥ 1, the number of
orbits of An is bounded by 2poly(n).

Proof. A tuple of n elements (a1, . . . , an) ∈ An can be seen as an induced substructure of
A, where elements are additionally labelled with the positions {1 . . . n}. Two such induced
substructures ā, b̄ ∈ An are isomorphic exactly when the elements ā and b̄ satisfy the same
relations in the vocabulary of A. Therefore, there number of isomorphism classes is bounded
by 2poly(n). Since A is homogeneous, every isomorphism between ā and b̄ extends to an
automorphism of the whole A, and thus ā and b̄ are in the same orbit. Consequently, the
same bound applies to the number of orbits of An. J

All structures listed in the introduction are homogeneous relational structures. However, not
all oligomorphic relational structures are homogeneous as the example below shows.

I Example 6 (Bit vector atoms). Let a bit vector be any infinite sequence of zeros and
ones with only finitely many ones. A bit vector can be represented by a finite sequence, by
cutting off the infinite zero suffix. Consider the relational structure V = (V, 0,+), consisting
of the set V of all bit vectors, together with a unary predicate 0(_) that distinguishes the
zero vector, and the ternary relation _ + _ = _ that describes point-wise addition modulo
2. Automorphisms of V are precisely linear mappings, i.e., bijections f s.t. f(0) = 0 and
f(u+ v) = f(u) + f(v). The orbit of a tuple (v1, . . . , vn) ∈ V n is determined by its addition
type, i.e., by the the set of all equalities of the form vi1 + . . .+vim = 0 satisfied by (v1, . . . , vn).
Indeed, for two tuples (u1, . . . , un), (v1, . . . , vn) ∈ V n having the same addition type, consider
the partial bijection f defined as f(u1) = v1, . . . , f(un) = vn. By using the Steinitz exchange

6 An induced substructure is a structure obtained by restricting the universe to a subset of atoms.
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lemma, the function f can be extended to a linear mapping on the whole V , and thus
(u1, . . . , un) and (v1, . . . , vn) are in the same orbit. Therefore, the number of orbits of V n is
finite. On the other hand, V is not homogeneous. For instance, the two induced substructures
X = {1000, 0100, 0010, 0001} and Y = {1000, 0100, 0010, 1110} are isomorphic. Define, e.g.,
f(0001) = 1110, and f(x) = x if x 6= 0001. The reason why f is an isomorphism is that f
needs to respect _+ _ = _ only inside its domain, and any combination of two vectors from
X falls outside of X. However, the isomorphism f does not extend to an automorphism of
V, since vectors in Y are not independent7.

It is worth mentioning that, while some atom structures are not homogenous, sometimes
adding extra relational symbols (thus restricting the notion of isomorphic substructure) can
make it homogeneous; cf. the example of universal tree order atoms from Sec. 6, where
adding one extra relational symbol turns a non-homogeneous structure it into a homogeneous
one.

Fix a homogeneous relational structure A. We give a precise complexity upper-bound for
the complexity of the concrete saturation procedure from Fig. 2 and, thus, for reachability.
This depends on the complexity of the induced substructure problem for A. The (finite)
induced substructure problem for A asks whether a given finite structure A over the same
vocabulary is an induced substructure of A. This amounts to find an isomorphism mapping
elements from A into atoms A s.t. all relations from the vocabulary are preserved. Assume
that the induced substructure problem for A is decidable in time T (k), where k is the size
of the input. The complexity estimations below are always understood with respect to the
sizes of the representing formulas. Let the width of a formula be the number of its variables.
Let n be the width of an input automaton, defined as the greatest width of the formulas
appearing in its definition, and let m be its size, defined as the sum of sizes of the defining
formulas. By T -relative pseudo-polynomial time complexity we mean the time complexity

2poly(n) · poly(m) · T (poly(n)),

i.e., exponential in the width n but polynomial in the size m. Note that this is relative to
the complexity T of the induced substructure problem.

I Theorem 7. Let A be a homogeneous structure with induced substructure problem decidable
in time T (k). For FO-definable PDS P over A and an FO-definable NFA A recognizing a
regular set of configurations LP(A), one can construct in T -relative pseudo-polynomial time
an FO-definable NFA B recognizing LP(B) = Reach−1

P (LP(A)).

As a consequence, reachability in FO-definable PDS over A is decidable in T -relative pseudo-
polynomial time.

Proof. Fix a homogeneous relational structure A, and suppose that its induced substructure
problem is decidable in time T (k). We show that the concrete saturation algorithm from
Fig. 2 terminates in T -relative pseudo-polynomial time. We use quantifier-free formulas over
the vocabulary of A in legal disjunctive normal form, to be defined below. A positive literal
is a predicate of the form r(x1, . . . , xk), where x1, . . . , xk are variables, and r is a relational

7 The notion of homogeneity can be extended to structures with relations and functions, but one must
consider finitely-generated induced substructures of A instead of finite ones. Note that V becomes
homogeneous if + is considered as a binary function, instead of a relation. The reason is that, in the
presence of the functional symbol +, the homogeneity condition for V quantifies over finite induced
substructures that are closed w.r.t. +, unlike the substructures in our example.



L. Clemente and S. Lasota 253

symbol in the vocabulary of A. A negative literal is the negation ¬r(x1, . . . , xk) of a positive
literal, and a literal is either a positive or a negative literal. We treat equality in the same
way as other relations of A, thus there are also equality and inequality literals. A clause is a
conjunction of pairwise different literals. A clause ϕ is complete if, for every positive literal
l over the variables of ϕ, either l or its negation appears in ϕ, but not both. A complete
clause ϕ is consistent if

the equality literals define an equivalence over the variables of ϕ, and
the literals of ϕ are invariant under this equivalence relation, i.e., replacing variables
appearing in a literal of ϕ with equivalent ones yields a literal that also appears in ϕ.

A consistent clause ϕ gives rise to a finite structure Aϕ over the same vocabulary as A, whose
elements are equivalence classes of variables, and where a relation r([x1], . . . , [xk]) holds if,
and only if, r(x1, . . . , xk) appears in ϕ (the choice of representative variables is irrelevant
since ϕ is consistent). Thus, valuations satisfying ϕ are in one-to-one correspondence with
embeddings of Aϕ into A, by which we mean injective homomorphisms that both preserve and
reflect relations. A consistent clause ϕ is legal if, and only if, the structure Aϕ is isomorphic
to an induced substructure of A, i.e., if there exists an embedding of Aϕ into A, written
Aϕ v A. Thus, a clause ϕ is legal if, and only if, it is satisfiable.

I Proposition 2. Legality of a complete clause of size m is decidable in time poly(m)+T (m).

We consider two clauses to be equal when they contain the same literals. A formula is in
legal disjunctive normal form (ldnf) if it is a disjunction of pairwise different legal clauses
over the same variables. We use the convention that the empty clause and the empty ldnf
represent, respectively, true and false. For two formulas ϕ and ψ with the same free variables,
we say that they are equivalent, written ϕ ≡ ψ, when [ϕ] = [ψ], i.e., when they define the
same set of tuples.

I Proposition 3. A quantifier-free formula ϕ can be transformed into an equivalent formula
ψ in ldnf in T -relative pseudo-polynomial time.

Proof. Enumerate exhaustively all complete clauses over the variables of ϕ, and keep only
those clauses {ψi}i which are legal (which is efficiently checkable by Proposition 2), and that
satisfy ϕ (computable in time polynomial in the size of ϕ). Take ψ =

∨
i ψi. Clearly, ψ ≡ ϕ.

The time complexity claim follows since the number of complete clauses is exponential in the
number of variables, but independent from the size of ϕ. J

For homogeneous structures, the previous claim can be strengthened to first-order formu-
las. Essentially, this follows from the fact that, in a homogeneous structure, existential
quantification can always be resolved positively.

I Proposition 4. A first-order formula ϕ can be transformed to an equivalent formula ψ in
ldnf in T -relative pseudo-polynomial time.

Proof. As the first step, transform the input formula into prenex normal form. Then,
transform the quantifier-free subformula into an equivalent ldnf, using Proposition 3. Finally,
eliminate the quantifiers in sequence, starting from the innermost one, keeping the quantifier-
free subformula in ldnf. Elimination of one existential quantifier is done as follows. First,
distribute it over the disjunction of clauses,

ϕ ≡ ∃x · ψ1 ∨ . . . ∨ ψn ≡ ∃x · ψ1 ∨ . . . ∨ ∃x · ψn
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and then replace every disjunct ∃x · ψi with the clause ψ′i obtained from ψi by removing
those literals that contain x. We claim that, after elimination of duplicates,

ϕ ≡ ψ′1 ∨ . . . ∨ ψ′n′ ,

where the right-hand side is in ldnf. To this end, we show that each ψ′i is legal, and that
∃x · ψi ≡ ψ′i. Let Aψi and Aψ′

i
be the two substructures of A defined by the two clauses.

Clearly, Aψ′
i
v Aψi

v A, which immediately implies legality of ψ′i by transitivity. The
left-to-right inclusion [∃x · ψi] ⊆ [ψ′i] of the equivalence between ∃x · ψi and ψ′i is immediate,
since ∃x · ψi is more discriminating. For the other inclusion [ψ′i] ⊆ [∃x · ψi], let ā′ ∈ [ψ′i]. Let
fā′ be the natural embedding of Aψ′

i
into A mapping each equivalence class of variables in

Aψ′
i
to the corresponding element in ā′. Similarly, since Aψi

v A, there exists a tuple āb
and an embedding gāb of Aψi

into A, where gāb([x]) = b. The substructure induced by ā is
isomorphic to that induced by ā′. Let h be such an isomorphism. Since A is homogeneous,
h extends to a full automorphism of A. Define b′ = h(b). Then, ā′b′ ∈ [ψi], and thus
ā′ ∈ [∃x · ψi].

The universal quantifier is handled with the equivalence ∀x · ϕ ≡ ¬∃x · ¬ϕ: First we
replace ¬ϕ by an equivalent formula in ldnf ψ by applying Proposition 3. Then, we apply the
procedure above to remove the existential quantifier in ∃x · ψ, and we thus obtain another
formula ψ′ in ldnf s.t. ∃x · ¬ϕ ≡ ψ′. Finally, a further application of Proposition 3 to ¬ψ′
yields a formula ψ′′ in ldnf s.t. ψ′′ ≡ ¬∃x · ¬ϕ. J

By repeatedly using Proposition 4, we can implement the saturation algorithm in T -relative
pseudo-polynomial time: First, transform all the formulas defining states and transitions of
the input automata P and A into ldnf. Then, in every iteration, the formula forced(δ′) is
also transformed into ldnf. Step (2) is implemented by computing the union of clauses, and
the implication in step (3) reduces to the inclusion of the sets of clauses of forced(δ′) into
those of δ′. Thus, one iteration of the algorithm requires relative pseudo-polynomial time.
The total number of iterations is bounded by the number of orbits of the set Q × Γ × Q,
since in every iteration at least one orbit is added to δ′. By Proposition 1, the number of
orbits in bounded by 2poly(n) where n is the dimension of Q×Γ×Q. Therefore, the concrete
saturation algorithm runs in T -relative pseudo-polynomial time for homogeneous atoms. J

As a consequence of Theorem 7, under a bound on the width of input automata, the
PDS reachability problem is in PTime, independently of the complexity T (k) of the induced
substructure problem. Moreover, the proof of Theorem 7 reveals that the polynomial above
does not depend on the bound on width8.

I Corollary 8. The PDS reachability problem is fixed-parameter PTime, with the width of
the input automaton as the parameter.

In Theorem 7 we have shown that the complexity of the saturation procedure/reachability
can be upper-bounded once we have a bound on the complexity of the induced substructure
problem. We show below that, depending on the homogeneous structure, the latter problem
(and thus reachability) can be of arbitrarily high complexity, or even undecidable. Therefore,
the bound on the time complexity of induced substructure problem in Theorem 7 is a
necessary assumption.

8 We are grateful to Mikołaj Bojańczyk for noticing this fact.
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I Theorem 9. Let X ⊆ N be a set of natural numbers. There exists a homogeneous structure
AX s.t. membership in X is many-one reducible to the induced substructure problem for AX .

Proof. Let X ⊆ N be an arbitrary set of natural numbers. Intuitively, we effectively encode
the set of natural numbers in an infinite antichain of finite tournaments, and we construct a
homogeneous structure AX s.t., for every natural number n ∈ N, n ∈ X if, and only if, the
encoding of n is an induced substructure of AX . We use the instantiation of the embedding
partial order v to finite directed graphs: G v H if G is isomorphic to an induced subgraph
of H. A tournament is a directed graph T = (V,E) s.t., for every pair of vertices x, y ∈ V ,
either (x, y) ∈ E, or (y, x) ∈ E, but not both. It is known that there exists a countably
infinite v-antichain T of finite tournaments [21]. Let f be an efficiently computable bijective
mapping between natural numbers and tournaments in the antichain T . Let TX be those
finite tournaments T in T with T = f(n) for some n ∈ X. The construction of AX uses the
following result.

I Proposition 5 ([24]; see also [21]). For every v-upward-closed family T of finite tourna-
ments, there is a homogeneous directed graph A such that, for every finite tournament T ,
T v A if, and only if, T ∈ T .

Let AX be the homogeneous directed graph obtained by applying the proposition above to
the upward closure of the antichain TX . Then, for a natural number n ∈ N, we have n ∈ X
if, and only if, the finite tournament f(n) is in TX , which is the same as f(n) being in the
upward-closure of TX , since f(n) is by construction in the antichain T . By the proposition
above, the latter property is equivalent to ask whether f(n) v AX . Therefore, we can reduce
membership in X to the induced substructure problem in AX . J

6 Examples of homogeneous structures

The purpose of this section is to provide concrete examples of homogeneous structures for
which we can efficiently solve the reachability problem of FO-definable PDS. Those are well
known in the model-theoretic community (cf. [24]), and we present them here in order to
show the wide applicability of our results. We also present a general technique, called wreath
product, which can be used to derive new homogeneous structures from known ones. Recall
that, by Theorem 7, if T (k) is the time complexity of the induced substructure problem of
a homogeneous structure A, then reachability of FO-definable PDS over A is decidable in
T -relative pseudo-polynomial time. When the former problem is in PTime, reachability can
be solved in ExpTime by the following corollary of Theorem 7.

I Corollary 10. Let A be a homogeneous relational structure with a PTime induced substruc-
ture problem. For FO-definable PDS P over A and an FO-definable NFA A recognizing a
regular set of configurations LP(A), one can construct in ExpTime an FO-definable NFA
B recognizing LP(B) = Reach−1

P (LP(A)). In particular, the FO-definable PDS reachability
problem over A is in ExpTime.

All the concrete examples that we provide in the sequel, and all infinitely many examples
that can be obtained by applying the wreath product, have a PTime induced substructure
problem, and thus reachability is in ExpTime.

Equality. Equality atoms (D,=) consist of a countably-infinite set D together with the
equality relation. Automorphisms are permutations of D. Homogeneity follows from the fact
that any finite partial bijection D→ D can be extended to a permutation of the whole set D.
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This is arguably the simplest homogeneous structure. The induced substructure problem is
in PTime, since it amounts to check whether the interpretation of = in a given finite structure
is the equality relation. By Corollary 10, reachability for FO-definable PDS over equality
atoms is in ExpTime. This subsumes the result of [26], which considers a special case of our
model where, among other restrictions, the input and stack alphabets are 1-dimensional, and
the transition relation is quantifier-free definable (instead of FO-definable). Additionally,
[26] shows that the problem is ExpTime-hard for equality atoms.

All the examples below generalize equality atoms by adding more relations to the
vocabulary. We omit equality, which is assumed to always be in the vocabulary.

Equivalence. Equivalence atoms (D, R) consist of a countably-infinite set D and an infinite-
index equivalence relation R over D s.t. each one of the infinitely-many equivalence classes
is itself an infinite subset of D. An automorphism of equivalence atoms is a bijection f

of D which respects R, in the sense that, for every x, y ∈ D, (x, y) ∈ R if, and only if,
(f(x), f(y)) ∈ R. Equivalence atoms are homogeneous. (We will see later that equivalence
atoms are isomorphic with the wreath product of equality atoms with itself.) This can model
hierarchically nested data, where one can check whether two elements belong to the same
equivalence class, and, if so, whether they actually are the same element. Higher nested
equivalence atoms can be obtained by iterating this process: 0-nested equivalence atoms are
just equality atoms; and for any k ≥ 0, (k + 1)-nested equivalence atoms can be seen as the
disjoint union of infinitely many copies of k-nested equivalence atoms, with one additional
equivalence relation that relates a pair of elements iff they belong to the same copy.

Total, betweenness, and cyclic order. Total order atoms (Q,≤) can be presented as the
rational numbers Q together with the natural total order ≤. Automorphisms are monotonic
bijections of rational numbers. Homogeneity follows from the fact that ≤ is dense: A
monotonic bijection f : X → Y over a finite domain X extends to an automorphism of
Q. The induced substructure problem is in PTime, since it amounts to check whether the
interpretation of ≤ in a given finite structure is a total order. This can be used to model
qualitative time, where events are totally ordered, but no information is available on the
distance between them. Another instance is given by data-centric applications [16].

Betweenness order atoms (Q, B) use the betweenness relation B, which is obtained by
considering the order ≤ up to reversal: B(x, y, z) holds when x lies between y and z, i.e.,
either y < x < z or z < x < y. This can be used to model time where one is not interested on
the order between the events themselves, but rather on whether an event happened between
two other events. Cyclic order atoms (Q,K) use the ternary cyclic ordering K obtained by
bending the total order into a circle. Formally, K(x, y, z) if either x < y < z, or z < x < y,
or y < z < x. This can model a notion of qualitative cyclic time, where events cyclically
repeat, but no precise timing information is available. For both betweenness and cyclic order
atoms, the induced substructure problem is in PTime.

Universal partial order and preorder. Every relational homogeneous structure is obtained
as the Fraissé limit of the set of all its finite induced substructures [19]. (We do not formally
define here the notion of Fraissé limit, which is a central tool for constructing homogeneous
structures; cf. [24].) For instance, total order atoms are the Fraissé limit of all finite total
orders. Partial order atoms are obtained as the Fraissé limit of the set of all finite partial
orders. The induced substructure problem amounts to determine whether the interpretation
of ≤ in a given finite structure is a partial order, which can clearly be done in PTime. This
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can be used to model the ordering of events in distributed systems. Along the same lines one
obtains preorder atoms.

Universal tree order. A tree order (or semilinear order) is a partially ordered structure
(A,≤) s.t. a) every two elements have an common upper bound, and b) for every element,
its upward closure is totally ordered. Tree order atoms (T,≤) are obtained as the Fraissé
limit of the set of all finite tree orders. Intuitively, tree order atoms consists of a countably-
infinite tree order where each maximal path is isomorphic to total order atoms. Tree order
atoms as presented here are not homogeneous. Intuitively, this happens because isomorphic
substructures have least upper bounds outside the structures themselves, and they might
relate to those in an incomparable way. This can be amended by introducing be the following
ternary relation: R(x, y, z) holds when the lub of x and y is incomparable with z. Then,
(T,≤, R) is homogeneous, and it can be obtained as the Fraissé limit of the set of all extended
finite tree orders (A,≤, R). The induced substructure problem is in PTime for (T,≤, R).

Universal graph and tournament. Universal graph atoms are obtained as the Fraissé limit
of the set of all finite graphs. This is also known as Rado’s graph or the random graph. The
induced substructure problem is trivial since the universal graph contains an isomorphic copy
of every finite graph. Similarly, universal tournament atoms are the Fraissé limit of the set of
all finite tournaments, where a tournament is an irreflexive graph T = (V,E) s.t., for every
two nodes x, y ∈ V , either (x, y) ∈ E, or (y, x) ∈ E. Given a graph, it is clearly checkable
in PTime whether it is actually a tournament, thus the induced substructure problem is in
PTime also in this case.

Wreath products. We conclude this section by giving a construction which allows to
compose homogeneous structures in order to produce new ones. Given two relational
structures A = (A,R1, . . . , Rm) and B = (B,S1, . . . , Sn), their wreath product is the relational
structure A ⊗ B = (A × B,R′1, . . . , R

′
m, S

′
1, . . . , S

′
n), where ((a1, b1), . . . , (ak, bk)) ∈ R′i if

(a1, . . . , ak) ∈ Ri, and ((a1, b1), . . . , (ak, bk)) ∈ S′j if a1 = · · · = ak and (b1, . . . , bk) ∈ Sj .
Intuitively, A⊗ B is obtained by replacing each element in A with a disjoint copy of B. It
can be checked that, if the two structures A and B are homogeneous, then the same holds for
their wreath product A⊗ B. The induced substructure problem for A⊗ B reduces in PTime
to the same problem for A and B: {(a1, b1), . . . , (ak, bk)} is an induced substructure of A⊗B
if, and only if, {a1, . . . , ak} is an induced substructure of A, and for every i, {bj | aj = ai} is
an induced substructure of B. Therefore, if both A and B have a PTime induced substructure
problem, then the same holds for A⊗ B, and Corollary 10 applies.

As an application of the wreath product, take A0 = (D,=) to be equality atoms, and, for
each k ≥ 0, let Ak+1 = A0 ⊗ Ak. Then, A1 is just the equivalence atoms presented before,
and, more generally, Ak = (D, R1, . . . , Rk) is k-nested equivalence atoms, which can be used
to model data with nested equivalence relations. For each of those infinitely many examples,
the reachability problem for FO-definable PDS is in ExpTime.

7 Conclusions

We have studied the reachability problem for a model of PDS with countably-infinite FO-
definable states, stack alphabet, and transitions relation. We advocate a Ockham’s razor
research strategy that refrains from inventing seemingly new notions. Instead, we have taken
the standard definition of PDS and re-interpreted it in the richer framework of FO-definable
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sets instead of ordinary finite sets. This covers the well-known model of pushdown register
automata [12, 26] as one instantiation of the general paradigm, and we have shown that the
optimal ExpTime complexity for the reachability problem for this model can be recovered
in the more general framework. This same paradigm can of course be applied to a variety
of different models, like timed PDS [1], data/timed extensions of Petri nets [3, 23], lossy
channel systems [2], 1-clock/1-register alternating automata [22, 27, 15], rewriting systems [8],
etc. Therefore, the present paper can be seen as a proof of concept of the new research
strategy. For example, one could consider FO-definable pushdown automata (PDA) and
FO-definable context-free grammars (CFG) as acceptors of languages over infinite alphabets.
The definition of FO-definable PDA is analogous to PDS, except that the transition relation
is an FO-definable subset of Q× Γ∗ ×Aε ×Q× Γ∗, where Aε = A ∪ {ε} is an FO-definable
alphabet extended with the empty word. Similarly, FO-definable CFG can be defined
as stateless FO-definable PDA where every transition pops exactly one symbol from the
stack. It is easy to prove that FO-definable PDA languages coincide with FO-definable
context-free languages for oligomorphic atoms [5], and that the latter are closed under
union, concatenation, Kleene star, homomorphism, inverse homomorphism, intersection with
FO-definable regular languages, and that collapsing each orbit to a different symbol yields a
classical context-free language.
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Abstract
In this article, we develop a new and somewhat unexpected connection between higher-order
model-checking and linear logic. Our starting point is the observation that once embedded in
the relational semantics of linear logic, the Church encoding of a higher-order recursion scheme
(HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of
the same signature. Moreover, the interaction between the relational interpretations of the HORS
and of the ATA identifies the set of initial states of the tree automaton from which the infinite tree
generated by the recursion scheme is accepted. We show how to extend this result to alternating
parity automata (APT) by introducing a parametric version of the exponential modality of linear
logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We
show in particular how to reunderstand in this way the type-theoretic approach to higher-order
model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper
how this analysis driven by linear logic results in a new and purely semantic proof of decidability
of the formulas of the monadic second-order logic for higher-order recursion schemes.
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1 Introduction

Thanks to the seminal works by Girard and Reynolds on polymorphism and parametricity
in the 1970s, it has been recognized that every finite tree t on a given signature Σ can be
seen alternatively as a simply-typed λ-term of an appropriate type depending on Σ. This
correspondence between trees and λ-terms is even bijective if one considers λ-terms up to
βη-equivalence, see for instance Girard [8]. Typically, a finite tree t on the signature

Σ = { a : 2 , b : 1 , c : 0 } (1)

is the same thing under this Church encoding as a simply-typed λ-term t of type

(o→ o→ o)→ (o→ o)→ o→ o (2)

modulo βη-equivalence. The idea underlying the correspondence is that every construc-
tor a, b, c of the signature Σ should be treated as a variable

a : o → o → o b : o → o c : o (3)
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where the number of inputs o in the type o→ · · · → o→ o of the variable a, b, c indicates
the arity of the combinator. An equally well-known fact is that this translation extends to
infinite trees generated by higher-order recursion schemes on the signature Σ if one extends
the simply-typed λ-calculus with a fixpoint operator Y . For example, the higher-order
recursion scheme G on the signature Σ

G =
{
S 7→ F a b c

F x y z 7→ x (y z) (F x y (y z)) (4)

constructs the infinite tree

[[G]] =

a

a

a

b

c

b

c

b

b

c

b

b (5)

and can be formulated as a λ-term of the same type (3) as previously but defined in the
simply-typed λ-calculus extended with the fixpoint operator Y :

λabc. ((Y (λF. (λxyz. x (y z) (F x y (y z))))) a b c) (6)

A natural temptation is to study the correspondence between higher-order recursion schemes
(4) and simply-typed λ-terms with fixpoints (6) from the resource-aware point of view of
linear logic. Recall that the intuitionistic type (2) is traditionally translated in linear logic as
the formula

A = ! ( ! o ( ! o ( o )( ! ( ! o( o )( ! o ( o.

As expected, the higher-order recursion scheme G in (4) can be translated as a proof tA of
this formula A in linear logic extended with a fixpoint operator Y . An amusing and slightly
puzzling observation is that the scheme G can be alternatively translated as a proof tB of
the formula B below:

B = ! ( o ( o ( o )( ! ( o( o )( ! o ( o

with the same underlying simply-typed λ-term with fixpoint operator Y . The difference
between the terms tA and tB is not syntactic, but type-theoretic: in the case of the term tA,
the type A indicates that each tree-constructor a, b and c of the signature Σ is allowed to
call its hypothesis as many times as desired:

a : ! o ( ! o ( o b : ! o ( o c : o

whereas in the case of the term tB , the type B indicates that each variable a, b, c calls each
of its hypothesis exactly once:

a : o ( o ( o b : o ( o c : o

As a matter of fact, it appears that the proof tB is the image of the proof tA along a canonical
coercion of linear logic

` ι : A( B.

CSL 2015



262 Relational Semantics of Linear Logic and Higher-order Model Checking

The status of this program transformation ι is difficult to understand unless one recalls
that linear logic is based on the existence of a perfect duality between the programs of a
given type A and their environments or counter-programs which are typed by the linear
negation A⊥ of the original type A. Accordingly, since the two terms tA and tB = ι ◦ tA are
syntactically equal, their difference should lie in the class of counter-programs of type A⊥
or B⊥ which are allowed to interact with them. This idea takes its full flavour in the context
of model-checking, when one realizes that every tree automaton A on the signature Σ may
be seen as a counter-program whose purpose is indeed to interact with tA or tB in order to
check whether a specific property of interest is satisfied by the infinite tree [[G]] generated by
the recursion scheme G. This leads to the tentative duality principle:

higher-order
recursion schemes G ! tree automata A

where a tree automaton A on the signature Σ is thus seen as a counter-program of type A⊥
or B⊥ interacting with the higher-order recursion scheme G seen as a program of type A or B.
An apparent obstruction to this duality principle is that, in contrast to what happens with
recursion schemes G, it is in general impossible to translate a tree automaton A as a proof of
linear logic — in particular because linear logic lacks non-determinism. However, one neat
way to resolve this matter and to extend linear logic with non-determinism is to embed the
logic in its relational semantics, based on the monoidal category Rel of sets and relations.
The relational semantics of linear logic is indeed entitled to be seen as a non-deterministic
extension of linear logic where every nondeterministic tree automaton A = 〈Σ, Q, δ, q0〉 may
be “implemented” by interpreting the base type o as the set Q of states of the automaton,
and by interpreting each variable a, b, c as the following relations

a : Q ( Q ( Q b : Q ( Q c : Q

deduced from the transition function δ of the automaton:

a = {(q1, q2, q) ∈ Q×Q×Q | (1, q1) ∧ (2, q2) ∈ δ(q, a)}
b = {(q1, q) ∈ Q×Q | (1, q1) ∈ δ(q, b)}

c = {q ∈ Q | δ(q, c) = true}

The nondeterministic tree automaton A is then interpreted as the counter-program AB =
! a⊗ ! b⊗ ! c⊗ d of type

B⊥ = ! (Q ( Q ( Q) ⊗ ! (Q ( Q) ⊗ !Q ⊗ Q⊥.

obtained by tensoring the three relations a, b, c lifted with by the exponential modality !
together with the singleton d = {q0} consisting of the initial state of the automaton, and
understood as a counter-program of type Q⊥. Note that by composition with the contraposite
ι⊥ : B⊥( A⊥ of the coercion ι, one gets a counter-program AA = ι⊥ ◦ AB of type

A⊥ = ! ( !Q ( !Q ( Q) ⊗ ! (!Q ( Q) ⊗ !Q ⊗ Q⊥.

Note also that when the type o is interpreted as Q in the relational model, the counter-
programs of type B⊥ of the form ! a ⊗ ! b ⊗ ! c ⊗ d with d = {q0} correspond exactly to
the non-deterministic tree automata on the signature Σ with set of states Q and initial
state q0. The difference between the two types A and B becomes very clear and meaningful
at this stage: shifting to the type A⊥ enables one to extend the class of nondeterministic
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tree automata to nondeterministic alternating tree automata A with typical transitions of
the form

δ(q, a) = (1, q1) ∧ (1, q2) (7)

meaning that the tree automaton A meeting the tree a(t1, t2) at state q explores the left
subtree t1 twice with states q1 and q2 and does not explore at all the right subtree t2. Such
a transition δ(q, a) is typically represented in the relational semantics of linear logic by the
singleton relation

a = { ( {|q1, q2|} , ∅ , q ) } : !Q( !Q( Q (8)

where one uses the set !Q of finite multisets of Q to encode the transition (7) with the finite
multiset {|q1, q2|} consisting of the two states q1, q2 ∈ Q and the empty multiset ∅ of states. It
should be stressed that a tree automaton A admitting such an “alternating” transition δ(q, a)
cannot be encoded as a counter-program of type B⊥ because the transitions of the tree
automaton A are linear in that type and thus explore exactly once each subtree t1 and t2 of
the tree a(t1, t2). Summarizing the current discussion, we are entitled to consider that each
linear type A⊥ and B⊥ reflects a specific class of tree automata on the signature Σ:

B⊥ ↔ non-deterministic tree automata
A⊥ ↔ non-deterministic alternating tree automata

Accordingly, the purpose of the coercion ι from tA to tB is to restrict the power of the class of
alternating non-deterministic tree automata allowed to explore the infinite tree [[G]] generated
by the higher-order recursion scheme G of signature Σ.

Description of the paper. The purpose of this paper is to show that this duality between
recursion schemes and tree automata underlies several of the recent developments in the field
of higher-order model-checking. To that purpose, after recalling in §2 the notion of alternating
parity tree automaton and of monadic second-order logic over trees, we start by establishing in
§3 an equivalence between the intersection type system introduced by Kobayashi to describe
infinitary coinductive proofs, and an infinitary variant of the traditional relational semantics
of linear logic developed in [10]. This correspondence between an intersection type system
and a relational semantics of linear logic adapts to the field of higher-order model-checking
ideas dating back to Coppo, Dezani, Honsell and Longo [4] and recently revisited by Terui
[27] and independently by de Carvalho [5] in order to establish complexity properties of
evaluation in the simply-typed λ-calculus. It may be also seen as an account based on linear
logic of the semantic approach to higher-order model-checking developed by Aehlig in the
early days of the field [1]. The main contribution of the paper is the observation developed in
§4 that this correspondence between intersection type systems and the relational semantics
of linear logic extends to alternating parity games, and thus to the full hierarchy of the
modal µ-calculus. This extension relies on the construction of a parametric comonad in the
sense of [18] defined as a family of modalities �m indexed by colors (or priorities) m ∈ N,
equipped with a series of structural morphisms satisfying suitable coherence properties. The
resulting intersection type system provides a clean and conceptual explanation for the type
system designed by Kobayashi and Ong [17] in order to accomodate the hierarchy of colors.
In particular, we show that a simpler but equivalent treatment of colors is possible. Finally,
we explain in §4 in what sense the parametric comonad exhibited at the level of intersection
types corresponds to a traditional notion of exponential modality at the level of the relational
semantics of linear logic. We obtain in this way a semantic reformulation of alternating
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parity games in an infinitary and colored variant of the relational semantics of linear logic.
In particular, just as for finitary tree automata, there exists an accepting run-tree from
an initial state q ∈ Q of the alternating parity automaton if and only if the state q is an
element of the composite (in the relational semantics) of the recursion scheme with the tree
automaton.

2 Logical specification and automata theory

2.1 Monadic second-order logic and modal µ-calculus
The purpose of higher-order model-checking is to abstract the behavior of a functional
program with recursion as a tree approximating the set of its potential executions, and
then to specify a logical property to check over this tree. The tradition in higher-order
model-checking is to consider monadic second-order logic, a well-balanced choice between
expressivity – it contains most other usual logics over trees – and complexity: the satisfiability
of a formula is decidable for infinite structures of interest – as infinite trees (Rabin 1969).
Higher-order verification has a different approach: the question is whether a given tree
satisfies the formula – or whether an equivalent automaton accepts it. A key step towards an
automata-theoretic approach to MSO comes from the work by Janin and Walukiewicz[15]:

I Theorem. MSO is equi-expressive to modal µ-calculus over trees.

Recall that modal µ-calculus formulas are defined by the grammar

φ ::= X | f | φ ∨ φ | φ ∧ φ | �φ | �i φ | µX. φ | νX. φ

for f ∈ Σ. Given a ranked tree, the semantics of a formula is the set of nodes where it holds.
The predicate f is true on f -labelled nodes, � φ is true on nodes whose succesors all satisfy
φ, �i φ is true on nodes whose ith succesor satisfies φ, and the µ and ν are two fixpoints
operators which can be understood in two different manners. Semantically, they are dual
operators, µ and ν being respectively the least and greatest fixpoint on the semantics of
formulas.

Given a Σ-labelled ranked tree whose set of nodes is N , whose branching structure is given
by a finite family of successor functions succi : N → N , and whose labelling is described by
a function label : N → Σ, the semantics of a closed modal µ-calculus formula φ is defined as
||φ||∅ where ∅ denotes the unique function ∅ → N , and for a function V : V ar → N and a
modal µ-calculus formula ψ, the semantics ||ψ||V are defined inductively:
||a||V = {n ∈ N | label(n) = a}
||X||V = V(X)
||¬φ||V = N \ ||φ||V
||φ ∨ ψ||V = ||φ||V ∪ ||ψ||V
|| �i φ||V = {n ∈ N | ar(n) ≥ i and succi(n) ∈ ||φ||V}
||µX. φ(X)||V =

⋂
{M ⊆ N | ||φ(X)||V[X←M ] ⊆M}

where V[X ←M ] coincides with V except on X which it maps to M . The semantics of
∧, � and ν are defined using de Morgan duality.

Another understanding of µ and ν is syntactic and closer to automata theory: both allow
the unfolding of formulas

µX. φ[X] →µ φ[µX. φ[X]] and νX. φ[X] →ν φ[νX. φ[X]]
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but →µ may only be expanded finitely, while →ν is unconstrained. The semantics of a
formula may then be understood as the set of positions from which it admits unfoldings
which are logically true and which do not use →µ infinitely.

2.2 Alternating parity tree automata
From this syntactic interpretation of fixpoints over formulas, we can define a class of automata
corresponding to modal µ-calculus, namely alternating parity tree automata (APT), whose
purpose is to synchronise the unraveling of formulas with symbols of the tree. These automata
are top-down tree automata, with two additional features:

alternation: they have the power to duplicate or drop subtrees, and to run with a different
state on every copy,
and parity conditions: since run-trees are infinitary by nature, these automata discriminate
a posteriori the run-tree unfolding →µ infinitely.

The transition function takes values in positive Boolean formulas over couples of states
and directions, its generic shape being

δ(q, a) =
∨
i∈I

∧
j∈Ji

(di,j , qi,j) (9)

which consists of a non-deterministic choice of i followed by the execution of |Ji| copies of
the automaton, each on the successor in direction di,j of the current node, with state qi,j .

When for every i ∈ I and every direction d there is a unique j ∈ Ji such that di,j = d, we
recover the usual notion of non-deterministic parity automaton. States of an APT may be
understood as subformulas of the formula of interest, so that some correspond to subformulas
µX. φ and others to subformulas νX. φ. To exclude infinite unfoldings of µ, every state q is
attributed a color Ω(q) ∈ N. States in the immediate scope of a µ receive an odd color, and
the others an even one. If q corresponds to a subformula of q′, then the coloring will satisfy
Ω(q) ≤ Ω(q′). The construction of Ω is such that the greatest color among the ones seen
infinitely often in an infinite branch informs the automaton about which fixpoint operator
was unfolded infinitely along it.

A branch of a run-tree is winning when the greatest color seen infinitely often along it is
even. A run-tree is declared winning when all its infinite branches are. Emerson and Jutla [7]
prove that every modal µ-calculus formula φ can be translated to an equivalent APT Aφ, in
the sense that

I Theorem. Given a Σ-labelled ranked tree T , φ holds at the root of T if and only if Aφ
has a winning run-tree over T .

3 The type-theoretic approach to higher-order model-checking

Developing an idea by Hosoya, Pierce and Vouillon [14], Kobayashi designed in [16] a type-
theoretic account of higher-order model-checking in the particular case of an alternating tree
automata (ATA) testing for coinductive properties — and thus without parity conditions. In
this section, we briefly recall his terminology and results, and explain the hidden connection
with relational semantics.

3.1 Recursion schemes and simply-typed λ-terms with fixpoint
Given a ranked alphabet Σ, we will consider in this paper two kinds of Σ-labelled trees of
finite or countable depth:
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ranked trees, typically generated by higher-order recursion schemes, in which the number
of children of a node labelled with f ∈ Σ is equal to the arity ar(f) of its label,
unranked trees, typically used to describe run-trees of alternating automata, and where
the previous arity constraint is relaxed.

Given a base type o, we will consider the set K of simple types, generated by the grammar

κ ::= o | κ→ κ

modulo associativity of the arrow to the right. Every simple type has a unique decomposition

κ = κ1 → · · · → κn → o

where n is the arity of κ, denoted ar(κ). The complexity of κ is typically measured by its
order, defined inductively by order(κ) = 0 if n = 0 and

order(κ) = 1 + max(order(κ1), . . . , order(κn))

In the sequel, following Kobayashi [16], we shall refer to simple types as kinds, to prevent
confusions with intersection types. We write f :: κ or t :: κ when a symbol f or a term t

has kind κ. The formalism of higher-order recursion schemes (HORS) on a given ranked
signature Σ may be seen as equivalent to simply-typed λ-calculus with a recursion operator
Y and free variables f ∈ Σ of order at most 1. Consequently, every free variable f ∈ Σ of
the λY -term corresponding to the recursion scheme has kind

o → · · · → o︸ ︷︷ ︸
ar(f)

→ o. (10)

where ar(f) denotes the arity of the terminal f ∈ Σ. The normalization of the λY -term
associated to the recursion scheme G produces a potentially infinite ranked tree, labelled
by its free variables. As we explained in the introduction, this translation of higher-order
recursion schemes into λY -terms may be seen as an instance of the Church encoding of
ranked trees over the signature Σ.

In order to check whether a given monadic second-order formula holds at the root of
the infinite tree generated by a HORS, a traditional procedure is to explore it using an
alternating parity automaton (APT). Every exploration of the APT produces a run-tree
labelled by the same signature, but unranked because of the alternating nature of the
automaton. The subclass of APT in which every state of the automaton is assigned color 0
(the least coinductive priority) defines the class of alternating tree automata (ATA), which can
test coinductive properties like safety, but cannot test inductive properties like reachability.
The definitions of HORS and APT, as well as the correspondence between APT and monadic
second-order logic, are recalled in the Appendix. In the sequel, S denotes the start symbol of
a recursion scheme G, N its set of non-terminals, and R(F ) denotes, for every non-terminal
F ∈ N , the simply-typed λ-term it rewrites to as F →G R(F ) in the recursion scheme G.

3.2 From kinds to intersection types
In his original work, Kobayashi reduces the study of coinductive properties of higher-order
recursion schemes to the definition of an intersection type system. The general idea is that
every transition of an alternating tree automaton of the form

δ(q0, if) = (2, q0) ∧ (2, q1) (11)
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may be understood type-theoretically as a refinement of the simple type

if :: o→ o→ o

and reformulated as an intersection type

∅ → (q0 ∧ q1)→ q0.

This intersection type expresses the fact that, given any tree T1 and a tree T2 accepted from
both states q0 and q1, the composed tree if T1 T2 is accepted from the state q0. Following
this connection, Kobayashi defines for every HORS G and every alternating tree automaton A
without parity condition a type system Kob(G,A) satisfying the following property:

I Theorem 1 (Kobayashi [16]). The sequent

`G,A S : q :: o

is provable in Kob(G,A) if and only if there is a run-tree of A over [[G]] with initial state q.

Note that the intersection type system Kob(G,A) is somewhat ad hoc since it depends on G
and A, in contrast to the approach developed in the present paper, based on a Church
encoding of G and A in a single intersection type system formulated in §4 and §5.

3.3 Intersection types and the relational semantics of linear logic
As a warm-up to the next two sections §4 and §5, and to the modal treatment of colors in
alternating parity tree automata (APT), we explain here in the simpler coinductive case,
how to relate Kobayashi’s intersection type system for alternating tree automata (ATA) to
an infinitary variant of the relational semantics of linear logic. As already explained, the
Church encoding of a ranked tree over the signature Σ = {fi : ari | i ∈ I} defines a λY -term
t of simple type o with free variables fi of kind (10), translated as the following formula of
linear logic:

fi : ! o( · · ·( ! o︸ ︷︷ ︸
ari

( o for i ∈ I.

The λY -term t itself is thus typed by the following sequent of linear logic:

· · · , fi : !
(

! o( · · ·( ! o︸ ︷︷ ︸
ai

( o
)

, · · · ` t : o

From this follows that its interpretation [[t]] in the relational semantics of linear logic defines
a subset of the following set of “higher-order states”

[[t]] ⊆

 ⊗
i∈I

!

! o( · · ·( ! o︸ ︷︷ ︸
ari

( o

( o


where the return type o is naturally interpreted as the set of states [[o]] = Q of the alternating
tree automaton. As explained in the introduction, the transition function δ of the alternating
tree automaton A is itself interpreted as a subset

[[δ]] ⊆

 ¯
i∈I

! o( · · ·( ! o︸ ︷︷ ︸
ari

( o
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which may be “strengthened” in the categorical sense as a subset

[[δ†]] ⊆

 ⊗
i∈I

!

! o( · · ·( ! o︸ ︷︷ ︸
ari

( o

 
where we turn to our advantage the well-known isomorphism of linear logic:

! (A&B ) ∼= !A⊗ !B.

As explained in the introduction, a first contribution of the article is to establish the following
result in the case of the traditional relational semantics of linear logic, extended here with a
fixpoint operator Y :

I Theorem 2. An alternating tree automaton A with a set of states Q has a finite accepting
run-tree with initial state q0 over the possibly infinite tree generated by a λY -term t if and
only if there exists u ∈ [[δ†]] such that (u, q0) ∈ [[t]], where [[δ†]] =Mfin([[δ]]) denotes the set
of finite multisets of elements of [[δ]].

Another equivalent way to state the theorem is that the set of initial states from which
there exists a finite run-tree of the alternating tree automaton A coincides with the result
of composing [[t]] and [[δ†]] in the relational semantics. At this point, it appears that the
only hurdle towards an extension of this theorem to the alternating tree automata with
coinductive (rather than inductive) acceptance condition is the finiteness of multiplicities
in the traditional relational interpretation of the exponential modality. For this reason, the
authors developed in a companion paper [10] an infinitary variant Rel of the relational model
of linear logic, where the exponential modality noted there «  » in order to distinguish it
from the traditional « ! » transports every set A (of cardinality required to be smaller than
the reals) to the set

 A = Mcount(A)

of finite-or-countable multisets of elements of A. In this alternative relational semantics,
there is a coinductive fixpoint operator Y satisfying the equations of a Conway operator,
and thus providing an interpretation of the λY -calculus. The infinitary interpretation of a
λY -term is denoted [[t]] in order to distinguish it from the traditional finitary interpretation.
Note that the interpretation [[δ]] = [[δ]] is unchanged, and that its strengthening to [[δ†]] 
reflects now the infinitary principles of the model. In particular, it is possible to detect
whether a transition has been called a countable number of times. This brings us to the
second main contribution of this article, which is to adapt the previous theorem for finite
accepting run-trees to the general case of possibly infinite accepting run-trees:

I Theorem 3. An alternating tree automaton A with a set of states Q has a possibly infinite
accepting run-tree with initial state q0 over the possibly infinite tree generated by a λY -term t

if and only if there exists u ∈ [[δ†]] such that (u, q0) ∈ [[t]] , where [[δ†]] = Mcount([[δ]] )
denotes the set of finite-or-countable multisets of elements of [[δ]] .

This theorem should be understood as a purely semantic counterpart to Theorem 1. The
connection is provided by the foundational and elegant work by Bucciarelli and Ehrhard
[2, 3] on indexed linear logic, which establishes a nice correspondence between the elements
of the relational semantics and a finitary variant of intersection types. By shifting from
finite to finite-or-countable multisets and intersection types, we are able to recover here
the discriminating power of general alternating tree automata. In particular, the set of
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initial states of the alternating tree automaton A from which there exists a (finite or infinite)
accepting run-tree is equal to the composition of [[t]] and of [[δ†]] in our infinitary variant of
the relational semantics.

We should mention however that there is a minor difference between our semantic result
and the original Theorem 1, related to the fact that Kobayashi chose to work in a type system
where intersection is understood as an idempotent operation. This choice is motivated in his
work by the desire to keep the type system finitary, and thus to obtain decidability results.
We prefer to work here with an infinitary relational semantics, corresponding to an infinitary
and non-idempotent variant of Kobayashi’s intersection type system. The reason is that
shifting from an infinitary to an idempotent intersection type system corresponds from a
semantic point of view to shifting from an infinitary relational semantics to its extensional
collapse. Ehrhard [6] has recently established that the extensional collapse of the relational
semantics is provided by a lattice model, where the formulas of linear logic are interpreted as
partially ordered sets. This means that the corresponding intersection type systems should
include a subtyping relation, as well-understood for instance by Terui in [27]. This subtyping
relation is not mentioned in the original work by Kobayashi [16] nor in the later work by
Kobayashi and Ong [17] and although their final result is certainly valid, this omission has
lead to much confusion.

4 A type-theoretic account of alternating parity automata

4.1 Colored intersection types
After designing in [16] the type-theoretic approach to alternating tree automata recalled in
the previous section, Kobayashi carried on in this direction and generalized it with Ong [17] to
the larger class of alternating parity automata. The basic idea of this work is to incorporate
coloring annotations in the intersection types, in order to reflect in the type system the parity
conditions of the tree automata. Suppose for instance that a binary terminal a ∈ Σ induces
a transition δ(q, a) = (1, q1) ∧ (2, q2) in an alternating parity tree automaton with coloring
function Ω : Q→ N. In that case, the terminal a is assigned in [17] the intersection type

a : (q1,m1)→ (q2,m2)→ q (12)

where m1 = max(Ω(q1),Ω(q)) and m2 = max(Ω(q2),Ω(q)) are colors indicating to the type
system the colors of the states q, q1, q2 of the parity tree automaton. In order to prepare the
later development of paper, we find useful to simplify the colored intersection type system
originally formulated by Kobayashi and Ong, and to stress at the same time the modal
nature of colors (or priorities) in higher-order model-checking. So, given a set of states Q
and a coloring function Ω : Q→ N, we define the set of colors

Col = {Ω(q) | q ∈ Q } ] { ε }

which contains the colors used by Ω, together with an additional color ε which will play the
role of neutral element. The intersection types are then generated by the grammar

θ ::= q | τ → θ (q ∈ Q)
τ ::=

∧
i∈I �mi θi (I finite, mi ∈ Col)

The refinement relation between intersection types and kinds is defined by the inductive
rules below:

q ∈ Q
q :: o

τ :: κ1 θ :: κ2

τ → θ :: κ1 → κ2

∀i ∈ I θi :: κ∧
i∈I �miθi :: κ
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Axiom (x ∈ V ∪ N )
x :

∧
{i} �ε θi :: κ ` x : θi :: κ

{ (i, qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ a ∈ Σ

∅ ` a :
∧k1
j=1 �Ω(q1j) q1j → . . . →

∧kn

j=1 �Ω(qnj) qnj → q :: o→ · · · → o→ o

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk θk)→ θ :: κ→ κ′ ∆1 ` u : θ1 :: κ · · ·∆k ` u : θk :: κ
App

∆ + �m1 ∆1 + . . . + �mk ∆k ` t u : θ :: κ′

∆ , x :
∧
i∈I �mi θi :: κ ` t : θ :: κ′ I ⊆ J

λ
∆ ` λx . t :

(∧
j∈J �mj θj

)
→ θ :: κ→ κ′

Figure 1 The type system Z(A) associated to the alternating parity tree automaton A.

Note that the color modality acts on intersection types and contexts by

�m

(∧
i∈I �mi θi

)
=

∧
i∈I �max(m,mi) θi �m (x : τ , ∆ ) = x : �m τ , �m ∆

Note also that the neutral color ε is only introduced here to allow a uniform definition of
types and contexts. It does not affect the coloring of types, and should be understood as the
absence of a coloring annotation. From this, one obtains an intersection type system Z(A)
parametrized by the alternating tree automaton A, whose rules are given in Figure 1. Here
we use the Hebrew letter Z which should be read “tsadi”. The resulting type system Z(A)
enables us to type the rewriting rules of a higher-order recursion scheme

∆ ` R(F ) : σ :: κ (13)

where the non-terminals occurring in the λ-term R(F ) appear as variables in the context ∆
of the typing judgement. On the other hand, the intersection type system Z(A) does not
include a fixpoint operator Y and for that reason does not accomodate recursion.

4.2 Interpretation of recursion
In order to accomodate recursion in the intersection type system Z(A), we need to extend
it with a rule fix whose purpose is to expand the non-terminals F ∈ N of the recursion
scheme G in order to obtain possibly infinitary derivation trees. So, given a higher-order
recursion scheme G and an alternating parity automaton A, we define the intersection type
system Zfix(G,A) as Z(A) where we add the recursion rule

∆ ` R(F ) : θ :: κ
fix dom(Γ) ⊆ N

F : �ε θ :: κ ` F : θ :: κ
and at the same time restrict the Axiom rule to variables x ∈ V, and in particular do not
allow the Axiom rule to be applied on non-terminals any more. Note that the context ∆
does not appear in the conclusion of the rule fix, but only in its premise. The fix rule is
thus akin to an axiom rule adapted to handle the non-terminals of the higher-order recursion
scheme.
An important aspect of the resulting intersection type system Zfix(G,A) is that its derivation
trees may be of countable depth. As in Kobayashi’s original type system, this infinitary
nature of the intersection type system enables one to reflect the existence of infinitary runs
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in the alternating parity automaton A. In order to articulate the parity condition of the
automaton with the typing derivations, a color is assigned to each node of the derivation
tree, in the following way:

the node ∆i ` u : θi :: κ is assigned the color mi in every Application rule

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ :: κ→ κ′ · · · ∆i ` u : θi :: κ · · ·

∆ + �m1∆1 + . . . + �mk
∆k ` t u : θ :: κ′

of the derivation tree,
all the other nodes of the derivation tree are assigned the neutral color ε, which means in
some sense that they are not colored by the typing system.

A nice aspect of our approach compared to the original formulation in [17] is that the parity
condition traditionally applied to the alternating parity automaton A extends to a very
simple parity condition on the derivation trees of Zfix(G,A). Indeed, the color of an infinite
branch of a given derivation tree can be defined as

the neutral color ε if no other color m ∈ Col occurs infinitely often in the branch,
otherwise, the maximal non-neutral color m ∈ Col \ {ε} seen infinitely often.

Then, an infinite branch of the derivation tree is declared winning precisely when its color is
an even integer (and in particular different from the neutral color). A winning derivation
tree is then defined as a derivation tree whose infinite branches are all winning in the sense
just explained.

4.3 Soundness and completeness
Once the notion of infinite winning derivation tree explicated, as we have just done in the
previous section, there remains to relate this winning condition to the acceptance condition
of alternating parity automata. To that purpose, and for the sake of the presentation, we
choose to restrict ourself to productive recursion schemes, as it is also done in [17]. Note that
it is only a very mild restriction, since every recursion scheme G can be transformed in to a
productive recursion scheme G′ which outputs a special leaf symbol Ω whenever the Böhm
evaluation of the original scheme G would have infinitely looped. The following theorem
establishes a soundness and completeness theorem which relates the winning condition on the
infinite derivation trees of Zfix(G,A) to the parity acceptance condition of the automaton A
during its exploration of the infinite tree [[G]] generated by the recursion scheme G:

I Theorem 4 (soundness and completeness). Suppose given a productive recursion scheme G
and an alternating parity automaton A. There exists a winning run-tree of A over [[G]] with
initial state q if and only if the sequent

S : �ε q :: o ` S : q :: o (14)

has a winning derivation tree in the type system Zfix(G,A).

There are several ways to establish the theorem. One possible way is to establish an
equivalence with the original soundness and completeness by Kobayashi and Ong [17]. One
should be careful however that the original proof in [17] was incomplete, and has been
corrected in the (unpublished) journal version of the paper. In order to establish the
equivalence, one shows that the existence of a winning derivation tree of the sequent (14) in
the intersection type system Zfix(G,A) is equivalent to the existence of a winning strategy
for Eve in the parity game defined in [17]. Another more direct proof is possible, based on the
reformulation by Haddad [12] of Kobayashi and Ong’s treatment of infinitary (rather than
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simply finitary) sequences of rewrites on higher-order recursion schemes. It is in particular
important to observe that the infinitary nature of computations requires to extend the usual
soundness and completeness arguments based on Böhm trees, finite rewriting sequences and
continuity. This point was apparently forgotten in [17] and corrected in the journal version
of the paper.

5 An indexed tensorial logic with colors

The notation �m θ is used in our intersection type system Zfix(G,A) as a way to stress the
modal nature of colors, and it replaces for the better the notation (θ,m) used by Kobayashi
and Ong in [17]. As we will see, the discovery of the modal nature of colors is fundamental,
and is not just a matter of using the appropriate notation. In particular, it enables us to
simplify both technically and conceptually the original intersection type system in [17]. By
way of illustration, the original intersection type (12) of the binary terminal a ∈ Σ considered
in §4.1 is replaced by the simpler intersection type:

a : �n1 q1 → �n2 q2 → q (15)

where n1 = Ω(q1) and n2 = Ω(q2). Interestingly, the color of the state q is not mentioned
in the type anymore. The reason is that this alternative account of colors achieved in our
type system is not just “simpler” than the original one: it also reveals a deep and somewhat
unexpected connection with linear logic, since as we will see, this “disappearance” of the
color Ω(q) in (15) is related to the well-known linear decomposition A ⇒ B = !A( B of
the intuitionistic implication in linear logic. One essential difference however is that the
exponential modality « ! » of linear logic is replaced by a family of modal boxes Ω(m) which
formally defines what Melliès calls a parametric comonad in [21][19].

This key observation enables us to translate the intersection type system Zfix(G,A) into
an infinitary variant of linear logic equipped with a family of color modalities noted �m for
m ∈ N. A nice feature of the translation is that it transports the intersection type system
Zfix(G,A) which depends on G and A into an intersection type system which does not depend
on them anymore — although it still depends on the set Q of states of the automaton. The
infinitary variant of linear logic which we use for the translation is

indexed in the sense of Bucciarelli and Ehrhard [2, 3]. In particular, the finite or
countable intersection types

∧
i∈I θi of Zfix(G,A) are translated as finite or countable

indexed families [θi | i ∈ I] of formulas of the logic,
tensorial in the sense of Melliès [22, 20, 21]. In this specific case, every negated formula
of the logic is negated with respect to a specific state q ∈ Q of the automaton, and is
thus of the form σ( q, which may be alternatively written as ¬q σ or even as

q¬ σ.
In this way, one obtains an indexed and colored variant of tensorial logic, called LT(Q) in
the sequel, and whose formulas are inductively generated by the following grammar:

A,B ::= 1 | A⊗B | ¬q A | �mA | [Aj | j ∈ J ] (m ∈ Col, q ∈ Q)

As already mentioned, following the philosophy in [3], the finite or countable indexed set
[σj | j ∈ J ] internalizes the intersection operator of Zfix(G,A) in our indexed tensorial logic,
see our companion paper [9] for details. Importantly, the resulting indexed logic TL(Q) can
be used as an intersection type system refining the simply-typed λ-calculus in just the same
way as Zfix(G,A), see the Appendix . In particular, the fact that � defines a parametric
monoidal comonad in the logic means that the sequents
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�ε A ` A

�max(m1,m2) A ` �m1 �m2 A

�m A ⊗ �m B ` �m (A ⊗ B)

are provable for all colors m,m1,m2 ∈ N, and all formulas A,B. In order to deal with
recursion schemes, we admit derivation trees with finite or countable depth in the logical
system TL(Q). The nodes of the derivation trees of TL(Q) are then colored in the following
way:

every node Γ `M : A :: κ in a Right introduction of the modality �m :

Γ ` M : A :: κ Right �m�m Γ ` M : �mA :: κ
is assigned the color m of the modality,
all the other nodes of the derivation tree are assigned the neutral color ε.

The winning condition on an infinite derivation tree of TL(Q) is then directly adapted
from the similar condition in Zfix(G,A). Thanks to this condition, we are ready to state a
useful correspondence theorem between Zfix(G,A) and TL(Q) for any (productive) recursion
scheme G. Suppose that for each F ∈ N of kind κ(F ) of the recursion scheme G, we introduce
a new free variable freeze(F ) of kind κ(F )→ κ(F ) ; that we replace each λ-term R(F ) by
its βη-long normal form ; and finally, that we substitute each occurrence of F appearing
in any βη-long normal form R(G) of the recursion scheme G with the λ-term freeze(F ) F
of the same kind κ(F ). This transformation induces a context-free grammar of « blocks»
consisting of the βη-long R(G)’s, which generates an infinite λ-term in βη-long normal form,
noted term(G), with free variables of the form freeze(F ). Moreover, this infinite λ-term
term(G) is coinductively typed in the simply-typed λ-calculus by the typing judgment:

. . . , freeze(F ) : κ(F )→ κ(F ) , . . . ` term(G) : o (16)

where F runs over all the non-terminals F ∈ N of the higher-order recursion scheme G. At
this point, we are ready to recast our Theorem 4 in the proof-theoretic language of indexed
tensorial logic:

I Theorem 5. There exists a winning derivation tree in Zfix(G,A) of the sequent

S : �ε q0 :: o ` S : q0 :: o (17)

if and only if there exists a winning derivation tree in TL(Q) of a sequent

Γ ` term(G) : q0 :: o (18)

refining the typing judgment (16).

6 Putting all together: relational semantics of linear logic and
higher-model model-checking

Once the connection between higher-order model-checking and indexed tensorial logic es-
tablished in §5, there remains to exhibit the associated relational semantics of linear logic,
following the ideas of Bucciarelli and Ehrhard [2, 3]. This trail leads us to an infinitary and
colored variant of the usual relational semantics of linear logic, developed in our companion
paper [10]. The key observation guiding the construction is that the functor

� : A 7→ Col ×A : Rel → Rel

equipped with the coercion maps
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{(((m, a) , (m, b)) , (m, (a, b))) | a ∈ A, b ∈ B, m ∈ Col} : �A ⊗ �B → � (A ⊗ B )
{ (?, (m, ?)) | m ∈ Col } : 1 → � 1

{ ( ( max(m1, m2), a) , (m1, (m2, a) ) ) | a ∈ A } : � A → � � A

{ ( ( ε, a) , a) | a ∈ A } : � A → A

defines a lax monoidal comonad � : Rel → Rel on the category Rel of sets and relations.
Moreover, the comonad distributes (or better: commutes) with the exponential modality  ,
in such a way that these two comonads compose into a new exponential modality of linear
logic    defined by the equation    A =  �A. A Conway operator Y can be then defined
in order to reflect in the relational semantics the definition of the winning condition on
the infinite derivations of TL(Q). This fixpoint operator can be seen as a combination of
the inductive and coinductive fixpoints of the model, where the color of an input indicates
whether the fixpoint operator should be defined inductively (when the color is odd or neutral)
or coinductively (when the color is even). The relational interpretation of a λY -term t in
this infinitary model is denoted as [[t]]    . The interpretation [[δ]]    of the transition function
δ is defined similarly as for [[δ]] , except that the color information is incorporated in the
semantics following the comonadic principles underlying the translation (15) in §5. Typically,
the transition (11) is interpreted in the colored relational semantics as

([ ], ([(Ω(q0), q0), (Ω(q1), q1)], q0)) ∈ [[δ]]    

The last contribution of this paper, which underlies our companion paper [10] but is not stated
there, establishes a clean correspondence between the relational semantics of a higher-order
recursion scheme G (seen below as a λY -term tG) and the exploration of the associated
ranked tree [[G]] by an alternating parity automaton A:

I Theorem 6. An alternating parity tree automaton A with a set of states Q has a winning
run-tree with initial state q0 over the ranked tree [[G]] generated by the λY -term tG if and only
if there exists u ∈ [[δ†]]    such that (u, q0) ∈ [[tG ]]    , where [[δ†]]    =Mcount(Col × [[δ]]    ) denotes
the set of finite-or-countable colored multisets of elements of [[δ]]    .

7 Related works

The field of higher-order model-checking was to a large extent started at the turn of the
century by Knapik, Niwinski, Urzyczyn, who established that for every n ≥ 0, Σ-labelled
trees generated by order-n safe recursion schemes are exactly those that are generated by
order-n pushdown automata, and further, that they have decidable MSO theories. The safety
condition was relaxed a few years later by Ong, who established the MSO decidability for
general order-n recursion schemes, using ideas imported from game semantics. Unfortunately,
Ong’s proof was intricate and somewhat difficult to understand. Much work was thus devoted
to establish the decidability result by other means. Besides the type-theoretic approach
initiated by Kobayashi [16, 17], Hague, Murawski, Ong, Serre [13] developed an automata-
theoretic approach based on the translation of the higher-order recursion scheme G into a
collapsible pushdown automaton (CPDA), which led the four authors to another proof of MSO
decidability for order-n recursion schemes. A clarifying connection was then made by Salvati
and Walukiewicz between this translation of higher-order recursion schemes into CPDAs and
the traditional evaluation mechanism of the environment Krivine machine [24]. Following
this discovery, Salvati and Walukiewicz are currently developing a semantic approach to
higher-order model checking, based on the interpretation in finite models of the λ-calculus
with fixpoint operators, see [26, 25] for details. The idea of connecting linear logic to
automata theory is a longstanding dream which has been nurtured by a number of important
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contributions. Among them, we would like to mention the clever work by Terui [27] who
developed a semantic and type-theoretic approach based on linear logic, intersection types
and automata theory in order to characterize the complexity of evaluation in the simply-typed
λ-calculus. In a different but related line of work, explicitly inspired by Bucciarelli and
Ehrhard’s indexed linear logic [2, 3], de Carvalho [5] establishes an interesting correspondence
between intersection types and the length of evaluation in a Krivine machine.

8 Conclusions and perspectives

The purpose of the present paper is to connect higher-order model-checking to a series of
advanced ideas in contemporary semantics, like linear logic and its relational semantics,
indexed linear logic, distributive laws and parametric comonads. All these ingredients meet
and combine surprisingly well. The approach reveals in particular that the traditional
treatment of inductive-coinductive reasoning based on colors (or priorities) is secretly based
on the same comonadic principles as the exponential modality of linear logic.

Besides the conceptual promises offered by these connections, we would like to conclude
the paper by mentioning that this stream of ideas leads us to an alternative and purely
semantic proof of MSO decidability for higher-order recursion schemes, after [23, 17, 13].
The basic idea is to replace the infinitary colored relational semantics constructed in §6
by a finitary variant based on the prime-algebraic lattice semantics of linear logic. From
a type-theoretic point of view, this lattice semantics corresponds to an intersection type
system with subtyping for linear logic recently formulated by Terui [27]. We have shown in
a companion paper [11] how to recover the MSO decidability result for order-n recursion
schemes by adapting to this finitary semantics of linear logic the constructions performed here
for its relational semantics. One interesting feature of the resulting model of the λY -calculus
is that a morphism D → E in the Kleisli category consists in a continuous function

f : D × · · · ×D︸ ︷︷ ︸
n

−→ E

where n is the number of colors considered in the semantics ; and that the fixpoint Y f of a
morphism f : D → D is defined in that case by the alternating formula

Y f = νxn . µxn−1 . . . νx2 . µx1 . νx0.f(x0, . . . , xn)

where we suppose (without loss of generality) that n is even, where µ and ν denote the
least and greatest fixpoint operators, respectively. We believe that the apparition of this
simple formula and the fact that it defines a Conway operator Y and thus a model of the
λY -calculus is a key contribution to the construction of a semantic and purely compositional
account of higher-order model-checking.
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Abstract
The famous van Benthem theorem states that modal logic corresponds exactly to the fragment of
first-order logic that is invariant under bisimulation. In this article we prove an exact analogue
of this theorem in the framework of modal dependence logic MDL and team semantics. We
show that modal team logic MTL, extending MDL by classical negation, captures exactly the
FO-definable bisimulation invariant properties of Kripke structures and teams. We also compare
the expressive power of MTL to most of the variants and extensions of MDL recently studied in
the area.
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1 Introduction

The concepts of dependence and independence are ubiquitous in many scientific disciplines
such as experimental physics, social choice theory, computer science, and cryptography.
Dependence logic D [21] and its so-called team semantics have given rise to a new logical
framework in which various notions of dependence and independence can be formalized and
studied. Dependence logic extends first-order logic by dependence atoms

=(x1, . . . , xn−1, xn) , (1)

expressing that the value of the variable xn is functionally dependent on the values of
x1, . . . , xn−1. The formulas of dependence logic are evaluated over teams, i. e., sets of
assignments, and not over single assignments as in first-order logic.

In [22] a modal variant of dependence logic MDL was introduced. In the modal framework
teams are sets of worlds, and a dependence atom

=(p1, . . . , pn−1, pn) (2)
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holds in a team T if there is a Boolean function that determines the value of the propositional
variable pn from those of p1, . . . , pn−1 in all worlds in T . One of the fundamental properties
of MDL (and of dependence logic) is that its formulas satisfy the so-called downwards closure
property: if M,T |= ϕ, and T ′ ⊆ T , then M,T ′ |= ϕ. Still, the modal framework is very
different from the first-order one, e.g., dependence atoms between propositional variables can
be eliminated with the help of the classical disjunction > [22]. On the other hand, it was
recently shown that eliminating dependence atoms using disjunction causes an exponential
blow-up in the formula size, that is, any formula of ML(>) logically equivalent to the atom in
(2) is bound to have length exponential in n [10]. The central complexity theoretic questions
regarding MDL have been solved in [20, 14, 3, 15].

Extended modal dependence logic, EMDL, was introduced in [4]. This extension is
defined simply by allowing ML formulas to appear inside dependence atoms, instead of only
propositions. EMDL can be seen as the first step towards combining dependencies with
temporal reasoning. EMDL is strictly more expressive than MDL but its formulas still have
the downwards closure property. In fact, EMDL has recently been shown to be equivalent to
the logic ML(>) [4, 10].

In the first-order case, several interesting variants of the dependence atoms have been
introduced and studied. The focus has been on independence atoms

(x1, . . . , x`)⊥(y1,...,ym)(z1, . . . , zn),

and inclusion atoms
(x1, . . . , x`) ⊆ (y1, . . . , y`),

which were introduced in [9] and [5], respectively. The intuitive meaning of the independence
atom is that the variables x1, . . . , x` and z1, . . . , zn are independent of each other for any
fixed value of y1, . . . , ym, whereas the inclusion atom declares that all values of the tuple
(x1, . . . , x`) appear also as values of (y1, . . . , y`). In [11] a modal variant, MIL, of independence
logic was introduced. The logic MIL contains MDL as a proper sublogic, in particular, its
formulas do not in general have the downwards closure property. In [11] it was also noted
that all MIL formulas are invariant under bisimulation when this notion is lifted from single
worlds to a relation between sets of words in a natural way. At the same time (independently)
in [10] it was shown that EMDL and ML(>) can express exactly those properties of Kripke
structures and teams that are downwards closed and invariant under k-bisimulation for some
k ∈ N.

A famous theorem by Johan van Benthem [23, 24] states that modal logic is exactly the
fragment of first-order logic that is invariant under (full) bisimulation. In this paper we study
the analogues of this theorem in the context of team semantics. Our main result shows that
an analogue of the van Benthem theorem for team semantics can be obtained by replacing
ML by Modal Team Logic (MTL). MTL was introduced in [16] and extends ML (and MDL)
by classical negation ∼. More precisely, we show that for any team property P the following
are equivalent:
(i) There is an MTL-formula which expresses P ,
(ii) there is a first-order formula which expresses P and P is bisimulation-invariant,
(iii) P is invariant under k-bisimulation for some k,
(iv) P is bisimulation-invariant and local.

We also study whether all bisimulation invariant properties can be captured by natural
variants of EMDL. We consider extended modal independence and extended modal inclusion
logic (EMIL and EMINCL, respectively), which are obtained from EMDL by replacing the
dependence atom with the independence (resp. inclusion) atom. We show that both of
these logics fail to capture all bisimulation invariant properties, and therefore in particular
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are strictly weaker than MTL. On the other hand, we show that EMINCL(>) (EMINCL
extended with classical disjunction) is in fact as expressive as MTL, but the analogously
defined EMIL(>) is strictly weaker. Finally, we show that the extension MLFO of ML by all
first-order definable generalized dependence atoms (see [11]) gives rise to a logic that is as
well equivalent to MTL. The full version of this paper (including all proofs) can be found
in [12].

2 Preliminaries

A Kripke model is a tuple M = (W,R, π) where W is a nonempty set of worlds, R ⊆W ×W ,
and π : P → 2W , where P is the set of propositional variables. A team of a modelM as above
is simply a set T ⊆W . The central basic concept underlying Väänänen’s modal dependence
logic and all its variants is that modal formulas are evaluated not in a world but in a team.
This is made precise in the following definitions. We first recall the usual syntax of modal
logic ML:

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ,

where p is a propositional variable. Note that we consider only formulas in negation normal
form, i.e., negation appears only in front of atoms. As will become clear from the definition
of team semantics of ML, that we present next, p and ¬p are not dual formulas, consequently
tertium non datur does not hold in the sense that it is possible that M,T 6|= p andM,T 6|= ¬p
(however, we still have that M,T |= p∨¬p for all models M and teams T ). It is worth noting
that in [22], the connective ¬ is allowed to appear freely in MDL formulas (with semantics
generalizing the atomic negation case of Definition 2.1 below, note that classical negation as
allowed in MTL is not allowed in MDL). The well-known dualities from classical modal logic
are also true for MDL formulas hence any ML-formula (even MDL) can be rewritten in such
a way that ¬ only appears in front of propositional variables.

I Definition 2.1. Let M = (W,R, π) be a Kripke model, let T ⊆ W be a team, and let ϕ
be an ML-formula. We define when M,T |= ϕ holds inductively:

If ϕ = p, then M,T |= ϕ iff T ⊆ π(p),
If ϕ = ¬p, then M,T |= ϕ iff T ∩ π(p) = ∅,
If ϕ = ψ ∨ χ for some formulas ψ and χ, then M,T |= ϕ iff T = T1 ∪ T2 with M,T1 |= ψ

and M,T2 |= χ,
If ϕ = ψ ∧ χ for some formulas ψ and χ, then M,T |= ϕ iff M,T |= ψ and M,T |= χ,
If ϕ = ♦ψ for some formula ψ, then M,T |= ϕ iff there is some team T ′ of M such that
M,T ′ |= ψ and

for each w ∈ T , there is some w′ ∈ T ′ with (w,w′) ∈ R, and
for each w′ ∈ T ′, there is some w ∈ T with (w,w′) ∈ R.

If ϕ = �ψ for some formula ψ, then M,T |= ϕ iff M,T ′ |= ψ, where T ′ is the set
{w′ ∈M | (w,w′) ∈ R for some w ∈ T}.

Analogously to the first-order setting, ML-formulas satisfy the following flatness prop-
erty [21]. Here, the notation M,w |= ϕ in item 3 refers to the standard semantics of modal
logic (without teams).

I Proposition 2.2. Let M be a Kripke model and T a team of M . Let ϕ be an ML-formula.
Then the following are equivalent:
1. M,T |= ϕ,
2. M, {w} |= ϕ for each w ∈ T ,
3. M,w |= ϕ for each w ∈ T .
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Modal team logic extends ML by a second type of negation, denoted by ∼, and interpreted
just as classical negation. The syntax is formally given as follows:

ϕ ::= p | ¬p | ∼ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ,

where p is a propositional variable. The semantics of MTL is defined by extending Def. 2.1
by the following clause:

If ϕ = ∼ψ for some formula ψ, then M,T |= ϕ iff M,T 6|= ψ.
We note that usually (see [16]), MTL also contains dependence atoms; however since these
atoms can be expressed in MTL we omit them in the syntax (see Proposition 2.3 below). The
classical disjunction > (in some other context also referred to as intuitionistic disjunction) is
also readily expressed in MTL: ϕ> ψ is logically equivalent to ∼(∼ϕ ∧ ∼ψ).

For an ML formula ϕ, we let ϕdual denote the formula that is obtained by transforming
¬ϕ to negation normal form. Now by Proposition 2.2 it follows that

M,T |= ϕdual iff M,w 6|= ϕ for all w ∈ T,

hence M,T |= ∼ψdual if and only if there is some w ∈ T with M,w |= ψ. We therefore often
write Eψ instead of ∼ψdual. Note that E is not a global operator stating existence of a world
anywhere in the model, but E is evaluated in the current team. It is easy to see (and follows
from Proposition 2.8) that a global “exists” operator cannot be expressed in MTL.

The next proposition shows that dependence atoms can be easily expressed in MTL.

I Proposition 2.3. The dependence atom (2) can be expressed in MTL by a formula that
has length polynomial in n.

Proof. Note first that, analogously to the first-order case [1], (2) is logically equivalent with

(
∧

1≤i≤n−1
=(pi))→ =(pn) ,

where → is the so-called intuitionistic implication with the following semantics:

M,T |= ϕ→ ψ iff for all T ′ ⊆ T : if M,T ′ |= ϕ then M,T ′ |= ψ.

The connective → has a short logically equivalent definition in MTL (see [16]): ϕ → ψ is
equivalent to (∼ ϕ> ψ)⊗⊥, where ⊗ is the dual of ∨, i.e., ϕ⊗ ψ := ∼(∼ϕ ∨ ∼ψ), and ⊥ is
a shorthand for the formula p0 ∧ ¬p0. Finally, =(pi) can be written as pi > ¬pi, hence the
claim follows. J

The intuitionistic implication used in the proof above has been studied in the modal team
semantics context in [25].

We now introduce the central concept of bisimulation [18, 24]. Intuitively, two pointed
models (i.e., pairs of models and worlds from the model) (M1, w1) and (M2, w2) are bisimilar,
if they are indistinguishable from the point of view of modal logic. The notion of k-bisimilarity
introduced below corresponds to indistinguishability by formulas with modal depth up to k:
For a formula ϕ in any of the logics considered in this paper, the modal depth of ϕ, denoted
with md(ϕ), is the maximal nesting degree of modal operators (i.e., � and ♦) in ϕ.

I Definition 2.4. Let M1 = (W1, R1, π1) and M2 = (W2, R2, π2) be Kripke models. We
define inductively what it means for states w1 ∈W1 and w2 ∈W2 to be k-bisimilar, for some
k ∈ N, written as (M1, w1)
k (M2, w2).
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(M1, w1)
0 (M2, w2) holds if for each propositional variable p, we have that M1, w1 |= p

if and only if M2, w2 |= p.
(M1, w1)
k+1 (M2, w2) holds if the following three conditions are satisfied:
1. (M1, w1)
0 (M2, w2),
2. for each successor w′1 of w1 in M1, there is a successor w′2 of w2 in M2 such that

(M1, w
′
1)
k (M2, w

′
2) (forward condition),

3. for each successor w′2 of w2 in M2, there is a successor w′1 of w1 in M1 such that
(M1, w

′
1)
k (M2, w

′
2) (backward condition).

Full bisimilarity is defined similarly: Pointed models (M1, w1) and (M2, w2) are bisimilar
if there is a relation Z ⊆ W1 ×W2 such that (w1, w2) ∈ Z, and for all (w1, w2) ∈ Z, we
have that w1 and w2 satisfy the same propositional variables, and for each successor w′1
of w1 in M1, there is a successor w′2 of w2 in M2 with (w′1, w′2) ∈ Z (forward condition),
and analogously for each successor w′2 of w2 in M2, there is a successor w′1 of w1 in M1
with (w′1, w′2) ∈ Z (back condition). In this case we simply say that M1, w1 and M2, w2 are
bisimilar. It is easy to see that bisimilarity implies k-bisimilarity for each k.

I Definition 2.5. Let M1 = (W1, R1, π1) and M2 = (W2, R2, π2) be Kripke models, and let
w1 ∈ W1, w2 ∈ W2. Then (M1, w1) and (M2, w2) are k-equivalent for some k ∈ N, written
(M1, w1) ≡k (M2, w2) if for each modal formula ϕ with md(ϕ) ≤ k, we have that M1, w1 |= ϕ

if and only if M2, w2 |= ϕ.

Again, we simply write w1 ≡k w2 if the models M1 and M2 are clear from the context. As
mentioned above, k-bisimilarity and k-equivalence coincide. The following result is standard
(see, e.g., [2]):

I Proposition 2.6. Let M1 = (W1, R1, π1) and M2 = (W2, R2, π2) be Kripke models, and let
w1 ∈W1, w2 ∈W2. Then (M1, w1)
k (M2, w2) if and only if (M1, w1) ≡k (M2, w2).

For MTL and more generally logics with team semantics, the above notion of bisimulation
can be lifted to teams. The following definition is a natural adaptation of k-bisimilarity to
the team setting:

I Definition 2.7. Let M1 = (W1, R1, π1) and M2 = (W2, R2, π2) be Kripke models, let T1
and T2 be teams of M1 and M2. Then (M1, T1) and (M2, T2) are k-bisimilar, written as
M1, T1 
k M2, T2 if the following holds:

for each w1 ∈ T1, there is some w2 ∈ T2 such that (M1, w1)
k (M2, w2),
for each w2 ∈ T2, there is some w1 ∈ T1 such that (M1, w1)
k (M2, w2).

Full bisimilarity on the team level is defined analogously. In this case we again say
that (M1, T1) and (M2, T2) are bisimilar, and write M1, T1 
 M2, T2, if there is a relation
Z ⊆W1×W2 satisfying the forward and backward conditions as above, and which additionally
satisfies that for each w1 ∈ T1, there is some w2 ∈ T2 with (w1, w2) ∈ Z, and for each w2 ∈ T2,
there is some w1 ∈ T1 with (w1, w2) ∈ Z. This notion of team-bisimilarity was first introduced
in [11] and [10]. The following result is easily proved by induction on the formula length:

I Proposition 2.8. caption
Let M1 and M2 be Kripke models, let T1 and T2 be teams of M1 and of M2. Then

1. If (M1, T1)
k (M2, T2), then for each formula ϕ ∈ MTL with md(ϕ) ≤ k, we have that
M1, T1 |= ϕ if and only if M2, T2 |= ϕ.

2. If (M1, T1)
 (M2, T2), then for each formula ϕ ∈ MTL, we have that M1, T1 |= ϕ if and
only if M2, T2 |= ϕ.
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The proof is a straight-forward adaptation of the one in [11].
The expressive power of classical modal logic (i.e., without team semantics) can be

characterized by bisimulations. In particular, for every pointed model (M,w), there is a
modal formula of modal depth k that exactly characterizes (M,w) up to k-bisimulation.

In the following, we restrict ourselves to a finite set of propositional variables.

3 Main Result: Expressiveness of MTL

In this section, we study the expressive power of MTL. As usual, we measure the expressive
power of a logic by the set of properties expressible in it.

I Definition 3.1. A team property is a class of pairs (M,T ) where M is a Kripke model
and T 6= ∅ a team of M . For an MTL-formula ϕ, we say that ϕ expresses the property
{(M,T ) | M,T |= ϕ}.

Note that most variants of modal dependence logic have the empty team property, i.e.,
for all ϕ ∈ EMINCL and all Kripke structures M , we have M, ∅ |= ϕ, which obviously does
not hold for MTL. However, it immediately follows from the bisimulation invariance of MTL
that for every MTL formula ϕ one of the two possibilities hold:

For all Kripke structures M , M, ∅ |= ϕ.
For all Kripke structures M , M, ∅ 6|= ϕ.

For this reason we exclude the empty team in the statement of our results below, but we
note that by the remarks above all results cover also the empty team.

I Definition 3.2. Let P be a team property. Then P is invariant under k-bisimulation if
for each pair of Kripke models M1 and M2 and teams T1 and T2 with (M1, T1)
k (M2, T2)
and (M1, T1) ∈ P , it follows that (M2, T2) ∈ P .

We introduce some (standard) notation. In a model M , the distance between two worlds
w1 and w2 ofM is the length of a shortest path from w1 to w2 (the distance is infinite if there
is no such path). For a world w of a model M and a natural number d, the d-neighborhood
of w in M , denoted Nd

M (w), is the set of all worlds w′ of M such that the distance from w

to w′ is at most d. For a team T , with Nd
M (T ) we denote the set ∪w∈T Nd

M (w). We often
identify Nd

M (T ) and the model obtained from M by restriction to the worlds in Nd
M (T ).

I Definition 3.3. A team property P is d-local for some d ∈ N if for all models M and
teams T , we have

(M,T ) ∈ P if and only if (Nd
M (T ), T ) ∈ P.

We say that P is local, if P is d-local for some d ∈ N.

Since our main result establishes a connection between team properties definable in MTL
and team properties definable in first-order logic, we also define what it means for a team
property to be expressed by a first-order formula. For a finite set of propositional variables
X, we define σX as the first-order signature containing a binary relational symbol E (for
the edges in our model), a unary relational symbol T (for representing a team), and, for
each variable x ∈ X, a unary relational symbol Wx (representing the worlds in which x is
true). Kripke models M with teams T (where we only consider variables in X) directly
correspond to σX structures: A model M = (W,R, π) and a team T uniquely determines the
σX -structureMFO

M,T with universe W and the obvious interpretations of the symbols in σX .
We therefore say that a first-order formula ϕ over the signature σX expresses a team

property P , if for all models M with a team T , we have that (M,T ) ∈ P if and only if
MFO

M,T |= ϕ. We can now state the main result of this paper:
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Table 1 Formulas and sets of formulas used in the proof of Theorem 3.4.

Formula Intuition Defined in
φk

M,w Characterizes the pointed model (M,w) up to k-bisimilarity Theorem 3.6
Φ
k All formulas of the form φk

M,w (this is a finite set) Definition 3.7
Φ
k

M,T Formulas characterizing pointed models (M,w), where w ∈ T , up
to k-bisimilarity (this is a finite set)

Definition 3.8

ϕ

k
M,T Formula characterizing model M with T up to k-bisimilarity Definition 3.9

I Theorem 3.4. Let P be a team property. Then the following are equivalent:
(i) There is an MTL-formula which expresses P ,
(ii) there is a first-order formula which expresses P and P is bisimulation-invariant,
(iii) P is invariant under k-bisimulation for some k,
(iv) P is bisimulation-invariant and local.

This result characterizes the expressive power of MTL in several ways. The equivalence
of points 1 and 2 is a natural analog to the classic van Benthem theorem which states that
standard modal logic directly corresponds to the bisimulation-invariant fragment of first-order
logic. It is easy to see that characterizations corresponding to items 3 and 4 also hold in the
classical setting. Our result therefore shows that MTL plays the same role for team-based
modal logics as ML does for standard modal logic.

The connection between our result and van Benthem’s Theorem [23, 24] is also worth
discussing. Essentially, van Benthem’s Theorem is the same result as ours, where “MTL” is
replaced by “ML” and properties of pointed models (i.e., singleton teams) are considered.
In ML, classical negation is of course freely available; however the property of a team being
a singleton is clearly not invariant under bisimulation—but the property of a team having
only one element up to bisimulation is. It therefore follows that each property of singleton
teams that is invariant under bisimulation and that can be expressed in MTL can already be
expressed in ML.

The remainder of Section 3 is devoted to the proof of Theorem 3.4. The proof relies
on various formulas that characterize pointed models, teams of pointed models, or team
properties up to k-bisimulation, for some k ∈ N. In Table 1, we summarize the notation used
in the following and explain the intuitive meaning of these formulas.

3.1 Expressing Properties in MTL and Hintikka Formulas
We start with a natural characterization of the semantics of splitjunction ∨ for ML-formulas.

I Proposition 3.5. Let S be a non-empty finite set of ML-formulas, let M be a model and T
a team. Then M,T |=

∨
ϕ∈S ϕ if and only if for each world w ∈ T , there is a formula ϕ ∈ S

with M, {w} |= ϕ.

The following result is standard:

I Theorem 3.6 ([7, Theorem 32]). For each pointed Kripke model (M,w) and each nat-
ural number k, there is a Hintikka formula (or characteristic formula) φk

M,w ∈ ML with
md(φk

M,w) = k such that for each pointed model (M ′, w′), the following are equivalent:
1. M ′, w′ |= φk

M,w,
2. (M,w)
k (M ′, w′).
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Clearly, we can choose the Hintikka formulas such that φk
M,w is uniquely determined by

the bisimilarity type of (M,w). This implies that for k-bisimilar pointed models (M1, w1)
and (M2, w2), the formulas φk

M1,w1
and φk

M2,w2
are identical.

It it clear that Theorem 3.6 does not hold for an infinite set of propositional symbols,
since a finite formula can only specify the values of finitely many variables.

We now define the set of all Hintikka formulas that will appear in our later constructions.
Informally, Φ
k is the set of all Hintikka formulas characterizing models up to k-bisimilarity:

I Definition 3.7. For k ∈ N, the set Φ
k is defined as

Φ
k =
{
φk

M,w | (M,w) is a pointed Kripke model
}
.

An important observation is that Φ
k is a finite set: This follows since above, we chose
the representatives φk

M,w to be identical for k-bisimilar pointed models, and since there are
only finitely many pointed models up to k-bisimulation. Since Φ
k is finite, we can in the
following freely use disjunctions over arbitrary subsets of Φ
k and still obtain a finite formula.
We will make extensive use of this fact in the remainder of Section 3, often without reference.

Our next definition is used to characterize a team, again up to k-bisimulation. Since
teams are sets of worlds, we use sets of formulas to characterize teams in the natural way, by
choosing, for each world in the team, one formula that characterizes it.

I Definition 3.8. For a model M and a team T , let

Φ
k

M,T = {ϕ ∈ Φ
k | there is some w ∈ T with M,w |= ϕ} .

Since Φ
k

M,T ⊆ Φ
k , it follows that Φ
k

M,T is finite as well. In fact, it is easy to see that∣∣∣Φ
k

M,T

∣∣∣ is exactly the number of k-bisimilarity types in T , i.e., the size of a maximal subset of
T containing only worlds such that the resulting pointed models are pairwise non-k-bisimilar.

We now combine the formulas from Φ
k

M,T to be able to characterize M and T (up to
k-bisimulation) by a single formula:

I Definition 3.9. For a model M with a team T 6= ∅, let

ϕ
k

M,T =

 ∧
ϕ∈Φ
k

M,T

Eϕ

 ∧
 ∨

ϕ∈Φ
k
M,T

ϕ

 .

Intuitively, the formula ϕ
k

M,T expresses that in a model M ′ and T ′ with M ′, T ′ |= ϕ
k

M,T ,
for each world w ∈ T there must be some w′ ∈ T ′ such that (M,w) 
k (M ′, w′), and
conversely, for each w′ ∈ T ′, there must be some w ∈ T with (M,w) 
k (M ′, w′), which
then implies that (M,T ) and (M ′, T ′) are indeed k-bisimilar.

From the above, it follows that ϕ
k

M,T is a finite MTL-formula. Therefore, with the above
intuition, it follows that ϕ
k

M,T expresses k-bisimilarity with (M,T ).

I Proposition 3.10. Let M1,M2 be Kripke models with teams nonempty T1, T2. Then the
following are equivalent:

(M1, T1)
k (M2, T2)
M1, T1 |= ϕ
k

M2,T2
.

3.2 Proof of Theorem 3.4
In this section, we prove our main result, Theorem 3.4.
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3.2.1 Proof of equivalence 3.4.(1) ↔ 3.4.(3)
Proof. The direction 1 → 3 follows immediately from Proposition 2.8. For the converse,
assume that P is invariant under k-bisimulation. Without loss of generality assume P 6= ∅.
We claim that the formula

ϕP := >(M,T )∈Pϕ

k

M,T

expresses P .
First note that ϕP can be written as the disjunction of only finitely many formulas: Each

ϕ
k

M,T is uniquely defined by a subset of the finite set Φ
k , therefore there are only finitely
many formulas of the form ϕ
k

M,T .
We now show that for each model M and team T , we have that (M,T ) ∈ P if and

only if M,T |= ϕP . First assume that (M,T ) ∈ P . Then the fact that (M,w) 
k (M,w)
for each model M , each world w and each number k and Proposition 3.10 imply that
M,T |= ϕ
k

M,T . Therefore, M,T |= ϕP . For the converse, assume that M,T |= ϕP . Then
there is some (M ′, T ′) ∈ P with M,T |= ϕ
k

M ′,T ′ . Due to Proposition 3.10, it follows that
(M,T )
k (M ′, T ′). Since P is invariant under k-bisimulation, it follows that (M,T ) ∈ P as
required. J

3.2.2 Proof of implication 3.4.(3) → 3.4.(2)
Proof. It suffices to show that P can be expressed in first-order logic. This follows using
essentially the standard translation from modal into first-order logic. Since classical disjunc-
tion is of course available in first-order logic, the proof of the implication 3 → 1 shows that
it suffices to express each ϕ
k

M,T (expressing team-bisimilarity to M,T ) in first-order logic.
Each of the Hintikka formulas φk

M,w (expressing bisimilarity to the pointed model M,w)
is a standard modal formula, therefore an application of the standard translation gives a
first-order formula φk,FO

M,w with a free variable x such that for all models M ′ and worlds w′,
we have that M ′, w′ |= φk

M,w if and only ifMFO
M ′,∅ |= φk,FO

M,w (w). We now show how to express
ϕ
k

M,T (expressing team-bisimilarity to M,T ) in first-order logic.
Recall that ϕ
k

M,T is defined as
(∧

ϕ∈Φ
k
M,T

Eϕ
)
∧
(∨

ϕ∈Φ
k
M,T

ϕ
)
. Therefore, a first-order

representation of ϕ
k

M,T is given as ∧
ϕ∈Φ
k

M,T

∃w(T (w) ∧ ϕFO(w))

 ∧
∀w(T (w) =⇒

∨
ϕ∈Φ
k

M,T

ϕFO(w)

 ,

where ϕFO is the standard translation of ϕ into first-order logic as mentioned above. This
concludes the proof. J

3.2.3 Proof of implication 3.4.(2) → 3.4.(4)
Proof. Let ϕ be the first-order formula expressing P . Since ϕ is first-order, we know that ϕ
is Hanf-local. Let d be the Hanf-locality rank of ϕ. We show that ϕ is 2d-local. Therefore,
let M be a model with team T . We show that MFO

M,T |= ϕ if and only if MFO
N2d

M
(T ),T

|= ϕ.
Since ϕ is bisimulation-invariant, it suffices to construct models M1 and M2 containing T
such that

(M1, T ) and (M,T ) are team-bisimilar,
(M2, T ) and (N2d

M (T ), T ) are team-bisimilar,
MFO

M1,T |= ϕ if and only ifMFO
M2,T |= ϕ.
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We first define MDISS as the model obtained from M by disconnecting N2d
M (T ) from

the remainder of the model, i.e., by removing all edges between N2d
M (T ) and M \ N2d

M (T ).
Since MDISS is also obtained from N2d

M (T ) by adding the remainder of the model M without
connecting the added worlds to N2d

M (T ), it is obvious that (MDISS, T )
 (N2d
M (T ), T ). We

now define the models M1 and M2 such that (M1, T )
 (M,T ) and (M2, T )
 (MDISS, T )
(and hence (M2, T )
 (N2d

M (T ), T )) as follows:
M1 and M2 are obtained from M and MDISS by adding the exact same components: For
each w ∈ M (note that M and MDISS have the exact same set of worlds), countably
infinitely many copies of N2d

M (w) and of N2d
MDISS(w) are added to both M1 and M2.

for n ∈ N, and i ∈ {1, 2}, with CDISS
i,n (w), we denote the n-th copy of N2d

MDISS(w) in Mi,
the center of CDISS

i,n (w) is the copy of w in CDISS
i,n (w).

for n ∈ N, and i ∈ {1, 2}, with CCONN
i,n (w), we denote the n-th copy of N2d

M (w) in Mi, the
center of CCONN

i,n (w) is the copy of w in CCONN
i,n (w).

In the above, when we “copy” a part of a (Kripke) model, this includes copying the
values of the involved propositional variables in these worlds (this is reflected in the resulting
first-order models in the obvious way). However, we stress that the team T is treated
differently: The set T is not enlarged with the copy operation, i.e., a copy of a world in T is
itself not an element of T .

Since M1 and M2 are obtained from M and MDISS by adding new components that
are not connected to the original models, it clearly follows that (M,T ) and (M1, T ) are
team-bisimilar, and (MDISS, T ) and (M2, T ) are team-bisimilar. Note that each w in the
M -part of M1 is the center of a 2d-environment isomorphic to CCONN

2,n (w), and each w in
the MDISS-part of M2 is the center of a 2d-environment isomorphis to CDISS

1,n (w).
Since the models M (MDISS) contain one copy of each N2d

M (w) (N2d
MDISS(w)), both M1 and

M2 contain countably infinitely many copies of each N2d
M (w) and each N2d

MDISS(w). Let S1 be
the subset of M1 containing only the points from the M -part of M1, plus the center of each
CCONN

1,n (w), and the center of each CDISS
1,n (w). Similarly, let S2 be the subset of M2 containing

only the points from the MDISS-part of M2 plus the centers of the added components.
Since M1 and M2 contain the same number of copies of each relevant neighborhood, there

is a bijection f : S1 → S2 such that for each w ∈ S1, the 2d-neighborhoods of w and f(w)
are isomorphic. Now f can be modified such that for each w ∈ M which has distance at
most d to a world in T , the value f(w) is the corresponding world in the MDISS-part of M2.
The thus-modified f now satisfies that for each w ∈ S1, the d-neighborhoods of w and f(w)
are isomorphic. We can easily extend f to worlds in CDISS

1,n and CCONN
1,n that are not the

center of their respective components by mapping such a world w in CDISS
1,n to the copy of w

in CDISS
2,n , and analogously for CCONN

1,n .
Therefore, we have constructed a bijection f : M1 → M2 such that for each w ∈ M1,

the d-neighborhood of w in M1 is isomorphic to the d-neighborhood of w in M2. Since
ϕ is Hanf-local with rank d, this implies that MFO

M1,T |= ϕ if and only if MFO
M2,T |= ϕ, as

required. J

The proof of this implication uses ideas from Otto’s proof of van Benthem’s classical
theorem presented in [17]. However our proof is based on the Hanf-locality of first-order
expressible properties, whereas Otto’s proof uses Ehrenfeucht-Fraïssé games, as a consequence,
our construction requires an infinite number of copies of each model due to cardinality reasons.
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3.2.4 Proof of implication 3.4.(4) → 3.4.(3)
Proof. Assume that P is invariant under bisimulation, and P is k-local for some k ∈ N. We
show that P is invariant under k-bisimulation. Hence let M1, T1 
k M2, T2. Since P is
invariant under bisimulation, we can without loss of generality assume that M1 and M2 are
directed forests, that M1 contains only worlds connected to worlds in T1, and analogously
for M2 and T2. Since P is also k-local, we can also assume that M1 contains no world with
a distance of more than k to T1, and analogously for M2 and T2. From these assumptions, it
immediately follows that M1, T1 
 M2, T2, and, since P is invariant under bisimulation, this
implies that (M1, T1) ∈ P if and only if (M2, T2) in P , as required. J

4 Alternative logical characterisations for the bisimulation invariant
properties

Research on variants of (modal) dependence logic has concentrated on logics defined in terms
of independence and inclusion atoms. Analogously to MDL, these logics are invariant under
bisimulation but are strictly less expressive than MTL [11]. On the other hand, extended
modal dependence logic, EMDL, uses dependence atoms but allows them to be applied to
ML-formulas instead of just proposition symbols [4]. This variant is also known to be a proper
sub-logic of MTL being able to express all downwards-closed properties that are invariant
under k-bisimulation for some k ∈ N, and equivalent to ML(>) [10].

In this section we systematically study the expressive power of variants of EMDL replacing
dependence atoms by independence and inclusion atoms. Depending on whether we also allow
classical disjunction or not, this gives four logics, namely EMIL (Extended Modal Independence
Logic), EMIL(>) (EMIL extended with classical disjunction), EMINCL (Extended Modal
Inclusion Logic) and EMINCL(>) (EMINCL extended with classical disjunction). We study
the expressiveness of these logics, and show that while EMINCL(>) is as expressive as MTL,
for each of the other three logics there is an MTL-expressible property that cannot be
expressed in the logic. In the last section, we also study the extension of ML by first-order
definable generalised dependence atoms, and show that the resulting logic—even without the
addition of classical disjunction—is equivalent to MTL.

4.1 Extended Modal Independence Logic (EMIL)
We first consider Extended Modal Independence Logic (EMIL). Syntactically, EMIL extends
ML by the following: If P , Q, and R are finite sets of ML-formulas, then P⊥RQ is an
EMIL-formula. The semantics of this extended independence atom are defined by lifting the
definition for propositional variables given in [11] to ML-formulas as follows.

For a formula ϕ and a world w, we write ϕ(w) for the function defined as ϕ(w) = 1 if
M, {w} |= ϕ, and ϕ(w) = 0 otherwise (the model M will always be clear from the context).
For a set of formulas F and worlds w1, w2, we write w1 ≡F w2 if ϕ(w1) = ϕ(w2) for each
ϕ ∈ F .

M,T |= P⊥R Q ⇔ ∀w,w′ ∈ T : w ≡R w′ implies ∃w′′ ∈ T :
w′′ ≡P w and w′′ ≡Q w′ and w′′ ≡R w.

The extension of EMIL by classical disjunction > is denoted by EMIL(>).
We will next show that EMIL(>) is a proper sub-logic of MTL. The following lemma will

be used in the proof.
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I Lemma 4.1. Let M = (W,R, π) be a Kripke model such that R = ∅ and T ⊆W a team.
Then for all ϕ ∈ EMIL(>) it holds that if M,T |= ϕ, then M, {w} |= ϕ for all w ∈ T .

Proof. A straight-forward induction on the construction of ϕ using the facts that a singleton
team trivially satisfies all independence atoms, and the empty team satisfies all formulas of
EMIL(>). J

I Theorem 4.2. EMDL ( EMIL ⊆ EMIL(>) ( MTL.

Proof sketch. The first inclusion follows from the fact that dependence atoms can be
expressed by independence atoms. The inclusion is strict since EMDL is downwards-closed
and EMIL is not. For the last inclusion, note that every property expressible in EMIL(>) is
invariant under bisimulation, hence it follows that MTL can express every EMIL(>)-expressible
property due to Theorem 3.4. For the strictness, note that Lemma 4.1 can be used to show
that the property expressed by the MTL formula Ep cannot be expressed in EMIL(>). J

4.2 Extended Modal Inclusion Logic
Analogously to EMIL, we now define Extended Modal Inclusion Logic, EMINCL. EMINCL
extends the syntax of ML with the following rule: If ϕ1, . . . , ϕn and ψ1, . . . , ψn are ML-
formulas, then (ϕ1, . . . , ϕn) ⊆ (ψ1, . . . , ψn) is an EMINCL-formula. The semantics of this
inclusion atom are lifted from the first-order setting [5] to the extended modal case:

M,T |= (ϕ1, . . . , ϕn) ⊆ (ψ1, . . . , ψn) if for every world w ∈ T there is a world w′ ∈ T
such that ϕi(w) = ψi(w′) for each i ∈ {1, . . . , n}.

The extension of EMINCL by classical disjunction > is denoted by EMINCL(>).
Analogously to first-order inclusion logic [6], the truth of EMINCL-formulas is preserved

under unions of teams. Hence we get the following result.

I Theorem 4.3. EMINCL is strictly less expressive than MTL.

Next we want to show that EMINCL(>) is as powerful as MTL.

I Theorem 4.4. Let P be a team property. Then the following are equivalent:
1. P is invariant under k-bisimulation.
2. There is an EMINCL(>)-formula ϕ with md(ϕ) = k that characterizes P .

Proof. The direction from 2 to 1 follows by a straight-forward extension of the proof of
Proposition 2.8. For the converse, assume that P is invariant under k-bisimulation. From
the proof of Theorem 3.4, we know that it suffices to construct an EMINCL(>)-formula ϕ
that is equivalent to the MTL-formula >(M,T )∈Pϕ


k

M,T . Since the >-operator is available in
EMINCL(>), it suffices to show how to express the formula ϕ
k

M,T for each model M and
team T as an EMINCL(>)-formula. Recall that

ϕ
k

M,T =

 ∧
ϕ∈Φ
k

M,T

Eϕ

 ∧
 ∨

ϕ∈Φ
k
M,T

ϕ

 .

The second conjunct already is an EMINCL(>)-formula, hence it suffices to show how Eϕ
can be expressed for an ML-formula ϕ. As discussed earlier, M,T |= Eϕ for an ML-formula
ϕ if and only if there is a world w ∈ T with M, {w} |= ϕ. Hence from the semantics of
the inclusion atom, it is clear that Eϕ is equivalent to (x ∨ ¬x) ⊆ (ϕ). This concludes the
proof. J



J. Kontinen, J. S. Müller, H. Schnoor, and H. Vollmer 289

4.3 ML with FO-definable generalized dependence atoms
In this section we show that MTL, and the bisimulation invariant properties, can be captured
as the extension of ML by all generalized dependence atoms definable in first-order logic
without identity. The notion of a generalized dependence atom in the modal context was
introduced in [11]. A closely related notion was introduced and studied in the first-order
context in [13]. The semantics of a generalized dependence atom D is determined essentially
by a property of teams.

In the following we are interested in generalized dependence atoms definable by first-order
formulae, defined as follows: Suppose that D is an atom of width n, that is, an atom
that applies to n propositional variables (for example the atom in (2)). We say that D is
FO-definable if there exists a FO-sentence φ over signature 〈A1, . . . , An〉 such that for all
Kripke models M = (W,R, π) and teams T ,

M,T |= D(p1, . . . , pn) ⇐⇒ A |= φ,

where A is the first-order structure with universe T and relations AAi for 1 ≤ i ≤ n, where
for all w ∈ T , w ∈ AAi ⇔ pi ∈ π(w).

In our “extended” setting the arguments to a generalized dependence atom D(ϕ1, . . . , ϕn)
can be arbitrary ML-formulas instead of propositional variables. Hence the relation Ai is now
interpreted by the worlds of T in which ϕi is satisfied. We denote by MLFO the extension of
ML by all generalized dependence atoms D that are FO-definable without identity.

I Theorem 4.5. MLFO is equally expressive as MTL.

Proof. In the proof of Theorem 6.8 in [11] it is showed that MLFO is invariant under
bisimulation in the case where generalised atoms may be applied only to propositional
variables. The proof easily extends to the setting where arbitrary ML-formulas may appear
as arguments to a generalised dependence atom. Therefore, MLFO is not more expressive
than MTL. For the converse, let P be a property that can be expressed in MTL. From
Theorem 3.4, it follows that P is invariant under k-bisimulation, and from the proof of
Theorem 3.4, we know that it suffices to express the formula >(M,T )∈Pϕ


k

M,T in MLFO. We
can do this with the following first-order definable atom (by suitably choosing the parameters
n,m ∈ N):

M,T |= D(ϕ1
1, . . . , ϕ

1
n, ϕ

2
1, . . . , ϕ

2
n, . . . , ϕ

m
1 , . . . , ϕ

m
n ) if and only if there is some k ∈

{1, . . . ,m} such that each w ∈ T satisfies some ϕk
i , and for each j ∈ {1, . . . , n}, there

is some w ∈ T that satisfies ϕk
j .

The atom D can now be FO-defined by replacing the exists/for all quantifiers on the
indices with disjunctions/conjunctions:

∨
k∈{1,...,m}

∀x (Ak
1(x) ∨ · · · ∨ Ak

n(x)
)
∧

∧
j∈{1,...,n}

(∃x Ak
j (x))


Then, the atom D applied to the formulas in ϕ
k

M,T for all (M,T ) ∈ P gives a formula
expressing P . J

5 Conclusion

Our results show that, with respect to expressive power, modal team logic is a natural upper
bound for all the logics studied so far in the area of modal team semantics. Overall, an
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interesting picture of the characterization of the expressiveness of modal logics in terms
of bisimulation emerges: Let us say that “invariant under bounded bisimulation” means
invariant under k-bisimulation for some finite k. Then we have the following hierarchy of
logics:

Due to van Benthem’s theorem [24], ML can exactly express all properties of pointed
models that are FO-definable and invariant under bisimulation.
Due to [10], ML with team semantics and extended with classical disjunction > can
exactly express all properties of teams that are invariant under bounded bisimulation
and additionally downwards-closed.
Our result shows that ML with team semantics and extended with classical negation ∼
can exactly express all properties of teams that are invariant under bounded bisimulation.

A number of open questions in the realm of modal logics with team semantics remain:
1. In the proof of Theorem 4.5, for each k, there is only a finite width of the D-operator

above needed to express all properties that are invariant under k-bisimulation. However,
the theorem leaves open the question whether there is a “natural” atom D or an atom
with “restricted width” that gives the entire power of MTL.

2. Can we axiomatize MTL? Axiomatizability of sublogics of MTL has been studied, e.g., in
[25] and [19].

3. While we mentioned a number of complexity results on modal dependence logic and some
of its extensions, this issue remains unsettled for full MTL. In particular, what is the
complexity of satisfiability and validity of MTL?
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Abstract
We give sound and complete Hilbert-style axiomatizations for propositional dependence logic
(PD), modal dependence logic (MDL), and extended modal dependence logic (EMDL) by ex-
tending existing axiomatizations for propositional logic and modal logic. In addition, we give
novel labeled tableau calculi for PD, MDL, and EMDL. We prove soundness, completeness
and termination for each of the labeled calculi.
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1 Introduction

Functional dependences occur everywhere in science, e.g., in descriptions of discrete systems,
in database theory, social choice theory, mathematics, and physics. Modal logic is an
important formalism utilized in the research of numerous disciplines including many of the
fields mentioned above. With the aim to express functional dependences in the framework of
logic Väänänen [9] introduced dependence logic. Dependence logic extends first-order logic
with novel atomic formulae called dependence atoms. The intuitive meaning of the first-order
dependence atom =(t1, . . . , tn) is that the value of the term tn is functionally determined by
the values of the terms t1, . . . , tn−1. With the aim to express functional dependences in the
framework of modal logic, Väänänen [10] introduced modal dependence logic (MDL). Modal
dependence logic extends modal logic with propositional dependence atoms. A propositional
dependence atom dep(p1, . . . , pn, q) intuitively states that the truth value of the proposition
q is functionally determined by the truth values of the propositions p1, . . . , pn. It was soon
realized thatMDL lacks the ability to express temporal dependencies; there is no mechanism
inMDL to express dependencies that occur between different points of the model. This is
due to the restriction that only proposition symbols are allowed in the dependence atoms
of modal dependence logic. To overcome this defect Ebbing et al. [1] introduced extended
modal dependence logic (EMDL) by extending the scope of dependence atoms to arbitrary
modal formulae. Dependence atoms in extended modal dependence logic are of the form
dep(ϕ1, . . . ϕn, ψ), where ϕ1, . . . , ϕn, ψ are formulae of modal logic.
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In recent years the research around modal dependence logic has been active. The focus
has been in the computational complexity and in the expressive powers of related formalisms.
Sevenster [8] proved that the satisfiability problem for modal dependence logic is NEXPTIME-
complete, whereas Ebbing and Lohmann [2] showed that the related model checking problem
is NP-complete. Ebbing et al. [1] extended these results to handle also EMDL. Subsequently
Virtema [11] showed that the validity problems forMDL and EMDL are NEXPTIME-hard
and contained in NEXPTIMENP. Moreover he showed that the corresponding problem for the
propositional fragment PD (see Section 2.1 for a definition) ofMDL is NEXPTIME-complete.

Hella et al. [4] gave a van Benthem–style characterization of the expressive power
of EMDL via the so-called team k-bisimulation. In the article it was also shown that
the expressive powers of EMDL and ML(6) (modal logic extended with intuitionistic
disjunction) coincide. More recently Kontinen et al. (in the manuscript [6]) gave another van
Benthem–style characterization for the expressive power of the so-called modal team logic.
Moreover, in the manuscript [7], Sano and Virtema gave a Goldblatt–Thomason theorem
forMDL and EMDL. They also showed that with respect to frame definabilityMDL and
EMDL coincide with a fragment of modal logic extended with the universal modality in
which the universal modality occurs only positively. These characterization truly demonstrate
the naturality of the related languages.

In this paper we give sound and complete axiomatizations for variants of propositional and
modal dependence logics (PD, PL(>),MDL, EMDL, andML(>)). We give Hilbert-style
axiomatizations for these logics by extending existing axiomatizations for propositional logic
and modal logic. In addition, we give novel labeled tableau calculi for these logics. This
paper is one of the first articles on proof theory of propositional and modal dependence logics.
The only other work known by the authors of this article is the PhD thesis of Fan Yang
[12] and the subsequent manuscript [13]. Among other things, in her thesis, Yang presents
axiomatizations of variants of propositional dependence logic based on natural deduction.
Our Hilbert style axiomatization of PD coincides in essence with the natural deduction
system given by Yang. However our axiomatization avoids the complexity of the system of
Yang by concentrating on the proof-theoretic essence of the axiomatization. Provided that a
Hilbert-style axiomatization for the negation normal form fragment of propositional logic is
given, we specify one inference rule which gives us an axiomatization of PD.

The article is structured as follows. In Section 2 we introduce the required notions and
definitions. In Section 3 we give Hilbert-style axiomatizations for propositional and modal
dependence logics. In Section 4 we present labeled tableau calculi for these logics.

2 Preliminaries

The syntax of propositional logic (PL) and modal logic (ML) could be defined in any
standard way. However, when we consider extensions of PL andML by dependence atoms,
it is useful to assume that all formulae are in negation normal form, i.e., negations occur only
in front of atomic propositions. Thus we will define the syntax of PL andML in negation
normal form. When ϕ is a formula of PL orML, we denote by ϕ⊥ the equivalent formula
that is obtained from ¬ϕ by pushing all negations to the atomic level. Furthermore, we
define ϕ> := ϕ. When ~a is a tuple of symbols of length k, we denote by aj the jth element of
~a, j ≤ k. When ϕ is a formula, |ϕ| denotes the number of symbols in ϕ excluding negations
and brackets. When A is a set |A| denotes the number of elements in A. When f : A→ B is
a function and C ⊆ A, we define f [C] := {f(a) | a ∈ C}.
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2.1 Propositional logic with team semantics
Let PROP = {zi | i ∈ N} denote the set of exactly all propositional variables, i.e., proposition
symbols. We mainly use metavariables p, q, p1, p2, q1, q2, etc., in order to refer to the variable
symbols in PROP. Let D be a finite, possibly empty, subset of PROP. A function s : D →
{0, 1} is called an assignment. A set X of assignments s : D → {0, 1} is called a propositional
team. The set D is the domain of X. Note that the empty team ∅ does not have a unique
domain; any subset of PROP is a domain of the empty team. By {0, 1}D, we denote the set
of all assignments s : D → {0, 1}.

Let Φ be a set of proposition symbols. The set of formulae for propostional logic PL(Φ)
is generated by the grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ), where p ∈ Φ.

By |=PL, we denote the ordinary satisfaction relation of propositional logic defined via
assignments. Next we define the team semantics of propositional logic.

I Definition 1. Let Φ be a set of atomic propositions and let X be a propositional team.
The satisfaction relation X |= ϕ for PL(Φ) is defined as follows. Note that, we always assume
that the proposition symbols that occur in ϕ are also in the domain of X.

X |= p ⇔ ∀s ∈ X : s(p) = 1.
X |= ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |= (ϕ ∧ ψ) ⇔ X |= ϕ and X |= ψ.

X |= (ϕ ∨ ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∪ Z = X.

I Proposition 2 ([8]). Let ϕ be a formula of propositional logic and X a propositional team.
Then X |= ϕ ⇔ ∀s ∈ X : s |=PL ϕ. In particular the equivalence {s} |= ϕ ⇔ s |=PL ϕ
holds for every assignment s.

The syntax of propositional logic with intuitionistic disjunction PL(>)(Φ) is obtained by
extending the syntax of PL(Φ) by the grammar rule ϕ ::= (ϕ>ϕ). The syntax of propositional
dependence logic PD(Φ) is obtained by extending the syntax of PL(Φ) by the grammar rules
ϕ ::= dep(p1, . . . , pn, q), where p1, . . . , pn, q ∈ Φ and n ∈ N. The intuitive meaning of the
propositional dependence atom dep(p1, . . . , pn, q) is that the truth value of the proposition
symbol q is completely determined by the truth values of the proposition symbols p1, . . . , pn.
We define the semantics for the intuitionistic disjunction and the propositional dependence
atoms as follows:

X |= (ϕ>ψ) ⇔ X |= ϕ or X |= ψ

X |= dep(p1, . . . , pn, q) ⇔ ∀s, t ∈ X : s(p1) = t(p1), . . . , s(pn) = t(pn)
implies that s(q) = t(q).

The next proposition is very useful. The proof is very easy and analogous to the corresponding
proof for first-order dependence logic [9].

I Proposition 3 (Downwards closure). Let ϕ be a formula of PL(>) or PD and let Y ⊆ X
be propositional teams. Then X |= ϕ implies Y |= ϕ.

Note that, by downwards closure, X |= (ϕ∨ψ) iff Y |= ϕ and X \Y |= ψ for some Y ⊆ X.

2.2 Modal logics
In order to keep the notation light, we restrict our attention to mono-modal logic, i.e., to
modal logic with just the modal operators ♦ and �. However this is not really a restriction,
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since the definitions, results, and proofs of this article generalize, in a straightforward manner,
to facilitate any number of modalities.

Let Φ be a set of atomic propositions. The set of formulae for modal logic ML(Φ) is
generated by the grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ, where p ∈ Φ.

Note that, since negations are allowed only in front of proposition symbols, � and ♦ are
not interdefinable. The syntax of modal logic with intuitionistic disjunction ML(6)(Φ) is
obtained by extending the syntax ofML(Φ) by the grammar rule ϕ ::= (ϕ6 ϕ).

The team semantics for modal logic is defined via Kripke models and teams. In the context
of modal logic, teams are subsets of the domain of the model.

I Definition 4. Let Φ be a set of proposition symbols. A Kripke model K over Φ is a tuple
K = (W,R, V ), where W is a nonempty set of worlds, R ⊆W ×W is a binary relation, and
V : Φ→ P(W ) is a valuation. A subset T of W is called a team of K. Furthermore define

R[T ] := {w ∈W | ∃v ∈ T s.t. vRw}, R−1[T ] := {w ∈W | ∃v ∈ T s.t. wRv}.

For teams T, S ⊆ W , we write T [R]S if S ⊆ R[T ] and T ⊆ R−1[S]. Thus, T [R]S holds if
and only if for every w ∈ T there exists some v ∈ S such that wRv, and for every v ∈ S
there exists some w ∈ T such that wRv.

We are now ready to define the team semantics for modal logic and modal logic with
intuitionistic disjunction.

I Definition 5. Let Φ be a set of atomic propositions, K a Kripke model and T a team of
K. The satisfaction relation K, T |= ϕ forML(Φ) is defined as follows.

K, T |= p ⇔ w ∈ V (p) for every w ∈ T .
K, T |= ¬p ⇔ w 6∈ V (p) for every w ∈ T .

K, T |= (ϕ ∧ ψ) ⇔ K, T |= ϕ and K,T |= ψ.

K, T |= (ϕ ∨ ψ) ⇔ K, T1 |= ϕ and K, T2 |= ψ for some T1 and T2

such that T1 ∪ T2 = T .

K, T |= ♦ϕ ⇔ K, T ′ |= ϕ for some T ′ such that T [R]T ′.
K, T |= �ϕ ⇔ K, T ′ |= ϕ, where T ′ = R[T ].

ForML(6) we have the following additional clause:

K, T |= (ϕ6 ψ) ⇔ K, T |= ϕ or K, T |= ψ.

By |=ML, we denote the ordinary satisfaction relation of modal logic defined via pointed
Kripke models.

I Proposition 6 ([8]). Let ϕ be an ML-formula, K be a Kripke model, and T be a team
of K. Then K, T |= ϕ ⇔ ∀w ∈ T : K, w |=ML ϕ In particular, for every point w of K, the
equivalence K, {w} |= ϕ ⇔ K, w |=ML ϕ holds.

The syntax for modal dependence logic MDL(Φ) is obtained by extending the syntax of
ML(Φ) by the rules ϕ ::= dep(p1, . . . , pn, q), where p1, . . . , pn, q ∈ Φ and n ∈ N, for
propositional dependence atoms. The syntax for extended modal dependence logic EMDL(Φ)
is obtained by extending the syntax ofML(Φ) by the rules ϕ ::= dep(ϕ1, . . . , ϕn, ψ), where
ϕ1, . . . , ϕn, ψ ∈ML(Φ) and n ∈ N, for modal dependence atoms. The intuitive meaning of
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the modal dependence atom dep(ϕ1, . . . , ϕn, ψ) is that the truth value of the formula ψ is
completely determined by the truth values of the formulae ϕ1, . . . , ϕn. Formally:

K, T |= dep(ϕ1, . . . , ϕn, ψ) ⇔ ∀w, v ∈ T :
∧

1≤i≤n
(K, {w} |= ϕi ⇔ K, {v} |= ϕi)

implies (K, {w} |= ψ ⇔ K, {v} |= ψ).

The following result for MDL and ML(6) is due to [10] and [3], respectively. For
EMDL it follows via a translation from EMDL intoML(6), see [1].

I Proposition 7 (Downwards closure). Let ϕ be a formula of ML(6) or EMDL, let K be a
Kripke model and let S ⊆ T be teams of K. Then K, T |= ϕ implies K, S |= ϕ.

2.3 Equivalence and validity in team semantics
We say that formulae ϕ and ψ of PL(>)(Φ) or PD(Φ) are equivalent and write ϕ ≡ ψ, if
the equivalence X |= ϕ ⇔ X |= ψ holds for every propositional team X. Likewise, we say
that formulae ϕ and ψ ofML(>)(Φ) or EMDL(Φ) are equivalent and write ϕ ≡ ψ, if the
equivalence K,T |= ϕ ⇔ K,T |= ψ holds for every Kripke model K and team T of K.

A formula ϕ of PL(>)(Φ) or PD(Φ) is said to be valid, if X |= ϕ holds for every team X

such that the proposition symbols that occur in ϕ are in the domain of X. Analogously, a
formula ψ of EMDL(Φ) orML(6)(Φ) is said to be valid, if K, T |= ϕ holds for every Kripke
model K (such that the proposition symbols in ϕ are mapped by the valuation of K) and
every team T of K. When ϕ is a valid formula of L, we write |=L ϕ.

The following proposition shown in [11, 12] will later prove to be very useful.

I Proposition 8 (>-disjunction property). Let L ∈ {PL(>),ML(>)}. For every ϕ,ψ in L,
|=L (ϕ>ψ) iff |=L ϕ or |=L ψ.

3 Extending axiomatizations of PL and ML

In this section we show how to extend sound and complete axiomatizations for PL and
ML into sound and complete axiomatizations for PL(6) and ML(6), respectively. We
use the fact that both PL(6) and ML(6) have the >-disjunction property. In addition,
we obtain axiomatizations for PD,MDL, and EMDL. The axiomatizations are based on
compositional translations from PD into PL(6), and fromMDL and EMDL intoML(6).

3.1 Axiomatizations for PL(>) and ML(>)
In the definition below, we treat different occurrences of the same formulae as distinct entities.

I Definition 9. Let ϕ be a formula of PL(>) orML(>). Let SubOcc(ϕ) denote the set of
exactly all occurrences of subformulas of ϕ. Define

SubOcc>(ϕ) := {(ψ> θ) | (ψ> θ) ∈ SubOcc(ϕ)}.

We call a function f : SubOcc>(ϕ)→ SubOcc(ϕ) a >-selection function for ϕ if f
(
(ψ> θ)

)
∈

{ψ, θ}, for every (ψ> θ) ∈ SubOcc>(ϕ). If f is a >-selection function for ϕ, then ϕf denotes
the formula that is obtained from ϕ by replacing simultaneously each (ψ> θ) ∈ SubOcc>(ϕ)
by f(ψ> θ).

Note that if ϕ ∈ PL(>)(Φ), ψ ∈ ML(>)(Ψ), f is a >-selection function for ϕ, and g is a
>-selection function for ψ, then ϕf ∈ PL(Φ) and ψg ∈ML(Ψ).
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I Proposition 10 ([11]). Let ϕ be a formula of PL(>) orML(>), and let F be the set of
exactly all >-selection functions for ϕ. Then, ϕ ≡6f∈F ϕ

f .

Let HPL and HML denote sound and complete axiomatizations of the negation normal
form fragments of PL andML, respectively. For a logic L, an L-context is a formula of the
logic L extended with the grammar rule ϕ ::= ∗. By ϕ(ψ / ∗) we denote the formula that is
obtained form ϕ by uniformly substituting each occurrence of ∗ in ϕ by ψ. We are now ready
to define the axiomatizations for PL(>) andML(>). We use PL(>)- andML(>)-contexts
in the following rules:

ϕ(ψi / ∗) (I > i)
ϕ
(
(ψ1 >ψ2) / ∗

) i ∈ {1, 2}.

Let HPL(>) (HML(>), resp.) be the calculus HPL (HML, resp.) extended with the rules
(I > 1) and (I > 2). In the calculi HPL(>) and HML(>), the axioms and inference rules of
HPL and HML may only be applied to formulae of PL andML (i.e, to formulae without
>), respectively.

I Theorem 11. HPL(>) and HML(>) are sound and complete.

Proof. We will proof the soundness and completeness for HPL(>). The case for HML(>)
is completely analogous. Note first that from Proposition 2 it follows directly that HPL is
complete for PL also in the context of team semantics.

For soundness, it suffices to show that the rule (I > 1) preserves validity. The case for
(I > 2) is symmetric. Let ϕ be a PL(>)-context and let ψ1 and ψ2 be PL(>)-formulae.
Assume that γ1 := ϕ(ψ1 / ∗) is valid. We will show that then γ2 := ϕ

(
(ψ1 >ψ2) / ∗

)
is

valid. Let F and G be the sets of exactly all >-selection functions for γ1 and γ2, respectively.
By Proposition 10, γ1 ≡6f∈F γ

f
1 and γ2 ≡6g∈Gγ

g
2 . Since γ1 is valid, it follows by

Proposition 8, that γf
′

1 is valid for some f ′ ∈ F . Since clearly, for every f ∈ F , there exists
some g ∈ G such that γf1 = γg2 , it follows that there exists some g′ ∈ G such that γg

′

2 is valid.
Thus γ2 is valid.

In order to prove completeness, assume that a PL(6)-formula ϕ is valid. Let F be
the set of exactly all >-selection functions for ϕ. By Propositions 10 and 8, there exists a
function f ∈ F such that the PL-formula ϕf is valid. Since HPL is complete and HPL(6)
extends HPL, ϕf is provable also in HPL(6). Clearly by using the rules (I > 1) and (I > 2)
repetitively to ϕf , we eventually obtain ϕ. Thus we conclude that HPL(>) is complete. J

3.2 Axiomatizations for PD, MDL, and EMDL
The following equivalence was observed by Väänänen in [10]:

dep(p1, . . . , pn, q) ≡
∨

a1,...,an∈{⊥,>}

∧{
pa1

1 , . . . , pann , (q 6 q⊥)
}
. (1)

Ebbing et al. ([1]) extended this observation of Väänänen into the following equivalence
concerning EMDL:

dep(ϕ1, . . . , ϕn, ψ) ≡
∨

a1,...,an∈{⊥,>}

∧{
ϕa1

1 , . . . , ϕann , (ψ 6 ψ⊥)
}
. (2)

These equivalences demonstrate the existence of compositional translations from PD into
PL(>), and fromMDL and EMDL intoML(>), respectively.
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We will use the insight that rises from combining the above equivalences with Propositions
8 and 10 in order to construct axiomatizations for PD, MDL, and EMDL, respectively.
Recall that when ~a is a finite tuple of symbols, we use aj to denote the jth member of ~a. For
each natural number n ∈ N and function f : {⊥,>}n → {>,⊥}, we have the following rules:

ϕ
(∨

~a∈{⊥,>}n
∧{

pa1
1 , . . . , pan

n , qf(~a)} / ∗ ) (
PL dep(f)

)
ϕ
(
dep(p1, . . . , pn, q) / ∗

)
ϕ
(∨

~a∈{⊥,>}n
∧{

ϕa1
1 , . . . , ϕan

n , ψf(~a)} / ∗ ) (
ML dep(f)

)
†

ϕ
(
dep(ϕ1, . . . , ϕn, ψ) / ∗

)
where † means that ϕ1, . . . , ϕn, ψ are required to be modal formulae.1 Define PLdep :=
{
(
PL dep(f)

)
| f : {⊥,>}n → {>,⊥}, where n ∈ N} and MLdep := {

(
ML dep(f)

)
| f :

{⊥,>}n → {>,⊥}, where n ∈ N}. Let HPD and HMDL be the extensions of the calculi
HPL and HML by the rules of PLdep, respectively. Let HEMDL be the extension of HML
by the rules ofMLdep.

The proof of the following theorem is analogous to that of Theorem 11.

I Theorem 12. Let L ∈ {PD,MDL, EMDL}, HL is sound and complete.

4 Labeled tableaus for propositional dependence logics

The calculi presented in Section 3 have a few clear shortcomings. Foremost, the calculi
miss the team semantic nature of these logics. Thus the calculi are in some parts quite
complicated. Especially this is the case for the rules PL dep andML dep. This seems to be
the case also for any concrete implementations of the axiomatizations HPL and HML of the
negation normal form fragments of PL andML, respectively.

In this section we give axiomatizations for PD,MDL, and EMDL that do not have the
shortcomings of the calculi of Section 3. The proof rules of the labeled tableau calculi that
are given in this section have a natural and simple correspondence with the truth definitions
of connectives and modalities in team semantics.

4.1 Checking validity via small teams
The following result (observed, e.g., in [11]) follows directly from the fact that PL(>) and
PD are downwards closed, i.e., from Proposition 3.

I Proposition 13. Let ϕ be a formula of PL(>) or PD and let D be the set of exactly all
proposition symbols that occur in ϕ. Then ϕ is valid iff {0, 1}D |= ϕ.

Adapting a notion that was introduced by Jarmo Kontinen in [5] for first-order dependence
logic, we say that anML(>)- or EMDL-formula ϕ is n-coherent if the condition

K, T |= ϕ ⇔ K, T ′ |= ϕ for all T ′ ⊆ T such that |T ′| ≤ n

holds for all Kripke models K and teams T of K.

1 In the special case where ϕ is ∗ in the rule
(
PL dep(f)

)
, the obtained rule coincides with the rule of

Dependence Atom Introduction in [12, p.75].



K. Sano and J. Virtema 299

The following result forML(>) was shown in [4]. The result for EMDL follows from
the result forML(>) essentially via the following equivalence.

dep(ϕ1, . . . , ϕn, ψ) ≡
∨

a1,...,an∈{⊥,>}

∧{
ϕa1

1 , . . . , ϕann , (ψ 6 ψ⊥)
}
.

For ϕ ∈ ML(>), we define Rank>(ϕ) to be the number of intuitionistic disjunctions in
ϕ. For ψ ∈ EMDL, we define Rank>(ψ) to be the number of intuitionistic disjunctions in
theML(>) formula obtained by using the above equivalence. Note that Rank>(ϕ) ≤ |ϕ|,
whereas Rank>(ψ) ≤ 2|ψ|.

I Theorem 14. Every formula ϕ ofML(>) or EMDL is 2Rank>(ϕ)-coherent.

The following result follows directly from Theorem 14.

I Corollary 15. Let ϕ be a formula of ML(>) or EMDL. The following holds:

ϕ is valid iff K, T |= ϕ for every Kripke model K and every team T of K

such that |T | ≤ 2Rank>(ϕ).

4.2 Tableau Calculi for PL, PL(>), and PD
We will now present labeled tableau calculi for PL, PL(>), and PD. In Section 4.3 we will
extend these calculi to deal withML,MDL, and EMDL.

Any finite, possibly empty, subset α ⊆ N is called a label. We mainly use symbols
α, β, α1, α2, β1, β2, etc, in order to refer to labels and symbols i, j, i1, i2, j1, j2, etc, in order
to refer to natural numbers. Our tableau calculi are labeled, meaning that the formulae
occurring in the tableau rules are labeled formulae, i.e., of the form α : ϕ, where α a label
and ϕ is a formula of some logic L. Labels correspond to teams and the elements of labels,
i.e., natural numbers, correspond to points in a model. The intended top down reading of the
labeled formula α : ϕ is that α denotes some team that falsifies ϕ. A tableau in these calculi
is just a well-founded, finitely branching tree in which each node is labeled by a labeled
formula, and the edges represent applications of the tableau rules. The tableau rules needed
for axiomatizing PL, PL(>), and PD are given in Figure 1.

In the construction of tableaus, we impose a rule that a labeled formula is never added
to a tableau branch in which it already occurs. A saturated branch is a tableau branch in
which no rules can be applied or the application of the rules have no effect on the branch. A
saturated tableau is a tableau in which every branch is saturated. A branch of a tableau is
called closed if it contains at least one of the following:
1. Both {i} : p and {i} : ¬p, for some proposition symbol p and natural number i ∈ N.
2. ∅ : ϕ, for some formula ϕ.
3. {i} : dep(p1, . . . , pn, q), for some proposition symbols p1, . . . , pn, q and i, n ∈ N.
If a branch of a tableau is not closed it is called open. A tableau is called closed if every
branch of the tableau is closed. A tableau is called open if at least one branch in the tableau
is open.

Let TPL denote the calculi consisting of the rules (Prop), (¬Prop), (∧), and (∨) of
Figure 1. Let TPL(>) denote the extension of TPL by the rule (>) of Figure 1, and TPD
denote the extension of TPL by the rules (Split) and (PL dep) of Figure 1.

Let ϕ be a formula of L(Φ) ∈ {PL(Φ),PL(>)(Φ),PD(Φ)} and k := min(|Φ|,Rank>(ϕ)).
We say that a tableau T is a tableau for ϕ if the root of T is {1, . . . , 2k} : ϕ and T is obtained
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{i1, . . . , ik} : p
(Prop)

{i1} : p | . . . | {ik} : p
{i1, . . . , ik} : ¬p

(¬Prop)
{i1} : ¬p | . . . | {ik} : ¬p

α : (ϕ ∧ ψ)
(∧)

α : ϕ | α : ψ
α : (ϕ ∨ ψ)

(∨) where β ⊆ α
β : ϕ | α \ β : ψ

α : (ϕ>ψ)
(>)α : ϕ

α : ψ

α : dep(p1, . . . , pn, q) (Split)†
α1 : dep(p1, . . . , pn, q) | . . . | αk : dep(p1, . . . , pn, q)

†: α1, . . . , αk are exactly all subsets of α of cardinality 2.

{i1, i2} : dep(p1, . . . , pn, q) (PL dep)‡
{i1} : pg1(1)

1 | . . . | {i1} : pgk(1)
1

{i2} : pg1(1)
1 | . . . | {i2} : pgk(1)

1

...
...

...
{i1} : pg1(n)

n | . . . | {i1} : pgk(n)
n

{i2} : pg1(n)
n | . . . | {i2} : pgk(n)

n

{i1, i2} : q | . . . | {i1, i2} : q
{i1, i2} : ¬q | . . . | {i1, i2} : ¬q

‡: g1, . . . gk are exactly all functions with domain {1, . . . , n} and co-domain {>,⊥}.

Figure 1 Tableau Rules for TPL, TPL(>), and TPD.

by applying the rules of TL. We say that ϕ is provable in TL and write `TL ϕ if there exists
a closed tableau for ϕ.

I Example 16. We show that the PD-formula dep(p, p) is provable TPD. Figure 2 is an
illustration of a closed TPD-tableau for dep(p, p).

Since the number of proposition symbols that occur in dep(p, p) is one, the root of the
tableau is {1, 2} : dep(p, p). We first apply the rule (PLdep) to {1, 2} : dep(p, p) and branch
into two branches as depicted in Figure 2. In the left (right) branch we apply the rule (¬Prop)
to {1, 2} : ¬p ((Prop) to {1, 2} : p). Consequently, each branch of the tableau becomes closed
due to the labeled formulae of the type {i} : p and {i} : ¬p, i ∈ {1, 2}. Therefore, dep(p, p)
is a theorem of TPD.

I Theorem 17 (Termination of TPL, TPL(>), and TPD). Let L be a logic in {PL,PL(>),PD}
and ϕ an L-formula. Every tableau for ϕ in TL is finite.

Proof. Let T be a tableau for ϕ. By definition, the root of T is α : ϕ, for some finite α.
Clearly every application of the tableau rules either decreases the size of the label or the
length of the formula. Note also that the rule (∨) can be applied to any β : ψ ∈ T only
finitely many times. Thus T must be finite. J

I Lemma 18. If there exists a saturated open branch for ϕ then ϕ is not valid.

Proof. Let B be a saturated open branch for ϕ and let Φ be the set of proposition symbols
that occur in ϕ. Let α : ϕ denote the root of the branch B. It is easy to check that if β : ψ is
a labeled formula in B then β ⊆ α. For each i ∈ α we define an assignment si : Φ→ {0, 1}
such that

si(p) :=
{

1 if the labeled formula {i} : ¬p occurs in the branch B,
0 otherwise.
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{1, 2} : dep(p, p)

{1} : p
{2} : p
{1, 2} : p
{1, 2} : ¬p

{1} : ¬p

×

{2} : ¬p

×

{1} : ¬p
{2} : ¬p
{1, 2} : p
{1, 2} : ¬p

{1} : p

×

{2} : p

×

Figure 2 A tableau showing that the PD-formula dep(p, p) is provable in TPD.

It is easy to show by induction that if a labeled formula β : ψ occurs in the branch B then
Xβ 6|= ψ, where Xβ = {si | i ∈ β}. Thus ϕ is not valid. J

I Theorem 19 (Completeness of TPL, TPL(>), and TPD). Let L be any of the logics in
{PL,PL(>),PD}. The calculus TL is complete.

Proof. Fix L ∈ {PL,PL(>),PD}. Assume 6`TL ϕ. Thus every tableau for ϕ is open. From
Theorem 17 it follows that there exists a saturated open tableau for ϕ. Thus there exists a
saturated open branch for ϕ. Thus, by Lemma 18, 6|=L ϕ. J

I Definition 20. Let B be a tableau branch and Index(B) the set of exactly all natural
numbers that occur in B. We say that B is faithful to a propositional team X by a mapping
f : Index(B)→ X if, for all α : ϕ ∈ B, f [α] 6|= ϕ.

I Lemma 21. Let L be a logic in {PL,PL(>),PD}. If ϕ ∈ L is not valid then there is an
open saturated branch in every saturated tableau of ϕ in TL.

Proof. Assume 6|=L ϕ. Let Φ be the set of exactly all proposition symbols that occur in ϕ.
By Proposition 13, {0, 1}Φ 6|= ϕ. Put α := {1, . . . , 2|Φ|} and fix a bijection f : α→ {0, 1}Φ.
Let T be an arbitrary saturated tableau for ϕ. By Theorem 17, T is finite and, by definition,
the root of T is α : ϕ. Note that Index(B) = α, for every branch B with the root α : ϕ. We
will show that there is an open saturated branch in T .

First, we establish that B0 := {α : ϕ} is faithful to {0, 1}Φ by f . But, this is easy since
f [α] = {0, 1}Φ. Second, assume that we have constructed a branch Bn such that Bn is
faithful to {0, 1}Φ by f . We will show that at least one extension of Bn by rules of TL is
faithful to {0, 1}Φ by f . Here we are concerned with the rule of (∨) alone. Assume that,
from β1 : (ψ1 ∨ ψ2) ∈ Bn and the rule of (∨), we obtain two extensions {β2 : ψ1} ∪ Bn and
{β1 \ β2 : ψ2} ∪ Bn for β2 ⊆ β1. Our goal is to show that one of the extensions is faithful
to {0, 1}Φ by f . By assumption, we obtain f [β1] 6|= (ψ1 ∨ ψ2). By the semantic clause
for ∨, f [β2] 6|= ψ1 or f [β1] \ f [β2] 6|= ψ2. Since f [β1] \ f [β2] ⊆ f [β1 \ β2], it follows from
downwards closure that f [β2] 6|= ψ1 or f [β1 \ β2] 6|= ψ2. This implies that at least one of the
two extensions is faithful to {0, 1}Φ by f . We choose one of the faithful extensions as Bn+1.

Since T is finite and saturated, Bj is a saturated branch in T for some j ∈ N. Moreover,
since Bj is faithful to {0, 1}Φ by f , Bj is open. J

I Theorem 22 (Soundness of TPL, TPL(>), and TPD). Let L be any of the logics in
{PL,PL(>),PD}. The calculus TL is sound.
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i1Rj1

...
inRjn

{i1, . . . , in} : ♦ϕ
(♦)

{j1, . . . , jn} : ϕ

α : �ϕ
(�)†

f1(1)Ri1 | . . . | fk(1)Ri1
...

...
...

f1(t)Rit | . . . | fk(t)Rit
{i1, . . . it} : ϕ | . . . | {i1, . . . it} : ϕ

{i1, i2} : dep(ϕ1, . . . , ϕn, ψ)
(ML dep)‡

{i1} : ϕh1(1)
1 | . . . | {i1} : ϕhk(1)

1

{i2} : ϕh1(1)
1 | . . . | {i2} : ϕhk(1)

1

...
...

...
{i1} : ϕh1(n)

n | . . . | {i1} : ϕhk(n)
n

{i2} : ϕh1(n)
n | . . . | {i2} : ϕh1(n)

n

{i1, i2} : ψ | . . . | {i1, i2} : ψ

{i1, i2} : ψ⊥ | . . . | {i1, i2} : ψ⊥

†: t = 2Rank>(ϕ) and f1, . . . , fk denote exactly all functions with domain {1, . . . , t} and co-domain α, and
i1, . . . , it are fresh and distinct.

‡: h1, . . . hk denotes all the functions with domain {1, . . . , n} and co-domain {>,⊥}.

Figure 3 Additional Tableau Rules for TML, TML(>), TMDL and TEMDL.

Proof. Fix L ∈ {PL,PL(>),PD}. Assume that 6|=L ϕ. By Lemma 21, there is an open
saturated branch in every saturated tableau of ϕ in TL. Therefore, and since, by Theorem
17, every tableau of ϕ in TL is finite, there does not exists any closed tableau for ϕ in TL.
Thus 6`TL ϕ. J

4.3 Tableau Calculi for ML, ML(>), MDL, and EMDL
In addition to labeled formulae, the tableau rules for modal logics contain accessibility
formulae of the form iRj, where i, j ∈ N. The intended interpretation of iRj is that the point
denoted by j is accessible by the relation R from the point denoted by i. The tableau rules
for the calculi are given in Figures 1 and 3.

In the construction of tableaus, in addition to the rules given in Section 4.2, we impose
that the tableau rule (�) is never applied twice to the same labeled formula in any branch.
The definitions of open, closed and saturated tableau and branch are as in Section 4.2 with
the following additional rule: A branch is called closed also if it contains a labeled formula
{i} : dep(ϕ1, . . . , ϕn, ψ), for some i, n ∈ N and ϕ1, . . . , ϕn, ψ ∈ML.

Let TML, TML(>), and TMDL denote the extensions of TPL, TPL(>), and TPD by the
rules (♦) and (�) of Figure 3, respectively. Let TEMDL denote the extension of TML by
the rules (Split) of Figure 1 and (ML dep) of Figure 3.

Let ϕ be a formula of L ∈ {ML,ML(>),MDL, EMDL}. We say that a tableau T is
a tableau for ϕ if the root of T is {1, . . . , 2Rank>(ϕ)} : ϕ and T is obtained by applying the
rules of TL. We say that ϕ is provable in TL and write `TL ϕ if there exists a closed tableau
for ϕ.

I Example 23. This example illustrates one difference between TPL and TMDL even for the
same formula dep(p, p). Figure 4 is an illustration of a closed TMDL-tableau for dep(p, p).
When dep(p, p) is considered as a PD-formula, the calculation starts with the label {1, 2}
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{1, 2, 3, 4} : dep(p, p)
{i, j} : dep(p, p)

{i} : p
{j} : p
{i, j} : p
{i, j} : ¬p

{i} : ¬p

×

{j} : ¬p

×

{i} : ¬p
{j} : ¬p
{i, j} : p
{i, j} : ¬p

{i} : p

×

{j} : p

×

Figure 4 A tableau showing that theMDL-formula dep(p, p) is provable in TMDL.

{1, 2} : �dep(p)

1R3
2R4

{3, 4} : dep(p)
{3, 4} : p
{3, 4} : ¬p

{3} : p
...

{4} : p

{3} : ¬p

©

{4} : ¬p

...
...

...

Figure 5 A tableau showing that theMDL-formula �dep(p) is not valid.

(see Example 16 and Figure 2). However, when dep(p, p) is considered as anMDL-formula,
our definition leads us to start the calculation with the label {1, 2, 3, 4}.

The equivalentML(>) formula that theMDL-formula dep(p, p) translates into is∨
a∈{>,⊥}

∧
{pa, p>¬p}.

Therefore Rank>(dep(p, p)) = 2, and thus the root of any TMDL-tableau for dep(p, p) is
{1, 2, 3, 4} : dep(p, p). We first apply the rule (Split) to {1, 2, 3, 4} : dep(p, p) and obtain 6
branches. By symmetry, we may concentrate on one of the branches. We denote it by {i, j}
(i 6= j). We then apply the rule (PLdep) to {i, j} : dep(p, p) and branch into two branches
as depicted in Figure 4. In the left (right) branch we apply the rule (¬Prop) to {i, j} : ¬p
((Prop) to {i, j} : p). Consequently, each branch of the tableau becomes closed due to the
labeled formulae of the type {l} : p and {l} : ¬p, l ∈ {i, j}. Therefore, dep(p, p) is a theorem
of TMDL.
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I Example 24. We show that theMDL formula �dep(p) is not valid. Note that the equival-
entML(>)-formula that �dep(p) translates into is �(p>¬p). Therefore Rank>(�dep(p)) =
1, and thus the root of any TMDL-tableau for �dep(p) is {1, 2} : �dep(p). We are going to
find an open saturated branch for �dep(p).

First, we apply the rule (�) for {1, 2} : �dep(p). One of the branches that is obtained is
depicted in Figure 5. We then apply the rule (PLdep) to {3, 4} : dep(p). Then, by applying
the rules (Prop) and (¬Prop) to {3, 4} : p and {3, 4} : ¬p, respectively, we obtain an open
saturated branch as depicted in Figure 5. From the open saturated branch, we can construct
the following Kripke model K = (W,R, V ) that falsifies theMDL-formula �dep(p). Define
W := {w1, w2, w3, w4}, R := {(w1, w3), (w2, w4)}, V (p) := {w3}. One can easily verify that
K, {w1, w2} 6|= �dep(p).

I Definition 25. Let L ∈ {ML,ML(>),MDL, EMDL}. Let B be a branch of a tableau
in TL and let α : ϕ be the root of B. Recall that Index(B) denotes the set of exactly all
natural numbers that occur in B. For i, j ∈ Index(B), we write i ≺B j if iRj occurs in B.
By ≺∗B and �∗B, we mean the transitive closure and the reflexive and transitive closure of
≺B, respectively. Moreover, for i ∈ Index(B) and n ∈ N, define

LevelB(i) := |{j ∈ Index(B) | i0 ≺∗B j �∗B i, for some i0 ∈ α}|,
LayerB(n) := {j ∈ Index(B) | LevelB(j) = n}.

It is easy to see that, for every branch B, the graph (Index(B),≺B) is a well-founded forest.

I Theorem 26 (Termination of TML, TML(>), TMDL, and TEMDL). Let ϕ be a formula
ofML,ML(>),MDL, or EMDL. Every tableau for ϕ is finite.

Proof. Let T be a tableau for ϕ and let α : ϕ denote the root of T . By definition α is finite.
Clearly, by the definitions of the tableau rules, if β : ψ occurs in T then |β| ≤ |α|. From this
and from the definitions of the tableau rules, it is easy to see that T is a finitely branching
tree. Thus from König’s lemma it follows that T is infinite if and only if T has an infinite
branch.

Let B be an arbitrary branch of T . We will show that B is finite.
Claim 1. If α : ϕ occurs in B then, for every i, j ∈ α, LevelB(i) = LevelB(j).
Claim 2. For each k ∈ N the set LayerB(k) is finite.
Claim 3. There is a k ∈ N such that LayerB(k) = ∅.
Note first that if LayerB(k) = ∅ then LayerB(n) = ∅, for every n ≥ k. Thus from Claims 2
and 3 it follows that only finitely many labels may occur in B. Note also that, for every
labeled formula β : ψ that occurs in B, ψ is either a subformula of ϕ or a subformula of some
θ⊥, where θ is anML subformula of ϕ. Thus only finitely many labeled formulae may occur
in B. Thus B is finite.

Proof of Claim 1 is easy. We will sketch the proofs of Claims 2 and 3.
Proof sketch of Claim 2. Claim 2 follows from Claim 1 by induction: Clearly LayerB(0)
is finite. LayerB(k + 1) is generated via applications of the tableau rule (�) to labeled
formulae β : �ψ of the branch B, where β ⊆ LayerB(k) and �ψ is either a subformula of ϕ
or a subformula of some θ⊥, where θ is anML subformula of ϕ. Since LayerB(k) is finite,
LayerB(k + 1) is as well.
Proof sketch of Claim 3. For finite labels β, define

mB(β) := max{|ϕ| | β1 : ϕ occurs in B and β1 ∩ β 6= ∅}.
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For finite labels β, define MB(β : ψ) := (mB(β), |ψ|, |β|). The ordering between the tuples is
defined as follows:

(i, j, k) < (k, l,m) iff i < k or (i = k and j < l) or (i = k and j = l and k < m).

Note that for every labeled formula β : ψ that occurs in B it holds that mB(β) < mB(α),
|ψ| ≤ |ϕ| and |β| ≤ |α|. Thus the ordering of the tuples is well-founded. Furthermore it
is easy to check that an application of each tableau rule decreases the measure MB. For
finite collections of labeled formulae Γ, defineMB(Γ) := max{MB(β : ψ) | β : ψ ∈ Γ}. It is
straightforward to show that, for every k ∈ N, eitherMB

(
LayerB(k+ 1)

)
<MB

(
LayerB(k)

)
or LayerB(k + 1) = ∅. From this the claim follows. J

I Definition 27. Let B be a tableau branch. We say that B is faithful to a Kripke model
K = (W,R, V ) if there exists a mapping f : Index(B) → W such that, K, f [α] 6|= ϕ for all
α : ϕ ∈ B, and f(i)Rf(j) holds, for every iRj ∈ B.

I Lemma 28. Let L ∈ {ML,ML(>),MDL, EMDL}. If ϕ ∈ L is not valid then there is
an open saturated branch in every saturated tableau of ϕ in TL.

Proof. In this proof, we focus on ML(>). Assume that ϕ ∈ ML(>) is not valid. By
Corollary 15, there is a Kripke model K = (W,R, V ) and a team T of K such that |T | ≤
2Rank>(ϕ) and K, T 6|= ϕ. Put α0 := {1, . . . , 2Rank>(ϕ)}. Let T be an arbitrary saturated
tableau for ϕ. By Theorem 26, T is finite and, by definition, the root of T is α0 : ϕ. We will
show that there is an open branch B in T .

We first establish that B0 := {α0 : ϕ} is faithful to K. Let f : α0 →W be any mapping
(note: W is non-empty) such that f [α0] = T . Clearly K, f [α0] 6|= ϕ, and thus B0 is faithful to
K. Assume then that we have constructed a branch Bn such that Bn is faithful to K. Thus
there is a mapping g : Index(Bn)→W such that, for all β : ψ ∈ Bn, K, g[β] 6|= ψ, and, for all
iRj ∈ Bn, g(i)Rg(j) holds. We will show that any rule-application to Bn generates at least
one faithful extension Bn+1 to K. Here we are concerned with the rules of (♦) and (�) alone.
(♦) Assume that {i1, . . . , ik} : ♦ψ, i1Rj1, . . . , ikRjk ∈ Bn. Let α := {i1, . . . , ik} and β :=
{j1, . . . , jk}. We obtain from our assumption that K, g[α] 6|= ♦ψ and g[α][R]g[β]. From
the semantics of ♦ it follows that K, g[β] 6|= ψ. Thus Bn+1 := Bn ∪ {β : ψ} is faithful to
K. Clearly Bn+1 is an extension of B by the rule (♦).

(�) Assume that α : �ψ ∈ Bn. We obtain from our assumption that K, g[α] 6|= �ψ. By the
semantics of �, it follows that K, R[g[α]] 6|= ψ. Now, by Theorem 14, there exists a team
S ⊆ R[g[α]] such that 0 < |S| ≤ 2Rank>(ψ) and K, S 6|= ψ. Fix such S ⊆ R[g[α]] and let
u1, . . . , um be the elements of S. Since S ⊆ R[g[α]] there exists a function h : {1, . . . ,m} →
α such that g

(
h(l)

)
Rul, for each l ≤ m. Let h′ : {1, . . . , 2Rank>(ψ)} → α denote the

expansion of h defined such that h′(l) := h(m) for m < l ≤ 2Rank>(ψ). We then extend our
function g to a mapping g′ to cover new fresh indexes β := {j1, . . . , j2Rank>(ψ)}. We define
that g′(jl) := ul, for l ≤ m, and g′(jl) := um for m < l ≤ 2Rank>(ψ). By construction,
we obtain that K, g′[β] 6|= ψ and g′(h′(l))Rg′(jl) for all 1 ≤ l ≤ 2Rank>(ψ). Therefore,
together with our assumption, Bn+1 := Bn∪{h′(1)Rj1, . . . , h′(2Rank>(ψ))Rj2Rank>(ψ) , β : ψ}
is faithful to K by g′. Clearly Bn+1 is an extension of B by the rule (�).

Since T is finite and saturated, Bj is a saturated branch in T for some j ∈ N. Moreover,
since Bj is faithful to K, Bj is open. J

I Theorem 29 (Soundness of TML, TML(>), TMDL, and TEMDL). Let L be a logic in
{ML,ML(>),MDL, EMDL}. The calculus TL is sound.
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Proof. Fix L ∈ {ML,ML(>),MDL, EMDL}. Assume that 6|=L ϕ. By Lemma 28, there
is an open saturated branch in every saturated tableau of ϕ in TL. Therefore, and since, by
Theorem 26, every tableau of ϕ in TL is finite, there does not exists any closed tableau for ϕ
in TL. Thus 6`TL ϕ. J

I Lemma 30. Let L ∈ {ML,ML(>),MDL, EMDL}. If there exists an open saturated
branch for ϕ in TL then ϕ is not valid.

Proof. Let B be an open saturated branch in a tableau T of TL starting with {1, . . . , 2Rank>(ϕ)} :
ϕ. Define the induced Kripke model KB = (W,R, V ) from B as follows: W := Index(B);
iRj iff iRj ∈ B; V (p) := {i | {i} : ¬p ∈ B} for any p occurring in B, otherwise, V (p) :=
∅. It is straightforward to prove by induction on χ that α : χ ∈ B implies KB, α 6|= χ.

Since {1, . . . , 2Rank>(ϕ)} : ϕ ∈ B, it follows that KB, {1, . . . , 2Rank>(ϕ)} 6|= ϕ. Thus ϕ is not
valid. J

I Theorem 31 (Completeness of TML, TML(>), TMDL, and TEMDL). Let L be a logic in
{ML,ML(>),MDL, EMDL}. The calculus TL is complete.

Proof. Fix L ∈ {ML,ML(>),MDL, EMDL}. Assume that 6`TL ϕ. Thus every tableau
for ϕ is open. From Theorem 26 it follows that there exists a saturated open tableau for ϕ.
Thus there exists a saturated open branch for ϕ. Thus, by Lemma 30, 6|=L ϕ. J

5 Conclusion

We gave sound and complete Hilbert-style axiomatizations for PL, PL(>), PD, ML(>),
MDL, and EMDL. In addition, we presented novel labeled tableau calculi for these logics.
We proved soundness, completeness and termination for each of the calculi presented.
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Abstract
A dynamic program, as introduced by Patnaik and Immerman (1994), maintains the result of a
fixed query for an input database which is subject to tuple insertions and deletions. It can use
an auxiliary database whose relations are updated via first-order formulas upon modifications
of the input database. This paper studies static analysis problems for dynamic programs and
investigates, more specifically, the decidability of the following three questions. Is the answer
relation of a given dynamic program always empty? Does a program actually maintain a query?
Is the content of auxiliary relations independent of the modification sequence that lead to an input
database? In general, all these problems can easily be seen to be undecidable for full first-order
programs. Therefore the paper aims at pinpointing the exact decidability borderline for programs
with restricted arity (of the input and/or auxiliary database) and restricted quantification.
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1 Introduction

In modern database scenarios data is subject to frequent changes. In order to avoid costly
re-computation of queries from scratch after each small modification of the data, one can try
to use previously computed auxiliary data. This auxiliary data then needs to be updated
dynamically whenever the database changes.

The descriptive dynamic complexity framework (short: dynamic complexity) by Patnaik
and Immerman [19] models this setting from a declarative perspective. It was mainly inspired
by updates in relational databases. Within this framework, for a relational database subject
to change, a dynamic program maintains auxiliary relations with the intention to help
answering a query Q. When a modification to the database, that is an insertion or deletion
of a tuple, occurs, every auxiliary relation is updated through a first-order update formula
(or, equivalently, through a core SQL query) that can refer to the database as well as to
the auxiliary relations. The result of Q is, at every time, represented by some distinguished
auxiliary relation. The class of all queries maintainable by dynamic programs with first-order
update formulas is called DynFO and we refer to such programs as DynFO-programs. We
note that shortly before the work of Patnaik and Immerman, the declarative approach was
independently formalized in a similar way by Dong, Su and Topor [6].
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The main question studied in Dynamic Complexity has been which queries that are not
statically expressible in first-order logic (and therefore not in Core SQL), can be maintained
by DynFO-programs. Recently, it has been shown that the Reachability query, a very
natural such query, can be maintained by DynFO programs [1]. Altogether, research in
Dynamic Complexity succeeded in proving that many non-FO queries are maintainable in
DynFO. These results and their underlying techniques yield many interesting insights into
the the nature of Dynamic Complexity.

However, to complete the understanding of Dynamic Complexity, it would be desirable to
complement these techniques by methods for proving that certain queries are not maintainable
by DynFO programs. But the state of the art with respect to inexpressibility results is much
less favorable: at this point, no general techniques for showing that a query is not expressible
in DynFO are available. In order to get a better overall picture of Dynamic Complexity in
general and to develop methods for inexpressibility proofs in particular, various restrictions
of DynFO have been studied, based on, e.g., arity restrictions for the auxiliary relations
[2, 5, 3], fragments of first-order logic [12, 10, 25, 23], or by other means [4, 11].

At the heart of our difficulties to prove inexpressibility results in Dynamic Complexity is
our limited understanding of what dynamic programs with or without restrictions “can do” in
general, and our limited ability to analyze what a particular dynamic program at hand “does”.
In this paper, we initiate a systematic study of the “analyzability” of dynamic programs.
Static analysis of queries has a long tradition in Database Theory and we follow this tradition
by first studying the emptiness problem for dynamic programs, that is the question, whether
there exists an initial database and a modification sequence that is accepted by a given
dynamic program.1 Given the well-known undecidability of the finite satisfiability problem for
first-order logic [21], it is not surprising that emptiness of DynFO programs is undecidable
in general. However, we try to pinpoint the borderline of undecidability for fragments of
DynFO based on restrictions of the arity of input relations, the arity of auxiliary relations
and for the class DynProp of programs with quantifier-free update formulas.

In the fragments where undecidability of emptiness does not directly follow from undecid-
ability of satisfiability in the corresponding fragment of first-order logic, our undecidability
proofs make use of dynamic programs whose query answer might not only depend on the
database yielded by a certain modification sequence, but also on the sequence itself, that
is, on the order in which tuples are inserted or (even) deleted. From a useful dynamic
program one would, of course, expect that it is consistent in the sense that its query answer
always only depends on the current database, but not on the specific modification sequence
by which it has been obtained. It turns out that the emptiness problem for consistent
programs is easier than the general emptiness problem for dynamic programs. More precisely,
there are fragments of DynFO, for which an algorithm can decide emptiness for dynamic
programs that come with a “consistency guarantee”, but for which the emptiness problem is
undecidable, in general. However, it turns out that the combination of a consistency test
with an emptiness test for consistent programs does not gain any advantage over “direct”
emptiness tests, since the consistency problem turns out to be as difficult as the general
emptiness problem.

Finally, we study a property that many dynamic programs in the literature share: they
are history independent in the sense that all auxiliary relations always only depend on the

1 The exact framework will be defined in Section 3, but we already mention that we will consider the
setting in which databases are initially empty and the auxiliary relations are defined by first-order
formulas.
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Table 1 Summary of the results of this paper. DynFO(`-in,m-aux) stands for DynFO-programs
with (at most) `-ary input relations and m-ary auxiliary relations. DynFO(m-aux) and DynFO(`-in)
represent programs with m-ary auxiliary relations (and arbitrary input relations) and programs
with `-ary input relations, respectively. Likewise for DynProp.

Emptiness
Consistency

Emptiness for
consistent programs

History
Independence

Undecidable
DynFO(1-in, 0-aux)

DynProp(2-in, 0-aux)
DynProp(1-in, 2-aux)

DynFO(1-in, 2-aux)
DynFO(2-in, 0-aux) DynFO(2-in, 0-aux)

Decidable DynProp(1-in, 1-aux)
DynFO(1-in, 1-aux)

DynProp(1-in)
DynProp(1-aux)

DynFO(1-in)
DynProp(1-aux)

Open DynProp(2-in, 2-aux)
and beyond

DynProp(2-in, 2-aux)
and beyond

current (input) database. History independence can be seen as a strong form of consistency
in that it not only requires the query relation, but all auxiliary relations to be determined by
the input database. History independent dynamic programs (also called memoryless [19] or
deterministic [4]) are still expressive enough to maintain interesting queries like undirected
reachability [11]. But also some inexpressibility proofs have been found for such programs
[4, 11, 25]. We study the history independence problem, that is, whether a given dynamic
program is history independent. In a nutshell, the history independence problem is the
“easiest” of the static analysis problems considered in this paper.

Our results, summarized in Table 1, shed light on the borderline between decidable and
undecidable fragments of DynFO with respect to emptiness (and consistency), emptiness for
consistent programs and history independence. While the picture is quite complete for the
emptiness problem for general dynamic programs, for some fragments of DynProp there
remain open questions regarding the emptiness problem for consistent dynamic programs
and the history-independence problem. Some of the results shown in this paper have been
already presented in the master’s thesis of Nils Vortmeier [22].

Outline. We recall some basic definitions in Section 2 and introduce the formal setting
in Section 3. The emptiness problem is defined and studied in Section 4, where we first
consider general dynamic programs (Subsection 4.1) and then consistent dynamic programs
(Subsection 4.2). In Subsection 4.3 we briefly discuss the impact of built-in orders to the
results. The Consistency and History Independence problems are studied in Sections 5 and
6, respectively. We conclude in Section 7. Due to the space limit we only give proof sketches
or even proof ideas in the body of this paper. Complete proofs can be found in the full
version [20].

2 Preliminaries

We presume that the reader is familiar with basic notions from Finite Model Theory and
refer to [8, 16] for a detailed introduction into this field. We review some basic definitions in
order to fix notations.

In this paper, a domain is a non-empty finite set. For tuples ~a = (a1, . . . , ak) and
~b = (b1, . . . , b`) over some domain D, the (k + `)-tuple obtained by concatenating ~a and ~b is
denoted by (~a,~b).
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A (relational) schema is a collection τ of relation symbols2 together with an arity function
Ar : τ → N. A database D with schema τ and domain D is a mapping that assigns to every
relation symbol R ∈ τ a relation of arity Ar(R) over D. The size of a database, usually
denoted by n, is the size of its domain. We call a database empty, if all its relations are
empty. We emphasize that empty databases have non-empty domains. A τ -structure S is a
pair (D,D) where D is a database with schema τ and domain D. Often we omit the schema
when it is clear from the context.

We write S |= ϕ(~a) if the first-order formula ϕ(~x) holds in S under the variable assignment
that maps ~x to ~a. The quantifier depth of a first-order formula is the maximal nesting depth
of quantifiers. The rank-q type of a tuple (a1, . . . , am) with respect to a τ -structure S is the
set of all first-order formulas ϕ(x1, . . . , xm) (with equality) of quantifier depth at most q, for
which S |= ϕ(~a) holds. By S ≡q S ′ we denote that two structures S and S ′ have the same
rank-q type (of length 0 tuples).

For a subschema τ ′ ⊆ τ , the rank-q τ ′-type of a tuple ~a in a τ -structure S is its rank-q
type in the τ ′-reduct of S.

We refer to the rank-0 type of a tuple also as its atomic type and, since we mostly deal
with rank-0 types, simply as its type. The equality type of a tuple is the atomic type with
respect to the empty schema.

The k-ary type of a tuple ~a in a structure S is its τ≤k-type, where τ≤k consists of all
relation symbols of τ with arity at most k. The τ ′-color of an element a in S, for a subschema
τ ′ of the schema of S, is its τ ′1-type, where τ ′1 consists of all unary relation symbols of τ ′.
We often enumerate the possible τ ′-colors as c0, . . . , cL, for some L with c0 being the color
of elements that are in neither of the unary relations. We call these elements τ ′-uncolored. If
τ ′ is clear from the context we simply speak of colors and uncolored elements.

3 The dynamic complexity setting

For a database D over schema τ , a modification δ = (o,~a) consists of an operation o ∈
{insS ,delS | S ∈ τ} and a tuple ~a of elements from the domain of D. By δ(D) we denote
the result of applying δ to D with the obvious semantics of inserting or deleting the tuple ~a
to or from relation SD. For a sequence α = δ1 · · · δN of modifications to a database D we let
α(D) def= δN (· · · (δ1(D)) · · · ).

A dynamic instance3 of a query Q is a pair (D, α), where D is a database over a domain
D and α is a sequence of modifications to D. The dynamic query Dyn(Q) yields the result
of evaluating the query Q on α(D).

Dynamic programs, to be defined next, consist of an initialization mechanism and an
update program. The former yields, for every (initial) database D, an initial state with initial
auxiliary data. The latter defines the new state of the dynamic program for each possible
modification δ.

A dynamic schema is a pair (τin, τaux), where τin and τaux are the schemas of the input
database and the auxiliary database, respectively. We call relations over τin input relations
and relations over τaux auxiliary relations. If the relations are 0-ary, we also speak of input
or auxiliary bits. We always let τ def= τin ∪ τaux.

2 For simplicity we do not allow constants in this work but note that our results hold for relational
schemas with constants as well.

3 The following introduction to dynamic descriptive complexity is similar to previous work [25, 24].
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I Definition 1 (Update program). An update program P over a dynamic schema (τin, τaux)
is a set of first-order formulas (called update formulas in the following) that contains, for
every R ∈ τaux and every o ∈ {insS ,delS | S ∈ τin}, an update formula φRo (~x; ~y) over the
schema τ where ~x and ~y have the same arity as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is a structure (D, I,A) where4 D
is a finite domain, I is a database over the input schema (the input database) and A is
a database over the auxiliary schema (the auxiliary database). The semantics of update
programs is as follows. For a modification δ = (o,~a), where ~a is a tuple over D, and program
state S = (D, I,A) we denote by Pδ(S) the state (D, δ(I),A′), where A′ consists of relations
RA

′ def= {~b | S |= φRo (~a;~b)}. The effect Pα(S) of a modification sequence α = δ1 . . . δN to a
state S is the state PδN

(. . . (Pδ1(S)) . . .).

I Definition 2 (Dynamic program). A dynamic program is a triple (P, Init, RQ), where
P is an update program over some dynamic schema (τin, τaux),
Init is a mapping that maps τin-databases to τaux-databases, and
RQ ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, RQ) maintains a dynamic query Dyn(Q) if, for every
dynamic instance (D, α), the query result Q(α(D)) coincides with the query relation RSQ in
the state S = Pα(SInit(D)), where SInit(D) def= (D,D, Init(D)) is the initial state for D. If
the query relation RQ is 0-ary, we often denote this relation as query bit Acc and say that
P accepts α over D if Acc is true in Pα(SInit(D)).

In the following, we write Pα(D) instead of Pα(SInit(D)) and Pα(S) instead5 of Pα(S) for
a given dynamic program P = (P, Init, RQ), a modification sequence α, an initial database
D and a state S.

I Definition 3 (DynFO and DynProp). DynFO is the class of all dynamic queries that can
be maintained by dynamic programs with first-order update formulas and first-order definable
initialization mapping when starting from an initially empty input database. DynProp is
the subclass of DynFO, where update formulas are quantifier-free6.

A DynFO-program is a dynamic program with first-order update formulas, likewise
a DynProp-program is a dynamic program with quantifier-free update formulas. A
DynFO(`-in,m-aux)-program is a DynFO-program over (at most) `-ary input databases that
uses auxiliary relations of arity at most m; likewise for DynProp(`-in,m-aux)-programs.7

Due to the undecidability of finite satisfiability of first-order logic, the emptiness problem
– the problem we study first – is undecidable even for DynFO-programs with only a single
auxiliary relation (more precisely, with query bit only). Therefore, we restrict our investiga-
tions to fragments of DynFO. Also allowing arbitrary initialization mappings immediately
yields an undecidable emptiness problem. This is already the case for first-order definable
initialization mappings for arbitrary initial databases. In the literature classes with various
restricted and unrestricted initialization mappings have been studied, see [24] for a discussion.
In this work, in line with [19], we allow initialization mappings defined by arbitrary first-order
formulas, but require that the initial database is empty. Of course, we could have studied

4 We prefer the notation (D, I,A) over (D, I ∪ A) to emphasize the two components of the overall
database.

5 The notational difference is tiny here: we refer to the dynamic program instead of the update program.
6 We still allow the use of quantifiers for the initialization.
7 We do not consider the case ` = 0 where databases are pure sets with a fixed number of bits.
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further restrictions on the power of the initialization formulas, but this would have yielded a
setting with an additional parameter.

The following example illustrates a technique to maintain lists with quantifier-free dynamic
programs, introduced in [10, Proposition 4.5], which is used in some of our proofs. The
example itself is from [25].

I Example 4. We provide a DynProp-program P for the dynamic variant of the Boolean
query NonEmptySet, where, for a unary relation U subject to insertions and deletions
of elements, one asks whether U is empty. Of course, this query is trivially expressible in
first-order logic, but not without quantifiers.

The program P is over auxiliary schema τaux = {RQ,First,Last,List}, where RQ is
the query bit (i.e. a 0-ary relation symbol), First and Last are unary relation symbols, and
List is a binary relation symbol. The idea of P is to maintain a list of all elements currently
in U . The list structure is stored in the binary relation ListS . The first and last element of
the list are stored in FirstS and LastS , respectively. We note that the order in which the
elements of U are stored in the list depends on the order in which they are inserted into U .

For a given instance of NonEmptySet the initialization mapping initializes the auxiliary
relations accordingly.We only describe the (more complicated) case of deletions from U .

Deletion of a from U . How a deleted element a is removed from the list, depends on
whether a is the first element of the list, the last element of the list or some other element of
the list. The query bit remains ’true’, if a was not the first and last element of the list.8

φFirst
delU

(a;x) def= (First(x) ∧ x 6= a) ∨ (First(a) ∧ List(a, x))
φLast

delU
(a;x) def= (Last(x) ∧ x 6= a) ∨ (Last(a) ∧ List(x, a))

φList
delU

(a;x, y) def= x 6= a ∧ y 6= a ∧
(
List(x, y) ∨ (List(x, a) ∧ List(a, y))

)
φRQ

delU
(a) def= ¬(First(a) ∧ Last(a))

J

In some parts of the paper we will use specific forms of modification sequences. An
insertion sequence is a modification sequence α = δ1 · · · δm whose modifications are pairwise
distinct insertions. An insertion sequence α over a unary input schema τin is in normal form
if it fulfills the following two conditions.

(N1) For each element a, the insertions affecting a form a contiguous subsequence αa of α.
We say that αa colors a.

(N2) For all elements a, b that get assigned the same τin-color by α, the projections of the
subsequences αa and αb to their operations (i.e., their first parameters) are identical.

4 The Emptiness Problem

In this section we define and study the decidability of the emptiness problem for dynamic
programs in general and for restricted classes of dynamic programs. The emptiness problem
asks, whether the query relation RQ of a given dynamic program P is always empty, more
precisely, whether RSQ = ∅ for every (empty) initial database D and every modification
sequence α with S = Pα(D).

8 We omit the (obvious) parts of formulas that deal with spurious deletions.
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Quantification
in update
formulas

allowed not allowed

undecidable
(Thm. 6 (a))

Arity of input
relations

unary binary or more

Arity of
auxiliary
relations

at most unary binary or more

decidable
(Thm. 7)

undecidable
(Thm. 6 (b))

undecidable
(Thm. 6 (c))

Figure 1 Decidability of Emptiness for various classes of dynamic programs.

To enable a fine-grained analysis, we parameterize the emptiness problem by a class C of
dynamic programs.

Problem: Emptiness(C)
Input: A dynamic program P ∈ C with FO initialization

Question: Is RS
Q = ∅, for every initially empty database D and every

modification sequence α, where S def= Pα(D)?

As mentioned before, undecidability of the emptiness problem for unrestricted dynamic
programs follows immediately from the undecidability of finite satisfiability of first-order
logic.

I Theorem 5. Emptiness is undecidable for DynFO(2-in, 0-aux)-programs.

In the remainder of this section, we will shed some light on the border line between
decidable and undecidable fragments of DynFO. In Subsection 4.1 we study fragments of
DynFO obtained by disallowing quantification and/or restricting the arity of input and
auxiliary relations. In Subsection 4.2, we consider dynamic programs that come with a
certain consistency guarantee.

4.1 Emptiness of general dynamic programs
In this subsection we study the emptiness problem for various restricted classes of dynamic
programs. We will see that the problem is basically only decidable if all relations are at most
unary and no quantification in update formulas is allowed. Figure 1 summarizes the results.

At first we strengthen the general result from Theorem 5. We show that undecidability of
the emptiness problem for DynFO-programs holds even for unary input relations and auxiliary
bits. Furthermore, quantification is not needed to yield undecidability: for DynProp-
programs, emptiness is undecidable for binary input or auxiliary relations.

I Theorem 6. The emptiness problem is undecidable for
(a) DynFO(1-in, 0-aux)-programs,
(b) DynProp(1-in, 2-aux)-programs,
(c) DynProp(2-in, 0-aux)-programs,

Proof sketch. In all three cases, the proof is by a reduction from the emptiness problem for
semi-deterministic 2-counter automata.

In a nutshell, a counter automaton (short: CA) is a finite automaton that is equipped with
counters that range over the non-negative integer numbers. A counter c can be incremented
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(inc(c)), decremented (dec(c)) and tested for zero (ifzero(c)). A CA does not read any input
(i.e., its transitions can be considered to be ε-transitions) and in each step it can manipulate
or test one counter and transit from one state to another state. More formally, a CA is tuple
(Q,C,∆, qi, F ), where Q is a set of states, qi ∈ Q is the initial state, F ⊆ Q is the set of
accepting states, and C is a finite set (the counters). The transition relation ∆ is a subset of
Q× {inc(c), dec(c), ifzero(c) | c ∈ C} ×Q. A configuration of a CA is a pair (p, ~n) where p is
a state and ~n ∈ NC gives a value nc for each counter c in C. A transition (p, inc(c), q) can
be applied in state p, transits to state q and increments nc by one. A transition (p, dec(c), q)
can be applied in state p if nc > 0, transits to state q and decrements nc by one. A transition
(p, ifzero(c), q) can be applied in state p, if nc = 0 and transits to state q.

A CA is semi-deterministic if from every state there is either at most one transition or
there are two transitions, one decrementing and one testing the same counter for zero. The
emptiness problem for (semi-deterministic) 2-counter automata (2CA) asks whether a given
counter automaton with two counters has an accepting run and is undecidable [18, Theorem
14.1-1].

In all three reductions, the dynamic program P is constructed such that for every run ρ of
a semi-deterministic 2CAM there is a modification sequence α = α(ρ) that lets P simulate ρ,
and an empty database D, such that P accepts α over D if and only if ρ is accepting. More
precisely, the states of P encode the states ofM by auxiliary bits and the counters ofM
in some way that differs in the three cases. However, in all cases it holds that not every
modification sequence for P corresponds to a run ofM. However, P can detect if α does
not correspond to a run and assume a rejecting sink state as soon as this happens.

For (a), the two counters are simply represented by two unary relations, such that the
number of elements in a relation is the current value of the counter. The test whether
a counter has value zero thus boils down to testing emptiness of a set and can easily be
expressed by a formula with quantifiers.

The lack of quantifiers makes the reductions for (b) and (c) a bit more complicated. In
both cases, the counters are represented by linked lists, similar to Example 4, and the number
of elements in the list corresponds to the counter value (in (c): plus 1). With such a list a
counter value zero can be detected without quantification. Due to the allowed relation types,
the lists are built with auxiliary relations in (b) and with input relations in (c). J

The next result shows that emptiness of DynProp(1-in, 1-aux)-programs is decidable,
yielding a clean boundary between decidable and undecidable fragments.

I Theorem 7. Emptiness is decidable for DynProp(1-in, 1-aux)-programs.

Proof. The proof uses the following two simple observations about DynProp(1-in, 1-aux)-
programs P.

The initialization formulas of P assign the same τaux-color to all elements. This color
and the initial auxiliary bits only depend on the size of the domain. Furthermore there
is a number n(P), depending solely on the initialization formulas, such that the initial
auxiliary bits and τaux-colors are the same for all empty databases with at least n(P)
elements. This observation actually also holds for DynFO(1-in, 1-aux)-programs.
When P reacts to a modification δ = (o, a), the new (τ -)color of an element b 6= a only
depends on o, the old color of b, the old color of a, and the 0-ary relations. In particular,
if two elements b1, b2 (different from a) have the same color before the update, they both
have the same new color after the update. Thus, the overall update basically consists
of assigning new colors to each color (for all elements except a), and the appropriate
handling of the element a and the 0-ary relations.
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We will show below that the behavior of DynProp(1-in, 1-aux)-programs can be simulated
by an automaton model with a decidable emptiness problem, which we introduce next.

A multicounter automaton (short: MCA) is a counter automaton which is not allowed to
test whether a counter is zero, i.e. the transition relation ∆ is a subset of Q×{inc(c), dec(c) |
c ∈ C} ×Q. A transfer multicounter automaton (short: TMCA) is a multicounter counter
automaton which has, in addition to the increment and the decrement operation, an operation
that simultaneously transfers the content of each counter to another counter. More precisely
the transition relation ∆ is a subset of Q× ({inc(c), dec(c) | c ∈ C} ∪ {t | t : C → C})×Q.
Applying a transition (p, t, q) to a configuration (p, ~n) yields a configuration (q, ~n′) with
n′c

def=
∑
t(d)=c nd for every c ∈ C. A configuration (q, ~n) of a TCMA is accepting, if q ∈ F .

The emptiness problem for TCMAs9 is decidable by reduction to the coverability problem
for transfer petri nets10 which is known to be decidable [7].

Let P be a DynProp-program over unary schema τ = τin ∪ τaux with query symbol RQ
which may be 0-ary or unary. Let Γ0 be the set of all 0-ary (atomic) types over τ and let Γ1
be the set of τ -colors. We construct a transfer multicounter automatonM with counter set
Z1 = {zγ | γ ∈ Γ1}. The state set Q ofM contains Γ0, the only accepting state f and some
further “intermediate” states to be specified below.

The intuition is that whenever P can reach a state S thenM can reach a configuration
c = (p, ~n) such that p reflects the 0-ary relations in S and, for every γ ∈ Γ1, nγ is the number
of elements of color γ in S.

The automatonM works in two phases. First,M guesses the size n of the domain of
the initial database. To this end, it increments the counter zγ to n, where γ is the color
assigned to all elements by the initialization formula for domains of size n, and it assumes
the state corresponding to the initial 0-ary relations for a database of size n. Here the first
of the above observations is used. ThenM simulates an actual computation of P from the
initial database of size n as follows. Every modification insS(a) (or delS(a), respectively) in
P is simulated by a sequence of three transitions inM:

First, the counter zγ , where γ is the color of a before the modification, is decremented.
Second, the counters for all colors are adapted according to the update formulas of P.
Third, the counter zγ′ , where γ′ is the color of a after the modification, is incremented.

If a modification changes an input bit, the first and third step are omitted. The state of
M is changed to reflect the changes of the 0-ary relations of P. For this second phase the
second of the above observations is used.

To detect when the simulation of P reaches a state with non-empty query relation RQ,
states p ∈ Γ0 may have a transition to the accepting state f . J

4.2 Emptiness of consistent dynamic programs
Some readers of the proof of Theorem 6 might have got the impression that we were cheating
a bit, since the dynamic programs it constructs do not behave as one would expect: in all
three cases each modification sequence α that yields a non-empty query relation RQ can be
changed, e.g., by switching two operations, into a sequence that does not correspond to a run
of the CA and therefore does not yield a non-empty query relation. That is, the program P
is inconsistent because it might yield different results when the same database is reached
through two different modification sequences.

9 We note that (the complement of) this emptiness problem is often called control-state reachability
problem.

10The simulation of states by counters can be done as in [13, Lemma 2.1]
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It seems, that this inconsistency made the proof of Theorem 6 much easier. Therefore,
the question arises, whether the emptiness problem becomes easier if it can be taken for
granted that the given dynamic program is actually consistent. We study this question in
this subsection and will investigate the related decision problem whether a given dynamic
program is consistent in the next section.

As Table 1 shows, the emptiness problem for consistent dynamic programs is indeed easier
in the sense that it is decidable for a considerably larger class of dynamic programs. While
emptiness for general DynFO programs is already undecidable for the tiny fragment with
unary input relations and 0-ary auxiliary relations, it is decidable for consistent DynFO
programs with unary input and unary auxiliary relations. Likewise, for DynProp there is a
significant gap: for consistent programs it is decidable for arbitrary input arities (with unary
auxiliary relations) or arbitrary auxiliary arities (with unary input relations), but for general
programs emptiness becomes undecidable as soon as binary relations are available (in the
input or in the auxiliary database).

We call a dynamic program P consistent, if it maintains a query with respect to an empty
initial database, that is, if, for all modification sequences α to an empty initial database D∅,
the query relation in Pα(D∅) depends only on the database α(D∅). In the remainder of this
subsection we show the undecidability and decidability results stated in Table 1.

I Theorem 8. The emptiness problem is undecidable for
(a) consistent DynFO(2-in, 0-aux)-programs, and
(b) consistent DynFO(1-in, 2-aux)-programs.

Proof idea. Statement (a) is a corollary of the proof of Theorem 5, as the reduction in that
proof always yields a consistent program.

For (b), we present another reduction from the emptiness problem for semi-deterministic
2CAs (see also the proof of Theorem 6). From a semi-deterministic 2CAM we will construct
a consistent Boolean dynamic program P with a single unary input relation U . The query
maintained by P is “M halts after at most |U | steps”. Clearly, such a program has a
non-empty query result for some database and some modification sequence if and only if M
has an accepting run.

The general idea is that P simulates one step of the run ofM whenever a new element is
inserted to U . A slight complication arises from deletions from U , since it is not clear how
one could simulateM one step “backwards”. Therefore, when an element is deleted from U ,
P freezes the simulation and stores the size m of |U | before the deletion. It continues the
simulation as soon as the current size ` of U grows larger than m, for the first time. J

Contrary to the case of not necessarily consistent programs, the emptiness problem is
decidable for consistent DynFO(1-in, 1-aux)-programs.

I Theorem 9. Emptiness is decidable for consistent DynFO(1-in, 1-aux)-programs.

Proof idea. The proof uses the fact that the truth of first-order formulas with quantifier
depth k in a state of a DynFO(1-in, 1-aux)-program only depends on the number of elements
of every color up to k. The states of a consistent DynFO(1-in, 1-aux)-program can therefore
be abstracted by a bounded amount of information, namely the number of elements of every
color up to k + 1. This can be used to construct, from a consistent DynFO(1-in, 1-aux)-
program P , a nondeterministic finite automaton A that reads encoded modification sequences
for P in normal form and represents the abstracted state of P in its own state. In this way
the emptiness problem for consistent DynFO(1-in, 1-aux)-programs reduces to the emptiness
problem for nondeterministic finite automata. J
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The picture of decidability of emptiness for consistent programs for all classes of the form
DynFO(`-in,m-aux) is pretty clear and simple: it is decidable if and only if ` = 1 and m ≤ 1.
Now we turn our focus to the corresponding classes of consistent DynProp-programs. Here
we do not have a full picture. We show in the following that it is decidable if ` = 1 or m ≤ 1.

I Theorem 10. The emptiness problem is decidable for
(a) consistent DynProp(1-in)-programs.
(b) consistent DynProp(1-aux)-programs.

Proof idea (of Theorem 10 (a)). The statement follows almost immediately from the fact
that every consistent DynProp(1-in)-program with 0-ary query relations maintains a regular
language [10, Theorem 3.2]. J

To highlight the role of the Sunflower Lemma for the proof of Theorem 10 (b), we give
a full exposition of this proof in the following. At first, we sketch the basic proof idea for
consistent DynProp(1-aux)-programs over graphs, i.e., the input schema contains a single
binary relation symbol E. For simplicity we also assume a 0-ary query relation. The general
statement requires more machinery and is proved below.

Our goal is to show that if such a program P accepts some graph then it also accepts
one with “few” edges, where “few” only depends on the schema of the program. To this end
we show that if a graph G accepted by P contains many edges then one can find a large
“well-behaved” edge set in G from which edges can be removed without changing the result
of P . Emptiness can then be tested in a brute-force manner by trying out insertion sequences
for all graphs with few edges (over a canonical domain {1, . . . , n}).

More concretely, we consider an edge set “well-behaved”, if it consists only of self-loops, it
is a set of disjoint non-self-loop-edges, or is is a star, that is, the edges share the same source
node or the same target node. From the Sunflower Lemma [9] it follows that for every p ∈ N
there is an Np ∈ N such that every (directed) graph with Np edges contains p self-loops, or p
disjoint edges, or a star with p edges.

Let us now assume, towards a contradiction, that the minimal graph accepted by P has
N edges with N > NM2+1, where M is the number of binary (atomic) types over the schema
τ = τin ∪ τaux of P . Then G either contains M2 + 1 self-loops, or M2 + 1 disjoint edges, or a
(M2 + 1)-star.

Let us assume first that G has a set D ⊆ E of M2 + 1 disjoint edges. We consider the
state S reached by P after inserting all edges from E \ D into the initially empty graph.
Since D contains M2 + 1 edges, there is a subset D′ ⊆ D of size M + 1 such that all edges in
D′ have the same atomic type in state S. Let S0 be the state reached by P after inserting all
edges in D \D′ in S. All edges in D′ still have the same type in S0 since P is a quantifier-free
program (though this type can differ from the type in S). Let e1, . . . , eM+1 be the edges
in D′ and denote by Si the state reached by P after inserting e1, . . . , ei in S0. For each i,
all edges ei+1, . . . , eM+1 have the same type γi in state Si, again. As the number of binary
atomic types is M , there are i < j such that γi = γj , thus eM+1 has the same type in Si
and Sj . Therefore, inserting the edges ej+1, . . . , eM+1 in Si yields a state with the same
query bit as inserting those edges in Sj . As the query bit in the latter case is accepting, it
is also accepting in the former case, yet in that case the underlying graph has fewer edges
than G, the desired contradiction. The case where G contains M2 + 1 self-loops is completely
analogous.

Now assume that G contains a star with M2 + 1 edges. The argument is very similar to
the argument for disjoint edges. First insert all edges not involved in the star into an initially
empty graph. Then there is a set D of many star edges of the same type, and they still have
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the same type after inserting the other edges of the star. A graph with fewer edges that is
accepted by P can then be obtained as above.

The idea generalizes to input schemata with larger arity by applying the Sunflower Lemma
in order to obtain a “well-behaved” sub-relation within an input relation that contains many
tuples. In order to prove this generalization we first recall the Sunflower Lemma, and observe
that it has an analogon for tuples.

The Sunflower Lemma was introduced in [9], here we follow the presentation in [14]. A
sunflower with p petals and a core Y is a collection of p sets S1, . . . , Sp such that Si ∩Sj = Y

for all i 6= j.

I Lemma 11 (Sunflower Lemma, [9]). Let p ∈ N and let F be a family of sets each of
cardinality `. If F consists of more than N`,p

def= `!(p− 1)` sets then F contains a sunflower
with p petals.

We call a set H of tuples of some arity ` a sunflower (of tuples) if it has the following
three properties.
(i) All tuples in H have the same equality type.
(ii) There is a set J ⊂ {1, . . . , `} such that tj = t′j for every j ∈ J and all tuples t, t′ ∈ H.
(iii) For all tuples t 6= t′ in H the sets {ti | i 6∈ J} and {t′i | i 6∈ J} are disjoint.
We say that H has |H| petals.

The following Sunflower Lemma for tuples has been stated in various variants in the
literature, e.g., in [17, 15].

I Lemma 12 (Sunflower Lemma for tuples). Let `, p ∈ N and let R be a set of `-tuples. If R
contains more than N̄`,p

def= ``p`(`!)2 tuples then it contains a sunflower with p petals.

Proof. Let R be an `-ary relation that contains N̄`,p tuples. As there are less than `` equality
types of `-tuples there is a set R′ ⊆ R of size at least p`(`!)2, in which all tuples have the
same equality type. Application of Lemma 2 in [15] yields11 a sunflower with p petals. J

It is instructive to see how Lemma 12 shows that a graph with sufficiently many edges has
many selfloops, disjoint edges or a large star: Selfloops correspond to the equality type of
tuples (t1, t2) with t1 = t2, many disjoint edges to the case J = ∅ and the two possible kinds
of stars to J = {1} and J = {2}, respectively.

Proof (of Theorem 10 (b)). Now the proof for binary input schemas easily translates to
general input schemas. For the sake of completeness we give a full proof.

Suppose that a consistent DynProp(1-aux)-program P over schema τ with 0-ary12 query
relation accepts an input database D that contains at least one relation R with many tuples.

Suppose that R is of arity ` and contains N̄`,M2+1 diverse tuples where M is the number
of `-ary (atomic) types over the schema of P. We show that P already accepts a database
with less tuples than D.

By Lemma 12, R contains a sunflower R′ of size M2 + 1. Consider the state S reached by
P after inserting all tuples from R \R′ into the initially empty database. Since R′ contains
M2 + 1 tuples, there is a subset R′′ ⊆ R′ of size M + 1 such that all tuples in R′′ have the
same atomic type in state S. Let S0 be the state reached by P after inserting all tuples in

11 In [15], elements from the “outer part” of a petal can also occur in the “core”. As in R′ all tuples have
the same equality type, this can not happen in our setting.

12At the end of the proof we discuss how to deal with unary query relations.
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R′ \ R′′ in S. All tuples in R′′ still have the same type in S0 since P is a quantifier-free
program (though this type can differ from the type in S).

Let ~a1, . . . ,~aM+1 be the tuples in R′′ and denote by Si the state reached by P after
inserting a1, . . . , ai in S0. In state Si all tuples ai+1, . . . , aM+1 have the same type, again.
As the number of `-ary atomic types is k, there are i < j such that aM+1 has the same
type in Si and Sj . Therefore, inserting the edges ej+1, . . . , eM+1 in Si yields a state with
the same query bit as inserting this sequence in Sj . As the query bit in the latter case is
accepting, it is also accepting in the former case, yet in that case the underlying database
has fewer tuples than D, the desired contradiction.

If P has a unary query relation, then the proof has to be adapted as follows. For an
accepted database D, the unary query relation contains some element a. Now M is chosen
as the number of (`+ 1)-ary atomic types (instead of the number of `-ary atomic types), and
R′′ is chosen as sub-sunflower where all tuples (~a1, a), . . . , (~aM+1, a) have the same atomic
type. The rest of the proof is analogous. J

The final result of this subsection gives a characterization of the class of queries maintain-
able by consistent DynProp(0-aux)-programs. This characterization is not needed to obtain
decidability of the emptiness problem for such queries, since this is included in Theorem 10.
However, we consider it interesting in its own right.

I Theorem 13. A Boolean query Q can be maintained by a consistent DynProp(0-aux)
program if and only if it is a modulo query.

Intuitively13, a modulo query is a Boolean combination of constraints of the form: the
number of tuples that have some atomic type γ is q modulo p, for some natural numbers
p ≥ 2 and q < p.

4.3 The impact of built-in orders
A closer inspection of the proof that the emptiness problem is undecidable for consistent
DynFO(1-in, 2-aux)-programs (Theorem 8) reveals that the construction only requires one
binary auxiliary relation: a linear order on the “active” elements. The proof would also
work if a global linear order on all elements of the domain would be given. We say that a
dynamic program has a built-in linear order, if there is one auxiliary relation R< that is
always initialized by a linear order on the domain and never changed. Likewise, for a built-in
successor relation.

That is, the border of undecidability for consistent DynFO-programs actually lies between
consistent DynFO(1-in, 1-aux)-programs and consistent DynFO(1-in, 1-aux)-programs with
a built-in linear order. Similarly, the border of undecidability for (not necessarily con-
sistent) DynProp-programs actually lies between DynProp(1-in, 1-aux)-programs and
DynProp(1-in, 1-aux)-programs with a built-in linear order.

I Proposition 14. The emptiness problem is undecidable for
(a) consistent DynFO(1-in, 1-aux)-programs with a built-in linear order or a built-in suc-

cessor relation,
(b) DynProp(1-in, 1-aux)-programs with a built-in successor relation.

However, for dynamic programs that only have auxiliary bits, linear orders or successor
relations do not affect decidability.

13The actual formalization uses sets of elements rather than tuples.
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I Proposition 15. The emptiness problem is decidable for
(a) consistent DynFO(1-in, 0-aux)-programs with a built-in linear order or a built-in suc-

cessor relation,
(b) DynProp(1-in, 0-aux)-programs with a built-in linear order or a built-in successor

relation.

5 The Consistency Problem

In Section 4.2 we studied Emptiness for classes of consistent dynamic programs. It turned
out that with this restriction the emptiness problem is easier than for general dynamic
programs. One might thus consider the following approach for testing whether a given
general dynamic program is empty: Test whether the program is consistent and if it is, use
an algorithm for consistent programs. To understand whether this approach can be helpful,
we study the following algorithmic problem, parameterized by a class C of dynamic programs.

Problem: Consistency(C)
Input: A dynamic program P ∈ C with FO initialization

Question: Is P a consistent program with respect to empty initial databases?

It is not very surprising that Consistency is not easier than Emptiness, since deciding
Emptiness boils down to finding one modification sequence resulting in a state with particular
properties and Consistency is about finding two modification sequences resulting in two
states with particular properties. This high level comparison can actually be turned into
rather easy reductions from Emptiness to Consistency.

On the other hand, Consistency can also be reduced to Emptiness. For this direction
the key idea is to simulate two modification sequences simultaneously and to integrate their
resulting states into one joint state. This is easy if quantification is available, and requires
some work for DynProp-fragments.

I Theorem 16. Let ` ≥ 1,m ≥ 0.
(a) For every C ∈ {DynFO(`-in,m-aux),DynFO(`-in),DynFO(m-aux),DynFO},

(i) Emptiness(C) ≤ Consistency(C), and
(ii) Consistency(C) ≤ Emptiness(C).

(b) For every
C ∈ {DynProp(`-in,m-aux),DynProp(`-in),DynProp(m-aux),DynProp},
(i) Emptiness(C) ≤ Consistency(C), and
(ii) Consistency(C) ≤ Emptiness(C).

6 The History Independence problem

As discussed in Section 4.2, it is natural to expect that a dynamic program is consistent, i.e.,
that the query relation only depends on the current database, but not on the modification
sequence by which it has been reached. Many dynamic programs in the literature satisfy a
stronger property: not only their query relation but all their auxiliary relations depend only
on the current database. Formally, we call a dynamic program history independent if all
auxiliary relations in Pα(D) only depend on α(D), for all modification sequences α and initial
empty databases D. History independent dynamic programs (also called memoryless [19] or
deterministic [4]) are still expressive enough to maintain interesting queries like undirected
reachability [11], but also some lower bounds are known for such programs [4, 11, 25].
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In this section, we study decidability of the question whether a given dynamic program is
history independent.

Problem: HistoryIndependence(C)
Input: A dynamic program P ∈ C with FO initialization

Question: Is P history independent with respect to empty initial databases?

Not surprisingly, HistoryIndependence is undecidable in general. This can be shown
basically in the same way as the general undecidability of Emptiness in Theorem 5.

I Theorem 17. HistoryIndependence is undecidable for DynFO(2-in, 0-aux)-programs.

However, the precise borders between decidable and undecidable fragments are different
for HistoryIndependence than for Emptiness and Emptiness for consistent programs.
More precisely, HistoryIndependence is decidable for DynFO- and DynProp-programs
with unary input databases, and for DynProp-programs with unary auxiliary databases.

For showing that HistoryIndependence is decidable for DynFO-programs with unary
input databases, we prove that if such a program is not history independent then this is
witnessed by some reachable small “bad state”. A decision algorithm can then simply test
whether such a state exists. Bad states satisfy one of two properties: they either locally
contradict history independence or they are “inhomogeneous”. We define both notions in the
following.

A state S over domain D is locally history independent14 for a dynamic program P if the
following three conditions hold.
(H1) Pδ1δ2(S) = Pδ2δ1(S) for all insertions δ1 and δ2.
(H2) S = PinsR(~a)delR(~a)(S) if ~a /∈ RS , for all R ∈ τin and ~a over D.
(H3) S = PinsR(~a)(S) if ~a ∈ RS and S = PdelR(~a)(S) if ~a /∈ RS , for all R ∈ τin and ~a over D.

Locally history independence is well-suited to algorithmic analysis. The following lemma
shows that for testing history independence it actually suffices to test locally history inde-
pendence for all states reachable by very restricted modification sequences.

I Lemma 18. Let P be a dynamic program.
(a) P is history independent if and only if every state reachable by P via insertion sequences

is locally history independent.
(b) If P is a DynFO(1-in)-program, then P is history independent if and only if every state

reachable by P via insertion sequences in normal form is locally history independent.

A state S is homogeneous if all tuples ~a and ~b with the same (atomic) τin-type also have
the same (atomic) τaux-type. The following lemma is an immediate consequence of [4, Lemma
16].

I Lemma 19. For every history independent DynFO(1-in)-program, every reachable state
is homogeneous.

We call a state of a DynFO(1-in)-program that is not homogeneous or not locally history
independent a bad state. The following lemma is the key ingredient for deciding history
independence for DynFO(1-in)-programs. It restricts the size of the smallest bad state and
therefore allows for testing history independence in a brute-force manner.

14We define this term for arbitrary input arity, since the first part of Lemma 18 holds in general.
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I Proposition 20. Let P be a DynFO(1-in,m-aux)-program. There is a number N ∈ N,
that can be computed from P, such that if P is not history independent, then there exists an
empty database D∅ of size at most N and an insertion sequence α in normal form such that
Pα(D∅) is bad.

I Theorem 21. HistoryIndependence is decidable for DynFO(1-in)-programs.

Using the same technique as in the proof of Theorem 10 (b), history independence can
be shown to be decidable for DynProp(1-aux)-programs.

I Theorem 22. HistoryIndependence is decidable for DynProp(1-aux)-programs.

7 Conclusion

In this work we studied the algorithmic properties of static analysis problems for (restrictions
of) dynamic programs. Most of the results are summarized in Table 1. In general only very
strong restrictions yield decidability.

The only cases left open are about DynProp-programs when both the arity of the input
and the arity of the auxiliary relations is at least 2. For such programs the status of history
independence and emptiness of consistent remains open. We conjecture that for history
independence the decidable fragment of DynProp is larger than exhibited here.

Our results will hopefully contribute to a better understanding of the power of dynamic
programs. On the one hand the undecidability proofs show that very restricted dynamic
programs can already simulate powerful machine models. It is natural to ask whether
this power can be used to maintain other, more common queries. On the other hand the
decidability results utilize limitations of the state space and the transition between states
for classes of restricted programs. Such limitations can be a good starting point for the
development of techniques for proving lower bounds for the respective fragments.
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Sub-classical Boolean Bunched Logics and the
Meaning of Par
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Abstract
We investigate intermediate logics between the bunched logics Boolean BI and Classical BI,
obtained by combining classical propositional logic with various flavours of Hyland and De Paiva’s
full intuitionistic linear logic. Thus, in addition to the usual multiplicative conjunction (with its
adjoint implication and unit), our logics also feature a multiplicative disjunction (with its adjoint
co-implication and unit). The multiplicatives behave “sub-classically”, in that disjunction and
conjunction are related by a weak distribution principle, rather than by De Morgan equivalence.

We formulate a Kripke semantics, covering all our sub-classical bunched logics, in which the
multiplicatives are naturally read in terms of resource operations. Our main theoretical result is
that validity according to this semantics coincides with provability in a corresponding Hilbert-
style proof system.

Our logical investigation sheds considerable new light on how one can understand the mul-
tiplicative disjunction, better known as linear logic’s “par”, in terms of resource operations. In
particular, and in contrast to the earlier Classical BI, the models of our logics include the heap-
like memory models of separation logic, in which disjunction can be interpreted as a property of
intersection operations over heaps.
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1 Introduction

Bunched logics, which are free combinations of a standard propositional logic with some
variety of multiplicative linear logic [3, 19], have applications in computer science as a means
of expressing and manipulating properties of resource [18, 20]. Most notably, separation
logic [21], which has been successfully employed in large-scale program verification [7, 22, 14]
is based upon the bunched logic Boolean BI (BBI) obtained by combining ordinary classical
logic with multiplicative intuitionistic linear logic (MILL) [13].

BBI has a simple Kripke semantics under which a formula of BBI is read as a set of
elements (“resources”) in an underlying model, essentially a generalised commutative monoid.
The classical connectives have their usual meanings, and the MILL connectives (called
multiplicative) are given “resource composition” readings: A multiplicative conjunction of
formulas A ∗ B denotes those elements which divide, via the monoid operation, into two
elements satisfying A and B respectively; the unit >∗ of ∗ denotes the set of units of the
monoid; and an implication (or “magic wand”) A −−∗ B denotes those elements that, when
extended with an element satisfying A, always yield an element satisfying B.
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In this paper, we set out to answer the following question: What is the right way of
adding a multiplicative disjunction – a.k.a. linear logic’s notoriously tricky “par” – to BBI?
A first answer to this question came previously in the study of Classical BI (CBI) [4], given
by extending classical logic with classical multiplicative linear logic, i.e., MLL rather than
MILL. Similar to MLL, the multiplicative disjunction ∗∨ in CBI is the De Morgan dual of ∗
with respect to the multiplicative negation ∼: we have (A ∗∨ B ≡ ∼(∼A ∗ ∼B)). However,
this is not very semantically informative. Furthermore, the heap-like models of BBI employed
in separation logic (see e.g. [10]) turn out not to be models of CBI. This naturally raises
the question of whether there might be bunched logics between BBI and CBI permitting the
interpretation of multiplicative disjunction in such models.

Here, we shed new light on multiplicative disjunction by investigating “sub-classical”
versions of bunched logic, under the common name BiBBI, obtained by combining classical
logic with Hyland and De Paiva’s full intuitionistic linear logic (FILL) [16]. In FILL, the
conjunction ∗ and disjunction ∗∨ are related not by De Morgan equivalence, but rather by
weak distribution, i.e.

A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C,

which follows from De Morgan equivalence, but is not equivalent to it. The disjunction ∗∨
can also be endowed with a unit ⊥∗ and an adjoint co-implication, ∗\ (“magic slash”).

We define provability in BiBBI simply by combining suitable Hilbert systems for classical
logic and for FILL; the resulting Hilbert system can equivalently be reformulated as a
display calculus proof system with the cut-elimination property, cf. [1, 3]. Our main technical
contribution in this paper is a suitable Kripke frame semantics for BiBBI in which validity
of BiBBI-formulas exactly coincides with provability. We obtain completeness of provability
for validity in our semantics by embedding BiBBI into a suitable modal logic and deploying
Sahlqvist’s well-known completeness theorem (see e.g. [2]).

We consider a number of variants of BiBBI, based on whether or not various natural
logical principles of FILL are included. For each such principle, we can write down an
equivalent first-order condition on the Kripke models of BiBBI, with the frame condition
corresponding to the above weak distribution law being particularly interesting. This fact
enables us to present soundness and completeness results that are modular with respect to
any choice of BiBBI-variant from our considered class.

We also undertake an investigation into the models of BiBBI, and present some general
constructions for building them. From the program logic perspective, perhaps the most
interesting aspect of BiBBI is that the standard heap-like models of separation logic can be
extended into BiBBI-models obeying the weak distribution law, by interpreting disjunction
using a notion of intersection between heaps (and there are at least two natural such
intersection operations). We show that the typical unit law for ∗∨, given by A ∗∨ ⊥∗ ≡ A,
must fail in such models. However, we also show how to build more complicated models in
which both weak distribution and the unit law do hold.

The remainder of this paper is structured as follows. In Section 2 we recall the model-
theoretic and proof-theoretic characterisations of BBI and CBI. We then introduce our
sub-classical bunched logic BiBBI, via both a Kripke frame semantics and a Hilbert-style
axiomatic proof system, in Section 3. In Section 4 we investigate the models of BiBBI in more
detail, and present some general model constructions and conservativity results. Section 5
presents the details of our completeness proof, and Section 7 concludes.

Due to space limitations, the proofs of the results in this paper have been abbreviated.
Most of the full proofs can be found in an associated technical report [5].
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2 Boolean and Classical BI

In this section, we recall the basic characterisations of provability and validity (based on
Kripke semantics) in the bunched logics BBI [17, 11] and CBI [4]. We assume a countably
infinite set V of propositional variables, and write P(X) for the powerset of a set X.

2.1 Boolean BI
I Definition 2.1. BBI-formulas are built from propositional variables P ∈ V using the
standard connectives >,⊥,¬,∧,∨,→ of propositional classical logic, and the so-called “mul-
tiplicative” connectives: the constant >∗ and binary operators ∗ and −−∗. By convention, ¬
has the highest precedence, followed by ∗, ∧ and ∨, with → and −−∗ having lowest precedence.
I Definition 2.2. Provability in BBI is given by extending a complete Hilbert system for
classical logic with the following axioms and inference rules for ∗, −−∗ and >∗. The “sequent”
notation A ` B is syntactic sugar for the formula A→ B.

A ∗ (B ∗ C) ` (A ∗B) ∗ C A ∗B ` B ∗A A ` A ∗ >∗ A ∗ >∗ ` A

A1 ` B1 A2 ` B2

A1 ∗A2 ` B1 ∗B2

A ∗B ` C

A ` B −−∗ C
A ` B −−∗ C

A ∗B ` C

I Definition 2.3. A BBI-frame is a a tuple 〈W, ◦, E〉, where W is a set (of “worlds”),
◦ : W ×W → P(W ) and E ⊆ W . We extend ◦ pointwise to P(W ) × P(W ) → P(W ) by
W1 ◦W2 =

⋃
w1∈W1,w2∈W2

w1 ◦ w2.
A BBI-frame 〈W, ◦, E〉 is a BBI-model if ◦ is commutative and associative, and w◦E = {w}

for all w ∈W . (By definition, the latter means that
⋃
e∈E w ◦ e = {w} for all w ∈W .) We

call E the set of units of the model 〈W, ◦, E〉.
If in a BBI-model M = 〈W, ◦, E〉 we have |w1 ◦ w2| ≤ 1 for all w1, w2 ∈W , then we say

that M is partial functional and understand ◦ as a partial function of type W ×W ⇀W .
I Example 2.4. The standard heap model 〈Heaps, ◦, {e}〉 of separation logic [21] is defined
as follows. First, Heaps = Loc ⇀fin Val is the set of partial functions mapping finitely many
locations in Loc to values in Val (typically Loc,Val are both infinite sets, with Loc ⊂ Val). We
write dom(h) for the set of locations on which h is defined. We define h1 ◦ h2 to be the union
of heaps h1 and h2 if dom(h1) and dom(h2) are disjoint (and undefined otherwise), and we
let e be the empty heap with dom(e) = ∅. It is straightforward to verify that 〈Heaps, ◦, {e}〉
is a partial functional BBI-model.
I Definition 2.5. Let M = 〈W, ◦, E〉 be a BBI-model. A valuation for M is a function
ρ : V → P(W ) assigning to each proposition P a set ρ(P ) ⊆W . Given a valuation ρ for M ,
a w ∈W and a BBI-formula A, we define the forcing relation w |=ρ A by induction on A:

w |=ρ P ⇔ w ∈ ρ(P )
w |=ρ > ⇔ always
w |=ρ ⊥ ⇔ never
w |=ρ ¬A ⇔ w 2ρ A

w |=ρ A1 ∧A2 ⇔ w |=ρ A1 and w |=ρ A2
w |=ρ A1 ∨A2 ⇔ w |=ρ A1 or w |=ρ A2
w |=ρ A1 → A2 ⇔ w |=ρ A1 implies w |=ρ A2

w |=ρ >∗ ⇔ w ∈ E
w |=ρ A1 ∗A2 ⇔ ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and w1 |=ρ A1 and w2 |=ρ A2
w |=ρ A1 −−∗ A2 ⇔ ∀w′, w′′ ∈W. if w′′ ∈ w ◦ w′ and w′ |=ρ A1 then w′′ |=ρ A2
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A is said to be valid in M if w |=ρ A for all valuations ρ and for all w ∈W , and BBI-valid if
it is valid in all BBI-models.

I Theorem 2.6 ([11]). A BBI-formula is BBI-valid if and only if it is BBI-provable.

2.2 Classical BI
I Definition 2.7. CBI-formulas are defined as BBI-formulas (Defn. 2.1), except that they
may also contain the “multiplicative falsum” constant ⊥∗. We write ∼A as an abbreviation
for A −−∗ ⊥∗, and A ∗∨ B as an abbreviation for ∼(∼A ∗ ∼B).

I Definition 2.8. Provability in CBI is defined as provability in the Hilbert system for BBI
(Defn. 2.2) extended with the “double negation elimination” axiom, ∼∼A ` A.

I Definition 2.9. A CBI-model is given by a tuple 〈W, ◦, E, U〉, where 〈W, ◦, E〉 is a BBI-
model (see Defn. 2.3), U ⊆W , and for each w ∈W , there is a unique −w ∈W (the “dual”
of w) satisfying (w ◦ −w) ∩ U 6= ∅.

Given a CBI-model 〈W, ◦, E, U〉, the condition in Defn. 2.9 induces a function − : W →W

sending w to −w, and necessarily −−w = w for any w ∈W (see [4]). Moreover, extending
− pointwise to sets, it is easy to show that −E = U . Therefore, intuitively, − should be
understood as a sort of “inverse” function on worlds [4]. E.g., every Abelian group is trivially
a CBI-model, with −w the group inverse of w.

I Definition 2.10. A valuation for a CBI-model and satisfaction w |=ρ A of a CBI-formula
A by the world w and valuation ρ are defined as for BBI (Defn. 2.5), except that we add the
following clause for satisfaction of the multiplicative falsum: w |=ρ ⊥∗ ⇔ w /∈ U .

It is then straightforward to derive the following satisfaction clauses for ∼ and ∗∨:

w |=ρ ∼A ⇔ −w 2ρ A
w |=ρ A

∗∨ B ⇔ ∀w1, w2 ∈W. if w ∈ −(−w1 ◦ −w2) then w1 |=ρ A or w2 |=ρ B

I Theorem 2.11 ([4, 3]). A CBI-formula is CBI-valid if and only if it is CBI-provable.

Unfortunately, CBI cannot be used to reason about heap-like memory models:

I Proposition 2.12. Given the heap model 〈Heaps, ◦, {e}〉 of BBI defined in Example 2.4,
there is no set U ⊆ Heaps such that 〈Heaps, ◦, {e}, U〉 is a CBI-model.

Proof. Suppose for contradiction that such a U exists. By the remark following Defn. 2.9,
we have U = −{e} = {−e}. Note that −e ∈ Heaps and thus dom(−e) is finite. Let h be a
heap with dom(h) ⊃ dom(−e) (there are infinitely many such h). Then there exists a heap
−h such that h ◦ −h = −e by the CBI-axiom, but it is clear that there is no such heap. J

I Theorem 2.13 ([4]). CBI is not conservative over BBI, i.e., there are BBI-formulas that
are CBI-valid but not BBI-valid.

3 BiBBI: Sub-classical Boolean bunched logic

In this section we introduce our sub-classical Boolean bunched logic, BiBBI, which extends
BBI with multiplicative disjunction ∗∨, together with its adjoint co-implication ∗\ (“magic
slash”) and the multiplicative falsum ⊥∗. We adopt the “Bi” prefix in BiBBI to remind
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ourselves that, like in FILL [16], we have two families of multiplicative connectives, (∗,−−∗,>∗)
and ( ∗∨, ∗\ ,⊥∗), that are not however connected by De Morgan equivalences.

First, we present a basic characterisation of Kripke validity for BiBBI-formulas and an
associated notion of basic provability. Then, we consider a range of variants of the basic
logic obtained by adding various logical laws from FILL (see Figure 1), which we regard
as a sort of “logical buffet” from which we can pick and choose the principles we wish to
include. (Commutativity of ∗∨ is considered a basic principle for technical convenience: a
non-commutative ∗∨ naturally leads to both ∗\ and ⊥∗ splitting into two connectives.)

Our choice of models and interpretation achieves several complementary objectives:
1. BiBBI extends BBI and, furthermore, when a suitable “classicality” axiom is added to

BiBBI, it collapses into CBI (see Prop. 3.9). Thus, the variants of BiBBI can be seen as
intermediate logics between BBI and CBI.

2. We interpret multiplicative disjunction ∗∨ in BiBBI as a natural dual of multiplicative
conjunction ∗, in that ∗∨ can be read as a binary box modality in modal logic [2], while ∗
can be read as a binary diamond modality.

3. For each natural logical principle of FILL governing ∗∨, ∗\ and ⊥∗, one can write down an
equivalent first-order condition on BiBBI-models (see Figure 1).

4. Finally, for any variant of BiBBI obtained by taking some combination of logical axioms
from Figure 1, we achieve soundness and completeness for that variant with respect to
the associated class of models.

I Definition 3.1. A BiBBI-formula is defined as a BBI-formula (Defn. 2.1), except that it
may also contain the multiplicative constant ⊥∗, and the binary multiplicative connectives ∗\
and ∗∨. As in CBI, we write ∼A as an abbreviation for A −−∗ ⊥∗.

I Definition 3.2. A basic BiBBI-model is a tuple of the form 〈W, ◦, E,O, U〉, where 〈W, ◦, E〉
is a BBI-model, U ⊆W and O: W ×W → P(W ) is commutative. We extend O pointwise
to sets in a similar manner to ◦: W1 OW2 =

⋃
w1∈W1,w2∈W2

w1 O w2.
A valuation for a basic BiBBI-model M = 〈W, ◦, E,O, U〉 is defined as in Defn. 2.5.

Satisfaction w |=ρ A of a BiBBI-formula A by the valuation ρ and world w is given by
extending the forcing relation in Defn. 2.5 as follows:

w |=ρ ⊥∗ ⇔ w /∈ U
w |=ρ A

∗∨ B ⇔ ∀w1, w2 ∈W. if w ∈ w1 O w2 then w1 |=ρ A or w2 |=ρ B

w |=ρ A
∗\ B ⇔ ∃w′, w′′ ∈W. w′′ ∈ w′ O w and w′′ |=ρ A and w′ 2ρ B

Similarly to BBI and CBI (see Section 2), a BiBBI-formula A is valid in M if w |=ρ A for all
w ∈W and valuations ρ, and BiBBI-valid if it is valid in all BiBBI-models.

Intuitively, the binary operation O and set U in a BiBBI-model 〈W, ◦, E,O, U〉 are used
to interpret the connectives ∗∨, ∗\ and ⊥∗ in a way analogous to the use of ◦ and E to interpret
∗, −−∗ and >∗. However, the analogy is not necessarily exact since, depending on the variant
of BiBBI we consider, O and U may exhibit quite different properties to ◦ and E. (For
example, O might fail to be associative.)

We note that the connective ∗\ was not present in the original formulation of FILL,
although Clouston et al. [9] recently showed that its addition to FILL is conservative. Here,
observe that ∗\ is interpreted as the natural adjoint of ∗∨ in basic BiBBI-models.
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Principle Axiom A Frame condition F(A)

Associativity A ∗∨ (B ∗∨ C) ` (A ∗∨ B) ∗∨ C w1 O (w2 O w3) = (w1 O w2) O w3

Unit weakening A ` A ∗∨ ⊥∗ w O U ⊆ {w}

Unit contraction A ∗∨ ⊥∗ ` A w ∈ w O U

Contraction A ∗∨ A ` A w ∈ w O w

Weak distribution A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C if (x1 ◦ x2) ∩ (y1 O y2) 6= ∅ then
∃w. y1 ∈ x1 ◦ w and x2 ∈ w O y2

Classicality ∼∼A ` A ∃!−w. (w ◦ −w) ∩ U 6= ∅

Figure 1 Optional axioms of BiBBI and the corresponding first-order frame conditions (we
suppress outermost universal quantifiers over the model domain).

I Definition 3.3. Provability for basic BiBBI is given by extending the proof system for
BBI (see Defn. 2.2) with the following axioms and inference rules:

Monotonicity: Residuation: Commutativity:
A1 ` B1 A2 ` B2

A1
∗∨ A2 ` B1

∗∨ B2

A ` B ∗∨ C

A ∗\ B ` C
A ∗\ B ` C

A ` B ∗∨ C
A ∗∨ B ` B ∗∨ A

I Theorem 3.4. If a formula A is provable for basic BiBBI (Defn. 3.3) then it is valid in
all basic BiBBI-models.

Proof (sketch). By soundness for standard BBI (Theorem 2.6) it suffices to show that the
axioms and rules in Defn. 3.3 preserve validity in any basic BiBBI-model. J

I Definition 3.5. A variant of BiBBI is obtained by adding, for any combination of “prin-
ciples” from Figure 1, (a) the logical axiom A for that principle to the basic BiBBI proof
system in Defn. 3.3, and (b) the frame condition F(A) for that principle as an additional
condition on the basic BiBBI-models in Defn. 3.2.

We investigate the variants of BiBBI and their models more closely in Section 4. For
now, we just show that the correspondences laid out in Figure 1 are exact.

I Theorem 3.6. For each principle in Figure 1, the axiom A is valid in a basic BiBBI-model
M if and only if M satisfies the corresponding frame condition F(A).

Proof (sketch). Let M = 〈W, ◦, E,O, U〉 be a basic BiBBI-model. We distinguish a case for
each principle from Figure 1. Here we just show the most interesting cases: weak distribution
and classicality.

Weak distribution: (⇐) Assuming that the weak distribution frame condition holds inM , we
have to show that A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C is valid in M . So, given w |=ρ A ∗ (B ∗∨ C),
we must show w |=ρ (A ∗B) ∗∨ C. This means showing, assuming w ∈ w1 O w2, that
w1 |=ρ A ∗B or w2 |=ρ C. Since we have w |=ρ A ∗ (B ∗∨ C), we have w ∈ x1 ◦ x2 where
x1 |=ρ A and x2 |=ρ B

∗∨ C. Thus we have (x1 ◦ x2) ∩ (w1 O w2) 6= ∅, so by the weak
distribution property there exists y ∈ W such that w1 ∈ x1 ◦ y and x2 ∈ y O w2. Now,
since x2 ∈ y O w2 and x2 |=ρ B

∗∨ C we have y |=ρ B or w2 |=ρ C. If w2 |=ρ C, we are
done. If not, we have w1 ∈ x1 ◦ y and x1 |=ρ A and y |=ρ B, i.e., w1 |=ρ A ∗B as required.

(⇒) Assuming that A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C is valid in M , we have to show that the
weak distribution frame condition holds in M . That is, supposing z ∈ (x1 ◦x2)∩(y1 O y2),
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we need a w ∈ W such that y1 ∈ x1 ◦ w and x2 ∈ w O y2. Let A,B,C be propositional
variables and define a valuation ρ for M by

ρ(A) = {x1} , ρ(B) = {w ∈W | x2 ∈ w O y2} , and ρ(C) = W \ {y2} .

We claim that x2 |=ρ B
∗∨ C. To see this, let x2 ∈ w1 O w2. By construction of ρ, if

w2 2ρ C then w2 = y2 and hence w1 |=ρ B. Thus either w1 |=ρ B or w2 |=ρ C as required.
Now, since z ∈ x1 ◦ x2, with x1 |=ρ A and x2 |=ρ B

∗∨ C by the above, we obtain
z |=ρ A ∗ (B ∗∨ C). Since the weak distribution axiom is valid in M , we get
z |=ρ (A ∗B) ∗∨ C. Then, as z |=ρ (A ∗B) ∗∨ C and z ∈ y1 O y2 but y2 2ρ C, we must
have y1 |=ρ A ∗B. This means that there exist u,w ∈W with y1 ∈ u◦w and u |=ρ A and
w |=ρ B. By definition of ρ, this means that y1 ∈ x1 ◦ w and x2 ∈ w O y2, as required.

Classicality: (⇐) Assuming the classicality condition, i.e. the CBI-model axiom, holds in M ,
we have to show that ∼∼A ` A is valid. Assume that w |=ρ ∼∼A. Using the clause for
satisfaction of ∼ given in Section 2, we have −−w |=ρ A, and thus immediately w |=ρ A

as required, using the fact (also from Section 2) that −−w = w.

(⇒) Assuming that ∼∼A ` A is valid in M , we have to show that, for any w ∈W , there
is a unique w′ ∈ W such that (w ◦ w′) ∩ U 6= ∅. Let A be a propositional variable and
define a valuation ρ for M by ρ(A) = W \ {w}. By construction, w 2ρ A, so using the
main assumption we have w 2ρ (A −−∗ ⊥∗) −−∗ ⊥∗. Thus, there exist w′, w′′ ∈W such that
w′′ ∈ w ◦ w′ and w′ |=ρ A −−∗ ⊥∗ but w′′ 2ρ ⊥∗, i.e. w′′ ∈ U . That is, there exists an
−w = w′ ∈W such that (w ◦ −w) ∩ U 6= ∅.
It just remains to show that −w is unique. Write Co(w) for the set of all w′ such that
(w ◦ w′) ∩ U 6= ∅, and extend Co pointwise to sets as usual. Note that, by the above,
Co(w) is nonempty. First we show that Co(Co(w)) ⊆ {w}. Define a new valuation ρ′
for M by ρ′(A) = {w}, so that w |=ρ′ A by construction. Since A ` ∼∼A is already
provable in BBI, we have w |=ρ′ (A −−∗ ⊥∗) −−∗ ⊥∗. It is easy to show that this means
that w′ |=ρ′ A for all w′ ∈ Co(Co(w)), i.e., Co(Co(w)) ⊆ {w} as required. Furthermore,
letting −w ∈ Co(w), we have (w ◦ −w) ∩ U 6= ∅ and hence (−w ◦ w) ∩ U 6= ∅, i.e.,
w ∈ Co(Co(w)). Hence Co(Co(w)) = {w}. It is easy to see that Co(w) must then be
a singleton set: if w1, w2 ∈ Co(w) then Co(w1),Co(w2) ⊆ Co(Co(w)) = {w}. Hence
Co(w1) = Co(w2) = {w}, and so Co(Co(w1)) = Co(Co(w2)), i.e. w1 = w2 as required.
This completes the proof. J

I Corollary 3.7 (Soundness). If a formula is provable in some variant of BiBBI then it is
valid in that variant.

Proof. Follows immediately from Theorems 3.4 and 3.6. J

We also have the converse completeness result:

I Theorem 3.8 (Completeness). If a BiBBI-formula is valid in some variant of BiBBI then
it is provable in that variant.

We defer the detailed proof of Theorem 3.8 until Section 5.
Turning to proof theory, we can reformulate the family of Hilbert-style proof systems

above for BiBBI and its variants as a display calculus having the cut-elimination property,
where each variant property in Figure 1 is captured by an optional structural rule in the
calculus. We present our display calculus for BiBBI in Section 6.

To conclude this section, we show that CBI can be seen as the variant of BiBBI obeying
the “classicality” axiom in Figure 1.
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I Proposition 3.9. BiBBI and CBI are related by the following:
1. For any BiBBI-model 〈W, ◦, E,O, U〉 satisfying the classicality axiom, the tuple
〈W, ◦, E, U〉 is a CBI-model.

2. If 〈W, ◦, E, U〉 is a CBI-model and we define w1 O w2 = −(−w1 ◦ −w2), then the tuple
〈W, ◦, E,O, U〉 is a BiBBI-model satisfying all axioms but contraction in Figure 1.

3. When CBI-models are identified with BiBBI-models as above, CBI-validity coincides with
validity in the variant of BiBBI satisfying all properties but contraction in Figure 1.

Proof. Part 1 of the proposition is immediate by construction. For part 2, let 〈W, ◦, E, U〉
be a CBI-model. It is immediate that 〈W, ◦, E,O, U〉 is a basic BiBBI-model. We have to
check that 〈W, ◦, E,O, U〉 satisfies the required frame conditions. Classicality is exactly the
CBI-model axiom, so is trivially satisfied (and consequently we have −−w = w for any
w ∈W and −E = U). For associativity, we check:

w1 O (w2 O w3) = −(−w1 ◦ −−(−w2 ◦ −w3))
= −(−w1 ◦ (−w2 ◦ −w3)) (since −−X = X)
= −((−w1 ◦ −w2) ◦ −w3) (by associativity of ◦)
= −(−−(−w1 ◦ −w2) ◦ −w3) (since −−X = X)
= (w1 O w2) O w3

For the unit axioms, we can similarly check that U O w = {w}. Finally, we must verify
the weak distribution condition. Suppose (x1 ◦ x2) ∩ (y1 O y2) 6= ∅. That is, for some
z ∈ x1 ◦ x2 we have z ∈ −(−y1 ◦ −y2), i.e. −z ∈ −y1 ◦ −y2, which is again equivalent
(see [4]) to y1 ∈ z ◦ −y2. Putting everything together and using associativity of ◦, we get
y1 ∈ x1 ◦ (x2 ◦ −y2). Thus, for some w ∈ x2 ◦ −y2, we have y1 ∈ x1 ◦ w. But, using the
same properties as before, w ∈ x2 ◦ −y2 is equivalent to −x2 ∈ −w ◦ −y2 and then to
x2 ∈ −(−w ◦ −y2), i.e. x2 ∈ w O y2 as required. This completes the verification.

Finally, for part 3, just observe that the clauses for satisfaction of ⊥∗ coincide in the
forcing relations for BiBBI and CBI, and that by inserting the definition of O into BiBBI’s
clause for ∗∨, we obtain exactly the usual CBI clause for ∗∨. J

4 General constructions for BiBBI-models

In this section, we investigate the models of our variants of BiBBI, and present some general
constructions for BiBBI-models, chiefly based on the heap-like models of BBI.

We begin with some simple constructions yielding conservativity results. Let 〈W, ◦, E〉
be a BBI-model. First, define w O= w′ = {w} if w = w′, and w O= w′ = ∅ otherwise. Then
〈W, ◦, E,O=,W 〉 is easily seen to be a BiBBI-model satisfying associativity, unit weakening,
unit contraction and contraction. Second, defining w O0 w

′ def= ∅ for all w,w′ ∈ W , we
have that 〈W, ◦, E,O0, U〉 (for any U ⊆ W ) is a BiBBI-model satisfying associativity, unit
weakening and weak distribution. Consequently, we have:

I Proposition 4.1. The variants of BiBBI given by: (a) associativity, unit weakening, unit
contraction and contraction; and (b) associativity, unit weakening and weak distribution, are
both conservative over BBI. That is, any BBI-formula valid in one of these variants is also
BBI-valid.

However, neither of the previous model constructions is very satisfying. In the first
type, taking O to be O=, A ∗∨ B simply becomes A ∨ B. Moreover, as weak distribution
does not hold in general, the (∗,−−∗,>∗) and ( ∗∨, ∗\ ,⊥∗) fragments of the logic are essentially
disjoint; we are inclined to regard the variants of BiBBI without weak distribution as being



J. Brotherston and J. Villard 333

less interesting. On the other hand, under the second construction with O being O0, weak
distribution does hold (trivially), but A ∗∨ B collapses into >, which is even less interesting!

An immediate question is therefore whether there are BiBBI-models with weak distribution
in which O has a non-trivial interpretation. Our interest here is strictly in sub-classical
models, i.e. those in which classicality does not hold, since classical models fall under the
rubric of CBI, in which w1 O w2 should be read as −(−w1 ◦ −w2), cf. Proposition 3.9. We
explore this question, and related ones, in the next two subsections. A second question is
whether conservativity extends to the other sub-classical variants of BiBBI (e.g. the variant
with all sub-classical properties from Figure 1). Our next result suggests that this is unlikely.

I Definition 4.2. A partial functional BBI-model 〈W, ◦, E〉:
is cancellative if w ◦ w1 = w ◦ w2 6= ∅ implies w1 = w2;
is extensible if for all w ∈W there exists a w′ ∈W \ E such that w ◦ w′ is defined;
has indivisible units if w1 ◦ w2 ∈ E implies w1, w2 ∈ E.

Note that the heap model of Example 2.4 satisfies all three properties above, as does, e.g.,
the total monoid 〈N,+, {0}〉.

I Proposition 4.3. Let 〈W, ◦, E〉 be a partial functional BBI-model that is cancellative,
extensible and has indivisible units, as in Defn. 4.2. There does not exist a BiBBI-model of
the form 〈W, ◦, E,O, U〉 satisfying weak distribution, unit weakening and unit contraction.

Proof. Suppose for contradiction that 〈W, ◦, E,O, U〉 does exist. By unit contraction, U
must be nonempty, so let u ∈ U . By extensibility, there is a y /∈ E such that y ◦ u is defined.
By unit contraction, there exists u′ ∈ U such that y ◦ u ∈ (y ◦ u) O u′. Thus, by the weak
distribution law, there exists v ∈W such that y ◦ u = y ◦ v and u ∈ v O u′. By cancellativity,
we obtain v = u and thus u ∈ u O u′. By unit weakening and commutativity of O, we obtain
{u} = u O u′ ⊆ {u′}, and thus u = u′.

Now, since y ◦ u ∈ (y ◦ u) O u′, using u = u′ and the commutativity of O, we have
y ◦ u ∈ u O (y ◦ u). Then, by the standard unit law for BBI, there exists e ∈ E such
that (y ◦ u) ◦ e ∈ u O (y ◦ u). Thus, by weak distribution, there exists w ∈ W such that
u = (y ◦ u) ◦ w. As e is a unit for y ◦ u, it is also a unit for u, so we have e ◦ u = (y ◦ w) ◦ u.
Hence, by cancellativity, y ◦ w = e ∈ E and so by the indivisible units property we have
y ∈ E. But we already know y /∈ E, contradiction. J

Proposition 4.3 demonstrates that in the class of BBI-models given by Defn. 4.2, which
includes many standard examples, we are forced to choose between weak distribution and
(at least one direction of) the unit law A ∗∨ ⊥∗ ≡ A when extending to a BiBBI-model. A
BBI-formula whose validity implies membership of this class would yield nonconservativity
of the BiBBI fragment with both weak distribution and unit weakening / contraction.
Unfortunately, we have not yet been able to find such a formula. (We remark that the
combination of weak distribution and unit contraction is particularly interesting, as it yields
a multiplicative analogue of the usual disjunctive syllogism: A ∗ (∼A ∗∨ B) ` B.)

The next two subsections present general constructions extending (certain types of partial
functional) BBI-models to BiBBI-models obeying the weak distribution law.

4.1 Intersection in BBI-models
Our first approach to constructing BiBBI-models from BBI-models is to interpret O as
an “intersection-like” operator on worlds. This construction yields BiBBI-models with the
contraction and weak distribution properties, but in general no others (Proposition 4.7).
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As a motivating example, there are two natural ways one could go about defining inter-
section in the heap model of Example 2.4, depending on how one deals with incompatibility:

I Example 4.4 (Heap intersections). We define two binary intersection operations ∩1 and
∩2 on heaps by:

(h1 ∩1 h2)(`) def=
{
h1(`) if ` ∈ dom(h1) ∩ dom(h2) and h1(`) = h2(`)
undefined otherwise

h1 ∩2 h2
def=

{
h1 ∩1 h2 if h1(`) = h2(`) for all ` ∈ dom(h1) ∩ dom(h2)
undefined otherwise

The first intersection silently discards incompatible parts of heaps, while the second intersec-
tion requires the heaps to be fully compatible. Consequently, ∩1 is associative, while ∩2 is
not. We note that neither ∩1 nor ∩2 has a natural set of units U ⊆ Heaps, in the sense that
h ∩i U = {h} for all heaps h.

I Proposition 4.5. Let 〈Heaps, ◦, {e}〉 be the heap model of Example 2.4, and let ∩1 and ∩2
be the heap intersection operations defined in Example 4.4. Then, for any U ⊆ Heaps, both
〈Heaps, ◦, {e},∩1, U〉 and 〈Heaps, ◦, {e},∩2, U〉 are BiBBI-models satisfying contraction and
weak distribution (and the first also satisfies associativity).

Unit contraction or unit weakening can easily be obtained in the above models by suitable
choices of U , but, according to Prop. 4.3, it is impossible to obtain both simultaneously.

From now on, to simplify notation, and because most models of separation logic in
the literature satisfy this constraint, we treat only partial functional BBI-models. Using
associativity of ◦, we write w1 ] . . . ] wn to mean that w1 ◦ . . .◦wn is defined (i.e., non-empty).
Then, we can extend Proposition 4.5 to arbitrary partial functional BBI-models, using a
generalised version of the heap intersection ∩2.

I Definition 4.6. Let 〈W, ◦, E〉 be a partial functional BBI-model, and define the operation
O∩: W ×W → P(W ) by

w1 O∩ w2 = {x | ∃x1, x2 ∈W. w1 = x ◦ x1 and w2 = x ◦ x2 and x ] x1 ] x2}.

In the heap model, h1 O∩ h2 is exactly h1 ∩2 h2, while in 〈N,+, {0}〉 we have n O∩ m = {k |
n,m ≥ k}. Note that O∩ is neither a partial function nor associative, in general.

I Proposition 4.7. For any partial functional BBI-model M = 〈W, ◦, E〉, and any U ⊆W ,
we have that 〈W, ◦, E,O∩, U〉 is a BiBBI-model satisfying contraction and weak distribution.

Proof. SinceM is a BBI-model and O∩ is commutative by construction, 〈W, ◦, E,O∩, U〉 is a
basic BiBBI-model. To check contraction, let w ∈W ; we must show that w ∈ w O∩ w. This
follows from the fact that, since M is a BBI-model, there is an e ∈ E such that w ◦ e = w,
and thus w ] e ] e.

It remains to verify the weak distribution condition. That is, assuming (x1 ◦ x2)∩ (y1 O∩
y2) 6= ∅, we require to find w ∈W such that y1 = x1 ◦ w and x2 ∈ w O∩ y2. By assumption,
we have x1 ◦x2 ∈ y1 O∩ y2. By definition of O∩ there are z1 and z2 such that y1 = x1 ◦x2 ◦z1
and y2 = x1 ◦ x2 ◦ z2 and (x1 ◦ x2) ] z1 ] z2. Now, letting w = x2 ◦ z1, we immediately have
y1 = x1 ◦ w. To see that x2 ∈ w O∩ y2, we need x′, x′′ ∈ W such that w = x2 ◦ x′ and
y2 = x2 ◦ x′′ and x2 ] x

′ ] x′′. Choosing x′ = z1 and x′′ = x1 ◦ z2, we immediately have
w = x2 ◦ z1, and y2 = x2 ◦ x1 ◦ z2 by associativity. Finally, we must check x2 ] z1 ] (x1 ◦ z2),
which follows by associativity from (x1 ◦ x2) ] z1 ] z2. J
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4.2 Intersection in BBI-models with environments
We now define our second general construction, based upon the one in the previous section,
for constructing BiBBI-models obeying weak distribution, associativity, contraction and both
unit laws. We require that the underlying BBI-model obeys the cross-split and disjointness
properties typically encountered in heap-like models of separation logic [10, 6]:

I Definition 4.8. A partial functional BBI-model M = 〈W, ◦, E〉 has the cross-split property
if for any t, u, v, w ∈W such that t ◦ u = v ◦ w, there exist tv, tw, uv, uw such that

t = tv ◦ tw, u = uv ◦ uw, v = tv ◦ uv, and w = tw ◦ uw.

Diagrammatically, this can be thought of in the following way:

t u =
v

w
⇒ ∃tv, tw, uv, uw.

tv uv

tw uw

M has the disjointness property if w ] w implies w ∈ E.

We remark that, again, the standard heap model of Example 2.4 has both the cross-split
and the disjointness property. The monoid (N,+, {0}) does not satisfy disjointness (because
+ is a total operation), but it does have the cross split property: Given t+ u = v+w, simply
take tv = min(t, v), uw = min(u,w), tw = t− tv and uv = u− uw.

Given a BBI-model with the above properties, we construct a BiBBI-model M̄ =
〈W̄ , ◦̄, Ē, Ō, D〉, where each world in W̄ consists of a “local” world w ∈ W paired with
a larger “environment” x ∈W such that x = w ◦w′ for some w′. On the “local” part of each
world, ◦̄ and Ō behave as ◦ and O∩, respectively. On the “environment” part of each world,
◦̄ and Ō behave as a union operation ∪ (as defined below) and the identity, respectively.

I Definition 4.9. Given a partial functional BBI-model 〈W, ◦, E〉, we define the union
operation, ∪ : W ×W → P(W ), by

w1 ∪ w2 = {y ◦ y1 ◦ y2 | w1 = y ◦ y1 and w2 = y ◦ y2} .

We lift ∪ to P(W )× P(W )→ P(W ) in the usual way: W1 ∪W2 =
⋃
w1∈W1,w2∈W2

w1 ∪ w2.

For our purposes we shall require ∪ to be associative, which is not necessarily the case
for arbitrary partial functional BBI-models.

I Lemma 4.10. If a partial functional BBI-model 〈W, ◦, E〉 has the cross-split property, then
∪ in Definition 4.9 is associative. Moreover, if w = w1 ◦ w2, then w ∈ w ∪ w1.

I Definition 4.11. Let M = 〈W, ◦, E〉 be a partial functional BBI-model. We define
M̄ = 〈W̄ , ◦̄, Ē, Ō, D〉 as follows:

W̄ = {(w, x) | ∃w′. x = w ◦ w′} Ē = {(e, e) | e ∈ E}
(w, x) ◦̄ (w′, x′) = {(w ◦ w′, x′′) | x′′ ∈ x ∪ x′} D = {(w,w) | w ∈W}

(w, x) Ō (w′, x′) =
{
{(w′′, x) | w′′ ∈ w O∩ w′} if x = x′

∅ otherwise

CSL 2015



336 Sub-classical Boolean Bunched Logics and the Meaning of Par

Instantiating M in the above definition with the heap model of Example 2.4, the set W̄
pairs every heap with a larger heap that extends it, which can be thought of as pairing a
local part of memory “owned” by a program with an “environment” reflecting the wider
machine state.

Our main result about M̄ , stated as Theorem 4.13, is that, if M has the cross-split and
the disjointness properties, then M̄ is a BiBBI-model satisfying all the properties of Figure 1
(except classicality). The following lemma groups together a number of intermediary results
used in the proof of this theorem.

I Lemma 4.12. Suppose that M = 〈W, ◦, E〉 is partial functional and has the cross-split
and disjointness properties, and let M̄ = 〈W̄ , ◦̄, Ē, Ō, D〉 be as in Definition 4.11. All of the
following hold:
1. For all (w1, x), (w2, x) ∈ W̄ , we have w1 O∩ w2 a singleton set (and we typically drop the

set brackets). Consequently, Ō is a partial function on W̄ × W̄ .
2. If (w, x), (w1 ◦ w2, x) ∈ W̄ with w ] w1 and w ] w2, then (w ◦ w1 ◦ w2, x) ∈ W̄ .
3. For all (w, x), (w1 ◦ w2, x) ∈ W̄ , we have w O∩ (w1 ◦ w2) = (w O∩ w1) ◦ (w O∩ w2).

Proof (sketch). Each part of the lemma is proved directly; the proofs rely heavily on the
disjointness and cross-split properties of M . J

I Theorem 4.13. Given a partial functional BBI-model M with the cross-split and disjoint-
ness properties, M̄ is a BiBBI-model with all the properties of Figure 1 except classicality.

Proof (sketch). We check that M̄ satisfies all properties of basic BiBBI-models, and all
relevant properties from Figure 1, of which the most difficult case is, interestingly enough,
the associativity of Ō. The verifications rely heavily on Lemmas 4.10 and 4.12. J

5 Completeness of BiBBI

This section presents our proof of completeness for (variants of) BiBBI, stated earlier as
Theorem 3.8. Our approach follows the basic pattern previously employed in the literature
for BBI [8] and for CBI [4]: we translate a given variant of BiBBI into modal logic, and
appeal to Sahlqvist’s well known completeness result (see e.g. [2]). Here, unsurprisingly, the
weak distribution law of BiBBI presents the greatest technical obstacles to this approach.

We begin by recalling the standard definitions, from [2], of validity and provability in
normal modal logic over a suitably chosen signature (a.k.a. “modal similarity type”).

I Definition 5.1. A modal logic formula is built from propositional variables using the
classical connectives, 0-ary modalities >∗ and U, and binary modalities ∗,(,O and ^.

I Definition 5.2. A modal frame is given by a tuple of the form 〈W, ◦,(,O,^, E, U〉, where
◦, (, O, and ^ all have type W ×W → P(W ), and E,U ⊆W .

A valuation for a modal frame M = 〈W, . . .〉 is as usual given by a function ρ : V → P(W ).
The forcing relation w |=ρ A is defined by induction on A in the standard way in modal
logic, i.e. as for BBI in the case of propositional variables and classical connectives, with the
following clauses for the modalities:

w |=ρ >∗ ⇔ w ∈ E
w |=ρ U ⇔ w ∈ U

w |=ρ A ∗B ⇔ ∃w1, w2 ∈W. w ∈ w1 ◦ w2 and w1 |=ρ A and w2 |=ρ B

w |=ρ A( B ⇔ ∃w1, w2 ∈W. w ∈ w1 ( w2 and w1 |=ρ A and w2 |=ρ B

w |=ρ A O B ⇔ ∃w1, w2 ∈W. w ∈ w1 O w2 and w1 |=ρ A and w2 |=ρ B

w |=ρ A ^ B ⇔ ∃w1, w2 ∈W. w ∈ w1 ^ w2 and w1 |=ρ A and w2 |=ρ B
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As usual, A is valid in M iff we have w |=ρ A for all w ∈W and valuations ρ.

Each of the binary functions ◦,(,O,^: W × W → P(W ) in a modal frame can
be equivalently seen as a ternary relation over W (as is standard in modal logic). The
corresponding modalities are each interpreted as a standard binary “diamond” modality.

I Definition 5.3. The normal modal logic MLBiBBI for the signature (>∗,U, ∗,(,O,^) is
given by extending a standard Hilbert system for classical logic with the following axioms
and rules, for all ⊗ ∈ {∗,(,O,^}:

⊥⊗A ` ⊥ and A⊗⊥ ` ⊥ A1 ` A2 B1 ` B2

A1 ⊗B1 ` A2 ⊗B2
(A ∨B)⊗ C ` (A⊗ C) ∨ (B ⊗ C)
A⊗ (B ∨ C) ` (A⊗B) ∨ (A⊗ C)

Next, we recall the Sahlqvist completeness result for normal modal logics augmented with
suitably well-behaved axioms, called Sahlqvist formulas. In fact, we only require so-called
“very simple” Sahlqvist formulas for our completeness result.

I Definition 5.4. A very simple Sahlqvist antecedent (over the signature (>∗,U, ∗,(,O,^))
is given by the grammar: S ::= P | > | ⊥ | S ∧ S | >∗ | U | S ∗ S | S ( S | S O S | S ^ S.
A very simple Sahlqvist formula is an implication A ` B, where A is a very simple Sahlqvist
antecedent and B is a positive modal logic formula (i.e., every propositional variable occurs
within the scope of an even number of negations).

I Theorem 5.5 (Sahlqvist [2]). If a modal logic formula is valid in the set of all modal frames
satisfying a set A of very simple Sahlqvist formulas, then it is provable in MLBiBBI +A.

We now define a set of Sahlqvist formulas that collectively capture all variants of BiBBI.

I Definition 5.6. For a given variant of BiBBI, define the set ABiBBI of very simple Sahlqvist
formulas as follows:

(1) A ∧ (B ∗ C) ` (B ∧ (C ( A)) ∗ > (Assoc.) A O (B O C) ` (A O B) O C

(2) A ∧ (B ( C) ` >( (C ∧ (A ∗B)) (Unit weak.) A O U ` A
(3) A ∧ (B O C) ` > O (C ∧ (A ^ B)) (Unit contr.) A ` A O U
(4) A ∧ (B ^ C) ` (B ∧ (C O A)) ^ > (Contr.) A ` A O A

(5) A ∗B ` B ∗A (Weak distr.) (A ∗B) ∧ (C O D) `
(6) A O B ` B O A (A ∧ ((B ^ D) ( C)) ∗ >
(7) A ∗ (B ∗ C) ` (A ∗B) ∗ C (Classicality) (A( U) ( U ` A and
(8) A ∗ >∗ ` A and A ` A ∗ >∗ A ` (A( U) ( U

where A, B, C, D are considered here to be propositional variables, and the named axioms
are included in ABiBBI iff the BiBBI variant includes the corresponding property in Figure 1.

I Lemma 5.7. Let M = 〈W, ◦,(,O,^, E, U〉 be a modal frame satisfying axioms (1)–(4)
of ABiBBI in Definition 5.6. Then we have, for any w,w1, w2 ∈W :

w ∈ w1 ( w2 ⇔ w2 ∈ w ◦ w1 and w ∈ w1 ^ w2 ⇔ w1 ∈ w2 O w .

Given a modal frame M = 〈W, ◦,(,O,^, E, U〉, we write pMq for 〈W, ◦, E,O, U〉.

I Lemma 5.8. Let M = 〈W, ◦,(,O,^, E, U〉 be a modal frame satisfying the set ABiBBI
of axioms corresponding to a BiBBI variant, as given by Definition 5.6. Then pMq is a
BiBBI-model for that variant.
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Proof (sketch). First, pMq is a basic BiBBI-model, since it satisfies axioms (5)–(8) in
Defn. 5.6. We just show that if an optional Sahlqvist axiom from Defn. 5.6 is valid in M ,
then M satisfies the corresponding frame property in Figure 1 (and thus pMq does too).

We just show the case of weak distribution here. Assume the weak distribution axiom of
Definition 5.6 is valid in M and suppose that (x1 ◦ x2) ∩ (y1 O y2) 6= ∅. That is, we have
z ∈ (x1 ◦ x2) ∩ (y1 O y2) for some z ∈W . We require to find a w ∈W such that y1 ∈ x1 ◦w
and x2 ∈ w O y2. Define a valuation ρ for M by ρ(A) = {x1}, ρ(B) = {x2}, ρ(C) = {y1} and
ρ(D) = {y2}. By construction, z |=ρ (A ∗B) ∧ (C O D). Since the weak distribution axiom
is valid in M , we have that z |=ρ (A ∧ ((B ^ D) ( C)) ∗ >. That is, for some z′ we have
z′ |=ρ A ∧ ((B ^ D) ( C). Since z′ |=ρ A, we get z′ = x1 and so x1 |=ρ (B ^ D) ( C. As
M satisfies axioms (1)–(4) by assumption, we can apply Lemma 5.7 to obtain w,w′ such
that w′ ∈ x1 ◦ w and w |=ρ B ^ D and w′ |=ρ C. As w′ |=ρ C, we have y1 ∈ x1 ◦ w. Using
Lemma 5.7 and commutativity of O (forced by the validity of axiom (6) in M), we obtain
from w |=ρ B ^ D that there exist w′, w′′ with w′′ ∈ w O w′ and w′′ |=ρ B and w′ |=ρ D.
This means exactly that x2 ∈ w O y2 as required. This completes the proof. J

I Definition 5.9. We define a translation t(−) from BiBBI-formulas to modal logic formulas,
and a symmetric translation u(−) in the opposite direction, by

t(φ) = φ u(φ) = φ

t(⊥∗) = ¬U u(U) = ¬⊥∗
t(¬A) = ¬t(A) u(¬A) = ¬u(A)

t(A ? B) = t(A) ? t(B) u(A ? B) = u(A) ? u(B)
t(A −−∗ B) = ¬(t(A) ( ¬t(B)) u(A( B) = ¬(u(A) −−∗ ¬u(B))
t(A ∗∨ B) = ¬(¬t(A) O ¬t(B)) u(A O B) = ¬(¬u(A) ∗∨ ¬u(B))
t(A ∗\ B) = t(A) ^ ¬t(B) u(A ^ B) = u(A) ∗\ ¬u(B)

where φ ∈ {P,>,⊥,>∗} and ? ∈ {∧,∨,→, ∗}.

I Lemma 5.10. If A is valid in some variant of BiBBI, then t(A) is valid in the class of
modal frames satisfying the corresponding Sahlqvist axioms ABiBBI given by Definition 5.6.

Proof (sketch). Let M = 〈W, ◦,(,O,^, E, U〉 be a modal frame satisfying the axioms
ABiBBI. By Lemma 5.8, pMq is a BiBBI-model for the variant of BiBBI determined by
ABiBBI, and thus A is valid in pMq. We require to show that t(A) is valid in M , which
follows by establishing the bi-implication w |=ρ A (in pMq) ⇔ w |=ρ t(A) (in M), for all
w ∈W and valuations ρ. This bi-implication follows by structural induction on A, making
use of Lemma 5.7 for the cases A = B −−∗ C and A = B ∗\ C. J

I Lemma 5.11. If B is provable in MLBiBBI + ABiBBI, then u(B) is provable in the
corresponding variant of BiBBI.

Proof (sketch). We have to show that all the axioms and rules of normal modal logic
(Defn. 5.3) and all the ABiBBI axioms (Defn. 5.6) are derivable in the appropriate variant of
BiBBI under the translation u(−). For example, in the case of the Sahlqvist axiom for weak
distribution from Defn. 5.6, we need to derive the following in BiBBI with weak distribution:

(u(A) ∗ u(B)) ∧ ¬(¬u(C) ∗∨ ¬u(D)) ` (u(A) ∧ ¬((u(B) ∗\ ¬u(D)) −−∗ ¬u(C)) ∗ >

The required derivations are often tedious and sometimes tricky: see [5] for details. J

I Lemma 5.12. If u(t(A)) is provable in some variant of BiBBI then so is A.

Proof (sketch). By structural induction on A. J

We may now finally prove our completeness result:
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Proof of Theorem 3.8. Suppose A is valid in some BiBBI variant. By Lemma 5.10, t(A)
is then valid in the class of modal frames satisfying the Sahlqvist formulas ABiBBI given by
Defn. 5.6. By Theorem 5.5, t(A) is provable in MLBiBBI +ABiBBI. Thus, by Lemma 5.11,
u(t(A)) is provable in the corresponding variant of BiBBI. By Lemma 5.12, A is then provable
in this BiBBI variant as required. J

6 Proof theory

In this section, we construct a cut-eliminating display calculus (cf. [1, 4, 3]) for BiBBI by
combining a display calculus for classical logic with the display calculus for the multiplicative
fragment of FILL given by Clouston et al [9]. Particular variants of BiBBI are handled via
the inclusion or otherwise of optional structural rules.

I Definition 6.1. Structures are given by the following grammar, where F ranges over
BiBBI-formulas: X ::= F | ∅ | ]X | X;X | X,X | X : X. If X and Y are structures then
X ` Y is a consecution.

I Definition 6.2. For any structure Z we define the BiBBI-formulas ΨZ and ΥZ by mutual
structural induction:

ΨF = F ΥF = F

Ψ∅ = >∗ Υ∅ = ⊥∗
Ψ]X = ¬ΥX Υ]X = ¬ΨX

ΨX;Y = ΨX ∧ΨY ΥX;Y = ΥX ∨ΥY

ΨX,Y = ΨX ∗ΨY ΥX,Y = ΨX −−∗ ΥY

ΨX:Y = ΨX
∗\ ΥY ΥX:Y = ΥX

∗∨ ΥY

Validity of the consecution X ` Y (in a BiBBI variant) is then interpreted as validity of the
formula ΨX ` ΥY .

We give our display calculus DLBiBBI for BiBBI in Figure 2. As usual, we give a set
of display postulates written as a binary relation <>D on consecutions, and let display-
equivalence, ≡D, be the reflexive-transitive closure of <>D. Then, for any substructure
occurrence Z in a consecution C, we can “display” Z as the entire antecedent or consequent
as appropriate: that is, either C ≡D Z ` X or C ≡D X ` Z for some structure X (depending
on whether Z occurs positively or negatively in C). For further details see e.g. [3].

The “variant” structural rules are included in DLBiBBI only when we wish to consider
particular variants of BiBBI. From left to right in Figure 2, the variant structural rules
correspond respectively to: associativity; unit weakening; unit contraction; contraction; and
weak distribution.

I Lemma 6.3. For any structure X, both X ` ΨX and ΥX ` X are provable in DLBiBBI.

Proof (sketch). Structural induction on X. J

I Theorem 6.4. X ` Y is provable in a variant of DLBiBBI if and only it is valid in the
corresponding variant of BiBBI.

Proof (sketch). For soundness, one just verifies directly that each rule of Figure 2 preserves
validity, a straightforward exercise. For completeness, assume that X ` Y is valid, i.e. that
ΨX ` ΥY is a valid formula. By Theorem 3.8, ΨX ` ΥY is provable in the Hilbert system for
(the required variant of) BiBBI. It is easy to show that the corresponding variant of DLBiBBI
can derive all principles of the Hilbert system, and thus ΨX ` ΥY is provable in DLBiBBI.
Then, using (Cut) and Lemma 6.3, we can prove X ` Y in DLBiBBI as required. J
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Display postulates:

X; Y ` Z <>D X ` ]Y ; Z <>D Y ; X ` Z

X ` Y ; Z <>D X; ]Y ` Z <>D X ` Z; Y

X ` Y <>D ]Y ` ]X <>D ]]X ` Y

X, Y ` Z <>D X ` Y, Z <>D Y, X ` Z

X ` Y : Z <>D X : Y ` Z <>D X ` Z : Y

Identity rules:

(Id)
P ` P

X ` F F ` Y
(Cut)

X ` Y

X ′ ` Y ′

X ` Y ≡D X ′ ` Y ′ (≡D)
X ` Y

Logical rules:

(⊥L)
⊥ ` X

]F ` X
(¬L)

¬F ` X

F ; G ` X
(∧L)

F ∧G ` X

F ` X G ` X
(∨L)

F ∨G ` X

X ` F G ` Y
(→L)

F → G ` ]X; Y

(>R)
X ` >

X ` ]F
(¬R)

X ` ¬F

X ` F X ` G
(∧R)

X ` F ∧G

X ` F ; G
(∨R)

X ` F ∨G

X; F ` G
(→R)

X ` F → G

∅ ` X
(>∗L)

>∗ ` X

F, G ` X
(∗L)

F ∗G ` X

X ` F G ` Y
(−−∗L)

F −−∗ G ` X, Y
(⊥∗L)

⊥∗ ` ∅

F ` X G ` Y
(∗∨L)

F ∗∨ G ` X : Y

(>∗R)
∅ ` >∗

X ` F Y ` G
(∗R)

X, Y ` F ∗G

X, F ` G
(−−∗R)

X ` F −−∗ G

X ` ∅
(⊥∗R)

X ` ⊥∗
X ` F : G

(∗∨R)
X ` F ∗∨ G

F : G ` X
( ∗\L)

F ∗\ G ` X

X ` F G ` Y
( ∗\R)

X : Y ` F ∗\ G

Structural rules:
X ` Z

(Wk)
X; Y ` Z

X; X ` Z
(Ctr)

X ` Z

W, (X, Y ) ` Z
(∗A)

(W, X), Y ` Z

X ` Y
(∅WkL)

∅, X ` Y

∅, X ` Y
(∅CtrL)

X ` Y

Variant structural rules:
W ` (X : Y ) : Z

(∗∨A)
W ` X : (Y : Z)

X ` Y
(∅WkR)

X ` Y : ∅

X ` Y : ∅
(∅CtrR)

X ` Y

X ` Y : Y
(∗∨Ctr)

X ` Y

W, (X : Y ) ` Z
(WDist)

(W, X) : Y ` Z

Figure 2 The proof rules of DLBiBBI. W, X, Y, Z range over structures, F, G range over BiBBI-
formulas and P ranges over V.
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I Theorem 6.5. Any DLBiBBI proof of X ` Y can be transformed into a proof of X ` Y
without (Cut).

Proof (sketch). We just verify that the proof rules of DLBiBBI collectively satisfy Belnap’s
well known cut-elimination conditions (C2)–(C8) [1]. The verification is straightforward, and
similar to the one carried out in [3]. J

7 Conclusions

In this paper, we study “sub-classical” bunched logics between BBI and CBI, where a
multiplicative “disjunction family” of connectives, ( ∗∨, ∗\ ,⊥∗), exists alongside the usual
“conjunction family” (∗,−−∗,>∗). The two families are dual to one another in an intuitionistic
sense: ∗ and ∗∨ are related, if at all, not by De Morgan equivalence but by the weak distribution
law, A ∗ (B ∗∨ C) ` (A ∗B) ∗∨ C. From the point of view of linear logic, the variants of our
BiBBI can be seen as free combinations of classical logic with various multiplicative fragments
of Hyland and de Paiva’s FILL [16].

We have given a Kripke frame semantics for our logic(s) in which various logical axioms
of FILL have natural semantic correspondents as first-order conditions on BiBBI-models
(cf. Figure 1). We provide a completeness proof for this semantics, based on the Sahlqvist
completeness theorem for modal logic, and moreover we obtain completeness for any variant
of BiBBI given by a choice of logical principles from Figure 1.

Investigating the models of our sub-classical bunched logics in more detail, we find that
heap-like models of BiBBI, as used in separation logic, can be obtained by interpreting ∗∨
using natural notions of heap intersection. (This stands in contrast to the situation for
classical bunched logic CBI, of which heaps are not models.) In such models, the above weak
distribution law holds, but this unavoidably comes at the expense of the unit law A ∗∨ ⊥∗ ≡ A
(see Prop. 4.3). However, this is not true of all interesting models of BiBBI; we show how
to turn sufficiently well-behaved BBI-models (such as the heap model) into more complex
BiBBI-models in which both weak distribution and the unit law hold, based on pairing every
world in the original model with a larger “environment” (Theorem 4.13).

We are cautiously optimistic that the disjunctive machinery of BiBBI might usefully
be applied to program verification based on separation logic. As in linear logic, it seems
more difficult to reason intuitively using multiplicative disjunction than using multiplicative
conjunction. However, the fact that disjunction can be interpreted using natural heap
intersection operations, which are closely related to the union operation used to reason about
algorithms with complex sharing [15, 12], leads us to hope that such intuitions are within
reach. We hope to explore this direction further in future work.
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Abstract
Assume that we may prove in Arithmetic with Comprehension axiom that a primitive recursive
binary relation R is well-founded, using the inductive definition of well-founded. In this paper we
prove that the proof that R is well-founded may be made intuitionistic. Our result generalizes
to any implication between such formulas. We conclude that if we are able to formulate any
mathematical problem as the fact that some primitive recursive relation is well-founded, then
intuitionistic and classical provability coincide, and for such a statement we may always find an
intuitionistic proof, if we may find a proof at all.
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1 Introduction. A conservativity result for the statements of
inductive well-foundedness

The proof principle of induction, originally called transfinite induction, is credited to the
founder of intuitionism, Brouwer ([19]). In 1967 Howard and Kreisel [10] remarked that
(transfinite) induction is the most useful formulation of well-foundedness in an intuitionistic
context. In 1971, P. Martin-Löf studied an intuitionistic natural deduction version of
transfinite induction [13]. By building over their work, many classical theorems, whose
original version is not intuitionistically provable, have been reformulated in such a way to
become intuitionistically provable. For some primitive recursive relations R1, . . . , Rn, R
over Nat, the new statements have the following form:

(1) “if R1, . . . , Rn are inductively well-founded, then R is inductively well-founded”

Among many examples we recall: Higman Lemma [5], [7], compactness results in formal
topology [6], Ramsey Theorem in Combinatorial Mathematics, the Termination Theorem
and the Size-Change Termination Theorem in Computer Science [3], [20].

The results of this paper are an a posteriori justification of the existence of these
intuitionistic results. We guarantee, in the case of a classical proof of a statement of the
form (1), that constructivization is always possible in principle, at least for the arithmetical
proofs using Comprehension of all finite orders: second order arithmetic, third order and so
forth. Comprehension axiom for sets of natural numbers says that any predicate on natural
numbers defines a set, Comprehension axiom for sets of sets of natural numbers says that
any predicate on sets of natural numbers defines a set of sets, and so forth, for all finite
orders. Let us call impredicative a proof possibly using Comprehension axiom of some finite
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order. We prove that any impredicative proof of a statement of the form (1) may avoid the
use of Excluded Middle. Often the resulting proof will be intuitionistic but impredicative.

We claim having an effective method for transforming classical proofs into intuitionistic
ones, however, we do not claim that this method is feasible in practice. We do not claim we
found an optimal proof, either. Our meta-proof that a result is intuitionistically provable
uses intuitionistic but impredicative meta-reasoning. We are not yet able to define some
simple effective procedure to turn classical proofs of well-foundedness into intuitionistic ones.
We tried with Gödel’s ¬¬-translation and with Friedman’s A-translation [8], but they did
not work.

There are results along the same direction. Sieg proved in his ph.d. thesis that whenever
ω-iterated inductive definitions prove that a primitive recursive ordinal is well-founded, then
the ordinal belongs to some primitive recursive denotation system, which may be proved to
be well-founded intuitionistically. An account of his proof may be found in [18].

Here we address a more general case: a classical proof using the Comprehension axioms
of all finite orders. The conclusion of the classical proof has the more general form: if R1,
. . . , Rn are inductively well-founded, then R is inductively well-founded, with R1, . . . , Rn, R

primitive recursive relations over Nat.
Our result may be seen as a generalization of the well-known result of conservativity

of classical analysis w.r.t. intuitionistic analysis for Π0
2-formulas by Kreisel [12]. This

conservativity results generalizes to any implications between Π0
2-formulas (this is an old

remark, for a proof see for instance [4]). We extend the conservativity result to all implications
among Π1

1-formulas, provided these formulas may be expressed through the well-foundedness
of some primitive recursive relation, and using the inductive definition of well-foundedness.
The predicate “being the code of a primitive recursive well-founded relation” is Π1

1-complete
(see for instance [9]). Thus, our result allows to reformulate any classical theorem which
is an implication between Π1

1-formulas by some classically equivalent and intuitionistically
provable implication between statements of inductive well-foundedness. The original classical
theorem may be not intuitionistically provable.

This is the plan of the paper. In Section 2 we introduce PAω, classical arithmetic with
Comprehension of order ω, the formal system we deal with in this paper. In Section 3
we describe the inductive definition of well-founded relation and its basic properties in
Intuitionistic Arithmetic. In Section 4 we sketch the proof idea for the conservativity result,
and in §5 we prove it. In Section 6 we draw our conclusions and we provide some examples.
The acknowledgments are in Paragraph 6.1.

2 The conservativity result and the formal system for Classical
Higher Order Arithmetic

Assume R1, . . . , Rn, R are some primitive recursive binary relations on Nat. Let us denote with
WF(R) the statement “R is inductively well-founded” (to be defined later). We want to prove:
whenever we have a proof of WF(R1), . . . , WF(Rn) =⇒ WF(R) in Classical Peano Arithmetic
with Comprehension axiom of order ω, then we may prove WF(R1), . . . , WF(Rn) =⇒ WF(R) in
the “Theory of Species” [14]. The “Theory of Species” is a natural deduction with higher order
predicate variables, and Comprehension axiom of level ω hidden in the ∀-elimination rule.
Comprehension of level two (for sets of natural numbers) proves Paris-Harrington Theorem,
the Theorem about Goodstein Sequences, Higman Lemma, Kruskal Lemma, which are not
provable in first order arithmetic (classical or intuitionistic). Each level of comprehension
adds new theorems. In spite of these strong assumptions, the “Theory of Species” is an
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intuitionistic logic, because it has the disjunctive property and the witness property ([14], p.
231, Section 11.1, 11.2). In fact, it may be considered as the Intuitionistic Arithmetic with
Comprehension axiom of order ω.

In this paper we are interested in the mere existence of an intuitionistic formal proof,
and not in an efficient way of writing of it. We prove our result using intuitionistic but
impredicative meta-reasoning. For the moment, we do not have a meta-proof using first
order arithmetical reasoning.

We first define a sequent calculus version of the Intuitionistic Theory of Species plus
Excluded Middle. We call this system the Classical Arithmetic with Comprehension axiom
of order ω. Following [13], [16], we use a superscript to denote the level of comprehension,
and we call this system PAω. PAω should not be confused with PAω, the system for first order
classical arithmetic having higher order functions and no Comprehension axiom. We do not
have higher order functions instead. We do have higher order predicate types: Nat→ Prop
(the type of sets of natural numbers), (Nat → Prop) → Prop (the type of sets of sets of
natural numbers), and so forth. Comprehension for second order, third order, . . . , arithmetic
is the statement ∃Xσ→Prop.(∀xσ.X(x)⇔ P ), for σ = Nat, (Nat→ Prop), . . .. Comprehension
is not an axiom of our sequent calculus PAω, but we will express it through left-introduction
rules for universal quantifiers: ∀XNat→Prop.A, ∀X(Nat→Prop)→Prop.A, . . . . This is analogous
to the way Martin-Lof expresses Comprehension axiom through the ∀-elimination rule. We
choose this formalization of Comprehension in order to use Girard’s candidate method for
deriving normalization of PAω.

I Definition 1 (The Language of PAω). PAω is the formal system having:
1. One numeral for each n ∈ Nat, one symbol for each primitive recursive function, infinitely

many variables xNat, yNat, zNat, . . . of type Nat. All terms we may define from them.
2. Predicates types: the type Prop of formulas, and with σ, τ also σ → τ and Nat→ τ . If σ is

a predicate type, its degree deg(σ) is inductively defined by deg(Nat) = 1, deg(Prop) = 2
and deg(σ → τ) = max(deg(σ) + 1, deg(τ)).

3. One predicate constant p for each primitive recursive predicate on Nat of any arity,
infinitely many variables Xσ, Y σ, Zσ, . . . for each predicate type σ.

4. All formulas we may define from the atomic formulas p(t1, . . . , tn), X(t1, . . . , tn) using
the connective →, and two kinds of ∀: quantification over Nat, and for any predicate
type σ, quantification over σ.

5. All predicates we may define from formulas by simply typed λ-abstraction.
6. As predicate equality, the smallest equivalence relation including: the β-reduction and

the reduction replacing a closed term t : Nat by the numeral it denotes.
7. Two-sided sequents Γ ` ∆, for any finite sets of formulas Γ, ∆.

The degree of a type is inductively defined by deg(Nat) = 1, deg(Prop) = 2, deg(σ →
τ) = max(1 + deg(σ), deg(τ)). The order of a formula is the maximum degree of the types of
its variables: first order formulas have integer variables, second order formulas have integer
variables and variables on sets of integers, and so forth. For any predicate type σ, the
formula ∃Xσ.A is not a primitive formula of the language but it is expressed through its
canonical higher order definition: ∀ZProp.(∀Xσ.(A → ZProp)) → ZProp, for ZProp not free
in A. In the same way we define A ∨ B as ∀ZProp.(A → ZProp), (B → ZProp) → ZProp,
and A ∧ B as ∀ZProp.(A,B → ZProp) → ZProp, for ZProp not free in A, B, and A ⇔ B as
(A→ B) ∧ (B → A). Thus, we may now write Comprehension ∃Xσ→Prop.(∀xσ.X(x)⇔ P )
as a defined formula. If deg(σ) = n we say that this formula is Comprehension of order n.

We will identify a numeral with the number it denotes. We often skip the type superscript
of a variable, but we always use lower case letters x, y, z, . . . for natural number variables
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and upper case letters X,Y, Z, . . . for predicate variables. We consider any recursively
enumerable set of basic arithmetical axioms. Any basic arithmetical axiom should have the
form α1, . . . , αn ` α or β1, . . . , βn `, with each formula of the form p(t1, . . . , tn) for some
primitive recursive p and some terms t1, . . . , tn. Basic arithmetical axioms should include
t + 1 = u + 1 ` t = u and 0 = t + 1 ` ∅, all rules making = an equivalence relation, and
all definition rules for all primitive recursive maps and relations. Basic arithmetical axioms
should be true, and should be closed under substitution and cut. The last clause is required
if we want to have full cut-elimination for PAω, otherwise cuts between axioms cannot be
eliminated.

Proof rules are those of two-sided sequent calculus, with left-introduction rules for ∀Xσ.A

expressing comprehension of any finite order.

I Definition 2 (Proofs of PAω). Proof trees of PAω are exactly the finite trees built by the
rules below, where Γ, ∆ are finite sets of formulas, A,B are formulas, α1, . . . , αn ` α and
β1, . . . , βn ` are basic arithmetical axioms.
Γ, α1, . . . , αn ` ∆, α (axiom)

Γ, β1, . . . , βn ` ∆ (axiom)

Γ, A ` ∆, A (id)
Γ1 ` ∆1, A Γ2, A ` ∆2

Γ1,Γ2 ` ∆1,∆2
(cut)

Γ, A =⇒ B ` ∆, A Γ, A =⇒ B,B ` ∆
Γ, A =⇒ B ` ∆ ( =⇒l)

Γ, A ` ∆, A =⇒ B,B

Γ ` ∆, A =⇒ B
( =⇒r)

Γ, ∀xA,A[t/x] ` ∆
Γ, ∀xA ` ∆ (First Order ∀l)

Γ ` ∆, ∀xA,A[z/x] (z 6∈ FV(Γ ` ∆, ∀xA))
Γ ` ∆, ∀xA (First Order ∀r)

Γ, ∀XσA,A[P/Xσ] ` ∆
Γ, ∀XσA ` ∆ (Higher Order ∀l)

Γ ` ∆, ∀XA,A[Z/X] (Z 6∈ FV(Γ ` ∆, ∀XA))
Γ ` ∆, ∀XA (Higher Order ∀r)

Γ ` ∆, ∀xA,A[0/x] Γ, A[z/x] ` ∆, ∀xA,A[z + 1/x] (z 6∈ FV(Γ ` ∆, ∀xA))
Γ ` ∆, ∀xA (ind)

We say that a ∀l-rule for a formula ∀XσA has order n if deg(σ) = n. Choose any
predicate type σ with deg(σ) = n. Then the sequent ` ∃Xσ→Prop.(∀xσ.X(x)⇔ P ) expresses
Comprehension axiom of level n. We claim that there is a proof of this sequent using ∀l-rules
of order ≤ n + 1 only. For instance, the rules ∀l of order ≤ 2 derive Comprehension of
order 1, or Comprehension for sets of integers. We call order n Peano Arithmetic, and we
denote by PAn, the system with ∀l restricted to the order ≤ n. For instance, First Order
Arithmetic PA1 derives no Comprehension axiom, while Second Order Arithmetic PA2 only
derives Comprehension of order 1 (for sets of natural numbers).

In the identity rule and in the cut rule, formulas are identified up to predicate equality
(Def. 1.5). In all rules but cut the conclusion of the rule is included in each premise (if any).

The relation R we fixed, being a primitive recursive binary predicate, is a symbol of the
language of PAω. Let us assume PAn ` WF(R). We will intuitionistically prove WF(R) using
Comprehension of order n+ 1.

This is the proof idea. We first define an infinitary semi-formal proof system, then we
interpret the finitary proof system in the infinitary one and we use the infinitary system to
derive our result.
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I Definition 3 (ω-rule). Let PAω + recursive ω-rule be the semi-formal system obtained from
PAω by:
1. considering only the sequents with no free number variables,
2. replacing the rules ind and ∀r for Nat with the recursive ω-rule: derive Γ ` ∆, ∀xNat.A

from a recursively given family of proof-trees, one proof of Γ ` ∆, ∀xA,A[m/xNat] for
each numeral m ∈ Nat.

We write π : Γ ` ∆ for: π is a well-founded recursive proof-tree with ω-rule of conclusion
Γ ` ∆. Let n > 0. PAn+recursive ω-rule is PAω+recursive ω-rule with the ∀l-rules restricted
to all orders ≤ n.

The ω-rule may be represented as follows:

. . . Γ ` ∆, ∀xA,A[m/x] . . . (for all m ∈ Nat)
Γ ` ∆, ∀xA (ω-rule)

Proofs of PAω + recursive ω-rule are at most countable well-founded recursive trees
decorated with the rules of the system. A proof tree is called normal if it has no cut rule. It is
well-known that there is an effective method for turning any proof of any A in PAn into a proof
of A in PAn + recursive ω-rule. It is also well-known that the system PAn + recursive ω-rule
has a normalization algorithm, turning any proof-tree of Γ ` ∆ into a normal proof-tree, and
that the proof may be expressed using order n+ 1 Comprehension.

3 The inductive definition of a well-founded relation

In Intuitionistic Arithmetic, we define well-founded relations through an inductive definition.
Let R be any binary relation over a set I. Classically, the usual definition of “R is well-
founded” says: “there is no infinite R-decreasing chain”, or: “all R-decreasing chains are
finite”. In Intuitionistic Arithmetic, these statements are not informative enough, and we
prefer the inductive definition of well-foundedness, which runs as follows. A predicate X
over a set I is called R-inductive if X contains x whenever X contains all y such that yRx.
We say that I, R (or just R for short) is inductively well-founded, and we write WF(R), if all
R-inductive properties X are true for all x ∈ I. By definition unfolding, we obtain:

WF(R) = ∀x ∈ I.∀X.(∀y ∈ I.(∀z ∈ I.zRy =⇒ X(z)) =⇒ X(y)) =⇒ X(x)

From now on, we will often write “well-founded” as a shorthand for “inductive well-
founded”. If (I,R) is well-founded, then, in order to prove that ∀x ∈ I.P (x), it is enough to
prove that P is R-inductive. This well-known proof method is called “by induction on x and
R”. For instance, when R is the successor relation on Nat, we re-obtain induction on Nat.
Induction may be nested. In order to prove P (x) we may use induction again, over some set
Ix and some relation Rx, possibly depending on x ∈ I. In this case we speak of “secondary
induction on y ∈ Ix and Rx”.

Our conservativity proofs deals with the sub-formulas of WF(R). Now we will list them,
just skipping the atomic sub-formulas and the implications of atomic formulas. If we
list the sub-formulas of WF(R) from right to left, the first four sub-formulas we find are
atomic, or implications of atomic. The fifth sub-formula, and the first in our list, is: (1)
∀z ∈ I.zRy =⇒ X(z). Then we find, in this order: (2) (∀z ∈ I.zRy =⇒ X(z)) =⇒ X(y),
then (3) ∀y ∈ I.(∀z ∈ I.zRy =⇒ X(z)) =⇒ X(y), then (4) (∀y ∈ I.(∀z ∈ I.zRy =⇒
X(z)) =⇒ X(y)) =⇒ X(x), then (5) ∀X.(∀y ∈ I.(∀z ∈ I.zRy =⇒ X(z)) =⇒
X(y)) =⇒ X(x), and eventually (6) the formula WF(R) itself. These 6 expressions are
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cumbersome, therefore we will introduce a name for each of them. There is nothing to
understand here: we assign 6 names (including WF(R) itself) we will use later.

I Definition 4 (Formal definition of (inductive) well-foundedness). Let R be any binary relation
over a set I and X : I → Prop any variable of unary predicate over I.
1. IH(y,X) = ∀z ∈ I.(zRy =⇒ X(z)) (R-inductive hypothesis in y for X)
2. Ind(y,X) = (IH(y,X) =⇒ X(y)) (X is R-inductive in y)
3. IND(X) = ∀y ∈ I.Ind(y,X) (X is R-inductive)
4. wf(x,X) = (IND(X) =⇒ X(x)) (x is R-well-founded w.r.t. X)
5. Wf(x) = ∀X.wf(x,X) (x is R-well-founded)
6. WF(R) = ∀x ∈ I.Wf(x) ((I,R) is well-founded)

We abbreviate “(I,R) is well-founded” by “R is well-founded” when I is clear from the
context. The predicates defined in the points 1− 5 above, to be accurate, should be written
with an extra argument R. We skipped R because it is fixed and would clutter our formulas
uselessly. We left the argument X, even if X is fixed, as a memo for the name of the variable
X denoting a generic unary predicate on I in the formula WF(R).

ω-rule is complete w.r.t. the statements of the form WF(R).We may state this fact as
follows. Recall that π : Γ ` ∆ denotes that π is a well-founded recursive proof-tree of
conclusion Γ ` ∆.

I Lemma 5 (ω-rule is complete for WF(R)). There is some recursive family of trees indexed
over binary primitive recursive relations over Nat, of the form {πR|R bin.prim.rec.}, such
that:

WF(R) =⇒ πR : WF(R)

This fact is provable in Second Order Intuitionistic Arithmetic.

Classically and using choice, the inductive definition of WF(R) is equivalent to the classical
formulation which says “all descending R-chains are finite”. This equivalence is not provable
in Higher Order Intuitionistic Arithmetic.

A method for proving well-foundedness is the simulation of a relation into another well-
founded relation. Informally, we may simulate x ∈ I by y ∈ J using a relation ∼ if, by
moving from I to J using ∼, we may simulate R-chains through S-chains. Our method
is an intuitionistic and simplified version of the method used for proving that a labeled
state transition systems strongly terminates [15], if we take as set of labels of a transition a
singleton.

I Definition 6 (Simulation). Assume R is a binary relation over a set I and S is a binary
relation over a set J . Assume ∼ ⊆ I × J .
1. ∼ is a simulation of (I,R) into (J, S) if whenever x∼y and x′Rx then for some y′ ∈ J we

have y′Sy and x′∼y′.
2. ∼ is a bisimulation if both ∼ and ∼−1 are simulations.
3. ∼ is a weak simulation of (I,R) into (J, S) if whenever x∼y and x′Rx then for some

y′ ∈ J we have: y′Sy and either x∼y′ or x′∼y′.

In the rest of the paper we will use some well-known definitions and facts about well-
founded relations and simulations.

We first state the Kleene-Brouwer Theorem. We denote by σ∗τ the concatenation of
two finite sequences σ, τ , and with σ@n = σ∗〈n〉 the appending of an element to a list. We
denote the one-step extension relation on finite sequences by ≺1, and we define it by σ@n≺1σ.
We denote by ≺ the strict prefix relation, and we define it by σ∗〈n〉∗τ≺σ. We denote by
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≺≺ the post-order, a total order over the finite sequences over Nat. ≺≺ is defined as follows:
σ@n∗τ≺≺σ, and if n′ < n then σ@n′∗τ≺≺σ@n∗ρ. Then the Kleene-Brouwer Theorem may be
stated as follows: “if (T,≺1) is a well-founded tree of finite sequences over Nat, then (T,≺≺)
is well-founded”.

The main property of simulations we need to prove is: if y ∈ J simulates some x ∈ I
and y is S-well-founded, then x is R-well-founded. Recall that “well-founded” is short for
“inductively well-founded” here.

All these results have an intuitionistic proof, included in the next Lemma.

I Lemma 7. Properties of well-founded relations] Assume T is any tree of finite sequences
over some set K, with x child of y if and only if x≺1y. Assume I, J are any sets, and R,S
are any binary relations, respectively, on I and on J .
1. (a) Well-foundedness is an inductive predicate: for any x ∈ I we have

∀y.(yRx =⇒ y is R-well-founded ) =⇒ x is R-well-founded
(b) The converse holds: for any x ∈ I we have

x is R-well-founded =⇒ ∀y.(yRx =⇒ y is R-well-founded )
2. (a) A tree is well-founded if and only if all proper descendants of the root of the tree are

well-founded.
(b) A tree is well-founded if and only if its root is.

3. Assume ∼ is a simulation relation from I, R to J , S. If x∼y and y ∈ J is S-well-founded,
then x ∈ I is R-well-founded.

4. Kleene-Brouwer Theorem. If (T,≺1) is a tree of sequences over Nat, and (T,≺1) is
well-founded, then (T,≺≺) is well-founded.

5. A relation R is well-founded if and only if the tree of all R-decreasing sequences is well-
founded. x ∈ I is R-well-founded if and only if the tree of all R-decreasing sequences from
x is well-founded.

6. Assume ∼ is a weak simulation relation from a set I with a relation R to a set J with a
relation S. If (J, S) is well-founded and S is transitive then ∼ is a simulation.

Proof.
1. (a) Well-foundedness is inductive. Assume ∀y.(yRx =⇒ y is R-well-founded), in order

to prove that x is R-well-founded, that is, that for any inductive predicate X we have
x ∈ X. Since X is inductive, then our thesis follows by proving ∀z.(zRx =⇒ z ∈ X).
In order to prove it, let z be such that zRx. Then by hypothesis z is R-well-founded,
hence, by the assumption that X is inductive, we have z ∈ X, as we wished to show.

(b) Assume (x is R-well-founded), in order to prove ∀y.(yRx =⇒ y is R-well-founded),
that is, that for any inductive predicate X and any y ∈ I we have y ∈ X. If X
is inductive, then we may prove by definition unfolding that Y = {x ∈ I|X(x) ∧
∀y.(yRx) =⇒ y ∈ X} is inductive. Then x ∈ Y by R-well-foundation of x, and by
definition of Y we have ∀y.(yRx) =⇒ y ∈ X, as wished.

2. (a) Assume T is a tree and all proper descendants of the root of T are ≺1-well-founded.
We have to prove that all nodes of T are ≺1-well-founded: we only have to prove that
the root is well-founded. All children of the root are ≺1-well-founded by assumption,
therefore the root is ≺1-well-founded by point 1.a above.

(b) Assume that the root of T is ≺1-well-founded. Then all nodes of T , being reachable
from the root, are ≺1-well-founded by point 1.b above.

3. Assume J , S is well-founded and x∼y and y is S-well-founded in order to prove that x is
R-well-founded. We prove that all x∼y are R-well-founded by induction on y ∈ J . By
point 1, it is enough to prove that all zRx are R-well-founded. By definition of simulation
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there is some t ∈ J such that z∼t and tSy. By induction hypothesis on t we conclude
that z is R-well-founded, as we wished to show.

4. Kleene-Brouwer Theorem. Assume that (T,≺1) is well-founded and T is a tree of sequences
over Nat. For any σ ∈ T , denote with Tσ the set {τ |σ∗τ ∈ T}. We prove that Tσ, ≺≺
is well-founded by ≺1-induction on σ. The thesis will follow by choosing σ = 〈〉: in
this case we have Tσ = T . Assume that (Tσ′ ,≺≺) is well-founded for all σ′≺1σ, in order
to prove that Tσ, ≺≺ is well-founded. All σ′≺1σ have the form σ@n for some n ∈ Nat.
All τ ∈ Tσ but the root 〈〉 are 〈n〉∗ρ for some n ∈ Nat and some ρ ∈ Tσ@n. Define
J = {(n, ρ)|n ∈ Nat ∧ ρ ∈ Tσ@n}. Let (n′, ρ′)S(n, ρ) if and only if n′ < n or n′ = n and
ρ′≺≺ρ. Then J is well-founded: the proof is by principal induction on n, < and secondary
induction on ρ ∈ Tσ@n, ≺≺. For all τ ∈ Tσ, we define a relation τ∼(n, ρ) if and only
if τ = 〈n〉∗ρ. ∼ is a simulation of Tσ, ≺≺ in J , S. Indeed, if τ ′≺≺τ and τ∼(n, ρ) then
τ ′ = 〈n′〉∗ρ′. By definition of ≺≺, either n′ < n or n′ = n and ρ′≺≺ρ. In both cases by
definition of ∼ and S we have: τ ′∼(n′, ρ′) and (n′, τ ′)S(n, τ). Thus, by point 3 above τ
is ≺1-well-founded, for all τ = 〈n〉∗ρ, that is, for all τ ∈ Tσ different from the root 〈〉. By
point 2 we conclude that Tσ is well-founded.

5. Assume T is the tree of all R-decreasing sequences on I (all 〈x1, . . . , xn〉 such that
xnRxn−1R . . . Rx1). We may define a simulation ∼ of (I,R) into (T,≺1) by x ∼
〈x1, . . . , xn〉 if and only if n > 0 and x = xn. ∼ is a bisimulation. Indeed, assume that
x∼〈x1, . . . , xn〉, that is, n > 0 and x = xn. If yRx then 〈x1, . . . , xn, y〉 is R-decreasing
and y∼〈x1, . . . , xn, y〉. Conversely, if 〈x1, . . . , xn, y〉 is R-decreasing then yRxn = x. For
all x ∈ I we have 〈x〉 ∈ T and x∼〈x〉. Thus, if T is ≺1-well-founded then all x ∈ I are
R-well-founded by point 3. If R is well-founded then all sequences in T with one or more
points are well-founded by 3, therefore (T,≺1) is well-founded by point 2 above.
Assume Tx is the tree of all R-decreasing sequences 〈x1, . . . , xn〉 on I such that n > 0
and xn = x. Define ∼′ by restricting ∼ to the set of all pairs (y, 〈x1, . . . , xn〉) such that
〈x1, . . . , xn〉 ∈ Tx (that is, such that n > 0 and xn = x and x1 = x). Then a reasoning
similar to the previous one shows that ∼′ is a bisimulation, therefore x is R-well-founded
if and only if 〈x〉 is well-founded in Tx. By point 2, since 〈x〉 is the root of Tx, this is
equivalent to the fact that Tx is well-founded.

6. Assume ∼ is a weak simulation relation from a set I with a relation R to a set J with a
relation S. Assume x∼y and zRx in order to prove that for some tSy we have z∼t. We
argue by induction on y w.r.t. S. By definition of weak simulation, for some tSy we have
either x∼t or z∼t. In the second case we have the thesis. In the first case by induction
hypothesis on t there is some uSt such that z∼u. By transitivity of S and uSt, tSy we
have uSy: we conclude our thesis. J

4 The proof idea for the conservativity result

Assume π is a proof of PAω or of PAω + recursive ω-rule. Recall that we write π : Γ ` ∆ for
“π has conclusion Γ ` ∆”, and that a proof is cut-free if it includes no cut rule. We consider
the notion of sub-formula in which the sub-formulas of ∀x.A (quantification over Nat) are all
A[n/x] with n ∈ Nat. A proofs of PAω + recursive ω-rule satisfies the sub-formula property if
all formulas in any sequent of the proof are a sub-formula of some formula in the conclusion
and they occur in the left-hand-side if they are negative sub-formulas, in the right-hand-side
if they are positive sub-formulas.

Let R,R1, . . . , Rn be primitive recursive binary predicates on Nat. We assume PAω ` WF(R)
in order to intuitionistically derive WF(R). Then we will generalize the result to a statement
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of the form WF(R1), . . . , WF(Rn) =⇒ WF(R). We first recall some well-known intuitionistic
results about PAn and PAn + recursive ω-rule.

Our first step is to prove that if PAn ` WF(R), then PAn + recursive ω-rule ` WF(R) with
some normal proof.

I Lemma 8 (Embedding and Normalization). Let Γ ` ∆ be a sequent and π be a proof of PAω.
Assume σ be any substitution of the first order free variables of Γ ` ∆ with numerals.
1. There is a recursive map f taking any proof π : Γ ` ∆ in PAω, any first order substitution

σ, and returning a proof Π = f(π, σ) : σ(Γ ` ∆) in PAω + recursive ω-rule.
2. Let n > 0. There is a recursive map g, taking any infinitary proof-tree π : Γ ` ∆ in

PAn + recursive ω-rule, and returning some cut-free proof Π = g(π) : Γ ` ∆ in the same
system. This fact has an intuitionistic proof using Comprehension of order n+ 1.

3. Any normal proof of PAω + recursive ω-rule satisfies the sub-formula property.

Proof.
1. We recursively define a map f taking any proof π : Γ ` ∆ in PAω, any first order

substitution σ, and returning a proof f(π, σ) : σ(Γ ` ∆) in PAω + recursive ω-rule. The
proof follows the pattern of the analogous result for PA1 obtained by Tait ([17], p. 277,
Thm. 28.9). Any rule of PAω, different from the rule ∀r for Nat and from the rule ind, is
translated in PAω + recursive ω-rule by the rule itself . There are two cases left.
a. Assume π ends with some ∀r-rule, whose unique assumption is π1 : Γ ` ∆, ∀xA,A[z/x]

in PAω, for some z 6∈ FV(Γ ` ∆, ∀x.A). Let σ[n/z] be any extension of the substitution
σ to z with some numeral n. By assumption z is not free in Γ,∆, ∀xA, hence z
may occur free in A only if z = x. σ is a closed substitution, therefore z occurs
in no σ(y). Thus, σ[n/z](Γ ` ∆, ∀xA) = σ(Γ ` ∆, ∀xA) and σ[n/z](A[z/x]) =
σ(A[z/x][n/z]) = σ(A[n/x]) = σ(A)[n/x]. Then by induction hypothesis we have
f(π1, σ[n/z]) : σ[n/z](Γ ` ∆, ∀xA,A[z/x]) = σ(Γ ` ∆, ∀xA,A[n/x]). Eventually, we
define some proof f(π, σ) : σ(Γ ` ∆, ∀x.A) by recursive ω-rule.

b. Assume π ends with some ind-rule, whose assumptions are π1 : Γ ` ∆, ∀xA,A[0/x]
and π2 : Γ, A[z/x] ` ∆, ∀xA,A[z + 1/x] in PAω, for some z 6∈ FV(Γ ` ∆, ∀x.A). Let
σ[n/z] be any extension of the substitution σ to z with some numeral n. With
the same reasoning we did on z in the previous case we obtain σ[n/z](A[0/x]) =
σ(A)[0/x] and σ[n/z](A[z/x]) = σ(A)[n/x] and σ[n/z](A[z + 1/x]) = σ(A)[n+ 1/x].
Then by induction hypothesis we have f(π1, σ[n/z]) : σ[n/z](Γ ` ∆, ∀xA,A[0/x]) =
σ(Γ ` ∆, ∀xA,A[0/x]) and f(π2, σ[n/z]) : σ[n/z](Γ, A[z/x] ` ∆, ∀xA,A[z + 1/x]) =
σ(Γ, A[n/x] ` ∆, ∀xA,A[n + 1/x]). We inductively define a recursive family Πn :
σ(Γ ` ∆, ∀xA,A[n/x]) of proofs indexed by n ∈ Nat by Π0 = f(π1, σ[n/z]) : σ(Γ `
∆, ∀xA,A[0/x]) and Πn+1 = the cut of Πn : σ(Γ ` ∆, ∀xA,A[n/x]) and f(π2, σ[n/z]) :
σ(Γ, A[n/x] ` ∆, ∀xA,A[n+ 1/x]). Eventually, we define f(π, σ) : σ(Γ ` ∆, ∀x.A) by
recursive ω-rule from {Πn|n ∈ Nat}.

2. (Proof Sketch). Using Girard’s candidates, adapted to the sequent calculus. T. Altenkirch
formalized Girard’s candidates in LEGO using an inductive definition over second order
formulas and third order quantifiers ([1], p.109). His idea may be easily generalized:
defining Girard’s candidates for PAn + ω-rule requires Comprehension of order n+ 1. We
need Comprehension of order 3 for defining Girard’s candidates for PA2, and so forth. We
postpone the details to a journal version of this paper.

3. By induction over the normal proof. J

In order to derive WF(R), now it is enough to prove that for a normal proof π of WF(R)
in PAω + recursive ω-rule there is simulation relation ∼ between the R-decreasing sequences

CSL 2015



352 Classical and Intuitionistic Well-Foundedness

with the one-step extension relation, and the proof-tree π itself, with the post-order relation
≺≺. By Lemma 7.6, even a weak simulation relation is enough. Then our conservativity result
will follow by Lemma 7.3. The proof is intuitionistic because Lemma 7 is.

5 Simulating a primitive recursive relation into a normal infinitary
proof of its well-foundedness

In this section we will define a simulation relation ∼ between the tree of decreasing R-
sequences and π, ≺≺, a normal proof-tree with ω-rule of the statement WF(R), with the
post-order relation.

Let R be the relation we fixed, I = Nat, x, y ∈ I. Assume X is any unary predicate
variable. Assume that π is a normal proof in PAω + recursive ω-rule of ` WF(R).

By the sub-formula property for normal proofs (Lemma 8.3), for any sequent Γ ` ∆
occurring in π, all A ∈ Γ are negative sub-formulas of WF(R), and all B ∈ ∆ are positive
sub-formulas of WF(R). We refer to Def. 4 for the names we assigned to the sub-formulas
of WF(R). The immediate sub-formulas of WF(R) = ∀x.Wf(x) are Wf(n) for all n ∈ Nat
(positive). The immediate sub-formula of Wf(n) = ∀X.wf(n,X) is wf(n,X) (positive). The
sub-formulas of wf(n,X) = (IND(X) =⇒ X(n)) are: X(n) (positive) IND(X) = ∀y.Ind(y,X)
(negative), for allm ∈ Nat, Ind(m,X) = (IH(m,X) =⇒ X(m)) (negative), X(m) (negative),
IH(m,X) = ∀z.(zRm =⇒ X(z)) (positive), for all p ∈ Nat, (pRm =⇒ X(p) (positive),
X(p) (positive), pRm (negative). All sub-formulas of WF(R) but those of the form X(m) for
some m have a unique sign. Summing up, we just proved:

I Lemma 9 (Sequents in π). Every formula F in every sequent Γ ` ∆ in any normal proof
π of ` WF(R) in PAω + recursive ω-rule falls in at least one of the following cases, for some
n,m, p ∈ Nat:
1. F = WF(R) = ∀x.Wf(x) ∈ ∆
2. F = Wf(n) = ∀X.wf(n,X) ∈ ∆
3. F = wf(n,X) = (IND(X) =⇒ X(n)) ∈ ∆
4. F = IND(X) = ∀y.Ind(y,X) ∈ Γ
5. F = Ind(m,X) = (IH(m,X) =⇒ X(m)) ∈ Γ
6. 1. F = X(m) ∈ Γ

2. F = X(m) ∈ ∆
3. F = IH(m,X) = ∀z.(zRm =⇒ X(z)) ∈ ∆
4. F = ((pRm) =⇒ X(p)) ∈ ∆
5. F = (pRm) ∈ Γ

We apply the post-order relation ≺≺ to the proof-tree π, taking the same order among
the premises of a rule we have in the proof (this order is fixed in Def. 2).

Let us denote with T the tree of R-decreasing sequences on Nat. We will define a weak
simulation relation of (T,≺1) in (π,≺≺), relating any node of T with some node in π. From
the well-foundedness of π, ≺≺ (Lemma 7.4) and the fact that ≺≺ is transitive we will deduce
that ∼ is a simulation (Lemma 7.6), therefore any node of T is well-founded (Lemma 7.3).
We will conclude that T is well-founded, and R itself is well-founded (Lemma 7.5).

If ν is any node of π, we write ν : Γ ` ∆ for “the sub-proof of π of root ν has conclusion
Γ ` ∆”. Let σ = akRak−1R . . . Ra2Ra1 ∈ T be any R-decreasing chain. We define a relation
σ∼ν between R-sequences and nodes of π.

Informally, σ∼ν : Γ ` ∆ says that ∆ is a property of the nodes ak, . . . , a1 of the R-
decreasing sequence σ, and in all formulas aRb ∈ Γ and aRb =⇒ X(a) ∈ ∆, the element a
is the successor of b in σ. The precise definition follows.
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I Definition 10 (The relation ∼). Let T be the tree of R-decreasing sequences and σ =
akRak−1R . . . Ra2Ra1 ∈ T be any R-decreasing chain, with possibly k = 0. Let π : ` WF(R)
be a normal proof in PAω + ω-rule. We say that σ is simulated by a node ν : Γ ` ∆ in π, and
we write σ∼ν, if:
1. every numeral m occurring in ∆ is ai for some i = 1, . . . , k
2. every (closed) formula (pRm) ∈ Γ and (pRm) =⇒ X(p) ∈ ∆ is, respectively, (ai+1Rai),

(ai+1Rai) =⇒ X(ai+1) for some i = 1, . . . , k − 1

ν is a node of π, therefore Lemma 9 lists all formulas which may occur in the conclusion
Γ ` ∆ of ν. Using Lemma 9 we may reformulate the definition of ∼ in the following equivalent
form.

I Lemma 11 (An alternative definition of ∼). σ∼ν : Γ ` ∆ if and only if every formula
F ∈ Γ ` ∆ falls in at least one of the following cases:
1. F = WF(R) = ∀x.Wf(x) ∈ ∆
2. F = Wf(ai) = ∀X.wf(ai, X) ∈ ∆, for some ai ∈ σ
3. F = wf(ai, X) = (IND(X) =⇒ X(ai)) ∈ ∆, for some ai ∈ σ
4. F = IND(X) ∈ Γ
5. F = Ind(m,X) ∈ Γ for some m ∈ Nat
6. 1. F = X(m) ∈ Γ for some m ∈ Nat

2. F = X(ai) ∈ ∆ for some ai ∈ σ.
3. F = IH(ai, X) ∈ ∆ for some ai ∈ σ.
4. F = ((ai+1Rai) =⇒ X(ai+1)) ∈ ∆ for some ai, ai+1 ∈ σ.
5. F = (ai+1Rai) ∈ Γ for some ai, ai+1 ∈ σ.

The relation ∼ is closed under ancestor: if σ∼ν and ν≺µ then σ∼µ. The reason is that
all rules 6= cut of PAω + recursive ω-rule are contravariant w.r.t. the descendant relation ≺:
if ν : Γ ` ∆, ν′ : Γ′ ` ∆′ and ν≺ν′ then Γ ` ∆ ⊇ Γ′ ` ∆′, therefore ν′ : Γ′ ` ∆′ satisfies the
clauses for σ if ν : Γ ` ∆ satisfies the clauses for σ.

The relation ∼ is total: for every σ ∈ T there is some ν ∈ π such that σ∼ν. Proof. Let µ0
be the root of π. Then we have µ0 : ` WF(R). Every F in ` WF(R) satisfies F = WF(R) ∈ ∆.
By Lemma 11 we have σ∼µ0 for every σ ∈ T .

We recall that (τ≺1σ) means that τ is of the form ak+1RakR . . . Ra1, that is, that τ is a
generic one-step extension of σ. We write µ≺1ν for “µ is a child of ν in π”, too. We first
prove that ∼ is a weak simulation, then that ∼ is a simulation.

I Lemma 12 (Weak simulation). Let T be the tree of R-decreasing sequences, π : ` WF(R) a
normal proof in PAω + ω-rule, and ∼ as in Def. 10. Then ∼ is a weak simulation between
(T,≺1) and (π,≺≺).

Proof. Assume σ = akRak−1R . . . Ra1 and τ = ak+1RakR . . . Ra1≺1σ and σ∼ν. We have
to prove that there is some µ≺1ν in π such that σ∼µ, or τ∼µ. There are 9 classes of formulas
∈ Γ ` ∆. We distinguish 9 cases according to the formula inferred in ν.

1. WF(R). We infer WF(R) ∈ ∆ from all Wf(p) ∈ ∆ with p ∈ Nat, using the ω-rule with one
premise µp≺1ν for each p. We choose p = ak+1, the node added in τ . The extra formula
Wf(ak+1) we have in the right-hand-side of the premise µp satisfies the clause 2 of Lemma
11 for τ , therefore τ∼µp.

2. Wf(ai). We infer Wf(ai) ∈ ∆ from some wf(ai, X) ∈ ∆ using the rule ∀r with a single
premise µ≺1ν. The extra formula wf(ai, X) we have in the right-hand-side of the premise
satisfies the clause 3 of Lemma 11 for σ, therefore σ∼µ.
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3. wf(ai, X) for some ai ∈ σ. We infer wf(ai, X) = (IND(X) =⇒ X(ai)) ∈ ∆ from some
IND(X) and some X(ai) in the left- and right-hand-side using the rule =⇒r with a single
premise µ≺1ν. The extra formulas IND(X) ∈ Γ and X(ai) ∈ ∆ we have in the premise
satisfy the clauses 4, 5 of Lemma 11, therefore σ∼µ.

4. IND(X). We infer IND(X) ∈ Γ from some Ind(m,X) ∈ Γ using the rule ∀l with a single
premise µ≺1ν. The extra formula Ind(m,X) we have in the left-hand-side of the premise
satisfies the clause 5 of Lemma 11, therefore σ∼µ.

5. Ind(m,X). We infer Ind(m,X) = (IH(m,X) =⇒ X(m)) ∈ Γ using the rule =⇒l from
two premises: a left premise µ having IH(m,X) added to ∆, and a right premise µ′
having X(m) added to Γ, for some µ≺1µ

′≺1ν. The formula X(m) added to Γ satisfies
the clause 6a of Lemma 11, therefore σ∼µ′≺1ν.

6. X(m). Using the Identity rule, we infer the same formula X(m) ∈ Γ and X(m) ∈ ∆, for
some m ∈ Nat. From X(m) ∈ ∆ we get m = ai for some i = 1, . . . , k by the clause 6b of
Lemma 11. X(ai) does not belong to the left-hand-side of the root of π, therefore we may
find the last node ν≺µ in the path from ν to the root of π such that X(ai) belongs to the
left-hand-side of the conclusion of µ. The only formula in π which we may prove from some
X(ai) in the left-hand-side is a left occurrence of Ind(ai, X) = (IH(ai, X) =⇒ X(ai)).
Therefore there is some node η having µ as right premise, in which we introduce by =⇒l
some Ind(ai, X) = (IH(ai, X) =⇒ X(ai)). The left premise of η is some node θ in which
IH(ai, X) occurs in the right-hand-side and it is used by =⇒l to derive Ind(ai, X). We
sum up the situation in the proof tree below.

θ : Γ′′, Ind(ai, X) ` IH(ai, X),∆′′

ν : Γ′, X(ai) ` X(ai),∆′
id

...
µ : Γ′′, Ind(ai, X), X(ai) ` ∆′′

η : Γ′′, Ind(ai, X) ` ∆′′
=⇒l

We have σ∼η because η is an ancestor of ν. IH(ai, X) satisfies the clause 7 of Lemma 11,
therefore σ∼θ. We have θ≺≺ν because θ is the left premise and µ the right premise of η,
and µ is an ancestor of ν.

7. IH(ai, X). For some i = 0, . . . , k, we infer IH(ai, X) ∈ ∆ using the recursive ω-rule.
For every p ∈ Nat, there is some assumption µp of ν adding to ∆ the formula Fp =
(pRai =⇒ X(p)). In post-order we have µ0≺≺µ1≺≺µ2≺≺ . . .≺≺ν. We distinguish two
sub-cases according to i < k or i = k.

a. Let i < k. Then i+ 1 ≤ k, therefore (ai+1Rai =⇒ X(ai+1)) has the form required
by clause 8 of Lemma 11 for σ. If we choose p = ai+1, we conclude σ∼µp, for some
µp≺1ν.

b. Let i = k. Then ak+1 is the last element of τ . The formula (ak+1Rak) =⇒ X(ak+1)
has the form required by clause 8 of Lemma 11 for τ . If we choose p = ai+1, we
conclude τ∼µp for some µp≺1ν.

8. (ai+1Rai =⇒ X(ai), =⇒r). We infer some formula ai+1Rai =⇒ X(ai+1) ∈ ∆ using
the rule =⇒r, from one premise µ having (ai+1Rai) in the left-hand-side and X(ai) in
the right-hand-side. The first formula satisfies the clause 9 of Lemma 11, the second one
the clause 6b of the same Lemma. We conclude σ∼µ≺1ν.

9. One or more formulas aRb. We infer some atomic formulas using the rule axiom and
one basic arithmetical axiom α1, . . . , αn ` α or β1, . . . , βn `, with all αi, α of the form
p(t1, . . . , tm) for some p, t1, . . . , tm. All atomic formulas p(t1, . . . , tm) in π have the form
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ai+1Rai, are closed, are true by assumption on σ, and are in the left-hand side. Thus,
the basic arithmetical axiom has the form α1, . . . , αn `, with all αi closed and true. This
case cannot happen, because axiom may infer a closed sequence α1, . . . , αn ` only if it is
true, hence if some αi is false. J

We have now all the ingredients we need to intuitionistically derive our conservativity
result.

I Lemma 13 (well-foundedness of R). Assume R is any primitive recursive binary relation
on Nat, and (T,≺1) is the tree of R-decreasing sequences with the child/father relation. Let
π : WF(R) be any proof of WF(R) in PAω, and Π = gf(π) : WF(R) be the normal proof of WF(R)
in PAω + recursive ω-rule, obtained by 8.1, 2. Let ∼ be the simulation relation defined above,
and ≺≺ the post-order ordering on Π.
1. Π with ≺≺ is well-founded.
2. ∼ is a simulation relation of (T,≺1) in Π, ≺≺.
3. (T,≺1) is well founded
4. R is well founded.

Proof.
1. By the Kleene-Brouwer Theorem (Lemma 7.4) and the hypothesis that Π, ≺1 is well-

founded.
2. By Lemma 7.6, the fact that ∼ is a weak simulation (Lemma 12), and that (Π,≺≺) is

well-founded (point 1).
3. By point 2 above, ∼ is a simulation. By point 1, the root of Π is ≺≺-well-founded. Any

node of T is related to the root of Π by ∼, hence by Lemma 7.3, any node of T is
≺1-well-founded. We conclude that (T,≺1) is well-founded.

4. R is well founded by Lemma 7.5, because (T,≺1) is well-founded by point 3. J

Eventually, we conclude:

I Theorem 14 (Conservativity). Assume R,R1, . . . , Rn are any binary primitive recursive
relation over Nat and n > 0.
1. If PAn ` WF(R1), . . . , WF(Rn) =⇒ WF(R), then using Comprehension of order n + 1we

may intuitionistically derive WF(R1), . . . , WF(Rn) =⇒ WF(R).
2. If PAω ` WF(R1), . . . , WF(Rn) =⇒ WF(R), then using Comprehension of order ω we may

intuitionistically derive WF(R1), . . . , WF(Rn) =⇒ WF(R).

Proof.
1. Assume WF(R1), . . . , WF(Rn) and PAn ` WF(R1), . . . , WF(Rn) =⇒ WF(R), in order to

deduce WF(R). By Lemma 5 we have PAn ` WF(R1) and . . . and PAn ` WF(Rn). By cut rule
we deduce PAn ` WF(R). By Lemma 13.4 we conclude WF(R). The proof is intuitionistic
because all proofs in this paper are intuitionistic. The proof may be obtained using
comprehension of order n+ 1 because this is the case for normalization for PAn + ω-rule.

2. By the previous point. J

6 Conclusions

The aim of this work is to isolate classes C of formulas such that all proofs of formulas in C
may be turned into intuitionistic proofs, at least in principle. The idea is that, if we care
about proving a mathematical result having a concrete meaning, and we have a theorem
which is classically but not intuitionistically provable, then we should reformulate our goal
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in order to obtain one formula in one of these classes. Then we may prove our result freely
using classical logic, knowing that, afterward, our proof may always be made intuitionistic.
The advantage is that it is much easier to restrict ourselves to a goal in a class C of formulas,
instead than to the use of intuitionistic logic in the proof of the goal. Intuitionistic proofs
provide extra information, but if we choose to prove a statement in C, then we know that the
intuitionistic proof may always be done as a second step. As a first step we check whether
the statement is classically true, a much easier task.

The very first example for C was provided by K. Gödel. In this case, C is the set of
formulas obtained inserting a double negation (¬¬) everywhere. However, this class C has
mainly an interest from a foundational viewpoint, because in intuitionistic logic the proof of
a negation provides no concrete information.

A second example for C is the set of formulas provided by the Dialectica interpretation.
In this case we have formulas whose intuitionistic proofs are rich of concrete consequences.
Indeed, these formulas are successfully used by U. Kohlenbach [11] and others to analyze,
say, proofs of fixed point results for non-expansive maps. A drawback of this class, however,
lies in the complexity of these formulas, which are long, involved, and use functionals of
higher types. Often, formulas in C require a real effort to be understood.

Another choice for C is the set of Π0
2-sentences, those of the form ∀x ∈ Nat.∃y ∈

Nat.R(x, y), for any primitive recursive binary relation R on Nat. The conservativity result
for this class was proved by G. Kreisel [12]. Later, H. Friedman provided A-translation, the
first realistic and purely mechanical method for turning a classical proof of a Π0

2-formula
into an intuitionistic one of the same formula [8]. An intuitionistic proof of a Π0

2-formula
is not a mere existence result, but it outlines a method for computing y given x. The only
limitation is that this class is very narrow: in a proof of a Π0

2-formula we often use as lemmas
some statements which are much more complex in the arithmetical hierarchy. We would like
intuitionistically provable versions for lemmas, too.

One way to overcome this limitation is to generalize A-translation to a larger class of
first order formulas. Berger, Buchholz and Schwichtenberg [4] proved, for instance, that we
may take as C the set of all sequents Γ ` A with A some Π0

2-formula and Γ containing only
formulas ∀x1, . . . , xn.(α1, . . . , αm =⇒ α), with α and all αi atomic and different from the
constant ⊥ (false). There are more results along this line [4] .

However, there are Π0
2-theorems requiring more than first order formulas. For instance,

Paris-Harrington theorem, the Theorem about Goodstein sequences, Higman Lemma and
Kruskal Lemma are Π0

2-theorems whose proof requires second order formulas. Therefore it
makes sense to look for a choice of C including some second order formulas.

In this paper we considered a choice of this kind, all statements of the form: “if WF(R1),
. . . , WF(Rn) then WF(R)”, where WF(S) means: “S is inductively well-founded”, again for any
primitive recursive binary relations S on Nat.

6.1 Some corollaries of the conservativity result
The conservativity results holds for statements of the form: “WF(R1), . . . , WF(Rn) =⇒ WF(R)”.
The relevance of this class relies on the empirical evidence that many mathematical results,
if expressed in this form, are rich of concrete and interesting intuitionistic consequences.

For instance, Higman’s Lemma may be expressed in the form WF(R) for some primitive
recursive R, as follows. Let us denote with List(I) the set of finite lists over some set
I. For any L,M ∈ List(I), we write L v M if L may be obtained from M by possibly
skipping some elements of M . Let T be the set of 〈L1, . . . , Ln〉 ∈ List(List(Nat)) such
that for all 0 < i < j < n we have Li 6v Lj . Then Higman Lemma may be expressed by
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saying that the set T is well-founded by one-step extension (see [5], [7]). A similar remark
applies to Kruskal’s Lemma. More in general, the theory of Almost Full Relations, the
intuitionistic version of Quasi-Well-Orders, may be developed using theorems of the form
WF(R1), . . . , WF(Rn) =⇒ WF(R) ([20]).

Another example is Ramsey’s Theorem. Let G ⊆ Nat be any primitive recursive complete
graph and c : G × G → {1, . . . , n} be any primitive recursive n-color assignment . Define,
for i = 1, . . . , n, Ti as the set of all finite increasing lists 〈x1, . . . , xn〉 over Nat, such that for
all 0 < j < k < n we have xj , xk ∈ G and c(xj , xk) = i. Define T as the set of all finite
increasing lists 〈x1, . . . , xn〉 over Nat, such that for all 0 < j < k < n we have xj , xk ∈ G.
Then we may express Ramsey theorem by saying: if T1, . . . , Tn are well-founded then T is
well-founded. Indeed, by definition unfolding, this implication means: if, for i = 1, . . . , n, the
tree of finite i-colored sub-graph of G is well-founded by one-point extension, then the tree
of all finite sub-graphs of G is well-founded by one-step extension. This latter is just a way
of saying: G itself is finite. We recognize this statement as a variant of the contrapositive
of Ramsey. By Theorem 14 this statement has an intuitionistic proof, whenever G, c are
primitive recursive. In fact, this variant of Ramsey theorem has an intuitionistic proof for
any G, c ([3]), but Theorem 14 cannot prove it.

Besides, an intuitionistic proof of “R is inductively well-founded” is not just a proof of:
“there is some bound to the ordinal height of R”, it effectively provides such a bound. This
extra information about ordinals has been used, for instance, to characterize the programs
proved terminating by the Termination algorithm [2].

It is worth to quote that the statements of the form WF(R) are used to develop formal
topology ([6]).
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Abstract
In homotopy type theory, the truncation operator ‖−‖n (for a number n ≥ −1) is often useful if
one does not care about the higher structure of a type and wants to avoid coherence problems.
However, its elimination principle only allows to eliminate into n-types, which makes it hard to
construct functions ‖A‖n → B if B is not an n-type. This makes it desirable to derive more
powerful elimination theorems. We show a first general result: If B is an (n + 1)-type, then
functions ‖A‖n → B correspond exactly to functions A→ B which are constant on all (n+ 1)-st
loop spaces. We give one “elementary” proof and one proof that uses a higher inductive type,
both of which require some effort. As a sample application of our result, we show that we can
construct “set-based” representations of 1-types, as long as they have “braided” loop spaces. The
main result with one of its proofs and the application have been formalised in Agda.
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1 Introduction

As it is very well-known, the type constructor Σ of Martin-Löf type theory expresses a very
strong form of existence. Although a type of the form Σ (a : A) . P (a) is read as “there exists
an element in A for which the predicate P holds” under the propositions as types view, an
element of such a type is more than a proof of mere existence: it includes a very concrete
example of an element a : A. This is not always satisfying as, for example, the set-theoretic
axiom of choice becomes a tautology when translated naively to type theory. The idea
of adding a construction which allows to formulate existence in a weaker sense has been
studied intensively in various different settings. As far as we know, the first documented
appearance are squash types in the extensional theory of NuPRL [7]. Later, Awodey and
Bauer introduced a similar concept in extensional Martin-Löf type theory, called bracket
types [4]. Homotopy type theory has introduced the propositional truncation operation,
written ‖−‖−1 or simply ‖−‖ [14]. It forces all elements to be equal, in the sense that the
identity type x = y is inhabited for any x, y : ‖A‖−1, and it is well-known that x = y will
in fact be uniquely inhabited (i.e. equivalent, or isomorphic, to the unit type). Classically,
‖A‖−1 is always equivalent to either the unit type or the empty type, but this is of course
not the case in a constructive setting.
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360 Functions out of Higher Truncations

The homotopical view has suggested that propositional truncation is only one out of
infinitely many operations that reduce the complexity of a type. As “types are weak ω-
groupoids” ([12] and [15]), it is easy to imagine that there is, for every number n ≥ −1, an
operation which trivialises all the structure above level (n + 1). In other words, this is a
reflector for the category of weak n-groupoids, viewed as a subcategory of weak ω-groupoids,
roughly speaking. In homotopy type theory, we write this operation as ‖−‖n (“n-truncation”),
and it can be seen and implemented as a higher inductive type [14]. The truncation operator
‖−‖n is a monad in some appropriate sense (and even a modality in the sense of [14]), and if
we want to, we can choose to work completely in that monad. Types that are canonically
equivalent to their n-truncation are called n-types, or n-truncated types.

Considering n-types (for some given n) instead of all types is useful if we do not care
about or want to avoid potential higher equality proofs. For example, if we formalise algebraic
structures such as groups, we may require that the type of group elements is of truncation
level 0 in order to match the set-theoretic definition: equality of group elements should be a
mere proposition and not carry additional information, that is, there is at most one proof
that given group elements are equal. As a consequence, for any type A with an element a : A,
the type a = a is not necessarily a group. It does have a neutral element an elements can be
inverted and composed, corresponding to the fact that equality is reflexive, symmetric, and
transitive. However, a = a is not a 0-truncated type. We can use 0-truncation to make up
for this, and ‖a = a‖0 is indeed a group, called the fundamental group of A at basepoint a,
while a = a (as pointed type also written Ω(A, a)) is the loop space at point a.

A drawback of truncations is that it can be hard to get out of them, that is, “to leave the
monad”. A priori we have, for any type A and number n ≥ −1, a map |−| : A→ ‖A‖n, but
there is in general no function in the other direction. The universal property of ‖−‖n says
that, via composition with |−|, the type of functions ‖A‖n → B is equivalent to the type
A→ B, but only if B is n-truncated. To continue with the previous example, an element of
the fundamental group of A at basepoint a is really an equivalence class of equality proofs (or
paths) between a and itself, but it is in general impossible to get a specific representative from
such a class; that is, we cannot construct a section of the map |−| : (a = a)→ ‖a = a‖0. Of
course, we would not have expected anything else: it is unreasonable to assume that we can
make this sort of choice without any further assumptions. Although the truncation operator
‖−‖n is often described as “cutting of” higher structure of a type, it is more accurate to
think of it as “filling non-trivial loops”, which makes it plausible that it is harder instead of
easier to define a function out of ‖A‖n than out of A.

Unlike in the example above, it is in some cases reasonable to expect that we can get a
function ‖A‖n → B even if B is not an n-type. If ‖A‖−1 tells us that A has some element
without revealing a concrete one to us, then a function ‖A‖−1 → B should be the same as a
function f : A→ B which cannot look at the “input”.1 What exactly this means is difficult
to state in general (see [8]), so let us restrict ourselves to the case that B is 0-truncated (also
called a set). In this case, the statement that “f does not look at its input” can be expressed
by saying that f maps any pair of inputs to equal values, Πx,y:A(f(x) = f(y)). Indeed, it
has been shown that a function f with this behaviour gives rise to a map ‖A‖−1 → B [10].

Even if we have a function A→ B, it can be very hard to tell whether it is possible to
construct a function ‖A‖n → B unless B is an n-type, and if it is possible, there is no direct

1 This only makes sense if stated internally. Of course, a concrete implementation of f can compute
differently if applied to different terms of type A. As long as we stay inside the theory, we cannot talk
about judgmental equality.
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way to do so as the universal property (or the elimination principle) cannot be applied directly.
The usual workaround is looking for an n-type C “in the middle”, that is such that one has
functions A→ C and C → B. One can then apply the elimination principle to construct a
function ‖A‖n → C which, by composition, yields a function ‖A‖n → B as desired. The type
C is constructed ad-hoc, and it is natural to ask for a more powerful elimination principle
(or universal property) of ‖−‖n which allows the construction of functions ‖A‖n → B in a
more principled and streamlined way.

This has been done for the (−1)-truncation in previous work [8], where it is shown that
functions ‖A‖−1 → B correspond exactly to functions A → B with an infinite tower of
coherence conditions. This can be understood as a generalised version of the usual universal
property of ‖−‖−1. If B is known to be n-truncated for some fixed finite n, the infinite
tower becomes finite and can be expressed directly in type theory, whereas the existence of
Reedy limits [13] is necessary for the general case. If B is a 0-type, the “tower” of coherence
condition is exactly the single condition Πx,y:A(f(x) = f(y)) discussed above. If B is even
a (−1)-type itself, the tower vanishes completely and the usual universal property remains.
Unfortunately, it seems that there is no immediate generalisation of the proof of [8] to
n-truncations.

In this paper, we do consider n-truncations for general n, but we assume that B is
(n + 1)-truncated, and already this case seems to be involved. We show that functions
‖A‖n → B correspond exactly to those functions A→ B that are constant on all (n+ 1)-st
loop spaces. We offer two proofs for this fact, one which works in “plain” homotopy type
theory with general truncations, and the other involving a higher inductive type. The first
proof, which we call the “elementary proof”, is close to not even requiring the univalence
axiom (the central concept of homotopy type theory expressing that equality in the universe
is given by type equivalence). The only reason why univalence is necessary is that we need
to be able to translate between truncations (‖a =A b‖n is equivalent to |a| =‖A‖n+1

|b|). The
second proof (Section 4) uses an argument that makes crucial use of both a higher inductive
type and the univalence axiom, and we therefore call it the “HIT proof”. In the HIT proof,
we will construct a higher inductive type in such a way that it is the “initial” type through
which functions f : A→ B with the property (10) factor, and we will show that this type is
really ‖A‖n. Although we show an equivalence of types, we believe that the main application
is the construction of functions ‖A‖n → B, that is, one may often want to use only one
direction of the equivalence. Therefore, the result can be used as an elimination principle
that is more powerful than the usual recursion principle of the truncation. We also present a
sample application (a translation of types into “set-based representation”), and conclude with
a discussion on how the generalised statement should look like, and under which assumptions
it should be provable.

The main contents of this paper have, in slightly different form, appeared in the second-
named author’s Ph.D. thesis [9].

Outline. We start by stating the result of the paper in Section 2, and discuss two special
cases (n ≡ −1 and n ≡ 0). In Section 3, we give the “elementary” proof of this result, and in
Section 4, the (technically harder, but conceptually clear) proof that uses a higher inductive
type. We discuss a sample application of the case n ≡ 0 in Section 5, namely a construction
of a set-based representation of any given type, provided that it fulfils a property that e.g.
loop spaces do. Finally, in Section 6, we compare the two proofs with each other. We also
compare our result with the general universal property of the propositional truncation as
proved before [8], and discuss why the potential generalisations seem so much more involved
than what we have done here.

CSL 2015
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Setting. We consider the theory of the standard reference on homotopy type theory, that
is, the textbook [14]. To summarise, we need a version of intensional Martin-Löf type theory
with Σ, Π, and identity types. In addition, we assume that the theory has a univalent
universe, and that there are truncation operators ‖−‖n for all n ≥ −1, with the canonical
projections |−| : A → ‖A‖n. This concept is explained in detail in [14, Chap. 7.3]). The
statement and the first proof that we give do not need higher inductive types [14, Chap. 6]
other than the truncations, while the second proof that we give makes heavy use of such a
higher inductive type.

Agda Formalisation. We have formalised the main result, together with the “elementary”
proof (Section 3) and the sample application (Section 5), in Agda [6]. The source code
can be found on GitHub, at github.com/pcapriotti/agda-base/tree/trunc. The results
of this paper are contained in the module hott.truncation.elim. A browsable HTML
version of the formalisation can be accessed at paolocapriotti.com/agda-base/trunc/
hott/truncation/elim.html. We encourage a reader who is not familiar with Agda to
have a look at the latter, which does not need any software apart from a web browser. For
all the technical details, we refer to the readme file in the repository.

On a minor note, we have chosen not to make use of the common (but, as far as we know,
not justified by a formal argument) hack that makes truncations satisfy the judgmental
computation rule. As we wanted our formalisation to be readable, this has required us to
think of some implementation strategies that make the code in this setting more elegant
than the “straightforward” formalisation approaches.

2 The Statement of the Theorem

Let us begin by clarifying some notation. In general, we stick closely to the terminology of
the standard reference on the topic, the textbook [14]. We write Πa:AB(a) for Π-types as it
is done there, but Σ (a : A) . B(a) for Σ-types.2 For better readability, we uncurry implicitly
and write f(a, b) : C, even if f is a function of type A → B → C. Instead of λh.h ◦ g, we
write _ ◦ g. By the distributivity law of Σ and Π, we mean the well-known equivalence

Πa:AΣ (b : B(a)) . C(a, b) ' Σ (g : Πa:AB(a)) .Πa:AC(a, g(a)), (1)

sometimes called the type-theoretic axiom of choice. As it is standard [14], we write
is-n-type(A) for the propositional type expressing that A is n-truncated if n ≥ −2 is an
integer, defined by

is-(−2)-type(A) :≡ Σ (a0 : A) .Πa:Aa = a0 (2)
is-(n+ 1)-type(A) :≡ Πa1,a2:Ais-n-type(a1 = a2), (3)

and the special case when n is −2 (“A is contractible”) is also written as isContr(A). We
assume that there is a universe U , and we write Un for the type (or “universe”) of n-types in
U (cf. [14, Chap. 7.1]),

Un :≡ Σ (X : U) . is-n-type(X). (4)

2 This seemingly inconsistent notation is intentional: we sometimes have nested Σ-types, e.g.
Σ (a : A) . Σ (b : B(a)) . C(a, b), and we view the components as “equally valued”; thus, writing ex-
actly one component bigger than the others would not look correct.

https://github.com/pcapriotti/agda-base/tree/trunc
https://github.com/pcapriotti/agda-base/tree/trunc/hott/truncation
http://www.paolocapriotti.com/agda-base/trunc/hott.truncation.elim.html
http://www.paolocapriotti.com/agda-base/trunc/hott.truncation.elim.html
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Further, we write U• for the type (or “universe”) of pointed types in U (cf. [14, Def. 2.1.7]),

U• :≡ Σ (X : U) . X. (5)

If we have a type A and a pointed type (B, b), together with a function f : A→ B, we say
that “f is null” if it is constantly b, that is,

isNull(f) :≡ Πx:Ab = f(x). (6)

Recall that there is an endofunction on U•, the loop space function Ω,

Ω(A, a) :≡ (a = a, refla) . (7)

For any natural number n, we can iterate this endofunction n times, for which we write
Ωn. Instead of π1 (Ωn(A, a)) and π1((Ω(A, a))), we simply write Ωnt (A, a) and Ωt(A, a) if we
want to talk about the underlying type (i.e. ignore the point). Further, given two types A
and B together with any function f : A→ B and a point a : A, we have a function

apf,a : Ωt(A, a)→ Ωt(B, f(a)). (8)

In the same way, we have (given A, B, f as before) apnf,a : Ωnt (A, a)→ Ωnt (B, f(a)), and Ω
is really an endofunctor in some appropriate sense.3

Our result can now be stated as follows:

I Theorem 1. Let n ≥ −1 be a number, A a type, and B an (n + 1)-type. Assume that
f : A→ B is a function. Then, f can be factored through the n-truncation, that is

Σ (f ′ : ‖A‖n → B) . f ′ ◦ |−| = f, (9)

if and only if apn+1
f,a is null for every a,

Πa:AisNull(apn+1
f,a ), (10)

and both of the types (9) and (10) are propositional.

An immediate corollary tells us how we can eliminate out of truncations:

I Corollary 2. Assume we have n, A and B as in Theorem 1. If we want to construct a
function ‖A‖n → B, it suffices to find a function f : A→ B which satisfies Πa:AisNull(apn+1

f,a ).

Before approaching a proof of Theorem 1, let us have a look at two special cases, namely the
cases n ≡ −1 and n ≡ 0. The first case is known [10] and will serve as the base case for the
two general proofs presented later. The second case is not strictly necessary, but serves to
exemplify the techniques used in the “HIT proof” (Section 4).

The case n ≡ −1. The simplified statement of Theorem 1 reads in this case as follows:
Assume we are given a type A and a 0-type B (often called a set). A function f : A→ B

factors through the propositional truncation if and only if

Πx,y:Af(x) = f(y). (11)

This follows easily from previous work, e.g. [8, Prop. 2.2]. It is a pleasant surprise that
“ap0

f,a is null for all a”, simply by unfolding our definitions, simplifies to (11), which is “f is
constant” in the sense of [10].4

3 Of course, apf,a is its action on the morphism f and could thus rightfully be called Ω(f, a).
4 In the simplified formulation, we have omitted the part that the two logically equivalent types are

propositional. This is easy to see here, and will in the general case be part of the proof.
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‖A‖n → B Σ (f : A→ B) .Πa:AisNull(apn+1
f,a )

A→ B

cn

_ ◦ |−| π1

Figure 1 The canonical map cn as map between fibres.

The case n ≡ 0. Here, our result (Theorem 1) implies that, for any type A and 1-type B,
a function f : A → B factors through ‖A‖0 if and only if, for all a : A and p : a = a, we
have that apf,a(p) equals reflf(a). As Shulman has remarked in an online discussion (in the
comment section of a blog post [5]), this follows from the Rezk completion [1]: Let Ã be
the precategory with the type A of objects and hom(a1, a2) :≡ ‖a1 =A a2‖−1, and let B̃ be
the category with B as objects and hom(b1, b2) :≡ (b1 =B b2). Then, f with the condition
Πa:AisNull(apf,a) gives (already using the case n ≡ −1) rise to a functor Ã → B̃. Such a
functor generates a functor between the Rezk completion of Ã and the category B̃, and the
former happens to be ‖A‖0.

In the remainder of the current section, we give a simple technical construction which
essentially serves as a reformulation of Theorem 1 and which is necessary for both the
elementary and the HIT proof. For types A and B, assume we are given a function
g : ‖A‖n → B. We can consider the composition A |−|−−→ ‖A‖n

g−→ B. For any a : A we have,
by functoriality of Ωn+1, that the composition

Ωn+1
t (A, a)

apn+1
|−|,a−−−−→ Ωn+1

t (‖A‖n, |a|)
apn+1

g,|a|−−−−→ Ωn+1
t (B, g(|a|)) (12)

is equal to apn+1
g◦|−|,a. But Ωn+1

t (‖A‖n, |a|) is contractible ([14, Thm. 7.2.9]), and apn+1
g,|a| clearly

maps its unique element to the basepoint of Ωn+1(B, g(|a|)). Therefore, apn+1
g◦|−|,a is null.

From this construction, we get a canonical function

cn : (‖A‖n → B)→ Σ (f : A→ B) .
(

Πa:AisNull(apn+1
f,a )

)
. (13)

We then claim the following:

I Lemma 3 (“Total space” formulation of Theorem 1). For any n ≥ −1, any type A and any
(n + 1)-type B, the types ‖A‖n → B and Σ (f : A→ B) .Πa:AisNull(apn+1

f,a ) are equivalent,
and the equivalence is given by the canonical function cn.

It is easy to see that Lemma 3 does indeed imply, and is nearly immediately equivalent
to, Theorem 1. Consider the triangle shown in Figure 1, where the top horizontal map is
the canonical map cn, the left one is composition with |−|, and the right one is simply the
projection. The triangle clearly commutes (judgmentally) by construction. Let us fix some
function f : A→ B. The fibre (or “inverse image”) over f is, in the case of _ ◦ |−|, exactly
(9), i.e. the statement that f can be lifted. In the second case, the fibre is (10). Therefore,
cn induces an equivalence of the two fibres, which implies that cn itself is an equivalence
(see [14, Thm. 4.7.7]).

3 The “Elementary” Proof

In this section, we give our first proof of Lemma 3 (and thereby of Theorem 1). This does
not need higher inductive types apart from truncations that already appear in the statement.



P. Capriotti, N. Kraus, and A. Vezzosi 365

The idea is to not prove the result for any type A first, but only for an n-connected one.5
Afterwards, we generalise this to arbitrary types, by splitting the type into its “connected
components” and gluing together the constructions for the components.

I Lemma 4. If n ≥ −1 be a number, A an n-connected type, and B be an (n+ 1)-type, the
canonical map cn is an equivalence.

Proof. We do induction on n. As already discussed above, the case that n is −1 is known
(e.g. [8, Prop. 2.2]).

Let now n ≥ 0 be any given number. Note that, due to the assumption that ‖A‖n is
contractible, we have a unique element x0 : ‖A‖n, the type ‖A‖n → B is actually equivalent
to B, and any function g : ‖A‖n → B is uniquely specified by its value g(x0).

The claim of the lemma is propositional. Applying the eliminator of ‖A‖n, we may not
only assume that we are given x0 : ‖A‖n, but we can also assume a point a : A. A potential
inverse of cn is then given by6

dn :
(

Σ (f : A→ B) .Πa:AisNull(apn+1
f,a )

)
→ (‖A‖n → B) (14)

dn(f, p) :≡ λ_.f(a). (15)

To show that cn and dn are inverses, we check that both compositions are the identities. One
direction is easy: for any g : ‖A‖n → B, we have

dn(cn(g))(x0) ≡ g(|a|), (16)

and the latter is equal to g(x0).
For the other direction, assume we have f : A → B together with a proof q. We need

to show (f, q) = cn(dn(f, q)). Fortunately, the equality of the two second components is
automatic thanks to the fact that isNull(apn+1

f,a ) is propositional, and we only need to prove
the equality of f and π1(cn(dn(f, q))). We observe that the latter expression computes to
λ_.f(a). Thus, our goal is to show that, for any a′ : A, we have f(a) = f(a′).

We use the induction hypothesis with (a = a′) for A, and f(a) = f(a′) for B. By
the connectedness assumption on A, the type |a| = |a′| is contractible. Consequently, the
type ‖a = a′‖n−1 is contractible ([14, Thm. 7.3.12], note that this theorem depends on the
univalence axiom). Put differently, (a = a′) is (n− 1)-connected. As B is an (n+ 1)-type,
we know that f(a) = f(a′) is n-truncated. By the induction hypothesis, it is hence enough
to construct an element of

Σ (k : a = a′ → f(a) = f(a′)) .Πp:a=a′ isNull(apnk,p). (17)

For k, we choose apf . By path induction, we may assume that p is refla. Thus, we need to
show that apnapf,a,refla

is null. This term is equal to apn+1
f,a .7 The condition that this function

null is exactly what is given by q(a′). J

To move from n-connected to arbitrary types A, we simply split a type into n-connected
components. This is very intuitive for n ≡ 0, in which case we use that any type (or “space”)
can be viewed as the “disjoint sum” of its connected components. To be precise, an element

5 Recall that a type A is n-connected if ‖A‖n is contractible [14, Def. 7.5.1].
6 We use _ if we do not need to give the bound variable a name.
7 Depending on the the exact definition of apn, this can hold judgmentally, but can also be rather involved.
We refer to our formalisation for technical details.

CSL 2015



366 Functions out of Higher Truncations

of a component is a point of A together with a proof that it is in the component. For n ≡ 0,
this proof is propositional. For higher n, it is not. This makes the general case less intuitive
and hard to picture. In fact, the proof determines in which component the element is, which
makes it seem circular. Fortunately, it is easier to write down the type-theoretic argument
than picturing the topological intuition, as we will see in the following lemma.

I Lemma 5. For any type A and number n, we define the family of n-connected components,

connn : ‖A‖n → U (18)
connn(x) :≡ Σ (a : A) . x =‖A‖n

|a|. (19)

Then, for any x : ‖A‖n, the type connn(x) is n-connected. Further, “choosing an n-connected
component and then a point in this component” corresponds to “choosing a point”, that is,

Σ (x : ‖A‖n) . connn(x) ' A. (20)

Proof. This is easy and standard. For the first part, we claim that the equivalence∥∥Σ (a : A) . x =‖A‖n
|a|

∥∥
n
' Σ (y : ‖A‖n) . x =‖A‖n

y (21)

holds, where the left-hand type is ‖connn(x)‖n by definition, and the right-hand type has
the form of a singleton.8 For both directions of (21), we apply the dependent eliminator of
‖−‖n. From left to right, we map |(a, p)| to (|a|, p). From right to left, we map (|a|, p) to
(|a, p|). For an alternative proof, see [14, Cor. 7.5.8].

To see that the equivalence (20) holds, it is enough to unfold the definition of connn, and
use that in Σ (x : ‖A‖n) .Σ (a : A) . x =‖A‖n

|a|, the first and the third component form a
singleton. J

Finally, we can complete the first proof of our main result:

“Elementary” proof of Lemma 3. Assume we have n, A, and B as in the statement. The
preceding two lemmata tell us that, for any x : ‖A‖n, the canonical map

cxn : B →
(

Σ (fx : connn(x)→ B) .Πy:connn(x)isNull(apn+1
fx,y

)
)

(22)

is an equivalence (note that we have omitted the contractible type ‖connn(x)‖n in the domain
of cxn). A family of equivalences gives rise to an equivalence of families, so that we get that
the map

c̃n : (‖A‖n → B) →
(
Πx:‖A‖n

Σ (gx : connn(x)→ B) .Πy:connn(x)isNull(apn+1
g,y )

)
(23)

c̃n(k) :≡ λx.cxn(k(x)) (24)

is also an equivalence.
All we need at this point is an equivalence from the codomain of the function (24) to

the type stated in the theorem, i.e. Σ (f : A→ B) .Πa:AisNull(apn+1
f,a ), and the composition

of (24) and this equivalence has to be the canonical map cn. We calculate:

Πx:‖A‖n
Σ (gx : connn(x)→ B) .Πy:connn(x)isNull(apn+1

gx,y) (25)

8 If z0 : Z is some point of some type, we call any type of the form Σ (z : Z) . z = z0 a singleton. It is
well-known that singletons are contractible and therefore “neutral” components of Σ-types, which we
use here and later.



P. Capriotti, N. Kraus, and A. Vezzosi 367

(by the distributivity law)

' Σ
(
g : Πx:‖A‖n

(connn(x)→ B)
)
.Πx:‖A‖n

Πy:connn(x)isNull(apn+1
g(x),y) (26)

(by currying and using the canonical equivalence (20))

' Σ (h : A→ B) .Πa:AisNull(apn+1
λy:connn(|a|).h(π1y),(a,refl|a|)) (27)

Fortunately, the (pointed) types Ωn+1(connn(|a|), (a, refl|a|)) and Ωn+1(A, a) are equivalent,
with the equivalence being apn+1

π1
; this is an easy technical statement that follows from [11,

Lem. 5.1]. If we compose apn+1
λy:connn(|a|).h(π1y),(a,refl|a|) with the inverse of this equivalence,

functoriality of apn+1 allows us to simplify the expression.

' Σ (h : A→ B) .Πa:AisNull(apn+1
h,a ) (28)

We need to check that the composition of c̃n with this equivalence is indeed the canonical
function cn. This is immediate as we only need to check that the first component (the map
A→ B) turns out to be the correct function, as the second component is propositional. J

4 The “HIT Proof”

Our second proof is fairly technical. We construct a higher inductive type with a suitable
elimination property and show that it is equivalent to ‖A‖n. As a preparation, we show a
small lemma. It is a part of a theorem that has been introduced in [9], where it is described
as local generalised Hedberg argument.

I Lemma 6 (main part of [9, Thm. 3.2.1]). Let (A, a0) be a pointed type. Assume further
that P is a pointed family of (n− 1)-types over (A, a0), that is, a family P : A→ Un−1 with
a point p0 : P (a0). If P (a) implies that a0 is equal to a, i.e. m : Πa:AP (a)→ a0 = a, then A
is “locally an n-type” in the sense that Ωn+1(A, a0) is contractible.9

Proof sketch. Consider the following composition of three maps, for any a : A:

a0 = a P (a) a0 = a a0 = a
q 7→ transportP (q, p0) ma q 7→ ma0(p0) � q

By path induction, we easily see that these maps make a0 = a a retract of P (a). Hence, the
former is (n− 1)-truncated [14, Thm. 7.1.4], which shows the claim [14, Thm. 7.2.9]. J

We are ready to define the higher inductive type that plays the central role in the second
proof of Lemma 3. For the following definition and for the rest of the section, we fix a type
A and a number n ≥ −1.

I Definition 7. Define the higher inductive type H , which depends on A and n, as given by
the constructors

η : A→ H (29)
ε : Πa,b:A

(
‖a = b‖n−1 → η(a) = η(b)

)
(30)

δ : Πa:A
(
reflη(a) =η(a)=η(a) ε(a, a, |refla|)

)
(31)

t : is-(n+ 1)-type(H). (32)

9 This “local” form directly implies the “global” form: We can consider a relation R : A × A → Un−1

which implies identity and which has points ra : R(a, a) for all a : A; then, the lemma shows that A is
an n-type.
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The complicated looking constructors ε and δ are more intuitive than they looks at first
sight. If we have (a = b), we of course always get a proof of η(a) = η(b) using apη. The
constructor ε says that ‖a = b‖n−1 is sufficient, while δ ensures that ε is really a lifting of
apη through ‖a = b‖n−1. This is because we could have used the expanded form

δ′ : Πa,b:AΠp:a=b
(
apη(p) =η(a)=η(b) ε(a, b, |p|)

)
, (33)

instead of the constructor δ. By path induction on p, the type (33) is easily seen to be
equivalent to the original type (31). While (33) might look more regular next to (30), we
choose (31) just for simplicity.

The recursion principle for H is straightforward to write down. Given some (n+1)-type B,
we need a function f : A→ B, together with a function k : Πa,b:A(‖a = b‖n−1)→ f(a) = f(b)
and a proof h : Πa:Areflf(a) =f(a)=f(a) k(a, a,

∣∣reflf(a)
∣∣), we get a function H → B with the

expected properties. It is more involved, nevertheless not inherently difficult, to state the
induction principle following the standard (“intuitive”) approach as used in [14, Chap. 6].
Given an (n+ 1)-truncated family P : H → Un+1, in order to prove Πx:HP (x), we need

η : Πa:AP (η(a)) (34)
ε : Πa,b:AΠq:‖a=b‖n−1

transportP (ε(a, b, q), η(a)) =P (η(b)) η(b) (35)

δ : Πa:A

(
transportλr.transportP (r,η(a))=η(a) (

δ(a), reflη(a)
)

= ε(a, a, |refla|)
)
. (36)

The above type expressions look rather involved. Fortunately, we do not need to deal too much
with them at all because we are only interested in the case that P is n-truncated (instead of,
more generally, (n+ 1)-truncated), which enables us to use the following observation:

I Lemma 8 (Restricted dep. universal property of H). Given A and n ≥ −1 as above and a
family of n-types, P : H → Un, the canonical map

Πx:HP (x) _◦η−−→ Πa:AP (η(a)) (37)

is an equivalence.

Proof. As P is a family of n-types, the type transportP (ε(a, b, q), η(a)) =P (η(b)) η(b), ap-
pearing in (35) as the target of ε, is (n− 1)-truncated. By the standard universal property of
the (n− 1)-truncation, we may thus assume that the q in the type (35) is of the form |p| with
p : a = b, and then do path induction on p. This shows that the type of ε is equivalent to

ε′′ : Πa:AtransportP (ε(a, a, |refla|), η(a)) =P (η(a)) η(a). (38)

Under this equivalence, the type of δ becomes

δ
′′ : Πa:A

(
transportλr.transportP (r,η(a))=η(a) (

δ(a), reflη(a)
)

= ε′′(a)
)
. (39)

We see that the dependent pair of (38) and (39) forms a family of singletons. Therefore, there
is always a canonical and unique choice for ε and δ. The induction principle can therefore
be simplified to only (34). Let us write rind : Πa:AP (η(a)) → Πx:HP (x) for this restricted
induction principle. It is easy to check that rind is indeed an inverse of the map _ ◦ η:

For any f : Πa:AP (η(a)) and a : A, the expression (rind(f) ◦ η)(a) can be reduced to f(a).
For any g : Πx:HP (x), assume x : H . We need to show (rind(g ◦ η))(x) = g(x). Using the
restricted induction principle, we may assume x ≡ η(a), and the left side can be reduced
to the right side of the equation. J
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This allows us to conclude the following crucial property of H:

I Lemma 9. The type H is n-truncated.

Proof. It suffices to show that Ωn+1(H,x) is contractible for all x : H [14, Lem. 7.2.9]. The
restricted induction principle of H tells us that, in order to show P (x) :≡ isContr

(
Ωn+1(H,x)

)
for all x, we only need to prove P (η(a0)) for any a0 : A. Let us define a type family
Q : H → Un−1 using the restricted induction principle, Q(η(a)) :≡ ‖a0 = a‖n−1. This family
is trivially inhabited at a0. We want to show that Q implies local equality in the sense of
Πx:H (Q(x)→ η(a0) = x), and as this type family is n-truncated, we apply the restricted
induction principle again and the goal becomes

Πa:A (Q(η(a))→ η(a0) = η(a)) . (40)

By definition of Q, this is exactly given by the constructor ε, applied on a0 and a.
This allows us to conclude, by Lemma 6, that H is n-truncated, as claimed. J

It is straightforward and standard that an n-truncated type which satisfies the dependent
eliminating principle of ‖A‖n is necessarily equivalent to ‖A‖n, and we record:

I Corollary 10. The types H and ‖A‖n are equivalent.

At the same time, we have the following:

I Lemma 11 (Universal property of H). For any (n+1)-type B, the type of functions H → B

is equivalent to

Σ (f : A→ B) .Σ
(
e : Πa,b:A‖a = b‖n−1 → f(a) = f(b)

)
. (d : Πa:Areflf(a) = e(a, a, |refla|)).

(41)

Proof sketch. The proof of deriving this form of universal property from the induction
principle is standard. The map from H → B into the stated type is more or less composition
with the constructors; for any k : H → B, we get

(f, e, d) :≡
(
k ◦ η , apk ◦ ε , λa.apapk

(δ(a))
)
. (42)

The map in the other direction is exactly the recursion principle of H . That they are mutually
inverse corresponds to the computation (β) rule respectively the uniqueness (η) rule of H . J

Finally, we can complete the second proof of our main result:

“HIT proof” of Lemma 3. We do induction on n. The base case (n ≡ −1) is, as before,
just what we have discussed in Section 2. For higher n, we have the following chain of
equivalences:

‖A‖n → B (43)

(by Corollary 10)

' H → B (44)

(by Lemma 11)

' Σ (f : A→ B) .Σ
(
e : Πa,b:A‖a = b‖n−1 → f(a) = f(b)

)
.(

Πa:Areflf(a) = e(a, a, |refla|)
)

(45)
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(by “inverse path induction”)

' Σ (f : A→ B) .Σ
(
e : Πa,b:A‖a = b‖n−1 → f(a) = f(b)

)
.(

Πa,b:AΠp:a=bapfp = e(a, b, |p|)
)

(46)

(by the distributivity law)

' Σ (f : A→ B) .Πa,b:A
(
Σ

(
e′ : ‖a = b‖n−1 → f(a) = f(b)

)
.

Πp:a=bapfp = e′(|p|)
)

(47)

Now we exchange e′ by (e1, e2) :≡ cn−1(e′) using the induction hypothesis, and thus we need
to apply c−1

n−1 to that term in the last component. Fortunately, it follows from the definition
of cn−1 that _ ◦ cn−1 ≡ π1 ◦ |−|, hence we can replace e′(|p|) with simply e1(p):

' Σ (f : A→ B) .Πa,b:A
(
Σ (e1 : a = b→ f(a) = f(b)) .Σ

(
e2 : Πp:a=bisNull(apne1,p)

)
.(

Πp:a=bapfp = e1(p)
) )

(48)

The term e1 and the very last (unnamed) component form a singleton and can be removed:

' Σ (f : A→ B) .
(

Πa,b:AΠp:a=bisNull(apnapf ,p
)
)

(49)

(by “path induction”)

' Σ (f : A→ B) .
(

Πa:AisNull(apnapf ,reflf(a)
)
)

(50)

(as apnapf ,refla
is the same as apn+1

f,a – the footnote on page 365 applies)

' Σ (f : A→ B) .
(

Πa:AisNull(apn+1
f,refla

)
)
. (51)

Finally, we need to check that the constructed equivalence is indeed the canonical function cn.
Fortunately, the second (and more involved) part Πa:AisNull(apn+1

f,refla
) is propositional. It is

therefore enough to check that any map g : ‖A‖n → B gets, by the constructed equivalence,
mapped to a pair in (51) of which the first component is g ◦ |−|. But the first component is
constructed in the very first step, where Lemma 11 is applied, and, looking at the proof of
Lemma 11, it is indeed simply composition with |−|. J

5 A Sample Application: Set-Based Groupoids

A set-theoretic ω-groupoid has, in the “globular” formulation, ω-many levels: At level 0, it
has a collection of objects (or 0-cells); for any two objects, it has a collection of 1-morphisms
(1-cells); for any two 1-morphisms, there is a collection of 2-morphisms (2-cells), and so on.
As recalled in the introduction, types indeed are such ω-groupoids meta-theoretically. It is
intuitive to ask how much of this can be internalised. Defining a weak ω-groupoid in type
theory is already very hard [2, 3]: one would want a 0-type (i.e. a set) A0 of 0-cells, a set A1
of 1-cells which is indexed twice over A0, and so on. Even if one has such a definition at
hand, it is implausible to expect that one can define the “fundamental ω-groupoid” of a type.
As Altenkirch, Li and Rypacek [2] mention, they are unable to construct such an ω-groupoid,
which in their terminology is called Idω. The Ph.D. thesis of the second-named author of
the current paper includes a precise negative statement [9, Sec. 9.4.1] which shows that a
construction in the sense of [2] is impossible in all non-trivial cases. The argument given
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there indicates that a fundamental reason why we cannot even define A1 is that we want A1
to be indexed twice over A0.

However, we know that the whole higher structure of types is in some sense determined
by the loop spaces, as opposed to the path spaces. It seems therefore reasonable to consider a
more modest variation where we index A1 only once over A0, with the intention that A1(a0)
represents the loop space over a0. This has the further advantage that we can assume that
A0 is ‖A‖0; with double-indexed A1, it would be possible that elements a, b : A0 are not
equal in A0, but “made equal” by an element of A1(a, b). As a further simplification, we only
consider the question whether a type can be represented in two levels, i.e. with A0 ≡ ‖A‖0
and A1.

I Definition 12. We call a type A set-based representable if the function

ωA : A→ U (52)
ωA(a) :≡ (a = a) (53)

factors through ‖A‖0, i.e. if there is a single-indexed family A1 : ‖A‖0 → U of types which,
for all a : A, satisfies A1(|a|) ' (a =A a).

We also define the following simple notion:

I Definition 13. We say that a type A has loop spaces with braidings if, for all a : A and
p, q : a = a, we have p � q = q � p.

Examples of types which have loop spaces with braidings are sets (for which the condition is
trivial), and, more interestingly, loop spaces themselves.

I Theorem 14. Every 1-type whose loop spaces have braidings is set-based representable.

Proof. As A is a 1-type, the function (52) takes sets as values; that is, in this case, we can
assume that ωA is of type A → U0. Using that U0 is a 1-type [14, Thm. 7.1.11], we may
apply Theorem 1 with n ≡ 0. We need to show that, for a fixed a : A, the function

apωA,a : Ωt(A, a)→ Ωt(U , a = a) (54)

is null. But apωA
(p) induces a function of type (a = a) → (a = a) (via the function that

is called idtoeqv in [14], and projection), and by univalence, it is enough to show that this
function does not depend on p. We claim that this function maps q : a = a to p−1 � q � p. An
easy way to prove this claim is considering the more general version of apωA

that works on
any path spaces (instead of loop spaces), and then doing path induction on p. Clearly, the
braiding on a = a is exactly what we need to justify that p−1 � q � p does not depend on p. J

6 The Big Picture: Solved and Unsolved Cases

The “ordinary” universal property of the n-truncation can be recovered easily from Theorem 1.
If, under the conditions of the statement, B is not only (n+ 1)-, but even n-truncated, the
type Πa:AisNull

(
apn+1
f,a

)
becomes contractible, and the theorem says precisely that functions

A→ B are the same as functions ‖A‖n → B, via composition with |−|. Theorem 1 is thus
stronger than the “ordinary” universal property. However, we weaken the condition on B
by only one single level, while [8] weakens it by arbitrary many levels, but only for the
propositional truncation.
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Figure 2 The universal property of ‖A‖? with respect to ?-types: trivial, solved, and open cases.

Of course, the general question is: What is the universal property of ‖A‖n with respect
to m-types, i.e. how can we construct a map ‖A‖n → B for some m-type B? Put differently,
given a function f : A → B, how can we (by only imposing conditions on f , not on A or
B) ensure that f factors through ‖A‖n? Figure 2 illustrates the current progress on this
question. As indicated, the question is trivial if m is not greater than n. Two other families
of cases are solved, those with m ≡ n + 1 by the current paper, and n ≡ −1 by [8]. Note
that the latter is not internalised in the way that the result of the current paper is, and it
is not to be expected that an internalisation is possible in the considered type theory; and
further, the case n ≡ −1, m ≡ ∞ (meaning that there is no condition at all on B) is solved,
but only under the assumption of Reedy ωop-limits.

The (probably) simplest case that is left open is the case n ≡ 0, m ≡ 2. So, let us consider
a function f : A→ B, where B is 2-truncated. Which conditions do we have to impose on
f to conclude that it factors through ‖A‖0? As is easy to show, if f factors through the
0-truncation, then apf factors through the (−1)-truncation. The necessary conditions for
the latter have been worked out in [8], and we could thus try to impose them on apf (at all
points). However, this does not work. In one aspect, the propositional truncation is a special
case that is actually harder than the higher truncations, intuitively because loop spaces are
always pointed10 which we have already made use of in the definition of isNull. It turns out
that in this “pointed” case one can get all these coherences (which make the result of [8]
hard) for free. Instead, the higher groupoid structure of loop spaces induces a different sort

10This seems to correspond to the fact that the zeroth homotopy “group” is not a group, and does
therefore not have a canonical element, which seems to occasionally make this special case harder in
traditional topology as well.
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of coherence problem. For example, it certainly is necessary that, for any a : A and p : a = a,
there is a proof ca,p : apf,a(p) = reflf(a). From ca,p, we can construct a proof that apa,f (p � p)
equals reflf(a), using functoriality of apf,a. If we want the family c to be “fully coherent”,
we have to force this proof to be the same as ca,p � p. The work [8] concludes with a precise
conjecture of how all the required coherence conditions can be captured in the general case.
At this time, it is unknown whether this can be used to fill in the missing parts of Figure 2.
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Abstract
We examine the key syntactic and semantic aspects of a nominal framework allowing scopes of
name bindings to be arbitrarily interleaved. Name binding (e.g. λx.M) is handled by explicit
name-creation and name-destruction brackets (e.g. 〈xMx〉) which admit interleaving. We define
an appropriate notion of alpha-equivalence for such a language and study the syntactic structure
required for alpha-equivalence to be a congruence. We develop denotational and categorical se-
mantics for dynamic binding and provide a generalised nominal inductive reasoning principle. We
give several standard synthetic examples of working with dynamic sequences (e.g. substitution)
and we sketch some preliminary applications to game semantics.
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1 Introduction and motivation

In the syntax of formal languages it is common to see names created by locally-scoped
operators such as λa.(st) and ∀a.(φ⇒ψ). The binders λ and ∀ have scope from the left-hand
( to the matching right-hand ) and scope is determined at the site of binding in the structure
of the term. However, dynamically-scoped binding is an often encountered phenomena
occurring whenever resources are allocated and freed explicitly. The most common situation
is that of memory in C-like languages, but this also applies to other resources such as opening
and closing files or network sockets. In general, a physical resource will be handled using a
name which can be used by the program. The choice of name, between the allocation and the
release of the resource, is irrelevant, leading to notions similar to binding and α-equivalence,
but more finely grained, to account for possible scope interleaving.

Nominal techniques [15, 12, 24] provide a state-of-the-art formalism for reasoning about
abstract syntax with statically-scoped binding. However, existing techniques do not ac-
commodate syntax with dynamically-scoped binding. This paper addresses this issue by
introducing a syntactic notion of dynamic sequences and suitable denotational and categorical
models.

In dynamic sequences, scope is managed by name-creation and name-destruction brackets
‘create a’ and ‘destroy a’, written as 〈a and a〉, respectively. These may be interleaved and
need not match up; 〈a〈ba〉b〉, 〈a〈bb〉a〉, and indeed just 〈a and a〉 are perfectly valid sequences.
In the special case of a well-matched name-creation/-destruction pair the theory specialises
back to something that models nominal-style atoms-abstraction. For instance, 〈aaa〉, just as
the nominal atoms-abstraction [a]a, models the α-equivalence behaviour of λa.a.
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To define a mathematically well-behaved notion of α-equivalence, the basic notions
of free and bound names require generalisation, and a notion of freshness arity emerges
(Sec. 2), generalising the freshness side-conditions of nominal terms. In Sec. 3 we provide
a relational semantics for dynamic sequences and in Sec. 4 we take stock of the monoid
structure on dynamic sequences. We give an equational axiomatisation for a notion of
dynamic binding monoid, that is, a monoid equipped with compatible nominal set structure
and with left and right binders. We then prove that dynamic sequences form a free such
dynamic binding monoid and obtain as a corollary a structural induction principle and a
simpler characterisation for the α-equivalence relation.

Dynamic sequences have a ‘flat’ monoid structure, as opposed to the syntax trees one
encounters in nominal abstract syntax. We use this ‘flatness’ to our advantage, as it allows
us to interpret the non-hierarchical structure of interleaved scope. Thus one interpretation
of dynamic sequences is as the structures used in game semantics. As an application, Sec. 6
gives a resource-sensitive formulation of pointer sequences as used in game semantics. We
conclude in Sec. 7 with an overview of related work and directions for future research.

2 Dynamic sequences

2.1 Preliminaries
Let A be a countably infinite set of names or atoms. Given a bijection (permutation)
π : A → A define its support by supp(π) = {a ∈ A | πa 6= a}. Write Perm(A) for the set of
all permutations with finite support. Write ι for the identity permutation and (a b) for the
swapping or transposition of a and b.

If X is a set with a Perm(A)-action, write this action infix as −·−. An element x ∈ X
is supported by A ⊆ A when for all π ∈ Perm(A), ∀a ∈ A.πa = a implies π ·x = x. Given
π ∈ Perm(A) and x ∈ X, we say that π fixes x when π ·x = x. A nominal set is a set
with a Perm(A)-action where every element x has finite support. It is a fact that if X is a
nominal set then every x ∈ X has a least finite support, which we write supp(x).1 We are
interested in elements with finite support. If a ∈ A such that a 6∈ supp(x) we write a#x. If
X,Y are sets with Perm(A)-action, call f : X → Y equivariant when f(π ·x) = π ·(fx) for
every π ∈ Perm(A) and x ∈ X. Finally, if φ(c) is a predicate on names, write Nc.φ for “φ(c)
holds for all but finitely many c ∈ A”; this is the NEW-quantifier and we may read it as “for
fresh c, φ(c)”. For more on the theory above see [15, 12, 24].

I Definition 1. Fix disjoint sets A of atoms and K of constants, writing a, b, c ∈ A and
k ∈ K. Define sets T of tokens and RSeq of raw sequences, writing m ∈ T and e ∈ RSeq,
inductively by: m ::= a | a〉 | 〈a | k, e ::= ε | em.

RSeq is equivalently the set of lists of tokens and is the free monoid on T. The set K can be
equipped with a trivial Perm(A)-action: every permutation fixes all the elements of K. The
permutation actions on A and K can be extended pointwise on the elements of raw sequences;
for instance, (c a) ·cc〉b〉a〉〈c = aa〉b〉c〉〈a. Then RSeq is a nominal set and the support of a
sequence is the set of names occurring in it. The set RSeq also has a monoid structure given
by concatenation, which is compatible with the permutation action (monoid multiplication
is equivariant and ε has empty support and thus is fixed by all permutations.)

1 The set Perm(A) can also be seen as a nominal set with the Perm(A)-action given by conjugation. The
support of a permutation π is indeed the set supp(π) as defined in the previous paragraph.

CSL 2015



376 Nominal Techniques for Variables with Interleaving Scopes

Our notation and terminology suggest we should read the raw sequence 〈aaa〉 as “create
a, use a (in some manner), then destroy it”—so if we assume a constant λ ∈ K then λ〈aaa〉
shall, informally, model the syntax λa.a.

We can call the binding of raw sequences, which we will make formal shortly, dynamic in
the sense that scope is not determined by a single binder but by bracket-pairs; 〈a does not
‘know’ where its matching a〉 is, or vice versa, and indeed 〈a on its own and unpaired with
any a〉 is also a valid raw sequence, as are a〉, 〈aa〈aaa〉, and so forth.

We endow raw sequences with a binding structure using the following ideas, which will
be illustrated in Ex. 6:

Bound: An atom is bound if it is in the scope of a creation well-paired with a destruction.
Created: An atom may appear following a creation operation which is not followed by a
matching destruction.
Destructed: Conversely, a destruction operation may appear without a matching creation.
Free: An atom may be used without being created or destructed.

An atom occurrence cannot be characterised as merely ‘free’ or ‘bound’, but we need
the more refined notion of freshness arities. We define a freshness arity as an element of
a monoid B, which we call the binding monoid, and which is the free monoid over carrier
{c, f, d} modulo the following equations:

f ··· f = f absorption (1)
c··· f = c pre-absorption (2)
f ···d = d post-absorption (3)
c···d = ε cancellation (4)

The freshness arity is assigned by a monoid homomorphism Fa : RSeq→ B defined by:

Fa = {〈a 7→ c, 〈b 7→ ε, a 7→ f, b 7→ ε, a〉 7→ d, b〉 7→ ε, k 7→ ε} where (a 6= b ∈ A, k ∈ K).

The set of finitely supported functions denoted by BA has a nominal monoid structure, with
the multiplication of functions defined pointwise. The proof of the next lemmas is immediate.

I Lemma 2. The map F : RSeq → BA defined by e 7→ λa.Fa(e) is an equivariant monoid
morphism.

I Lemma 3. For any β ∈ B there are unique m, p ∈ N and n ∈ {0, 1} such that β =B
dm ··· fn ···cp.

I Definition 4. Call the unique representation of β ∈ B its normal form.

I Definition 5. Given a sequence e and a name a it is helpful to introduce some notational
shortcuts regarding the arity of a in e:

We write a�e when Fae = dm ··· fn, for somem,n ∈ N, i.e. there are no pending unmatched
name creations 〈a in e.
We write a�e when Fae = fn ···cm, for somem,n ∈ N, i.e. there are no pending unmatched
destructors a〉 in e.
We write a3 e, and call a balanced in e, when a � e ∧ a � e. That is, there are no
un-matched a-creations or a-destructions, so any occurrence of a is, informally, either
‘bound’ (Fae = ε) or ‘free’ (Fae = f) in the conventional sense.
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•
zz %%

• •
zz %%

• • vv ((•
zz

• ((• •

• yy %%• yy %%• • • jj 44• dd • 99 • •

• xx &&•
zz %%

• • • vv • vv • ((•
%%
• •

• yy %%• vv ((• • yy %%• • • hh • dd • 66• 66• •

Figure 1 Pointer sequence illustration of dynamic sequences with Fa(e) = ε.

I Example 6. Here are some 3-long sequences involving atom a, showing various arities.

Fa(〈a〈a〈a) = c3 Fa(a〉〈a〈a) = dc2

Fa(〈aa〉a〉) = d Fa(a〉aa〉) = d2

Fa(a〉a〉a) = d2f Fa(aaa) = f
Fa(〈aa〉a) = f Fa(〈aaa〉) = ε

2.2 α-equivalence
The pairing of atom creation and atom destruction operations creates a phenomenon similar
to binding. The concrete choice of a name, between its creation and its destruction, should
not matter. This leads directly to a dynamic version of the α-equivalence relation, illustrated
by the following examples and non-examples.

〈aa〉〈bb〉 =α 〈aa〉〈aa〉 (5)
〈a〈ba〉b〉 =α 〈b〈cb〉c〉 (6)
〈a〈aa〉a〉 =α 〈b〈cc〉b〉 (7)
〈a〈ca〉〈bc〉b〉 =α 〈a〈ca〉〈ac〉a〉 (8)
〈a〈bba〉b〉 6=α 〈a〈bbb〉a〉 (9)
〈a〈babb〉a〉 6=α 〈a〈bbab〉a〉. (10)

These sequences, in general sequences where Fa(e) = ε for any atom occurring in the sequence,
can be informally illustrated using “pointer sequences”: a node with a left-pointing arrow
corresponds to a name creation, one with a right-pointing arrow to a name destruction, and
an arrow-less dot to a name mention. Thus the pairs of α-equivalent sequences in (5)–(8) can
be represented as the pointer sequences on the left column in Fig. 1, while the inequivalent
pairs of sequences in (9) and (10) are represented on the right column in Fig. 1.

We now give a syntax-directed definition of α-equivalence.

I Definition 7. Define alpha-equivalence =α⊆ RSeq×RSeq inductively by:

ε =α ε
(αε) e1 =α e2 m ∈ T

e1m =α e2m
(αm)

Nc. e1〈c (c a) ·e2 =α e
′
1〈c (c b) ·e′2 a3 e2, b3 e′2

e1〈ae2a〉 =α e
′
1〈be′2b〉

(αα)

(In (αα) (c a) ·e2 denotes the action of the permutation (c a) on e2, and similarly for (c b) ·e′2.)
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For other characterisations of =α see Thm. 18 and Cor. 24.
The next two lemmas are instrumental in establishing that =α is an equivalence relation

and a congruence.

I Lemma 8. If e1 =α e2 then F(e1) = F(e2).

I Lemma 9. e1〈ae2a〉=e′1〈ae′2a〉 and a3 e2, e
′
2 imply e1=e′1 and e2=e′2.

I Lemma 10. =α is an equivalence relation.

Proof sketch. Transitivity is proved inductively using a case analysis of the possible rules
ending the derivations. For example, assume that ea〉 =α ga

′〉 and ga′〉 =α ha
′′〉 are both

obtained using (αα). Then we have e = e1〈ae2, g = g1〈a′g2 with a3 e2, a′3 g2 such that
Nc.e1〈c (c a) ·e2 =α g1〈c (c a′) ·g2. Similarly, g = g′1〈a′g′2, h = h1〈a′′h2 with a′3 g′2, a′′3h2

such that Nc.g′1〈c (c a′) ·g′2 =α h1〈c (c a′′) ·h2. Using Lem. 9 it follows that gi = g′i from
which we derive Nc.e1〈c (c a) ·e2 =α h1〈c (c a′′) ·h2 with a3 e2, a′′3h2. Thus ea〉 =α ha

′′〉
is obtained using (αα). J

I Theorem 11 (=α is a congruence). If e1 =α e
′
1 and e2 =α e

′
2 then e1e2 =α e

′
1e
′
2.

Proof sketch. By induction on e′2 with the only interesting case being when the second
equivalence was obtained using (αα). In this case, we have e2 = g1〈ag2a〉 and e′2 = g′1〈bg′2b〉
such that a3 g2, b3 g′2 and Nc. g1〈c (c a) ·g2 =α g

′
1〈c (c b) ·g′2. By the induction hypothesis

we have Nc. e1g1〈c (c a) ·g2 =α e
′
1g
′
1〈c (c b) ·g′2, hence by (αα) we obtain e1e2 =α e

′
1e
′
2. J

I Definition 12. Let DSeq = (RSeq/=α) be the nominal set of sequences quotiented by
α-equivalence, with the natural permutation action given by the action on representatives;
call these dynamic sequences.

Note that Lem. 8 ensures that we can extend the notations of a3 e, a� e, a� e to dynamic
sequences.

I Lemma 13. If e ∈ DSeq and a ∈ A then Fae = ε if and only if a#e.

2.3 On the congruence property of α-equivalence
The congruence of α-equivalence is an essential mathematical property which has motivated
design decisions in our definition of dynamic scope. We take a moment to discuss them, and
so perhaps gain a better perspective on the design space in which dynamic sequences exist.
Consider the raw sequence 〈aa〈aaa〉. Which of the two occurrences of 〈a should match the
destructor a〉? Rem. 9 and the equations of the binding monoid (1)–(4) uniquely identify it
as the most recent unpaired 〈a before the a〉 (so above, the rightmost 〈a matches a〉). We
call this late binding.

Some diagrams for the slightly more complex example of 〈a〈aa〉a〉 illustrate this. We
prefer the upper diagram to the lower diagram:

〈a〈aa〉a〉 =α 〈a〈bb〉a〉 = • xx &&•
�� ��

• •
〈a〈aa〉a〉 6=α 〈a〈ba〉b〉 = • ee 99• ee 99• •

The lower diagram (which we might call early or eager binding) is not obviously math-
ematically wrong, but it is unreasonable in the sense that it invalidates congruence of
α-equivalence:
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I Remark. For any binding policy other than late binding, any reasonably defined =α is not
a congruence.

Informal argument. Whatever α-equivalence is, we require 〈aa〉 =α 〈bb〉. If =α is a congru-
ence then 〈a〈aa〉 =α 〈a〈bb〉. Given a binding policy which does not match a destructor for
a with the most recent creation preceding it, it follows that 〈a〈aa〉 =α 〈b〈ab〉 6=α 〈a〈bb〉, a
contradiction. J

Late binding preserves existing dynamic bindings whereas other binding policies do not,
thus α-equivalence is a congruence with late binding (Thm. 11), whereas other dynamic
binding policies are, in this sense, ill-behaved.

3 Relational semantics

We now give a concrete semantics in relations. This relational semantics is sound, complete,
and compositional.

Call a stack a list of pairs of atoms, i.e., an element of the set Stacks = (A2)∗. Elements
of A2 will be written as (a 7→b). For each S ∈ Stacks we define stack-like operations read, add
and remove, written as S(a), S :: (a 7→b) and, respectively, S \a. Both reading and removal of
a record involve the most recent record (a 7→b) in the stack. Formally, if S = S1 :: (a 7→b) :: S2
for stacks S1, S2, and (a 7→c) does not occur in S2 for any c, then S(a) = b and S \a = S1 :: S2.
Otherwise S(a) and S \a are undefined.

I Definition 14. Define a relational semantics

J-K : RSeq→ P((Stacks × (A + K)∗)2).

on raw sequences as follows:

JεK ={((S,X), (S,X)) | ∀S,X} (11)
JeaK ={((S,X), (S′, X ′ :: S′(a))) | ((S,X), (S′, X ′)) ∈ JeK} (12)
JekK ={((S,X), (S′, X ′ :: k)) | ((S,X), (S′, X ′)) ∈ JeK} (13)

Je〈aK ={((S,X), (S′ :: (a 7→b), X ′ :: b)) | ((S,X), (S′, X ′)) ∈ JeK, b # S′, X ′} (14)
Jea〉K ={((S,X), (S′ \a,X ′ :: S′(a))) | ((S,X), (S′, X ′)) ∈ JeK} (15)

In (12) and (15) it is assumed that S′(a) and S′ \a respectively are well-defined.
The intuition behind (S,X) JeK (S′, X :: X ′) is quite operational. The stack S is to be

thought of as a stack of name replacements, and the sequence X as a context in which e
is interpreted. S′ is an updated stack, since creation and destruction of names cause it to
change and X ′ is a sequence which “interprets” e given the updated stack S′ and the context
X. Using a name a (see (12)) extends the current sequence with its stack value S(a); creating
a name 〈a (see (14)) adds a new entry (a 7→b) to the stack and extends the current sequence
with b; destroying a name a〉 (see (15)) removes it from the stack and extends the current
sequence with its dictionary value. A constant k is simply added to the sequence (see (13)).

The interpretation J-K is compositional, using pointwise relational composition - ◦ -.

I Lemma 15. For any sequence e ∈ RSeq and token m ∈ T: JemK = JeK ◦ JmK.

Proof. Immediate from definitions. J

I Theorem 16. For any e, e′ ∈ RSeq, Jee′K = JeK ◦ Je′K
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Proof sketch. By Lemma 15 we have that for any token m ∈ T we have JemK = JeK ◦ JmK.
Then we can use induction on the structure of e′. J

I Proposition 17. If e1, e2 ∈ RSeq and m ∈ T then JemK = Je′mK implies JeK = Je′K.

Proof. By Lem. 15 and simple calculations. J

I Theorem 18. If e1, e2∈RSeq then e1=αe2 iff Je1K=Je2K.

In view of soundness and completeness (Thm. 18) we can also use J-K to interpret dynamic
sequences rather than raw sequences, i.e. J-K : DSeq→ P((Stacks × (A + K)∗)2).

4 Equational axiomatisation

We give an equational axiomatisation of the interleaved dynamic binding of this paper
(Def. 19). The dynamic sequences of Def. 12 form a free dynamic binding monoid (Thm. 23),
and α-equivalence gets a purely equational characterisation as an equality subject to freshness-
arity side-conditions (Cor. 24).

The central idea is to use a monoid structure equipped with a compatible permutation
action, left and right ‘binders’ and a function with co-domain BA that encompasses the
interleaved binding laws—which we will call the freshness arity map, see Def. 19 below. We
will call such structures dynamic binding monoids.

Several approaches in the literature investigate notions of algebraic theories and equational
reasoning in a nominal setting [14, 7, 6, 21]. A common denominator is that equations are
presented with freshness side-conditions. For example, the η-rule in untyped λ-calculus can
be captured by a#x ` lam([a]app(x, a)) = x. An algebraic theory of dynamic binding monoids
must interpret interleaved scope, and so the freshness side-conditions familiar from e.g.
nominal unification, rewriting, and universal algebra must be suitably enriched to interpret
freshness-arity side-conditions. Thus, some equations in Def. 19 have side-conditions on the
freshness arity of variables specified using the binding monoid B—if the reader prefers, these
can also be seen as typing conditions.

I Definition 19. A dynamic binding monoid is a tuple (M, ::, 1, · ,‹,›, γ) where (M, ·) is a
nominal set, (M, ::, 1) is a monoid such that the binary operation is equivariant and 1 is an
element of M with empty support, ‹,› : A→M are equivariant functions, and γ : M → BA
is an equivariant monoid morphism, satisfying equations:

γa(‹a) =c, γa(a›) = d, a#x ` γa(x) = ε, and

b#m, γa(m)=fn ` ‹a :: m :: a› = ‹b :: (b a) ·m :: b›, n ∈ {0, 1}. (16)

Above, given a ∈ A we write γa : M → B for the map λm.γ(m)(a), and a› for › at a (instead
of ›a). We may omit the monoid multiplication :: when clear from the context.

I Lemma 20. The set DSeq can be equipped with a dynamic binding monoid structure.

A morphism between dynamic binding monoids (M, ::, 1, · ,‹,›, γ) and (M ′, ::, 1, · ,‹′,›′, γ′)
is an equivariant monoid morphism f : M → M ′ that preserves the left and right binders
and the freshness arity map, that is, f ◦ ‹ = ‹′, f ◦ › = ›′, respectively γ′ ◦ f = γ.

Thus dynamic binding monoids form a category denoted by DBMon. Categories of
nominal algebras described for example in [11, 21] have a forgetful functor to the category of
underlying nominal sets Nom, and admit a free construction. That is, the forgetful functor
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from a category of nominal algebras to Nom has a left adjoint. Such a free construction allows
for deriving structural induction principles in the presence of binding, see for example [24,
Cor. 8.22]. Because of the side-conditions involving the freshness arities, dynamic binding
monoids lie outside the scope of nominal universal algebra. If we consider as the underlying
structure of a binding monoid, not only the carrier nominal set, but also the freshness arity
map, we can still obtain a free construction and hence a structural induction principle, see
Thm. 22 below.

We introduce the category BNom of underlying nominal sets with a freshness arity map:

I Definition 21. Let BNom be the full subcategory of the slice category Nom/BA with
objects pairs (X, γ) where X is a nominal set and γ : X → BA is an equivariant function
such that a#x ` γa(x) = ε.

A morphism in BNom from (X, γ) to (X ′, γ′) is an equivariant function f : X → X ′ such
that γ′ ◦ f = γ.

Let the forgetful functor U : DBMon → BNom send a dynamic binding monoid (M, ::
, 1, · ,‹,›, γ) to (M,γ).

I Theorem 22. The forgetful functor U : DBMon→ BNom has a left adjoint F .

Proof. Consider (X, γ) ∈ BNom, the set X + A + A = X ∪ {〈a|a ∈ A} ∪ {a〉|a ∈ A}. We
define an equivariant map γ : X +A+A→ BA that acts as γ on X and such that γa(〈a) = c,
γa(a〉) = d, γa(〈b) = ε and γa(b〉) = ε for b 6= a. Then γ can be extended uniquely to a
monoid morphism γ∗ : (X + A + A)∗ → BA. Define a relation ≡ on (X + A + A)∗ as the
congruence generated by 〈awa〉 = 〈b(b a) ·wb〉, where a, b ∈ A, w ∈ (X + A + A)∗, b#w and
γ∗a(w) ∈ {ε, f}.

Construct F (X, γ) as a dynamic binding monoid on the carrier nominal set (X+A+A)∗/≡.
Left and right binders are defined in the obvious way and the freshness arity map function is
induced by γ∗. It is easy to check that whenever w ≡ w′ then γ∗(w) = γ∗(w′). We must
exhibit an isomorphism DBMon((X + A + A)∗/≡,M) ∼= BNom((X, γ), (M,γM )). Starting
with a morphism f : X →M in BNom, we can uniquely extend f + ‹+ › : X + A + A→M

to an equivariant monoid morphism f# : (X + A + A)∗ →M . We have that γ ◦ f# = γ∗. It
follows that for every w,w′ ∈ (X +A+A)∗ such that w ≡ w′ then f#(w) = f#(w′). Hence, f#
factors through a dynamic binding monoid morphism f : (X + A + A)∗/≡ →M . Conversely,
given g ∈ DBMon((X + A + A)∗/≡,M) we consider g[ ∈ BNom((X, γ), (M,γM )) given by
g[(x) = g([x]) where [x] is the ≡-equivalence class of x. J

I Theorem 23. DSeq is the free dynamic binding monoid on (A∪K, γA) where γA(a)(a) = f,
γA(a)(b) = ε for b 6= a and γA(k)(a) = ε.

Proof Sketch. We have that DSeq = RSeq/=α and RSeq = (A∪K+A+A)∗. Thus it suffices
that =α is equal to the relation ≡ described in the proof of Thm. 22. That ≡⊆=α follows
from the proof of Lem. 20. For the other inclusion, we prove by induction on the length of
e that whenever e =α e

′ then e ≡ e′. If the former equivalence was derived using the rules
(αε) or (αm) then the proof is immediate by induction. Assume that e =α e

′ was derived
using (αα). That is, e = e1〈ae2a〉, e′ = e′1〈be′2b〉 such that a3 e2, b3 e′2 and for any fresh c
we have e1〈c (c a) ·e2 =α e

′
1〈c (c b) ·e′2. By inductive hypothesis e1〈c (c a) ·e2 ≡ e′1〈c (c b) ·e′2

for fresh c; we must prove e1〈ae2a〉 ≡ e′1〈be′2b〉.
We consider the case when e1〈c (c a) ·e2 = h1〈dhd〉h2 and e′1〈c (c b) ·e′2 = h′1〈d′(d′ d) ·hd′〉h′2

such that h1 ≡ h′1, h2 ≡ h′2, d′#h and d3h. The most interesting case is when h = g1〈cg2.

CSL 2015



382 Nominal Techniques for Variables with Interleaving Scopes

We have that

e1〈ae2a〉 = h1〈dg1〈a(a c) ·g2d〉(a c)h2a〉
≡ h1〈dg1〈cg2d〉h2c〉
≡ h′1〈d′(d′ d) ·g1〈c(d′ d) ·g2d

′〉h′2c〉
≡ h′1〈d′(d′ d) ·g1〈b(b c)(d′ d) ·g2d

′〉(b c)h′2b〉
= e′1〈be′2b〉.

It might be the case that e1〈c (c a) ·e2 ≡ e′1〈c (c b) ·e′2 was obtained using the transitivity
of ≡, for example 〈d1〈d2〈cd2〉d1〉 ≡ 〈d′1〈d′2〈cd′2〉d′1〉 can only be derived using the transitivity
of ≡. For this case the proof that e1〈ae2a〉 ≡ e′1〈be′2b〉 requires several steps and transitivity,
but it reduces to the basic case resolved above. J

From the proof of Thm. 23 we obtain a new characterisation of =α from Def. 7:

I Corollary 24. The α-equivalence relation =α on RSeq is the least congruence closed under
the following rule (a3 e is from Definition 5):

b#e a3 e
〈aea〉 =α 〈b (b a) ·eb〉

(α).

Proof. From the proof of Thm. 23 it follows that α-equivalence on RSeq is equal to a relation
≡, defined as the least congruence closed under the rule (α). J

5 Examples

In the examples to follow we see our formalism at work. These examples are elementary and,
because of the way our framework is set up, the definitions are suitably simple.

Def. 12 defines a data type DSeq as the quotient of an inductive data type by an α-
equivalence relation. We can reason on it by taking representatives of equivalence classes
and working inductively on those representatives. This comes from how we define the set.

The reader familiar with nominal techniques might ask why we do not use nominal
abstract syntax [15], where α-equivalence is built into the inductive definition of the data type
at every inductive stage (using atoms-abstraction; a type constructor naturally present in
the nominal universe), so we can work inductively up-to-α with no need for representatives.

That is impossible for us here because by design we do not know a priori when we write
〈a in a dynamic sequence where (if anywhere) the matching a〉 will occur, and conversely,
if we find a〉 in a dynamic sequence then we do not a priori know where (if anywhere) a
matching 〈a will occur.

Instead we will use a technique from [10] which allows us to lift function definitions from
raw terms (in our case: raw sequences) to α-equivalence classes of raw terms (in our case:
dynamic sequences). The required condition for this method to work is that what we call
α-equivalence has the property of being Barendregt-abstractive; that every equivalence class
must contain a member with maximum support. In our case it means that in the set of
all raw sequences that represent the same dynamic sequence, there is one with a maximum
number of atoms. We may call a representative of such an orbit a Barendregt representative,
due to the intended similarity with the Barendregt variable naming convention [2]. Def. 25
will help us to calculate Barendregt representatives:

I Definition 25. Suppose e ∈ RSeq is a raw sequence and N ⊆ A is a finite set of atoms.
Define a function freshen(N, e) : RSeq→ RSeq inductively by:
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freshen(N, ε) = ε,
freshen(N, e1〈ae2a〉) = freshen(N, e1)〈c freshen(N, (c a) ·e2) c〉 for a fresh c ∈ A (so
c#e1, e2 and c 6∈ N) provided that a3 e2 holds, and
freshen(N, em) = freshen(N, e)m otherwise.

It is easy to check that freshen(N, e) is well-defined, freshen(N, e) =α e, it has maximal
support, and fresh atoms are distinct from N ; the reason for this last condition will become
clear in a moment.

It is convenient now to make a notational distinction between e ∈ RSeq and its equivalence
class [e]α ∈ DSeq. We have:

I Lemma 26. Given k, l ≥ 0, the map α(k, l) : (RSeqk × Al)→ (DSeqk × Al) defined by

(e1, . . . , ek, n1, . . . , nl) 7−→ ([e1]α, . . . , [ek]α, n1, . . . , nl)

is Barendregt-abstractive.

Proof. We must construct a Barendregt representative of ([e1]α, . . . , [ek]α, n1, . . . , nl). Write
N = {n1, . . . , nl}. Then we take e′1 = freshen(N, e1), and e′2 = freshen(N∪supp(e′1), e2),
and e′3 = freshen(N∪supp(e′1)∪supp(e′2), e3), and so on. It clear that (e′1, . . . , e′k, n1, . . . , nl)
has maximal support and that it is a Barendregt representative of (the inverse image of)
([e1]α, . . . , [ek]α, n1, . . . , nl). Write this representative freshen(e1, . . . , ek, n1, . . . , nl). J

I Definition 27 ([22]). Suppose X and Y are nominal sets and f : Y → X is a function.
Define bvf (y) = supp(y) \ supp(f(y)).

For instance bvα(1,0)(〈aa〉) = {a}.
Lem. 26 allows us to tailor [10, Thm. 27] to functions taking k dynamic sequences and l

atoms as input (all our examples below will have this form) as follows:

I Theorem 28. Suppose X is a nominal set and k, l ≥ 0 and F : RSeqk × Al → X, and
suppose for every e1, . . . , ek ∈ RSeq and n1, . . . , nl ∈ A that

bvα(k,l)(freshen(e1, . . . , ek, n1, . . . , nl))#F (freshen(e1, . . . , ek, n1, . . . , nl)).

Then the map NF : DSeqk × Al → X defined by

NF ([e1]α, . . . , [ek]α, n1, . . . , nl) = F (freshen(e1, . . . , ek, n1, . . . , nl))

is well-defined.

Proof. From Lem. 26 and [10, Thm. 27]. J

We specialise Thm. 28 to k=l=1 for illustration’s sake: NF ([e]α, n) is equal to F (e′, n) where
bound atoms in e′ are chosen distinct and not equal to n, and NF ([〈aa〉]α, a) = F (〈bb〉, a).
An equivalent phrasing of the condition in Thm. 28 is this:

supp(F (freshen(e1, . . . , ek, n1, . . . , nl))) ⊆ supp([e1]α, . . . , [ek]α, n1, . . . , nl).

When we use Thm. 28 we will tend to write NF just as F , thus, notationally identifying
the function-on-α-equivalence-classes with the function-on-representatives. We obfuscate the
distinction between e and [e]α and write our definitions ‘as if’ they were by induction on
dynamic sequences. Doing this is consistent with informal practice: for instance, we are used
to writing size(λa.a) and saying “size of λa.a” but actually meaning “pick a representative
and calculate the size of that representative”. Thus, the reader who cares about such things
can unpick this obfuscation back to the raw sequences and maximally distinct representatives;
the reader who does not care, should be able to read the text just as they would any ‘inductive’
definition on syntax quotiented by α-equivalence.
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5.1 Operations on dynamic sequences
I Example 29 (Counting name creation-destruction pairs). Define a function |-| : DSeq→ N
using Thm. 28 by:

|ε| = 0 a� e⇒ |ea〉| = |e|.
|e〈a| = |e| a3 e′ ⇒ |e〈ae′a〉| = |ee′|+ 1
|ek| = |e|

To apply Thm. 28 we must check that any maximally distinct choice of bound names in the
argument is fresh for the result. This is indeed the case (since a#n for any atom and any n∈Z).
|e| counts the number of pairs of matched creation-destructors in e. The side-conditions
ensure that the clauses pick out the correct creation for each destructor. We calculate |-| for
an example sequence; in this example we mark instances of the atom a with subscripts to
see how the answer is calculated (so a1 and a2 are the same atom; just different instances):

|〈a1a2〈a3a4a5〉a6〉| = |a2〈a3a4a5〉|+ 1 = |a2a4|+ 2 = 2.

In fact, the side-condition a3 e′ is superfluous, but it ensures that brackets are consumed in
well-matched pairs.

I Remark. The clauses above actually define an inductive function on raw sequences. Thm. 28
gives us freshness-based conditions to verify that this induces a function on dynamic sequences
(formally, N|e|).

Function |e| happens to make sense for all raw sequences whether bound names are
maximally distinct or not; for an example of where this not the case, see Ex. 31.

I Example 30 (Counting bound occurrences). Define a function ‖-‖ : DSeq → N using
Thm. 28 as follows:

‖ε‖ = 0 a#e′ ⇒ ‖e〈ae′a〉‖ = ‖ee′‖
‖ek‖ = ‖e‖ a#e′, a3 e′′ ⇒ ‖e〈ae′ae′′a〉‖ = ‖e〈ae′e′′a〉‖+ 1
‖e〈a‖ = ‖e‖ a� e⇒ ‖ea〉‖ = ‖e‖.

To apply Thm. 28 we must check that any maximally distinct choice of bound names in the
argument is fresh for the result. This is indeed the case.
‖ek‖ counts how many names occur ‘bound’ in a dynamic sequence, i.e. between a

matched pair of a creation and destructor. For example ‖a〈aaa〉a‖ = 1 because there is only
one occurrence of a between its creation and destruction. Two other occurrences of a are
outside the scope. For the same example sequence as above we have:

‖〈a1a2〈a3a4a5〉a6〉‖ = ‖〈a1〈a3a4a5〉a6〉‖+1 = ‖〈a3a4a5〉‖+1 = ‖〈a3a5〉‖+2 = ‖ε‖+2 = 2

The side-conditions ensure that brackets get ‘eaten’ in well-matched pairs, and are also used
to identify the first free occurrence of the bound name.

I Example 31 (Capture-avoiding substitution). We define -[-/-] : DSeq× A× A→ DSeq by:

ε[a/b] = ε c 6=a⇒ ec[a/b] = e[a/b]c
ek[a/b] = e[a/b]k c 6=a⇒ e〈c[a/b] = e[a/b]〈c
ea[a/b] = e[a/b]b a� e⇒ ea〉[a/b] = e[a/b]b〉
e〈a[a/b] = e[a/b]〈b Nc.b3 e′ ⇒ e〈ce′c〉[a/b] = e[a/b]〈c(e′[a/b])c〉
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Previous examples made sense on raw sequences even if bound names were not chosen
maximally distinct, but this function uses more of the power of Thm. 28, licensing us in
effect to rename bound atoms and so avoid accidental name-clashes: 〈aa〉[a/b] = 〈cc〉[a/b] =
〈cc〉 = 〈aa〉.

In fact, no rule above can be applied in 〈aa〉[a/b], but we do not care because we only
care about Barendregt representatives of triples (e, a, b) and such a representative will choose
the bound names in e distinct from a and b. If we wish to notice that we are technically
working with raw sequences and not dynamic sequences then we choose some junk value for
the non-maximally-distinct cases.

For the final example we first introduce some notation, a regular-expression-like language for
dynamic sequences.

I Definition 32. Define functions

+, · : P(DSeq)× P(DSeq)→ P(DSeq)
−∗ : P(DSeq)→ P(DSeq) by

e ∈ E + F iff e ∈ E or e ∈ F
e ∈ E · F iff ∃e1, e2 ∈ DSeq.e = e1e2 and e1 ∈ E, e2 ∈ F
e ∈ E∗ iff e = ε or e ∈ E · E∗.

I Example 33 (Capture-avoiding interleaving). Another phenomenon resembling variable
capture can occur when interleaving sequences. When we interleave a raw sequence such
as 〈aa〉 with itself, we obtain the set of sequences {〈aa〉〈aa〉, 〈a〈aa〉a〉}. If we represent
them diagrammatically, we have the interleaving of • •**tt producing the sequences
• •**tt • •**tt and • • •**tt •,,ss . What happened to the sequence
• • •,,rr •,,rr ? Because the names are equal the wrong creation is ‘captured’
by the wrong destructor in the course of interleaving. This can be avoided if we interleave
the sequences up to α-equivalence.

Define ‖ : DSeq× DSeq→ P(DSeq) using Thm. 28 and the notations from Def. 32:

ε ‖ e = e = e ‖ ε m#e′m′,m′#em⇒ em ‖ e′m′ = (em ‖ e′) ·m′ + (e ‖ e′m′) ·m.

To use Thm. 28 it suffices to check of each clause that maximally distinct choice of bound
names do not affect the result, and we can assume that bound names in e1 are chosen distinct
from those in e2, since this is a Barendregt representative of the input (e1, e2) to ‖. Therefore

〈aa〉 ‖ 〈aa〉 = {〈aa〉〈aa〉, 〈a〈aa〉a〉, 〈a〈ba〉b〉}

6 Application: Games with pointer sequences

In this section we sketch a potential application of dynamic sequences, a more formal and more
resource-sensitive representation of pointer sequences in game semantics. Space restrictions
prevent us from fully working this out but we hope it illustrates the potential of dynamic
sequences to rigorously representat semantic models that require interleaved name scopes.

One of the original presentations of game semantics, by Hyland and Ong, represented
plays as sequences of moves annotated with arrows between moves [18]. Formally, plays
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were formalised as sequences equipped with a function f from natural numbers to natural
numbers indicating that the move at index n points at move at index f(n). 2

Ghica and Gabbay [9] already gave a formulation of plays using raw sequences, which
turned out to streamline key definitions and simplified many proofs. This paper did not
consider α-equivalence and dynamic sequences, although some of our ideas are foreshadowed.

A pointer sequence is represented diagrammatically as an ordinary sequence decorated
with pointed arrows, for example

m0
ttss

m1
ss m2

ss
m3

tt
m4 m5

would be represented using HO integer indices as the pair

(m0m1m2m3m4m5, (1 7→0, 2 7→0, 3 7→2, 4 7→1, 5 7→3)).

The raw sequence representation is m0[a]∗ :: m1[b]a :: m2[c]a :: m3[d]c :: m4[e]b :: m5[f ]d.
Each move has a name, freshly introduced, indicated in square brackets, serving as an address,
and it uses a previously introduced name to indicate the point of the arrow.

Game semantics requires complex operations on pointer sequences, such as swapping moves
(while preserving pointers) to model reordering of actions in asynchronous concurrency [16]
or extracting sub-sequences to model restricted history sensitiveness in languages without
effects (innocence [18]). With integer indices, the pointer map needs to be re-indexed, an
awkward operation which can be formalised in principle but it never was in practice due
to sheer tedium. Using names, the same definitions are straightforward, as the names stay
attached to the moves, making a more precise formalisation possible.

Although the raw sequence formalisation is from a mathematical point of view effective,
from a conceptual and operational point of view is too profligate in its use of names. This
is best illustrated with a simple example. The standard interpretation of the sequencing
operator in HO games for Algol-like languages [1] is the set of even-length prefixes of this

pointer sequence: r uu ttss r1
tt d1 r2

tt d2 d . The operational intuition
is as follows, where P is ‘the program’ and E is ‘the environment’:
r E asks P to start sequencing the two commands;
r1 P in reply to r (see arrow) asks E to execute the first command;
d1 E in reply to r1 (see arrow) eventually reports the first command’s termination;
r2 P, justified by r (see arrow), asks E to execute the second command;
d2 E, in reply to r2, eventually reports the first command’s termination;
d P, in reply to r, reports that sequencing is completed.
The raw sequence representation of this play is r[a]∗ :: r1[b]a :: d1b :: r2[d]a :: d2d :: da,
which requires 3 names. Certain moves, called answers, are never pointed at, so they need
not introduce a name (they can, but it will simply be wasted). In certain game models
answers have the additional property that after they point to a move no other subsequent
move can ever point to it either—like name destructors, in fact! Using dynamic sequences
with explicit name creation and destruction and late binding, the same sequence can be
represented as: r∗〈a :: r1a〈a :: d1a〉 :: r2a〈a :: d2a〉 :: da〉. The raw sequence representative of
the dynamic sequence above uses just the name a. This is more aesthetically pleasing but it
is also helpful for two reasons related to representing game models for program verification

2 This section is best understood by readers familiar with Hyland-Ong-style game semantics, but it is
written so that it can be also accessible to the casual reader.
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or compilation: Dynamic sequences allow an improvement of the mathematical presentation
of game semantics as well, beyond the raw-sequence formalisation. For example, in [9]:

Def. 2.12, formalises the concept of “enabled sequence” e, in which any name of a move
must be introduced before being used. This definition becomes just a� e.
Def. 2.15(iii) “Call a play e strictly scoped when aa[b]e′ ∈ e implies a 6∈ supp(e′).” says
that once the “answer” move a uses a name a, that name should never be used again.
This condition can be removed now and plays be made strictly scoped by construction,
because a can be destructed by the answer move: aa〉〈b :: e′.

Note that, as detailed in Sec. 5, the various raw-sequence operations used in game semantics
can be lifted to dynamic sequences in an elegant way.

7 Related and future work

The main contribution of this paper is the syntactic notion of dynamic sequence that models
interleaved scope by splitting binding into two more primitive syntactic constructs: a name-
creation bracket 〈a, and a name-destruction bracket a〉. By interleaved we mean that
brackets need not be perfectly nested, as in 〈a〈baba〉b〉.

The idea of splitting local binding into two brackets has been seen before. The Adbmal
syntax from [17] splits λ-binding specifically in the λ-calculus into an opening bracket λa and
a closing bracket λa. However that paper is focused on scope-balanced terms and assumes
a jump semantics, that is, λa closes the scope of all intermediate λs occurring before the
matching λa in order to avoid interleaved scope. By contrast, in this paper a〉 lazily matches
only the single most recent unmatched 〈a. It would be interesting to develop a categorical
semantics for the λ-calculus and to explore further connections with dynamic sequences. It
would be certainly interesting to extend the ideas of dynamic scope to trees, as Adbmal is
set up to do, but this presents significant conceptual challenges, even before considering the
technical ones. For example, matching brackets in a non-linear structure seems to require a
notion of traversal for the structure. This remains to be investigated.

Dynamic scope also appears in natural languages, in semantic models for indefinite
articles [28]. An opening bracket corresponds to the creation of a new ‘file’ for storing
subsequent information and anchoring references. A closing bracket corresponds to the
deletion of the ‘file’ and the destruction of the context. That paper takes a radically different
approach based on a variation of monoidal categories and Grothendieck constructions.
Working out the precise connection with our setting is left as future work.

In Sec. 5 we introduced a number of concepts such as regular expressions over dynamic
sequences (Def. 32). Regular expressions and Kleene algebras with statically scoping nominal-
style name-binding and -generation have been studied [13, 23, 20] and it would be interesting
to investigate versions with dynamic scope. Languages with allocation have been extensively
studied, including in the nominal setting (e.g. [3, 25]), but those with deallocation not so
much as far as we know. This too could be future work. It would also be interesting to
extend nominal automata [26, 4, 19] to handle name destruction. We could then investigate
whether dynamic binding monoids play a similar role in understanding the algebraic theory
of languages accepted by such automata, just as orbit-finite nominal monoids do for nominal
languages, see [5].

Our original motivation was to apply dynamic sequences as a notation for the pointer
sequences of game semantics, to simplify the formalisation of definitions of operations on
pointer sequences and proofs of their properties. Raw nominal sequences are a step in
this direction [9]; dynamic sequences take this further by introducing appropriate rules
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for scope and α-equivalence. This may help to formalise parts of game semantics—think
“game semantics in Nominal Isabelle” analogously to the current extensive implementation
of nominal abstract syntax in Isabelle [27], or “rewriting on game semantics using nominal
rewriting” (or a suitable generalisation with freshness side-conditions generalised to freshness-
arity side-conditions) similar to [8]—and to tighten the connection between the game-semantic
and abstract-machine models.

Perhaps the most significant challenge, but also the most exciting opportunity, is the use
of dynamic sequences to model explicit resource management in C-like languages. Intuitively,
a call to malloc() introduces a new name for a memory location, which in a dynamic
trace corresponds to 〈a, whereas a call to free() removes that name, which in a dynamic
trace corresponds to a〉. Clearly the scopes of the memory locations thus managed can
be arbitrarily interleaved. However, the nominal aspects are only one aspect required to
understand malloc/free. The stateful effects, the possibility of dangling pointers and garbage
require significant amounts of further work. To conclude, we believe that interleaved name
scopes are an interesting phenomenon which appears in several contexts: game semantics
(our initial motivation), natural languages and low-level languages with explicit resource
management. However, beyond these actual and potential applications, dynamic sequences
seem to also be a novel nominal phenomenon, interesting in its own right.

Acknowledgements. We thank Bertram Wheen for a partial Agda formalisation of the
syntactic model.
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Abstract
Motivated by the search for a logic for polynomial time, we study rank logic (FPR) which
extends fixed-point logic with counting (FPC) by operators that determine the rank of matrices
over finite fields. While FPR can express most of the known queries that separate FPC from
Ptime, nearly nothing was known about the limitations of its expressive power.

In our first main result we show that the extensions of FPC by rank operators over different
prime fields are incomparable. This solves an open question posed by Dawar and Holm and also
implies that rank logic, in its original definition with a distinct rank operator for every field, fails
to capture polynomial time. In particular we show that the variant of rank logic FPR∗ with an
operator that uniformly expresses the matrix rank over finite fields is more expressive than FPR.

One important step in our proof is to consider solvability logic FPS which is the analogous
extension of FPC by quantifiers which express the solvability problem for linear equation systems
over finite fields. Solvability logic can easily be embedded into rank logic, but it is open whether
it is a strict fragment. In our second main result we give a partial answer to this question: in
the absence of counting, rank operators are strictly more expressive than solvability quantifiers.
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1 Introduction

“Le roi est mort, vive le roi!” has been the traditional proclamation, in France and other
countries, to announce not only the death of the monarch, but also the immediate installment
of his successor on the throne. The purpose of this paper is to kill the rank logic FPR, in
the form in which it has been proposed in [7], as a candidate for a logic for Ptime. The
logic FPR extends fixed-point logic by operators rkp (for every prime p) which compute the
rank of definable matrices over the prime field Fp with p elements. Although rank logic is
well-motivated, as a logic that strictly extends fixed-point logic with counting by the ability to
express important properties of linear algebra, most notably the solvability of linear equation
systems over finite fields, our results show that the choice of having a separate rank operator
for every prime p leads to a significant deficiency of the logic. Indeed, it follows from our
main theorem that even the uniform rank problem, of computing the rank of a given matrix
over an arbitrary prime, cannot be expressed in FPR and thus separates FPR from Ptime.
This also reveals that a more general variant of rank logic, which has already been proposed
in [14, 15, 17] and which is based on a rank operator that takes not only the matrix but also
the prime p as part of the input, is indeed strictly more powerful than FPR. Our result
thus installs this new rank logic, denoted FPR∗, as the rightful and distinctly more powerful
successor of FPR as a potential candidate for a logic for Ptime. A full version of this paper
can be found at [11].
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A logic for polynomial time. The question whether there is a logic that expresses precisely
the polynomial-time properties of finite structures is an important challenge in the field of
finite model theory [10, 12]. The logic of reference for this quest is fixed-point logic with
counting (FPC) which captures polynomial time on many interesting classes of structures
and which is strong enough to express many of the fundamental techniques which are used
in polynomial-time algorithms [5]. Although it has been known for more than twenty years
that FPC fails to capture Ptime in general, by the fundamental CFI-construction due to
Cai, Fürer, and Immerman [4], we still do not know many properties of finite structures that
provably separate FPC from Ptime. The two main sources of such problems are tractable
cases of the graph isomorphism problem and queries from the field of linear algebra. First
of all, the CFI-construction shows that FPC cannot define the isomorphism problem on
graphs with bounded degree and bounded colour class size whereas the isomorphism problem
is known to be tractable on all classes of graphs with bounded degree or bounded colour
class size. Secondly, Atserias, Bulatov and Dawar [2] proved that FPC cannot express the
solvability of linear equation systems over any finite Abelian group. It follows, that also
other problems from the field of linear algebra are not definable in FPC. Interestingly, also
the CFI-query can be formulated as linear equation system over F2 [7].

Rank logic. This latter observation motivated Dawar, Grohe, Holm and Laubner [7] to
introduce rank logic (FPR) which is the extension of FPC by operators for the rank of
definable matrices over prime fields Fp. To illustrate the idea of rank logic, let ϕ(x, y) be a
formula (of FPC, say) which defines a binary relation ϕA ⊆ A ×A in an input structure A.
We identify the relation ϕA with the associated adjacency matrix

MA
ϕ ∶ A ×A→ {0,1}, (a, b)↦

⎧⎪⎪⎨⎪⎪⎩

1, if (a, b) ∈ ϕA

0, if (a, b) ∉ ϕA.

In this sense, the formula ϕ defines in every structure A a matrix MA
ϕ with entries in

{0,1} ⊆ Fp. Now, rank logic FPR provides for every prime p ∈ P a rank operator rkp which
can be used to form a rank term [rkp ϕ(x, y)] whose value in an input structure A is the
matrix rank of Mϕ over Fp (we remark that rank logic also allows to express the rank of
matrices which are indexed by tuples of elements; the precise definition is given in Section 2).

It turns out that rank operators have quite surprising expressive power. For example,
they can define the transitive closure of symmetric relations, they can count the number of
paths in DAGs modulo p and they can express the solvability of linear equation systems
over finite fields (recall that a linear equation system M ⋅ x⃗ = b⃗ is solvable if, and only if,
rk(M) = rk(M ∣ b⃗)) [7]. Furthermore, rank operators can be used to define the isomorphism
problem on various classes of structures on which the Weisfeiler-Lehman method (and thus
fixed-point logic with counting) fails, e.g. classes of C(ai)-F(ürer)-I(mmerman) graphs [4, 7]
and multipedes [13, 14]. The common idea of these isomorphism procedures is to reduce the
isomorphism problem of structures to a suitable linear equation system over a finite field.
More generally, by a recent result (which is mainly concerned with another candidate of
a logic for polynomial time [1]), it follows that FPR captures polynomial time on certain
classes of structures of bounded colour class size. In particular, this holds for the class of all
structures of colour class size two (to which CFI-graphs and multipedes belong).

While these results clearly show the high potential of rank logic, almost nothing has been
known about its limitations. For instance, it has remained open whether rank logic suffices
to capture polynomial time, whether rank operators can simulate fixed-point inductions [7]
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and also whether rank logic can define closely related problems from linear algebra (such
as the solvability of linear equations over finite rings rather than fields [6]). One particular
intriguing question is whether rank operators over different prime fields can simulate each
other. In other words: is it possible to reduce the problem of determining the rank of a
matrix over Fp (within fixed-point logic with counting) to the problem of determining the
rank of a matrix over Fq (where p, q are distinct primes)? To attack this problem, Dawar
and Holm [8, 14] developed a powerful toolkit of so called partition games of which one
variant (so called matrix-equivalence games) precisely characterises the expressive power of
infinitary logic extended by rank quantifiers. By using these games, Holm [14] was able to
give a negative answer to the above question for the restricted case of rank operators of
dimension one.

In this paper we propose a different method, based on exploiting symmetries rather than
game theoretic arguments, to prove new lower bounds for logics with rank operators. In our
main result (Theorem 3) we prove that for every prime q there exists a class of structures
Kq on which FPC fails to capture polynomial time and on which rank operators over every
prime field Fp, p ≠ q can be simulated in FPC. On the other hand, rank operators over Fq
can be used to canonise structures in Kq which means that the extension of fixed-point logic
by rkq-operators captures polynomial time on Kq. From this result we can easily extract the
following answers to the open questions outlined above.
(a) Rank logic (as defined in [7]) fails to capture polynomial time (Theorem 2).
(b) The extensions of fixed-point logic by rank operators over different prime fields are

incomparable (Theorem 1), cf. [14, 8, 15].
We obtain these classes of structures Kq by generalising the well-known construction of

Cai, Fürer and Immerman [4]. It has been observed that their construction actually is a
clever way of encoding a linear equation system over F2 into an appropriate graph structure
(see e.g. [2, 7, 14, 15]). Intuitively, each gadget in the CFI-construction can be seen as an
equation (or, equivalently, as a circuit gate) which counts the number of transpositions of
adjacent edges modulo two, and the CFI-query is to decide whether the total number of
such transpositions is even or odd. Knowing this, it is very natural to ask whether this idea
can be generalised to encode linear equation systems over arbitrary finite fields or, more
generally, equation systems over arbitrary (Abelian) groups.

In [18], in order to obtain hardness results for the graph isomorphism problem, Torán
followed this idea and established a graph construction which simulates mod k-counting
gates for all k ≥ 2. Moreover, in order to separate the fragments of rank logic by operators
over different prime fields, Holm presented in [14] an even more general kind of construction
which allows the representation of equations over every Abelian group G. In fact, we obtain
the classes Kq essentially by using his construction for the special case where G = Fq.

Solvability logic. One important step in our proof is to consider solvability logic FPS which
is the extension of FPC by quantifiers which can express the solvability of linear equation
systems over finite fields (so called solvability quantifiers, see [6, 17]). Obviously the logic
FPS can easily be embedded into rank logic (as rank operators can be used to solve linear
equation systems), but it remains open whether the inclusion FPS ≤ FPR is strict. To prove
our main result outlined above we show that over certain classes of structures the logics FPS
and FPR have precisely the same expressive power. In a more general context this might
give some evidence that in the framework of fixed-point logic with counting rank operators
can be simulated by solvability quantifiers. On the other hand we show in Section 4 that the
extension of first-order logic (without counting) by solvability quantifiers is strictly weaker
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than the respective extension by rank operators. This last result thus separates solvability
quantifiers and rank operators in the absence of counting.

2 Logics with linear-algebraic operators

By S(τ) we denote the class of all finite, relational structures of signature τ . We assume
that the reader is familiar with first-order logic (FO) and inflationary fixed-point logic (FP).
For details see [9, 10]. We write P for the set of primes and denote the prime field with p
elements by Fp. We consider matrices and vectors over unordered index sets. Formally, if I
and J are non-empty sets, then an I × J-matrix M over Fp is a mapping M ∶ I × J → Fp and
an I-vector v⃗ over Fp is a mapping v⃗ ∶ I ↦ Fp.

A preorder ⪯ on A is a reflexive, transitive and total binary relation. It induces a linear
order on the classes of the associated equivalence relation x ∼ y ∶= (x ⪯ y ∧ y ⪯ x). We write
A = C0 ⪯ ⋯ ⪯ Cn−1 to denote the decomposition of A into ∼-classes Ci which are linearly
ordered by ⪯ as indicated. We denote by Aut(A) ≤ Sym(A) the automorphism group of a
structure A as a subgroup of the symmetric group acting on the set A. We assume that the
reader is familiar with the basic notions from (linear) algebra.

We recall the definitions of first-order logic with counting FOC and (inflationary) fixed-
point logic with counting FPC. Formulas of FOC and FPC are evaluated over the two-sorted
extension of an input structure by a copy of the arithmetic. Following [7] we let A# denote the
two-sorted extension of a τ -structure A = (A,R1, . . . ,Rk) by the arithmetic N = (N,+, ⋅, 0, 1),
i.e. the two-sorted structure A# = (A,R1, . . . ,Rk,N,+, ⋅,0,1) where the universe of the first
sort (also referred to as vertex sort) is A and the universe of the second sort (also referred to
as number sort or counting sort) is N.

As usual for the two-sorted setting we have typed first-order variables, where Latin letters
x, y, z, . . . stand for variables that range over vertices, and Greek letters ν,µ, . . . for variables
ranging over numbers. For second-order variables we allow mixed types, i.e. a relation symbol
R of type (k, `) ∈ N ×N stands for a relation R ⊆ Ak ×N`. Of course, already first-order logic
over such two-sorted extensions is undecidable. To obtain logics whose data complexity is in
polynomial time we restrict the quantification over the number sort by a numeric term t, i.e.
Qν ≤ t.ϕ where Q ∈ {∃,∀} and where t is a closed numeric term. Similarly, for fixed-point
logic FP we bound the numeric components of fixed-point variables R of type (k, `) in
all fixed-point definitions [ifpRx̄ν̄ ≤ t̄ . (ϕ(x̄, ν̄))] (x̄, ν̄) by a tuple of closed numeric terms
t̄ = (t1, . . . , t`) where each ti bounds the range of the variable νi in the tuple ν̄. For the logics
which we consider here the value of such numeric terms (and thus the range of all quantifiers
over the number sort) is polynomially bounded in the size of the input structure. Together
with the standard argument that inflationary fixed-points can be evaluated in polynomial
time and the fact that the matrix rank over any field can be determined in polynomial time
(for example by the method of Gaussian elimination), this ensures that all the logics which
we introduce in the following have polynomial-time data complexity.

Let x̄ν̄ be a mixed tuple of variables and let t̄ be a tuple of closed numeric terms which
bounds the range of the numeric variables in ν̄. For a formula ϕ we define a counting term
s = [#x̄ν̄ ≤ t̄ . ϕ] whose value sA ∈ N in a structure A corresponds to the number of tuples
(ā, n̄) ∈ Ak ×N` such that A ⊧ ϕ(ā, n̄) and ni ≤ tAi where k = ∣x̄∣ and ` = ∣ν̄∣ (to be precise,
we should write A# instead of A, but we usually omit the superscript for the sake of better
readability). We then define first-order logic with counting FOC as the extension of (the
above described two-sorted variant of) FO by counting terms. Similarly, by adding counting
terms to the logic FP we obtain (inflationary) fixed-point logic with counting FPC.
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Rank operators. Let Θ(x̄ν̄, ȳµ̄) be a numeric term and let t̄ and s̄ be tuples of closed
numeric terms which bound the range of the numeric variables in ν̄ and µ̄, respectively.
Given a structure A we define N≤t̄ ∶= {n̄ ∈ N∣ν̄∣ ∶ ni ≤ tAi }. The set N≤s̄ ⊂ N∣µ̄∣ is defined
analogously. The term Θ together with t̄ and s̄ defines in the structure A for I ∶= A∣x̄∣ ×N≤t̄
and J ∶= A∣ȳ∣×N≤s̄ the I ×J-matrix MΘ with values in N given as MΘ(ān̄, b̄m̄) ∶= ΘA(ān̄, b̄m̄).

The matrix rank operators compute the rank of the matrix MΘ over a prime field Fp for
p ∈ P. First, as in [7], we define for every prime p a matrix rank operator rkp which allows us
to construct a new numeric rank term [rkp (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) .Θ] whose value in the structure A

is the rank of the matrix (MΘ mod p) over Fp. Secondly, we propose a uniform rank operator
rk∗ which takes the prime p as an additional input. Formally, with this rank operator rk∗

we can construct a rank term [rk∗ (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄, π ≤ r) .Θ] where π is an additional free
numeric variable whose range is bounded by some closed numeric term r. Given a structure
A and an assignment π ↦ p for some prime p ≤ rA, the value of the rank term is the matrix
rank of (MΘ mod p) considered as a matrix over Fp (if π ↦ n for n ∉ P, then the value is
zero). The rank operator rk∗ is a unification for the the family of separate rank operators
(rkp)p∈P and has been introduced in [14, 15, 17].

We define, for every set of primes Ω ⊆ P, the extension FORΩ of FOC and the extension
FPRΩ of FPC by matrix rank operators rkp with p ∈ Ω. For convenience, we let FOR = FORP
and FPR = FPRP. Similarly, we denote by FPR∗ the extension of FPC by the uniform
rank operator rk∗. We remark, that rank operators can directly simulate counting terms. For
example we have that [#x .ϕ(x)] = [rkp (x, y) . (x = y ∧ϕ(x))]. Hence, we could equivalently
define the rank logics FORΩ,FPRΩ and FPR∗ as the extensions of (the two-sorted variants
of) FO and FP, respectively.

Solvability quantifiers. We next introduce extensions by quantifiers which directly express
the solvability problem for linear equation systems over finite fields. Besides the applications
in this paper, an additional advantage of such quantifiers is that they can be generalised
for linear equation systems over more general classes of domains, like rings, for which no
appropriate notion of matrix rank exists, cf. [6].

Let Ω ⊆ P be a set of primes. Then the solvability logic FPSΩ extends the syntax of FPC
for every p ∈ Ω by the following formula creation rule for solvability quantifiers slvp.

Let ϕ(x̄ν̄, ȳµ̄, z̄) ∈ FPSΩ and let t̄ and s̄ be tuples of closed numeric terms with ∣t̄ ∣ = ∣ν̄∣
and ∣s̄ ∣ = ∣µ̄∣. Then also ψ(z̄) = (slvp x̄ν̄ ≤ s̄, ȳµ̄ ≤ t̄)ϕ(x̄ν̄, ȳµ̄, z̄) is a formula of FPSΩ.

The semantics of the formula ψ(z̄) is defined similarly as for rank logic. More precisely,
let k = ∣x̄∣ and ` = ∣ȳ∣. To a pair (A, z̄ ↦ c̄) ∈ S(σ, z̄) we associate the I × J-matrix Mϕ over
{0,1} ⊆ Fp where I = Ak × N≤s̄ and J = A` × N≤t̄ and where for ā ∈ I and b̄ ∈ J we have
Mϕ(ā, b̄) = 1 if, and only if, A ⊧ ϕ(ā, b̄, c̄).

Let 1 be the I-identity vector over Fp, i.e. 1(ā) = 1 for all ā ∈ I. Then Mϕ and 1

determine the linear equation system Mϕ ⋅ x⃗ = 1 over Fp where x⃗ = (xj)j∈J is a J-vector of
variables xj which range over Fp. Finally, A ⊧ ψ(c̄) if, and only if, Mϕ ⋅ x⃗ = 1 is solvable.

At first glance, the solvability quantifier seem to pose serious restrictions on the syntactic
form of definable linear equation systems. Specifically, the coefficient matrix has to be a
matrix over {0, 1} and the vector of constants is fixed from outside. However, it is not hard
to show that general linear equation systems can be brought into this kind of normal form
by using quantifier-free first-order transformations (see Lemma 4.1 in [6]).

We write FPS to denote the logic FPSP and FPSp to denote the logic FPS{p} for p ∈ P.
Analogously to the definition of FPR∗ we also consider a solvability quantifier slv which
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gets the prime p as an additional input and which can uniformly simulate all solvability
quantifiers slvp for p ∈ P. Let FPS∗ denote the extension of FPC by this uniform version of
a solvability quantifier. The following inclusions follow from the definitions and the fact that
rank operators can be used to define the solvability problem for linear equation systems.

FORp ≤ FPRp ≤ FPR ≤ FPR∗ ≤ Ptime

≤ ≤ ≤ ≤

FOSp ≤ FPSp ≤ FPS ≤ FPS∗

≤ ≤

FO ≤ FPC

Finally we remark that, analogously to [7], we defined rank operators and solvability
quantifiers for prime fields only. Of course, the definition can easily be generalised to cover
all finite fields, i.e. also finite fields of prime power order. However, for the case of solvability
quantifiers, Holm was able to prove in [14] that this does not alter the expressive power of
the resulting logics since solvability quantifiers over a finite field Fq of prime power order
q = pk can be simulated by solvability quantifiers over Fp. In fact, a similar reduction can
be achieved for rank operators which justifies to focus on rank operators and solvability
quantifiers over prime fields.

3 Separation results over different classes of fields

In this section we separate the extensions FPSΩ of fixed-point logic with counting by
solvability quantifier for different sets of primes. Moreover, we transfer these results to the
extensions FPRΩ by rank operators.

I Theorem 1. Let Ω ≠ Ω′ be two sets of primes. Then FPSΩ ≠ FPSΩ′ and FPRΩ ≠ FPRΩ′ .

I Theorem 2. Rank logic fails to capture polynomial time. We have FPR < FPR∗ ≤ Ptime.

In fact, both theorems are simple consequences of our following main result.

I Theorem 3. For every prime q there is a class of structures Kq such that
(a) FPSΩ = FPC on Kq for every set of primes Ω with q ∉ Ω,
(b) FPRΩ = FPSΩ on Kq for all sets of primes Ω,
(c) FPC < Ptime on Kq, and
(d) FPSq = Ptime on Kq.

Proof of Theorem 1. Without loss of generality let q ∈ Ω ∖Ω′. Then by Theorem 3 there
exists a class Kq on which FPSΩ = FPRΩ = Ptime and FPSΩ′ = FPRΩ′ = FPC < Ptime.

J

Proof of Theorem 2. Assume that FPR = Ptime. Then, in particular, FPR = FPR∗

and there exists a formula ϕ ∈ FPR which can uniformly determine the rank of matrices
over prime fields, i.e. which can express the uniform rank operator rk∗. As a matter of
fact we have ϕ ∈ FPRΩ for some finite set of primes Ω. By using ϕ we can uniformly
express the matrix rank over each prime field Fp in FPRΩ. In other words, we have
FPS ≤ FPR ≤ FPR∗ ≤ FPRΩ.

Now let q ∈ P ∖Ω. By Theorem 3 there exists a class of structures Kq on which FPRΩ =
FPC < Ptime. However, the class Kq can be chosen such that Ptime = FPSq ≤ FPRΩ on
Kq by Theorem 3 (d) and we obtain the desired contradiction. J
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The proof of Theorem 2 reveals a deficiency of the logic FPR: each formula can only
access rkp-operators for a finite set Ω of distinct primes p. In fact, the query which we
constructed to separate FPR from Ptime can be defined in FPR∗. Altogether this suggests
to generalise the notion of rank operators and to specify the prime p as a part of the input,
as we did for FPR∗, and as it was proposed in [14, 15, 17].

The proof of Theorem 3 is structured as follows. We fix a prime q and identify, in a
first step, sufficient criteria (i)–(iv) of classes of structures K = Kq which guarantee that the
relations claimed in (a), (b), (c) and (d) hold. In a second step, we construct a class of
structures K and verify, in a third step, that K satisfies these sufficient criteria.

Establishing sufficient criteria. We start to find sufficient criteria for part (a) of The-
orem 3.
(i) The automorphism groups ∆A ∶= Aut(A) of structures A ∈ K are Abelian q-groups.
(ii) The orbits of `-tuples in structures A ∈ K can be ordered in FPC:

For all ` ≥ 1 there exists ϕ⪯(x1, . . . , x`, y1, . . . , y`) ∈ FPC such that for all A ∈ K, the
formula ϕ⪯(x̄, ȳ) defines in A a linear preorder ⪯ on A` with the property that two
`-tuples ā, b̄ ∈ A` are ⪯-equivalent if, and only if, they are in the same ∆A-orbit.

I Lemma 4. If K satisfies (i) and (ii), then FPSΩ = FPC on K for all Ω ⊆ P ∖ {q}.

The only interesting step of an inductive translation is the case of a solvability formula

ψ(z̄) = (slvp x̄ν̄ ≤ s̄, ȳµ̄ ≤ t̄)ϕ(x̄ν̄, ȳµ̄, z̄).

Let ∣x̄∣ = ∣ȳ∣ = `, ∣ν̄∣ = ∣µ̄∣ = λ and ∣z̄∣ = k. To explain our main argument, we fix a structure A ∈ K
and a k-tuple of parameters c̄ ∈ (A ⊎N)k which is compatible with the type of z̄. According
to the semantics of the slvp-quantifier, the formula ϕ defines in (A, z̄ ↦ c̄) an I × J-matrix
M =MA

c̄ over {0, 1} ⊆ Fp where I = IA ∶= A` ×N≤s̄ ⊆ A` ×Nλ and J = JA ∶= A` ×N≤t̄ ⊆ A` ×Nλ
that is defined for ā ∈ I and b̄ ∈ J as M(ā, b̄) = 1 if, and only if, A ⊧ ϕ(ā, b̄, c̄). Moreover, we
have A ⊧ ψ(c̄) if, and only if, the linear system M ⋅ x⃗ = 1 over Fp is solvable. The key idea of
our proof is to use the symmetries of the structure A to translate the linear equation system
M ⋅ x⃗ = 1 into an equivalent linear system for which the solvability problem is FPC-definable.

We set Γ = ΓA
c̄ ∶= Aut(A, c̄) ≤ ∆ = ∆A = Aut(A). The group Γ acts on I and J in the

natural way. We identify each automorphism π ∈ Γ with the corresponding I × I-permutation
matrix ΠI and the corresponding J × J-permutation matrix ΠJ in the usual way. More
precisely, to π ∈ Γ we associate the I × I-permutation matrix ΠI with entries {0,1} which
is defined as ΠI(ā, b̄) = 1 if, and only if, π(ā) = b̄. Then Γ acts on the set of I × J-matrices
by left multiplication with I × I-permutation matrices. Analogously, we let ΠJ denote the
J × J-permutation matrix with entries {0, 1} that is defined in the same way as ΠI . Then Γ
also acts on the set of I ×J-matrices by right multiplication with J ×J-permutation matrices.
Specifically, for π ∈ Γ we have (ΠI ⋅M)(ā, b̄) =M(π(ā), b̄) and (M ⋅Π−1

J )(ā, b̄) =M(ā, π(b̄)).
Since M is defined by a formula in the structure (A, c̄) and since Γ = Aut(A, c̄) we conclude
that (ΠI ⋅M ⋅Π−1

J )(ā, b̄) =M(π(ā), π(b̄)) =M(ā, b̄) and thus

ΠI ⋅M ⋅Π−1
J =M ⇔ ΠI ⋅M =M ⋅ΠJ .

This identity leads to the following important observation.

I Lemma 5. If M ⋅ x⃗ = 1 is solvable, then the system has a Γ-symmetric solution, i.e. a
solution b⃗ ∈ FJp such that ΠJ ⋅ b⃗ = b⃗ for all π ∈ Γ.
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Proof. If M ⋅ b⃗ = 1, then also ΠI ⋅ (M ⋅ b⃗) = 1 and thus M ⋅ (ΠJ ⋅ b⃗) = 1 for all π ∈ Γ. This
shows that Γ acts on the solution space of the linear equation system. Since K satisfies
property (i) we know that Γ is a q-group for a prime q ≠ p. Thus each Γ-orbit has size qr for
some r ≥ 0. On the other hand, the number of solutions is a power of p. We conclude that
there is at least one Γ-orbit which contains a single solution only. J

Let b⃗ ∈ FJp be a Γ-symmetric solution. Then the entries of the solution b⃗ on Γ-orbits are
constant: for j ∈ J and π ∈ Γ we have b⃗(π(j)) = (ΠJ ⋅ b⃗)(j) = b⃗(j). We use property (ii) to
show that there is an FPC-formula ϕ⪯(x̄, ȳ) which defines for all A ∈ K and c̄ ∈ (A ⊎N)k as
above a linear preorder ⪯ on A` which identifies Γ-orbits. Note that, in general, Γ = Aut(A, c̄)
is a strict subgroup of ∆ = Aut(A). Thus we can not directly apply (ii). However, the
Γ-orbits on A` correspond to the ∆-orbits on Ak

′+` where the first k′ entries are fixed to the
elements in {c1, . . . , ck} ∩A.

The linear preorder ⪯ naturally extends to a preorder on the sets I and J with the same
properties. Let us write J = J0 ⪯ J1 ⪯ ⋯ ⪯ Jv−1 to denote the decomposition of J into the
Γ-orbits Jj which are ordered by ⪯ as indicated. Moreover, for j ∈ [v] we let ej denote the
identity vector on the j-th orbit Jj , i.e. the J-vector which defined for i ∈ J as ej(i) = 1 if
i ∈ Jj and as ej(i) = 0 otherwise. Let E denote the J × [v]-matrix whose j-th column is the
vector ej . It follows that a Γ-symmetric solution b⃗ can be written as E ⋅ b⃗∗ = b⃗ for a unique
[v]-vector b⃗∗. Together with Lemma 5 this shows the following.

I Lemma 6. The system M ⋅ x⃗ = 1 is solvable if, and only if, (M ⋅E) ⋅ x⃗∗ = 1 is solvable.

Finally, we observe that the coefficient matrix M∗ ∶= (M ⋅ E) of the equivalent linear
equation system M∗ ⋅ x⃗∗ = 1 can easily be obtained in FPC and that it is a matrix over the
ordered set of column indices [v]. It is a simple observation that such linear equation systems
can be solved in FPC: the linear order on the column set induces (together with some fixed
order on Fp) a lexicographical ordering on the set of rows which is, up to duplicates of rows,
a linear order on this set. Thus, in general, if we have a linear order on one of the index sets
of the coefficient matrix this suffices to obtain an equivalent matrix where both index sets
are ordered, see also [17]. This finishes our proof of Lemma 4.

We proceed to show that the conditions (i) and (ii) also guarantee that rank operators
can be reduced to solvability operators over the class

I Lemma 7. If K satisfies (i) and (ii), then FPRΩ = FPSΩ on K for all sets of primes Ω.

Proof. The only interesting case of an inductive translation is the case of rank terms

Υ(z̄) = [rkp (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) .Θ(x̄ν̄, ȳµ̄, z̄)].

Let ∣x̄∣ = ∣ȳ∣ = `, ∣ν̄∣ = ∣µ̄∣ = λ and ∣z̄∣ = k. Let A ∈ K and let c̄ be a k-tuple of parameters
c̄ ∈ (A ⊎ N)k which is compatible with z̄. The term Θ defines in (A, z̄ ↦ c̄) for IA =
I ∶= A∣x̄∣ × N≤t̄ and JA = J ∶= A∣ȳ∣ × N≤s̄ the I × J-matrix M over Fp which is defined as
M(ān̄, b̄m̄) ∶= ΘA(ān̄, b̄m̄, c̄) mod p.

We proceed to show that we can obtain the matrix rank of M , that is the value ΥA(c̄) ∈ N,
by a recursive application of solvability queries. We first make the following key observation.

Claim: There are FPC-formulas ϕ⪯(ȳ1µ̄1, ȳ2µ̄2), ψ≤(v̄, ȳ1µ̄1, ȳ2µ̄2) such that for every A ∈
K
(a) ϕA

⪯ is a linear preorder ⪯ on JA, and such that
(b) for every ⪯-class [j] ⊆ JA there exists d̄ ∈ A∣v̄∣ such that ψA

≤ (d̄) is a linear order on [j].
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Proof of claim: We use property (ii) to choose an FPC-formula ϕ⪯ which defines in all A ∈ K
a linear preorder ⪯ on JA such that ⪯-classes correspond to ∆A-orbits Analogously, we choose
an FPC-formula ϑ⪯ which defines in every structure A ∈ K a linear preorder ⪯∗ on JA × JA

and that induces a linear order on the ∆A-orbits.
To obtain ψ≤, we let [j] ⊆ JA be a ⪯-class for some A ∈ K. By property (i) we know that

∆A is an Abelian group. Thus, each automorphism π ∈∆A which fixes one element in the
∆A-orbit [j] point-wise fixes every element in the class [j]. We conclude that the restriction
of ⪯∗ to elements in {j′} × [j] corresponds to a linear order on [j] for each j′ ∈ [j]. ⊣

We are prepared to describe the recursive procedure which allows us to determine the rank
of the matrix M in FPSΩ. We fix formulas ϕ⪯ and ψ≤ with the properties stated in the claim
above. Moreover, let ⪯ denote the linear preorder defined by ϕ⪯ on J = J0 ⪯ J1 ⪯ ⋯ ⪯ Jr−1.
We use the formula ψ≤ to obtain on each class Ji a family of definable linear orderings (which
depend on the choice of different parameters). For j ∈ J we denote by m⃗j ∈ FIp the j-th
column of the matrix M . Then the rank of M coincides with the dimension of the Fp-vector
space which is generated by the set of columns {m⃗j ∶ j ∈ J} of the matrix M .

Now, for i ∈ [r] we recursively obtain the dimension di ∈ N of the Fp-vector space
generated by Vi ∶= {m⃗j ∶ j ∈ J0 ∪ J1 ∪ ⋯ ∪ Ji} as follows. First, we use ψ≤ to fix a linear
order on Ji (the following steps are independent of the specific linear order and can thus
be performed in parallel for each such order). Using this linear order on Ji we can identify
in FPSΩ a maximal set W ⊆ {m⃗j ∶ j ∈ Ji} of linearly independent columns such that
⟨Vi−1⟩∩ ⟨W ⟩ = {0⃗}. Indeed, if ⟨Vi−1⟩∩ ⟨W ⟩ = {0⃗}, then for m⃗ ∈ {m⃗j ∶ j ∈ Ji}, m⃗ ∉ ⟨W ⟩ we have
that ⟨Vi−1⟩ ∩ ⟨W ⊎ {m⃗}⟩ = {0⃗} if, and only if, m⃗ ∉ ⟨Vi−1 ∪W ⟩. Observe that the conditions
m⃗ ∉ ⟨W ⟩ and m⃗ ∉ ⟨Vi−1 ∪W ⟩ correspond to the solvability of a linear equation system over Fp.
We claim that di = di−1 + ∣W ∣. Indeed, by the maximality of W and since ⟨Vi−1⟩ ∩ ⟨W ⟩ = {0⃗}
it follows that ⟨Vi⟩ = ⟨Vi−1⟩⊕ ⟨W ⟩. Moreover, W consists of linearly independent columns
and is a basis for ⟨W ⟩.

Since the above described recursion can easily be implemented in FPSΩ, we conclude that
the rank dr−1 of the matrix M can be determined in FPSΩ which completes our proof. J

We now focus on the parts (c) and (d) of Theorem 3.
(iii) There exists an FPSq-definable canonisation procedure on K.
(iv) For all k ≥ 1 there is a pair A,B ∈ K such that A /≅ B and A ≡Ck B (that is, A and B

cannot be distinguished in the k-variable fragment of infinitary counting logic Ck
∞ω).

I Lemma 8. If K satisfies (iii) and (iv), then FPC < FPSq = Ptime on K.

Constructing an appropriate class of structures. We proceed to construct a class of
structures K which satisfies properties (i)–(iv). Our approach is a generalisation of the
well-known construction of Cai, Fürer and Immerman [4] for fields Fq, q ∈ P. The difference
to the original construction (which arises as a special case for q = 2) is that we replace
every edge e from the original graph G by q copies e0, e1, . . . , eq−1 which we arrange on a
directed cycle of length q. For q = 2 this is equivalent to just taking two non-connected
atoms e0, e1. While the symmetries of the original CFI-graphs arise by twisting pairs of
corresponding edges e0, e1, the symmetries of generalised CFI-structures arise by shifting the
cycles on e0, e1, . . . , eq−1 by some value x ∈ Fq. In both cases, the resulting twists and cyclic
shifts can be propagated along paths in G. We remark that the same kind of generalisations
have been studied, for example, in [14, 18]. Due to space limitations, we have to leave out
the following proofs which are mostly straightforward adaptations of the arguments for the
original construction.
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We start from an (undirected), connected and ordered graph G = (V,≤,E). Let C, I and
R be binary relation symbols. We set τ ∶= {⪯,C, I,R}. We define for every prime q and
every sequence of gadget values d⃗ = (dv)v∈V ∈ [q]V a τ -structure CFIq(G, d⃗) which we call
a CFI-structure over G. For the following construction we agree that arithmetic is modulo
q so that we can drop the operator “mod q” in statements of the form x = y mod q and
x + y mod q for the sake of better readability. For what follows, let E(v) ⊆ E denote the
set of directed edges starting in v. Since G is an undirected graph, this means that for each
undirected edge {v,w} of G we have (v,w) ∈ E(v) and (w, v) ∈ E(w).

The universe of CFIq(G, d⃗) consists of edge nodes and equation nodes.
The set of edge nodes Ê is defined as Ê ∶= ⋃e∈E ê where for every directed edge e ∈ E
we let the edge class ê = {e0, e1, . . . , eq−1} consist of q distinct copys of e. In particular,
for every edge e = (v,w) ∈ E and its reversed edge e−1 ∶= f = (w, v) ∈ E the sets ê and
f̂ are disjoint. We say that two such edges (or edge classes) are related.
The set of equation nodes V̂ is defined as V̂ ∶= ⋃v∈V v̂d⃗(v) where for every vertex v ∈ V
and d ∈ [q] the equation class v̂d consist of all functions ρ ∶ E(v) → [q] which satisfy
∑ρ ∶= ∑e∈E(v) ρ(e) = d.

The linear preorder ⪯ orders the edge classes according to the linear order induced by
≤ on E. More precisely, we let ê ⪯ f̂ whenever e ≤ f . Similarly, ⪯ orders the equation
classes according to the order of ≤ on V , i.e. v̂ ⪯ ŵ if v ≤ w. Moreover, we let ê ⪯ v̂ for
edge classes ê and equation classes v̂.
The cycle relation C contains a directed cycle of length q on each of the edge classes ê
for e ∈ E, i.e. C = {(ei, ei+1) ∶ i ∈ [q], e ∈ E}.
The inverse relation I connects two related edge classes by pairing additive inverses.
More precisely, let e = (v,w) ∈ E and f = (w, v) ∈ E. Then I contains all edges (ex, fy)
with x + y = 0 for x, y ∈ [q].
The gadget relation R is defined as R ∶= ⋃v∈V Rd⃗(v)v where for v ∈ V and d ∈ [q] the
relation Rdv is given as

Rdv ∶= {(ρ, eρ(e)) ∶ ρ ∈ v̂d, e ∈ E(v)}.

At first glance our construction associates to every graph G (with the above properties)
and to each sequence of gadget values d⃗ ∈ [q]V a different structure CFIq(G, d⃗). However, for
each graph G with the above properties there really are, up to isomorphism, only q different
CFI-structures CFIq(G, d⃗).

I Lemma 9. Let d⃗, d⃗∗ ∈ ([q])V . Then CFIq(G, d⃗) ≅ CFIq(G, d⃗∗) if, and only if, ∑ d⃗ = ∑ d⃗∗.

A connected graph G is k-connected, for k ≥ 0, if G contains more than k vertices and if G
stays connected when we remove any set of at most k vertices. The connectivity con(G) of
G is the maximal k ≥ 0 such that G is k-connected. Moreover, the connectivity con(G) of a
class G of connected graphs is the function con(G) ∶ N→ N defined as

n↦ min
G∈G,∣G∣=n

con(G).

We are prepared to define the class K: let G be a class of undirected, ordered, connected
graphs such that con(G) ∈ ω(1) (for example complete, ordered graphs). Then we set

K = Kq ∶= {CFIq(G, d⃗) ∶ G = (V,≤,E) ∈ G, d⃗ ∈ [q]V }.
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Verifying the required properties. First of all, one can see that the cycle relation C and
the preorder ⪯ enforce that the automorphism group of a CFI-structure CFIq(G, d⃗) over
G = (V,≤,E) ∈ G is a subgroup of FEq . Thus property (i) holds for K.

To show that K satisfies property (ii), we fix the length ` ≥ 1 of tuples on which we want
to define a linear preorder which identifies ∆A-orbits. By the definition of K it suffices to
consider CFI-structures A = CFIq(G, d⃗) over graphs G = (V,≤,E) ∈ G with con(G) > (` + 2)
since almost all structures in K satisfy this condition. Then we can show that the equivalence
classes of `-tuples in the infinitary logic with counting and (` + 2) variables C`+2

∞ω coincides
with the ∆A-orbits of `-tuples for structures A ∈ K.

I Lemma 10. Let λ ≤ ` and let ā, b̄ ∈ Aλ. Then (A, ā) ≡C`+2 (A, b̄) if, and only if, there exists
π ∈ Aut(A) such that π(ā) = b̄.

It is well-known that classes of C`+2
∞ω-equivalent tuples can be ordered in FPC, see e.g.

[16]. Hence, it follows from our previous lemma that the class K satisfies property (ii).

I Lemma 11. The class K satisfies the properties (i) and (ii).

We turn our attention to property (iv). In the next lemma we state that for each k ≥ 1
and each sufficiently connected graph G ∈ G, the logic Ck

∞ω cannot distinguish between any
pair of CFI-structures over G (although there exist non-isomorphic CFI-structures over G).

I Lemma 12. Let k ≥ 1 and let G = (V,≤,E) ∈ G such that con(G) > k. Then for all
d⃗, d⃗∗ ∈ [q]V it holds that CFIq(G, d⃗) ≡Ck CFIq(G, d⃗∗). Thus, K satisfies property (iv).

To complete our proof we establish an FPSq-definable canonisation procedure on K. The
idea is as follows: given a CFI-structure A = CFIq(G, d⃗) and a value z ∈ [q] we construct a
linear equation system over Fq which is solvable if, and only if, ∑ d⃗ = z. This linear equation
system is FO-definable in A which shows that FPSq can determine the isomorphism class
of a CFI-structure over G. Since the graph G is ordered it is easy to construct an ordered
representative from each isomorphism class of CFI-structures over G.

More specifically, let G = (V,≤,E) ∈ G, let A = CFIq(G, d⃗) ∈ K and let z ∈ Fq. For our
linear equation system we identify each element ei ∈ Ê and each vertex v ∈ V with a variable
over Fq, i.e. we let V ∶= Ê ⊎ V be the set of variables. The equations are given as follows:

ei+1 = ei + 1 for all ei ∈ Ê (E 1)
ei = −f−i for related edges e, f ∈ E (E 2)
v = ∑

e∈E(v)
eρ(e) for all v ∈ V, ρ ∈ v̂ (E 3)

z = ∑
v∈V

v. (E 4)

It is easy to see that this system is FO-definable in A. First of all, the equation (E 4)
can be defined as a sum over the ordered set V . Moreover, we can express the equations
of type (E 1) and (E 2) by using the cycle and inverse relation, respectively. Finally, the
equations of type (E 3) can be expressed by using the gadget relation R.

I Lemma 13. The above defined system is solvable if, and only if, ∑ d⃗ = z.

I Lemma 14. The class K satisfies the property (iii).
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4 Solvability quantifiers vs. rank operators

In the previous section we obtained separation results for the extensions of FPC by solvability
quantifiers (and rank operators) over different sets of primes. One important step of our proof
was to construct a class of structures on which the expressive power of the logics FPRΩ and
FPSΩ coincides. Moreover, as we already mentioned in Section 2, most of the queries which
are known to separate fixed-point logic with counting and rank logic can also be expressed
in FPS. This naturally leads to the question whether, in general, rank operators can be
simulated by solvability quantifiers in fixed-point logic with counting.

In this section we solve a simplified version of this question and show that in the absence
of counting, rank operators are strictly more expressive than solvability quantifiers. The
reader should recall that rank operators can easily simulate counting terms but this does not
hold for solvability quantifiers.

To state our main result formally, we define for every prime p the extension FOSp of
first-order logic (without counting) by solvability quantifiers over Fp. The crucial difference
to the extension FORp of first-order logic by rank operators rkp is that FOSp is a one-sorted
logic which does not have access to a counting sort.

I Definition 15. For every prime p, the logic FOSp results by extending the syntax of FO
by the following formula creation rule:

If ϕ(x̄, ȳ, z̄) ∈ FOSp, then ψ(z̄) = (slvp x̄, ȳ)ϕ(x̄, ȳ, z̄) is an FOSp-formula.
The semantics of ψ(z̄) are defined as for FPSp.

We briefly summarise what is known about FOSp (see also [6, 17]). It follows from [7, 14]
that for every prime p, the logic FOSp subsumes the logic STC and that FOSp /≤ FPC.
Moreover, on ordered structures, the expressive power of FOSp can be characterised in terms
of a natural complexity class: in [3], Buntrock et. al. introduced the logarithmic space modulo
counting classes MODkL for integers k ≥ 2. Informally, a problem is in MODkL if there
exists a NL-Turing machine which verifies its inputs by producing a number of accepting
paths which is not congruent 0 mod k. It turns out that, at least for primes p, the class
MODpL is closed under many natural operations, including all Boolean operations and even
logspace Turing reductions [3]. Furthermore, many problems from linear algebra over Fp are
complete for MODpL. In particular this is true for the solvability problem of linear equation
systems over Fp and for computing the matrix rank over Fp [3].

Building on these insights, Dawar et. al. were able to show in [7] that for all p ∈ P, the
logic FORp captures MODpL on the class of ordered structures. It has been noted in [17]
that their proof shows the same correspondence for FOSp.

I Proposition 16 ([7],[17]). On ordered structures we have FOSp = FORp =MODpL.

Despite this nice characterisation over ordered structures, the situation over general
structures remained unclear. It easily follows that FOSp ≤ FORp ≤ FPRp, but, so far, it
has been open whether one, or both, of these inclusions are strict. In this section we show:

I Theorem 17. For all primes p we have FOSp < FORp over the class of sets S(∅).

In some sense, this result is not very surprising. While FOSp has to express S(∅)-
properties over unordered sets, which have the maximal amount of symmetries, FORp can
use the size of a set as a complete invariant to express properties of S(∅)-structures over the
ordered numerical sort. However, it is not obvious how one can turn this intuition into a
formal argument. In fact, FOSp has non-trivial expressive power over sets. For instance,
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FOSp can determine the size of sets modulo pk for every fixed k, while fixed-point logic FP,
for example, collapses to first-order logic over sets.

To prove Theorem 17 we recall the following normal form for FOSp which has been
established in Corollary 4.8 of [6].

I Theorem 18. Every formula ϑ(z̄) ∈ FOSp is equivalent to an FOSp-formula of the form
(slvp x̄1, x̄2)α(x̄1, x̄2, z̄) where α(x̄1, x̄2, z̄) is quantifier-free.

Similar to our approach in Section 3, the main idea for separating FOSp and FORp

is to exploit the symmetries of definable linear equation systems. More precisely, our
plan is to considerably reduce the size of a given linear equation system along an FORp-
definable transformation. For the remainder of this section, let us fix a quantifier-free formula
α(x1, . . . , xk, y1, . . . , y`) ∈ FO(∅) and a prime p. According to the semantics of FOSp, the
formula α defines in an input structure A = ([n]) of size n the [n]k × [n]`-coefficient matrix
Mn which is given for ā ∈ [n]k, b̄ ∈ [n]` as

Mn(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, if A ⊧ α(ā, b̄)
0, otherwise.

Then A ⊧ (slvp x̄1, x̄2)α(x̄1, x̄2) if the linear equation system Mn ⋅ x⃗ = 1 over Fp is solvable.
For convenience we set In = [n]k and Jn = [n]`.

Let Γ = Γn = Sym([n]). Then the group Γ acts on In and Jn and we identify the action
of π ∈ Γ with the multiplication by the associated In × In-permutation matrix ΠI and the
Jn × Jn-permutation matrix ΠJ , respectively, as in Section 3. Hence, for π ∈ Γ we have

ΠI ⋅Mn ⋅Π−1
J =Mn ⇔ ΠI ⋅Mn =Mn ⋅ΠJ .

For what follows, we fix a prime q ≠ p and a subgroup ∆ ≤ Γ such that ∣∆∣ = qm for
some m ≥ 0. The overall strategy is to use the ∆-symmetries of the matrix Mn to strongly
reduce the size of the linear equation system Mn ⋅ x⃗ = 1. More precisely we claim that for
M∗
n ∶= ∑π∈∆ ΠI ⋅Mn the linear equation system Mn ⋅ x⃗ = 1 is solvable if, and only if, M∗

n ⋅ x⃗ = 1
is solvable. First of all we note that for all π ∈∆ we have:

ΠI ⋅M∗
n = ∑λ∈∆ ΠI ⋅ΛI ⋅Mn = ∑π∈∆ ΠI ⋅Mn =M∗

n

M∗
n ⋅ΠJ = ∑λ∈∆ ΛI ⋅Mn ⋅ΠJ = ∑λ∈∆ ΛI ⋅ΠI ⋅Mn =M∗

n .
To verify our original claim assume that M∗

n ⋅ b⃗ = 1. Then we have

1 =M∗
n ⋅ b⃗ = (∑

π∈∆
ΠI ⋅Mn) ⋅ b⃗ = (∑

π∈∆
Mn ⋅ΠJ) ⋅ b⃗ =Mn ⋅ ∑

π∈∆
(ΠJ ⋅ b⃗).

For the other direction let Mn ⋅ b⃗ = 1. Then ∑π∈∆ ΠI ⋅Mn ⋅ b⃗ = ∣∆∣ ⋅ 1, hence (1/∣∆∣) ⋅ b⃗ is a
solution of the linear equation system M∗

n ⋅ x⃗ = 1. Note that for this direction we require that
q and p are co-prime as we have to divide by ∣∆∣.

Since M∗
n satisfies ΠI ⋅M∗

n =M∗
n ⋅ΠJ =M∗

n for all π ∈∆ we have

M∗
n(ā, b̄) =M∗

n(π(ā), b̄) =M∗
n(ā, π(b̄))

for all ā ∈ In, b̄ ∈ Jn and π ∈ ∆. In other words, the entries of the In × Jn-matrix M∗
n are

constant on the ∆-orbits of the index sets In and Jn. More specifically, if we let I∆
n and J∆

n

denote the sets of ∆-orbits on In and Jn, respectively, then M∗
n can be identified with the

matrix (M∗
n/∆) which is defined as

(M∗
n/∆) ∶ I∆

n × J∆
n → Fp, ([ā], [b̄])↦M∗

n(ā, b̄).
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Note that, depending on the size of the group ∆, the sets I∆
n and J∆

n can be noticeably
smaller than the index sets In and Jn. Hence our obvious strategy is to choose ∆ as large as
possible to obtain a compact linear equation system M∗

n ⋅ x⃗ = 1 which is equivalent to the
given one. It can be shown that for the case n = qr, the size of the maximal q-subgroups
∆n of Γn (the q-Sylow subgroups) is exponential in n and that the ∆n-orbits on In and Jn
can be described by a tuple of constant length with entries in [r]. Moreover, given a set
A = ([r]) it is possible to construct in FORp the matrix M∗

n = (M∗
n/∆n) for n = qr. In other

words, FORp can equivalently express the solvability problem Mn ⋅ x⃗ = 1 defined by α in a
structure of size n = qr in an exponentially more succinct structure of size r. The following
lemma summarises this fact.

I Lemma 19. There exists an FOC-term Θ(µ̄, ν̄) which defines for all r ≥ q in the structure
A = ([r]) the matrix M∗

n for n = qr.

I Definition 20. Let K ⊆ S(∅) be a class of sets. The q-power Kq ⊆ S(∅) of K consists of
all sets A = ([qr]) such that B = ([r]) ∈ K.

I Theorem 21. Let K ⊆ S(∅). If Kq is definable in FOSp, then K is definable in FORp.

Proof. If Kq is FOSp-definable, then by Theorem 18 by a formula ϕ = (slvp x̄1, x̄2)α(x̄1, x̄2) ∈
FOSp where α is quantifier-free.

By using the above construction and Lemma 19, we conclude that the linear equation
system Mn ⋅ x⃗ = 1 defined by α in an input structure A = ([n]) of size n = qr can be
transformed into the equivalent system M∗

n ⋅ x⃗ = 1 which is FOC-definable in B = ([r]). Let
ϕ∗ ∈ FORp be a formula which expresses the solvability of the linear system M∗

n ⋅ x⃗ = 1 in a
structure B = ([r]). Then B ⊧ ϕ∗ if, and only if, A ⊧ ϕ since the linear equation systems
Mn ⋅ x⃗ = 1 and M∗

n ⋅ x⃗ = 1 are equivalent. Hence ϕ∗ defines K. J

Proof of Theorem 17. Otherwise we would have FOSp = FORp. Let K ⊆ S(∅) be a class
of sets such that K ∉ FORp, but such that (Kq)q ∈ FORp. Such a class K is well-known to
exist (just combine the fact that, over sets, we have Logspace ≤ FORp ≤ Ptime and the
space-hierarchy theorem). Since FOSp = FORp we had (Kq)q ∈ FOSp and by Theorem 21
this means that Kq ∈ FORp. Again, since FORp = FOSp, we had Kq ∈ FOSp. A second
application of Theorem 21 yields K ∈ FORp which contradicts our assumptions. J

Finally we remark that, in the absence of counting, the same proof works for the extension
of fixed-point logic by solvability quantifiers. The simple reason is that fixed-point operators
do not increase the expressive power of first-order logic over the empty signature since all
definable relations are composed from a constant-sized set of basic building blocks.

5 Discussion

We showed that the expressive power of rank operators over different prime fields is incom-
parable and we inferred that the version of rank logic FPR with a distinct rank operator rkp
for every prime p ∈ P fails to capture polynomial time. In particular our proof shows that
FPR cannot express the uniform version of the matrix rank problem where the prime p is
part of the input. Moreover, we separated rank operators and solvability quantifiers in the
absence of counting.

Of course, an immediate question is whether the extension FPR∗ of FPC by the uniform
rank operator rk∗ suffices to capture polynomial time. We do not believe that this is the
case. A natural candidate to separate FPR∗ from Ptime is the solvability problem for linear

CSL 2015



404 Rank Logic is Dead, Long Live Rank Logic!

equation systems over finite rings rather than fields [6]. While linear equations systems can
be efficiently solved also over rings, there is no notion of matrix rank that seems to be helpful
for this purpose. In particular, it is open whether FPR∗ can define the isomorphism problem
for CFI-structures generalised to Z4. A negative answer to this last question would provide
a class of structures on which FPR∗ is strictly weaker than Choiceless Polynomial Time
(which captures Ptime on this class [1]).

Another question concerns the relationship between solvability logic FPS and rank logic
FPR∗. Our proof of Lemma 7 shows that on every class of structures of bounded colour
class size the two logics have the same expressive power. However, over general structures
this reduction fails. We only know, by our results from Section 4, that a simulation of rank
operators by solvability quantifiers would require counting.

Finally, we think it is worth to explore the connections between our approach and the
game-theoretic approach proposed by Dawar and Holm in [8] to see to what extent our
methods can be combined. For example, what kind of properties does a variant of their
partition games have for infinitary logics with solvability quantifiers?
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Abstract
One Context Unification (1CU) extends first-order unification by introducing a single context
variable. This problem was recently shown to be in NP, but it is not known to be solvable in
polynomial time. We show that the case of 1CU where the context variable occurs at most twice
in the input (1CU2r) is solvable in polynomial time. Moreover, a polynomial representation of all
solutions can be computed also in polynomial time. The 1CU2r problem is used as a subroutine
in polynomial time algorithms for several more general classes of 1CU. Our algorithm can be
seen as an extension of the usual rules of first-order unification and can be used to solve related
problems in polynomial time, such as first-order unification of two terms that tolerates one clash,
and several interesting classes of the general 1CU problem. All our results assume that the input
terms are represented as Directed Acyclic Graphs.
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1 Introduction

The well-known first-order unification problem consists of solving equations between terms
with leaf variables ranging over terms. Context unification (CU) extends first-order unification
by introducing context variables of arity one standing for contexts. Hence, the CU equations
may contain subterms of the form F (s), where F is a context variable that may be instantiated
by a context. For example, the equation F (a) .= f(a, a) has two solutions, since applying either
substitution {F → f(a, •)} or {F → f(•, a)}, gives the trivial equation f(a, a) .= f(a, a).

Context unification falls in between first-order unification, which is solvable in linear
time [19], and higher-order unification, which is undecidable [10]. The best known upper
bound for the complexity of context unification is PSPACE [12]. Moreover, several variants
and specializations of context unification have also been studied [16, 20, 15, 14, 6, 17, 7].
This paper is concerned with a particular case of CU called the One Context Unification
(1CU) problem. In 1CU, only one context variable occurs in the input terms, possibly with
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many occurrences. This problem was recently proved to be in NP [8], but whether it is
NP-hard or solvable in polynomial time is still open. That also holds for the case where the
input terms are represented with Singleton Tree Grammars [4], a compression mechanism for
terms that is more general than Directed Acyclic Graphs (DAGs). The initial interest in
one context unification comes from interprocedural program analysis [11, 5], where context
variables are used to represent (the yet unknown) summaries of procedures. In particular,
one context unification problems (over uninterpreted terms) arise when analyzing programs
using an abstract domain consisting of (uninterpreted) terms.

An interesting simple variant of the 1CU problem is term unification up to one clash, or
fault tolerant unification. For example, while f(x, f(a, y)) unifies with f(f(a, b), x), changing
an a into a b in one of these two terms makes them non-unifiable. The terms f(x, f(a, y))
and f(f(b, b), x) are, however, almost unifiable: if we are willing to accept disagreement
at one position, namely position 2.1, the rest of the terms unify. The position 2.1 is a
distinguishing position of these two terms. Note that two first-order terms s, t almost unify if
the restricted 1CU instance F (z1) = s, F (z2) = t has a solution, where z1, z2 do not occur in
s, t. Intuitively, the position of the hole of Fσ in the solution indicates the distinguishing
position in fault tolerant unification. A particular application of fault tolerant unification is
Milner-polymorphic type checking, where in case the type check/computation fails, a most
probable reason for the fail can be computed and presented to the programmer.

In this paper, we consider the special case of the one context unification problem consisting
of only two equations F (r1) .= s1, F (r2) .= s2, where r1, r2, s1, s2 are first-order terms without
occurrences of F , which we call 2-restricted 1CU (1CU2r). We present a polynomial time
algorithm for deciding 1CU2r. We also show that a representation of all solutions can be
constructed in polynomial time, which can be used to effectively enumerate all unifiers of the
problem. All our results hold also when the input terms are represented as DAGs.

The restriction to two equations (1CU2r) is motivated by two facts. First, the solution
to the 1CU2r problem also solves the problem of finding (all) distinguishing positions for
two given first-order terms. Second, in a recent paper [9], we presented polynomial time
algorithms for several classes of 1CU problem (that have more than 2 equations, but have
other restrictions on the terms), but the algorithm in [9] assumes that 1CU2r can be efficiently
solved. The result in [9] can be interpreted as showing that the 1CU2r problem is the “hard”
part in solving the general 1CU problem, and it possibly exhibits several of the intricacies
that make 1CU challenging. Our results, combined with [9], may open a way to construct a
polynomial time algorithm for the unrestricted one context unification problem.

2 Preliminaries

We assume knowledge of first order terms, substitutions, and first-order unification (see [3,
1, 2]), and use the following notation: F denotes a fixed finite ranked alphabet, X is a set
containing first-order variables and exactly one context variable F , f, g denote function
symbols, a, b denote constant symbols, x, y, z denote (first-order) variables, and p, q denote
positions (sequences of positive integers) in terms. Our algorithm introduces fresh first-order
variables from a set Y , which we denote by y with possible subindexes. We denote X ∪ Y as
V. Hence, we will argue about terms in T (F ,X ), T (F ,V) and T (F ,X ) ∪ Y .

The set of positions of a term t, denoted by pos(t), is defined recursively as pos(f(t1, . . . ,
tm)) = {λ} ∪ {i.p | i ∈ {1, . . . ,m} ∧ p ∈ pos(ti)}. The length of a position is denoted by
|p|. The subterm of a term t at a position p ∈ pos(t), denoted t|p, is defined recursively as
t|λ = t and f(t1, . . . , tm)|i.p = ti|p. With < we denote the prefix relation among positions
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and with ≺ the subterm relation among terms. We say that two positions are parallel if they
are incomparable by the prefix relation. We also define topsymbol(f(t1, . . . , tn) = f , and
topsymbol(x) = x, and vars(t) = {x ∈ V | t|p = x}.

By maxarity, we denote the maximum arity of the symbols in F , and by pos(F), we
denote the set of positions {λ} ∪ {1, . . . , maxarity}+. We also use contexts C,D, where
hp(C) is the notation for the position of the hole, denoted •. Analogously as for terms,
we refer to contexts in C(F ,X ) and C(F ,V). In the notation that mixes first-order terms,
contexts and plugging terms into holes, we write C[s] for the term where s is plugged into
the hole of C, and CD for the context C[D]. Similarly, we write F (s) for the application of
the context variable F to the term s. Sometimes we will omit brackets, if this does not lead
to confusion. Also, we denote by t[s]p, the term obtained from t by replacing its subterm
at position p by s. The exponentiation of a position p to a natural number n, denoted pn,
is the position recursively defined as pn = p.pn−|p| if n > |p| > 0, and as pn = p1 if n ≤ |p|,
p = p1.p2, and |p1| = n. Note that p0 = λ. The exponentiation of a context C to a natural
number n, denoted Cn, is defined analogously to pn.

In this work, we deal with equations on terms, denoted by e with possible subindexes.
Given an equation e = (s .= t), we call the set {s, t} the topterms of e, denoted topterms(e).
Similarly, for a set ∆ of equations, topterms(∆) denotes

⋃
e∈∆(topterms(e)). Similarly,

topvars(e) = topterms(e) ∩ V . By |∆| we denote the number of equations in ∆.
A substitution, denoted by σ, θ, η, is a total function σ : V → T (F ,V) ∪ C(F ,V) such

that ασ ∈ T (F ,V) if α is a first-order variable and ασ ∈ C(F ,V) if α is a context variable.
Substitutions are extended, in the usual way, to be mappings from terms to terms and
contexts to contexts. We also extend the notion of application of a substitution to equations as
(s .= t)σ = (sσ .= tσ) , to sets as ∆σ =

⊎
e∈∆{eσ}, and to pairs as 〈r1, r2〉σ = 〈r1σ, r2σ〉. The

domain of a substitution σ, denoted dom(σ), is defined as usual, i.e. dom(σ) = {z ∈ V | zσ 6= z}.
The composition of σ and θ, denoted θ ◦ σ, is defined as {α 7→ ασθ | α ∈ dom(σ) ∪ dom(θ)}.
For substitutions σ, θ, σ = θ holds if ∀z ∈ V : zσ = zθ. Moreover, σ is more general than θ,
denoted σ ≤ θ, if there exists η such that θ = η ◦ σ.

A unifier of two terms s, t is a substitution σ such that sσ = tσ. A unifier does not
always exist. We capture that situation by simply saying that the unifier of s and t is ⊥. We
define the most general unifier of two first-order terms s and t, denoted mgu(s = t), as any
unifier σ of s and t such that, for every unifier θ of s and t, σ ≤ θ holds. If such substitution
does not exist we say that mgu(s = t) is not defined, denoted mgu(s = t) = ⊥. In an abuse
of notation, we assume that tσ = ⊥ for every term t if σ = ⊥ and extend the definitions
for the application of a substitution on a term, equation, set of equations, and list of terms
accordingly.

First-order unification can be performed in polynomial time, if the algorithm works
on a shared term representation. We assume that terms are represented as DAGs, which
allows sharing of common subterms. When using DAGs, performing unification and applying
substitutions takes polynomial time. However, for example visiting all positions in term may
take worst-case exponential time.

3 One Context Unification

The One Context Unification Problem (1CU) consists on finding a unifier for a set of equations
over first-order terms that are extended with a single context variable F . It is known that
the problem is in NP. It is also known that, if the set of equations contains an equation of the
form F (r1) .= CF (r2) where C is not the empty context, then unification can be performed

CSL 2015
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in polynomial time. Thus, without loss of generality, we can focus on 1CU instances of the
form

{ F (r1) .= s1, . . . , F (rn) .= sn }

where si and ri do not contain occurrences of F , for all i ∈ {1, . . . , n}.

I Definition 3.1. A 2-restricted 1CU instance I (referred to by 1CU2r) consists of two
equations of the form

F (r1) .= s, F (r2) .= t

where F is a context variable and s, t, r1, r2 are terms that may contain first-order variables
but not the context variable.

The size of I, denoted ||I||, is the size of the DAG representing all the terms (including
subterms) in I. In other words, ||I|| = |subterms(I)|. From now on, when we refer to a
polynomial time algorithm for 1CU2r, we implicitly assume this measure.

A solution, or unifier, σ of a 1CU2r instance can be characterized by hp(Fσ) – the position
of the hole in Fσ.

I Example 3.2. The instance I = {F (a) .= f(x0, x0), F (b) .= f(f(x1, x1), f(a, b))} has a
solution σ = {x0 7→ f(a, a), x1 7→ a, F 7→ f(f(a, a), f(a, •))}. Here, hp(Fσ) = 2.2. There is
another solution with hole position 1.1.

In the first part of this paper we solve the decision version of the 1CU2r problem and
later we show how to compute a representation for all unifiers.

4 The Decision Version of 1CU2r

We present a polynomial time algorithm that decides the 1CU2r unification problem. We
describe our algorithm using inference rules that operate on states. Starting from an initial
state that describes the input 1CU2r instance, the algorithm works by repeatedly applying
the inference rules until a final state (where no rule is applicable) is reached. The final state
will be a special fail state if the input problem has no unifiers.

4.1 Defining the state
Our inference rules operate on states (configurations), which are tuples of the form (R,∆),
where R is a pair of terms and ∆ is a set of equations s1

.= t1, . . . , sn
.= tn, where each

equation can be asymmetric (unmarked) or symmetric (marked with a superscript S).

I Definition 4.1 (Initial state). For a given instance I = {F (r1) .= s, F (r2) .= t} of the
1CU2r problem, the initial state of our algorithm is S0 = (〈r1, r2〉, {s

.= t}).

All terms in a state are first-order terms. The terms in R are the left-hand side terms
and the equations in ∆ are (different possible) right-hand side terms. While u .= v and v .= u

are different equations, we do not distinguish between u .=S
v and v .=S

u. If we write x = s

without a dot, then this is only a notation for “either x .= s or x .=S
s”.

The reason for keeping the right-hand side terms s, t as an equation s .= t is that our
inference rules will be trying to (almost) first-order unify s and t, but for one position (which
will be the hole position of F in the solution).

The mapping from a state to 1CU2r instances is defined as follows.
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I Definition 4.2. Let S = (〈r1, r2〉,∆) be a state, and let e = (s =S t) ∈ ∆ be a symmetric
equation. Let θ = mgu(∆\{e}). We define the two 1CU instances spanned by e in S, denoted
P (e,S, 1) and P (e,S, 2) (or simply P (e, i) if S is clear from the context), as

P (e,S, 1) = {F (r1θ)
.= sθ, F (r2θ)

.= tθ} if θ 6= ⊥
P (e,S, 2) = {F (r2θ)

.= sθ, F (r1θ)
.= tθ} if θ 6= ⊥

P (e,S, i) = ⊥ if θ = ⊥, for i = 1, 2

For an asymmetric equation e ∈ ∆, P (e,S, 1) is defined as it is defined for symmetric
equations, but P (e,S, 2) = ⊥ always. Given a state S = (L,∆) and a subset Γ ⊆ ∆, by
instances(Γ) we denote the set

⋃
e∈Γ({P (e,S, 1), P (e,S, 2)}).

Note that every equation e in the set ∆ of a state spans zero, one or two 1CU2r instances,
depending on whether θ = ⊥ and whether e is symmetric. Note that the initial state for a
1CU2r instance spans that 1CU2r instance. We say that a state has a solution if one of the
instances that it spans is unifiable.

4.2 An Illustrative Example
We illustrate our procedure on a simple example before presenting it formally. Consider the
instance I from Example 3.2. The corresponding initial state is

S0 = (〈a, b〉, {f(x0, x0) .= f(f(x1, x1), f(a, b))})

The idea behind our procedure is that it searches for a solution σ by searching for hp(Fσ)
– call it p. For this example, the value p = λ (i.e., F 7→ •) does not work, and hence, we need
to find if p = 1.p′ or p = 2.p′ for some p′. So, we “decompose” (as in first-order unification)
the equation in ∆ to get a new state

S1 = (〈a, b〉, {x0
.= f(x1, x1), x0

.= f(a, b)})

Let us construct the two instances I1, I2 corresponding to the state S1.

I1 = P (x0
.= f(x1, x1), 1) = {F (a) .= f(a, b), F (b) .= f(x1, x1)}

I2 = P (x0
.= f(a, b), 1) = {F (a) .= f(x1, x1), F (b) .= f(a, b)}

Note that I has a solution iff I1 or I2 has a solution.
A natural way to proceed would be to solve I1 and I2 recursively. However, that

approach may perform an exponential number of steps since it is visiting all positions in a
term that is represented as a DAG. Instead, our algorithm, roughly speaking, solves I1 and
I2 simultaneously using a “Merge rule”, which generates state S2 from the state S1.

S2 = (〈a, b〉, {f(x1, x1) .=S
f(a, b)}).

Note that, again by Definition 4.2, S2 spans I1 and I2, since P (f(x1, x1) .=S
f(a, b),S2, 1) =

I2 and P (f(x1, x1) .=S
f(a, b),S2, 2) = I1, and hence we have not lost any solutions. Note

that the symmetric mark indicates that we need to try both orientations of the equation.
We can continue by applying “decompose” to S2 to get S3:

S3 = (〈a, b〉, {x1
.=S

a, x1
.=S

b}).

And we can again use the “Merge rule” to get S4:

S4 = (〈a, b〉, {a .=S
b}).
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Decompose: 〈R,∆ = Γ ∪∆′〉
SolveFO(I1σ) | . . . | SolveFO(I2|Γ|σ) | Decompose(〈R,∆〉,Γ,Y)
where

⋃
Ii = instances(Γ), σ = {F → •}, |topsymbols(Γ)| = 1,

and Γ ⊂ ∆ is a root class.

Easy: 〈R,∆ ∪ {e}〉
SolvEz(P (e, 1)) | SolvEz(P (e, 2)) | 〈R mgu(e),∆ mgu(e)〉 if P (e, 1) is easy

InvEq: 〈R,∆〉
〈Rσ,∆σ〉 if ∆ |= (s = t) and σ = mgu(s .= t)

DiscardEq: 〈R,∆ ∪ {e}〉
〈R mgu(e),∆ mgu(e)〉 if mgu(∆) = ⊥

Merge:
〈R,∆ ∪ {x = s, x = t}〉
〈R,∆ ∪ {s .=S

t}〉
if x 6∈ vars(∆) and x 6∈ vars(R)

Merge:
〈R,∆ ∪ {x = s, t = x}〉
〈R,∆ ∪ {t .=?

s}〉
if x 6∈ vars(∆) and x 6∈ vars(R)

where ? is S iff x = s or t = x is symmetric.

Fail: 〈⊥,⊥〉
fail

Figure 1 Inference rules for deciding 2-restricted one context unification.

We observe that the instance P (a .=S
b,S4, 1) has a unifier that maps the context variable to

•, and we can terminate declaring that the original problem I has a unifier.
Instead of I, if we start with the instance I ′ = {F (a) .= f(x0, f(a, b)), F (b) .= f(f(x1, x1),

x0)}, then after decomposing the initial state S′0 we would get the state S ′1 containing the
equations x0

.= f(x1, x1), f(a, b) .= x0 in its ∆ component. Now, the two instances I ′1, I ′2
corresponding to this new state would be

I ′1 = P (x0
.= f(x1, x1),S ′1, 1) = {F (a) .= f(a, b), F (b) .= f(x1, x1)}

I ′2 = P (f(a, b) .= x0,S ′1, 1) = {F (a) .= f(a, b), F (b) .= f(x1, x1)}

These two instances are identical! In this case, we again apply “merge” on S ′1, but we now
get a new state S ′2 with an asymmetric equation:

S ′2 = (〈a, b〉, {f(a, b) .= f(x1, x1)}).

We “decompose” S ′2 to get S ′3 with equations a .= x1, b
.= x1 (both asymmetric this time),

but when we then apply “merge” on S ′3, since x1 is on the same side of the two equations,
we generate a symmetric equation in S ′4:

S ′4 = (〈a, b〉, {a .=S
b})

Since one of the instances spanned by S ′4 has a unifier, we know I ′ too has a unifier.

4.3 Inference Rules for Deciding 1CU2r
The inference rules for solving the decision version of 1CU2r are presented in Figure 1. The
rule Decompose and the rule Easy generate more than one state (separated by |). However,
all but one of the child states is immediately evaluated to > or ⊥, and there is only one main
child (shown last) along which the search proceeds (if all others evaluate to ⊥).

Since we are working on a DAG representation for ∆, it is useful to keep in mind the
graph representing the set ∆.
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I Definition 4.3. Let S = (R,∆) be a state. Let V be the nodes of the DAG representing the
terms (and subterms) in ∆. By ≡ we denote the set of undirected edges {(u, v) | ∃u = v ∈ ∆}.
By → we denote the set of subterm edges {(u, v) | u = f(. . . , v, . . .) for some f}. By G(∆)
we denote the graph with nodes V and the two kinds of edges ≡ and →.

We describe the individual inference rules below.

4.3.1 The Decompose rule
As mentioned above, the Decompose rule generates several states. However, all of them but
one correspond to first-order unification instances that are solved immediately in polynomial
time using a procedure SolveFO.

As in the Paterson and Wegman linear unification [19] algorithm, the Decompose rule
first finds a root class Γ ⊆ ∆ in the graph G(∆) (Definition 4.3). A root class is a
maximum cardinality subset Γ of ∆ such that if t is a topterm in Γ, then (a) t is not
a proper subterm of any term in ∆, and (b) t is not a topterm in ∆ − Γ. If such a
nonempty Γ = {e1, . . . , e|Γ|} exists, and if all non-variable terms in Γ have top symbol
f , then the Decompose rule can be applied. First, we instantiate the variables in Γ. Let
θ = {x → f(yx1 , . . . , yxar(f)) | x ∈ topvars(Γ), yxi are fresh variables from Y}. Note that all
terms in Γθ will have f as their top symbol.

I Definition 4.4 (Decompose). Given a state S = (R,∆), we define Decompose(S,Γ,Y) as
the state S ′ = (Rθ,∆′) where ∆′ = (∆− Γ) ∪ Γ′ and Γ′ is obtained from Γθ as follows:
1. If there is an asymmetric equation e = (f(u1, . . . , uk) .= f(v1, . . . , vk)) in Γθ, then replace

e by several equations u1
.= v1, . . . , uk

.= vk.
2. If there is a symmetric equation e = (f(u1, . . . , uk) .=S

f(v1, . . . , vk)) in Γθ, then replace
e by several equations u1

.=S
v1, . . . , uk

.=S
vk.

Note the differences with the decompose rule in classical first-order unification: in first-
order unification, decomposition is not performed when there are variables in an equivalence
class. Moreover, we restrict our application of the rule to a root class as in Paterson and
Wegman [19]. Conditions (a) and (b) above ensure the invariant that variables from Y
occur only as topterms in the equations ∆. This fact will be crucial to prove termination in
polynomial time.

4.3.2 The Shrink rules
The rules Easy, InvEq, and DiscardEq remove at least one equation from the set ∆ and help
in guaranteeing that the size of ∆ stays polynomial w.r.t. the input size.

4.3.2.1 The Easy rule

We first enumerate some easily solvable instances of 1CU2r.

I Definition 4.5 (Easy). A 1CU2r instance {F (r1) .= s, F (r2) .= t} is easy if either one of
the following condition holds: (a) t = C[s] (or s = C[t]) for some non-empty context C, or
(b) topsymbol(s) 6= topsymbol(t), or (c) s = t, or (d) s ∈ X or t ∈ X , or (e) s (or t) occurs
(as a subterm) in r1 or r2.

I Lemma 4.6 (Easy). There is a polynomial time procedure SolvEz that returns > (denoting
True) iff a given easy instance I is unifiable.
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We will discuss easy instances in more detail in Section 6. For a symmetric equation e, note
that P (e, 1) is easy iff P (e, 2) is easy. The rule Easy checks if P (e, 1) is easy for some e ∈ ∆
and solves it immediately. If both P (e, i) are found to be non-unifiable, then the search
proceeds with the new state obtained by removing e from ∆. Note that e is removed by
applying mgu(e) to the rest of ∆ and R, and recall that if mgu(e) = ⊥ then ∆ mgu(e) = ⊥.

4.3.2.2 The InvEq rule

If there are terms s and t that are made equal by every unifier of a 1CU2r instance, then
we can as well unify s and t and apply the unifier to the 1CU2r instance. The rule InvEq
performs this step. Let S = (R,∆) be a state. We write ∆ |= (s = t) if s and t are distinct
terms that lie in an ≡-cycle of G(∆) (cycle consisting solely of ≡ edges). It should be evident
that if ∆ |= (s = t), then for all e ∈ ∆, sσ = tσ holds for mgu σ of ∆ \ {e}; that is, s and t
are made equal by every unifier of any instance spanned by the state S.

4.3.2.3 The DiscardEq rule

The rule DiscardEq removes an equation e from ∆ if the problems P (e,S, i) spanned by e
have no solutions. This happens, for example, when mgu(∆ \ {e}) = ⊥, by Definition 4.2.

4.4 The Merge rule
Recall that the Decompose rule instantiates variables in the root class to enable the decom-
position. In one special case, we prefer to apply the Merge rule rather than the Decompose
rule. Specifically, the Merge rule is applicable to state (R,∆) if the root class Γ ⊂ ∆ contains
a variable x such that (a) x occurs exactly twice in topterms(Γ) and (b) x does not occur in
the terms of R.

In such a case, ∆ = ∆′ ∪ {e1, e2}, where e1, e2 might be of the form:
1. e1 = (x = s1) and e2 = (x = s2), or e1 = (s1 = x) and e2 = (s2 = x): In these cases, the

two equations e1, e2 are replaced by a single symmetric equation s1
.=S

s2.
2. e1 = (s1 = x) and e2 = (x = s2): In this case, e1, e2 are replaced by s1

.= s2 if both e1
and e2 are asymmetric, and by s1

.=S
s2 otherwise.

The Merge rule captures one of the key insights in our procedure: we can simultaneously
search for solutions for {F (r1) .= s, F (r2) .= t} and {F (r1) .= t, F (r2) .= s}, and this
commutativity is the only source of blowup for 1CU2r (see also the example in 4.2). While
most of the rules presented so far have some similarity to the rules for more general 1CU
problems that we presented in [9], there is no analogue of the merge rule in [9].

4.5 Correctness
We fix a strategy for applying the rules. Specifically, we apply the shrink rules and the Merge
rules exhaustively (denoted by “!”), and apply Decompose only when none of the other rules
are applicable.

((Shrink | Merge)!(Decompose))!

To provide intuition for the working of our procedure, consider the graph G(∆) with
≡ and → edges (Definition 4.3). Either there is a cycle in this graph or there is none. If
there is an ≡-cycle, then we can apply InvEq rule to eliminate it. If there is a cycle that
goes through an → (subterm) edge, (which corresponds to an occurs-check violation in
first-order unification), then the inference rule Easy will be applicable (since for some edge
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s
.= t in the cycle, we will have s = C[t] or t = C[s] for some nonempty context C, which is

Case (a) in Definition 4.5). We exhaustively apply shrink rules, and since they reduce |∆| or
|topterms(∆)|, we will eventually stop. When none of the shrink rules are applicable, then
it means there are no cycles in G(∆). This implies that there will be a root class Γ. If there
are two different top symbols, say f and g, among the terms in Γ, then we would apply the
Easy rule first (some instance spanned by the state will satisfy Case (b) of Definition 4.5). If
Γ contains only equations between variables, then these variables can not occur anywhere
else in ∆ (because Γ is the root class), and hence, again Easy would be applicable (some
instance spanned by the state will satisfy Case (d) of Definition 4.5). Hence, we conclude
that Γ contains at least one non-variable term and all non-variable terms will have the same
function symbol at the top. As a result, the Decompose rule will be applicable. If Merge is
applicable, we first apply that rule and finally, when no more Merge applications are possible,
we apply Decompose, and repeat.

We say that a state has a solution if one of its spanned instances (Definition 4.2) has a
solution. It is easily verified that each inference rule preserves the existence of a solution, and
it does not introduce any new solutions. Furthermore, since the above argument guarantees
progress (stated in Lemma 4.7), correctness follows.

I Lemma 4.7. Let S = (R,∆) be a valid state of our algorithm. If ∆ 6= ∅, then a rule can
be applied to S.

4.6 Termination
Without loss of generality, we assume that the DAG D representing all the terms (and
subterms) in any state are minimal in size, and hence the correspondence between terms
and nodes is bijective. Hence, we can then refer to nodes of D and subterms of the problem
as if they were the same thing. In the rest of this section, when we obtain a bound w.r.t.
subterms(topterms(∆)), for some set of equations ∆, the bound directly translates to the
size of the DAG D representing the terms in ∆. A crucial observation is that the number of
terms represented in a DAG is preserved by the application of substitutions resulting from
the unification of terms of the DAG. This is because application of such substitutions can be
achieved by manipulating only the edges of the DAG, leaving its nodes untouched.

Our algorithm reduces deciding solvability of a 1CU2r instance I to solving instances
I1, . . . , In where each Ii is either an easy instance (generated by rule Easy) or a first-order
unification instance (generated by rule Decompose). Hence, to prove that our algorithm
terminates in polynomial time we have to argue that (A) Ii has polynomial size, for all i,
and that (B) n is polynomial.

One of the main difficulties in the proof is due to the fact our inference system introduces
fresh variables from Y. We first show that the rule applications do not increase the total
number of subterms in the equations of ∆ that are not variables from Y. Moreover, such a
measure decreases with every application of Decompose.

I Lemma 4.8. Let (R,∆0) →∗ (Rk,∆k) be a derivation starting from a valid initial
state. Then, |subterms(topterms(∆k) \ Y)| ≤ |subterms(topterms(∆0)|. Moreover, if
(R,∆0) →∗ (Rk,∆k) →Decompose (Rk+1,∆k+1) then |subterms(topterms(∆k+1)) \ V| <
|subterms(topterms(∆k)) \ V|.

Proof. The lemma follows by inspecting the rules, the observation above that the total
number of subterms from T (F ,X ) in every ∆i is preserved by the application of substitutions
resulting from the unification of terms from T (F ,X ), and the assumption, w.l.o.g., that

CSL 2015



414 Two-Restricted One Context Unification is in Polynomial Time

variables from Y are always instantiated in terms of variables from X . The second part of
the lemma follows from the maximality of Γ in the Decompose rule. J

Let us call a state minimized if the shrink and merge rules are not applicable. We now
prove a bound on the cardinality of ∆ in minimized states that is independent of the number
of (old and new) variables in the equations.

I Lemma 4.9. Let (R,∆) be a minimized state. Then, |∆| ≤ 2|topterms(∆) \ V|.

Proof. Consider the subgraph G′ of G(∆) (Definition 4.3) defined by only the ≡ edges.
Nodes of G′ in V are called v-nodes, while the rest are called f -nodes. Note that, since
∆ is minimized, the following holds: (i) G′ is acyclic (by non-applicability of Easy), (ii)
Every v-node in G′ has degree at least 3 and each subtree hanging off v has at least one
f -node (by non-applicability of Easy and Merge). We prove that for any forest that satisfies
(i) and (ii), n ≤ 2m − 2, where n is the number of nodes the forest and m is the number
of f -nodes in it. For simplicity, and w.l.o.g., assume that G′ only has one connected
component and hence it is a tree. We use induction on m. (Base case) If m = 2, then
n = 2 and the claim holds. (Induction step) Let m > 2. If there are no v-nodes in G′, then
n = m > 2 and the claim holds. So, let v be a v-node in G′ connected to the disjoint subtrees
{t1, . . . , tl}. Note that l ≥ 3. Let ni and mi be the number of nodes and f -nodes in tree
ti, respectively, for all i. Note that mi > 0. Consider tree ti with node v attached to it.
Call it t′i. If we treat v as an f -node in t′i, then it satisfies (i) and (ii) and we can apply
induction hypothesis to get ni + 1 ≤ 2(mi + 1)− 2; that is, ni ≤ 2mi − 1. Hence we have
n =

∑l
i=1(ni) + 1 ≤

∑l
i=1(2mi − 1) + 1 = 2m− l + 1 ≤ 2m− 2, where the last step holds

because l ≥ 3. Hence, since the total number of nodes in G′ is less than 2|topterms(∆) \ V|,
so is its number of edges and thus |∆|. J

We can now extend the previous claim to any state. The following lemma relies on the
rule application strategy.

I Lemma 4.10. Let (R0,∆0)→∗ (Rk,∆k) be a derivation starting from a valid initial state.
Then, |∆k| ≤ 2|topterms(∆k) \ V|maxarity.

Proof. We use induction on k. The lemma trivially holds for ∆0, since it only contains
one equation and we can assume w.l.o.g. that such equation contains a non-variable term.
For the inductive step, note that the property of the lemma is trivially preserved by all the
rules but Decompose, since such rules do not increase the size of the ∆ component of the
state. For the Decompose rule, recall that this rule is only applicable to a minimized state
∆. By Lemma 4.9, ∆ satisfies |∆| ≤ 2|topterms(∆) \ V|. Hence, the lemma follows from
the fact that Decompose increases the number of equations in ∆ by a factor of, at most,
maxarity. J

We can finally prove claims (A) and (B) required for polynomial time termination.

I Lemma 4.11. Let I be a 1CU2r instance and let (R0,∆0) →∗ Sk = (Rk,∆k) be its
corresponding derivation. Then, k ≤ 4||I||2maxarity and, for every equation e ∈ ∆k,
P (e,Sk, 1) and P (e,Sk, 2) have polynomial size with respect to ||I||.

Proof. By Lemma 4.8, ∀i ∈ {1, . . . , k} : |subterms(topterms(∆i) \ Y)| ≤ |subterms(
topterms(∆0))|, i.e., the number of non-variable subterms in the ∆is in the derivation
does not increase. By Lemma 4.10, we have that every ∆i in the derivation satisfies |∆i| ≤
2|topterms(∆i)\V|maxarity. Since |topterms(∆i)\V| ≤ |subterms(topterms(∆i)\Y)|, we
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have the bound |∆i| ≤ 2|subterms(topterms(∆0))|maxarity ≤ 2||I||maxarity. For the first
statement of the lemma, note that subsequences of rule applications without the Decompose
rule have length at most 2|∆i| ≤ 4||I||maxarity, since the rules in such subsequences
either reduce the cardinality of ∆ or topterms(∆). On the other hand, by Lemma 4.8,
each application of Decompose decreases the measure |subterms(topterms(∆i) \ Y)| ≤
|subterms(topterms(∆0))| ≤ ||I||. Hence, we have k ≤ 4||I||2maxarity. The second state-
ment of the lemma follows from the fact that k is polynomial and that DAGs are used for
term representation. J

5 Representing All Unifiers

We now extend the procedure for deciding 1CU2r to also output a representation for all
unifiers. The procedure works in the same way, except that now we do not terminate when
we find an instance that is unifiable (in Rules Decompose and Easy), but rather we store the
representation for all solutions returned by the subroutines and continue.

Given a 1CU2r instance I, rather than returning all possible unifiers σ of I, our algorithm
will only return the positions hp(Fσ). This is not a loss of generality, since σ can be recovered
from hp(Fσ) and I in polynomial time.

I Definition 5.1 (Sets of solutions). Let I be a 1CU2r instance. The set HP(I) of solutions
of I is the set of positions {hp(Fσ) | σ is a solution of I}.

Using HP(I) as a substitute for all unifiers simplifies presentation and notation considerably.
However, the cardinality of HP(I) may grow exponentially, or even be unbounded.

I Example 5.2. Let s be f(x0, x0) and let t0 = f(a, b), t1 = f(f(x1, x1), f(a, b)), and in
general, let tn = f(f(xn, xn), tn−1) for n ≥ 1. If I = {F (z1) .= s, F (z2) .= tn} where z1, z2
are fresh, then the set HP(I) contains all positions with length at most n + 1, and hence,
its cardinality is exponential in n. If I = {F (a) .= s, F (b) .= tn}, then HP(I) contains all
positions of length n that contain an even number of 1s. These instances have an exponential
worst-case running time for the algorithms in [8]. Our algorithm will represent the sets HP(I)
in polynomial space by means of abstract positions.

Our algorithm will construct a succinct representation, using a grammar-formalism and also
exponentiation, for HP(I), satisfying that: (1) a solution of I can be obtained in polynomial
time, (2) the number of solutions m (or whether it is infinite) of I can be found (or decided)
in polynomial time, and (3) all solutions of I can be obtained in polynomial time w.r.t. m.

To keep track of all solutions, the states over which our inference system works will be
tuples of the form (R,∆, S), where R is a pair of terms, ∆ is a set of labeled, possibly marked
(with S), equations s1

.=l1 t1, . . . , sn
.=ln tn, where no label li occurs more than once, and S

is a set of (representations for) set of positions. For an instance I = {F (r1) .= s, F (r2) .= t},
the initial state will now be (〈r1, r2〉, {s

.=λ t}, ∅).

5.1 The Labels and the Representation of Solutions
The set L of labels in the equations ∆ are terms generated using the following BNF grammar:

L ::== i | L.L | L+ L | L⊕ L

where i denotes a number in {1, . . . , maxarity}. We call elements of L abstract positions.
Note that L contains all concrete positions (that is, pos(F) ⊂ L). Each abstract position
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denotes a set of concrete positions, but we delay the formal definition of the mapping until
later. Intuitively, ⊕ and + are used to distinguish applications of the Merge rule that produce
a symmetric equation from those that do not. This information is necessary to correctly
recover all solutions in our representation.

The elements of the third component of the state, which represent a set of solutions, are
strings in the set

LS = {〈l, i〉 | l ∈ L, i ∈ {1, 2}}∗.BaseCases ∪ {λ}

where the set BaseCases will be defined later (in Section 5.3 and Section 6). Since expanding
the labels may lead to exponentially large labels, the algorithm in fact uses only the
nonterminals of a dynamically extended Straight-Line Program (SLP), similarly as done
in [13] (see [18] for a survey on algorithms on SLP-compressed words), which keeps the size
polynomial by sharing common prefixes. For simplicity, we obviate this representation in the
definitions of the rules.

We assume that, for the easy instances (Definition 4.5), we have a procedure that returns
some representation of the set of all solutions, which we have denoted by BaseCases above.

5.2 Modified Inference Rules
For each inference rule in Figure 1, we have to show how we update the labels in ∆ and the
third component of the state.

5.2.1 Modification for the Third Component
The only rules that change the third component are Decompose and Easy. We just need to
compute the solutions for the easily solvable instances generated by these two rules, and add
these solutions to the third component of the main branch.

I Rule 5.3 (Decompose). When applying Decompose to a state S = (R,∆ = Γ ∪∆′, S), the
function Decompose(〈R,∆〉,Γ,Y) returns the state whose third component S′ is obtained as
follows:
S′ = S;
for (s =l t) ∈ Γ do
Compute σi = mgu(P (s =l t,S, i){F → •}), for i ∈ {1, 2};
S′ = S′ ∪ {〈l, i〉 | i ∈ {1, 2}, σi 6= ⊥});

end for
Note that σi corresponds to the mgu of the ith first-order unification problem resulting from
the application of the Decompose rule in Figure 1.

I Rule 5.4 (Easy). When applying Easy to a state S = (R,∆ ∪ {s .=l t}, S), the third
component S′ of the last state generated by Easy is computed as follows:

S′ = S ∪ {〈l, i〉.SolvEz(P (s .=l t,S, i)) | i ∈ {1, 2}}

where SolvEz is now assumed to return a representation in BaseCases.

5.2.2 Modifications for the Second Component
The only inference rules that add new equations in ∆ are Decompose and Merge, and hence
we need to specify how labels are assigned to these newly added equations. Labels on existing
equations in ∆ do not change.
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The Decompose rule uses Definition 4.4 to generate the new state. In Definition 4.4, if the
equation e = (f(u1, . . . , uk) .=l f(v1, . . . , vk)) has label l, then the i-th generated equation,
namely ui

.=l.i vi is assigned label l.i. Labels on the symmetric variant in Definition 4.4 are
assigned in the same way. The Merge rule introduces + and ⊕ operators in the labels.

I Rule 5.5 (Merge). When applying Merge to a state S = (R,∆∪{e1, e2}, S), if e1 has label
l1 and e2 has label l2, then the generated equation has label l1 ⊕ l2 if it is symmetric, and it
has label l1 + l2 if it is asymmetric.

The following example, derived from the family in Example 5.2 illustrates the goal of
the Merge rule. Without it the algorithm would still be sound, but it would have worst-case
exponential running time.

I Example 5.6. Consider the 1CU2r instance I = {F (z1) .= f(x0, x0), F (z2) .= f(f(x1, x1),
f(f(x2, x2), f(a, b)))}. The corresponding initial state of our algorithm is S0 = (R =
〈z1, z2〉,∆ = {f(x0, x0) .=λ f(f(x1, x1), f(f(x2, x2), f(a, b)))}, S0 = ∅), and we have the
following derivation:
S0 →Decompose

S1 = (R, {x0
.=1 f(x1, x1), x0

.=2 f(f(x2, x2), f(a, b))}, S1 = {〈λ, 1〉}) →Merge

S2 = (R, {f(x1, x1) .=S
1⊕2 f(f(x2, x2), f(a, b))}, S1) →Decompose

S3 = (R, {x1
.=S

(1⊕2).1 f(x2, x2), x1
.=S

(1⊕2).2 f(a, b)}, S2 = S1 ∪ {〈1⊕ 2, 1〉, 〈1⊕ 2, 2〉}) →Merge

S4 = (R, {f(x2, x2) .=S
((1⊕2).1)⊕((1⊕2).2) f(a, b)}, S2) →Decompose

S5 = (R, {x2
.=S

((1⊕2).1)⊕((1⊕2).2).1 a, x2
.=S

((1⊕2).1)⊕((1⊕2).2).2 b}, S3 = S2 ∪ {〈((1 ⊕ 2).1) ⊕
((1⊕ 2).2), 1〉, 〈((1⊕ 2).1)⊕ ((1⊕ 2).2), 2〉}) →Merge

S6 = (R, {a .=S
(((1⊕2).1)⊕((1⊕2).2).1)⊕(((1⊕2).1)⊕((1⊕2).2).1) b}, S3) →Decompose

S7 = (R, ∅, S4 = S3 ∪{〈((1⊕ 2).1)⊕ ((1⊕ 2).2).1⊕ ((1⊕ 2).1)⊕ ((1⊕ 2).2).1, 1〉, 〈((1⊕ 2).1)⊕
((1⊕ 2).2).1⊕ ((1⊕ 2).1)⊕ ((1⊕ 2).2).1, 2〉})

This example also illustrates the need for a succinct representation for the elements in
the set of solutions of the state. As mentioned in Section 5.1, we use a common grammar-like
representation G that shares common prefixes for that purpose. Instead of defining such
representation formally, we just extend the previous example by showing how S4 looks like with
the suitable representation: S4 = {〈N0, 1〉, 〈N1, 1〉, 〈N1, 2〉, 〈N4, 1〉, 〈N4, 2〉, 〈N7, 1〉, 〈N7, 2〉},
where G is the set of rules {N0 → λ,N1 → (1 ⊕ 2), N2 → N1.1, N3 → N1.2, N4 → (N2 ⊕
N3), N5 → N4.1, N6 → N4.2, N7 → (N5⊕N6)}. This representation also allows us to update
the set of solutions after a rule application in polynomial time.

5.3 Correctness
The strategy for applying the inference rules is unchanged. Note that the elements of
the third component of the state are strings in the set LS (defined in Section 5.1). We
define BaseCases = {exp(p, e), exp(p, k1N + k2), hps(u, v), p.free}, for a concrete position
p ∈ pos(F), natural numbers e, k1, k2 ≤ ||I||, and an integer variable N . Note that the
elements of BaseCases are simply symbolic expressions that are succinct representations for
sets of positions (as defined in Figure 2). The concretization function α : Ls → P(pos(F)),
presented in Figure 2, maps elements in the third component of the state to a set of positions.

Before we can state the correctness claim that solutions are preserved by inference rule
applications, we need to define the set of solutions of a state.

I Definition 5.7 (Solution of a state). Let S = (R,∆, S) be a state. The set of solutions of
S, denoted HP(S), is defined as HP(S) =

⋃
(s=lt)∈∆

⋃
i∈{1,2}(α(〈l, i〉).HP(P (s =l t,S, i)))
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α(〈i, 1〉) = {i}
α(〈l1.l2, 1〉) =

(
α(〈l1, 1〉).α(〈l2, 1〉)

)
∪(

α(〈l1, 2〉).α(〈l2, 2)〉
)

α(〈l1.l2, 2〉) =
(
α(〈l1, 1〉).α(〈l2, 2〉)

)
∪(

α(〈l1, 2〉).α(〈l2, 1)〉
)

α(exp(p, e)) = {pe}
α(p.free) = {q | q ≥ p}

α(〈l1 + l2, j〉) = α(〈l1, j〉) ∪ α(〈l2, j〉)
α(〈l1 ⊕ l2, 1〉) = α(〈l1, 1〉) ∪ α(〈l2, 2)〉

)
α(〈l1 ⊕ l2, 2〉) = α(〈l1, 2〉) ∪ α(〈l2, 1)〉

)
α(c1.c2) = α(c1).α(c2)
α(exp(p, k1N + k2)) = {pk1k+k2 | k ≥ ||I||2}
α(hps(u, v)) = {q | v|q = u}

Figure 2 Definition of the concretization function α.

It it easy to see that, for a 1CU2r instance I and the corresponding initial state S (Defini-
tion 4.1), HP(I) = HP(S), by Definition 4.2. Hence, to show correctness it suffices to prove that
for every rule application, S →r S ′ of a rule r on a valid state S, HP(S)∪α(S) = HP(S ′)∪α(S′)
holds.

I Lemma 5.8. Let S be a valid state, and let S = (R,∆, S)→r S ′ = (R′,∆′, S′) be a rule r
application. Then, HP(S) ∪ α(S) = HP(S ′) ∪ α(S′) holds.

Lemma 4.7 shows that our inference systems makes progress. Lemmas 5.8 and 4.7 imply
that, for a given 1CU2r instance I, when our inference system terminates, the obtained set
of solutions S ⊂ Ls satisfies that HP(I) =

⋃
l∈S α(l).

Termination follows from the termination argument for the decision version. The termi-
nation argument, together with the correctness of our algorithm and the fact that all the
rules can be checked for applicability and applied in polynomial time, gives us our main
result stated in the following theorem.

I Theorem 5.9. The 1CU2r problem can be solved in polynomial time. Moreover, a poly-
nomial size representation of all solutions can be computed in polynomial time. This result
holds also when a DAG is used for term representation.

Finally, we informally argue that our representation satisfies the requirements stated at
the beginning of Section 5. First, to extract just one solution, we can expand the definition
of the concretization function α (Figure 2) in a depth-first traversal, without backtracking,
until we get a concrete position. Second, to get the number m of all solutions, if there is a
solution containing the expressions exp(p, k1N + k2) or p.free then m is infinite, otherwise
it is at most exponential and it can be efficiently computed using a dynamic programming
scheme. Third, all solutions of I can be obtained in polynomial time w.r.t. m by a simple
(depth-first) enumeration of the positions in the solution and expansion of expressions in
BaseCases.

6 Easy Instances

Recall that our inference rules assume that easy instances of 1CU2r can be solved in
polynomial time (Lemma 4.6); and that in fact, a representation for all solutions can also be
efficiently computed. We establish those claims here, showing that Lemma 4.6 holds for all
cases of Definition 4.5.

The special case where we have one equation that contains F on both sides was solved
in polynomial time in a previous paper [8] (Theorem 5.20). That case corresponds, after
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abstracting proper subterms of the form F (r) by variables, to the case where I contains
equations of the form F (u1) .= s, F (u2) .= C[s] with C 6= •. The key observation is that the
hole position of F has to be a prefix or exponentiation of hp(C). In the problem considered
in [8], the terms at the input were given explicitly. Since, we assume the DAG representation
for terms, the result from [8] needs to be extended for our setting. However, the proof ideas
are the same, and hence the proof is omitted here.

I Lemma 6.1 (cyclic). Let I be a 1-CU instance of the form I = I ′ ∪ {F (u1) .= s, F (u2) .=
C[s]}, where C is a non-empty context. Then, a polynomial time procedure SolveCyclic
returns a complete representation of HP(I) of polynomial size.

The expressions in the complete set of solutions of the previous lemma are of the forms
exp(p, e) and exp(p, k1N + k2), where p is a position, e, k1, k2 are natural numbers bounded
by ||I||2, and N is an integer variable. The expressions exp(p, e) and exp(p, k1N + k2) stand
for the result of raising p to e and k1N + k2, respectively.

Note that the fact that Lemma 4.6 holds for case (a) of Definition 4.5 follows from
Lemma 6.1. The fact that Lemma 4.6 also holds for case (b) of Definition 4.5 follows from
the following lemma.

I Lemma 6.2 (Clash). Let I be a 1CU instance of the form I = I ′∪{F (u1) .= f(s1, . . . , sm),
F (u2) .= g(t1, . . . , tm′)}, with f 6= g. Then, I can be solved by a polynomial time procedure
SolveClash and HP(I) is either empty or {λ}.

Proof. The fact that every solution σ must satisfy Fσ = • directly follows from f 6= g.
Hence, this particular case reduces to the first-order unification problem I ′ = I{F → •},
which can be solved in polynomial time w.r.t. ||I||. J

Let us now argue that Lemma 4.6 holds for cases (c) and (d) in Definition 4.5. Note
that such cases reduce to solving one equation by unifying left hand-sizes and replacing
first-order variables by their left hand-sides, respectively. Hence, these two cases follow from
the following Lemma. Its proof is included in [9] and hence omitted here.

I Lemma 6.3 (1-eqn). Let I be a 1CU2r instance consisting of the single equation F (s) .= t.
Then, a complete representation of HP(I) of polynomial size can be computed in polynomial
time.

The expressions in the complete set of solutions in the previous lemma are of the forms
hps(u, v) and p.free for terms u, v and a position p of polynomial size. These expressions
stand for the (possibly exponential and infinite) sets of positions {q ∈ pos(v) | v|q = u} and
{p.p′ | p′ ∈ pos(F)}, respectively.

Finally, we just need to show that Lemma 4.6 also holds for case (e) of Definition 4.5
to complete its proof. Note that such case reduces to solving an instance of the form
{F (r) .= s, F (C[s]) .= t}. Before we give a polynomial time algorithm for that case, we
first prove a particular case of 1CU: solving a single equation of the form F (C[F (s)]) = t.
Equations of this form have the nice property that the hole position of any context that is a
solution for F can not be an extension of a nonlinear positions in t. A position p is nonlinear
in t if there exists another position q 6= p such that t|p = t|q. We also call t|p a nonlinear
subterm of t. Note that there are only a (linear number of) linear positions in a term. In
contrast, there can be exponentially many nonlinear positions in a term. Since the following
lemma is already proved in [9], we only state it here.
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I Lemma 6.4. Let I be a 1CU instance consisting of one single equation of the form
F (C[F (s)]) .= t such that F does not occur in t (but F can occur in C). Let P = {p ∈
pos(t) | t|p = v and v is a non-linear subterm of t}. Then, ∀p ∈ P : hp(Fσ) 6= p, for every
solution σ of F (C[F (s)]) .= t.

It follows from the previous Lemma that for the equation F (C[F (s)]) .= t, we only need
to test the (small number of) linear positions as possible hole positions. This implies that, as
stated in the following lemma, we can enumerate a complete set of unifiers: a set of unifiers is
complete if any other unifier (for the problem) is an instance of some unifier in the set. Here,
a unifier is allowed to instantiate a context variable F in terms of a new context variable F ′.

I Lemma 6.5. Let I be a 1CU instance consisting of one single equation of the form
F (C[F (s)]) .= t such that F does not occur in t. Then, a complete set of unifiers U of I of
polynomial size can be computed in polynomial time. Any substitution σ in U satisfies one of
the two conditions below:
1. Either Fσ = t[•]p, with p ∈ pos(t),
2. Or σ = {F 7→ t[F ′(•)]q, x 7→ F ′(C[t[F ′(s)]q])}, where x does not occur in F (C[F (s)]),

t|q = x, and F ′ is a new context variable different from F .

Proof. We distinguish two cases. First consider solutions σ satisfying that hp(Fσ) ∈ pos(t).
By Lemma 6.4, for each of such solutions, hp(Fσ) must be in the set Q = {p ∈ pos(t) | t|p =
v and v is a linear subterm of t}. Note that {F → t[•]p} ≤ σ. Since |Q| is polynomial w.r.t.
|t| even in the DAG representation, then U has a polynomial number of solutions of this
form. Now consider solutions σ such that hp(Fσ) 6∈ pos(t). Let p = p1.p2, where p1 is the
longest prefix of p defined in t. Note that t|p1 must be a variable x linear in t by Lemma 6.4.
Moreover, since σ satisfies xσ|p2 = C[F (s)]σ, x does not occur in C[F (s)]. Hence, σ is of the
form {F 7→ t[D]p1 , x 7→ DC[t[D(s)]p1 ]}, for an arbitrary context D such that hp(D) = p2.
Hence, all solutions σ such that hp(Fσ) = q.q′ and q.q′ 6∈ pos(t), with q ∈ Q, can be
represented by a substitution θ = {F 7→ t[[F ′(•)]]q, x 7→ F ′(C[t[F ′(s)]q])}, where t|q = x, F ′
is a new context variable different from F , since θ ≤ σ holds. J

Finally, the fact that Lemma 4.6 holds for case (e) in Definition 4.5 follows from the
following lemma, which completes the proof of Lemma 4.6. It is easy to see that the set of
solutions of the next lemma can be represented using expressions hps(u, v) and p.free for
terms u, v and a position p of polynomial size, as in Lemma 6.3. Hence, Lemma 4.6 follows
from Lemmas 6.1, 6.2, 6.3, and 6.6. Moreover a representation for all solutions consisting of
expressions in BaseCases can always be computed for all easy instances.

I Lemma 6.6. Consider a 1CU2r instance of the form I = {F (r) .= s, F (C[s]) .= t} Then,
a complete representation of HP(I) of polynomial size can be computed in polynomial time.

Proof. First note that if either s or t is a constant, the lemma is straightforward. Also,
we can whether λ is in HP(I) by solving the first-order unification problem resulting from
applying the substitution F 7→ •. Hence, we can assume that s and t are both not constants
and Fσ 6= •, for every solution σ. By Lemma 6.5 we can compute, in polynomial time, a
complete set of unifiers U = θ1, . . . , θk of the single equation F (C[F (r)]) .= t of polynomial
size. Moreover, every substitution θ ∈ U satisfies one of the two conditions below:
1. Fθ = t[•]p, with p ∈ pos(t), or
2. θ = {F 7→ t[F ′(•)]q, x 7→ F ′(C[t[F ′(r)]q])}, where x does not occur in F (C[F (r)]), t|q = x,

and F ′ is a new context variable different from F .
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Hence, to obtain a polynomial time algorithm, it is enough to check if some substitution in
U can be extended to solve also the equation F (r) .= s, and thus I. Consider the two cases
of a substitution θ ∈ U .
1. If θ is such that Fθ = t[•]p, then the check can clearly be done in polynomial time, since

F (r)θ .= sθ is a first-order unification instance of polynomial size thanks to the DAG
representation.

2. Otherwise, θ is of the form {F 7→ t[F ′(•)]q, x 7→ F ′(C[t[F ′(r)]q])}, where tq = x, we
distinguish cases depending on whether x occurs in s, and if so, where.
(i) First assume that x occurs in s at a position p such that either p < q or p > q. Since

we are looking for solution σ where hp(Fσ) ≥ q, these cases can be rewritten into
a form that is covered by Lemma 6.1. Note that since p 6= q, C in Lemma 6.1 is
nonempty.

(ii) ) Assume that, for some p, s|p = x and p is disjoint with q. In this case, every solution
σ that is an extension of θ satisfies that |Fσ| > |Fσ|qσ| = |xσ| = |F (C[F (r)])σ| >
|Fσ|, a contradiction. Hence we know that if x occurs in s at a position disjoint with
q there are no solutions that are extensions of θ and thus there is no need to test θ.

(iii) Consider now the case where s|q = x. In this case, every solution σ that is an
extension of θ will satisfy sσ = tσ, and hence, also in this case, there is no need to
test θ, since the equation F (C[s]) .= t, and our assumption that F is not • in any
solution, imply sσ 6= tσ for every solution σ.

(iv) Finally, consider the case where x does not occur in s. Note that if r contains x
then I has no solution that is an extension of θ, again because of F is not • in
any solution. Thus, neither rθ nor sθ contain F ′, F (r)θ .= sθ reduces to a single
equation F ′(r′) .= s′ after applying a few first-order decomposition steps, and the
lemma follows from Lemma 6.3 in this case. J

7 Conclusion

We have shown that the subcase of the one context unification problem of two equations
F (r1) = s1, F (r2) = s2 can be solved in polynomial time, including a polynomial size
representation of all unifiers. Our procedure led to polynomial time algorithm for several
subclasses of the general 1CU problem [9]. We leave it to future work to extend this work to
the unrestricted one context unification problem, by extending the techniques presented in
this paper and [9]. Another possible future line of research is to investigate the algorithmic
properties of fault tolerant unification with other bounds on the number of faults, and
whether our algorithm can be extended to obtain a polynomial time algorithm also for the
case where STGs are used for term representation.
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Abstract
We investigate the new, Turing-complete class of layered systems, whose lefthand sides of rules
can only be overlapped at a multiset of disjoint or equal positions. Layered systems define
a natural notion of rank for terms: the maximal number of non-overlapping redexes along a
path from the root to a leaf. Overlappings are allowed in finite or infinite trees. Rules may be
non-terminating, non-left-linear, or non-right-linear. Using a novel unification technique, cyclic
unification, we show that rank non-increasing layered systems are confluent provided their cyclic
critical pairs have cyclic-joinable decreasing diagrams.
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1 Introduction

Confluence of terminating systems is well understood: it can be reduced to the joinability of
local peaks by Newman’s lemma, and to that of critical ones, obtained by unifying lefthand
sides of rules at subterms, by Knuth-Bendix-Huet’s lemma. Confluence can thus be decided
by inspecting all critical pairs, see for example [5].

Many efforts notwithstanding [23, 12, 27, 20, 22, 19, 29, 10, 14, 24, 11, 30, 15, 25, 18, 1],
confluence of non-terminating systems is far from being understood in terms of critical pairs.
Only recently did this question make important progress with van Oostrom’s complete method
for checking confluence based on decreasing diagrams, a generalization of joinability [28, 29].
In particular, while Huet’s result stated that linear systems are confluent provided their
critical pairs are strongly confluent [12], Felgenhauer showed that right-linearity could be
removed provided parallel critical pairs have decreasing diagrams [8]. Knuth-Bendix’s and
Felgenhauer’s theorems can join forces in presence of both terminating and non-terminating
rules [17].

We show here that rank non-increasing layered systems are confluent provided their
critical pairs have decreasing diagrams. Our confluence result for non-terminating non-linear
systems by critical pair analysis is the first we know of. Further, our result holds in case
critical pairs become infinite, solving a long standing problem raised in [12]. Prior solutions to
the problem existed under different assumptions that could be easily challenged [27, 10, 15].

Our results use a simplified version of sub-rewriting introduced in [17], and a simple, but
essential revisitation of unification in case overlaps generate occur-check equations: cyclic
unification is based on a new, important notion of cyclic unifiers, which enjoy all good
properties of unifiers over finite trees such as existence of most general cyclic unifiers, and
can therefore represent solutions of occur-check equations by simple rewriting means.
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Terms are introduced in Section 2, labelled rewriting and decreasing diagrams in Section 3,
sub-rewriting in Section 4, cyclic unification in Section 5 and layered systems in Section 6
where our main result is developed, before concluding in Section 7.

2 Terms, substitutions, and rewriting

Given a signature F of function symbols and a denumerable set X of variables, T (F ,X )
denotes the set of finite or infinite rational terms built up from F and X . We reserve
letters x, y, z for variables, f, g, h for function symbols, and s, t, u, v, w for terms. Terms are
recognized by top-down tree automata in which some ω-states, and only those, are possibly
traversed infinitely many times. Terms are identified with labelled trees. See [4] for details.

Positions are finite strings of positive integers. We use o, p, q for arbitrary positions, the
empty string Λ for the root position, and “·” for concatenation of positions or sets thereof. We
use FPos(t) for the (possibly infinite) set of non-variable positions of t, t(p) for the function
symbol at position p in t, t|p for the subterm of t at position p, and t[u]p for the result of
replacing t|p with u at position p in t. We may omit the position p, writing t[u] for simplicity
and calling t[·] a context. We use ≥ for the partial prefix order on positions (further from the
root is bigger), p#q for incomparable positions p, q, called disjoint. The order on positions
is extended to finite sets as follows: P ≥ Q (resp. P > Q) if (∀p ∈ P )(∃q ∈ max(Q)) p ≥ q
(resp. p > q), where max(P ) is the set of maximal positions in P . We use p for the set {p}.

We use Var(t1, . . . , tn) for the set of variables occurring in {ti}i. A term t is ground if
Var(t) = ∅, linear if no variable occurs more than once in t. Given a term t, we denote by
t any linear term obtained by renaming, for each variable x∈Var(t), the occurrences of x
at positions {pi}i in t by linearized variable xki such that i 6=j implies xki 6=xkj . Note that
Var(s) ∩ Var(t) = ∅ iff Var(s) ∩ Var(t) = ∅. Identifying xk0 with x, t = t for a linear term t.

A substitution σ is an endomorphism from terms to terms defined by its value on its
domain Dom(σ) := {x : σ(x) 6= x}. Its range is Ran(σ) :=

⋃
x∈Dom(σ) Var(xσ). We use

σ|V for the restriction of σ to V ⊆ Dom(σ), and σ|¬X for the restriction of σ to Dom(σ) \X.
The substitution σ is said to be finite (resp., a variable substitution) if for each x ∈ Dom(σ),
σ(x) is a finite term (resp., a variable). Variable substitutions are called renamings when
also bijective. A substitution γ is ground if for each x ∈ X , γ(x) is ground. We use Greek
letters for substitutions and postfix notation for their application.

The strict subsumption order m on finite terms (resp. substitutions) associated with the
quasi-order s •≥ t (resp. σ •≥ τ) iff s= tθ (resp. σ=τθ) for some substitution θ, is well-founded.

A rewrite rule is a pair of finite terms, written l→ r, whose lefthand side l is not a
variable and whose righthand side r satisfies Var(r) ⊆ Var(l). A rewrite system R is a set of
rewrite rules. A rewrite system R is left-linear (resp. right-linear, linear) if for every rule
l → r ∈ R, l is a linear term (resp. r is a linear term, l and r are linear terms). Given a
rewrite system R, a term u rewrites to a term v at a position p, written u p→

R
v, if u|p = lσ

and v = u[rσ]p for some rule l→ r ∈ R and substitution σ. The term lσ is a redex and rσ
its reduct. We may omit R as well as p, and also replace the former by the rule which is used
and the latter by a property it satisfies, writing for example u >P→

l→r
v. Rewriting terminates if

there exists no infinite rewriting sequence issuing from some term. Rewriting is sometimes
called plain rewriting.

Consider a local peak made of two rewrites issuing from the same term u, say u→p
l→r v

and u→q
g→d w. Following Huet [12], we distinguish three cases:

p#q (disjoint case), q > p · FPos(l) (ancestor case), and q ∈ p · FPos(l) (critical case).
Given two, possibly different rules l → r, g → d and a position p ∈ FPos(l) such that
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Var(l) ∩ Var(g) = ∅ and σ is a most general unifier of the equation l|p = g, then lσ is the
overlap and 〈rσ, lσ[dσ]p〉 the critical pair of g → d on l→ r at p.

Rewriting extends naturally to lists of terms of the same length, hence to substitutions of
the same domain. See [5, 26] for surveys.

3 Labelled rewriting and decreasing diagrams

Our goal is to reduce confluence of a non-terminating rewrite system R to that of finitely
many critical pairs. Huet’s analysis of linear non-terminating systems was based on Hindley’s
lemma, stating that a non-terminating relation is confluent provided its local peaks are
joinable in at most one step from each side [12]. The more general analyses needed here have
been made possible by van Oostrom’s notion of decreasing diagrams for labelled relations.

I Definition 1. A labelled rewrite relation is a pair made of a rewrite relation → and a
mapping from rewrite steps to a set of labels L equipped with a partial quasi-order D whose
strict part B is well-founded. We write u p,m→

R
v for a rewrite step from u to v at position p

with label m and rewrite system R. Indexes p,m,R may be omitted. We also write αB l

(resp. l B α) if mB l (resp. l Bm) for all m in a multiset α.

Given an arbitrary labelled rewrite step →l, we denote its projection on terms by →, its
inverse by l←, its reflexive closure by →=l, its symmetric closure by l↔ , its reflexive, transitive
closure by →→α for some word α on the alphabet of labels, and its reflexive, symmetric,
transitive closure, called conversion, by α←↔→. We may consider the word α as a multiset.

The triple v, u, w is said to be a local peak if v l←u→m w, a peak if v α←←u→→β w, a
joinability diagram if v→→α u β←←w. The local peak v p,m

l→r←u→q,n
g→d w is a disjoint, critical,

ancestor peak if p#q, q ∈ p ·FPos(l), q > p ·FPos(l), respectively. The pair v, w is convertible
if v α←↔→w, divergent if v α←←u→→β w for some u, and joinable if v→→α t β←←w for some t. The
relation → is locally confluent (resp. confluent, Church-Rosser) if every local peak (resp.
divergent pair, convertible pair) is joinable.

Given a labelled rewrite relation →l on terms, we consider specific conversions associated
with a given local peak called local diagrams and recall the important subclass of van
Oostrom’s decreasing diagrams and their main property: a relation all whose local diagrams
are decreasing enjoys the Church-Rosser property, hence confluence. Decreasing diagrams
were introduced in [28], where it is shown that they imply confluence, and further developed
in [29]. The first version suffices for our needs.

IDefinition 2 (Local diagrams). A local diagram D is a pair made of a local peak Dpeak = v ←
u→ w and a conversion Dconv = v←↔→w. We call diagram rewriting the rewrite relation ⇒D
on conversions associated with a set D of local diagrams, in which a local peak is replaced
by one of its associated conversions:

P Dpeak Q ⇒
D

P Dconv Q for some D ∈ D

I Definition 3 (Decreasing diagrams [28]). A local diagram D with peak v l←u→m w is
decreasing if its conversion Dconv = v

α→→s m→= s′
δ→→ δ′←← t′ l=← t β←←w satisfies the following

decreasingness condition: labels in α (resp. β) are strictly smaller than l (resp. m), and labels
in δ, δ′ are strictly smaller than l or m. The rewrites s→=m s′ and t′ l=← t are called the facing
steps of the diagram.

I Theorem 4 ([14]). The relation ⇒D terminates for any set D of decreasing diagrams.
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I Corollary 5. Assume that T ⊆ T (F ,X ) and D is a set of decreasing diagrams in T

such that the set of T -conversions is closed under ⇒D. Then, the restriction of → to T is
Church-Rosser if every local peak in T has a decreasing diagram in D.

This simple corollary of Theorem 4 is a reformulation of van Oostrom’s decreasing diagram
theorem which is convenient for our purpose.

4 Sub-rewriting

Consider the following famous system inspired by an abstract example of Newman, algebraized
by Klop and publicized by Huet [12], NKH = {f(x, x)→ a, f(x, c(x))→ b, g → c(g)}. NKH
is overlap-free, hence locally confluent by Huet’s lemma [12]. However, it enjoys non-joinable
non-local peaks such as a← f(g, g)→ f(g, c(g))→ b.

The main difficulty with NKH is that non-joinable peaks are non-local. To restore the
usual situation for which the confluence of a relation can be characterized by the joinability of
its local peaks, we need another rewrite relation whose local peaks capture the non-confluence
of NKH as well as the confluence of its confluent variations. A major insight of [17] is that
this can be achieved by the sub-rewriting relation, that allows us to rewrite f(g, c(g)) in
one step to either a or b, therefore exhibiting the pair 〈a, b〉 as a sub-rewriting critical pair.
Sub-rewriting is made of a preparatory equalization phase in which the variable instances of
the lefthand side l of some rule l→ r are joined, taking place before the rule is applied in
the firing phase. In [17], sub-rewriting required a signature split to define layers in terms,
the preparatory phase taking place in the lower layers. No a-priori layering is needed here:

I Definition 6 (Sub-rewriting). A term u sub-rewrites to a term v at p ∈ Pos(u) for some rule
l→ r∈R, written u→p

RR
v, if u →→(>p·FPos(l))

R u[lθ]p→p
R u[rθ]p = v for some substitution θ.

The term u|p is called a sub-rewriting redex.

This definition of sub-rewriting allows arbitrary rewriting below the lefthand side of
the rule until a redex is obtained. This is the major idea of sub-rewriting, ensuring that
R ⊆ RR ⊆ R∗. A simple, important property of a sub-rewriting redex is that it is an instance
of a linearized lefthand side of rule:

I Lemma 7 (Sub-rewriting redex). Assume u sub-rewrites to u[rσ]p with l→ r at position p.
Then u|p = lθ for some θ s.t. (∀x ∈ Var(l)) (∀pi ∈ Pos(l) s.t. l(pi)=x) θ(xpi)→→R σ(x).
We say that σ is an equalizer of l, and the rewrite steps from lθ to lσ are an equalization.

Sub-rewriting differs from rewriting modulo by being directional. It differs from Klop’s
higher-order rewriting modulo developments [26] used by Okui for first-order computa-
tions [22], in that the preparatory phase uses arbitrary rewriting. Having non-left-linear rules
with critical pairs at subterms seems incompatible with using developments. Sub-rewriting
differs as well from relative rewriting [11] in that the preparatory phase must take place
below variables. The latter condition is essential to obtain plain critical pairs based on plain
unification.

Assuming that local sub-rewriting peaks characterize the confluence of NKH, we need to
compute the corresponding critical pairs. Unifying the lefthand sides f(x, x) and f(y, c(y))
results in the conjunction x = y ∧ y = c(y) containing the occur-check equation y = c(y),
which prevents unification from succeeding on finite trees but allows it to succeed on infinite
rational trees: the critical peak has therefore an infinite overlap f(cω, cω) and a finite critical
pair 〈a, b〉. At the level of infinite trees, we then have an infinite local rewriting peak
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Remove s = s ∧ P → P

Decomp f(~s) = f(~t) ∧ P → ~s = ~t ∧ P
Conflict f(~s) = g(~t) ∧ P → ⊥ if f 6= g

Choose y = x ∧ P → x = y ∧ P if x 6∈ V ar(P ), y ∈ Var(P )
Coalesce x = y ∧ P → x = y ∧ P{x 7→ y} if x, y ∈ V ar(P ), x 6= y

Swap u = x ∧ P → x = u ∧ P if u 6∈ X
Merge x = s ∧ x = t ∧ P → x = s ∧ s = t ∧ P if x ∈ X , 0 < |s| ≤ |t|
Replace x = s ∧ P → x = s ∧ P{x 7→ s} if x ∈ V ar(P ), x 6∈ Var(s), s 6∈ X
Merep y=x ∧ x=s ∧ P → y = s ∧ x = s ∧ P if x∈V ar(s), s 6∈X , y 6∈Var(s, P )

and no other rule applies

Figure 1 Unification Rules.

a← f(cω, cω) = f(cω, c(cω))→ b, the properties of infinite trees making the sub-rewriting
preparatory phase useless. Sub-rewriting therefore captures on finite trees some properties
of rewriting on infinite trees, here the existence of a local peak. Computing the critical
pairs of the sub-rewriting relation is therefore related to unification over finite trees resulting
possibly in solutions over infinite rational trees. In the next section, we develop a novel view
of unification that will allow us to capture both finite and infinite overlaps by finite means.

5 Cyclic unification

This section is adapted from [3, 5, 13] by treating finite and infinite unifiers uniformly:
equality of terms is interpreted over the set of infinite rational terms when needed.

An equation is an oriented pair of finite terms, written u = v. A unification problem P is
a (finite) conjunction ∧i ui = vi of equations, sometimes seen as a multiset of pairs written
~u = ~v. A unifier (resp. a solution) of P is a substitution (resp., a ground substitution) θ
such that (∀i)uiθ = viθ. A unifier describes a generally infinite set of solutions via its ground
instances. A major usual assumption, ensuring that solutions exist when unifiers do, is that
the set T (F) of ground terms is non-empty. A unification problem P has a most general
finite unifier mgu(P ), whenever a finite solution exists, which is minimal with respect to
subsumption and unique up to variable renaming. Computing mgu(P ) can be done by the
unifier-preserving transformations of Figure 1, starting with P until a solved form is obtained,
⊥ denoting the absence of solution, whether finite or infinite. Our notion of solved form
therefore allows for infinite unifiers (and solutions) as well as finite ones:

I Definition 8. Solved forms of a unification problem P different from ⊥ are unification
problems S = ~x = ~u ∧ ~y = ~v such that
(i) P = Var(P ) \ (~x ∪ ~y) is the set of parameters of S;
(ii) variables in ~x ∪ ~y (i.e. variables at lefthand sides of equations) are all distinct;
(iii) (∀x = u∈~x = ~u), Var(u) ⊆ P ;
(iv) (∀ y = v∈~y = ~v), Var(v) ⊆ P ∪ ~y, Var(v) ∩ ~y 6= ∅ and v 6∈ X .

Equations y = v ∈ ~y = ~v are called cyclic (or occur-check, the vocabulary originating
from [3] used so far), ~x is the set of finite variables, and ~y is the set of (infinite) cyclic (or
occur-check) variables. A solved form is a set of equations since ~x ∪ ~y is itself a set and an
equation x = y between variables can only relate a finite variable x with a parameter y.
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I Example 9 (NKH). f(x, x) = f(y, c(y))→Decomp x = y∧x = c(y)→Coalesce x = y∧ y =
c(y)→Merep x = c(y) ∧ y = c(y). Alternatively, f(x, x) = f(y, c(y))→Decomp x = y ∧ x =
c(y)→Replace c(y) = y ∧ x = c(y)→Swap y = c(y) ∧ x = c(y).

Choose and Swap originate from [3]. Replace and Coalesce ensure that finite variables
(but parameters) do not occur in equations constraining the infinite ones. Merep is a sort
of combination of Merge and Replace ensuring condition v 6∈ X in Definition 8, item (iv).
Unification over finite trees has another failure rule, called Occur-check, fired in presence
of cyclic equations.

I Theorem 10. Given an input unification problem P , the unification rules terminate, fail
if the input has no solution, and return a solved form S = ~x = ~u ∧ ~y = ~v otherwise.

Proof. Termination, characterization of solved forms, soundness, are all adapted from [13].

Termination. The quadruple 〈nu, |P |, nvre, nvle〉 is used to interpret a unification problem
P , where

nu is the number of unsolved variables (0 for ⊥), where a variable x is solved in x = s∧P ′
if x 6∈ Var(s, P ′);
|P | is the multiset (∅ for ⊥) of natural numbers {max(|s|, |t|) : s = t ∈ P} ;
nvle (resp. nvre) is the number of equations in P whose lefthand (resp., righthand) side
is a variable and the other side is not.

Remove, Decomp and Conflict decrease |P | without increasing nu. Choose and Co-
alesce both decrease nu. Swap decreases nvre without increasing nu and |P |. Merge
decreases nvle without increasing nu, |P | and nvre. Replace decreases nu. Now, when
Merep applies, no other rule can apply, and we can check that no rules can apply either
after Merep (except another possible application of Merep). This can happen only finitely
many times, by simply reasoning on the number of equations whose both sides are variables.

Solved form. We show by contradiction that the output P , which is in normal form with
respect to the unification rules, is a solved form in case Conflict never applies. First, P
must be a conjunction of equations x = s, since otherwise Decomp or Swap would apply.
Let P = Var(P ) \ (~x ∪ ~y).

Condition (i) is a definition.
Condition (ii). Let P = x = s ∧ x = t ∧ P ′. Either s or t is a variable, since otherwise
Merge would apply. Assume without loss of generality that s ∈ X , call it y. If x = y,
Remove applies. If y 6∈ Var(t, P ′), then Choose applies. Otherwise, Coalesce applies.
Hence ~x, ~y are all different sets, and P is therefore itself a set.
Let now ~x = ~u be a maximal (with respect to inclusion) set of equations in P such that
Var(~u) ⊆ P , and ~y = ~v be the remaining set of equations.
Condition (iii). It is ensured by the definition of ~x = ~u.
Condition (iv). Let y = v ∈ ~y = ~v.
Let now x = u ∈ ~x = ~u, hence x 6∈ Var(u). Assume x ∈ Var(v). If u 6∈ X , then
Replace applies. Otherwise, if u has no other occurrence in P , then Choose applies,
else Coalesce applies. Therefore Var(v) ∩ ~x = ∅ by contradiction.
Assume Var(v) ∩ ~y = ∅. Then Var(v) ⊆ P , which contradicts the maximality of ~x = ~u.
We are left to show that v is not a variable. If it were, then v ∈ ~y. First, v 6= y,
otherwise Remove applies. Let P = (y = v) ∧ P ′ with v ∈ ~y \ {y}. Let v = z, there
must exist (z = w) ∈ P ′ for some w, otherwise z ∈ P. Hence P ′ = (z = w) ∧ P ′′. Now,
y 6∈ Var(w,P ′′), otherwise Coalesce applies. Then we show z ∈ Var(w): firstly, w 6= z,
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otherwise Remove applies; secondly, w is not a variable, otherwise w 6∈ Var(y, P ′′) lets
Choose apply, while w ∈ Var(y, P ′′) makes Coalesce available; then if z 6∈ Var(w),
Replace applies. Thus z ∈ Var(w), allowing Merep, which contradicts that we have
indeed a solved form.

Soundness. The set of solutions is an invariant of the unification rules. This is trivial for
all rules but Coalesce, Merge, Replace, Merep, for which it follows from the fact that
substitutions are homomorphisms and equality is a congruence. J

The solved form is a tree solved form if ~y = ∅, and otherwise an Ω solved form whose
solutions are infinite substitutions taking their values in the set of infinite (rational) terms.
We shall now develop our notion of cyclic unifier capturing both solved forms by describing
the infinite unifiers of a problem P as a pair of a finite unifier σ and a set of cyclic equations
E constraining those variables that require infinite solutions. In case E = ∅, then P is a tree
solved form and σ = mgu(P ). To avoid manipulating infinite unifiers when E 6= ∅, we shall
work with the cyclic equations themselves considered as a ground rewrite system.

I Definition 11 ([21]). Given a set of equations E, we denote by =cc
E the equational theory

in which the variables in Var(E) are treated as constants, also called congruence closure E.

We are interested in the congruence closure defined by cyclic equations, seen here as a
set R of ground rewrite rules. We may sometimes consider R as a set of equations, to be
either solved or used as axioms, depending on context.

I Definition 12. A cyclic rewrite system is a set of rules R = {~y → ~v} such that the
unification problem ~y = ~v is its own solved form with ~y as the set of infinite cyclic variables.
Variables in R are treated as constants.

I Lemma 13. A cyclic rewrite system R is ground and critical pair free, hence Church-Rosser.

We now introduce our definition of cyclic unifiers and solutions:

I Definition 14. A cyclic unifier of a unification problem P is a pair 〈η,R〉 made of a
substitution η and a cyclic rewrite system R = {~y → ~v}, satisfying:
(i) ) Dom(η) ⊆ Var(P ) \ ~y, Ran(η) ∩ ~y = ∅, and Ran(η) ∩ Dom(η) = ∅ ;
(ii) P and P ∧R have identical sets of solutions ; and
(iii) (a) (∀u = v ∈ P )uη =cc

Rη vη, or equivalently by Lemma 13,
(b) (∀u = v ∈ P )uη→→Rη Rη←← vη .

A cyclic solution of P is a pair 〈ηρ,R〉 made of a cyclic unifier 〈η,R〉 of P and an
additional substitution ρ.

We shall use (iii)(a) or (iii)(b) indifferently, depending on our needs, by referring to (iii).
The idea of cyclic unifiers is that the need for infinite values for some variables is encoded

via the use of the cyclic rewrite system R, which allows us to solve the various occur-
check equations generated when unifying P . Finite variables are instantiated by the finite
substitution η, which ensures that cyclic unification reduces to finite unification in the absence
of infinite variables. The technical restrictions on Dom(η) and Ran(η) aim at making η
idempotent. In (iii), parameters occurring in R are instantiated by η before rewriting takes
place: cyclic unification is nothing but rigid unification modulo the cyclic equations in R [9].
Instantiation of the infinite variables ~y is delegated to cyclic solutions via the additional
substitution ρ which may also instantiate the variables introduced by η.
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I Example 15. Consider the equation f(x, z, z) = f(a, y, c(y)). A cyclic unifier is 〈{x 7→
a}, {y→ c(z), z→ c(z)}〉, and a cyclic solution is 〈{x 7→ a, y 7→ a, z 7→ c(a)}, {y→ c(z), z→
c(z)}〉, which is clearly an instance of the former by the substitution {y 7→ a, z 7→ c(a)}. For
the former, f(a, z, z) =cc

{y=c(z),z=c(z)} f(a, y, c(y)). Another cyclic unifier is 〈{x 7→ a}, {z→
c(y), y→c(y)}〉, for which f(a, z, z)=cc

{z=c(y),y=c(y)} f(a, y, c(y)).

The set of cyclic unifiers of a problem P is closed under substitution instance, provided
the variable conditions on its substitution part are met, as is the set of its unifiers. Cyclic
unifiers have indeed many interesting properties similar to those of finite unifiers, of which
we are going to investigate only a few which are relevant to the confluence of layered systems.

We now focus our attention on specific cyclic unifiers sharing a same cyclic rewrite system.

I Definition 16. Given a unification problem P with solved form S = ~x = ~u ∧ ~y = ~v, let
its set of parameters P = Var(P ) \ (~x ∪ ~y),
its cyclic rewrite system RS = {~y → ~v} and canonical substitution ηS = {~x 7→ ~u},
its S-based cyclic unifiers 〈η,RS〉, among which 〈ηS , RS〉 is said to be canonical.

We now show a major property of S-based cyclic unifiers, true for any solved form S:

I Lemma 17. Given a unification problem with solved form S, the set of S-based cyclic
unifiers is preserved by the unification rules.

Proof. The result is straightforward for Remove, Choose, and Swap. It is true for
Decomp and Conflict since, using formulation (iii.b) of Definition 14, the rules in Rη cannot
apply at the root of F -headed terms. Next comes Coalesce. We need to prove that 〈η,R〉 is
a cyclic unifier for x = y∧P iff it is one for x = y∧P{x 7→ y}. Let u = v ∈ P . For the only if
case, we have u{x 7→ y}η = uη{xη 7→ yη} =cc

Rη uη =cc
Rη vη =cc

Rη vη{xη 7→ yη} = v{x 7→ y}η.
The if case is similar. Replace is similar to Coalesce. Consider now Merge (Merep
is similar). Showing that 〈η,R〉 is a cyclic unifier for x = s ∧ x = t ∧ P iff it is one for
x = s ∧ s = t ∧ P is routine by using transitivity of the congruence closure =cc

Rη. J

We can now conclude:

I Theorem 18. Given a unification problem P with solved form S = ~x = ~u ∧ ~y = ~v, the
canonical S-based cyclic unifier is most general among the set of S-based cyclic unifiers of P .

Proof. Let 〈η,RS〉 be a cyclic unifier of P based on S.
Let x = u ∈ ~x = ~u. By definition of cyclic unification, xη→→RSη RSη

←←uη. By definition of
a solved form and cyclic unifiers, we have: Var(xη, uη) ⊆ (~x ∪ P ∪Ran(η)), (~x ∪ P) ∩ ~y = ∅,
Ran(η) ∩ ~y = ∅, and ~y ∩ Dom(η) = ∅. Therefore, xη and uη are irreducible by RSη. Hence
xη = uη. Since xηS = u, it follows that xη = uη = (xηS)η = x(ηSη).

Let now z ∈ Var(P ) \ ~x. Since z 6∈ Dom(ηS), then η(z) = zη = (zηS)η = z(ηSη).
Therefore, η = ηSη and we are done. J

This result, which suffices for our needs, is easily lifted to cyclic solutions, as they are
instances of a cyclic unifier. We can further prove that ηS is more general than any S′-based
cyclic unifiers, for any solved form S′ of P . This is where our conditions on Ran(η) become
important. We conjecture that it is most general among the set of all cyclic unifiers.
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6 Layered systems

NKH is non-confluent, but can be easily made confluent by adding the rule a→ b (giving
NKH1), or removing the rule g → c(g) (giving NKH2). It can be made non-right-ground
by making the symbols a, b unary (using a(c(x)) and b(c(x)) in the righthand sides of rules,
giving NKH3), or even non-right-linear by making them binary (giving NKH4). There are
classes of systems containing NKH for which it is possible to conclude its non-confluence. The
following classes succeed for NKH1: simple-right-linear [27], strongly depth-preserving [10],
and relatively terminating [15]. As for NKH3, it is neither simple-right-linear nor strongly
depth-preserving: only [15] can cover it. When it comes to NKH4, relative termination
becomes hard to satisfy in presence of non-right-linearity [15].

Our goal is to define a robust, Turing-complete class of rewrite systems capturing NKH
and its variations, for which confluence can be analyzed in terms of critical diagrams.

I Definition 19. A rewrite system R is layered iff it satisfies the disjointness assumption
(DLO) that linearized overlaps of some lefthand sides of rules upon a given lefthand side l
can only take place at a multiset of disjoint or equal positions of FPos(l):

(DLO) := (∀l→ r ∈ R) (∀p ∈ FPos(l)) (∀g → d ∈ R s.t. Var(l) ∩ Var(g) = ∅)
(∀σ : Var(l|p, g)→ T (F ,X ) s.t. l|pσ = gσ) SOF(l|p) ∧ SOF(g)

SOF(u) := (∀q ∈ FPos(u)\{Λ})OF(u|q)
OF(v) := (∀g → d∈R s.t. Var(v) ∩ Var(g) = ∅)

(∀o ∈ FPos(v))(∀σ : Var(v, g)→ T (F ,X )) v|oσ 6= gσ

SOF stands for subterm overlap-free, and OF for overlap-free. In words, if two lefthand
sides of rules in R overlap (linearly) a lefthand side l of a rule in R at positions p and q

respectively, then either p = q or p#q. Overlaps at different positions along a path from the
root to a leaf of l are forbidden.

Layered systems is a decidable class that relates to overlay systems [6], for which overlaps
computed with plain unification can only take place at the root of terms –hence their name–,
and generalizes strongly non-overlapping systems [24] which admit no linearized overlaps at
all. All these classes are Turing-complete since they contain a complete class [16].

I Example 20. NKH is a layered system, which is also overlay. {h(f(x, y))→ a, f(x, c(x))→
b} is layered but not overlay. {h(f(x, x)) → a, f(x, c(x)) → b, g → c(g)} is layered, but
not strongly non-overlapping. {f(h(x)) → x, h(a) → a, a → b} is not overlay nor layered:
SOF(h(x)) succeeds while SOF(h(a)) fails, hence their conjunction fails.

6.1 Layering
We define the rank of a term t as the maximum number of non-overlapping linearized redexes
traversed from the root to some leaf of t, which differs from the usual redex-depth.

I Definition 21. Given a layered rewrite system R, the rank rk(t) of a term t is defined by
induction on the size of terms as follows:

the maximal rank of its immediate subterms if t is not a linearized redex ; otherwise,
1 plus max{rk(σ) : (∃l→ r ∈ R) t = lσ}, where rk(σ) := max{rk(σ(x)) : x ∈ Var(l)}.

I Definition 22. A rewrite system R is rank non-increasing if for all terms u, v such that
u→
R
v, then rk(u) ≥ rk(v).
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The rewrite system {f(x)→ c(f(x))} is rank non-increasing while {f(x)→ f(f(x))} is
rank increasing. The system {fib(0) → 0, fib(S(0)) → S(0), fib(S(S(x))) → fib(S(x)) +
fib(x)} calculating the Fibonacci function is rank non-increasing. NKH is rank non-increasing.
The coming decidable sufficient condition for rank non-increasingness captures our examples
(but Fibonacci, for which an even more complex decidable property is needed):

I Lemma 23. A layered rewrite system R is rank non-increasing if each rule g → d in R
satisfies the following properties:
(i) ((∀l→ r ∈ R)(∀l′ → r′ ∈ R) s.t. Var(d),Var(l),Var(l′) are pairwise disjoint)

(∀p, q ∈ FPos(d) s.t. q > p · FPos(l))
(∀σ : Var(g, l, l′)→ T (F)) (d|pσ 6= lσ) ∨ (d|qσ 6= l′σ) ;

(ii) ((∀l→ r ∈ R) s.t. Var(g) ∩ Var(l) = ∅)(∀p ∈ FPos(l) \ Λ)
(∀σ : Var(g, l)→ T (F) s.t. dσ = l|pσ)
((∃l′ → r′ ∈ R) s.t. Var(l′) ∩ Var(g, l) = ∅)(∃x 6∈Var(l, l′, g)) l[x]p •≥ l′.

We can now index term-related notions by the rank of terms. Let Tn(F ,X ) (in short, Tn)
be the set of terms of rank at most n. Two terms in Tn are n-convertible (resp. n-joinable) if
their R-conversion (resp. R-joinability) involves terms in Tn only.

6.2 Closure properties
Call a term u an OF-term if u satisfies OF(u), and a substitution an OF-substitution if it
maps variables to OF-terms. OF-terms enjoy several important closure properties. Given
two substitutions θ, σ and rank n, let

Convθn(u,v) iff uθ and vθ are n-convertible, and
Equalizen(u)θσ iff uθ→→RR

uσ with terms of rank at most n.

I Lemma 24. For all OF-terms u and substitutions γ, uγ cannot sub-rewrite at a position
p∈FPos(u).

I Corollary 25. OF-terms are preserved under instantiation by OF-substitutions.

I Lemma 26. Let u, v be two terms such that Convθn(u,v), Equalizen(u)θσ and Equalizen(v)θσ.
Then uσ and vσ are n-convertible.

I Lemma 27. Let ∧i ui = vi be obtained by decomposition of a unification problem P . Assume
all equations ui = vi satisfy the properties Convθn(ui,vi), Equalizen(ui)θσ, Equalizen(vi)θσ,
OF(ui) and OF(vi). Assume further that n-convertible terms are joinable. Then, unification
of P succeeds, and returns a solved form whose all equations satisfy these five properties.

In this lemma and coming proof, we assume that linearizations are propagated by the
unification rules, implying in particular that u|p = u|p. P defines the initial linearization.

Proof. We show that these five properties are invariant by the unification rules. The claim
follows since the unification rules terminate. We use notations of Figure 1.

Remove, Choose, Swap are straightforward.
Decomp. By assumption, Convθn(f(~s),f(~t)), hence f(~s)θ and f(~t)θ are joinable by using
terms of rank at most n, since R is rank non-increasing. By assumption OF(f(~s)) and
OF(f(~t)), hence no rewrite can take place at the root. The result follows.
Conflict. By the same token, f = g, a contradiction. Thus Conflict is impossible.
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Coalesce. By assumption, Convθn(xk,yl), Equalizen(xk)θσ, Equalizen(yl)θσ, and (∀u=v ∈
P ), Convθn(u,v), OF(u), Equalizen(u)θσ, OF(v) and Equalizen(v)θσ. Putting these things to-
gether, we get Convθn(u{xk 7→ yl},v{xk 7→ yl}), hence Convθn(u{x 7→ y},v{x 7→ y}). Simi-
larly, properties Equalizen(u{x 7→ y})θσ and Equalizen(v{x 7→ y})θσ hold. Property OF(u)
is of course preserved by variable renaming for any u.
Merge. Assume Convθn(xk,s), Convθn(xl,t), OF(s), Equalizen(s)θσ, Equalizen(xk)θσ, OF(t),
Equalizen(t)θσ and Equalizen(xl)θσ. Convθn(s,t) follows from Convθn(xk,s), Convθn(xl,t),
Equalizen(xk)θσ and Equalizen(xl)θσ. The other properties follow similarly.
Replace. The proof is similar for the first 3 properties. Further, OF is preserved by
replacement by Corollary 25.
Merep. Similar to Merge. J

I Example 28 (NKH). Let P = f(x, x) = f(y, c(y)). Then P →Decomp x = y ∧ x =
c(y)→Replace c(y) = y∧x = c(y)→Swap y = c(y)∧x = c(y). Successive linearizations yield
f(x1, x2)=f(y1, c(y2)), x1 =y1∧x2 =c(y2), c(y2)=y1∧x2 =c(y2) and y1 =c(y2)∧x2 =c(y2).
The announced properties of the solved form can be easily verified.

I Corollary 29. Let l → r, g → d ∈ R and p ∈ FPos(l) such that Var(l)∩Var(g) = ∅,
and l|pθ = gθ are terms in Tn+1. Then, unification of l|p = g succeeds, returning a solved
form S s.t., for each z = s ∈ S,Convθn(z,s), OF(s), Equalizen(s)θσ for all σ satisfying
(lθ→→(>FPos(l)) lσ) ∧ (gθ→→(>FPos(g)) gσ), and further, SOF(l|pηS)∧SOF(gηS).

Proof. Unification applies first Decomp. Conclude by Lemmas 27 and Corollary 25. J

I Corollary 30. Assume t = lσ for some l→ r ∈ R. Then, rk(t) = 1 + rk(σ).

Proof. Let t = liσi = liθγ (note that γ does not depend on i), where θ = mgu(=i li). Then,
rk(t) = 1 +maxi{rk(σi)} = 1 +maxi{rk(θγ)} = 1 + rk(γ) = 1 + rk(σi) since θ satisfies OF
at all non-variable positions by Lemma 27. J

I Example 31 (NKH). Consider f(c(g), c(g)) of rank 2, using either linearized lefthand side
f(x1, x2) or f(y1, c(y2)) to match f(c(g), c(g)). Corresponding substitutions have rank 1.

A major consequence is that the preparatory phase of sub-rewriting operates on terms of
a strictly smaller rank. This would not be true anymore, of course, with a conversion-based
preparatory phase. More generally, we can also show that the rank of terms does not increase
–but may remain stable– when taking a subterm, a property which is not true of non-layered
systems. Consider the system {f(g(h(x)))→ x, g(x)→ x, h(x)→ x}. The redex f(g(h(a)))
has rank 1 with our definition, but its subterm g(h(a)) has rank 2.

6.3 Testing confluence of layered systems via their cyclic critical pairs
Since R is rank non-increasing we shall prove confluence by induction on the rank of terms.
Since rewriting is rank non-increasing, the set of Tn-conversions is closed under diagram
rewriting, hence allowing us to use Corollary 5. This is why we adopted this restricted, but
complete, form of decreasing diagram rather than the more general form described in [29].

I Definition 32 (Cyclic critical pairs). Given a layered rewrite system R, let l→ r, g → d ∈ R
and p ∈ FPos(l) such that Var(l)∩Var(g) = ∅, and l|p = g is unifiable with canonical cyclic
unifier 〈ηS = {~x 7→ ~u}, RS = {~y → ~v}〉. Then, rηS R← lηS =cc

RSηS
l[g]pηS→R l[d]pηS is a

cyclic critical peak, and 〈rηS , l[d]pηS〉 is a cyclic critical pair, which is said to be realizable by
the substitution θ iff (∀y → v ∈ RS) yθ→→R R←← vθ.
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The relationship between critical peaks and realizable cyclic critical pairs, usually called
critical pair lemma, is more complex than usual:

I Lemma 33 (Cyclic critical pair lemma). Let l→ r, g→ d∈R such that Var(l) ∩ Var(g)=∅.
Let rσ Λ

l→r← lσ (>FPos(l))←← lθ = lθ[gθ]p→→(>p·FPos(g)) lθ[gσ]p→p
g→d lθ[dσ]p be a sub-

rewriting local peak in Tn+1, satisfying p ∈ FPos(l) and Var(lθ) ∩ Var(l, g) = ∅. As-
sume further that R is Church-Rosser on the set Tn. Then, there exists a cyclic solution
〈γ,RS〉 such that S is a solved form of the unification problem l|p = g, γ = ηSρ for some ρ
of domain included in Var(l, g), σ→→R γ, and RS is realizable by γ.

Proof. Corollary 29 asserts the existence of a solved form S = ~x = ~u ∧ ~y = ~v of the problem
l|p = g. But 〈σ,RS〉 may not be a cyclic solution. We shall therefore construct a new
substitution γ such that σ→→RR

γ and 〈γ,RS〉 is a cyclic solution of the problem, obtained as
an instance by some substitution ρ of the most general cyclic unifier 〈ηS , RS〉 by Theorem 18.

The construction of γ has two steps. The first aims at forcing the equality constraints
given by S. This step will result in each parameter having possibly many different values.
The role of the second step will be to construct a single value for each parameter.

We start equalizing independently equations z=s∈S. Since Equalizen(zj)θσ, Equalizen(s)θσ
and Convθn(zj ,s), zσ and sσ are n-convertible by Lemma 26. By assumption, zσ and
sσ are joinable, hence there exists a term tsz such that zσ→→R tsz R←← sσ. Since OF(s) by
Corollary 29, the derivation from sσ to tsz must occur at positions below FPos(s). Maintaining
equalities in sσ between different occurrences of each variable in Var(s), we get tsz = sτ sz
for some τ sz . For each parameter p, pσ→→R pτ sz , hence the elements of the non-empty set
{pτ sz : p ∈ Var(s) for some z = s ∈ S} are n-convertible thanks to rank non-increasingness.
By our Church-Rosser assumption, they can all be rewritten to a same term tp. We now
define γ:
(i) parameters. Given p ∈ P , we define γ(p)= tp. By construction, pσ→→R tp = pγ.
(ii) finite variables. Given x = u ∈ ~x = ~u, let γ(x) = uγ|P , thus xγ = uγ. By construction,

xσ→→R uτux →→R uγ, hence xσ→→R xγ.
(iii) cyclic variables. Given y = v ∈ ~x = ~u, let γ(y) = yσ, making yσ→→R yγ trivial.
(iv) variables in Var(l, g) \ Var(l|p, g), that is, those variables from the context l[·]p which

do not belong to the unification problem l|p = g, hence to the solved form S. Given
z ∈ Var(l, g) \ Var(l|p, g), let γ(z) = zσ, making zσ→→R zγ trivial.

Therefore σ→→R γ. We proceed to show 〈γ,RS〉 is a cyclic solution of l|p = g. Take ρ = γ|¬~x.
It is routine to see γ = ηSρ, and to check that 〈ηS , RS〉 is a cyclic unifier of S by Definition 14,
hence of l|p = g by Lemma 17. Hence the statement.

We end up the proof by noting that γ is a realizer of RS . J

In case of NKH, the lemma is straightforward since solved forms have no parameters.
Our proof strategy for proving confluence of layered systems is as follows: assuming that

n-convertible terms are joinable, we show that (n+ 1)-convertible terms are (n+ 1)-joinable
by exhibiting appropriate decreasing diagrams for all their local peaks. To this end, we need
to define a labelling schema for sub-rewriting. Assuming that rules have an integer index,
different rules having possibly the same index, a step u p→

RR
v with the rule li → ri is labelled

by the pair 〈rk(u|p), i〉. Pairs are compared in the order D = (≥N ,≥N )lex whose strict part
is well-founded. Indexes give more flexibility (shared indexes give even more) in finding
decreasing diagrams for critical pairs, this is their sole use.

I Definition 34. Let l→i r, g→j d ∈ R and p ∈ FPos(l) such that l|p = g has a solved form
S. Then, the cyclic critical pair 〈rηS , l[d]pηS〉 has a cyclic-joinable decreasing diagram if
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rηS
〈1,I〉→→
R

s =cc
RSηS

t
〈1,J〉
R ←← l[d]pηS , whose sequences of indexes I and J satisfy the decreasing

diagram condition, with the additional condition, in case Var(l[·]p) 6= ∅, that all steps have a
rule index k < i.

By Corollary 29, the ranks of lηS and l[g]pηS are 1. Thanks to rank non-increasingness
and Definition 21, the cyclic-joinable decreasing diagram –but the congruence closure part–
is made of terms of rank 1 except possibly s and t which may have rank 0. It follows that all
redexes rewritten in the diagram have rank 1. The decreasing diagram condition is therefore
ensured by the rule indexes, which justifies our formulation.

Note further that the condition Var(l[·]p) = ∅ is automatically satisfied when p = Λ,
hence no additional condition is needed in case of a root overlap. In case where Var(l[·]p) 6= ∅,
implying a non-root overlap, the additional condition aims at ensuring that the decreasing
diagram is stable under substitution. It implies in particular that there exists no i-facing
step. This may look restrictive, and indeed, we are able to prove a slightly better condition:
(i) there exists no i-facing step, and (ii) each step u→q

k v using rule k at position q satisfies
k < i or Var(u|q) ⊆ Var(gηS). We will restrict ourselves here to the simpler condition which
yields a less involved confluence proof.

We can now state and prove our main result:

I Theorem 35. Rank non-increasing layered systems are confluent provided their realizable
cyclic critical pairs have cyclic-joinable decreasing diagrams.

Proof. Since →R ⊆ →RR
⊆ →→

R
, R-convertibility and RR-convertibility coincide. We can

therefore apply van Oostrom’s theorem to RR-conversions, and reason by induction on the
rank. We proceed by inspection of the sub-rewriting local peaks v p(l→r)R

←u→q
(g→d)R

w, with
Var(l) ∩ Var(g) = ∅. We also assume for convenience that Var(l, g) ∩ Var(u, v, w) = ∅. This
allows us to consider u, v, w as ground terms by adding their variables as new constants. We
assume further that variables x, y ∈ Var(l, g) become linearized variables xi, yj in l, g, and
that ξ is the substitution such that ξ(xi)=x and ξ(yj)=y, hence implying Var(l)∩Var(g)=∅.

By definition of sub-rewriting, u|p = lθ→→(>FPos(l))
R v′|p = lσ and v = u[rσ]p, where

for all positions o ∈ Pos(l) such that l|o = x and l|o = xi, then xiθ→→R xσ. Similarly,
u|q = gθ→→(>FPos(g))

R w′|q = gσ and w = u[dσ]q, where for all positions o ∈ Pos(g) such that
g|o = y and g|o = yj , then yjθ→→R yσ. There are three cases:

1. p#q. The case of disjoint redexes is as usual.
2. q > p · FPos(l), the so-called ancestor peak case, for which sub-rewriting shows its

strength. W.l.o.g. we assume u|p has some rank n+ 1 and note that u|q has some rank
m ≤ n by Corollary 30. Since the sub-rewriting steps from u to w occur strictly below
p · FPos(l), then q = p · o · q′ where l|o = ξ(yj) and l|o = yj . It follows that w = lτ for
some τ which is equal to θ for all variables in l except yj for which τ(yj) = θ(yj)[dσ]q′ .
We proceed as follows: we equalize all n-convertible terms {xσ : x∈Var(r)} in v and
{yτ : y∈Var(l)} in w by induction hypothesis, yielding s, t. Note that steps from v to s
have ranks strictly less than the rank n+ 1 of the step u→RR

v by Corollary 30 and rank
non-increasingness. Then, t is an instance of l by some γ, and s is the corresponding
instance of r, hence t rewrites to s with l→ r. The equalization steps from w to t have
ranks which are not guaranteed to be strictly less than m, hence cannot be kept to build a
decreasing diagram. But they can be absorbed in a sub-rewriting step from w to s whose
first label is at most n+ 1, hence faces the step from u→RR

v: sub-rewriting allows us to
rewrite directly from w to s, short-cutting the rewrites from w to t that would otherwise
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Figure 2 Ancestor and Critical Peaks.

yield a non-decreasing diagram. The proof is depicted at Figure 2 (left), assuming p = Λ
for simplicity. Black color is used for the given sub-rewriting local peak, blue for arrows
whose redexes have ranks at most n+ 1, and red when redex has rank at most n.

3. q ∈ p · FPos(l), the so-called critical peak case, whose left and right rewrite steps have
labels 〈n + 1, i〉 and 〈m, j〉 respectively, with rules l → r and g → d having indexes i
and j. Assuming without loss of generality that p = Λ, the proof is depicted at Figure 2
(right). Most technical difficulties here originate from the fact that the context l[·]q may
have variables. In this case, we first rewrite w to t′ = lσ[dσ]q = l[d]qσ by replaying those
equalization steps, of rank at most n, used in the derivation from u to v′, which apply to
variable positions in Var(l[·]q).
Now, since lθ = lθ[gθ]q, by Lemma 33, there is a substitution γ and a solved form S

of the unification problem l|q = g, such that σ→→R γ, γ = ηSρ for some ρ, and RS is
realizable by γ. By assumption, the cyclic critical pair 〈rηS , l[d]qηS〉 has a cyclic-joinable
decreasing diagram (modulo =cc

RSηS
). We can now lift this diagram to the pair 〈s, t〉 by

instantiation with the substitution ρ. The congruence closure used in the lifted diagram
becomes therefore =cc

RSηSρ
. We are left showing that the obtained diagram for the pair

〈v, w〉 is decreasing with respect to the local peak v ← u→ w.
This diagram is made of three distinct parts: the equalization steps, the rewrite steps
instantiating the cyclic-joinability assumption with ρ, which originate from s and t –we
call them the middle part–, and the congruence closure steps. By Corollary 30, the left
equalization steps v = rσ→→R rγ = s use rewrites with redexes of rank at most n, hence
their labels are strictly smaller than 〈n+ 1, i〉. The right equalization steps w→→t′→→t
are considered together with the (green-)middle-part rewrite steps. There are two cases
depending on whether l[·]q is variable-free or not:
(a) Var(l[·]q) = ∅, hence m = n + 1 by Corollary 30. In this case, w = t′, and by

Corollary 30, the rewrite steps w = l[d]qσ→→R l[d]qγ = t have redexes of rank at most
n, making their labels strictly smaller than 〈m, j〉 = 〈n+ 1, j〉. Let us now consider
the middle-part rewrite steps. Thanks to rank non-increasingness, all terms in this
part have rank at most n+ 1. It follows that the associated labels are pairs of the
form {〈n′, i′〉 : n′ ≤ n+ 1, i′ ∈ I} on the left, or {〈n′, j′〉 : n′ ≤ n+ 1, j′ ∈ J} on the
right. The assumption that I, J satisfy the decreasing diagram condition for the



J. Liu, J.-P. Jouannaud, and M. Ogawa 437

critical peak ensures that these rewrites do satisfy the decreasing diagram condition
with respect to the local peak v ← u→ w as well.

(b) Var(l[·]q) 6= ∅. By Corollary 30, the right equalization steps w→→t′→→t have redexes
of rank at most n, making their labels strictly smaller than 〈n+ 1, i〉. Consider now
the middle part. Thanks to rank non-increasingness and the additional condition on
the cyclic-joinability assumption of the cyclic critical pair, all labels 〈n′, k〉 in the
middle part satisfy n′ ≤ n+ 1 and k < i, hence are strictly smaller than 〈n+ 1, i〉.

We are left with the congruence closure steps. Given y = v ∈ RS , yγ→→R R←← vγ since RS
is realizable by γ. By Lemma 27, OF(v) holds, hence yγ and vγ are n-convertible by rank
non-increasingness. We are left with replacing the =cc

~yγ=~vγ-steps by a joinability diagram
whose all steps have rank at most n. The obtained diagram is therefore decreasing, which
ends the proof. J

Using the improved condition of cyclic-joinability mentioned after Definition 34 requires
modifying the discussion concerning the (green-)middle-part rewrite steps. Although this
does not cause any conceptual difficulties, it is technically delicate. The interested reader
can of course reconstruct this proof for himself or herself.

Our result gives an answer to NKH: confluence of critical pair free rewrite systems can
be analyzed via their sub-rewriting critical pairs, which are actually the cyclic critical pairs.

NKH is critical pair free but non-confluent. Indeed, it has the Ω solved form x =
c(y) ∧ y = c(y) obtained by unifying f(x, x) = f(y, c(y)). The cyclic critical peak is then
a← f(x, x) =cc f(y, c(y))→ b yielding the cyclic critical pair 〈a, b〉 which is not joinable
modulo {x = c(y), y = c(y)}.

We now give a slight modification of NKH making it confluent:

I Example 36. The system R = {f(x, x)→2 a(x, x), f(x, c(x))→2 b(x), f(c(x), c(x))→3
f(x, c(x)), a(x, x)→1 e(x), b(x)→1 e(c(x)), g→0 c(g)} is confluent. Showing that R satisfies
(DLO) is routine, and it is rank non-increasing by Lemma 23. There are three cyclic critical
pairs, which all have a cyclic-joinable decreasing diagram. For instance, the unification
f(x, x) = f(y, c(y)) returns a canonical cyclic unifier 〈ηS = ∅, RS = {x→ c(y), y → c(y)}〉,
the corresponding cyclic critical peak a(x, x) 〈1,2〉← f(x, x) =cc

RSηS
f(y, c(y))→〈1,2〉 b(y) has

a cyclic-joinable decreasing diagram a(x, x)→〈1,1〉 e(x) =cc
RSηS

e(c(y)) 〈1,1〉← b(y). The
unification f(x, x) = f(c(y), c(y)) returns 〈ηS = {x = c(y)}, RS = ∅〉, the correspond-
ing (normal) critical peak a(c(y), c(y)) 〈1,2〉← f(c(y), c(y))→〈1,3〉 f(y, c(y)) decreases by
a(c(y), c(y))→〈1,1〉 e(c(y)) 〈1,1〉← b(y) 〈1,2〉← f(y, c(y)). By Theorem 35, R is confluent.

Theorem 35 can be easily used positively: if all cyclic critical pairs have cyclic-joinable
decreasing diagrams, then confluence is met. This was the case in Example 36. But there is
another positive use that we illustrate now: showing that {f(x, x)→ a, f(x, c(x))→ b, g →
d(g)} is confluent requires proving that the cyclic critical pair given by unifying the first
two rules is not realizable. Although realizability is undecidable in general, this is the case
here since there is no term s convertible to c(s). Theorem 35 can also be used negatively
by exhibiting some realizable cyclic critical pair which is not joinable: this is the case of
example NKH. In general, if some realizable cyclic critical pair leading to a local peak is not
joinable, then the system is non-confluent. Whether a realizable cyclic critical pair always
yields a local peak is still an open problem which we had no time to investigate yet.

A main assumption of our result is that rules may not increase the rank. One can of course
challenge this assumption, which could be due to the proof method itself. The following
counter-example shows that it is not the case.
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I Example 37. Consider the critical pair free system R = {d(x, x)→ 0, f(x)→ d(x, f(x)),
c→ f(c)}, which is layered but whose second rule is rank increasing since d(x1, x2) unifies
with d(y, f(y)). This system is non-confluent, since f(fc)→ d(fc, ffc)→ d(ffc, ffc)→ 0
while f(fc)→ f(d(c, fc))→ f(d(fc, fc))→ f0 which generates the regular tree language
{S → d(0, S), S → f0} not containing 0. Note that replacing the second rule by the right
linear rule f(x)→ d(x, f(c)) yields a confluent system [24].

Releasing rank non-increasingness would indeed require strengthening another assumption,
possibly imposing left- or right-linearity.

7 Conclusion

Decreasing diagrams opened the way for generalizing Knuth and Bendix’s critical-pair test
for confluence to non-terminating systems, re-igniting these questions. Our results answer
open problems by allowing non-terminating rules which can also be non-linear on the left as
well as on the right. The notion of layered systems is our first conceptual contribution here.

Another, technical contribution of our work is the notion of sub-rewriting, which can
indeed be compared to parallel rewriting. Both relations contain plain rewriting, and are
included in its transitive closure. Both can therefore be used for studying confluence of plain
rewriting. Tait and Martin-Löf’s parallel rewriting –as presented by Barendregt in his famous
book on Lambda Calculus [2]– has been recognized as the major tool for studying confluence
of left-linear non-terminating rewrite relations when they are not right-linear. We believe that
sub-rewriting will be equally successful for studying confluence of non-terminating rewrite
relations that are not left-linear. In the present work where no linearity assumption is made,
assumption (DLO) ensuring the absence of stacked critical pairs in lefthand sides makes the
combined use of sub-rewriting and parallel rewriting superfluous. Without that assumption,
as is the case in [17], their combined use becomes necessary.

A last contribution, both technical and conceptual, is the notion of cyclic unifiers.
Although their study is still preliminary, we have shown that they constitute a powerful
new tool to handle unification problems with cyclic equations in the same way we deal with
unification problems without cyclic equations, thanks to the existence of most general cyclic
unifiers which generalize the usual notion of mgu. This indeed opens the way to a uniform
treatment of problems where unification, whether finite or infinite, plays a central role.

Our long-term goal goes beyond improving the current toolkit for carrying out confluence
proofs for non-terminating rewrite systems. We aim at designing new tools for showing
confluence of complex type theories (with dependent types, universes and dependent elimina-
tion rules) directly on raw terms, which would ease the construction of strongly normalizing
models for typed terms. Since redex-depth, the notion of rank used here, does not behave
well for higher-order rules, appropriate new notions of rank are required in that setting.
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Abstract
In the past years, extensions of monadic second-order logic (MSO) that can specify boundedness
properties by the use of operators referring to the sizes of sets have been considered. In particular,
the logics costMSO introduced by T. Colcombet and MSO+U by M. Bojańczyk were analyzed
and connections to automaton models have been established to obtain decision procedures for
these logics. In this work, we propose the logic quantitative counting MSO (qcMSO for short),
which combines aspects from both costMSO and MSO+U. We show that both logics can be
embedded into qcMSO in a natural way. Moreover, we provide decidability proofs for the theory
of its weak variant (quantification only over finite sets) for the natural numbers with order and
the infinite binary tree. These decidability results are obtained using a regular cost function
extension of automatic structures called resource-automatic structures.
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1 Introduction

The tight connection of monadic second-order logic (MSO), which is the extension of first-
order logic by quantification over sets of elements, and finite automata over word and
tree structures has led to a rich theory and many applications and decision procedures in
verification and synthesis (see [20] for an introduction and overview).

In the past years, quantitative variants or extensions of MSO with a method to refer
to the size of set variables have been introduced. Most prominently, there are costMSO,
proposed by T. Colcombet (cf. [11]), and MSO+U, by M. Bojańczyk (cf. [3]). The logic
costMSO extends standard MSO by a new atomic formula of the form ∣X ∣ ≤ N (for a set
variable X, and a parameter N that is interpreted as natural number) that is only allowed to
appear positively in formulas. The N is a global parameter shared among all occurrences of
this operator. The logic has a quantitative semantics: In a structure S, we assign a formula
ϕ the minimal value for N ∈ N ∪ {∞} such that the formula is satisfied as a normal MSO
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formula with the additional cardinality bounds. If it cannot be satisfied for any N , the
value is ∞ (and if it is satisfiable but no subformula of the form ∣X ∣ ≤ N appears, the value
is 0). The logic has proved to be useful for studying boundedness questions, in which the
precise values of a formula are not of interest, but rather the question whether the values
are bounded on sets of structures (for example on sets of words or trees). This intended
semantics of (un)boundedness is directly encoded in MSO+U. It extends standard MSO by
a new quantifier UX.ϕ(X). Such a formula is satisfied if there are arbitrarily large finite
sets X that satisfy ϕ(X). Correspondingly, the logic MSO+U has a boolean semantics and
does not forbid the use of negation.

The algorithmic properties of both logics and equivalent automaton models have been
studied intensively. The logic costMSO is closely connected to regular cost functions (cf. [10])
and has an automaton model called B-automata. This automaton equivalence proved useful
to obtain algorithmic methods for decision procedures of costMSO on finite words and infinite
words (cf. [17]) and was also extended to the weak variant costWMSO, which only allows set
quantification ranging over finite sets, on the infinite binary tree (cf. [21]). Similar questions
were investigated for MSO+U. It turned out that the weak variant WMSO+U has equivalent
automaton models on infinite words (lookahead limsup automata) (cf. [3]) and on the infinite
binary tree (nested limsup automata) (cf. [7]). These yield decision procedures for the theory
of WMSO+U on the respective structures. However, very recently M. Bojańczyk, P. Parys
and S. Toruńczyk were able to show that the MSO+U-theory of the natural numbers with
order is undecidable (cf. [6]).

We aim at constructing an MSO variant that combines the two aspects of costMSO
and MSO+U and identified two key ingredients: First, a mechanism to measure the size
of sets that satisfy a definable property as provided by ∣X ∣ ≤ N in costMSO. Secondly, the
possibility to test for these sizes within the logic similar to the quantifier U in MSO+U.
It is clear that one loses decidability very soon if these mechanisms are too precise. Thus,
we want to concentrate on the problem of boundedness. We propose the logic quantitative
counting MSO (for short qcMSO) as a logic with quantitative semantics over the domain
N∪{∞}. Its basic syntax is similar to standard MSO without negation. We add the operator
∣X ∣ for set variables and the operator ϕ =∞ for formulas. The definition of the semantics is
inspired by the quantitative µ-calculus (cf. [14]). We associate true with ∞ and false with
0. Accordingly, the boolean connectives ∧, ∨ are evaluated by min and max. The quantifiers
∃, ∀ are are evaluated by sup and inf. The formula ∣X ∣ evaluates to the number of elements
of X and ϕ =∞ has the value true (∞) if ϕ evaluates to ∞ and false (0) otherwise.

We show that there is a natural translation of costMSO and MSO+U into equivalent
qcMSO formulas. Moreover, we show that the questions of boundedness and partly also
dominance that are considered in connection with costMSO formulas can be expressed in
qcMSO. These connections also hold for the respective weak variants of the logics.

The main contribution of this work is a decision procedure for qcWMSO sentences over
the naturals with linear order and the infinite binary tree. More precisely, we prove the
following main theorem.

I Theorem 1.
(a) Given a sentence ϕ ∈ qcWMSO, the evaluation ⟦ϕ⟧(ω,<) of ϕ on the natural numbers

with order is effectively computable.
(b) Given a sentence ϕ ∈ qcWMSO, it is decidable whether ⟦ϕ⟧T2 =∞.

The theorem is based on a quantitative extension of automatic structures called resource-
automatic structures, which was presented in [18]. This framework introduces structures
with quantitative relations – called resource structures – and provides a general method to
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compute the cost of first-order queries on structures whose relations are representable by
B-automata. We show how such first-order queries can be extended with an ∞-comparison
operator such that we can translate qcWMSO into such queries. We use the fact that
the finite powerset structure of the naturals with a set size relation is resource-automatic.
Furthermore, we provide an extension of the framework to finite trees and show that the finite
powerset structure of the infinite binary tree with (an approximation of) the set size relation is
resource-tree-automatic. The obtained decidability result can be seen as the best we could have
hoped for as full qcMSO inherits the undecidability of full MSO+U already on the naturals.
However, the connection between weak qcMSO and resource-automatic structures nicely
resembles the known correspondence between WMSO and standard automatic structures.

The remainder of this work is structured as follows: First, we fix some notations and
introduce the formal basics of regular cost functions, resource-automatic structures and the
logics costMSO and MSO+U. In Section 3, we introduce qcMSO and explain the embedding
of costMSO and MSO+U. Section 4 extends the theory of resource-automatic structures
such that qcWMSO formulas over the naturals can be expressed in this framework. Moreover,
we provide an extension to finite trees that enables us to decide boundedness of qcWMSO
even on the infinite binary tree.

2 Preliminaries

We write Σ for a finite alphabet and Σ∗ for the set of finite sequences (words) of letters from
Σ. To evaluate MSO and its extensions on words, we consider words as relational structures:
a word w = w1 . . .wn ∈ Σ∗ corresponds to the structure ({1, . . . , n},<, (Pa)a∈Σ), where the
Pa are monadic predicates such that i ∈ Pa if and only if wi = a. For infinite words, that
is, sequences from Σω, we use the set ω of natural numbers as the universe. Additionally,
we consider finite and infinite binary trees over the alphabet Σ. A tree t is a mapping
dom(t)→ Σ where dom(t) ⊆ {0, 1}∗ is a prefix-closed set that describes the nodes of the tree
in such a way that ε represents the root node, and for a node u ∈ {0,1}∗, u0 is the left and
u1 the right successor. Since we only consider binary trees, for every u ∈ dom(t) we either
have u0, u1 ∈ dom(t) or u0, u1 /∈ dom(t). A tree is finite if dom(t) is finite. The set of all
finite trees over the alphabet Σ is denoted by TΣ. When we talk about infinite binary trees,
we usually mean trees with dom(t) = {0,1}∗.

2.1 Regular Cost Functions and the logic costMSO
In [9], regular cost functions were introduced based on two dual variants of cost automata.
A cost automaton is a normal NFA with an additional finite set Γ of counters. These
counters support three kinds of atomic operations: First, a counter can be incremented by
one (i). Secondly, a counter can be reset to zero (r) and lastly, a counter can be checked
(c). The counters are driven by the transitions. Correspondingly, for a cost automaton
(Q,Σ, q0,∆, F,Γ) the transition relation ∆ is a subset of Q ×Σ ×Q × ({i,r,c}∗)Γ. A run ρ
of such an automaton is identified with a sequence of states and transitions and is, as usual,
called accepting if it starts in q0 and ends in a state of F . Along the run, we simulate the
values of the counters (starting with 0) according to the operations on the transitions, and
whenever a counter is checked, its current value is stored for later evaluation. We denote the
set of checked counter values (over all counters) by C(ρ). The semantics of cost automata are
functions Σ∗ → N ∪ {∞}, and come in two (dual) flavors: A B-automaton has only counter
operations of the forms {ε,ic,r}, a run ρ has the value supC(ρ) and a word w ∈ Σ∗ is
assigned the infimum over all accepting runs ρ on this word. Dually, an S-automaton has
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only counter operations of the forms {ε,i,cr,r}, a run ρ has the value inf C(ρ) and a word
w ∈ Σ∗ is assigned the supremum over all accepting runs ρ on this word. For a B-/S-cost
automaton A, we write ⟦A⟧B and ⟦A⟧S to refer to the respective semantics.

Regular cost functions are the functions definable by B- or S-automata up to a certain
equivalence relation ≈. The equivalence is based on the notion of correction functions. A
correction function α ∶ N ∪ {∞}→ N ∪ {∞} is a monotone mapping that maps ∞ and only
∞ to ∞. Let f, g ∶ A→ N ∪ {∞} be two functions. We say f is α-dominated by g and write
f ⪯α g if for all a ∈ A∶ f(a) ≤ α(g(a)). We call f and g α-equivalent and write f ≈α g if
f ⪯α g and g ⪯α f . Additionally, we just write ≈ to indicate that there exists an α such
that the relation holds. The ≈ relation is the same as saying that two cost functions are
bounded on the same subsets of their domain. Formally, we have f ≈ g iff for all B ⊆ A:
supx∈B f(x) <∞⇔ supx∈B g(x) <∞. A proof can be found in [9].

Regular cost functions possess closure properties comparable to those of regular languages
(cf. [10]). They are closed under min and max of two functions, which extends the classical
union and intersection closure. Moreover, they are closed under inf- and sup-projections.
These projections extend classical alphabet projection in the following way: Let Σ be an
alphabet, π ∶ Σk+1 → Σk a projection that removes the last component and let π∗ be the
letterwise extension of π to words. The (π)-inf-projection of a function f ∶ (Σk+1)∗ → N∪{∞}
is defined by w ↦ infu∈π∗−1(w) f(u), and respectively for sup.

It is well-known that regular languages correspond to languages definable in MSO over
word models. This equivalence was lifted to regular cost functions with the logic costMSO.
The syntax of costMSO is standard MSO syntax extended with a new predicate that is only
allowed to appear positively in the formula: ∣X ∣ ≤ N for all set variables X. costMSO is
evaluated over standard relational structures by an inductively defined semantics. For the sake
of a uniform presentation, we assume (w.l.o.g.) that only set variables are used. Additionally,
set inclusion ⊆ is added as a relation. For a relational structure S = (S,R1, . . . ,Rn) and a
valuation β ∶X → 2S of the free variables the semantics can be defined as follows (see [11]):

⟦RiX1 . . .Xki⟧S,β ∶=
⎧⎪⎪⎨⎪⎪⎩

0, (a1, . . . , aki) ∈ RS
i , β(Xi) = {ai}

∞, otherwise

⟦¬RiX1 . . .Xki⟧S,β ∶=
⎧⎪⎪⎨⎪⎪⎩

∞, (a1, . . . , aki) ∈ RS
i , β(Xi) = {ai}

0, otherwise

⟦∣X ∣ ≤ N⟧S,β ∶= ∣β(X)∣

⟦ϕ ∧ ψ⟧S,β ∶=max(⟦ϕ⟧S,β , ⟦ψ⟧S,β) ⟦ϕ ∨ ψ⟧S,β ∶=min(⟦ϕ⟧S,β , ⟦ψ⟧S,β)

⟦∃Xϕ(X)⟧S,β ∶= inf
S′⊆S
⟦ϕ(X)⟧S,β[X↦S

′] ⟦∀Xϕ(X)⟧S,β ∶= sup
S′⊆S
⟦ϕ(X)⟧S,β[X↦S

′]

This semantics assigns each sentence ϕ a function Σ∗ → N ∪ {∞} over word models. The
main equivalence theorem for costMSO states that these functions are exactly the regular
cost functions (cf. [9]). The central decision problems for costMSO are boundedness and
dominance: A formula ϕ is bounded over a domain D, if there exists a bound B ∈ N such
that ⟦ϕ⟧S < B for all S ∈ D. A formula ϕ dominates a formula ψ on a domain D, if for all
subsets C ⊆ D it holds that whenever ϕ is bounded, ψ is bounded as well.

2.2 MSO+U
Another approach to introduce a method to express boundedness or unboundedness problems
in MSO is with the help of the unbounding quantifier. Unlike costMSO, this leads to
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a qualitative extension. In MSO+U, a new, third set quantifier U is added to MSO.
This quantifier evaluates to true if there are arbitrarily large finite sets that satisfy a
formula, so formally, A ⊧MSO+U UX.ϕ(X) if and only if A ⊧MSO ∃X(∣X ∣ > n ∧ ∣X ∣ < ∞ ∧
ϕ(X)) for every n ∈ N.

Note that, for every fixed n, ∣X ∣ > n is expressible in classical MSO. For completeness
reasons, the dual quantifier B is also added, with the semantics that A ⊧ BX.ϕ if and only if
there is a (finite) bound on the size of sets that satisfy ϕ. For obvious reasons, MSO+U is
only studied over infinite structures, in particular infinite words and trees.

Unlike classical MSO and costMSO, there is most likely no automaton model for MSO+U
with full second-order quantification for topological reasons [15], and furthermore, the
MSO+U-theory of the natural numbers with order is already undecidable [6]. However, the
weak variant is decidable over infinite words [4] and infinite trees [8].

2.3 (Resource-) Automatic Structures and FO+RR

The theory of automatic structures provides a formalism to obtain logical structures with a
decidable first-order theory by automata representations of the structures (for a comprehensive
introduction see, e.g., [16]). A relational structure S = (S,R1, . . . ,Rn) is called automatic if
there are a representation of the universe S in form of a regular language and representations
of the relations R1 up to Rn in the form of synchronous transducers. A synchronous transducer
for a j-ary relation over S ⊆ Σ∗ can be seen as a (normal) automaton operating over the
vector alphabet (Σ⊎ {$})j . It reads all j words letter-by-letter in parallel. Shorter words are
padded to the length of the longest word with a newly introduced padding symbol $. This
transformation from a tuple of words to a (padded) word over a vector alphabet is called
convolution.

The main result for automatic structures is that they always have a decidable first-
order theory (see [16]). This is obtained by inductively translating logical operations into
operations for automata. Boolean connectives can be represented by union and intersection
of regular languages and existential quantification corresponds to alphabet projection for
vector alphabets. The original result has been extended to ω-words and finite and infinite
trees (see [1, 2]).

Motivated by quantitative verification questions, the idea of automatic structures has
been lifted to resource structures in [18]. Resource structures are a quantitative extension
of relational structures. The quantitative aspect is introduced via the relations: A tuple of
elements ā is not just in some relation R or not, but being in relation may cost some value
from N∪{∞}. The verification-driven question was how expensive it is to satisfy a first-order
definable property in such a structure. The logic FO+RR (first-order over resource relations)
was designed to provide a formalism for this question. Its syntax is identical to normal FO
without negation. For a resource structure S = (S,R1, . . . ,Rn) and a variable interpretation
β ∶X → S, the semantics is inductively defined as follows:

⟦Rix1 . . . xki⟧S,β ∶= RS
i (β(x1), . . . , β(xki))

⟦x = y⟧S,β ∶=
⎧⎪⎪⎨⎪⎪⎩

0, β(x) = β(y)
∞, otherwise

⟦x ≠ y⟧S,β ∶=
⎧⎪⎪⎨⎪⎪⎩

∞, β(x) = β(y)
0, otherwise

⟦ϕ ∧ ψ⟧S,β ∶=max(⟦ϕ⟧S,β , ⟦ψ⟧S,β) ⟦ϕ ∨ψ⟧S,β ∶=min(⟦ϕ⟧S,β , ⟦ψ⟧S,β)

⟦∃xϕ(x)⟧S,β ∶= inf
s∈S
⟦ϕ(x)⟧S,β[x↦s] ⟦∀xϕ(x)⟧S,β ∶= sup

s∈S
⟦ϕ(x)⟧S,β[x↦s]
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This semantics answers the intuitive question in the following way: Let ϕ be an FO+RR-
formula with ⟦ϕ⟧S = n <∞. If we consider ϕ as a normal FO-formula, it is satisfied if we allow
all those tuples to be in relation (in the classical sense) that cost at most n. This relation also
explains the absence of negation. In order to preserve this intuitive semantics, monotonicity
is necessary: if we allow a higher resource usage, more formulas should become true.

Resource-automatic structures extend the idea of automatic structures to resource struc-
tures and FO+RR. A structure is called resource-automatic if its universe can be represented
by a regular language and the semantics of the relations can be specified via synchronous cost
transducers. For the sake of simplicity it suffices to see such a transducer as a B-automaton
operating on a vector alphabet in the same way as for standard synchronous transducers.
The details can be found in [18]. The main result that we use here is that the value of
FO+RR formulas can be computed over resource-automatic structures.

2.4 Cost Tree Automata and Cost Games
In [12], the theory of regular cost functions was lifted to finite trees. Regular cost functions
on trees are defined by B- or S-tree automata. These automata can be seen as an extension
of B-/S-automata on words and nondeterministic top-down tree automata (see, e.g., [13]
for an introduction to regular tree languages and tree automata). For the sake of a simpler
presentation, we move the counter actions to the states of the automaton and tailor the
definition to our setting of binary trees.

A cost tree automaton is a tuple A = (Q,Σ,QI ,∆, F,Γ, γ) where the components have
the following meaning: Q is a finite set of states, Σ is the input alphabet, QI ⊆ Q is a set
of initial states, ∆ ⊆ Q × Σ × Q × Q is the transition relation, F ⊆ Σ × Q the set of final
letter/state combinations, Γ the finite set of counters and γ ∶ Q → (Γ → {i,r,cr}∗) the
counter actions. A run ρ of A on a tree t is also a tree with dom(ρ) = dom(t), but with
a labeling from Q that is consistent with the transition relation ∆. We call ρ accepting if
ρ(ε) ∈ QI and there are matching letter/states pairs for the leaves in F . Formally, for all
u ∈ leaves (t) ∶ (t(u), ρ(u)) ∈ F . In the same way as for cost automata on words, we define
B- and S-tree automata. They inherit the restrictions on the counter operations from word
automata and their quantitative semantics is defined in the same spirit. However, we now
compute the value along all paths from the root to a leaf in the tree as for word automata
and take the maximum of the values in B-automata and the minimum in S-automata. Again,
we write ⟦A⟧B and ⟦A⟧S to refer to this semantics.

For an analysis of tree automata, it is often helpful to take a game-theoretic viewpoint to
the membership problem. To this end, we define cost games following the idea of [12]. For
our purpose, it is helpful to view a cost game as a standard two-player reachability game on
a finite graph that is extended with a finite set Γ of counters and counter actions γ that map
every position in the game to the counter actions as for cost tree automata. As usual, the
game positions are partitioned into two sets: One that belongs to the first player – called
Eve – and one that belongs to the second player – called Adam. A play is formed similar
to standard games: The play starts in some initial position. Then, the player that controls
the respective game position chooses a next position according to the edges of the graph.
Additionally, we simulate the counters along with the play and write C(τ) for the set of
checked counter values in a play analogously to cost automata. For an introduction to games
and their connection to tree automata see, e.g., [20].

We also define B- and S-games with the restrictions on the counter actions as for automata.
In both types of games, Eve aims to reach the goal positions F of the reachability game.
In B-games she additionally wants to minimize the largest checked counter value. In S-
games she wants to maximize the smallest checked counter values. This is analogous to
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automata. Correspondingly, an infinite play that never reaches F has value ∞ in B-games
and value 0 in S-games. We define the value of a game based on the best values the
players can enforce based on their strategies. For this purpose, we consider strategies as in
standard two-player games on graphs. If Eve and Adam fix their strategies σE and σA, the
resulting play is fixed and we denote it by τσE ,σA

. Cost games are determined (see [12]).
That is, infσE

supσA
valB(τσE ,σA

) = supσA
infσE

valB(τσE ,σA
) and supσE

infσA
valS(τσE ,σA

) =
infσA

supσE
valS(τσE ,σA

) and we write valB(G) and valS(G) for this value of the game G.
It is helpful for our analysis to view the value computation of a tree t on a cost automaton

as a cost game. The idea is essentially identical to the membership game (see [20]) for tree
automata. The two players partly construct a run on one path of the tree from the root
to a leaf. It starts in the root with some state from QI . In every position, Eve selects the
transition from ∆ that should be used and Adam chooses whether he wants to continue
in the left or right child of the current node. The game continues in this node with the
state given by the chosen transition. The counters and counter actions are just copied from
the respective states in the automaton. The final positions are determined by the final
letter/state pairs. We call this game the cost membership game of A on t and writeMA,t.
We have that valB(MA,t) = ⟦A⟧B(t) and valS(MA,t) = ⟦A⟧S(t).

3 Quantitative Counting MSO

In this section we introduce a quantitative extension of MSO with a focus on counting. We
do so following the approach used for the quantitative µ-calculus [14]. Thus, we keep the
standard syntax, and also use the traditional interpretations of the operators. However,
instead of interpreting these over {0,1}, we evaluate minimums and maximums over the
natural numbers with infinity.

To be more precise, we start with MSO without first-order variables and without negation.
We then add a new atom to count the sizes of sets to the syntax, and allow formulas
to be compared to infinity. Fixing a relational signature τ = {R1, . . . ,Rn} and a set V =
{X1, . . . ,Xm} of second-order variables, formulas of qcMSO are defined inductively.

Atomic formulas are of the form RX1 . . .Xr, Xi = ∅, Xi ∈ Xj , or ∣Xi∣, for variables Xk

and relation symbols R ∈ τ of arity r.
If ϕ,ψ are formulas, then ϕ ∧ψ, ϕ ∨ ψ, ϕ <∞, and ϕ =∞ are formulas.
If ϕ is a formula and X a variable, then ∃Xϕ and ∀Xϕ are formulas.

In contrast to the logics defined before, we view ∞ as true and 0 as false, which allows
us to adapt the classical semantics. Furthermore, all atomic formulas but formulas ∣X ∣
are boolean. Given a τ -structure A and an interpretation β∶X → P(A), the semantics
⟦⋅⟧A,β ∶qcMSO(τ) → N ∪ {∞} is defined as follows, where we omit A, β if clear from the
context for better readability.

⟦∣X ∣⟧ = ∣β(X)∣ ⟦RX1 . . .Xr⟧ =
⎧⎪⎪⎨⎪⎪⎩

∞, (a1, . . . , ar) ∈ R,β(Xi) = {ai}
0, otherwise

⟦X = ∅⟧ =
⎧⎪⎪⎨⎪⎪⎩

∞, β(X) = ∅
0, otherwise

⟦X ∈ Y ⟧ =
⎧⎪⎪⎨⎪⎪⎩

∞, β(X) = {a}, a ∈ β(Y )
0, otherwise

⟦ϕ ∨ ψ⟧ =max(⟦ϕ⟧, ⟦ψ⟧) ⟦ϕ ∧ψ⟧ =min(⟦ϕ⟧, ⟦ψ⟧)

⟦ϕ <∞⟧ =
⎧⎪⎪⎨⎪⎪⎩

∞, ⟦ϕ⟧ <∞
0, otherwise

⟦ϕ =∞⟧ =
⎧⎪⎪⎨⎪⎪⎩

∞, ⟦ϕ⟧ =∞
0, otherwise

⟦∃Xϕ⟧ = sup
A′⊆A
⟦ϕ⟧β[X↦A

′] ⟦∀Xϕ⟧ = inf
A′⊆A
⟦ϕ⟧β[X↦A

′]
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As a convention, formulas whose evaluation can only be 0 or ∞, that is, true or false, are
called boolean formulas. For example, formulas without any occurrence of ∣X ∣ are boolean,
and so are formulas ϕ =∞.

As atomic formulas which are also formulas of MSO always evaluate to ∞ and 0, qcMSO
clearly extends MSO: a formula can be translated by replacing every occurrence of a negation
with a comparison < ∞. What is more, it is easily expressible that a set is finite. As
supremums and infimums over sets that satisfy a certain property can be encoded in a
straightforward manner, we can thus also express the quantifier U :

UX.ϕ ≡ (∃X(∣X ∣ ∧ ∣X ∣ <∞∧ϕ)) =∞.

It is an easy consequence that qcMSO subsumes MSO+U.

I Lemma 2. For every formula ϕ ∈ (W)MSO+U there is a formula ϕ′ ∈ qc(W)MSO such
that A ⊧ ϕ if and only if ⟦ϕ′⟧A =∞.

One easily obtains the following lemma by exchanging ∧ and ∨, swapping the quantifiers,
replacing positive boolean atomic formulas ϕ by ϕ <∞ and negated atoms ¬ϕ by ϕ to take
the inverted semantics between costMSO and qc(W)MSO into account. Additionally, we
need to rewrite ∣X ∣ < N to ∣X ∣ because of the different syntax of the operators.

I Lemma 3. For every cost(W)MSO-formula ϕ there exists a qc(W)MSO-formula ϕ′ such
that ⟦ϕ⟧A = ⟦ϕ′⟧A.

Furthermore, the boundedness property and the dominance relation for costMSO on
finite words and trees are expressible in qcMSO on (ω,<) and the infinite binary tree
T2 = ({0,1}∗, S0, S1), respectively, as stated by the following lemma.

I Lemma 4.
1. Given a costMSO-formula ϕ over finite words, one can effectively construct a qcWMSO-

formula ϕb such that ⟦ϕb⟧(ω,<) =∞ (true) if and only if ϕ is bounded over finite words.
2. Given two costMSO-formulas ϕ,ψ over finite words, one can effectively construct a

qcMSO-formula ϑd such that ⟦ϑd⟧T2 =∞ if and only if ϕ dominates ψ on finite words.

Proof. Regarding 1., a finite word over Σ = {0, 1} can be represented by two sets X,X1 such
that X ⊆ ω is a finite initial subset of the natural numbers indicating the length of the word
and X1 ⊆ X (also finite) contains the positions labeled with 1. Clearly, such sets can be
defined in WMSO and thus qcWMSO by a formula ψ(X,X1). As costMSO is subsumed by
qcMSO, there exists a qcMSO-formula ϕ′ with the same evaluation. Let ϕ′r be this formula
where quantification is relativized to (finite) X and P1Y is replaced by Y ∈ X1. Then,
boundedness is expressed by (∃X∃X1(ψ(X,X1) ∧ϕ′r)) <∞.

Regarding 2., we identify a word w ∈ {0, 1}∗ with the respective position in the tree. For
MSO, it is easy to define, given a sentence ϕ over finite words, a formula ϕ′(x) over the infinite
binary tree such that w ⊧ ϕ if and only if T2 ⊧ ϕ′(w). This directly extends to costMSO,
and accordingly, we also obtain corresponding translations ϕ̂(X), ψ̂(X) ∈ qcMSO for ϕ,ψ.
Dominance is then expressed by ∀X[(∃Y (Y ∈X ∧ ϕ̂(Y ))) =∞∨ (∃Y (Y ∈X ∧ ψ̂(Y ))) <∞].
We remark that it is important here that ∀X also quantifies over infinite sets to match the
definition of dominance. J

By adapting the construction for the boundedness formula, it follows straightforwardly
that boundedness on infinite words and finite trees can also be expressed (in the respective
structures).
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I Corollary 5.
The boundedness problem for costMSO on infinite words can be expressed in qcMSO on
(ω,<).
The boundedness problem for costMSO on finite trees can be expressed in qcWMSO on
the infinite binary tree.

As qcMSO extends both costMSO and MSO+U, negative results for either of these
transfer. In fact, the conditional undecidability result for MSO+U on the infinite binary
tree from [5] was recently improved: it was shown in [6] that the MSO+U-theory of (ω,<) is
undecidable. Thus, the undecidability of the model-checking problem for qcMSO follows:

I Corollary 6. Given a qcMSO-sentence ϕ, it is undecidable whether ⟦ϕ⟧(ω,<) =∞.

4 Resource-Automatic Structures and FO+RR=∞

Towards the decidability of the qcWMSO-theories of the natural numbers with order and
the infinite binary tree, we follow an approach used in [19]: Instead of working with second-
order quantification directly, we consider the first-order problem on the powerset structure
restricted to finite sets. We prove that the respective structures are resource-automatic and
resource-tree-automatic, respectively, and that deciding the theory reduces to deciding the
theory of an extension of FO+RR with infinity comparisons.

As a first step, we extend syntax and semantics of FO+RR introduced earlier by the new
operators ϕ =∞ and ϕ <∞ for formulas ϕ such that ϕ =∞ evaluates to 0 if ⟦ϕ⟧ =∞ and to
∞ otherwise, and dually for ϕ <∞. We use the decidability of FO+RR established in [18],
which itself relies on the closure properties for regular cost functions described in [9]. To
prove that this extension FO+RR=∞ is still decidable on resource-automatic structures, it
suffices to provide an automata-theoretical construction that transforms a B-automaton A
for ϕ into a B-automaton A∞ for ϕ =∞.

I Lemma 7. Let A be a B-automaton. One can effectively construct a B-automaton A∞
such that ⟦A∞⟧(w) = 0 if ⟦A⟧(w) =∞ and ⟦A∞⟧(w) =∞ otherwise

Proof. As we consider automata over finite words, observe that ⟦A⟧(w) =∞ only if there
are no accepting runs of A on w. Hence, to construct A∞, we first view A as an NFA by
removing all counters, then complement it, and reintroduce a dummy counter that is never
checked. By construction, this automaton A∞ maps a word to 0 if and only if A as an NFA
rejects the word, and all other words are mapped to ∞. J

I Corollary 8. Given an FO+RR=∞-sentence ϕ and a resource-automatic structure A, it is
decidable whether ⟦ϕ⟧A =∞.

To prove that the qcWMSO-theory of (ω,<) is decidable, consider the structure F =
(FinPot(N),<, ∣ ⋅ ∣, ∈,= ∅), where

FinPot(N) = {a ⊆ N ∣ ∣a∣ <∞},
a < b =∞ if a = {a′}, b = {b′} are singleton sets such that a′ < b′, and a < b = 0 otherwise,
∣a∣ evaluates to the size of a,
a ∈ b =∞ if a = {a′} is a singleton and a′ ∈ b, and a ∈ b = 0 otherwise,
and a = ∅ evaluates to ∞ if a is indeed empty and to 0 otherwise.

It is not difficult to see that this structure is resource-automatic, using the regular language
{0} ∪ {0,1}∗1 where a word corresponds to the set that consists of the indices where the
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word is 1. For ∣ ⋅ ∣, a single counter to count the occurrences of 1s suffices. The other relations
correspond to the complements of the relations in the classical automatic structures setting.

Following the approach used to embed costMSO into qcMSO, by exchanging conjunctions
and disjunctions, replacing ∃X by ∀x and ∀X by ∃x and swapping =∞ and <∞, one obtains
the following lemma.

I Lemma 9. For every qcWMSO-sentence ϕ, one can effectively construct an FO+RR=∞-
sentence ϕ′ such that ⟦ϕ⟧(ω,<) = ⟦ϕ′⟧F.

I Corollary 10. Given a qcWMSO-sentence ϕ, it is decidable whether ⟦ϕ⟧(ω,<) =∞.

It was argued in [18] that exact evaluations of FO+RR-sentences on resource-automatic
structures can be computed once it is known that the evaluation is bounded. This can, for
example, be achieved by successively trying parameters n = 0, 1, . . . with standard first-order
evaluation on the structure where a resource relation R is replaced by the relation of tuples
of R of cost at most n. As the automata A∞ have boolean evaluations, thus are essentially
NFAs, this approach can be lifted to FO+RR=∞-sentences, by substituting only relations
outside the scope of ∞-comparisons. Accordingly, exact evaluations can be computed also
for qcWMSO on the ordered natural numbers.

I Theorem 1.
(a) Given a sentence ϕ ∈ qcWMSO, the evaluation ⟦ϕ⟧(ω,<) of ϕ on the natural numbers

with order is effectively computable.

4.1 Resource-Tree-Automatic Structures
We aim at generalizing the idea of resource-automatic structures to universes that are
representable as a regular tree language. This extends the well-understood idea of tree-
automatic structures (see, e.g., [1]). Moreover, it allows us to reuse the idea presented
previously to obtain an algorithm for qcWMSO on the infinite binary tree, because finite
trees can be used to represent all finite subsets of the infinite binary tree.

The general approach to resource-tree-automatic structures and the presentation of the
result follow the ideas for resource-automatic structures as presented in [18]. First, we fix
some additional notation. Secondly, we describe an inductive translation strategy from
FO+RR=∞-formulas to cost tree automata. While the cases of the boolean connectives can
be directly transferred, the translation of the quantifiers needs some more insight into cost
games. Correspondingly, we analyze strategies in S-games and use the results to complete the
inductive translation, which provides an algorithmic method to compute the (approximate)
value of FO+RR=∞-formulas.

First, we extend the definition of convolution and transducers to trees. For a finite alphabet
Σ, let Σ⊗m = (Σ ∪ {$})m and let t1 ∈ TΣ⊗m , t2 ∈ TΣ be two trees. We define the convolution
by t ∶= t1 ⊗ t2 ∈ TΣ⊗m+1 with dom(t) = dom(t1) ∪ dom(t2) and t(u)i = t1(u)i if u ∈ dom(t1),
t(u)i = $ otherwise for i ≤ m and t(u)m+1 = t2(u) if u ∈ dom(t2), t(u)m+1 = $ otherwise. A
tree t ∈ TΣ⊗m is correctly padded if there are t1, . . . , tm ∈ TΣ such that t = t1 ⊗⋯⊗ tm. This
means correctly padded trees have have no $ if there are normal letters in the same component
of a descendant. Moreover, they have no positions labeled completely with padding symbols.
We write ◻ ∶= $m as a short-hand for a vector of appropriate dimensionality containing only
padding symbols. An m-dimensional synchronous B-/S-tree transducer A is a cost tree
automaton operating over the alphabet Σ⊗m. We define its semantics by the cost automaton
semantics over the convolution: ⟦A⟧ ∶ (TΣ)m → N∪ {∞}, (t1, . . . , tm)↦ ⟦A⟧B/S(t1 ⊗⋯⊗ tm).
With these preparations, we can define resource-tree-automatic structures.
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I Definition 11. Let S = (S,R1, . . . ,Rm) be a resource structure. We call S resource-tree-
automatic if S is representable as a regular language of finite trees and there are synchronous
B-/S-tree transducers ARi such that RS

i = ⟦ARi⟧.

For the purpose of a clearer proof presentation we will assume that S = TΣ. This is no
restriction of the general case since we can introduce a new automatic predicate PS ⊆ TΣ
that contains exactly the elements of S and relativize all quantifications w.r.t. PS for every
regular tree language S.

4.1.1 Translating FO+RR=∞ to transducers

We now provide the necessary ingredients for an inductive translation of FO+RR=∞-formulas
into synchronous cost transducers. For a given formula ϕ with k free variables, we construct
a k-dimensional synchronous cost transducer Aϕ such that ⟦ϕ⟧ = ⟦Aϕ⟧. The cases of atomic
formulas are simple. For a relation Ri, we are given a cost transducer ARi by definition.
The operators = and ≠ can be implemented with simple cost tree automata that just check
whether in all positions in the tree all letters in the alphabet vector match or that there is
a mismatch somewhere, respectively. The semantics of the boolean connectives is min and
max. Correspondingly, we directly use the closure of cost tree automata under min and max,
which was already established in [12]. The =∞ operator can be translated in the same way
as for finite words: By the definition of the semantics of B-tree automata, the value of a tree
is ∞ if and only if the tree is rejected in the classical sense, i.e., there is no strategy of Eve in
MA,t to always reach a final state in every play. Thus, we can obtain an automaton for =∞
by ignoring the counters and constructing a classical complement automaton for the given
one. When interpreted as a B-tree automaton, it will output 0 for trees that were previously
not accepted (that is, had value ∞) and ∞ otherwise.

It remains to consider existential and universal quantification. In the classical setting,
universal quantification can be expressed by negation and existential quantification. In our
setting, we have to consider both existential and universal quantification since FO+RR=∞ has
no negation. We deal with these quantifications by inf-projection and sup-projection for cost
automata. However, on the automaton level, one has to deal with the padding symbol. After
projecting away one of the components, the automaton may contain transitions only labeled
with padding symbols. Let us illustrate the problem by a simple example over Σ = {a, b}:
Let Rxy be a binary relation symbol that evaluates to the length of the longest path in
y. Formally, R(t1, t2) ∶= maxu∈dom(t2) ∣u∣. A B-tree automaton A that just increments its
counter in every step on the second tree implements this relation. Now, consider the tree
t0 = a that consists only of a root node. For this tree, we have ⟦∀yRt0y⟧ =∞ but if we look
at the sup-projection of A to the first component denoted by Asup we obtain

⟦Asup⟧(a) =max{⟦A⟧((a, a)), ⟦A⟧((a, b)), ⟦A⟧((a,$))} = 1

To compute the supremum over all trees, we have to consider t0 extended by arbitrarily long
sequences of padding symbols (◻).

In the classical setting (for existential quantification and standard projection), this can
be handled by treating such pure padding transitions as ε-transitions and then eliminating
them. However, in cost automata the pure padding transitions are much more difficult to
eliminate (see [18] where this problem is treated for cost automata on words). As a solution,
we split the computation of sup and inf into the respective projection operation and an
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additional sup/inf over arbitrarily long padding sequences. Formally, for a tree t ∈ TΣ⊗m , let

padext (t) ∶=
⎧⎪⎪⎨⎪⎪⎩
s ∈ TΣ⊗m ∣ dom(s) ⊇ dom(t), s(u) =

⎧⎪⎪⎨⎪⎪⎩

t(u), u ∈ dom(t)
◻, otherwise

⎫⎪⎪⎬⎪⎪⎭

Consider the case of existential quantification, and assume that we have applied the
inf-projection and obtained a B-automaton A (which might still contain pure padding
transitions). For a tree t ∈ TΣ⊗m we are interested in the value infs∈padext(t)⟦A⟧B(s). If we
modify A such that it can simulate on t all runs of A on trees from padext (t), then we
obtain the correct value for t because the semantics of B-automata takes the infimum over all
runs. Similarly, we use S-automata for the sup-projection to obtain sups∈padext(t)⟦A⟧S(s).

Thus, for a given tree t and a cost tree automaton A, we aim at modifying A such that
it can simulate all runs on trees from padext (t) that contribute to the overall value. For
this purpose, we consider the membership game on the infinite tree t◻ that is labeled with ◻
at all positions. Since all positions in this tree look the same, there is no need to keep track
of the position in the tree. Moreover, Eve decides in each round whether the current node is
treated as an inner node or as a leaf (since Eve has to reach the goal set, she has to decide for
a leaf at some point). We call this the padding game for A and denote it byMA,◻. We now
investigate the “concatenation” of the cost membership game followed by the padding game.

Let (MA,t ⊳MA,◻) consist of the union ofMA,t andMA,◻ with the following additional
connecting edges: from a position (q, u) ofMA,t with a leaf u of t, Eve can decide to stay
insideMA,t and finish the game as usual, or to treat u as an inner node. In the latter case,
the play would reach a position (q′, ui) for a node ui not in the domain of t. Instead, the
play jumps toMA,◻ in state q′.

I Lemma 12. Let A be a nondeterministic cost tree automaton. We have:
valB((MA,t ⊳MA,◻)) = infs∈padext(t)⟦A⟧B(s)
valS((MA,t ⊳MA,◻)) = sups∈padext(t)⟦A⟧S(s)

With this knowledge and the observation thatMA,◻ does not depend on the input tree
t, we develop methods to precompute information on MA,◻ with the goal of providing a
modified automaton A′ whose membership game MA′,t approximates (in the sense of ≈
equivalence) the combined game (MA,t ⊳MA,◻).

First, we consider the case of inf. This case is easier due to the inherent asymmetry
in our setting. We claim that it is sufficient to know from which positions (q,◻) Eve can
winMA,◻ when we interpret this as a simple reachability game with goal set F . This has
the following justification: In B-games every counter is always checked after an increment.
Thus, the value of a play can only increase and Eve should just reach a final position as fast
as possible. If she just plays the normal reachability strategy she reaches F in at most as
many steps as the size ofMA,◻ (denoted by ∣MA,◻∣). In the worst case, every of these steps
increments the counter. However, even if she could have avoided some of these increments,
the error w.r.t. an optimal strategy is at most ∣MA,◻∣. Thus, we obtain:

I Lemma 13. Let A be a synchronous B-tree transducer over Σ⊗m. One can construct a
synchronous B-tree transducer A′ such that: ⟦A′⟧B(t) ≈ infs∈padext(t)⟦A⟧B(s).

The sup-case requires more sophisticated methods for two major reasons: First, the
independent use of increment and check prevent an argument as before. Secondly, there is
no single strategy witnessing valS(G) =∞. Moreover, we recognize that it does not suffice to
compute the value ofMA,◻ to capture the behavior of (MA,t ⊳MA,◻) in an automaton. In
the combined game, the counters are not initialized with 0 at the beginning of theMA,◻-part
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but inherit the current counter values fromMA,t. So a direct cr at the beginning ofMA,◻
ensures that Adam can always achieve value 0 ifMA,◻ is considered individually. But in the
combined game the counter may have a large value fromMA,t. If he could first reset the
counter before checking it, this would be much better.

We approach this problem by a more detailed analysis of strategies of Adam in S-cost
games. Due to space restrictions, we can only provide the cornerstones of the proof strategy
here. Let σ be a strategy of Adam in an S-cost game G. We remind the reader that Adam
wants to check counters with small values or avoid F . Since we can handle the reachability
of F individually before, we concentrate on the counter values. We measure the success of σ
in the following three categories per counter:
1. cr: The strategy σ can enforce a check of the counter after a bounded number of steps.
2. rcr: The strategy σ can enforce a reset before any check and subsequently a check after

a bounded number of increments
3. �: The strategy σ provides no guarantees on the counter.
Formally, such a profile p is a mapping from the set of counters Γ to {cr,rcr,�} and we
say that a strategy σ guarantees p if all plays that are played according to σ satisfy the
conditions stated in p. We call a profile p simple and write, e.g., [c1 ↦ cr] if it provides only
a guarantee on one counter – the other counters are mapped to �. In order to incorporate
the choices of Eve in the play, we need combinations of several such profiles to describe a
strategy σ. For example, Eve may choose whether she wants to check a counter c1 or c2. We
express this as a disjunction of profiles (called generalized profile) and write in this example
[c1 ↦ cr] ∨ [c2 ↦ cr].

Computing all possible generalized profiles for strategies of Adam in an S-cost game
is a sufficient precomputation to approximate the complete game (MA,t ⊳MA,◻) at the
position of a leaf node inMA,t. There are only finitely many generalized profiles. We want
to compute for every such generalized profile whether Adam has a strategy that guarantees it.
We then want to simulate the behavior of (MA,t ⊳MA,◻) in an automaton. To implement
this, we use the fact that one can extend nondeterministic cost tree automata to alternating
cost tree automata in a similar way as standard alternating tree automata (see [12]). The
alternation allows us to represent Adam’s choice among his possible generalized profiles
followed by Eve’s choice among the profiles in the disjunction in the automaton. In the
target state, the automaton checks counters that have guarantee cr and resets and then
checks counters that have guarantee rcr. A detailed analysis of S-cost games shows that the
bound on the number of increments in the guarantees cr and rcr only depends on the size of
the game. Since the size ofMA,◻ only depends on the size of A, we obtain the following:

I Lemma 14. Let A be a synchronous S-tree transducer over Σ⊗m. One can construct a
synchronous S-tree transducer A′ such that: ⟦A′⟧S(t) ≈ sups∈padext(t)⟦A⟧S(s).

The algorithm to compute the possible generalized profiles employs methods from the
theory of tree automata on infinite trees. We unfold plays on a finite game graph as an
infinite tree and notice that we can approximate strategies that are good for Adam (as they
guarantee cr or rcr) in MSO logic. From the fact that MSO-formulas always have a regular
tree as model, we can deduce a bound on the number of increments.

In a last step, we combine all the previous observations and results from the theory of
regular cost functions over trees. We saw how to inductively transform an FO+RR=∞-formula
ϕ over a resource-tree-automatic structure into a synchronous cost tree transducer that
computes the semantics up to ≈. The changes from S- to B-automata (or vice versa) and
from alternating to nondeterministic can also be computed effectively up to ≈ (cf. [12]). In
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total, we obtain a transducer A such that ⟦A⟧ ≈ ⟦ϕ⟧. If the computed value is ∞, this is
even exact. In the other case, we know that ⟦ϕ⟧ has a finite value. As described earlier for
the case of resource-automatic structures on words, we can similarly compute exact values
by a reduction to standard tree-automatic structures for formulas outside of ∞-comparisons.

I Theorem 15. The semantics of FO+RR=∞ is effectively computable on resource-tree-
automatic structures.

4.1.2 Deciding the qcWMSO-theory of T2

It remains to show that the above result can be applied to establish that the qcWMSO-theory
of the infinite binary tree is decidable. We use the same idea as for (ω,<) to obtain this
result. Given the infinite binary tree T2 = ({0, 1}∗, S0, S1), we consider the following variant
of the finite powerset structure F2 = (FinPot({0, 1}∗), S0, S1, ^⋅^ , ∈,= ∅), where the (resource)
relations are as follows:
(a, b) ∈ Si evaluates to ∞ if both a = {a′}, b = {b′} are singletons and b′ = a′i. Otherwise,
it evaluates to 0.
For a set a ⊆ {0,1}∗, ^a^ evaluates to an approximation of the cardinality of a that can
easily be computed by a cost automaton (see below for a further explanation), and is
defined as follows:

^a^ = sup
w∈a
(∣{i ∣ ∃u ∈ a ∶ w[1 . . . i] ⪯ u ∧w[1 . . . i + 1] /⪯ u}∣) .

a ∈ b evaluates to ∞ if a = {a′} is a singleton such that a′ ∈ b, and to 0 otherwise.
a = ∅ evaluates to ∞ if a is empty, and to 0 otherwise.

Note that ^⋅^ in the above structure is different from the evaluation of ∣ ⋅ ∣ in qcWMSO.
However, boundedness is preserved because we have ^a^ ≤ ⟦∣a∣⟧T2 ≤ 2^a^: The first inequality
comes from the fact that each element of a can contribute at most 1 to the value of ^a^. To
see the second one, consider the following path w for the supremum: Always proceed to the
subtree that contains more than half of the remaining elements of a. This counts one if the
non-selected subtree was not empty but loses at most half of the remaining elements.

We now claim that F2 is resource-tree-automatic. As universe we consider the set
S ⊆ T{0,1} of finite binary trees with the property that every inner node of the tree is either
labeled with 1 or has a 1-labeled node as descendant. This property can easily be checked by
a tree automaton. A labeled tree t corresponds to the subset of T2 of those positions in t that
are labeled with 1. The condition on the trees in the universe ensures a unique encoding of
every set. Clearly, S0, S1 are automatic, and so are ∈ and = ∅, as they are tree-automatic in
the classical sense. The relation ^⋅^ can be implemented with an S-automaton that simulates
walks as described above by nondeterministically guessing and verifying the positions where
the not-selected subtree contains elements of a.

Using the same translation as for ω, we reduce the problem of deciding the theory of
qcWMSO to the boundedness problem for FO+RR=∞. This is possible as ^⋅^ in the above
sense preserves boundedness.

I Theorem 1.
(b) Let ϕ be a qcWMSO-sentence. It is decidable whether ⟦ϕ⟧T2 =∞.

Although exact FO+RR=∞-evaluations can be computed on resource-tree-automatic struc-
tures, this does not entail that qcWMSO can be evaluated exactly on T2. This shortcoming
has its origin in the fact that cost tree automata can count only along paths. To have an
exact reduction from qcWMSO to FO+RR=∞, counts of different paths would have to be
combined to simulate counting the size of an arbitrary subset of {0,1}∗.
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5 Conclusion

We introduced the logic qcMSO as a quantitative MSO variant to specify boundedness
properties. The logics costMSO and MSO+U can be embedded into qcMSO in a natural way.
Thus, the undecidability of MSO+U on (ω,<) already shows that the semantics of qcMSO
on (ω,<) and the infinite binary tree T2 is not computable. Accordingly, we focused on the
weak variant qcWMSO and provide a method to compute the value of qcWMSO sentences
on (ω,<) and approximations of the value on T2. This result is achieved by a reduction
to a cost-function extension of automatic structures – called resource-automatic structures.
Moreover, we lift the known results to resource-tree-automatic structures.

In the future, we would like to see whether there is an automaton model for qcWMSO
and whether there are meaningful fragments of full qcMSO with good algorithmic properties.
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Abstract
We construct, for any sentence Ψ of the modal µ calculus (Lµ), a derived sentence ΨML in the
modal fragment ML of Lµ and a sentence ΨΠµ

1 in the fragment Πµ
1 of Lµ without least fixpoints

such that Ψ is equivalent to a formula in ML or Πµ
1 if and only if it is equivalent to ΨML or ΨΠµ

1

respectively. The formula ΨΣµ
1 such that Ψ is equivalent to ΨΣµ

1 if and only if Ψ is semantically
in the greatest-fixpoint free fragment Σµ1 is obtained by duality to ΨΠµ

1 . This yields a new proof
of decidability of the first levels of the modal µ alternation hierarchy. The blow-up incurred by
turning Ψ into the modal formula ΨML is shown to be necessary: there are ML formulas that can
be expressed sub-exponentially more efficiently with the use of fixpoints. For Πµ

1 and Σµ1 however,
as long as formulas are in guarded disjunctive form, the transformation into a syntactically Πµ

1
or Σµ1 does not increase the size of the formula.
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1 Introduction

The modal µ calculus (Lµ), a logic expressing properties of labelled transition systems, was
first introduced by Kozen in 1983 [5]. Its popularity is due to its simple but productive syntax
and appealing decidability: deciding satisfiability is exptime-complete; model checking is in
NP and conjectured to be in P.

Syntactically, Lµ consists simply of a propositional modal logic augmented with its
namesake least fixpoint operator µ and the dual greatest fixpoint operator ν. Both the
expressivity and complexity of the logic stem from the alternating usage of µ and ν: the
more alternations are allowed, the richer the fragment of Lµ but the more difficult its
model-checking. Indeed, the alternation hierarchy, consisting of Lµ fragments for which
the number of alternations is fixed is strict [10, 1]. For each fixed alternation-depth, the
model-checking problem is of polynomial complexity, but for whole of Lµ the best current
algorithms still have complexity exponential in a function of the alternation depth.

It is therefore of both practical and theoretical interest to reduce, whenever possible,
the number of alternations used to express a property. Even though the problem must be
at least exptime-hard, in practice model checking is likely to benefit from the one-time
cost of reducing a formula to its simplest form, especially since the size of the formula is
unlikely to dominate the runtime complexity of the model checking. However, only properties
expressible in modal logic or with a single type of fixpoint operator are currently known to
be recognisable. In general, for a given Φ, finding an equivalent Ψ with smallest alternation
depth is one of the main open problems surrounding the modal µ calculus.
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458 Deciding the First Levels of the Modal µ Alternation Hierarchy

Here we focus on the lowest levels of the alternation hierarchy, which are known to be
decidable. The class ML of properties expressible in modal logic, Lµ without fixpoints,
resides at the base of the alternation hierarchy. These are properties which dictate some
behaviour in the initial fragment of a structure, up to fixed depth. Otto [13] showed that
properties of this class are recognisable via a reduction to S2S, the monadic second order
logic over binary trees. Küsters and Wilke showed in [8] that the problem of deciding whether
a property of Lµ can be expressed with only least fixpoints, or, by duality, only greatest
fixpoints, is exptime-complete. Their proof first constructs a bottom-up tree automaton
of which the states correspond to sets of subformulas based on the Lµ formula. Roughly
speaking, the bottom-up automaton accepts a structure if it has an initial fragment such
that every completion admits a valid assignment of automaton states to its nodes. This
automaton is closed under bisimulation if and only if it is Σµ1 definable and equivalent to the
original formula.

Both Otto’s, and Küsters and Wilke’s results focus on deciding whether a property is
expressible with a formula of the lower class, but they pay little heed to the target formula.
The Σµ1 -formula is described in the technical report [9] as part of the proof of decidability of
the first alternation level. Unfortunately the transformation can incur a double-exponential
blow-up in the size of the formula. From a model-checking point of view, this is problematic:
not only is the transformation into a Σµ1 -formula non trivial, but the transformation does not
reduce the complexity of the model-checking procedure. The formula is also quite complex
and does not necessarily resemble the original formula, so it is difficult to follow how the
redundant fixpoints were eliminated. Otto does not describe the target ML formula at all
but it seems that if one can be extracted from the decision procedure for ML, it will also be
based on a power-set construction around subformulas of the original formula.

This paper puts the focus on the relation between a formula and its equivalent formulas
in lower alternation classes. It describes ΨML,ΨΠµ

1 and ΨΣµ
1 , formulas based on, and

syntactically close to Ψ such that Ψ is semantically equivalent to ΨC if Ψ is semantically
in the class C. We show that the required transformations into a ML, Πµ

1 or Σµ
1 formula

are conceptually very simple and easily implementable. The formula ΨML is perhaps as one
could anticipate: if Ψ is semantically in ML, then there is some m such that Ψ is equivalent
to the formula obtained by approximating all fixpoints to their mth stage and truncating the
resulting formula at modal depth m. As it turns out, m needs to be at most exponential
in the length of the formula. Interestingly, the potential blow-up in the size of the formula
is not accidental: there are properties which are semantically modal but can be expressed
with much shorter Σµ

1 -formulas than ML-formulas. We show that in this sense, Σµ
1 is at

least sub-exponentially more concise than ML. There is a clear trade-off between syntactic
complexity and formula length. From the model checking point of view, this means that if
a formula has high modal depth, it may be wise to retain some fixpoint operators which
will keep the size of the formula down. In contrast to ΨML, the most interesting aspect of
ΨΠµ

1 is perhaps its simplicity. As long as Ψ is given in disjunctive form, ΨΠµ
1 and its dual

ΨΣµ
1 are at most as large as Ψ: for disjunctive formulas, Πµ

1 and Σµ
1 are perfectly concise

in the sense that using further alternations to express the same property does not reduce
the size of the formula. This is significant in that the transformation from Ψ to ΨΠµ

1 results
in a genuinely simpler formula instead of a formula in which alternations are eliminated
at the cost of conciseness. The exponential complexity of the resulting decision procedure
which compares Ψ with ΨΠµ

1 is also optimal. The transformation itself is also noteworthy: it
consists roughly speaking of replacing every µ-operator with either ⊥ or a ν-operator. In
other words, in Lµ, any satisfiable µ-subformula is either necessary or interchangeable with
the identical ν-subformula.
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The key to the transformation into ΨΠµ
1 is the use of disjunctive form. Disjunctive form,

introduced in [4], is a syntactic constraint on conjunctions and universal modalities. It has
been used in the context of tableau methods to decide satisfiability for example but as this
paper shows, it is also a promising tool for syntactic manipulations.

2 Preliminaries

I Definition 1 (Modal µ). Given a set of atomic propositions Prop = {P,Q, ...} and a set
of fixpoint variables V ar = {X,Y, ...} , the syntax of Lµ is given by:

φ := P | X | ¬P | φ ∧ φ | φ ∨ φ | ♦φ | �φ | µX.φ | νX.φ | ⊥ | >

This definition only allows formulas in positive from: negation is only applied to pro-
positional variables. Positivity does not restrict the expressivity of the logic. A formula is
guarded if every fixpoint variable is within its binding in the scope of a modality. As is well
documented in the literature [11, 7] every Lµ formula is equivalent to a formula in guarded
form. Without loss of expressivity, we therefore restrict ourselves to Lµ in guarded positive
form. For the sake of clarity, we only consider the uni-modal Lµ but expect the multi-modal
case, as defined in [2] for example, to behave broadly speaking similarly.

Notation

If φ(X) is a formula, we write φ(ψ) for the formula φ where every occurrence of the variable
X is replaced with ψ. For readability, if φ is the binding formula of the fixpoint variable X
as in µX.φ, then φ(ψ) is also φ with X substituted by ψ.

Formulas of Lµ are evaluated on transition systems, referred to as structures, represented
by potentially infinite trees annotated with propositions.

I Definition 2 (Structures). A structure M = (S, s0, R, P ) consists of a set of states S,
rooted at some initial state s0 ∈ S, and a successor relation R ⊆ S × S between the states.
Every state s is associated with a set of propositions P (s) ⊆ Prop which it is said to satisfy.
In this document it is sufficient for us to consider finitely branching structures, so we require
that nodes only have finitely many successors. It is well-known that any structure can be
represented as a potentially infinite tree. To ease the manipulation of structures, we adopt
this representation.

For clarity and conciseness, we give the semantics directly in terms of parity games – the
equivalence between these and the usual semantics is a standard result. For a presentation
of the standard semantics of Lµ and a proof of the equivalence to the above, see for example
Bradfield and Stirling [2].

I Definition 3 (Parity games). A parity game is a potentially infinite two-player game on
a graph G = (V0, V1, E, vI ,Ω) of which the vertices consist of two disjoint sets, V0 and V1
belonging to the players Even and Odd respectively, and are annotated with positive integer
priorities bounded by some maximal priority q, via Ω : V0 ∪ V1 → {0, 1, ..., q}. Player Even
and her opponent, player Odd, move a token along the edges E ∈ (V0 ∪ V1)× (V0 ∪ V1) of
the graph starting from an initial position vI ∈ V0 ∪ V1, each choosing the next position
when the token is on a vertex in their partition. Some positions p might have no successors
in which case they are winning for the player of the parity of Ω(p). A play consists of the
potentially infinite sequence of vertices visited by the token. For finite plays, the last visited
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parity decides the winner of the play. For infinite plays, the parity of the lowest priority
visited infinitely often decides the winner of the game: Even wins if the lowest priority visited
infinitely often is even; otherwise Odd wins. Note that in the literature, the highest priority
is sometimes used, equivalently, as the most significant priority.

The winner of a parity game is defined in terms of existence of winning strategies. Strategies
in general can depend on the history of the game, but in the case of parity games positional
strategies which depend on the current position alone are sufficient, so we define strategies
as mappings from position to position.

I Definition 4 (Positional Strategies). A positional strategy σ for one of the players in a
parity game G is a mapping from the Player’s positions V0 or V1 in the game to a valid
successor position. A play respects a Player’s strategy σ if the successor positions in the
play belonging to the Player are those dictated by σ. If σ is Even’s strategy and τ is Odd’s
strategy, then there is a unique play σ × τ respecting both strategies. The winner of the
parity game at a position is the player who has a strategy σ, said to be a winning strategy,
such that they win σ × τ from that position for any counter-strategy τ . A strategy σ is said
to reach a position if there is a counter-strategy τ such that the position is along the play
σ × τ .

Parity games are positionally determined: for every position either Even or Odd has a
winning positional strategy [3]. This means that strategies gain nothing from looking at the
whole play rather than just the current position. As a consequence, we may take a strategy
to be memoryless: it maps each position of a player to a successor.

For any modal µ formula φ and a structureM we define a parity gameM×φ, constructed
in polynomial time, and say thatM satisfies φ, writtenM |= φ, if and only if Even has a
winning strategy inM× φ.

I Definition 5 (Model-checking parity game). For any formula φ of Lµ, taken to be in positive
form, and a modelM, define a parity gameM× φ with positions (s, ψ) where s is a state
ofM and ψ is a subformula of φ. The initial position is (s0, φ) where s0 is the root ofM.
Positions (s, ψ) where ψ is a disjunction or a formula starting with an existential modality ♦
belong to Even while conjunctions and formulas starting with a universal modality � belong
to Odd. Other positions have at most one successor so their owner is irrelevant; let them
be Even’s. There are edges from (s, ψ ∨ ψ′) and (s, ψ ∧ ψ′) to both (s, ψ) and (s, ψ′); from
(s, µX.φ) and (s, νX.φ) to (s, φ); from (s,X) to (s, νX.ψ) if X is bound by ν, or (s, µX.ψ)
if it is bound by µ; finally, from (s,♦ψ) and (s,�ψ) to every (s′, ψ) where (s, s′) is an edge
in the modelM. Positions (s, P ), (s,¬P ), (s,>) and (s,⊥) have no successors. The parity
function assigns an even priority to (s,>) and also to (s, P ) if P satisfies s in M and to
(s,¬P ) if s does not satisfy P in M; otherwise (s, P ) and (s,¬P ) receive odd priorities,
along with (s,⊥). Fixpoint variables are given distinct priorities such that ν-bound variables
receive even priorities while µ-bound variables receive odd priorities. Furthermore, whenever
X has priority i, Y has priority j and i > j, X must not appear free in the formula ψ binding
Y in µY.ψ or νY.ψ. In other words, inner fixpoints receive higher, less significant priorities
while outer fixpoint receive low priorities. Other nodes receive a priority max which is larger
than any of the priorities assigned to fixpoint nodes. This ensures that these will never be
the lowest priority seen infinitely often.

We now use parity games to define the semantics of Lµ.

I Definition 6 (Satisfaction relation). A structureM, rooted at s0 is said to satisfy a formula
Ψ of Lµ, writtenM |= Ψ if and only if the Even player has a winning strategy from (s0,Ψ)
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inM×Ψ . M satisfies a subformula φ of Ψ if it satisfies the formula φ where free fixpoint
variables X are recursively replaced with their fixpoint binding µX.φ or νX.φ from Ψ. This
is the case if and only if Even has a winning strategy from (s, φ) inM×Ψ.

Formulas are semantically equivalent if they are satisfied by exactly the same structures.

I Definition 7 (Modal Logic, Πµ
1 and Σµ

1 ). ML is the class of properties of structures
expressible in modal logic, that is to say in Lµ without any fixpoint operators. A formula
without fixpoint operators is said to be modal and has a modal depth which is the greatest
number of nested modal operators in it. Πµ

1 is the class of properties expressible by a formula
in positive form without using the least fixpoint operator µ and Σµ1 is the class of properties
expressible by a formula in positive form without using the greatest fixpoint operator ν.
If a formula does not contain µ, ν or both it is said to be syntactically in Πµ

1 ,Σ
µ
1 or ML

respectively.

Beyond ML, Πµ
1 and Σµ1 , the syntactic complexity of formulas is measured by the number

of alternations between least and greatest fixpoint operators. This is the alternation depth of
a formula and corresponds to the number of priorities needed in the model-checking parity
game. A precise definition of the alternation depth is given for example in [2]. The fragments
of Lµ with bounded alternation depth form the alternation hierarchy, which is known to be
strict: for each level, there are formulas which cannot be expressed with a formula of lower
alternation depth [1, 10].

If a formula is equivalent to a formula syntactically in some alternation level, it is said to
be semantically in that alternation level. Thus a formula of high syntactic alternation level
may be of low semantic alternation level.

Our concern is to decide whether a formula is semantically in one of Πµ
1 ,Σ

µ
1 or ML and

produce an equivalent formula syntactically in the appropriate alternation level.

3 The formula for ML

The modal fragment of Lµ, or ML, was shown by Otto to be decidable: for any formula of
Lµ, we can decide whether there is an equivalent modal formula [13]. This section proposes
a proof of decidability by formula construction: given a guarded formula Ψ, it presents a
formula ΨML in ML which Ψ is equivalent to if and only if Ψ is semantically a modal formula.
The crux of the argument is that a semantically modal formula Ψ can only reach depth 22|Ψ|

in any structure and therefore, if a formula is equivalent to a modal formula, it is sufficient
to first approximate all fixpoints to the 22|Ψ|-th stage of induction and then truncate the
formula at modal depth 22|Ψ|. At first sight this might seem like a wasteful solution since
the size of the formula increases as it is unfolded. However, Example 20 shows that there
are formulas which cannot be expressed in modal logic without at least a sub-exponential
increase in formula size. This proves that approximating the fixponts to their 22|Ψ|th stage of
induction is hardly excessive.

The first two definitions fix the notation for measuring the depth of a structure and
approximating fixpoints. Note that all structures are represented as trees since we are
interested in how far into a structure a formula can reach and this is easier to do when
reasoning about trees rather than graphs.

I Definition 8 (Rank and depth). The rank of a state without successors is 0. The rank of a
state with finitely many successors is h+ 1 where h is the maximal rank amongst the state’s
successors. The depth of the root of a structure is 0; otherwise the depth of a state is one
greater than the depth of its parent.
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The rank of a finite tree is the rank of its root and corresponds to the length of the longest
path in the tree.

The next definition formalises the notion of simultaneously evaluating all fixpoints to
their nth stage of induction.

I Definition 9 (Approximants). Let µX0.φ = ⊥ and µXn.φ(X) = φ(µXn−1.φ(X)); let
νX0.φ = > and νXn.φ(X) = φ(νXn−1.φ(X)).
Then, using the notation φ[a/b] to mean φ where all instances of b are substituted with a, and
fixpoints(φ) is the set of fixpoint variables in φ, let φn = φ[νXn/νX;µXn/µX]∀X∈fixpoints(φ),
the formula φ where every fixpoint µX or νX is substituted with its nth approximation µXn

or νXn. See, e.g., [2].

We can then show easily enough that for trees of bounded height n, there is never any
need to go beyond the nth stage of induction. The intuition is as follows: without change
in semantics, we can unfold all the fixpoints in φ all of n times each to obtain a formula
equivalent to φ which only differs syntactically from φn at modal depth greater than n. On
trees of bounded height n, the model-checking parity game will never reach this point for
either formula. Therefore, both games for φ and φn must agree.

I Lemma 10. If φ is guarded, φ and φn agree on trees of rank bounded by n.

Proof. The game for φn is similar to the game for φ except for the additional rule that each
priority p has a counter attached to it which counts how many times p occurs in the play
without a smaller priority occurring in between. If a counter for an odd priority reaches
n + 1, Even loses immediately; if an even priority counter reaches n + 1, then Odd loses
immediately. IfM is a tree of bounded rank, that is to say with a longest path of length no
more than n, and φ is guarded, all plays inM× φ visit at most n states and do not visit a
position (s, ψ) more than once. Therefore no priority is seen more than n times: no counter
can reach n+ 1, so Even wins φn ×M if and only if she can win φ×M. Hence, onM a
tree of rank at most n, φ and φn must agree. WriteM |= φ if and only ifM |= φn. J

The formula φn is a modal formula but it may have modal depth greater than n, for example
if a fixpoint is guarded by more than one modality or if it has interacting fixpoints. We will
therefore define a truncating operation which reduces the modal depth of a formula to n.

I Definition 11. Let the formula φn be the one obtained from a modal formula φ by replacing
subformulas �ψ of modal depth n or larger with > and ♦ψ of modal depth n or larger with
⊥.

I Lemma 12. Let Φ be guarded. Then M |= φn iffMn |= φ whereMn is the infinite tree
ofM truncated at depth n. That is to say, φn is true in M iff the initial three of height n
ofM satisfies φ.

Proof. First note that in the model checking parity game of modal formulas, a state at depth
n can only be reached at a subformula that is itself at modal depth n. AssumingM |= φn,
Even has a winning strategy σ inM× φn to prove it. This game is identical toM× φ until
a position s at depth n is reached at ⊥ or > instead of ♦ψ or �ψ respectively. If Even can
win, her strategy cannot reach any position (s,⊥). The gameMn × φ is also identical to
M× φ until a position at depth n is reached. The strategy σ is winning inMn × φ since it
can avoid (s,♦ψ) positions where s it at depth n and positions (s,�ψ) are automatically
winning for states s at depth n since they have no successors inMn.
Conversely, assume Even has a winning strategy σ in Mn × φ. She can use this strategy
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in M |= φn until it reaches positions (s, ψ) where s is at depth n. Since these are leaves,
her winning strategy does not reach any state (s,♦ψ) where s is at depth n. InM |= φn

her strategy σ therefore only reaches final positions (s, P ) and (s,>) where s is at depth n,
which are winning for her. A strategy is therefore winning in M× φn if and only if it is
winning inMn × φ and thereforeM |= φn iffMn |= φ. J

I Example 13. Consider the modal formula φ = A0 ∧ ♦A1 ∧ �(♦♦A2 ∨ �A3) ∧ ���A4.
Then φ3 = A0 ∧ ♦A1 ∧ �(♦⊥ ∨ �A3) ∧ ��> is true in M iff its initial tree of height 3
satisfies φ. Similarly φ2 = A0 ∧♦A1 ∧�(⊥∨>)∧�> is true inM if its initial tree of height
2 satisfies φ. Finally φ1 = A0 ∧ ⊥ ∧ > = ⊥ , which is reasonable since the root ofM cannot
satisfy ♦A1 without having any successors.

We use the following lemma, which Otto also uses in [13]. The intuition is that if a formula
is equivalent to a ML-formula of modal depth m, then what happens beyond depth m

in a structure can have no effect on whether the formula holds in this structure or not.
The semantic modal depth of a semantically ML formula is the least modal depth of any
equivalent ML formula. Note that the syntactic alternation-depth of a formula is irrelevant
to its semantic modal depth but only semantically ML formulas have a finite modal depth.

I Lemma 14. If φ is guarded and of semantic modal depth m, then M |= φ iff Mm |= φ

whereMm is the infinite tree of M truncated at depth m.

Proof. If φ is guarded and of semantic modal depth m, there are formulas ψ equivalent to φ
of syntactic modal depth m. The model checking parity game for a modal formula has no
infinite paths in it. Furthermore for a formula of modal depth m, a play can visit at most m
distinct states. As a result, in the gamesM× ψ, only positions containing states no deeper
than m are reachable: M×ψ andMm×ψ are identical. Since ψ is equivalent to φ,M |= φ

iffMm |= φ. J

We can now show that if φ is of semantic modal depth m, then it is equivalent to the
formula φmm where fixpoints are first approximated to the mth stage of induction as detailed
in Definition 9 and then truncated at modal depth m as per Definition 11.

I Theorem 15. If φ is guarded and of semantic modal depth m, then φ is equivalent to φmm.

Proof. Let φ be a guarded Lµ formula equivalent to a modal formula of modal depth m.
Then M |= φ iff Mm |= φ. However, φ agrees with φm on all trees of height at most m.
Therefore the following are equivalent:
(1) M |= φ

(2) Mm |= φ

(3) Mm |= φm
(4) M |= φmm
The conditions (1) and (2) are equivalent since φ is semantically modal of depth m, as per
Lemma 14. Then (2) and (3) are equivalent since φ and φm have the same truth-value on
Mm , from Lemma 10. Finally, (3) and (4) are equivalent by definition of φmm. J

Next we aim to show that m can be calculated from φ, using an argument similar to the
one used by Otto [13]. The argument relies on labelling the states of structures with the
subformulas of φ it satisfies and noting that the successors of a state can freely change as
long as the set of successor-labels remains the same without affecting the formulas the state
satisfies. The crux of the argument is that if two structures only differ at very high depth,
but one satisfies φ and the other one does not, then the state labels must repeat themselves
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before the point at which the structures differ. Then we can duplicate a portion of the
branch leading to the difference in order to create structures which are differentiated even
deeper but still only one of them satisfies φ. This shows that if φ is modal, its modal depth
cannot be deeper that the point at which the state labels need to start repeating themselves.
22|φ| + 1 is an upper bound for that point.

The next lemma uses the fact that in an infinite tree, any subtree rooted at s can be
replaced with a distinct subtree rooted at s′ without affecting the subformulas of Ψ satisfied
above depth s as long as the subtrees rooted at s and s′ agree on all subformulas of Ψ. For a
proof, see for example [6]. This should be clear from the notion that whether a state satisfies
a subformula of Φ depends only on the propositional variables that state satisfies and the
subformulas satisfied by its successor states.

I Definition 16. LetM = (M, iM , EM , PM ) be an infinite tree and t be a state ofM, and
let Ψ ∈ Lµ. We denote by αΨ

M (t) the set of subformulas of Ψ satisfied by the state t inM.

I Lemma 17 (Consistent labelling). Let there be two disjoint trees, M = (M, iM , EM , PM )
and M′ = (M ′, iM ′ , EM ′ , PM ′), and a sentence Ψ ∈ Lµ. Let s and s′ be states of M and
M′ respectively, such that αΨ

M (s) = αΨ
M ′(s′), and let v be the predecessor of s in M .

Replace the edge e from v to s within M by a new edge e′ from v to s′ to obtain a new
model N built from parts of M andM′. More precisely, N = (N, iN , EN , PN ) with

N = M \ {u ∈ M | u extends or is equal to s} ∪ {u ∈ M ′ | u extends or is equal to s′}
as set of states;
iN = iM as initial node;
EN = (N ×N � EM )∪ (N ×N � EM ′)∪ {e′} as set of edges, where � denotes restriction;
and
PN = (PM � N ∪ PM ′) � N as propositional variables.

Then, since N ⊆M ]M ′ (where ] denotes disjoint union), the labelling (αΨ
M ∪ αΨ

M ′) � N is
defined on all states of N as well. Moreover, for all s ∈ N we have (N , s) |= φ if and only if
φ ∈ ((αΨ

M ∪ αΨ
M ′) � N)(s), meaning that (αΨ

M ∪ αΨ
M ′) � N is identical to αΨ

N .

I Lemma 18. Let φ be guarded and semantically modal, i.e. φ is equivalent to a formula in
ML. Then the semantic modal depth m of φ is bounded above by 22|φ| + 1.

Proof. Assume m > 22|φ| + 1 to be the semantic modal depth of φ. Then there exists a tree
M of height 22|φ| + 1 which is the prefix of two modelsM1 andM2 such thatM1 |= φ and
M2 6|= φ. That is to say, for every state s ofM, there are states s1 and s2 inM1 andM2
respectively such that s, s1 and s2 agree on propositions and for all inner nodes ofM, s′ is a
successor of s if and only if s′1 is a successor of s1, if and only if s′2 is a successor of s2. If d
is maximal such thatM1 andM2 agree up to depth d, write agree(M1,M2) = d. To start
with, agree(M1,M2) > 22|φ| sinceM1 andM2 agree on their prefixM of rank 22|φ| + 1 .

Label every state s ofM with a set αφM1
(s) consisting of subformulas of φ which are true

inM1 and a set αφM2
(s) consisting of subformulas of φ which are true inM2. For each branch

ofM, that is to say a path from the root ofM, if the branch is longer than 22|φ|, there are
two states a, b in M along the branch such that αφM1

(a) = αφM1
(b) and αφM2

(a) = αφM2
(b).

For each branch i, choose bi to be the first state on a branch which has an ancestor ai such
that αφM1

(ai) = αφM1
(bi) and αφM2

(ai) = αφM2
(bi). Note that for any pair of branches i and j,

either bi = bj or bi and bj are not reachable from one another.
For each branch i and its states ai and bi, let ai′1 be the root of a distinct copy of the

subtree inM1 rooted at ai. Similarly, let ai′2 be the root of a distinct copy of the subtree
rooted at ai inM2. LetM′1 be obtained fromM1 where for each branch i, the state bi is
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replaced with ai′1 and its induced subtree; letM′

2 be obtained fromM2 where bi is replaced
with ai′2 and its induced subtree. Note that these transformations do not affect each other:
recall that each bi is on a distinct branch and is replaced with a subtree of the original
structure. Since αφM1

(ai′1) = αφM1
(bi) and αφM2

(ai′2) = αφM2
(bi), all states preserve their labels

and we know thatM′1 |= φ andM′2 6|= φ, from Lemma 17.
We now show that ifM1 andM2 agree up to depth d, thenM′1 andM′2 agree up to

depth d+ 1. Let i be a branch inM of length d such that i is extended differently in models
M1 andM2. Since depth(bi) > depth(ai) the modelsM′1 andM′2 agree along all extensions
of i to depth d− depth(ai) + depth(bi) > d . That is to sayM′1 andM′2 agree at least up to
d + 1. This establishes agree(M′1,M′2) > agree(M1,M2). In z = m − d many steps, we
will reach modelsMz

1 andMz
2 such that agree(Mz

1,Mz
2) ≥ m butMz

1 |= φ andMz
2 6|= φ.

This contradicts m being the modal depth of φ. J

I Corollary 19. Whether a guarded formula φ is equivalent to a modal formula can be decided
by testing whether φ is equivalent to φ2|φ|+1

2|φ|+1.

Proof. From the previous lemma, if a formula φ is modal, its semantic modal depth m is no
greater than 22|φ| + 1. If φ 6= φ2|φ|+1

2|φ|+1, then φ must disagree with φ2|φ|+1
2|φ|+1 on some structure

M. However, the two model checking gamesM× φ andM× φ2|φ|+1
2|φ|+1 are identical on plays

which do not reach states deeper than 2|φ| + 1, which, since m ≤ 2|φ| + 1, contradicts the
fact that the modal depth of φ is m. J

The most surprising aspect of this result is perhaps the exponential modal depth. This
is not due to the authors’ laziness: formulas with fixpoints can indeed be at least sub-
exponentially more compact than the equivalent modal formulas. The following exhibits
syntactically Σµ1 -formulas but semantically modal formulas with sub-exponential modal depth.
The idea of these formulas is to require a series of propositional variables to occur at different
frequencies until they all occur at the same time. The modal depth of the formula is then
the least common multiple of the frequencies.

I Example 20. There is a family of formulas Φn ∈ Σµ
1 which are semantically modal but

have modal depth Ω(2
√
n) in the length of Φn.

Proof. Write �n for �...� repeated n times. The formula µX.(A ∧ (�nX ∨B) states that
A occurs every nth state on any path until B also occurs at a state whose depth is a multiple
of n. By combining such formulas we can write [�aµX.A ∧ (�aX ∨ (B ∧ C))] ∧ [�bµX.B ∧
(�bX ∨ (A ∧ C))] ∧ [�cµX.C ∧ (�cX ∨ (A ∧ B))] which sets the frequencies at which A,
B and C are seen until they are seen simultaneously. This formula is modal since if it is
true, at the latest at depth a × b × c , all of A,B and C are seen simultaneously. More
precisely, its modal depth is the least common multiple of a, b and c. Generalising this, for a
fixed n, let ψd = µX.�d(Pd ∧X) ∨ (

∧
i≤n Pi) be the formula stating that the proposition

Pd occurs at frequency d until all propositions Pi for i ≤ n occur at the same time, at a
depth multiple of d. Now, let Φn =

∧
d≤n ψd . The modal depth of Φn is the least common

multiple of the integers up to n, written lcm(n). For sufficiently large n, lcm(n) > 2n [12] so
the formula Φn is of length O(n2) and has modal depth Ω(2n) which proves the correctness
of the example. J

4 The formulas for Πµ
1 and Σµ

1

The previous section addressed how to eliminate accidental complexity from semantically
modal formulas. This section studies the same question for Πµ

1 , the class of properties
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expressible without least fixpoint operators, and its dual, Σµ1 . Küsters and Wilke [8] showed
that it is decidable whether a formula is equivalent to a Πµ

1 formula; this section constructs
the desired formula, yielding an alternative decision procedure for Πµ

1and Σµ
1 . We first

formalise the idea that if a property is in Σµ1 , then some finite initial tree is always sufficient
to show that a structure satisfies the property. We then introduce disjunctive form. The final
subsection shows how unnecessary fixpoints can be eliminated syntactically from formulas in
disjunctive form by using the fact that Σµ1 formulas have finite proofs.

4.1 Properties in Πµ
1 have finite counter-proofs

In this section we characterise properties in Σµ
1 and Πµ

1 as properties with finite proofs
and counter-proofs respectively. Informally, µ-formulas express finite behaviour such as
reachability – proofs of such properties are finite: once the desired state is reached, the rest
of the structure is irrelevant. Dually, ν-formulas express infinite behaviour and if a structure
fails to display infinite behaviour, the state at which it fails must be finitely reachable.

I Lemma 21. Let M be a structure with finite branching such that M 6|= Ψ . If Ψ ∈ Πµ
1

then there is some n such that for any structure M′, if M′ agrees with M up to depth n,
thenM′ 6|= Ψ.

Proof. Assume Ψ is semantically in Πµ
1 and Φ is the equivalent formula with no least fixpoints.

SinceM 6|= Φ, Even has a winning strategy inM×¬Φ. Note that ¬Φ is a formula without
greatest fixpoints. That means that Even has a strategy σ winning inM×¬Φ which only
agrees with finite plays. Let n be the depth of the furthest state in M which σ reaches –
sinceM has finite branching, there is such an n. Note that agreement betweenM andM′
up to n + 1 requires any leaves at depth less than n in M to remain leaves in M′. Now
for any M′ which agrees with M up to n + 1, the strategy σ is still winning for Even so
M 6|= Ψ. J

4.2 Disjunctive form
Disjunctive form was introduced in [4] as a syntactic restriction to universal branching. It
had been used for example to show the completeness of Kozen’s axiomatisation [14]. Here we
show that disjunctive forms are also a tool for simplifying syntactic manipulations. Informally,
the idea of disjunctive form is to push conjunctions into the leaves and allow player Odd to
make exactly one choice per state.

I Definition 22. (Disjunctive formulas) The set of disjunctive form formulas of (unimodal)
Lµ is the smallest set F satisfying:

Propositional variables and their negations, fixpoint variables and > and ⊥ are in F ;
If ψ ∈ F and φ ∈ F , then ψ ∨ φ ∈ F ;
If A is a set of literals and B ⊆ F (B is finite), then

∧
A ∧→B where →B is short for

(
∧
ψ∈B ♦ψ) ∧ �

∨
ψ∈B ψ – that is to say, every formula in B is realised by at least one

successor and every successor realises at least one of the formulas in B;
µX.ψ and νX.ψ are in F as long as ψ ∈ F and X only appears positively and never in a
conjunction X ∧ α where α is another formula.

The last constraint ascertains that if µX.φ(X) is in disjunctive form, then φ(µX.φ(X)) is
also in disjunctive form.

Every formula is known to be equivalent to an effectively computable formula in disjunctive
form [14]. The transformation preserves guardedness.
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We can now prove our key lemma about formulas in disjunctive form which exploits the
restriction imposed on player Odd’s choices. With an arbitrary Lµ formula, once Even has
fixed a strategy, Odd may be able to choose to play to a state s at various different formulas.
For example, from (s,�ψ ∧�φ) Odd can choose to play any successor of s at either φ or ψ.
However, with some minor assumption about the structure, once a formula is in disjunctive
form and Even has fixed her strategy, Odd is much more restricted in his choices: if he
chooses to play to a state s, he can only choose to play a formula fixed by Even’s strategy or
a literal.

First we define well behaved strategies and models in which whenever a state s is required
to satisfy a modal formula →B, s has a distinct successor for each formula in B. Such a
well-behaved model can easily be derived from any model by duplicating the successor states
of s as necessary. A well-behaved model will allow the even player to use a well-behaved
strategy which chooses a distinct successor for each of the formulas Odd can choose at →B.

I Definition 23 (Well behaved models). A modelM of Ψ is well behaved with respect to an
Even’s winning strategy σ in M× Ψ if for each position (s,→B) reachable with σ, s has
distinct successors sφ such that sφ |= φ for each φ ∈ B and σ plays sφ if Odd picks φ from s

and φ if Odd picks sφ. Note that s may have more than one successor satisfying φ but σ
chooses only one such successor, sφ to play to whenever Odd chooses to play φ. A model is
well-behaved if it is well-behaved with respect to some winning strategy.

Every model M of Ψ is bisimilar to a well behaved model of Ψ obtained by duplicating
successor states as necessary. A strategy is said to be well-behaved if the model is well-
behaved with respect to that strategy. Next we define the tree of Odd’s playable positions
induced by Even’s strategy. This tree consists of the choices which Odd is left with once
Even has fixed her strategy.

I Definition 24 (Odd’s position tree). If σ is a strategy for Even, we consider the tree made
out of positions belonging to Odd which are reachable by plays respecting σ. One step
in the Odd’s position tree corresponds to one move by Odd followed by as many moves
dictated by σ as necessary to reach the next position belonging to Odd. Note that since σ is
Even’s strategy, Odd’s position tree does not have any disjunctive positions any more, only
conjunctions: all the non-leaf positions of this tree are of the form (s,

∧
A∧→B) for some set

of literals A and a set of formulas B. The leaves are of the form (s,A) where A is a literal.

The following lemma shows how the syntactic constraints of disjunctive form simplify the
strategies in the parity game. It is the key to our proof of decidability. It states that once
Even has fixed her strategy, Odd can only reach a state s at a single formula

∧
A ∧→B.

This will allow us to replace s with the root of any structure which satisfies the same formula,
while preserving Even’s winning strategy.

I Lemma 25. If Ψ is in disjunctive form andM is the tree-representation of a well-behaved
model with respect to a strategy σ, then each state of M appears in Odd’s position tree for σ
at most once at a non-leaf position.

Proof. For a state s to appear twice at such a formula, (s, φ0) and (s, φ1) must be two
positions of the tree with a last common ancestor, (t, ψ) where ψ has to be →B for some
B containing φ0 and φ1 . However, since σ is well behaved, if Odd chooses either φ ∈ B or
the successor tφ, the game goes to (tφ, φ) so each successor tφ only appears in one successor
position of (t, ψ). Furthermore, each non-indexed successor of t also appears in only one
successor position of (t, ψ). This can therefore not be the last common ancestor of (s, φ0)
and (s, φ1). J
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4.3 The formula ΨΠµ
1

This section proves the main theorem on the constructive decidability of Πµ
1 : any semantically

Πµ
1 formula in disjunctive form can be transformed into an equivalent syntactically Πµ

1 formula
by changing every occurrence of µ into either ν or ⊥.

To show this, we first select for each µ-subformula µX.φ in Ψ, a structureM such that
whether M satisfies Ψ or not depends on a restricted set of states satisfying the formula
µX.φ, as shown in Lemma 26. We then show in Lemma 27 that if a µ-subformula µX.φ
of Ψ is satisfiable but cannot be replaced with the corresponding ν-formula νX.φ, then for
any n we can build a twin structure forM agreeing withM up to n but disagreeing on Ψ.
This implies that Ψ is not a Πµ

1 formula, as Lemma 21 shows that Πµ
1 formulas have finite

counter-proofs. This leaves us with two scenarios: either the µ-subformula is unsatisfiable, in
which case it can be replaced by ⊥, using Lemma 28, or the µ-formula can be replaced with
the corresponding ν-formula. In either case, we can turn any semantically Πµ

1 formula into a
syntactically Πµ

1 formula by replacing µ-subformulas with either ⊥ or the dual ν-formula.

Notation. Let Ψ(ψ) be a formula in disjunctive form which contains a subformula ψ. We
will write Ψ(ψ′) for the formula in which ψ is substituted with the formula ψ′. With this
notation, we will use formulas related to Ψ in order to specify structures where the players’
strategies must exhibit some desired behaviours. For example, if for some structure M, Odd
can winM×Ψ(⊥), then Even can only winM×Ψ(µX.φ) by playing eventually to µX.φ.

In the following lemma we show that for a structure to satisfy ¬Ψ(φ) ∧Ψ(>) means that
Odd can win the game for Ψ(φ), but only by playing to a position (s, φ) for some s in a set
S. Then, if states of S are substituted with new substructures, Odd may only win if he can
win from one of the new substructures at φ.

I Lemma 26. Let Ψ be a formula in disjunctive guarded form with a subformula φ. IfM is
a structure such that M |= ¬Ψ(φ) ∧ Ψ(>) and M is well-behaved for Ψ(>), then there is
a non-empty set of states S inM such that in M×Ψ(φ) each of Odd’s winning strategies
reaches (s, φ) for some s ∈ S– that is to say, for each of Odd’s winning strategies τ there is
a counter strategy σ such that (s, φ) is on the play τ × σ for some s ∈ S. Furthermore, if
every state si of S is replaced with some state ti, yielding a new model M′, Odd only wins
inM′ ×Ψ(φ) if Odd wins from (ti, φ) in the same game for some ti.

Proof. If Even winsM×Ψ(>) but Odd winsM×Ψ(φ), then Odd cannot winM×Ψ(φ)
with a strategy which avoids φ, otherwise the same strategy would be winning inM×Ψ(>).
Let τ be one of Odd’s winning strategies in M× Ψ(φ) and let σ be Even’s well-behaved
winning strategy inM×Ψ(>) . SinceM×Ψ(>) is identical toM×Ψ(φ) until a play reaches
φ, the strategy σ is also an initial strategy inM×Ψ(φ), defined until φ is reached. The play
τ × σ must reach φ because otherwise it would have to be winning for Even due to it being
identical to a play respecting her winning strategy inM×Ψ(>). Let sτ be the first state at
which the play τ×σ reaches φ inM×Ψ(φ). Then S = {sτ |τ is a winning strategy for Odd }
is the set such that inM×Ψ(φ) each of Odd’s winning strategies reaches (s, φ) for some
s ∈ S.

For the second part of the lemma, first observe that if Even wins from (ti, φ) for all i,
then Odd cannot use any of his winning strategies from M× Ψ(φ) to win in M′ × Ψ(φ)
since if Even initially plays according to σ, the play reaches (ti, φ) from where Even has a
winning strategy. As a result, Odd cannot avoid all ti without losing. From Lemma 25 we
know that each ti is only seen at position (ti, φ) so not only can Odd not avoid all ti, Odd
cannot avoid all (ti, φ) without losing. Hence, if Odd loses from (ti, φ) for all i, Odd loses in
M′ ×Ψ(φ). J
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We can now prove the main result: to obtain the syntactically Πµ
1 formula equivalent to a

semantically Πµ
1 formula in guarded disjunctive form, it is sufficient to replace each least

fixpoint with either ⊥ or a greatest fixpoint. The crux is to show that each µ-binding in a
semantically Πµ

1 formula can either be replaced by ⊥ or ν. The following lemma identifies
two cases. The first is that the subformula µX.φ is unsatisfiable in the sense that there is no
structure T from the root of which Even can win at µX.φ in T ×Ψ(µX.φ). Then it can be
replaced with ⊥. In the other case, µX.φ can be replaced with νX.φ.

I Lemma 27. If Ψ(µX.φ), a guarded formula in disjunctive form with a subformula µX.φ,
is semantically in Πµ

1 , then either there is no structure T such that Even wins from (r0, µX.φ)
in T ×Ψ(µX.φ) where r0 is the root of T , or Ψ(µX.φ)=Ψ(νX.φ).

Proof. Assume that Ψ(µX.φ) 6= Ψ(νX.φ) and that there is a structure T such that Even wins
from (r0, µX.φ) in T ×Ψ(µX.φ) where r0 is the root of T . Since Ψ(µX.φ) implies Ψ(νX.φ) but
not the other way around, then there is a structureM such thatM |= ¬Ψ(µX.φ)∧Ψ(νX.φ)
andM is well-behaved with respect to Ψ(νX.φ) . Recall that we require forM to be finitely
branching. We will show that for any n there is a structureM′ which agrees withM up to
depth n but which satisfies Ψ(µX.φ). Using Lemma 21, this will contradict Ψ(µX.φ) ∈ Πµ

1 .

For any n, we can write Ψ(µX.φ) as Ψ(
n︷︸︸︷

φ...φ(µX.φ)), where we drop some brackets for
readability, so φφ(X) should be understood as φ(φ(X)). Then, the structure M satisfies

¬Ψ(
n︷︸︸︷

φ...φ(µX.φ)) ∧Ψ(
n︷︸︸︷

φ...φ(>)) since
n︷︸︸︷

φ...φ(>) is implied by νX.φ. Furthermore,M is well-

behaved for Ψ(
n︷︸︸︷

φ...φ(>)). From Lemma 26 we know that there is a set S of states inM such
that for each si ∈ S, Even loses from (s,¬µX.φ) and if each si ∈ S is replaced with r0, the
root of T , to yield a new modelM′, then Ψ holds inM′. Furthermore, since X is guarded

in µX.φ, a play can only reach µX.φ from
n︷︸︸︷

φ...φ(µX.φ) at depth at least n: each si ∈ S is
at least at depth n thereforeM′ agrees withM up to depth n. We have built for any n, a
structure that agrees withM, a counter-model of Ψ, up to n but satisfies Ψ. This contradicts
the assumption that Ψ is in Πµ

1 , and has finite counter-proofs using Lemma 21. J

It now suffices to show that if a subformula µX.φ is unsatisfiable in the sense that there is
no structure T from the root of which Even can win at µX.φ in T ×Ψ(µX.φ), then µX.φ
can be replaced with ⊥. This should be intuitively justified by the idea that in no structure
can Even win by playing to µX.φ, so it is no worse for her to have ⊥ instead.

I Lemma 28. If there is no structure T rooted at t0 such that Even wins from (t0, µX.φ) in
T ×Ψ(µX.φ), then Ψ(µX.φ) = Ψ(⊥).

Proof. If Even wins M× Ψ(µX.φ) but there is no T rooted at t0 such that Even wins
from (t0, µX.φ), then Even’s winning strategy cannot reach any position (s, µX.φ). Then
the same strategy can be used inM×Ψ(⊥) to avoid any position (s,⊥). Since these two
games are identical up until µX.φ or ⊥ is reached, Even also wins in M× Ψ(⊥). This
shows Ψ(µX.φ) =⇒ Ψ(⊥). The other direction is trivial since ⊥ =⇒ µX.φ and Lµ is
monotone. J

I Theorem 29. If Ψ is a formula in guarded disjunctive form and semantically in Πµ
1 , then

either Ψ = Ψ[⊥/µX.φ] or Ψ[νX.φ/µX.φ] for any subformula µX.φ of Ψ.
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Proof. If there is no structure T such that Even wins from (r0, µX.φ) in T ×Ψ(µX.φ) where
r0 is the root of T , then from the previous lemma, Ψ = Ψ[⊥/µX.φ] . If there is such a
structure, then from Lemma 27 we know that Ψ = Ψ[νX.φ/µX.φ]. J

I Corollary 30. Πµ
1 and by duality Σµ1 are decidable.

Proof. Any formula Ψ of Lµ can be turned into a guarded formula in disjunctive guarded
form. Then, if Ψ is semantically in Πµ

1 , every occurrence of µX.φ can be eliminated either
by replacing it with ⊥ or νX.φ. Hence to decide whether a formula is semantically in Πµ

1 ,
it is sufficient to decide whether it is equivalent to the formula where each µX.φ formula
reachable by Even in the game for Ψ(µX.φ) is replaced with νX.φ .

By duality, to decide whether a formula is semantically in Σµ
1 it is sufficient to decide

whether its negation is in Πµ
1 . If this is the case, the Πµ

1 formula can be syntactically negated
to yield a formula in Σµ1 . J

5 Conclusion

We have defined syntactic transformations from Lµ into ML, Πµ
1 and Σµ

1 which preserve
meaning for formulas which are semantically, but not yet syntactically in the target class. A
straight-forward corollary of this result is an alternative decision procedure for the low levels
of the alternation hierarchy: to decide whether a Lµ formula is in Πµ

1 ,Σ
µ
1 or ML, it suffices

to check whether it is equivalent to its projection into that class.
For the modal fragment of Lµ, the transformation we describe incurs a potentially

exponential blow-up in the size of the formula – as such, it may be more concise to represent
a formula with some fixpoints. This blow-up is however necessary since fixpoint formulas
which are semantically modal can have at least subexponential modal depth.

For Πµ
1 on the other hand, assuming formulas are in guarded disjunctive form, the target

formula is no larger than the original one. The transformation into guarded disjunctive
form itself can incur an exponential blow-up, not least because the transformation involves
distributing conjunctions over disjunctions, causing duplication.

This result is of both practical and theoretical interest since the complexity of model
checking depends on the syntactic alternation depth of a formula, rather than the semantic
one. Thus for formulas that are semantically in a low alternation class, this transformation
can potentially turn an exponential model-checking procedure into a polynomial one by
eliminating the exponent. By providing a concise formula in the semantic alternation class
of a formula, our method provides an appealing pre-processing step for model checking.
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Abstract
We study word structures of the form (D,≤, P ) where D is either N or Z, ≤ is a linear ordering
on D and P ⊆ D is a predicate on D. In particular we show:
(a) The set of recursive ω-words with decidable monadic second order theories is Σ3-complete.
(b) We characterise those sets P ⊆ Z that yield bi-infinite words (Z,≤, P ) with decidable

monadic second order theories.
(c) We show that such “tame” predicates P exist in every Turing degree.
(d) We determine, for P ⊆ Z, the number of predicates Q ⊆ Z such that (Z,≤, P ) and (Z,≤, Q)

are indistinguishable.
Through these results we demonstrate similarities and differences between logical properties of
infinite and bi-infinite words.
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1 Introduction

The decision problem for logical theories of linear structures and their expansions has been
an important question in theoretical computer science. Büchi in [2] proved that the monadic
second order theory of the linear ordering (N,≤) is decidable. Expanding the structure
(N,≤) by unary functions or binary relations typically leads to undecidable monadic theories.
Hence many works have been focusing on structures of the form (N,≤, P ) where P is a unary
predicate. Elgot and Rabin [5] showed that for many natural unary predicates P , such as the
set of factorial numbers, the set of powers of k, and the set of kth powers (for fixed k), the
structure (N,≤, P ) has decidable monadic second order theory; on the other hand, there are
structures (N,≤, P ) whose monadic theory is undecidable [3]. Numerous subsequent works
further expanded the field [13, 4, 11, 10, 9, 8].

1. Semenov generalised periodicity to a notion of “almost periodicity”. While periodicity
implies that certain patterns are repeated through a fixed period, almost periodicity
captures the fact that certain patterns occur before the expiration of some period. This
led him to consider “recurrent structures” within an infinite word. Such a recurrent
structure is captured by a certain function, which he called “indicator of recurrence”. In
[11], he provided a full characterisation: (N,≤, P ) has decidable monadic theory if and
only if P is recursive and there is a recursive indicator of recurrence for P .
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2. Rabinovich and Thomas generalised periodicity to a notion of “uniform periodicity”.
Such a uniform periodicity condition is captured by a homogeneous set which exists by
Ramsey’s theorem. More precisely, a k-homogeneous set for (N,≤, P ) partitions the
natural numbers into infinitely many finite segments that all have the same k-type. A
uniformly homogeneous set specifies an ascending sequence of numbers that ultimately
becomes k-homogeneous for any k > 0. In [9], Rabinovich and Thomas provided a full
characterisation: (N,≤, P ) has a decidable monadic theory if and only if P is recursive
and there is a recursive uniformly homogeneous set.
Note that a recursive uniformly homogeneous set describes how to divide (N,≤, P )
such that the factors all have the same k-type. If P is recursive, this implies that the
recurring k-type can be computed. A weakening of the existence of a recursive uniformly
homogeneous set is therefore the requirement that one can compute a k-type such that
(N,≤, P ) can, in some way, be divided. Nevertheless, Rabinovich and Thomas also
showed that the monadic second order theory of (N,≤, P ) is decidable if and only if P is
recursive and there is a “recursive type-function” (see below for precise definitions).

This paper has three general goals: The first is to compare these characterisations in some
precise sense. The second is to investigate the above results in the context of bi-infinite words,
which are structures of the form (Z,≤, P ). The third is to compare the logical properties of
infinite words and bi-infinite words. More specifically, the paper discusses:
(a) In Section 4, we analyze the recursion-theoretical bound of the set of all computable

predicates P ⊆ N where (N,≤, P ) has a decidable monadic theory. The second charac-
terisation by Rabinovich and Thomas turns out to be a Σ5-statement. In contrast, the
characterisation by Semenov and the 1st characterisation by Rabinovich and Thomas
both consist of Σ3 statements, and hence deciding if a given (N,≤, P ) has decidable
monadic theory is in Σ3. We show that the problem is in fact Σ3-complete. Hence these
two characterisations are optimal in terms of their recursion-theoretical complexity.

(b) In Section 5, we then investigate which of the three characterisations can be lifted to
bi-infinite words, i.e., structures of the form (Z,≤, P ) with P ⊆ Z. It turns out that
this is nicely possible for Semenov’s characterisation and for the second characterisation
by Rabinovich and Thomas, but not for their first one.

(c) If the monadic second order theory of (N,≤, P ) is decidable, then P is recursive. For
bi-infinite words of the form (Z,≤, P ), this turns out not to be necessary. In Section 6,
we actually show that every Turing degree contains a set P ⊆ Z such that the monadic
second order theory of (Z,≤, P ) is decidable.

(d) The final Section 7 investigates how many bi-infinite words are indistinguishable from
(Z,≤, P ). It turns out that this depends on the periodicity properties of P : if P is
periodic, there are only finitely many equivalent bi-infinite words, if P is recurrent and
non-periodic, there are 2ℵ0 many, and if P is not recurrent, then there are ℵ0 many.

2 Preliminaries

2.1 Words
We use N, Ñ and Z to denote the set of natural numbers (including 0), negative integers (not
containing 0), and integers, respectively. A finite word is a mapping u : {0, 1, . . . , n− 1} →
{0, 1} with n ∈ N, it is usually written u(0)u(1)u(2) · · ·u(n− 1). The set of positions of u is
{0, 1, . . . , n − 1}, its length |u| is n. The unique finite word of length 0 is denoted ε. The
set of all (resp. non-empty) finite words is {0, 1}∗ (resp. {0, 1}+). An ω-word is a mapping
α : N → {0, 1}; it is usually written as the sequence α(0)α(1)α(2) · · · . Its set of positions
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is N; {0, 1}ω is the set of ω-words. An ω∗-word is a mapping α : Ñ → {0, 1}; it is usually
written as the sequence · · ·α(−3)α(−2)α(−1). Its set of positions is Ñ and {0, 1}ω∗ is the
set of ω∗-words. Finally, a bi-infinite word ξ is a mapping from Z into {0, 1}, written as the
sequence · · · ξ(−2)ξ(−1)ξ(0)ξ(1)ξ(2) · · · (this notation has to be taken with care since, e.g.,
the bi-infinite words ξi : Z→ {0, 1} : n 7→ (|n|+ i) mod 2 with i ∈ {0, 1} are both described
as · · · 0101010 · · · , but they are different). The set of positions of a bi-infinite word is Z.
When saying “word”, we mean “a finite, an ω-, an ω∗- or a bi-infinite word”, “infinite word”
means “ω- or ω∗-word”.

The concatenation uv of two finite words u, v has its usual meaning. More generally, and
in a similar way, we can also concatenate a finite or ω∗-word u and a finite or ω-word v giving
rise to some word uv. Similarly, we can concatenate infinitely many finite words ui giving an
ω-word u0u1u2 · · · , an ω∗-word · · ·u−2u−1u0, and a bi-infinite word · · ·u−2u−1u0u1u2 · · ·
(where the position 0 is the first position of u0). As usual, uω denotes the ω-word uuuu · · ·
for u ∈ {0, 1}+, analogously, uω∗ = · · ·uuu.

Let w be some word and i, j be two positions with i ≤ j. Then we write w[i, j] for the
finite word w(i)w(i + 1) · · ·w(j) ∈ {0, 1}+. A finite word u is a factor of w if u = w[i, j]
for some i, j or if u is the empty word ε. The set of factors of w is F (w). If w is an ω- or
a bi-infinite word, then w[i,∞) is the ω-word w(i)w(i+ 1)w(i+ 2) · · · . If w is an ω∗- or a
bi-infinite word, then w(−∞, i] is the ω∗-word · · ·w(i− 2)w(i− 1)w(i). A bi-infinite word β
is recurrent if for all u ∈ F (β) and all i ∈ Z, u ∈ F (β[i,∞)) ∩ F (β(−∞, i]).

Let u be some finite word. Then uR is the reversal of u, i.e., the finite word of length |u|
with uR(i) = u(|u| − i− 1) for all 0 ≤ i < |u|. The reversal of an ω-word (resp. ω∗-word) α
is the ω∗-word (resp. ω-word) αR with αR(i) = α(−i − 1) for all positions i. Finally, the
reversal of a bi-infinite word ξ is the bi-infinite word ξR with ξR(i) = ξ(−i) for all i ∈ Z.

2.2 Logic
With any word w, we associate a relational structure Mw = (D,≤, P ) where D ⊆ Z is
the set of positions of w, ≤ is the restriction of the natural linear order on Z to D, and
P = {n ∈ D | w(n) = 1} = w−1(1). Structures of this form are called labeled linear orders.
The word w is recursive (resp. recursively enumerable) if so is the set P .

We use the standard logical system over the signature of labeled linear orders. Hence
first order logic FO has relational symbols ≤ and P . The monadic second order logic MSO
extends FO by allowing unary second order variables X,Y, . . ., their corresponding atomic
predicates (e.g. X(y)), and quantification over set variables. By Sent, we denote the set of
sentences of the logic MSO. For a word w and an MSO-sentence ϕ, we write w |= ϕ for “the
sentence ϕ holds in the relational structure Mw”. The MSO-theory of the word w is the set
MTh(M) of all MSO-sentences ϕ that are true in w.

I Example 1. Let n ∈ N and consider the following formula:

ϕ(x, y) = ∃X : ∀z : (X(z)⇔ z = x ∨ (x < z ∧X(z − n))) ∧X(y)

If w is a word with positions i, j, then w |= ϕ(i, j) if and only if i ≤ j and n | j − i.

With any MSO-formula ϕ, we associate its quantifier rank qr(ϕ) ∈ N: the atomic formulas
have quantifier rank 0; qr(ϕ1 ∧ ϕ2) = qr(ϕ1 ∨ ϕ2) = max{qr(ϕ1), qr(ϕ2)}; qr(¬ϕ) = qr(ϕ);
and qr(∃X : ϕ) = qr(∀X : ϕ) = qr(ϕ1) + 1 where X is a first- or second-order variable.

I Definition 2. Let k ∈ N. Two words w1 and w2 are k-equivalent (denoted w1 ≡k w2)
if w1 |= ϕ iff w2 |= ϕ for all MSO-sentences ϕ with qr(ϕ) ≤ k. Equivalence classes of this
equivalence relation are called k-types. The words w1 and w2 are MSO-equivalent (denoted
w1 ≡ w2) if w1 ≡k w2 for all k ∈ N. Equivalence classes of ≡ are called types.
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Let k ≥ 2 and u, v be two words with u ≡k v. If u is finite, then it satisfies the sentence
(∃x∀y : x ≤ y) ∧ (∃x∀y : x ≥ y). Consequently, also v is finite. Analogously, u is an ω-word
iff v is an ω-word etc. We will therefore speak of a “k-type of finite words” when we mean a
k-type that contains some finite word (and analogously for ω-, ω∗-, bi-infinite words etc).

Often, we will use the following known results without mentioning them again. They
follow from the well-understood relation between MSO and automata (cf. [15, 6]).

I Theorem 3.
1. Let k ≥ 2.

For any ω-word (ω∗-word) α, there exist finite words x and y with xy ≡k x (yx ≡k x),
yy ≡k y and α ≡k xy

ω (α ≡k y
ω∗x). Any such pair (x, y) is a representative of the

k-type of α.
For any bi-infinite word ξ, there exist finite words x, y and z with xy ≡k yz ≡k y,
xx ≡k x, zz ≡k z, and ξ ≡k x

ω∗yzω. Any such triple (x, y, z) is a representative of
the k-type of ξ.

2. The following sets are decidable:
{ϕ ∈ Sent | ∀u ∈ {0, 1}∗ : u |= ϕ} and {(u, ϕ) | u ∈ {0, 1}∗, ϕ ∈ Sent, u |= ϕ}
{(u, v, ϕ) | u, v ∈ {0, 1}∗, v 6= ε, ϕ ∈ Sent, uvω |= ϕ}
{(u, v, w, ϕ) | u, v, w ∈ {0, 1}∗, u, w 6= ε, ϕ ∈ Sent, uω∗vwω |= ϕ}
{(u, v, k) | u, v ∈ {0, 1}∗, k ∈ N, u ≡k v}. This means in particular that it is decidable
whether u and v represent the same k-type of finite words.
Similarly, it is decidable whether two pairs of finite words represent the same k-type of
ω-words (of ω∗-words, resp). It is also decidable whether two triples of finite words
represent the same k-type of bi-infinite words.

3. If u, v ∈ {0, 1}∗ ∪ {0, 1}ω∗ and u′, v′ ∈ {0, 1}∗ ∪ {0, 1}ω with u ≡k v and u′ ≡k v′,
then uu′ ≡k vv′. From representatives of the k-types of u and v, one can compute a
representative of the k-type of uv.

4. If ui, vi ∈ {0, 1}+ with ui ≡k vi for all i ∈ Z, then we have

u0u1 · · · ≡k v0v1 · · · , and · · ·u−1u0 ≡k · · · v−1v0, and · · ·u−1u0u1 · · · ≡k · · · v−1v0v1 · · ·

5. If u is a finite or ω∗-word and v is a finite or ω-word such that MTh(u) and MTh(v) are
both decidable, then MTh(uv) is decidable [12].

2.3 Recursion theoretic notions
This paper makes use of standard notions in recursion theory; the reader is referred to [14]
for a thorough introduction. We assume a canonical effective enumeration Φ0,Φ1,Φ2, . . . of
all partial recursive functions on the natural numbers. The set We is the domain dom(Φe)
and is the eth recursively enumerable set. Let TOT be the set {e ∈ N | Φe is total} and REC
be the set {e ∈ N |We is decidable}.

A set A ⊆ N belongs to the level Π2 of the arithmetical hierarchy if there exists
a decidable set P ⊆ Nm+n+1 such that A is the set of natural numbers a satisfying
∀x1, . . . , xm∃y1, . . . yn : P (a, x̄, ȳ) . A set B ⊆ N is Π2-hard if, for every A ∈ Π2, there
exists a m-reduction from A to B; the set B is Π2-complete if, in addition, B ∈ Π2. Similarly,
A ⊆ N belongs to Σ3 if there exists a decidable set P ⊆ N`+m+n+1 such that A is the set
of natural numbers a satisfying ∃x1, . . . , x`∀y1, . . . , ym∃z1, . . . zn : P (a, x̄, ȳ, z̄) . The notions
Σ3-hard and Σ3-complete are defined similarly. For our purposes, it is important that the
set TOT is Π2-complete and the set REC is Σ3-complete [14].
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3 When is the MSO-theory of an ω-word decidable?

In this section, we recall the answers by Semenov [11] and by Rabinovich and Thomas [9].
Semenov defined a form of “periodic words” in which words from certain regular sets recur.

I Definition 4. Let α be some ω-word. An indicator of recurrence for α is a function
rec : Sent→ N ∪ {>} such that, for every MSO-sentence ϕ, the following hold:

if rec(ϕ) = >, then ∀k ∃j ≥ i ≥ k : α[i, j] |= ϕ

if rec(ϕ) 6= >, then ∀j ≥ i ≥ rec(ϕ) : α[i, j] |= ¬ϕ

I Theorem 5 (Semenov’s Characterisation [11]). Let α be an ω-word. Then MTh(α) is
decidable if and only if the ω-word α is recursive and there exists a recursive indicator of
recurrence for α.

Note that an ω-word can have many recursive indicators of recurrence: if rec is such an
indicator, then so is ϕ 7→ 2 · rec(ϕ).

Two other characterisations are given by Rabinovich and Thomas in [9]. The idea is to
decompose an infinite word into infinitely many finite sections all of which (except possibly
the first one) have the same k-type.

I Definition 6. Let α ∈ {0, 1}ω, u, v ∈ {0, 1}+, k ∈ N, and H ⊆ N be infinite.
The set H is a k-homogeneous factorisation of α into (u, v) if α[0, i − 1] ≡k u and
α[i, j − 1] ≡k v for all i, j ∈ H with i < j. The set H is k-homogeneous for α if it is a
k-homogeneous factorisation of α into some finite words (u, v).
Let H = {hi | i ∈ N} with h0 < h1 < . . . . The set H is uniformly homogeneous for α if,
for all k ∈ N, the set {hi | i ≥ k} is k-homogeneous for α.

As with indicators of recurrence, any ω-word has many uniformly homogeneous sets: the
existence of at least one follows by a repeated and standard application of Ramsey’s theorem,
and there are infinitely many since any infinite subset of a uniformly homogeneous set is
again uniformly homogeneous.

I Theorem 7 (1st Rabinovich-Thomas’ Characterisation [9]). Let α be an ω-word. Then
MTh(α) is decidable if and only if the ω-word α is recursive and there exists a recursive
uniformly homogeneous set for α.

Suppose h0 < h1 < h2 < . . . is an enumeration of some uniformly homogeneous set for α.
This sequence determines finite words uk and vk such that w ≡k uk(vk)ω, ukvk ≡k uk, and
vkvk ≡k vk: simply set uk = α[0, hk − 1] and vk = α[hk, hk+1 − 1]. If the ω-word α is
recursive, we can therefore, from k ∈ N, compute a representative of the k-type of α.

I Definition 8. Let α be some ω-word and tp: N→ {0, 1}+ × {0, 1}+. The function tp is a
type-function if, for all k ∈ N, α has a k-homogeneous factorisation into tp(k) = (u, v).

Let tp be a type-function for the ω-word α and let k ∈ N. Then there exists a k-homogeneous
factorisation H of α into tp(k) = (u, v). Let H = {h0 < h1 < h2 < . . . } . Then we have
α = α[0, h0 − 1]α[h0, h1 − 1]α[h1, h2 − 1] · · · ≡k uv

ω . Furthermore, v ≡k α[h0, h2 − 1] =
α[h0, h1 − 1]α[h1, h2 − 1] ≡k vv. Consequently, tp(k) is a representative of the k-type of α.

I Theorem 9 (2nd Rabinovich-Thomas’ Characterisation [9]). Let α be an ω-word. Then
MTh(α) is decidable if and only if α has a recursive type-function.

Note that, differently from Thm. 7 this theorem does not mention that α is recursive. But
this recursiveness is implicit: Let tp be a recursive type-function and k ∈ N. Then one can
write a FO sentence of quantifier-depth k+ 2 expressing that α(k) = 1. Let tp(k+ 2) = (u, v).
Then α ≡k+2 uv

ω implies α(k) = uvk(k), hence α(k) is computable from k.
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4 How hard is it to tell if the MSO-theory of an ω-word is decidable?

In this section, we determine the recursion-theoretical complexity of the question whether the
MSO-theory of a recursive ω-word is decidable. Technically, we will consider the following
two sets:

DecThMSO
N = {e ∈ REC | MTh(N,≤,We) is decidable} UndecThMSO

N = REC\DecThMSO
N

Recall that We ⊆ N denotes the eth recursively enumerable set.
But first note the following: Let α be some recursive word. Then, by Büchi’s and

McNaughton’s theorems, MTh(α) is decidable iff the set of deterministic parity automata
accepting α is decidable. Recall that “the deterministic parity automaton no. n accepts α”
(where we assume any computable enumeration of all deterministic parity automata) is a
Boolean combination of Σ2-statements, cf. [15, Prop. 5.3]. It follows that e ∈ DecThMSO

N if
and only if the following holds:

∃f ∈ TOT ∀n : Φf (n) = 1⇔ the deterministic parity automaton no. n accepts (N,≤,We)

Hence DecThMSO
N belongs to Σ4. The following lemma improves this by one level in the

arithmetical hierarchy:

I Lemma 10. The set DecThMSO
N belongs to Σ3.

We present two proofs of this lemma, one based on the first Rabinovich-Thomas character-
isation, the second one based on the Semenov characterisation.

Proof. (based on Thm. 7) Let α be some recursive ω-word. Recall that a set H ⊆ N is
infinite and recursive if there exists a total computable and strictly monotone function f

such that H = {f(n) | n ∈ N}. Now consider the following:

∃e ∀k, i, j, i′, j′ : e ∈ TOT ∧ (i < j ⇒ Φe(i) < Φe(j)) ∧
(k ≤ i < j ∧ k ≤ i′ < j′ ⇒ α[Φe(i),Φe(j)− 1] ≡k α[Φe(i′),Φe(j′)− 1])

It expresses that there exists a total recursive function (namely Φe) that is strictly monotone.
Its image then consists of the numbers Φe(0) < Φe(1) < Φe(2) < . . . The last line expresses
that this image is uniformly homogeneous for α. Hence this statement says that there exists
a recursive uniformly homogeneous set for α, i.e., that MTh(α) is decidable by Thm. 7.

From k, i, i′, j, j′ ∈ N with k ≤ i < j, and k ≤ i′ < j′ we can compute the finite words
α[Φe(i),Φe(j)−1] and α[Φe(i′),Φe(j′)−1] since α is recursive. Hence it is decidable whether
α[Φe(i),Φe(j)− 1] ≡k α[Φe(i′),Φe(j′)− 1]. The whole statement is in Σ3 as TOT ∈ Π2. J

Proof. (based on Thm. 5) We enumerate the set Sent of MSO-sentences in any effective way
as ϕ0, ϕ1, . . . . Let e ∈ TOT. Then the function rec : Sent→ N : ϕi 7→ Φe(i) is an indicator
of recurrence for the ω-word α if and only if the following holds for all ϕ ∈ Sent

(rec(ϕ) 6=> ⇒ ∀k ≥ j ≥ rec(ϕ) : α[j, k] |= ¬ϕ) ∧ (rec(ϕ)=> ⇒ ∀j∃` ≥ k ≥ j : α[k, `] |= ϕ)

Given the definition of rec, this is equivalent to requiring (for all i ∈ N)

(Φe(i) 6=> ⇒ ∀k ≥ j ≥ Φe(i) : α[j, k] |= ¬ϕi) ∧ (Φe(i)=> ⇒ ∀j∃` ≥ k ≥ j : α[k, `] |= ϕi)

If α is recursive, this is a Π2-statement. Prefixing it with ∃e ∈ TOT ∀i yields a Σ3-statement
that expresses the existence of a recursive indicator of recurrence. J
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I Remark. From the 2nd characterisation by Rabinovich and Thomas (Thm. 9), we can
only infer that DecThMSO

N is in Σ5: Let α be some recursive ω-word and u, v ∈ {0, 1}+.
Then, by the proof of [9, Prop. 7], there exists a k-homogeneous factorisation of α into
(u, v), if the following Σ3-statement ϕ(u, v) holds: ∃x∀y∃z, z′ : (α[0, x − 1] ≡k u ∧ y < z <

z′ ∧ α[x, z − 1] ≡k α[z, z′ − 1] ≡k v). Hence the function tp: N → {0, 1}+ × {0, 1}+ is a
type-function if the Π4-statment ∀k ∈ N : ϕ(tp(k)) holds. Consequently, there is a recursive
type-function if we have ∃e : e ∈ TOT ∧ ∀k : ϕ(Φe(k)) which is a Σ5-statement.
The above raises the natural question whether these characterisations are “optimal”. Namely,
if one can separate DecThMSO

N from UndecThMSO
N using a simpler statement. We now prepare

a negative answer to this last question (which is an affirmative answer to the optimality
question posed first).

We now construct an m-reduction from the set REC to any separator of DecThMSO
N and

UndecThMSO
N : Let e ∈ N. One can compute f ∈ N such that Φf is total and injective and

{Φf (i) | i ∈ N} = {2a | a ∈We} ∪ (2N+ 1) . For i ∈ N, set xi = 2Φf (i) ×
∏

0≤j≤i(2j + 1) and
consider the ω-word αe = 10x010x110x2 · · · . Since Φf is total, this ω-word is recursive.

I Lemma 11. Let e ∈ N. The MSO-theory of the ω-word αe is decidable if and only if the
eth recursively enumerable set We is recursive, i.e., e ∈ REC.
Proof. First suppose that the MSO-theory of αe is decidable. For a ∈ N, we have a ∈We iff
there exists i ≥ 0 with 2a = Φf (i) iff there exists i ≥ 0 such that 22a is the greatest power of
2 that divides xi. Consequently, a ∈We if the ω-word αe satisfies

∃x, y ∈ P : (x < y ∧ ∀z : (x < z < y ⇒ z /∈ P )) ∧
(
22a | y − x− 1 ∧ 22a+1 6 |y − x− 1

)
(1)

Recall that n | y − x − 1 is expressible by an MSO-formula. Since validity in αe of the
resulting MSO-sentence is decidable, the set We is recursive.

Conversely, let We be recursive. To show that the MSO-theory of αe is decidable, let
ϕ be some MSO-sentence. Let k = qr(ϕ) be the quantifier-rank of ϕ. To decide whether
αe |= ϕ, we proceed as follows:

Using standard semigroup arguments, compute ` > 0 such that 0` ≡k 02` and determine
a, b ∈ N with ` = 2a(2b+ 1).
Compute i ≥ b such that Φf (j) > a for all j > i: to this aim, first determine A = {n ≤
a | n ∈ We or a odd} which is possible since We is decidable. Then compute the least
i ≥ b such that A ⊆ {Φf (j) | j ≤ i}. Since Φf is injective, Φf (j) > a for all j > i.
Decide whether 10x010x1 . . . 10xi(10`)ω satisfies ϕ which is possible since this ω-word is
ultimately periodic.

Let j > i. Then Φf (j) > a and j > i ≥ a imply that xj is a multiple of `. Thus 0xj ≡k 0`.
We therefore obtain αe ≡k 10x110x2 · · · 10xi(10`)ω . Hence the above algorithm is correct. J

Lemmas 11 and 10 imply that the problem of deciding whether a recursive ω-word has a
decidable MSO-theory is Σ3-complete:

I Theorem 12. DecThMSO
N is in Σ3.

Any set containing DecThMSO
N and disjoint from UndecThMSO

N is Σ3-hard.

I Remark. Thm. 7 also holds for the weaker logics FO and FO+MOD that extends FO by
modulo-counting quantifiers [9]. Consequently, Lemma 10 also holds, mutatis mutantis, for
these logics.

Conversely, Lemma 11 also holds for FO+MOD since (1) is easily expressible in this logic.
To also handle FO, replace the definition of xi by xi = Φf (j). A similar argument as in
Lemma 11 proves that We is recursive iff the ω-word αe obtained this way has a decidable
FO-theory. Thus, Thm. 12 also holds for the logics FO and FO+MOD.
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5 When is the MSO-theory of a bi-infinite word decidable?

In this section, we investigate whether the characterisations from Theorems 5, 7, and 9 can
be lifted from ω- to bi-infinite words.

5.1 A characterisation à la Semenov
I Definition 13. Let ξ be a bi-infinite word. A pair of functions (rec←, rec→) with
rec←, rec→ : Sent→ Z ∪ {>} is an indicator of recurrence for ξ if for any ϕ ∈ Sent:

if rec←(ϕ)=>, ∀k ∈ Z ∃i ≤ j ≤ k : ξ[i, j] |= ϕ; otherwise, ∀i ≤ j ≤ rec←(ϕ) : ξ[i, j] |= ¬ϕ
if rec→(ϕ)=>, ∀k ∈ Z ∃j ≥ i ≥ k : ξ[i, j] |= ϕ; otherwise, ∀j ≥ i ≥ rec→(ϕ) : ξ[i, j] |= ¬ϕ

A bi-infinite word ξ “consists” of an ω∗-word ξ← and an ω-word ξ→. Then, roughly speaking,
an indicator of recurrence for the bi-infinite word ξ consists of a pair of indicators of recurrence,
one for ξ← and one for ξ→. Therefore, the following is similar to Thm. 5.

I Theorem 14. Let ξ be a bi-infinite word. Then MTh(ξ) is decidable if and only if ξ has a
recursive indicator of recurrence and the bi-infinite word ξ is recursive or recurrent.

This theorem is an immediate consequence of Propositions 15 and 16 below. If ξ is non-
recurrent, there is a finite word u that has a leftmost or a rightmost occurrence in ξ, say
at a position x ∈ Z. Then x is definable in MSO. Consequently, also the position 0 is
definable. This allows one to reduce the decidability of MTh(ξ) to the decidability of both
MTh(ξ(−∞,−1]) and MTh(ξ[0,∞)). Hence Prop. 15 is a consequence of Thm. 5.

I Proposition 15. Let ξ be a non-recurrent bi-infinite word. Then MTh(ξ) is decidable if
and only if ξ has a recursive indicator of recurrence and the bi-infinite word ξ is recursive.

I Proposition 16. Let ξ be a recurrent bi-infinite word. Then MTh(ξ) is decidable if and
only if ξ has a recursive indicator of recurrence.

Proof. First suppose MTh(ξ) is decidable. We have to construct a recursive indicator of
recurrence (rec←, rec→) for ξ. Let ϕ ∈ Sent. Set rec←(ϕ) = rec→(ϕ) = > if there exist
integers i ≤ j with ξ[i, j] |= ϕ, otherwise set rec←(ϕ) = rec→(ϕ) = 0.

It remains to be shown that these functions are recursive and that they form an indicator
of recurrence. Regarding the recursiveness, note that there are i ≤ j with ξ[i, j] |= ϕ iff
ξ |= ∃x, y : x ≤ y ∧ ϕx,y where ϕx,y is obtained form ϕ by restricting all quantifiers to the
interval [x, y]. Since MTh(ξ) is decidable, the functions rec← and rec→ are recursive.

Next we show that (rec←, rec→) is an indicator of recurrence for ξ: If rec←(ϕ) = >, then
(by the definition of rec←) there are i ≤ j with ξ[i, j] |= ϕ. Since ξ is recurrent, it follows
that there are arbitrary small and large integers a ≤ b with ξ[a, b] = ξ[i, j] |= ϕ. If, in the
other case, rec←(ϕ) = 0, then there are no integers i ≤ j with ξ[i, j] |= ϕ, in particular, there
are no integers i ≤ j ≤ rec←(ϕ) with ξ[i, j] |= ϕ.

Conversely, suppose (rec←, rec→) is a recursive indicator of recurrence for ξ. Then, for
ϕ ∈ Sent, we can decide whether there are integers i ≤ j with ξ[i, j] |= ϕ (since ξ is recurrent,
this is the case if and only if rec←(ϕ) = >). In [1, Thm. 3.1(2)] and in [11, 7], it is stated
that then MTh(ξ) is decidable (a proof can be extracted from [6, Section IX.6]). J

Thm. 14 connects the decidability of the MSO theory of a recurrent bi-infinite word ξ
with a decidability question on its set of factors F (ξ). It follows that, if MTh(ξ) is decidable,
then F (ξ) is decidable. We now show that the converse implication does not hold.

I Lemma 17. A set of finite words F containing at least one non-empty word is the factor
set of a recurrent bi-infinite word if and only if it satisfies the following conditions:
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(a) If uvw ∈ F , then v ∈ F .
(b) For any u,w ∈ F , there is a word v ∈ F such that uvw ∈ F

Proof. Necessity of (a) and (b) is obvious. So suppose F ⊆ {0, 1}∗ contains at least one
non-empty word u and satisfies (a) and (b). We construct a bi-infinite recurrent word ξ such
that F (ξ) = F . Since F is non-empty, (b) implies that F is infinite. Let F = {ui | i ∈ N}.
Inductively, we define two sequences (xi)i>0 and (yi)i>0 of words from F such that, for all
i ∈ N, the finite word wi = uixiui−1xi−1 . . . u1x1u0y1u1y2u2 . . . yiui belongs to F .

Let i > 0 and suppose we already defined the words xj and yj for j < i such that wi−1 ∈ F .
Then, by (b), there exists xi ∈ F such that uixiwi−1 ∈ F . Again by (b), there exists yi ∈ F
such that uixiwi−1yiui ∈ F . Now set ξ = · · ·u3x3 u2x2 u1x1 u0 y1u1 y2u2 y3u3 · · · . Let
v ∈ {0, 1}∗ be some factor of ξ. Then there is i ∈ N such that v is a factor of wi. Since
wi ∈ F , condition (a) implies v ∈ F . Hence F (ξ) = F .

Now let v ∈ F (ξ) = F . By (b), there are infinitely many i ∈ N such that v is a factor of
ui. Hence ξ is recurrent. J

I Theorem 18. There exists a recurrent bi-infinite word ξ whose set of factors is decidable,
but MTh(ξ) is undecidable.

Proof. Let f : N→ N be some recursive and total function such that {f(i) | i ∈ N} is not
recursive. Let F ⊆ {0, 1}∗ be the set of all finite words u with the following property: If
102i+1102j1 is a factor of u, then j = f(i). This set is clearly recursive, contains a non-empty
word, and satisfies conditions (a) and (b) from Lemma 17. Hence there exists a bi-infinite
word ξ with F (ξ) = F . For j ∈ N, consider the following sentence:

∃x < y : P (x) ∧ P (y + 2j) ∧ ¬2 | y − x− 1 ∧ ∀z : (x < z < y + 2j ∧ P (z)→ z = y)

It expresses that the language 1(00)∗0102j1 contains a factor of ξ. But this is the case iff
it contains a factor of some word from F iff there exists i ∈ N with j = f(i). Since this is
undecidable, the MSO-theory of ξ is undecidable by Thm. 14. J

5.2 A characterisation à la Rabinovich-Thomas I
We return to the question when the MSO-theory of a recurrent bi-infinite word is decidable.
We will see that Thm. 7 naturally extends to recursive bi-infinite words. We will then
demonstrate that it does not extend to non-recursive bi-infinite words.

I Definition 19. Let ξ ∈ {0, 1}Z, u, v, w ∈ {0, 1}+, k ∈ N, and let H← = {h−i | i ∈ N} and
H→ = {h+

i | i ∈ N} with h−0 > h−1 > . . . and h+
0 < h+

1 < . . . .
The pair (H←, H→) is a k-homogeneous factorisation of ξ into (u, v, w) if
ξ[i, j − 1] ≡k u for all i, j ∈ H← with i < j,
ξ[i, j − 1] ≡k v for all i ∈ H← and j ∈ H→ with i < j and
ξ[i, j − 1] ≡k w for all i, j ∈ H→ with i < j.

The pair (H←, H→) is k-homogeneneous for ξ if it is a k-homogeneous factorisation of ξ
into some finite words (u, v, w).
The pair (H←, H→) is uniformly homogeneous for ξ if, for all k ∈ N, the pair ({h−i | i ≥
k}, {h+

i | i ≥ k}) is k-homogeneous for ξ.
Let ξ be a bi-infinite word split into an ω∗-word ξ← and an ω-word ξ→. As for any ω-word,
there exists a uniformly homogeneous set H→ for ξ→. Symmetrically, there exists a set
H← ⊆ Ñ that is “uniformly homogeneous” for ξ←. Then the pair (H←, H→) is a uniformly
homogeneous pair for ξ = ξ←ξ→.
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I Lemma 20. Let ξ be a recursive bi-infinite word with a decidable MSO-theory. Then the
MSO-theories of ξ← = ξ(−∞,−1] and of ξ→ = ξ[0,∞) are both decidable.

Proof. We handle the cases of recurrent and non-recurrent words separately.
First let ξ be non-recurrent. Then some word u ∈ F (ξ) has a leftmost or a rightmost

occurrence, at some position x ∈ Z which is definable in FO. Hence, also the positions −1
and 0 are definable. Hence the MSO-theories of ξ← and of ξ→ can be reduced to that of ξ
and are therefore decidable.

Now let ξ be recurrent. By Thm. 14, ξ has a recursive indicator of recurrence (rec←, rec→).
Define the functions f, g : Sent→ N ∪ {>} as follows:

f(ϕ) =


> if rec←(ϕ) = >
0 if rec←(ϕ) ≥ 0
|rec←(ϕ)| − 1 otherwise

and g(ϕ) =


> if rec→(ϕ) = >
0 if rec→(ϕ) < 0
rec→(ϕ) otherwise

Exploiting the properties of rec← and rec→, it is then routine to check that f, g are indicators
of recurrences for the two ω-words ξR

← and ξ→. Note that ξR
← and ξ→ are recursive ω-words.

Hence, by Thm. 5, the MSO-theories of ξR
← and of ξ→ are both decidable. J

I Theorem 21. A recursive bi-infinite word ξ has a decidable MSO-theory if and only if
there exists a recursive uniformly homogeneous pair for ξ.

Proof. Suppose MTh(ξ) is decidable. By Lemma 20, the MSO-theories of ξR
← = ξ(−∞,−1]R

and of ξ→ = ξ[0,∞) are both decidable. Consequently, by Thm. 7, there are recursive
uniformly homogeneous factorisations HR

←, H→ ⊆ N for ξR
← and ξ→ into (xR, yR) and (y′, z),

respectively. Deleting, if necessary, the minimal element from HR
←, we can assume 0 /∈ HR

←.
We set H← = {−n | n ∈ HR

←} ⊆ Ñ and show that (H←, H→) is a uniformly homogeneous
pair for ξ: Let H← = {h−i | i ∈ N} and H→ = {h+

i | i ∈ N} such that h−0 > h−1 > . . . and
h+

0 < h+
1 < . . . .

Let j > i ≥ k. Then ξ[h−i + 1, h−j ] = ξ←[h−i + 1, h−j ] = (ξR
←[−h−j ,−h

−
i − 1])R ≡k y

R.
Let i, j ≥ k. Then ξ[h−i , h

+
j − 1] = ξ←[h−i + 1, 0] ξ→[0, h+

j − 1] ≡k xy
′

Let j > i ≥ k. Then ξ[h+
i , h

+
j − 1] = ξ→[h+

i , h
+
j − 1] ≡k z.

Hence the pair ({h−i | i ≥ k}, {h+
i | i ≥ k}) is a k-homogeneous factorisation of ξ into

(yR, xy′, z). Since k is arbitrary, (H←, H→) is uniformly homogeneous for ξ. Since these two
sets are clearly recursive, this proves the first implication.

Conversely, suppose there exists a recursive uniformly homogeneous pair (H←, H→) for ξ.
Then the sets HR

← = {|n| | n ∈ H←∩Ñ} and H→∩N are recursive and uniformly homogeneous
for ξR

← and ξ→, resp. Since ξ← and ξ→ are both recursive, we can apply Thm. 7. Hence
the infinite words ξ← and ξ→ both have decidable MSO-theories. Since ξ = ξ←ξ→, the
MSO-theory of ξ is decidable. J

We next show that we cannot hope to extend Thm. 21 to non-recursive words:

I Theorem 22. There exists a recurrent r.e. bi-infinite word ξ with decidable MSO-theory
such that there is no r.e. uniformly homogeneous pair for ξ.

Proof. We prove this theorem by constructing a recurrent bi-infinite word ξ such that the
set F (ξ) of factors is {0, 1}∗. Hence ξ has decidable MSO-theory by Thm. 14.

There is a computable function f : N2 → N such that the following hold:
Φf(e,s) is total and Wf(e,s) ⊆ {0, 1, . . . , s} for any e, s ∈ N.
We =

⋃
s∈NWf(e,s) for any e ∈ N.

In the following, we fix the function f and write We,s for Wf(e,s). Furthermore, we fix some
recursive enumeration u0, u1, . . . of the set {0, 1}+ of non-empty finite words.
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5.2.1 Construction
By induction on s ∈ N, we construct tuples

ts = (ws,m0,s,m1,s, . . . ,ms,s, Ps) ∈ {0, 1}∗ × Ns+1 × 2{0,...,s} such that

mi,s + |ui| ≤ mi+1,s for all 0 ≤ i < s and ms,s + |us| ≤ |ws| (in particular, |ws| > s),
ws[mi,s,mi,s + |ui| − 1] = ui for all 0 ≤ i ≤ s, and
for all e ∈ Ps, there exist a, b ∈We with a < b < |ws| and ws[a, b− 1] ∈ 1∗.

Set w0 = u0, m0,0 = 0, and P0 = ∅. Then the inductive invariant holds for the tuple
t0 = (w0,m0, P0).

Now suppose the tuple ts has been constructed. Let Hs+1 denote the set of indices
0 ≤ e ≤ s + 1 with e /∈ Ps such that We,s contains at least two numbers a > b ≥ me,s. In
the construction of the tuple ts+1, we distinguish two cases:

1st case: Hs+1 = ∅. Then set ws+1 = wsus+1, mi,s+1 = mi,s for 0 ≤ i ≤ s, ms+1,s+1 =
|ws|, and Ps+1 = Ps. Since the inductive invariant holds for the tuple ts, it also holds for
the newly constructed tuple ts+1.
2nd case: Hs+1 6= ∅. Let es+1 be the minimal element of Hs+1 and let as+1 and bs+1 be
the minimal elements of Wes+1,s satisfying me,s ≤ as+1 < bs+1. Then set
ws+1 = ws[0, as+1−1] 1bs+1−as+1 ws[bs+1, |ws|−1]ues+1ues+1+1 . . . us+1 (in other words,
the words ues+1 up to us+1 are appended to ws and the positions between as+1 and
bs+1 − 1 are set to 1).

mi,s+1 =
{
mi,s if i < es+1

|wsues+1ues+1+1 . . . ui−1| if es+1 ≤ i ≤ s+ 1
Ps+1 = Ps ∪ {es+1}

The first two conditions of the inductive invariant are obvious. Regarding the last
one, let e ∈ Ps+1. If e 6= es+1, then e ∈ Ps and therefore there exist a, b ∈ We with
a < b < |ws| < |ws+1| such that ws[a, b−1] ∈ 1∗. Note that any position in ws that carries
1 also carries 1 in ws+1. Hence ws+1[a, b− 1] ∈ 1∗ as well. It remains to consider the case
e = es+1. But then, by the very construction, as+1 < bs+1 belong to Wes+1,s ⊆We and
satisfy ws+1[as+1, bs+1 − 1] ∈ 1∗.

This finishes the construction of the sequence of tuples ts.

5.2.2 Verification
Let ξ→ be the ω-word with ξ→(i) = 1 iff there exists s ∈ N with ws(i) = 1. Since the tuple
ts+1 is computable from the tuple ts, the word ξ→ is clearly recursively enumerable.

Furthermore, let u ∈ {0, 1}+. Then there exists e ∈ N with u = ue. Note that
me,s ≤ me,s+1 for all e, s ∈ N. Furthermore, me,s < me,s+1 iff Hs+1 6= ∅ and es+1 ≤ e. Since
the numbers es′+1 for s′ ∈ N (if defined) are mutually distinct, there exists s ∈ N such that
et+1 > e and therefore me,s = me,t for all t ≥ s. Consequently, ξ→[me,s,me,s + |ue| − 1] =
ws[me,s,me,s + |ue| − 1] = ue = u. This means that F (ξ→) = {0, 1}∗. It follows that ξ→ is
recurrent.

Claim 1. If We is infinite, then e ∈
⋃

s∈N Ps.

Proof of Claim 1. By contradiction, suppose this is not the case. Let e ∈ N be minimal
with We infinite and e /∈

⋃
s∈N Ps. Since We is infinite, we get e ∈ Hs+1 for almost all

s ∈ N. By minimality of e, there is s ∈ N with e = minHs+1. But then es+1 = e and
e ∈ Ps+1. q.e.d.
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Claim 2. No recursively enumerable set W is uniformly homogeneous for the ω-word ξ→.

Proof of Claim 2. SupposeW is recursively enumerable and uniformly homogeneous for ξ→.
Then W is infinite and there exists e ∈ N with W = We. By claim 1, there exists s ∈ N with
e ∈ Ps. Hence there are a, b ∈We with ws[a, b−1] ∈ 1∗ and therefore ξ→[a, b−1] = ws[a, b−1].
There are d > c > b in We such that ξ→[c, d− 1] /∈ 1∗. But then ξ→[a, b− 1] and ξ→[c, d− 1]
do not have the same 1-type. Hence the set We is not 1- and therefore not uniformly
homogeneous for ξ→. q.e.d.

Finally, let ξ← be the reversal of ξ→ and consider the bi-infinite word ξ = ξ← ξ→. By
Thm. 14, MTh(ξ) is decidable since ξ is recurrent and contains every finite word as a factor.
Finally, suppose (H←, H→) is uniformly homogeneous for ξ. Then H→ ∩ N is uniformly
homogeneous for ξ→. By claim 2, this set cannot be recursively enumerable. Hence (H←, H→)
is not recursively enumerable either. J

5.3 A characterisation à la Rabinovich-Thomas II

We next extend the 2nd characterisation by Rabinovich and Thomas to bi-infinite words.
Differently from the 1st characterisation, this also covers non-recursive bi-infinite words.

I Definition 23. Let ξ be some bi-infinite word and tp: N→ {0, 1}+×{0, 1}+×{0, 1}+. The
function tp is a type-function for ξ if, for all k ∈ N, the bi-infinite word ξ has a k-homogeneous
factorisation into tp(k).

I Theorem 24. Let ξ be a bi-infinite word. Then MTh(ξ) is decidable if and only if ξ has a
recursive type-function.

Proof. First suppose that MTh(ξ) is decidable. We have to construct a recursive type-
function tp: N→ ({0, 1}+)3. To this aim, let k ∈ N. Then one can compute a finite sequence
ϕ1, . . . , ϕn of MSO-sentences of quantifier-rank k such that, for all finite words u and v, we
have u ≡k v if and only if ∀1 ≤ i ≤ n : u |= ϕi ⇐⇒ v |= ϕi . For finite words u, v, and w,
consider the following statement:

∃H←, H→ : ∀y∃x, z : (x < y < z ∧H←(x) ∧H→(z))
∧ ∀x, y : (x < y ∧H←(x) ∧H←(y)→ ξ[x, y − 1] ≡k u)
∧ ∀x, y : ((H←(x) ∧H→(y) ∧ x < y → ξ[x, y − 1] ≡k v)
∧ ∀x, y : (x < y ∧H→(x) ∧H→(y)→ ξ[x, y − 1] ≡k w)

This statement holds for a bi-infinite word ξ iff ξ has a k-homogeneous factorisation into
(u, v, w). Using ϕ1, . . . , ϕn, the statements ξ[x, y − 1] ≡k u etc. can be expressed as MSO-
formulas with free variables x and y. Since MTh(ξ) is decidable, we can decide (given
k, u, v, and w) whether ξ has a k-homogeneous factorisation into (u, v, w). Since some
k-homogeneous factorisation always exist, this allows to compute, from k, a tuple tp(k) such
that ξ has a k-homogeneous factorisation into tp(k); tp is the wanted type function.

Conversely suppose that tp is a recursive type-function for ξ. To show that MTh(ξ)
is decidable, let ϕ ∈ Sent be any MSO-sentence. Let k denote the quantifier-rank of ϕ.
First, compute tp(k) = (u, v, w). Then ξ |= ϕ iff uω∗vwω |= ϕ which is decidable since this
bi-infinite word is ultimately periodic on the left and on the right. J
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6 How complicated are bi-infinite words with decidable
MSO-theories?

By Thm. 14, non-recurrent bi-infinite words with decidable MSO-theory are recursive. In
this section, we will show in a strong sense that this does not hold for recurrent bi-infinite
words: there are “arbitrarily complicated” bi-infinite words with decidable MSO-theories.

I Definition 25. Let L ⊆ {0, 1}∗ be a language. A word u ∈ L is left-determined in L if for
any k ∈ N there is exactly one word vu ∈ L with |v| = k. Similarly, u is right-determined
in L if for any k ∈ N there is exactly one word uv ∈ L with |v| = k. The word u ∈ L is
determined in L if it is both left- and right-determined.

Intuitively, a word w ∈ L is left-determined (right-determined) in L if it can be extended on
the left (right) in a unique way.

I Lemma 26. Let ξ be a recurrent bi-infinite word. The following are equivalent:
(1) ξ is periodic
(2) F (ξ) contains a determined word
(3) F (ξ) contains a right-determined word
(3’) F (ξ) contains a left-determined word

Proof. For (1)→(2), let ξ = uω∗uω be a periodic word. Then u is determined in F (ξ). The
direction (2)→(3) is trivial by the very definition.

For (3)→(1), suppose u is a right-determined word in F (ξ). Choose i < j such that
ξ[i, i+|u|−1] = ξ[j, j+|u|−1] = u (such a pair i < j exists since ξ is recurrent). With p = j−i,
we claim ξ(n) = ξ(n+p) for all n ∈ Z: First let n ≥ j+ |u|. Then ξ[i, n] and ξ[j, n+p] are two
words from F (ξ) that both start with u. We have |ξ[i, n]| = n−i−1 = n+p−j−1 = |ξ[j, n+p]|.
Since u is right-determined, this implies ξ[i, n] = ξ[j, n+ p] and therefore ξ(n) = ξ(n+ p).
Consequently, ξ[j + |u|,∞) = ξ[j + |u|, j + |u| + p]ω. Next let n < j + |u|. Since ξ is
recurrent, there is k < n with ξ[k, k + |u| − 1] = u. Since u is right-determined, this implies
ξ[k,∞) = ξ[j + |u|,∞) = ξ[j + |u|, j + |u|+ p]ω and therefore in particular ξ(n) = ξ(n+ p).
The implications (2)→(3’)→(1) are shown analogously. J

Lemma 26 states that a recurrent non-periodic bi-infinite word does not contain any left-
determined or right-determined factor, and thus can be extended in both directions (left and
right) in at least two ways. This observation allows to prove the following:

I Lemma 27. Let ξ be a recurrent non-periodic bi-infinite word. For any set A ⊆ N, there is a
recurrent bi-infinite word ξA such that F (ξ) = F (ξA), (A,F (ξ)) ≤T ξA, and ξA ≤T (A,F (ξ)).

Proof. Let w0, w1, . . . be the enumeration of F (ξ) in length-lexicographic order. Note that
this is recursive in F (ξ). There is also an effective enumeration of all pairs of words of the
same length, say (`0, r0), (`1, r1), . . . . Now let A ⊆ N be arbitrary. We will construct a
sequence of tuples ts = (us, vs, xs, ys) ∈ ({0, 1}∗)4 such that, for all s ∈ N, the finite word

zs = wsysvs zs−1 usxsws

= wsysvs ws−1ys−1vs−1 . . . w0y0v0 u0x0w0 . . . us−1xs−1ws−1 usxsws

belongs to F (ξ) (the bi-infinite word ξA will be the “limit” of these words).
To start with s = 0 note the following: since ξ is recurrent and w0 ∈ F (ξ), the bi-infinite

word ξ contains a factor of the form w0xw0. Set y0 = x and u0 = v0 = x0 = ε.
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For the induction step, assume that we constructed the tuple ts and that zs is a factor
of ξ. Since ξ is recurrent but not periodic, the word zs is not right-determined in F (ξ) by
Lemma 26. Hence there are two distinct finite words u and u′ of the same length such that
zsu, zsu

′ ∈ F (ξ). For (u, u′), choose the first such pair in the effective enumeration (`i, ri)i∈N.
If s ∈ A, then set us+1 = u, otherwise set us+1 = u′. Now the word zsus+1 is a factor of
ξ. Since ξ is recurrent, there is xs+1 ∈ {0, 1}∗ such that zsus+1xs+1ws+1 is a factor of ξ –
choose xs+1 length-lexicographically minimal among all possible such words.

To choose vs+1 and ys+1, we proceed symmetrically to the left: z′s = zsus+1xs+1ws+1 is a
factor of ξ that is not left-determined. Hence there exists a pair of distinct words v and v′ of
the same length with vz′s, v′z′s ∈ F (w). Choose this pair minimal in the effective enumeration.
If s ∈ A, then set vs+1 = v, otherwise set vs+1 = v′. Now there is ys+1 ∈ {0, 1}∗ with
ws+1ys+1vs+1z

′
s ∈ F (ξ) since ξ is recurrent. Choosing ys+1 length-lexicographically minimal

completes the construction of the tuple ts+1 and therefore the inductive construction of all
the tuples ts. Now set ξA = · · ·w1y1v1 w0y0v0 u0x0w0 u1x1w1 · · · . Observe the following:

If u ∈ F (ξ), then there exists s ∈ N such that u ∈ F (zs). Hence F (ξ) ⊆ F (ξA).
Let u ∈ F (ξA). There exists s ∈ N such that u ∈ F (zs). In particular, F (ξA) ⊆ F (ξ).
Since zs is a factor of ξ, there are infinitely many i ∈ N such that zs (and therefore u) is
a factor of wi. Hence the word ξA is recurrent.

Since the above describes how to compute the bi-infinite word ξA using the oracles A
and F (w), we get ξA ≤T (A,F (ξ)).

It remains to be shown that A ≤T (ξA, F (ξ)) holds: To determine whether s ∈ A suppose
we already know which of the natural numbers i < s belong to A. Then the construction of
ξA above allows to build ts using the oracle F (ξ). Now construct ts+1 assuming s ∈ A again
using the oracle F (ξ). If the resulting word zs+1 is an initial segment of ξA, then s ∈ A.
Otherwise, s /∈ A. J

From this lemma and Thm. 14, we get immediately that indeed, every decidable theory of
some recurrent bi-infinite word is represented in every Turing-degree:

I Theorem 28. Let ξ be a recurrent non-periodic bi-infinite word and a a Turing-degree
above the degree of MTh(ξ). Then a contains a bi-infinite word ξA with MTh(ξA) = MTh(ξ).

7 How many indistinguishable bi-infinite words are there?

If α and β are MSO-equivalent ω-words, then α = β. In this final section we study this
question for bi-infinite words. Shift-equivalence and period will be important notions in this
context: two bi-infinite words ξ and ζ are shift-equivalent if there is p ∈ N with ξ(n) = ζ(n+p)
for all n ∈ Z. Furthermore, the period of the bi-infinite word ξ is the least natural number
p > 0 with ξ(n) = ξ(n+ p) for all n ∈ Z – clearly, the period need not exist. To count the
number of MSO-equivalent bi-infinite words, we need a characterisation when two bi-infinite
words are MSO-equivalent.

I Theorem 29 ([6, Chp. 9, Thm. 6.1]). Two bi-infinite words ξ and ζ are MSO-equivalent if
and only if one of the following conditions is satisfied:
1. ξ and ζ are shift-equivalent.
2. ξ and ζ are recurrent and have the same set of factors.

This characterisation is the central ingredient in the proof of the following result:
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I Theorem 30. Let ξ be a bi-infinite word.
(a) If ξ is periodic, then the cardinality of the type of ξ is finite and equals the period of ξ.
(b) If ξ is non-recurrent, then the cardinality of the type of ξ is ℵ0.
(c) If ξ is recurrent and non-periodic, then the cardinality of the type of ξ is 2ℵ0 .

Proof.
(a) Let p be the period of ξ. Since p is minimal, there are precisely p distinct bi-infinite

words that are shift-equivalent with ξ. Since shift-equivalent words are MSO-equivalent,
the type of ξ contains at least p elements. It remains to be shown that no further
MSO-equivalent word exists. So let ζ be some MSO-equivalent word. Then ζ is p-
periodic since ξ (and therefore ζ) satisfies ∀x : (P (x)⇔ P (x+ p)) and does not satisfy
∀x : (P (x)⇔ P (x+ q)) for any 1 ≤ q < p. Furthermore u = ξ[1, p] is a factor of ξ and
therefore of ζ of length p. Hence ζ = uω∗uω.

(b) This claim follows immediately from Thm. 29.
(c) This follows from Thm. 28 as there are 2ℵ0 Turing-degree above any Turing-degree. J
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Abstract
Weak monadic second-order logic of one successor (WS1S) is a simple and natural formalism
to specify regular properties. WS1S is decidable, although the decision procedure’s complexity
is non-elementary. Typically, decision procedures for WS1S exploit the logic–automaton con-
nection, i.e., they escape the simple and natural formalism by translating formulas into equally
expressive regular structures such as finite automata, regular expressions, or games. In this
work, we devise a coalgebraic decision procedure for WS1S that stays within the logical world
by directly operating on formulas. The key operation is the derivative of a formula, modeled
after Brzozowski’s derivatives of regular expressions. The presented decision procedure has been
formalized and proved correct in the interactive proof assistant Isabelle.
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1 Introduction

In his seminal work [8], Büchi envisioned weak monadic second-order logic of one successor
(WS1S) to become a “more conventional formalism [that] can be used in place of regular
expressions [. . . ] for formalizing conditions on the behavior of automata”. This vision became
truth – WS1S has been used to encode decision problems in hardware verification [3], program
verification [22], network verification [4], synthesis [19], as well as many others.

WS1S is a logic that supports first-order quantification over natural numbers and second-
order quantification over finite (therefore “Weak”) sets of natural numbers, and beyond this
has few additional special predicates, such as < to compare first-order variables. Equivalence
of WS1S formulas is decidable, although the complexity for deciding it is non-elementary [27].
Nevertheless, the MONA tool [20] shows that the daunting theoretical complexity can often
be overcome in practice by employing a multitude of smart optimizations. Similarly to Büchi,
MONA’s manual [24] calls WS1S a “simple and natural notation” for regular languages.

Traditionally1, decision procedures for WS1S do not try to benefit from the conventional,
simple, and natural logical notation. Instead, by exploiting the logic–automaton connection,
formulas are translated into finite automata which are then minimized. During the translation
all the rich algebraic formula structure including binders and high-level constructs is lost. On
the other hand, the subsequent minimization might have benefited from some simplifications
on the formula level.

Concerning the algebraic structure, regular expressions are situated somewhere in between
WS1S formulas and automata. In earlier work [40, 39], we propose a semantics-preserving
translation of WS1S formulas into regular expressions. Thereby, equivalence of formulas is

1 The only notable exception, we are aware of, is the decision procedure implemented in the Toss tool [17]
(Sect. 7).
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reduced to equivalence of regular expressions. To decide the latter, we employ a coalgebraic
procedure based on an ε-acceptance test and Brzozowski derivatives [7] – the coalgebra
structure on regular expressions [32].

In this paper, we go one step further by defining a syntactic coalgebra structure (a short
recapitulation of language coalgebra is given Sect. 2) directly on WS1S formulas (whose
syntax and semantics are introduced in Sect. 3). The main contributions are:

We define a symbolic derivative operation for a WS1S formula (Sect. 4).
We define an acceptance test whether a formula holds in the empty interpretation (Sect. 5).
Taking the two above notions together, we obtain a decision procedure for WS1S that
operates only on formulas (Sect. 6).
We formalize the procedure in Isabelle/HOL [29] and prove its correctness.

On the one hand, the obtained decision procedure can be considered an elegant toy –
implementable only with a few hundred lines of Standard ML (and thus well-suited for formal-
ization) and teachable in class. At this stage, our intention is not to compete with MONA’s
thousands of lines of tricky performance optimizations (which still can be outperformed by
our procedure on well selected formulas), but rather with another verified procedure from our
own previous work [40, 39]. Here, the procedure presented in this work shows a significant
performance improvement (Sect. 6).

On the other hand, being able to safely decide small formulas is already of some value.
In an experiment, we have randomly generated small formulas and compared the outcome
of our verified algorithm with the results produced by MONA and two other (less mature)
tools: Toss [17] and dWiNA [14]. As the result, we were able to point the developers of the
latter two tools to corner cases where their tools gave a wrong answer [36, 35]. Admittedly,
one could have performed the same test without a formalized decision procedure, but then
in case of a discrepancy, determining who is right might be difficult with random formulas.

Finally, we are confident that symbolic decision procedures need not to hide behind
traditional automata-based ones in terms of performance in general. Sect. 7 on related work
supports this claim by several successful examples, which we expect to carry over to our
setting.

Notational Conventions. We employ a mixture of standard mathematical and functional
programming notations. Function definitions are written in pseudo-Standard ML and we
indicate the ML types, written postfix, where we consider them helpful. We assume no
familiarity with Isabelle/HOL. Formal languages are sets of words. Words are represented
by α list, finite lists of elements of type α. Lists are either empty ([]) or constructed by
the infix operator ∶∶ of type α⇒ α list⇒ α list. The n-th element of the list xs is accessed
by xs[n] (zero-based). The length of xs is written ∣xs∣; applied to a set this notation also
denotes the set’s cardinality. Lists can be iterated over using the standard combinator
fold ∶ (α ⇒ β ⇒ β) ⇒ α list ⇒ β ⇒ β with the characteristic equations fold f [] b = b and
fold f (x ∶∶ xs) b = f x (fold f xs b). The type bool is inhabited by two elements: 1 and 0.

2 Languages Are Coalgebras

The coalgebraic view on formal languages is, to our knowledge, due to Rutten [32]. The
key observation is that the final coalgebra (α lang, out ∶ α lang⇒ F(α lang)) of the functor
F(S) = bool× (α⇒ S) exists and is isomorphic to the standard set of words view on languages.

Using the finality of α lang we can define functions of type τ ⇒ α lang by providing
an F-coalgebra on τ, i.e., a function of type τ ⇒ bool × (α ⇒ τ) that essentially describes
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τ
⟨o, δ⟩ //

Lang ⟨o, δ⟩ ��

F(τ)
F (Lang ⟨o, δ⟩)��

α lang out // F(α lang)

Figure 1 Unique morphism Lang ⟨o, δ⟩ to the final coalgebra (α lang, out).

a deterministic (not necessarily finite) automaton without an initial state. To clarify this
automaton analogy, it is customary to present the F-coalgebra as two functions ⟨o, δ⟩
with τ being the states of the automaton, o ∶ τ ⇒ bool denoting accepting states, and
δ ∶ α ⇒ τ ⇒ τ being the transition function. From a given ⟨o, δ⟩, we obtain the function
Lang ⟨o, δ⟩ ∶ τ ⇒ α lang that assigns to a separately given initial state t ∶ τ the language
Lang ⟨o, δ⟩ t ∶ α lang and makes the diagram in Figure 1 commute.

Exploiting the isomorphism to the set of words representation, the final coalgebra α lang
itself corresponds to the automaton, whose states are languages, acceptance is given by
o L = [] ∈ L, and the transition function by left quotients δ a L = (L)a = {w ∣ aw ∈ L}. Note
that Lang ⟨o, δ⟩ (L ∶ α lang) = L in this case.

A second consequence of the finality of α lang is the coinduction principle. A relation
R ∶ α lang⇒ α lang⇒ bool is a bisimulation iff for all languages L, K ∶ α lang such that R L K
holds, we have that [] ∈ L⇐⇒ [] ∈ K and for all a ∶ α it holds R (L)a (K)a. We write L ∼ K if
there exists a bisimulation R such that R L K and call such L and K bisimilar.

I Theorem 1 (Coinduction). Assume L ∼ K. Then L = K.

A necessary prerequisite for deciding bisimilarity of languages is that the languages in
question admit a finite syntactic representation.2 One example of such a finite syntactic
representation are regular expressions. Although later we will work with a different finite
syntactic representation (WS1S formulas), it is nevertheless instructive to shortly outline a
coalgebraic decision procedure for regular expression equivalence.

Regular expressions are defined inductively as

RE = ∅ ∣ εεε ∣ a ∣ RE +RE ∣ RE ⋅RE ∣ RE∗

where a ∈ Σ for a fixed alphabet Σ ∶ α list. The language of a regular expression r is defined
as L r = Lang ⟨ε,d⟩ r where ε ∶ RE⇒ bool is the test whether the regular expression accepts
the empty word and d ∶ α⇒ RE⇒ RE is the Brzozowski derivative [7] defined as usual:

ε ∅ = 0 d a ∅ = ∅
ε εεε = 1 d a εεε = ∅
ε a = 0 d a b = if a = b then εεε else ∅
ε (r + s) = ε r ∨ ε s d a (r + s) = d a r + d a s
ε (r ⋅ s) = ε r ∧ ε s d a (r ⋅ s) = d a r ⋅ s + if ε r then d a s else ∅
ε (r∗) = 1 d a (r∗) = d a r ⋅ (r∗)

Note, that we exploit the coalgebraic view on regular expressions to define their seman-
tics [21]. With the given definitions of the syntactic F-coalgebra on RE consisting of ε and d,
the unique morphism L to the final coalgebra α lang corresponds to the language notion in the

2 This is the case for regular languages, but also for e.g., context-free languages, where equivalence (and
bisimilarity) is undecidable. I.e., the finite syntactic representations prerequisite is not sufficient.
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set of words world (usually defined by recursion on RE). Moreover, for the unique morphism
we obtain the expected characteristic theorems: ε r⇐⇒ [] ∈ L r and L(d a r) = (L r)a.

The coalgebraic decision procedure for regular expression equivalence iteratively constructs
a relation P ∶ RE⇒ RE⇒ bool whose direct image under L is a bisimulation. For example,
suppose we want to prove the regular expressions r and s being equivalent. We start with
the pair (r, s), check ε r ⇐⇒ ε s and add it to the relation P. Then we close P under the
pairwise derivative d for all letters of the alphabet. Whenever a new pair (t, u) is added to
P, it is checked to fulfill ε t⇐⇒ ε u. Once P is closed under derivatives and all checks have
been passed we know that it is a (syntactic) bisimulation and therefore by coinduction the
languages of the input regular expressions r and s coincide.

The implementation bisim of this procedure employs a worklist algorithm to saturate P.
In order to be reusable, bisim generalizes over d (abstract parameter δ), ε (abstract parameter
o), syntactic representations of regular languages (types σ and τ). The abstract parameter ι
is used as some initial transformation (or translation) of the syntactic representations. It
will be of importance later when we instantiate σ with WS1S formulas.

bisim ∶ α list⇒ (σ⇒ τ)⇒ (α⇒ τ⇒ τ)⇒ (τ⇒ bool)⇒ σ⇒ σ⇒ bool
bisim Σ ι δ o s t =

let
closure ([], _) = 1
closure ((s, t) ∶∶ws, P) = if o s /= o t then 0 else

let
add_new a (ws, P) =

let st = (δ s a, δ t a) in if st ∈ P then (ws, P) else (st ∶∶ws, {st} ∪ P)
in closure (fold add_new Σ (ws, P))

st0 = (ι s, ι t)
in closure ([st0], {st0})

The presented algorithm is a slight generalization of a framework for deciding regular
expression equivalence [30]. If it terminates, bisim decides language equivalence of σ (given
notions of languages L̂ and L for σ and τ respectively, and executable arguments ι, δ, o that
behave well with respect to the language notions).

I Theorem 2. Fix

Σ ∶ α list, L ∶ τ⇒ α lang, L̂ ∶ σ⇒ α lang, ι ∶ σ⇒ τ, δ ∶ α⇒ τ⇒ τ, and o ∶ τ⇒ bool.

Assume that for all s ∶ σ, t ∶ τ, and a ∈ Σ∗ we have

L t ⊆ Σ∗, L (ι s) = L̂ s, L (δ a t) = (L t)a, o t⇐⇒ [] ∈ L t, and ∣{fold δ w t ∣ w ∈ Σ∗}∣ <∞.

Then bisim Σ ι δ o s s′ ⇐⇒ L̂ s = L̂ s′.

Proof. Because of the finiteness assumption closure (hence also bisim) does always terminate
(the set of pairs to be explored is finite).

bisim Σ ι δ o s s′
1⇐⇒ L (ι s) ∼ L (ι s′) ⇐⇒ L̂ s ∼ L̂ s′

2⇐⇒ L̂ s = L̂ s′

Equivalence 1 is justified by the fact that the only possibility for closure to return 1 is to
make the worklist ws empty. Whenever the worklist becomes empty, the set of processed
pairs P is a bisimulation. The nontrivial direction of 2 is justified by coinduction. J
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The instantiation eqvRE Σ = bisim Σ (λr. r) (λa r. ∣d a r∣ACI) ε, where ∣ − ∣ACI is a function
computing some normal form of regular expressions with respect to associativity, commuta-
tivity, and idempotence of the + constructor, decides regular expression equivalence. This
follows from Theorem 2 with L = L̂ = Lang ⟨ε, d⟩, where the finiteness assumption holds by a
classic result due to Brzozowski [7].

3 Syntax and Semantics of WS1S

We briefly introduce WS1S, as well as a standard encoding of interpretations as formal words.
More thorough introductions are given elsewhere [34, 24]. Formulas are defined inductively
as

Φ = T ∣ F ∣ FO var ∣ var < var ∣ var ∈ var ∣ Φ ∨Φ ∣ ¬Φ ∣ ∃1 Φ ∣ ∃2 Φ

There are two kinds of quantifiers: ∃1 quantifies over first-order variables, which denote
natural numbers; ∃2 quantifies over second-order variables, which denote finite sets of natural
numbers. We use de Bruijn indices for variable bindings – therefore, no names are attached
to quantifiers. An occurrence of a bound variable is just an index of type var = nat, that
refers to its binder by counting the number of quantifiers between the occurrence and the
binder. For example, the formula ∃1 FO 0 ∨ (∃2 1 ∈ 0) would be customarily written as
∃1x. FO x ∨ (∃2X. x ∈ X) indicating second-order variables by capital letters. The first 0
and the 1 refer to the outer first-order quantifier, while the second 0 refers to the inner
second-order quantifier. Loose de Bruijn indices, that are lacking a binder, are considered to
be free. For example, 0 < 1 corresponds to the formula x < y for free x and y.

De Bruijn indices must be manipulated with great care and are hard to read. However,
we prefer their usage for three reasons: First, they enable equality of formulas to hold modulo
renaming of variables without further ado. Second, for any formula, its free variables are
naturally ordered by the de Bruijn index. On several occasions, we will benefit from this
order by using a simple list, the n-th element of which is associated to the variable with the
index n. A priori this does not seem to be an advantage over using a functional assignment.
However one of the occasions will be the underlying alphabet for the formula’s language – an
alphabet consisting of arbitrary functions is not a good idea for a decision procedure. Third,
de Bruijn indices were successfully employed in the formalization.

The usual abbreviations define conjunction ϕ∧ψ = ¬(¬ϕ∨¬ψ) and universal quantification
∀i ϕ = ¬∃i (¬ϕ) for i ∈ {1, 2}.

The truth of a formula depends on an interpretation of its free variables. An interpretation
assigns each free variable of a formula a value. In our case, an interpretation is represented by
a list of finite sets of natural numbers. The n-th entry of an interpretation is the assignment to
the free variable of the formula denoted by the loose index n. Therefore, a first-order variable
x is at first also assigned a finite set I[x], with the condition that it must be non-empty. The
value assigned by the interpretation to x is then taken to be the minimum of I[x] written,
Min (I[x]). The idea to encode first-order variables as non-empty sets where the minimum
counts, rather than singleton sets comes from MONA [24, Sect. 3.2] and leads to a more
efficient decision procedure (also in our setting).
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We define the WS1S-semantics of a formula ϕ w.r.t. an interpretation I, written I ⊧ ϕ.

I ⊧ T = 1
I ⊧ F = 0
I ⊧ (x < y) = I[x] ≠ {} ∧ I[y] ≠ {} ∧ Min (I[x]) <Min (I[y])
I ⊧ (x ∈ X) = I[x] ≠ {} ∧ Min (I[x]) ∈ I[X]
I ⊧ (FO x) = I[x] ≠ {}
I ⊧ (ϕ ∨ ψ)= I ⊧ ϕ ∨ I ⊧ ψ
I ⊧ (¬ϕ) = ¬(I ⊧ ϕ)
I ⊧ (∃1 ϕ) = ∃p. ({p} ∶∶ I) ⊧ ϕ
I ⊧ (∃2 ϕ) = ∃P. ∣P∣ <∞ ∧ (P ∶∶ I) ⊧ ϕ

Intuitively, T is truth, F is falsity, x < y compares assignments of first-order variables, x ∈ X
checks that the assignment to x is contained in the assignment to X. The (less standard)
formula FO x asserts that x is a first-order variable. The Boolean connectives and quantifiers
behave as expected. De Bruijn indices allow us to conveniently extend the interpretation
by simply prepending the value for the most recently quantified variable when recursively
entering the scope of a quantifier.

If I ⊧ ϕ holds, we say I satisfies ϕ or I is a model of ϕ. Formulas and interpretations must
be wellformed: e.g., first-order variables shall not be used as second-order variables, and vice
versa; no out-of-bounds accesses to the interpretation happen in ⊧. To ease the presentation,
we omit the formal definition of wellformedness (it can be found in our formalization [38])
and consider only wellformed formulas and interpretations.

Another aspect of ⊧, that we want to factor out at first is the native support for first-order
quantification. Therefore, in Sects. 4 and 5, we will use a different semantics that treats both
quantifiers alike, written I ⊫ ϕ. It only differs from ⊧ in the quantifier cases:

I ⊫ (∃i ϕ)= ∃P. ∣P∣ <∞ ∧ (P ∶∶ I)⊫ ϕ for i ∈ {1,2}

In Sect. 6, we will see how a formula under the ⊧-semantics can be easily syntactically
translated into an equivalent formula under the ⊫-semantics by inserting FO x in the right
places.

There exists an alternative semantics for monadic-second order logic on finite words:
M2L(Str) [2, 23] (we drop the (Str) from now on). Early versions of MONA implemented the
M2L semantics. While WS1S is considered to be number theoretic (as intended by Büchi),
the M2L semantics fits more naturally into the realm of automata. The difference between the
two semantics lies only in the treatment of quantifiers. In WS1S, a quantified variable may be
assigned arbitrarily large sets. In M2L, allowed assignments are bounded by the some number
#I greater than all numbers occurring in the interpretation I, i.e., ∀x ∈ ⋃∣I∣i=0 I[i]. x <#I. The
number #I is intrinsic to an interpretation (although here for simplicity we pretend it is a
separate value). For WS1S its choice does not matter for satisfiability.

Our goal is to develop a decision procedure for WS1S. However, a decision procedure for
M2L will arise on the way as a natural by-product. Therefore, we introduce its semantics
formally, written I ⊧< ϕ. Again, only the quantifier cases differ from the definition of ⊧.

I ⊧< (∃1 ϕ)= ∃p. (p <#I) ∧ ({p} ∶∶ I) ⊧< ϕ
I ⊧< (∃2 ϕ)= ∃P. (∀p ∈ P. p <#I) ∧ (P ∶∶ I) ⊧< ϕ

Although equally expressive as WS1S and somehow unusual in its treatment of quantifiers,
the logic M2L has certain advantages, e.g., it yields a better complexity for the bounded
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model construction problem [2]. Therefore, M2L is not just an ad hoc intermediate construct,
and obtaining a decision procedure for it (basically for free) is of some value.

As for WS1S, we first use a simplified version of M2L that ignores the quantifier types.

I ⊫< (∃i ϕ)= ∃P. (∀p ∈ P. p <#I) ∧ (P ∶∶ I)⊫< ϕ for i ∈ {1,2}

Two formulas are equivalent if they have the same models. Thus, we consider the language
of a formula to be the set of its models encoded as words. The encoding of models (or
interpretations in general) is standard: a finite set of natural numbers X is transformed into
a list of Booleans, where 1 in the n-th positions means that n ∈ X. For interpretations the
injective encoding function enc applies this transformation pointwise and pads the lists with
0s at the end to have length #I. For example for I = [{1, 2, 3}, {0, 2}] with #I = 4, we obtain
enc I = [[0, 1, 1, 1], [1, 0, 1, 0]], which we transpose to obtain the formal word wI over the
alphabet bool ∣I∣ (each letter is a vector, i.e., a list of fixed length).

wI = [(
0
1) , (

1
0) , (

1
1) , (

1
0)]

In wI a row corresponds to an assignment to a variable. For first-order variables a row must
contain at least one 1 and the first 1 from the left counts as the assigned value. Finally, the
(simplified) WS1S-language of a formula is defined as L ϕ = {wI ∣ I ⊫ ϕ} and the (simplified)
M2L-language as L< ϕ = {wI ∣ I ⊫< ϕ}. The real languages, that we are after, are defined in
the same way but using ⊧ and ⊧< instead of ⊫ and ⊫<, with some further wellformedness
conditions on I and ϕ (Sect. 6).

4 Formula Derivatives

Brzozowski derivatives compute symbolically for a regular expression r the regular expression
d a r whose language is the left quotient of r’s language by a. A formula derivative is the
analogous operation on a formula. Given a formula ϕ, its derivative δ v ϕ is a formula whose
language is the left quotient of ϕ’s language by the letter v ∶ bool n, where n is the number of
free variables of ϕ. Formula derivatives are defined by primitive recursion as follows.

δ v T = T
δ v F = F

δ v (x < y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x < y if ¬v[x] ∧ ¬v[y]
FO y if v[x] ∧ ¬v[y]
F otherwise

δ v (ϕ ∨ ψ) = δ v ϕ ∨ δ v ψ
δ v (¬ϕ) = ¬δ v ϕ
δ v (∃i ϕ) = ∃i (δ (1 ∶∶ v) ϕ ∨ δ (0 ∶∶ v) ϕ) for i ∈ {1,2}

δ v (FO x) =
⎧⎪⎪⎨⎪⎪⎩

T if v[x]
FO x otherwise

δ v (x ∈ X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ∈ X if ¬v[x]
T if v[x] ∧ v[X]
F otherwise

Here we see the first important usage of the FO x: to establish the closure of Φ under δ.
Let us try to intuitively understand some of the base cases of the definition. The language

of F is the empty set. The quotient of the empty set is again empty. Thus, the derivative of
F should be again F. For FO x, the language will contain all words which have a 1 in the
x-th row in some letter. Thus, if we quotient this language by a letter that has a 0 in the
x-th row, we should obtain the same language represented by formula FO x. However, once
the first 1 in the x-th row has been discovered by quotienting by a letter that has a 1 in the
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x-th row, no further restrictions on the remaining words to be accepted remain – i.e., the
quotient is the universal language represented by formula T.

Other base cases follow similarly. The most interesting recursive case is that of the
existential quantifiers. The first observation that should be made is that if ϕ is a formula
with n+1 free variables, then ∃i ϕ is a formula with n free variables (assuming that the bound
variable 0 is used in ϕ). This implies that when we derive ∃i ϕ by v, we cannot derive ϕ by
v, but only by some vector b ∶∶ v because all variables (de Bruijn indices) are shifted. Since
the Boolean b is unknown, we consider both possibilities: b = 1 and b = 0. The existential
quantifier requires just one witness assignment for the quantified variable. This means only
one of the possibilities has to hold – that is why the recursive calls δ (1 ∶∶ v) ϕ and δ (0 ∶∶ v) ϕ
are connected by disjunction.

To reason more directly about interpretations and derivatives, we lift the list constructor ∶∶
on words to interpretations. This yields the operator CONS, with the characteristic property
w(CONS v I) = v ∶∶wI assuming ∣v∣ = ∣I∣, defined as follows.

CONS [] [] = []
CONS (1 ∶∶ v) (X ∶∶ I) = ({0} ∪ (X + 1)) ∶∶ CONS v I
CONS (0 ∶∶ v) (X ∶∶ I) = (X + 1) ∶∶ CONS v I

The set X + 1 is the pointwise increment of X, namely {x+ 1 ∣ x ∈ X}. Additionally, we require
#(CONS v I) =#I + 1. We obtain the following key characterization of the derivative (again
modulo wellformedness considerations of I, ϕ, and v).

I Theorem 3. I ⊫ δ v ϕ⇐⇒ CONS v I ⊫ ϕ and I ⊫< δ v ϕ⇐⇒ CONS v I ⊫< ϕ
Proof. Two straightforward inductions on ϕ. J

The set of all word derivatives {fold δ w ϕ ∣ w ∈ Σ∗} over some alphabet Σ is infinite.
However, the syntactic identification of formulas that can be rewritten into each other using
only associativity, commutativity and idempotence of ∨ (ACI) results in a finite search space
which the decision procedure has to explore. This fundamental theorem mimics Brzozowski’s
result about dissimilar derivatives of regular expressions modulo ACI of + [7].

I Theorem 4. A formula ϕ has finitely many distinct word derivatives modulo ACI of ∨.
Proof. By induction on ϕ. The most interesting case is ∃i ϕ. By IH we know that ϕ has a
finite set D of distinct derivatives modulo ACI. Some of the formulas in D can be disjunctions.
If we repeatedly split outermost disjunctions in D until none are left, we obtain a finite set X
of disjuncts. Each word derivative fold δ w (∃i ϕ) is ACI equivalent to some ∃i (⋁Y) for some
Y ⊆ X. Since X is finite, its powerset is also finite. Hence, there are finitely many distinct
fold δ w (∃i ϕ) modulo ACI.

Other cases are either obvious or carry over smoothly from Brzozowski’s proof. J

Note that Theorem 4 is purely syntactic: no semantic (or language) equivalence is involved.
In particular, this theorem does not follow from the Myhill-Nerode theorem nor from the fact
that there are only finitely many semantically inequivalent formulas of bounded quantifier
rank. Although not all language equivalent formulas are also ACI equivalent, ACI suffices
for gaining finiteness.

I Example 5. The formula ϕ = ∃2(1 ∈ 0) ( = ∃2X. x ∈ X in conventional notation) has two
distinct derivatives modulo ACI over the alphabet Σ = bool1 = [(0), (1)] (we abbreviate
fold δ w by δw).

δ[] ϕ = ϕ ≡ACI ∃2(1 ∈ 0 ∨ 1 ∈ 0) = δ[(0)] ϕ ≡ACI δ(0)n ϕ for n > 1
δ[(1)] ϕ = ∃2(T∨F) ≡ACI ∃2((T∨F)∨(T∨F)) = δ[(1), (0)] ϕ ≡ACI δ((0)n⋅(1)∶∶w) ϕ for n ∶ nat, w ∈ Σ∗



D. Traytel 495

5 Accepting Formulas

Defining a function that checks whether a regular expression accepts the empty word is
straightforward. A priori, the task seems barely harder for formulas – check whether the
empty interpretation {}n (encoded by the empty word) satisfies a formula with n free variables.
We start with the following attempt.

o< T = 1 o< (FO x) = 0
o< F = 0 o< (ϕ ∨ ψ) = o< ϕ ∨ o< ψ
o< (x < y) = 0 o< (¬ϕ) = ¬o< ϕ
o< (x ∈ X) = 0 o< (∃i ϕ) = o< ϕ for i ∈ {1, 2}

As the name of the function indicates this acceptance test will work only for the M2L
semantics, justifying M2L’s automata theoretic reputation. As we will see the acceptance
test for the number theoretic WS1S is by far more involved.

First, we should understand why o< works well for M2L but fails for WS1S. Therefore,
we consider the formula ϕ = ∃1 (1 < 0) (= ∃y. x < y in conventional notation) that behaves
differently under the two semantics. Interpreted in WS1S, ϕ is true: for each natural number
x there exists a bigger one. Interpreted in M2L, the fact whether ϕ is true depends on the
interpretation I and the value of x: for example if #I = 4 then the quantifier is allowed to
assign to y only values smaller than 4. If additionally x = 3, the formula becomes false. When
checking acceptance, we only consider interpretations I with #I = 0. Therefore, o< ϕ rightly
returns 0 in the M2L setting.

Asserting o< (∃i ϕ) = o< ϕ effectively corresponds to the restriction of M2L on the quanti-
fied values. Fortunately, unrestricted WS1S quantifiers can be related to M2L quantifiers by
repeatedly padding the interpretations I with the letter 0Σ = 0∣I∣. This means that we can
reuse o< for WS1S if we can get rid of the padding. In the context of automata this step is
called futurization and is implemented by traversing the automaton backwards using only
0Σ-labeled transitions [23]. Here, we work with formulas. Thus traversing means deriving
and traversing backwards means deriving from the right. We therefore introduce a second
derivative operation δ(a mirrored δ) that computes the right quotient and is symmetric to
the derivative δ. However, the base formulas are not very symmetric themselves, such that
the definition of δis slightly more complicated than the one for δ. In particular Φ is not
closed under δ– we need to extend it with three further base formulas: x <F y, x <T y, and
x ∈T y with the following WS1S semantics (the M2L semantics is the same, but not really
relevant).

I ⊫ (x <F y) = I[x] ≠ {} ∧ (I[y] = {} ∨ (I[y] ≠ {} ∧ Min (I[x]) <Min (I[y])))
I ⊫ (x <T y) = I[y] = {} ∨ (I[x] ≠ {} ∧ I[y] ≠ {} ∧ Min (I[x]) <Min (I[y]))
I ⊫ (x ∈T X) = I[x] = {} ∨ (I[x] ≠ {} ∧ Min (I[x]) ∈ I[X])

It is not easy to convey the intuition behind x <F y, x <T y, and x ∈T X. In principle, those
are random names for formulas denoting “what is left” after deriving from the right. These
remainders are closely related to their non-subscripted cousins, behaving differently only if
one of the assigned sets is empty. The subscript T indicates the acceptance of the empty
model.

Next, we define the right derivative δ. Also the M2L acceptance test o< must be lifted to
the additional formulas. Although we will not use the derivative δ on the new formulas, we
want our previously stated theorems still to hold universally. Thus, we extend δ accordingly.
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δv T = T
δv F = F

δv (x < y) =
⎧⎪⎪⎨⎪⎪⎩

x < y if ¬v[y]
x <F y otherwise

δv (x <F y) =
⎧⎪⎪⎨⎪⎪⎩

x <T y if v[x] ∧ ¬v[y]
x <F y otherwise

δv (x <T y) =
⎧⎪⎪⎨⎪⎪⎩

x <T y if ¬v[y]
x <F y otherwise

δv (x ∈ X) =
⎧⎪⎪⎨⎪⎪⎩

x ∈T X if v[x] ∧ v[X]
x ∈ X otherwise

δv (x ∈T X)=
⎧⎪⎪⎨⎪⎪⎩

x ∈ X if v[x] ∧ ¬v[X]
x ∈T X otherwise

δv (FO x) =
⎧⎪⎪⎨⎪⎪⎩

T if v[x]
FO x otherwise

o< (x <F y) = 0
o< (x <T y) = 1
o< (x ∈T X) = 1

δ v (x <F y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x <F y if ¬v[x] ∧ ¬v[y]
T if v[x] ∧ ¬v[y]
F otherwise

δ v (x <T y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x <T y if ¬v[x] ∧ ¬v[y]
T if v[x] ∧ ¬v[y]
F otherwise

δ v (x ∈T X)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x ∈T X if ¬v[x]
T if v[x] ∧ v[X]
F otherwise

δv (ϕ ∨ ψ)= δv ϕ ∨ δv ψ
δv (¬ϕ) = ¬ δv ϕ
δv (∃i ϕ) = ∃i ( δ(1 ∶∶ v) ϕ ∨ δ(0 ∶∶ v) ϕ) for i ∈ {1,2}

A first thing worth noticing is that again the number of derivatives δmodulo ACI of ∨ is
finite. The proof is analogous to the proof of Theorem 4.

I Theorem 6. A formula ϕ has finitely many distinct right word derivatives modulo ACI of ∨.

Next, we establish a correspondence between the M2L semantics and right derivatives,
similarly to Theorem 3. Therefore, we introduce the operation SNOC, symmetric to CONS,
on interpretations.

SNOC [] [] = []
SNOC (1 ∶∶ v) (X ∶∶ I) = ({#I} ∪ X) ∶∶ SNOC v I
SNOC (0 ∶∶ v) (X ∶∶ I) = X ∶∶ SNOC v I

Just as for CONS, we require #(SNOC v I) =#I + 1. Another routine induction yields the
fundamental property of right derivatives. Note that there is no equivalent theorem for the
WS1S semantics.

I Theorem 7. I ⊫< δv ϕ⇐⇒ SNOC v I ⊫< ϕ

Finally, we define a function futurize to repeatedly apply δ0Σ, an operation ⌊−⌋ to
recursively apply futurize to all quantifiers in a formula, and the acceptance test o for WS1S
formulas. The equations of ⌊−⌋ are matched sequentially.

futurize ϕ = ⌊ϕ ∨ ψ⌋ = ⌊ϕ⌋ ∨ ⌊ψ⌋
let fut ϕ X = ⌊¬ϕ⌋ = ¬⌊ϕ⌋

if ϕ ∈ X then ⋁X ⌊∃i ϕ⌋ = futurize (∃i ⌊ϕ⌋)
else fut ∣ δ0Σ ϕ∣ACI ({ϕ} ∪ X) ⌊ϕ⌋ = ϕ

in fut ∣ϕ∣ACI {} o ϕ = o< ⌊ϕ⌋

Due to Theorem 6 the function futurize does always terminate. Moreover, we can prove
the expected properties of the acceptance tests.
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I Theorem 8. Let n be the number of free variables in ϕ and I an interpretation with ∣I∣ = n.
Then
1. o< ϕ⇐⇒ {}n ⊫< ϕ,
2. I ⊫< futurize ϕ⇐⇒ ∃k. ((SNOC (0n))k I)⊫< ϕ,
3. I ⊫< ⌊ϕ⌋⇐⇒ I ⊫ ϕ, and
4. o ϕ⇐⇒ {}n ⊫ ϕ,
where (SNOC (0n))k denotes the k-fold repeated application of SNOC (0n).

Proof. Prop. 1 follows by routine induction on ϕ. Prop. 2 follows from the fact that futurize ϕ
is the disjunction of all right derivatives of ϕ by words of the form (0n)k for some k and
Theorem 7. Prop. 3 is again a routine induction using Prop. 2 in the existential quantifier
cases. Finally, for Prop. 4 we calculate: o ϕ⇐⇒ o< ⌊ϕ⌋

Prop. 1⇐⇒ {}n ⊫< ⌊ϕ⌋
Prop. 3⇐⇒ {}n ⊫ ϕ. J

6 Decision Procedure for WS1S

We are close to being able to instantiate the generic bisimulation computation with our
notions to obtain a decision procedure for WS1S. The only missing jigsaw pieces are the
treatment of first-order quantification and wellformedness checks on interpretations and
formulas that were swept under the carpet so far. Let us make it more precise: in full
detail the language of a formula is not just L ϕ = {wI ∣ I ⊫ ϕ}, but rather has an additional
explicit wellformedness condition L̂ ϕ = {wI ∣ I ⊧ ϕ ∧ (∀x ∈ FOV ϕ. I[x] ≠ {})} (similarly
L̂< ϕ = {wI ∣ I ⊧< ϕ ∧ (∀x ∈ FOV ϕ. I[x] ≠ {})}), where FOV ϕ is the set of free first-order
variables of ϕ. Then, the language of the negated formula is

L̂ (¬ϕ) = {wI ∣ ¬(I ⊧ ϕ) ∧ (∀x ∈ FOV ϕ. I[x] ≠ {})} ≠ Σ∗ ∖ L̂ ϕ.

We conclude that complementation on the language level does not correspond to the negation
on the formula level. The solution is once again inspired by the treatment of this issue in
MONA3: certain critical w.r.t. negation wellformedness annotations (critical here means:
cannot be checked statically for a formula before starting to derive), called restrictions, are
syntactically introduced in the formula by the initial transformation ι of bisim. Here, the
formula FO x plays another important role, since in our case restrictions merely ensure that
only non-empty sets are assigned to first-order variables.

For example, the acceptance test o would cast the formula ∀1 FO 0 = ¬∃1 ¬FO 0 false
without restrictions. However, if we conjoin the additional information that all first-order
variables should be non-empty right under their introducing quantifiers and once globally for
free first-order variables of a formula, we obtain the desired behavior: o (¬∃1 FO 0 ∧ ¬FO 0) =
1. The conjunction of restrictions is implemented by the function restrict (with equations of
the helper function restr matched sequentially and the function FOV denoting the list of free
first-order variables of a formula).

restr (ϕ ∨ ψ) = restr ϕ ∨ restr ψ
restr (¬ϕ) = ¬restr ϕ
restr (∃1 ϕ) = ∃1 (restr ϕ ∧ FO 0)
restr (∃2 ϕ) = ∃2 (restr ϕ)
restr ϕ = ϕ
restrict ϕ = fold (λi ϕ. ϕ ∧ FO i) (FOV ϕ) (restr ϕ)

3 Recent versions of MONA use a more efficient solution than the outlined simple approach [23].
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∃2 1 ∈ 0
FO 0

start

∃2 (T ∨ F)
T

∃2 ((T ∨ F) ∨ (T ∨ F))
T

∃2 (1 ∈ 0 ∨ 1 ∈ 0)
FO 0

δ (1)δ (1)
δ (0)

ACI

δ (0)

ACI

Figure 2 Bisimulation constructed by eqv for ∃21 ∈ 0 ≡ FO 0.

The function restrict translates between L and L̂ :

I Theorem 9. L (restrict ϕ) = L̂ ϕ and L< (restrict ϕ) = L̂< ϕ.

Finally, we are ready to instantiate bisim to obtain decision procedures for the M2L and
the WS1S semantics. Note that the argument formulas still have to be checked for simple
wellformedness properties statically (e.g., by a type system that ensures that no variable is
used as both first-order and second-order simultaneously). Also the alphabet Σ must be a
list of vectors whose lengths correspond to the number of free variables.

eqv
<

Σ ϕ ψ = bisim Σ (λϕ. ∣restrict ϕ ∧ FO z∣ACI) (λa ϕ. ∣δ a ϕ∣ACI) o< ϕ ψ

eqv Σ ϕ ψ = bisim Σ (λϕ. ∣restrict ϕ∣ACI) (λa ϕ. ∣δ a ϕ∣ACI) o ϕ ψ

The last unexpected thing is the conjunction of a fresh variable z (not occurring in ϕ and ψ)
in the decision procedure for M2L. This is required to circumvent the situation that a M2L
formula can only be true in the empty model if it does not quantify over first-order variables
and has no free first-order variables. Because of this ∀1FO 0 would be different from T but
equivalent to FO 42. Conjoining a fresh first-order variable restriction essentially means,
that the first pair of a bisimulation must not be checked for acceptance. This admittedly
surprising workaround is required due to the unusual quantification rules of M2L. In WS1S
there is nothing special about empty models.

I Theorem 10. eqv
<

Σ ϕ ψ⇐⇒ L̂< ϕ = L̂< ψ and eqv Σ ϕ ψ⇐⇒ L̂ ϕ = L̂ ψ

Proof. Using Theorem 2 and discharging its assumptions using the Theorems 3, 4, and 8
together with the characteristic properties of CONS and restrict. J

I Example 11. Figure 2 shows the bisimulation produced by our decision procedure for
the equivalent formulas ϕ = ∃21 ∈ 0 and ψ = FO 0 over the alphabet Σ = bool1 = [(1), (0)].
Graphically, a bisimulation can also be viewed as the product automaton of the automata
whose states are derivatives of the formulas with transitions given by δ. Accepting states,
i.e., pairs (ϕ, ψ) for which o ϕ and o ψ holds, are marked with a double margin. Previously
seen ACI equivalent states, detected using the ACI normalization ∣ − ∣ACI and marked by a
dashed back-edge, are not explored further (and not even checked for being both accepting
or both not accepting).

The example suggests that a stronger normalization function than ∣ − ∣ACI might be useful.
For example, trivial identities involving T or F (e.g., T ∨ ϕ ≡ ϕ) should be also simplified.
Indeed in our tests we employ a much stronger normalization function, that additionally
eliminates quantifiers ∃i ϕ ≡ ϕ provided that 0 is not free in ϕ. MONA performs a similar
optimization, which according to its user manual [24] “can cause tremendous improvements”.
However, MONA can perform this optimization only on the initially entered formula, while
for us it is available for every pair of formulas in the bisimulation because we keep the rich
formula structure.
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Table 1 Running times (in sec) of regular expression- and formula-based decision procedures.

n ψn ≡MSO T [39] ψn ≡WS1S T [39] eqv
<
ψn T eqv ψn T

0 0 0.4 0 0
1 0 14.4 0 0
2 3.9 − 0 0

10 − − 0.07 0.07
15 − − 3.43 3.46

This is only one of a wealth of optimizations performed in MONA. Competing with this
state-of-the-art tool is not our main objective yet. Our procedure does outperform MONA
on specific examples, e.g., formulas of the form ϕ ∧ ψ where the minimal automata for ϕ is
small, the one for ψ is huge, and for almost all w ∈ Σ∗ either fold δ w ϕ = F or fold δ w ψ = F.
When extending the syntax with formulas of the form x = n for constants n (and defining
the left and right derivatives for them), such examples can be immediately constructed:
x = 10 ∧ x = 10000 takes MONA roughly 40 minutes to disprove, while our procedure requires
only a few seconds. MONA computes eagerly both minimal automata for ϕ and ψ, whereas
our procedure is lazier, which pays off here. More generally, we can compete with and
outperform by far another existing verified symbolic decision procedure for WS1S, namely
the one translating formulas into regular expressions proposed by us earlier [39].

We have evaluated the performance of eqv
<
and eqv for the family of formulas ψn from

our earlier work [39] using the same hardware and compared it against the best timings
obtained for M2L and WS1S in there. The encouraging results are shown in Table ??. A
− means that the computation did not terminate within an hour. MONA solves all those
examples instantly. We should note that the optimization ∃i ϕ ≡ ϕ provided that 0 is not free
in ϕ is indeed a tremendous improvement – without its usage our decision procedure scales
only slightly better than the regular expression-based one. The possibility to inspect the
binder structure after several derivation steps, which is not available when translating to
regular expressions, is the main advantage of the proposed decision procedure.

7 Related Work and Discussion

Much of the related work has been discussed earlier. We outline further references which
yield some inspiration for generalizations and performance improvement of our algorithm.

For regular expression equivalences different variations of Brzozowski derivatives have been
proposed. Most prominently, the partial derivatives have been introduced by Antimirov [1]
and generalized by Caron et al. [9] to support complements and intersections. Partial
derivatives capture ACI equivalence directly in the data structure of finite sets, eliminating
the need for the subsequent ACI normalization after deriving. This idea immediately carries
over to formulas and, since decision procedures based on partial derivatives tend to perform
better in practice, is worth investigating. Further variations of derivatives exist, however
a generalization to complements and intersections seems difficult. In earlier work [30], we
provide an overview and a performance comparison.

Beyond regular expressions, there exist generalizations of Brzozowski derivatives for
context-free grammars [12, 28] and Kleene algebra with tests (KAT) [26]. In the latter
case, derivatives give rise to efficient coalgebraic decision procedures for KAT [31] and its
network-targeted specialization NetKAT [15]. Our work can be seen in line with this work,
albeit replacing “efficient” with “verified”. The ultimate goal is to develop procedures that
fulfill both predicates. Below we outline how to possibly improve on efficiency for WS1S.
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Our algorithm constructs a bisimulation. It is well known that a bisimulation up to
congruence and context is often much smaller. Bonchi and Pous [6] successfully employ this
technique in practice, outperforming state-of-the-art solvers for NFA equivalence. Fiedor
et al. [14] employ the modern antichain technique for nondeterministic automata in the
context of deciding WS1S. Their tool, dWiNA, outperforms MONA for certain classes of
formulas (in particular for formulas in prefix normal form). Bonchi and Pous [6] showed that
bisimulation up to congruence and context is an even further improvement over antichains
for nondeterministic automata. Either of these techniques will improve the performance of
our algorithm (extended to work nondeterministically using partial derivatives) at least for
some classes of formulas.

MONA benefits a lot from the BDD representation of automata [25]. Pous [31] presents a
fast symbolic decision procedure for KAT employing BDDs whose leafs are KAT expressions
and lifting derivative operations to those BDDs. We expect this technique to be applicable
to WS1S formulas.

An alternative to conjoining formulas FO 0 to every first-order quantifier, that turned out
to be more efficient in MONA, is to work with a three-valued semantics [23] of acceptance
(the third value indicates that no 1 for a first-order variable has been read yet). In our setting,
this would require a change of the underlying final coalgebra (essentially working with Moore
machines instead of DFAs), and therefore a complication of the syntactic coalgebra.

Ganzow and Kaiser [17, 16] present a very general, model theoretic decision procedure
for weak monadic second-order logic on inductive structures that is inspired by Shelah’s
composition method [33]. Although they tackle the problem from a completely different angle,
their computation of the next-state function is also performed symbolically on formulas and
therefore has a similar flavor as our left derivatives. However, after obtaining the next-state
function in such a way, Ganzow and Kaiser escape the formula world by translating the
problem into a finite reachability game. Their algorithm is implemented in the Toss tool.
It outperforms MONA for certain formulas, by outsourcing parts of the computation to
state-of-the-art SAT-solvers. In contrast, by employing the coalgebraic machinery, we do
even more on formulas directly, e.g., by computing the acceptance test via right derivatives.
Overall, the work by Ganzow and Kaiser can serve as a starting point on how to generalize
our procedure beyond WS1S.

Since S1S, in which second-order variables quantify over potentially infinite sets, is also
decidable, the question naturally arises whether our ideas are applicable there as well. Some
hope for the affirmative answer can be drawn from the work by Esparza and Kretínský [13],
who employ something similar to “derivatives of LTL formulas” (but in conjunction with a
non-standard automaton model) for model checking. Furthermore, Ciancia and Venema [10]
recast a more standard automaton model on infinite words into the coalgebraic setting.

Methodologically, Isabelle facilitated convenient reasoning about logic and in particular
formal languages coalgebraically, not least due to recently introduced codatatype support [5].
The coinductive theory of languages is interesting in itself and formalized separately [37].

8 Conclusion

We have presented a simple coalgebraic algorithm for deciding WS1S. The algorithm operates
directly on formulas by deriving them symbolically. The algorithm has been formalized and
proved correct in Isabelle/HOL. Using Isabelle’s code generator [18], we can extract a fully
verified prover for WS1S from the formalization. The formalization, comprising 4000 lines
of code, is available online [38]. For readers unfamiliar with Isabelle, a separate manual
implementation of the algorithm in Standard ML is also available [38].
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In future work, we plan to implement optimizations hinted at in the previous section and
to explore derivatives for other weaker and stronger logics such as Presburger Arithmetic, LTL,
S1S, WS2S, and S2S following Conway’s motto “differentiation is a skill worth acquiring” [11,
p. 43].
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Abstract
We study n-player turn-based games played on a finite directed graph. For each play, the players
have to pay a cost that they want to minimize. Instead of the well-known notion of Nash
equilibrium (NE), we focus on the notion of subgame perfect equilibrium (SPE), a refinement of
NE well-suited in the framework of games played on graphs. We also study natural variants of
SPE, named weak (resp. very weak) SPE, where players who deviate cannot use the full class of
strategies but only a subclass with a finite number of (resp. a unique) deviation step(s).

Our results are threefold. Firstly, we characterize in the form of a Folk theorem the set of
all plays that are the outcome of a weak SPE. Secondly, for the class of quantitative reachability
games, we prove the existence of a finite-memory SPE and provide an algorithm for computing
it (only existence was known with no information regarding the memory). Moreover, we show
that the existence of a constrained SPE, i.e. an SPE such that each player pays a cost less than
a given constant, can be decided. The proofs rely on our Folk theorem for weak SPEs (which
coincide with SPEs in the case of quantitative reachability games) and on the decidability of
MSO logic on infinite words. Finally with similar techniques, we provide a second general class
of games for which the existence of a (constrained) weak SPE is decidable.
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In the classical setting, the objectives of the two players are opposite, i.e. the environment is
adversarial. Modeling the environment as fully adversarial is usually a bold abstraction of
reality and there are recent works that consider the more general setting of non zero-sum
games which allow to take into account the different objectives of each player. In this latter
setting the environment has its own objective which is most often not the negation of the
objective of the system. The concept of Nash equilibrium (NE) [12] is central to the study of
non zero-sum games and can be applied to the general setting of n player games. A strategy
profile is a NE if no player has an incentive to deviate unilaterally from his strategy, since he
cannot strictly improve on the outcome of the strategy profile by changing his strategy only.

However in the context of sequential games (such as games played on graphs), it is
well-known that NEs present a serious weakness: a NE allows for non-credible threats that
rational players should not carry out [16]. Hence, for sequential games, the notion of NE has
been strengthened into the notion of subgame perfect equilibrium (SPE): a strategy profile is
an SPE if it is a NE in all the subgames of the original game. While the notion of SPE is
rather well understood for finite state game graphs with ω-regular objectives or for games
in finite extensive form (finite game trees), less is known for game graphs with quantitative
objectives in which players encounter costs that they want to minimize, like in classical
quantitative objectives such as mean-payoff, discounted sum, or quantitative reachability.

Several natural and important questions arise for such games: Can we decide the existence
of an SPE, and more generally the constrained existence of an SPE (i.e. an SPE in which
each player encounters a cost less than some fixed value)? Can we compute such SPEs
that use finite-memory strategies only? Whereas several authors have studied what the
hypotheses are to impose on games in a way to guarantee the existence of an SPE, the
previous algorithmic questions are still wide open. In this article, we provide progress in
the understanding of the notion of SPE. We study some variants of SPEs and establish a
theorem that characterizes their possible outcomes in quantitative games. We derive from this
characterization interesting algorithms and information on the strategies for two important
classes of quantitative games. Our contributions are detailed in the next paragraph.

Contributions. First, we formalize a notion of deviation step from a strategy profile that
allows us to define two natural variants of NEs. While a NE must be resistant to the unilateral
deviation of one player for any number of deviation steps, a weak (resp. very weak) NE must
be resistant to the unilateral deviation of one player for any finite number of (resp. a unique)
deviation step(s). Then we use those variants to define the corresponding notions of weak
and very weak SPE. The latter notion is very close to the one-step deviation property [13].
Any very weak SPE is also a weak SPE, and there are games for which there exists a weak
SPE but no SPE. Also, for games with upper-semicontinuous cost functions and for games
played on finite game trees, the three notions are equivalent.

Second, we characterize in the form of a Folk theorem1 all the possible outcomes of weak
SPEs. The characterization is obtained starting from all possible plays of the game and the
application of a nonincreasing operator that removes plays that cannot be outcome of a weak
SPE. We show that the limit of the nonincreasing chain of sets always exists and contains
exactly all the possible outcomes of weak SPEs. Furthermore, we show how for each such
outcome, we can associate a strategy profile that generates it and which is a weak SPE.

1 We do not consider our result as folklore, but we use this terminology, as also done in [6], in reference
to the “classical folk theorems" for repeated games which characterize the payoff profiles of NEs and
SPEs in repeated games (see for instance Chapter 8 in [13]).
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Additionally, to illustrate the potential of our Folk theorem, we show how it can be
refined and used to answer open questions about two classes of quantitative games. The first
class of games that we consider are quantitative reachability games, such that each player
aims at reaching his own set of target states as soon as possible. As the cost functions
in those games are continuous, our Folk theorem characterizes precisely the outcomes of
SPEs and not only weak SPEs. In [1, 7], it has been shown that quantitative reachability
games always have SPEs. The proof provided for this theorem is non constructive since it
relies on topological arguments. Here, we strengthen this existential result by proving that
there always exists, not only an SPE but, a finite-memory SPE. Furthermore, we provide an
algorithm to construct such a finite memory SPE. This algorithm is based on a constructive
version of our Folk Theorem for the class of quantitative reachability games: we show that
the nonincreasing chain of sets of potential outcomes stabilizes after a finite number of steps
and that each intermediate set is an ω-regular set that can be effectively described using
MSO sentences. The second class of games that we consider is the class of games with cost
functions that are prefix-independent, whose range of values is finite, and for which each
value has an ω-regular pre-image. For this general class of games, with similar techniques as
for quantitative reachability games, we show how to construct an effective representation of
all possible outcomes compatible with a weak SPE, and consequently that the existence of a
weak SPE is decidable. In those two applications, we show that our construction also allow
us to answer the question of existence of a constrained (weak) SPE, i.e. a (weak) SPE in
which players pays a cost which is bounded by a given value.

Related work. The concept of SPE has been first introduced and studied by the game
theory community. The notion of SPE has been first introduced by Kuhn in finite extensive
form games [10]. For such games, backward induction can be used to prove that there always
exists an SPE. By inspecting the backward induction proof, it is not difficult to realize that
the notion of very weak SPE and SPE are equivalent in this context.

SPEs for infinite trees defined as the unfolding of finite graphs with qualitative, i.e.
win-lose, ω-regular objectives, have been studied by Ummels in [19]: it is proved that such
games always have an SPE, and that the existence of a constrained SPE is decidable.

In [9], the authors provide an effective representation of the outcomes of NEs in concurrent
priced games by constructing a Büchi automaton accepting the language of outcomes of
all NEs satisfying a bound vector. The existence of NEs in quantitative games played on
graphs is studied in [3]; it is shown that for a large class of games, there always exists a
finite-memory NE. This result is extended in [4] for two-player games and secure equilibria
(a refinement of NEs); additionally the constrained existence problem for secure equilibria is
also shown decidable for a large range of cost functions. None of these articles consider SPEs.

In [6], the authors prove that for quantitative games with cost functions that are upper-
semicontinous and with finite range, there always exists an SPE. This result also relies on
a nonincreasing chain of sets of possible outcomes of SPEs. The main differences with our
work is that we obtain a Folk theorem that characterizes all possible outcomes of weak SPEs
with no restriction on the cost functions. Moreover we have shown that our Folk theorem
can be made effective for two classes of quantitative games of interest. Effectiveness issues
are not considered in [6]. Prior to this work, Mertens shows in [11] that if the cost functions
are bounded and Borel measurable then there always exists an ε-NE. In [7], Fudenberg et al.
show that if the cost functions are all continuous, then there always exists an SPE. Those
results were recently extended in [15] by Le Roux and Pauly.
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Organization of the article. In Section 2, we present the notions of quantitative game,
classical NE and SPE, and their variants. In Section 3, we propose our Folk Theorem for
weak SPEs. In Section 4, we provide an algorithm for computing a finite-memory SPE for
quantitative reachability games, and a second algorithm to decide the constrained existence
of an SPE for this class of games. We also show that the existence of a (constrained) weak
SPE is decidable for another class of games. A conclusion and future work are given in the
last section.

2 Preliminaries and Variants of Equilibria

In this section, we recall the notions of quantitative game, Nash equilibrium, and subgame
perfect equilibrium. We also introduce variants of Nash and subgame perfect equilibria, and
compare them with the classical notions.

2.1 Quantitative Games
We consider multi-player turn-based non zero-sum quantitative games in which, for each
infinite play, players pay a cost that they want to minimize.2

I Definition 1. A quantitative game is a tuple G = (Π, V, (Vi)i∈Π, E, λ̄) where:
Π is a finite set of players,
V is a finite set of vertices,
(Vi)i∈Π is a partition of V such that Vi is the set of vertices controlled by player i ∈ Π,
E ⊆ V ×V is a set of edges, such that3 for all v ∈ V , there exists v′ ∈ V with (v, v′) ∈ E,
λ̄ = (λi)i∈Π is a cost function such that λi : V ω → R ∪ {+∞} is player i cost function.

A play of G is an infinite sequence ρ = ρ0ρ1 . . . ∈ V ω such that (ρi, ρi+1) ∈ E for all i ∈ N.
Histories of G are finite sequences h = h0 . . . hn ∈ V + defined in the same way. The length
|h| of h is the number n of its edges. We denote by First(h) (resp. Last(h)) the first vertex
h0 (resp. last vertex hn) of h. Usually histories are non-empty, but in specific situations it
will be useful to consider the empty history ε. The set of all histories (ended by a vertex
in Vi) is denoted by Hist (by Histi). A prefix (resp. suffix) of a play ρ is a finite sequence
ρ0 . . . ρn (resp. infinite sequence ρnρn+1 . . .) denoted by ρ≤n or ρ<n+1 (resp. ρ≥n). We use
notation h < ρ when a history h is prefix of a play ρ. Given two distinct plays ρ and ρ′, their
longest common prefix is denoted by ρ̂ρ′.

When an initial vertex v0 ∈ V is fixed, we call (G, v0) an initialized quantitative game.
A play (resp. a history) of (G, v0) is a play (resp. history) of G starting in v0. The set
of histories h ∈ Hist (resp. h ∈ Histi) with First(h) = v0 is denoted by Hist(v0) (resp.
Histi(v0)). In the figures of this article, we will often unravel the graph of the game (G, v0)
from the initial vertex v0, which ends up in an infinite tree.

Given a play ρ ∈ V ω, its cost is given by λ̄(ρ) = (λi(ρ))i∈Π. In this article, we are
particularly interested in quantitative reachability games in which λi(ρ) is equal to the
number of edges to reach a given set of vertices.

I Definition 2. A quantitative reachability game is a quantitative game G such that the cost
function λ̄ : V ω → (N ∪ {+∞})Π is defined as follows. Each player i has a target set Ti ⊆ V ,
and for each play ρ = ρ0ρ1 . . . of G, the cost λi(ρ) is the least index n such that ρn ∈ Ti if it
exists, and +∞ otherwise.

2 Alternatively, players could receive a payoff that they want to maximize.
3 Each vertex has at least one outgoing edge.
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Notice that the cost function λ̄ of a quantitative game is often defined from |Π|-tuples of
weights labeling the edges of the game. For instance, in inf games, λi(ρ) is equal to the
infimum of player i weights seen along ρ. Some other classical examples are liminf, limsup,
mean-payoff, and discounted sum games [5]. In case of quantitative reachability on graphs
with weighted edges, the cost λi(ρ) for player i is replaced by the sum of the weights seen
along ρ until his target set is reached. We do not consider this extension here. Notice that
when weights are positive integers, replacing each edge with cost c by a path of length c

composed of c new edges allows to recover Definition 2.
Let us recall the notions of prefix-independent, continuous, and lower- (resp. upper-)

semicontinuous cost functions. Since V is endowed with the discrete topology, and thus V ω
with the product topology, a sequence of plays (ρn)n∈N converges to a play ρ = limn→∞ ρn
if every prefix of ρ is prefix of all ρn except, possibly, of finitely many of them.

I Definition 3. Let λi be a player i cost function. Then
λi is prefix-independent if λi(hρ) = λi(ρ) for any history h and play ρ.
λi is continuous if whenever limn→∞ ρn = ρ, then limn→∞ λi(ρn) = λi(ρ).
λi upper-semicontinuous (resp. lower-semicontinuous) if whenever limn→∞ ρn = ρ, then
lim supn→∞ λi(ρn) ≤ λi(ρ) (resp. lim infn→∞ λi(ρn) ≥ λi(ρ)).

For instance, the cost functions used in liminf and mean-payoff games are prefix-independent,
contrarily to the case of inf games. Clearly, if λi is continuous, then it is upper- and
lower-semicontinuous. The cost functions of liminf and mean-payoff games are neither upper-
semicontinuous nor lower-semicontinuous, whereas they are continuous in discounted sum
games. The cost functions λi used in quantitative reachability games can be transformed into
continuous ones as follows [1]: λ′i(ρ) = 1− 1

λi(ρ)+1 if λi(ρ) < +∞, and λ′i(ρ) = 1 otherwise.

2.2 Strategies and Deviations

A strategy σ for player i ∈ Π is a function σ : Histi → V assigning to each history4 hv ∈ Histi
a vertex v′ = σ(hv) such that (v, v′) ∈ E. In an initialized game (G, v0), σ is restricted to
histories starting with v0. A player i strategy σ is positional if it only depends on the last
vertex of the history, i.e. σ(hv) = σ(v) for all hv ∈ Histi. It is a finite-memory strategy if it
needs only finite memory of the history (recorded by a finite strategy automaton, also called
a Moore machine). A play ρ is consistent with a player i strategy σ if ρk+1 = σ(ρ≤k) for all k
such that ρk ∈ Vi. A strategy profile of G is a tuple σ̄ = (σi)i∈Π of strategies, where each σi is
a player i strategy. It is called positional (resp. finite-memory) if all σi, i ∈ Π, are positional
(resp. finite-memory). Given an initial vertex v0, such a strategy profile determines a unique
play of (G, v0) that is consistent with all the strategies. This play is called the outcome of σ̄
and is denoted by 〈σ̄〉v0 .

Given σi a player i strategy, we say that player i deviates from σi if he does not stick
to σi and prefers to use another strategy σ′i. Let σ̄ be a strategy profile. When all players
stick to their strategy σi except player i that shifts to σ′i, we denote by (σ′i, σ−i) the derived
strategy profile, and by 〈σ′i, σ−i〉v0 its outcome in (G, v0). In the next definition, we introduce
the notion of deviation step of a strategy σ′i from a given strategy profile σ̄.

4 In this article we often write a history in the form hv with v ∈ V to emphasize that v is the last vertex
of this history.
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I Definition 4. Let (G, v0) be an initialized game, σ̄ be a strategy profile, and σ′i be a player
i strategy. We say that σ′i has a hv-deviation step from σ̄ for some history hv ∈ Histi(v0)
with v ∈ Vi, if hv < 〈σ′i, σ−i〉v0 and σi(hv) 6= σ′i(hv).

Notice that the previous definition requires that hv is a prefix of the outcome 〈σ′i, σ−i〉v0 ; it
says nothing about σ′i outside of this outcome. A strategy σ′i can have a finite or an infinite
number of deviation steps in the sense of Definition 4. A strategy with three deviation steps
is depicted in Figure 1 such that each hkvk-deviation step from σ̄, 1 ≤ k ≤ 3, is highlighted
with a dashed edge.

v0

v1

v′1

v2

v′2

v3

v′3

〈σ′i, σ−i〉v0

h1

h2

h3

Figure 1 A strategy σ′
i with a finite

number of deviation steps.

In light of Definition 4, we introduce the follow-
ing classes of strategies.

I Definition 5. Let (G, v0) be an initialized game,
and σ̄ be a strategy profile.

A strategy σ′i is finitely deviating from σ̄ if it
has a finite number of deviation steps from σ̄.
It is one-shot deviating from σ̄ if it has a v0-
deviation step from σ̄, and no other deviation
step.

In other words, a strategy σ′i is finitely deviating
from σ̄ if there exists a history hv < 〈σ′i, σ−i〉v0

such that for all h′v′, hv ≤ h′v′ < 〈σ′i, σ−i〉v0 ,
we have σ′i(h′v′) = σi(h′v′) (σ′i acts as σi from
hv along 〈σ′i, σ−i〉v0). The strategy σ′i is one-shot
deviating from σ̄ if it differs from σi at the initial
vertex v0, and after v0 acts as σi along 〈σ′i, σ−i〉v0 .
As for Definition 4, the previous definition says
nothing about σ′i outside of 〈σ′i, σ−i〉v0 . Clearly
any one-shot deviating strategy is finitely deviating.
The strategy of Figure 1 is finitely deviating but
not one-shot deviating.

2.3 Nash and Subgame Perfect
Equilibria, and Variants
In this paper, we focus on subgame perfect equilibria and their variants. Let us first recall
the classical notion of Nash equilibrium. A strategy profile σ̄ in an initialized game is a Nash
equilibrium if no player has an incentive to deviate unilaterally from his strategy, since he
cannot strictly decrease his cost when using any other strategy.

I Definition 6. Given an initialized game (G, v0), a strategy profile σ̄ = (σi)i∈Π of (G, v0)
is a Nash equilibrium (NE) if for all players i ∈ Π, for all player i strategies σ′i, we have
λi(〈σ′i, σ−i〉v0) ≥ λi(〈σ̄〉v0).

We say that a player i strategy σ′i is a profitable deviation for i w.r.t. σ̄ if λi(〈σ′i, σ−i〉v0) <
λi(〈σ̄〉v0). Therefore σ̄ is a NE if no player has a profitable deviation w.r.t. σ̄.

Let us propose the next variants of NE.

I Definition 7. Let (G, v0) be an initialized game. A strategy profile σ̄ is a weak NE (resp.
very weak NE) in (G, v0) if, for each player i ∈ Π, for each finitely deviating (resp. one-shot
deviating) strategy σ′i of player i, we have λi(〈σ′i, σ−i〉v0) ≥ λi(〈σ̄〉v0).
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v0

v1 v2

v3 v4

σ1 σ′1

(3, 3) σ2 σ′2

(3, 4) (1, 3)

Figure 2 A simple two-
player quantitative game.

v0 v1v2 v3

(2, 0)

(0, 0)
(2, 0)

(0, 0)

(1, 2) (0, 1)

Figure 3 A two-player game with a (very) weak SPE and
no SPE. For each player, the cost of a play is his unique
weight seen in the ending cycle.

I Example 8. Consider the two-player quantitative game depicted in Figure 2. Circle (resp.
square) vertices are player 1 (resp. player 2) vertices. The edges are labeled by couples of
weights such that weights (0, 0) are not specified. For each player i, the cost λi(ρ) of a play
ρ is the weight of its ending loop. In this simple game, each player i have two positional
strategies that are respectively denoted by σi and σ′i (see Figure 2).

The strategy profile (σ1, σ
′
2) is not a NE since σ′1 is a profitable deviation for player 1

w.r.t. (σ1, σ
′
2) (player 1 pays cost 1 instead of cost 3). This strategy profile is neither a weak

NE nor a very weak NE because in this simple game, player 1 can only deviate from σ1 by
using the one-shot deviating strategy σ′1. On the contrary, the strategy profile (σ1, σ2) is a
NE with outcome v0v

ω
1 of cost (3, 3). It is also a weak NE and a very weak NE.

By definition, any NE is a weak NE, and any weak NE is a very weak NE. The contrary
is false: in the previous example, (σ′1, σ2) is a very weak NE, but not a weak NE. We will see
later an example of game with a weak NE that is not an NE (see Example 12).

The notion of subgame perfect equilibrium is a refinement of NE. In order to define it, we
need to introduce the following notions. Given a quantitative game G = (Π, V, (Vi)i∈Π, E, λ̄)
and a history h of G, we denote by G�h the game G�h = (Π, V, (Vi)i∈Π, E, λ̄�h) where
λ̄�h(ρ) = λ̄(hρ) for any play of G�h5, and we say that G�h is a subgame of G. Given an
initialized game (G, v0), and a history hv ∈ Hist(v0), the initialized game (G�h, v) is called
the subgame of (G, v0) with history hv. Notice that (G, v0) can be seen as a subgame of itself
with history hv0 such that h = ε. Given a player i strategy σ in (G, v0), we define the strategy
σ�h in (G�h, v) as σ�h(h′) = σ(hh′) for all histories h′ ∈ Histi(v). Given a strategy profile
σ̄ = (σi)i∈Π, we use notation σ̄�h for (σi�h)i∈Π, and 〈σ̄�h〉v is its outcome in the subgame
(G�h, v).

We can now recall the classical notion of subgame perfect equilibrium: it is a strategy
profile in an initialized game that induces a NE in each of its subgames. In particular, a
subgame perfect equilibrium is a NE.

I Definition 9. Given an initialized game (G, v0), a strategy profile σ̄ of (G, v0) is a subgame
perfect equilibrium (SPE) if σ̄�h is a NE in (G�h, v), for every history hv ∈ Hist(v0).

As for NE, we propose the next variants of SPE.

I Definition 10. Let (G, v0) be an initialized game. A strategy profile σ̄ is a weak SPE
(resp. very weak SPE) if σ̄�h is a weak NE (resp. very weak NE) in (G�h, v), for all histories
hv ∈ Hist(v0).

5 In this article, we will always use notation λ̄(hρ) instead of λ̄�h(ρ).
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I Example 11. We come back to the game depicted in Figure 2. We have seen before that
the strategy profile (σ1, σ2) is a NE. Notice that this NE uses a non-credible threat of player 2
that prefers to pay a cost of 4 instead of 3 (by using σ′2). Such a threat is not allowed for
SPEs. Indeed consider the subgame (G�v0 , v2) of (G, v0) with history v0v2. In this subgame,
σ′2 is a profitable deviation for player 2, showing that (σ1, σ2) is not an SPE. One can easily
verify that the strategy profile (σ′1, σ′2) is an SPE, as well as a weak SPE and a very weak
SPE, due to the simple form of the game.

The previous example is too simple to show the differences between classical SPEs and
their variants. The next example presents a game with a (very) weak SPE but no SPE.

I Example 12. Consider the two-player game (G, v0) in Figure 3. The edges are labeled by
couples of weights, and for each player i the cost λi(ρ) of a play ρ is the unique weight seen
in its ending cycle. With this definition, λi(ρ) can also be seen as either the mean-payoff, or
the liminf, or the limsup, of the weights of ρ. It is known that this game has no SPE [17].

Let us show that the strategy profile σ̄ depicted with thick edges is a very weak SPE.
Due to the simple form of the game, only two cases are to be treated. Consider the subgame
(G�h, v0) with h ∈ (v0v1)∗, and the one-shot deviating strategy σ′1 of player 1 such that
σ′1(v0) = v2. Then 〈σ̄�h〉v0 = v0v1v

ω
3 and 〈σ′1, σ2�h〉v0 = v0v

ω
2 , showing that σ′1 is not

a profitable deviation for player 1. One also checks that in the subgame (G�h, v1) with
h ∈ (v0v1)∗v0, the one-shot deviating strategy σ′2 of player 2 such that σ′2(v1) = v0 is not
profitable for him.

Similarly, one can prove that σ̄ is a weak SPE (see also Proposition 13 hereafter). Notice
that σ̄ is not an SPE. Indeed the strategy σ′2 such that σ′2(hv1) = v0 for all h, is a profitable
deviation for player 2 in (G, v0). This strategy is (of course) not finitely deviating. Finally
notice that σ̄ is a weak NE that is not an NE.

From Definition 10, any SPE is a weak SPE, and any weak SPE is a very weak SPE. The
next proposition states that weak SPE and very weak SPE are equivalent notions, but this is
no longer true for SPE and weak SPE as shown previously by Example 12. The first part of
the proof is based on arguments from the one-step deviation property used to prove Kuhn’s
theorem [10]. The second part follows from Example 12 [17].

I Proposition 13.
Let (G, v0) be an initialized game, and σ̄ be a strategy profile. Then σ̄ is a weak SPE iff
σ̄ is a very weak SPE.
There exists an initialized game (G, v0) with a weak SPE but no SPE.

Under the next hypotheses on the game or the costs, the equivalence between SPE, weak
SPE, and very weak SPE holds. The first case, when the cost functions are continuous, is a
classical result in game theory, see for instance [8]; the second case appears as a part of the
proof of Kuhn’s theorem [10].

I Proposition 14. Let (G, v0) be an initialized game, and σ̄ be a strategy profile.
If all cost functions λi are continuous, or even upper-semicontinuous6, then σ̄ is an SPE
iff σ̄ is a weak SPE iff σ̄ is a very weak SPE.
If G is a finite tree7, then σ̄ is an SPE iff σ̄ is a weak SPE iff σ̄ is a very weak SPE.

6 In games where the players receive a payoff that they want to maximize, the hypothesis of upper-
semicontinuity has to be replaced by lower-semicontinuity.

7 In a finite tree game, the plays are finite sequences of vertices ending in a leaf and their cost is associated
with the ending leaf. An example of such a game is depicted in Figure 2.
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Recall that discounted sum games and quantitative reachability games are continuous.
Thus for these games, the three notions of SPE, weak SPE and very weak SPE, are equivalent.

I Corollary 15. Let (G, v0) be an initialized quantitative reachability game, and σ̄ be a
strategy profile. Then σ̄ is an SPE iff σ̄ is a weak SPE iff σ̄ is a very weak SPE.

On the opposite, the initialized game of Figure 3 has a weak SPE but no SPE. Its cost
function λ2 is not upper-semicontinuous. Indeed, we have that limn→∞(v0v1)nvω3 = (v0v1)ω
and limn→∞ λ2((v0v1)nvω3 ) = 1 > 0 = λ2((v0v1)ω).

3 Folk Theorem for Weak SPEs

In this section, we characterize in the form of a Folk Theorem the set of all outcomes of weak
SPEs. To this end we define a nonincreasing sequence of sets of plays that initially contain
all the plays, and then lose, step by step, some plays that for sure are not outcomes of a
weak SPE, until finally reaching a fixpoint.

Let (G, v0) be a game. For an ordinal α and a history hv ∈ Hist(v0), let us consider the
set Pα(hv) = {ρ | ρ is a potential outcome of a weak NE in (G�h, v) at step α}. This set is
defined by induction on α as follows:

I Definition 16. Let (G, v0) be a quantitative game. The set Pα(hv) is defined as follows
for each ordinal α and history hv ∈ Hist(v0):

For α = 0,
Pα(hv) = {ρ | ρ is a play in (G�h, v)}. (1)

For a successor ordinal α+ 1,
Pα+1(hv) = Pα(hv) \Eα(hv) (2)

such that ρ ∈ Eα(hv) (see Figure 4) iff
there exists a history h′, hv ≤ h′ < hρ, and Last(h′) ∈ Vi for some i,
there exists a vertex v′, h′v′ 6< hρ,
such that ∀ρ′ ∈ Pα(h′v′): λi(hρ) > λi(h′ρ′).

For a limit ordinal α:
Pα(hv) =

⋂
β<α

Pβ(hv). (3)

Notice that an element ρ of Pα(hv) is a play in (G�h, v) (and not in (G, v0)). Therefore it
starts with vertex v, and hρ is a play in (G, v0). For α+ 1 being a successor ordinal, play
ρ ∈ Eα(hv) is erased from Pα(hv) when for all ρ′ ∈ Pα(h′v′), player i pays a lower cost
λi(h′ρ′) < λi(hρ), meaning that ρ is no longer a potentiel outcome of a weak NE in (G�h, v).

The sequence (Pα(hv))α is nonincreasing by definition, and reaches a fixpoint:

I Proposition 17. There exists an ordinal α∗ such that Pα∗(hv) = Pα∗+1(hv) for all
histories hv ∈ Hist(v0).

In the sequel, α∗ always refers to the ordinal mentioned in Proposition 17.
Our Folk Theorem for weak SPEs is the next one.

I Theorem 18. Let (G, v0) be a quantitative game. There exists a weak SPE in (G, v0) with
outcome ρ iff Pα∗(hv) 6= ∅ for all hv ∈ Hist(v0), and ρ ∈ Pα∗(v0).

The proof of Theorem 18 follows from Lemmas 19 and 20.

I Lemma 19. If (G, v0) has a weak SPE σ̄, then Pα∗(hv) 6= ∅ for all hv ∈ Hist(v0), and
〈σ̄〉v0 ∈ Pα∗(v0).
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v0

v

v′

∈ Vi

ρ ∈ Eα(hv) ∀ρ′ (G�h, v)Pα(h′v′)

h

h′

Figure 4 ρ ∈ Eα(hv).

Proof. Let us show, by induction on α, that 〈σ̄�h〉v ∈ Pα(hv) for all hv ∈ Hist(v0).
For α = 0, we have 〈σ̄�h〉v ∈ Pα(hv) by definition of P0(hv).
Let α+ 1 be a successor ordinal. By induction hypothesis, we have that 〈σ̄�h〉v ∈ Pα(hv)

for all hv ∈ Hist(v0). Suppose that there exists hv such that 〈σ̄�h〉v 6∈ Pα+1(hv), i.e.
〈σ̄�h〉v ∈ Eα(hv). This means that there is a history h′ = hg ∈ Histi for some i ∈ Π
with hv ≤ h′ < hρ, and there exists a vertex v′ with h′v′ 6< hρ, such that ∀ρ′ ∈ Pα(h′v′),
λi(h·〈σ̄�h〉v) > λi(h′ρ′). In particular, by induction hypothesis

λi(h·〈σ̄�h〉v) > λi(h′ ·〈σ̄�h′〉v′). (4)

Let us consider the player i strategy σ′i in (G�h, v) such that g ·〈σ̄�h′〉v′ is consistent with σ′i.
Then σ′i is a finitely deviating strategy with the (unique) g-deviation step from σ̄�h. It is a
profitable deviation for player i in (G�h, v) by (4), a contradiction with σ̄ being a weak SPE.

Let α be a limit ordinal. By induction hypothesis 〈σ̄�h〉v ∈ Pβ(hv), ∀β < α. Therefore
〈σ̄�h〉v ∈ Pα(hv) =

⋂
β<α Pβ(hv). J

I Lemma 20. Suppose that Pα∗(hv) 6= ∅ for all hv ∈ Hist(v0), and let ρ ∈ Pα∗(v0). Then
(G, v0) has a weak SPE with outcome ρ.

Proof. We are going to show how to construct a very weak SPE σ̄ (and thus a weak SPE
by Proposition 13) with outcome ρ. The construction of σ̄ is done step by step thanks to
a progressive labeling of the histories hv ∈ Hist(v0). Let us give an intuitive idea of the
construction of σ̄. Initially, we partially construct σ̄ such that it produces an outcome in
(G, v0) equal to ρ ∈ Pα∗(v0); we also label each non-empty prefix of ρ by ρ. Then we consider
a shortest non-labeled history h′v′, and we correctly choose some ρ′ ∈ Pα∗(h′v′) (we will
see later how). We continue the construction of σ̄ such that it produces the outcome ρ′ in
(G�h′ , v′), and for each non-empty prefix g of ρ′, we label h′g by ρ′ (notice that the prefixes
of h′ have already been labeled by choice of h′). And so on. In this way, the labeling is a
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map γ : Hist(v0)→
⋃
hv Pα∗(hv) that allows to recover from h′g the outcome ρ′ of σ̄�h′ in

(G�h′ , v′) of which g is prefix. Let us now go into the details.
Initially, none of the histories is labeled. We start with history v0 and the given play

ρ ∈ Pα∗(v0). The strategy profile σ̄ is partially defined such that 〈σ̄〉v0 = ρ, that is, if
ρ = ρ0ρ1 . . ., then σi(ρ≤n) = ρn+1 for all ρn ∈ Vi and i ∈ Π. The non-empty prefixes h of ρ
are all labeled with γ(h) = ρ.

At the following steps, we consider a history h′v′ that is not yet labeled, but such that
h′ has already been labeled. By induction, γ(h′) = 〈σ̄�h〉v such that hv ≤ h′. Suppose that
Last(h′) ∈ Vi, we then choose a play ρ′ ∈ Pα∗(h′v′) such that (see Figure 5)

λi(h·〈σ̄�h〉v) ≤ λi(h′ρ′). (5)

Such a play ρ′ exists for the next reasons. By induction, we know that 〈σ̄�h〉v ∈ Pα∗(hv).
Since Pα∗(hv) = Pα∗+1(hv) by Proposition 17, we have 〈σ̄�h〉v 6∈ Eα∗(hv), and we get the
existence of ρ′ by definition of Eα∗(hv). We continue to construct σ̄ such that 〈σ̄�h′〉v′ = ρ′,
i.e. if ρ′ = ρ′0ρ

′
1 . . ., then σi(h′ρ′≤n) = h′ρ′n+1 for all ρ′n ∈ Vi and i ∈ Π. For all non-empty

prefixes g of ρ′, we define γ(h′g) = ρ′ (notice that the prefixes of h′ are already labeled).
Let us show that the constructed profile σ̄ is a very weak SPE. Consider a history

hv ∈ Histi for some i ∈ Π, and a one-shot deviating strategy σ′i from σ̄�h in the subgame
(G�h, v). Let v′ be such that σ′i(v) = v′. By definition of σ̄, we have γ(hv) = 〈σ̄�g〉u for some
history gu ≤ hv and h·〈σ̄�h〉v = g ·〈σ̄�g〉u; and we have also γ(hvv′) = 〈σ̄�hv〉v′ . Moreover
λi(g·〈σ̄�g〉u) ≤ λi(hv·〈σ̄�hv〉v′) by (5), and λi(hv·〈σ̄�hv〉v′) = λi(h·〈σ′i, σ−i�h〉v) because σ′i is
one-shot deviating. Therefore

λi(h·〈σ̄�h〉v) = λi(g ·〈σ̄�g〉u) ≤ λi(hv ·〈σ̄�hv〉v′) = λi(h·〈σ′i, σ−i�h〉v)

which shows that σ̄�h is a very weak NE in (G�h, v). Hence σ̄ is a very weak SPE, and thus
also a weak SPE. J

4 Quantitative Reachability Games

v0

v

v′

∈ Vi

〈σ̄�h〉v ρ′ = 〈σ̄�h′〉v′ Pα∗(h′v′)

h

g

h′

Figure 5 Construction of a very weak
SPE σ̄.

In this section, we focus on quantitative reachability
games, such that the player i cost of a play is the
number of edges to reach his target set Ti (see
Definition 2). Recall that for those games, SPEs,
weak SPEs, and very weak SPEs, are equivalent
notions (see Corollary 15). It is known that there
always exists an SPE in quantitative reachability
games [1, 7].

I Theorem 21 ([1, 7]). Each quantitative reacha-
bility game (G, v0) has an SPE.

As SPEs and weak SPEs coincide in quantita-
tive reachability games, we get the next result by
Theorem 18.

I Corollary 22. Let (G, v0) be a quantitative reach-
ability game. The sets Pα∗(hv) are non-empty,
for all hv ∈ Hist(v0), and Pα∗(v0) is the set of
outcomes of SPEs in (G, v0).
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The proof provided for Theorem 21 is non constructive since it relies on topological
arguments. Our main result is that one can algorithmically construct an SPE in (G, v0) that
is moreover finite-memory, thanks to the sets Pα∗(hv).

I Theorem 23. Each quantitative reachability initialized game (G, v0) has a finite-memory
SPE. Moreover there is an algorithm to construct such an SPE.

We can also decide whether there exists a (finite-memory) SPE such that the cost of its
outcome is component-wise bounded by a given constant vector.

I Corollary 24. Let (G, v0) be a quantitative reachability initialized game, and let c̄ ∈ N|Π|
be a given |Π|-tuple of integers. Then one can decide whether there exists a (finite-memory)
SPE σ̄ such that λi(〈σ̄〉v0) ≤ ci for all i ∈ Π.

The main ingredients of the proof of Theorem 23 are the next ones. They will be a little
detailed in the sequel of this section, as well as the proof of Corollary 24.

1. Given α, the infinite number of sets Pα(hv) can be replaced by the finite number of sets
PI
α(v) where I is the set of players that did not reach their target set along history h.

2. The fixpoint of Proposition 17 is reached with some natural number α∗ ∈ N.
3. Each PI

α(v) is a non-empty ω-regular set, thus containing a “lasso play" of the form h·gω.
4. The lasso plays of each PI

α(v) allow to construct a finite-memory SPE.

1. Sets PIα(v). Let (G, v0) be a quantitative reachability game. Given a history h =
h0 . . . hn in (G, v0), we denote by I(h) the set of players i such that ∀k, 0 ≤ k ≤ n, we have
hk 6∈ Ti. In other words I(h) is the set of players that did not reach their target set along
history h. If h is empty, then I(h) = Π. One can prove that sets Pα(hv) only depend on v
and I(h), and thus not on h (we do no longer take care of players that have reached their
target set along h). We can thus introduce the notations

PI
α(v) (resp. EI

α(v))

in place of Pα(hv) (resp. Eα(hv)). In particular, PΠ
α (v0) = Pα(v0) and EΠ

α (v0) = Eα(v0).
Hence given α, the infinite number of sets Pα(hv) can be replaced by the finite number of
sets PI

α(v).
A key result in the proof of Theorem 23 is the following one: given PI

α(v) and i ∈ I, if for
all ρ ∈ PI

α(v), we have λi(ρ) < +∞, then there exists c such that for all ρ ∈ PI
α(v), we have

λi(ρ) ≤ c. The constant c only depends on α, I, v, and i. As a consequence of this result,
we have that sup{λi(ρ) | ρ ∈ PI

α(v)} is equal to max{λi(ρ) | ρ ∈ PI
α(v)}. We use the next

notation for this maximum: given PI
α(v), we define Λ(PI

α(v)) such that

Λi(PI
α(v)) =

{
−1 if i 6∈ I,
max{λi(ρ) | ρ ∈ PI

α(v)} if i ∈ I.

In this definition, −1 indicates that player i has already visited his target set Ti, and the
max belongs to N ∪ {+∞}.

2. Fixpoint with α∗ ∈ N. To explain why the fixpoint (when computing the sets PI
α(v),

see Proposition 17) is reached in a finite number of steps, we need to adapt previous notation
Λ(PI

α(v)) to mention the maximum costs for plays in PI
α(v) starting with edge (v, v′):

Λi(PI
α(v), v′) =

{
−1 if i 6∈ I,
max{λi(ρ) | ρ ∈ PI

α(v) and ρ0ρ1 = vv′} if i ∈ I. (6)
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In this definition, the max is equal to -1 when {λi(ρ) | ρ ∈ PI
α(v) and ρ0ρ1 = vv′} = ∅.

One can prove that if PI
α(v) 6= PI

α+1(v), then there exist J ⊆ Π and (u, u′) ∈ E such
that Λ(PJ

α(u), u′) 6= Λ(PJ
α+1(u), u′). Notice that there is a finite number of sequences

(Λ(PI
α(v), v′))α as they only depend on I ⊆ Π and (v, v′) ∈ E, and that they are nonincreasing

for the usual component-wise ordering over (N ∪ {−1,+∞})Π. As this ordering is a well-
quasi-ordering, there exists an integer (and not only an ordinal) α′∗ such that Λ(PI

α′∗
(v), v′) =

Λ(PI
α′∗+1(v), v′) for all I ⊆ Π and (v, v′) ∈ E. We get that α∗ ≤ α′∗, showing that α∗ ∈ N.

3. The sets PIα(v) are ω-regular. We prefer to show that each set PI
α(v) is MSO-definable,

instead of providing the (technical) construction of a Büchi automaton, It is well-known that
a set of ω-words is ω-regular iff it is MSO-definable, by Büchi theorem [18]. Moreover from
the Büchi automaton, one can construct an equivalent MSO-sentence, and conversely. One
can also decide whether an MSO-sentence is satisfiable [18]. We recall that MSO-logic uses,
in addition to variables x, y, . . . (X,Y, . . . resp.) that describe a position (a set of positions
resp.) in an ω-word ρ, the relations x < y, Succ(x, y), X(x) to mention that x ∈ X, and
Qu(x) to mention that vertex u is at position x of ρ.

As a first step, we show that if PI
α(v) is MSO-definable, say by sentence φ, then Λ(PI

α(v))
is computable. By definition Λi(PI

α(v)) equals −1 if i 6∈ I, and is thus computable in this
case. Given i ∈ I, one can decide whether Λi(PI

α(v)) = +∞ by checking whether φ ∧ ϕ is
satisfiable, with ϕ = ∀x · ¬(∨u∈TiQu(x)). In case of a positive answer, Λi(PI

α(v)) is thus
computable. If not, one can prove that Λi(PI

α(v)) < n where n is the number of states of a
Büchi automaton accepting PI

α(v). We can then similarly test whether Λi(PI
α(v)) = c by

considering decreasing constants c from n− 1 to 0, and thus compute Λi(PI
α(v)).

As a second step, we show that each PI
α(v) is MSO-definable by induction on α. For

α = 0, as PI
0(v) is the set of plays starting with v, the required sentence is Qv(0) ∧ ∀x ·

∨(u,u′)∈E(Qu(x) ∧Qu′(x+ 1)). Let α ∈ N, and suppose that PI
α(v) is a fixed MSO-definable

set. To show that PI
α+1(v) is also MSO-definable, it is enough to show that EI

α(v) is
MSO-definable. Thanks to Λ(PI

α(v)), the definition of ρ ∈ EI
α(v) (see Definition 16) can be

rephrased as follows: there exist n ∈ N, i ∈ I, and u, u′, v′ ∈ V with u′ 6= v′, (u, v′) ∈ E, such
that ρn = u ∈ Vi, ρn+1 = u′, and λi(ρ) > Λi(PJ′

α (v′)) + (n + 1), where J ′ is the subset of
players of I that did not visit their target set along ρ≤n. Notice that this inequality implies
that i ∈ J ′ and Λi(PJ′

α (v′)) < +∞. The sentence ψ defining EI
α(v) is the following one:

∃n ·
∨

u,u′ 6=v′∈V
(u,v′)∈E

∨
J′⊆I

∨
i∈J′,u∈Vi

Λi(PJ
′
α (v′))<+∞

(Qu(n) ∧Qu′(n+ 1) ∧ φJ′,n ∧ ϕJ′,n,v′,i) .

In sentence ψ, we use φJ′,n expressing the definition of J ′, and ϕJ′,n,v′,i expressing that if
player i visits its target set along ρ, it is after Λi(PJ′

α (v′)) + n+ 1 edges from ρ0. Notice that
the (computable) constant Λi(PJ′

α (v′)) can be considered as fixed, since PI
α(v) is fixed.

As a third step, as each PI
α(v) is ω-regular, then for all i ∈ I, PI

α∗(v) has a computable
lasso play ρ = hi,I,v·(gi,I,v)ω (depending on i, I, and v) with maximal cost λi(ρ) = Λi(PI

α∗(v)).

4. Construction of a finite-memory SPE. We have all the ingredients to prove that each
quantitative reachability game has a computable finite-memory SPE. The procedure is the
same as the one developed in the proof of Lemma 20, except that it uses the lasso plays
hi,I,v·(gi,I,v)ω ∈ PI

α∗(v). For the initial history v0, we use any play hi,Π,v0·(gi,Π,v0)ω ∈ PΠ
α∗(v0),

i ∈ Π. At the following steps, given a not yet labeled history h′v′, the proof of Lemma 20
requires to choose a play ρ′ ∈ PJ′

α∗(v
′) (for a certain J ′ ⊆ I) with a cost λi(h′ρ′) sufficiently
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large. We simply choose ρ′ = hi,J ′,v′ ·(gi,J ′,v′)ω that has maximal cost λi(ρ′) = Λi(PJ′

α∗(v
′)).

This strategy profile σ̄ is an SPE that is finite-memory since it depends on the finite number
of lasso plays hj,I,v ·(gj,I,v)ω.

It remains to prove the decidability of the constrained existence of an SPE for quantitative
reachability games, as announced in Corollary 24. Let c̄ ∈ N|Π| be a constant vector. We
know that the set PΠ

α∗(v0) of outcomes of SPEs in (G, v0) is MSO-definable. It is easy to
see that the set {ρ | ρ ∈ PΠ

α∗(v0) and λi(ρ) ≤ ci, ∀i} is also MSO-definable. We can thus
decide whether this set is non-empty, which means that the constrained existence of an SPE
is decidable. In case of positive answer, this set contains a lasso play h·gω. Exactly as done
above, one can construct a finite-memory SPE σ̄ such that 〈σ̄〉v0 = h·gω.

To conclude this section, we present another large class of games for which one can
decide whether there exists a weak SPE.8 The hypotheses are general conditions on the cost
functions λi, i ∈ Π:

I Theorem 25. Let (G, v0) be an initialized game such that:
each cost function λi is prefix-independent, and with finite range Ci ⊂ Q,
for all i ∈ Π, ci ∈ Ci, and v ∈ V , the set of plays ρ in (G, v) with λi(ρ) = ci is an
ω-regular set.

Then one can decide whether (G, v0) has a weak SPE σ̄ (resp. such that λi(〈σ̄〉v0) ≤ ci forall i
for given ci ∈ Ci, i ∈ Π). In case of positive answer, one can construct such a finite-memory
weak SPE.

For example, the hypotheses of this theorem are satisfied by the liminf games and the
limsup games; they are also satisfied by the game of Example 12. The proof of this theorem
shares similar points with the proof given for quantitative reachability games. Again, it uses
our Folk Theorem for weak SPEs.

5 Conclusion and Future Work

In this article, we have studied the existence of (weak) SPEs in quantitative games. We have
proposed a Folk Theorem that characterizes all the outcomes of weak SPEs. To illustrate
the potential of this theorem, we have given two applications. The first one is concerned
with quantitative reachability games for which we have provided an algorithm to compute
a finite-memory SPE, and a second algorithm for deciding the constrained existence of a
(finite-memory) SPE. The second application is concerned with another large class of games
for which we have proved that the (constrained) existence of a (finite-memory) weak SPE is
decidable.

Future possible directions of research are the following ones. We would like to study the
complexities of the problems studied for the two classes of games. We also want to investigate
the application of our Folk Theorem to other classes of games. The example of Figure 3 is a
game with a weak SPE but no SPE (see Example 12). Recall that for this game, the cost
λi(ρ) can be seen as either the mean-payoff, or the liminf, or the limsup, of the weights of
ρ. We do not know if games with this kind of payoff functions always have a weak SPE or
not. Notice that using a variant of the techniques developed for weak SPEs, we were able
to obtain a Folk theorem for SPEs, nevertheless with a weaker characterization since one
implication requires that the cost functions are upper-semicontinuous (see [2]).

8 Contrarily to quantitative reachability games, we do not know if a weak SPE always exists for games in
this class.
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Abstract
We investigate determinacy of delay games with Borel winning conditions, infinite-duration two-
player games in which one player may delay her moves to obtain a lookahead on her oppo-
nent’s moves.

First, we prove determinacy of such games with respect to a fixed evolution of the lookahead.
However, strategies in such games may depend on information about the evolution. Thus, we in-
troduce different notions of universal strategies for both players, which are evolution-independent,
and determine the exact amount of information a universal strategy needs about the history of a
play and the evolution of the lookahead to be winning. In particular, we show that delay games
with Borel winning conditions are determined with respect to universal strategies. Finally, we
consider decidability problems, e.g., “Does a player have a universal winning strategy for delay
games with a given winning condition?”, for ω-regular and ω-context-free winning conditions.
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1 Introduction

Determinacy is the most fundamental property of a game: a game is determined, if one of the
players has a winning strategy. One can even argue that a determinacy result paved the way
for game theory: in 1913, Zermelo proved what is today known as Zermelo’s theorem [18]:
every two-player zero-sum game of perfect information and finite duration is determined.

In this work, we are concerned with the infinite-duration variant of such games, so-
called Gale-Stewart games. Such a game is played between Player I and Player O in
rounds i ∈ N: in round i, Player I picks a letter α(i) ∈ ΣI and then Player O picks
a letter β(i) ∈ ΣO. Player O wins, if the outcome

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · is in the winning

condition L ⊆ (ΣI × ΣO)ω. Accordingly, a strategy for Player I is a function τ : Σ∗O → ΣI

mapping the previous moves of Player O to the next letter from ΣI to be picked. The
definition for Player O is dual. Note that a strategy cannot access the previous moves
determined by itself. This is not a restriction, as they can always be reconstructed.

Let ρ(τ, σ) denote the outcome of the play where Player I employs the strategy τ

and Player O the strategy σ. Then, determinacy can be characterized as follows: the
negation ∀σ∃τ. ρ(τ, σ) /∈ L of ∃σ∀τ. ρ(τ, σ) ∈ L is equivalent to ∃τ∀σ. ρ(τ, σ) /∈ L, i.e., the
order of the quantifiers can be swapped.
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Gale-Stewart games are an important tool in set theory and a long line of research
into determinacy results for such games culminated in Martin’s seminal Borel determinacy
theorem [11]: every Gale-Stewart game with a Borel winning condition is determined. On
the other hand, using the axiom of choice, one can construct non-determined games. Even
more so, determinacy of games with ω-context-free conditions, which are not necessarily
Borel, is equivalent to a large cardinal assumption that is not provable in ZFC [5].

Gale-Stewart games also have important applications in theoretical computer science as
they subsume games studied in automata theory, e.g., parity games and LTL realizability
games, and constitute the foundation of game-based synthesis, the solution to Church’s
problem [1]. Showing the winning condition of a game to be Borel and then applying Martin’s
theorem is typically the simplest proof of determinacy for a novel winning condition. However,
one can typically obtain stronger results, e.g., positional determinacy for parity games [3, 14].
The quantifier swap induced by this determinacy result underlies (implicitly or explicitly) all
complementation proofs for parity tree automata, the crucial step in proving decidability of
monadic second-order logic over infinite trees.

Delay Games. Oftentimes, the strict alternation of moves in a Gale-Stewart game is too
restrictive to model applications in computer science, e.g., in the presence of asynchronous
components, buffers, or communication between components. Delay games, a relaxation of
Gale-Stewart games, model such situations by allowing Player O to delay her moves in order
to obtain a lookahead on her opponent’s moves. This gives her an advantage and allows her
to win games she would lose without lookahead.

Furthermore, delay games have deep connections to uniformization problems for relations
w.r.t. continuous functions [15, 16]. Consider a winning condition L ⊆ (ΣI×ΣO)ω: a winning
strategy σ for Player O in a game with winning condition L induces a mapping λσ : ΣωI → ΣωO
such that {

(
α

λσ(α)
)
| α ∈ Σω

I } ⊆ L: we say that λσ uniformizes L. If σ is winning for the
Gale-Stewart game with winning condition L, then λσ is causal: the n-th letter of λσ(α)
only depends on the first n letters of α. Furthermore, if σ is winning in the delay game with
winning condition L then λσ is continuous in the Cantor topology. The latter result can even
be refined: if σ only delays moves a bounded number of times during each play, then λσ is
Lipschitz-continuous. Thus, uniformization problems w.r.t. (Lipschitz-)continuous functions
are reducible to solving delay games.

To capture and to analyze the precise amount of lookahead that is necessary to win,
delay games are defined w.r.t. so-called delay functions, which represent the evolution of
the lookahead. Thus, formally Player O does not decide to skip a move, but the delay
function determines how many moves she skips: given a delay function f : N → N+, the
delay game Γf (L) is played in rounds, where in round i Player I has to pick f(i) letters and
afterwards Player O has to pick a single letter. Thus, if f(i) > 1, then Player O’s lookahead
increases by f(i)− 1 letters. Typically, one is interested in the existence of a delay function f
that allows Player O to win Γf (L). One could imagine an alternative formalization where
Player O may explicitly skip moves at her own choice. We will encounter this variant in
Section 5, where it is shown to be equivalent to the one using delay functions.

Delay games where introduced by Hosch and Landweber who proved decidability of the
existence of winning strategies with bounded lookahead for games with ω-regular winning
conditions [8]. Later, Holtmann, Kaiser, and Thomas [7] proved that for such winning
conditions, Player O has a winning strategy with bounded lookahead if and only if she has
one with arbitrary lookahead, i.e., bounded lookahead always suffices for ω-regular winning
conditions. Furthermore, they gave a doubly-exponential upper bound on the necessary
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lookahead and a solution algorithm with doubly-exponential running time. These results were
recently improved [10] by showing a tight exponential bound on the necessary lookahead and
ExpTime-completeness of solving delay games with ω-regular winning conditions. Finally,
delay games with deterministic ω-context-free winning conditions are undecidable [6], while
games with max-regular winning conditions w.r.t. bounded lookahead are decidable [19]. All
these results can be expressed in terms of uniformization as well.

For all types of winning conditions mentioned above, delay games w.r.t. a fixed delay
function are determined [6, 7, 10, 19]: these results are all ad-hoc as they rely on the existence
of a deterministic automaton recognizing the winning condition and on determinacy of parity
games on countable arenas: one can model the delay game as such a parity game where each
vertex contains the whole history of the play as well as the state the automaton reaches
when processing this history.

What are Strategies in Delay Games? The most important aspect of a game are its
(winning) strategies, e.g., in controller synthesis it is a winning strategy for the player
representing the system that is turned into a controller.

In a delay game, the notion of strategy is more complex than in a Gale-Stewart game
due to the existence of the delay function: a strategy for Player I is of the form τ : Σ∗O → Σ∗I
with |τ(β(0) · · ·β(i − 1))| = f(i), as he has to determine f(i) letters in round i. Thus, a
strategy for Player I syntactically depends on f and both players’ strategies may depend
semantically on f . On the one hand, this means that a winning strategy for a game w.r.t. a
delay function f might not be applicable for an f ′ 6= f . On the other hand, dependence on a
particular delay function enables the reconstruction of the own previous moves.

However, the classical definition of strategies for delay games introduced above is not
useful when it comes to applications in synthesis: the lack of robustness with regard to
changes in the delay function is a serious problem. Furthermore, determinacy for delay games
w.r.t. fixed delay functions is a rather unsatisfactory statement: for every f , either Player I
has a winning strategy for Γf (L) or Player O has one. If ρ(f, τ, σ) denotes the outcome
resulting from Player I employing τ and Player O employing σ in a game w.r.t. f , then the
negation of ∃σ∀τ. ρ(f, τ, σ) ∈ L is equivalent to ∃τ∀σ. ρ(f, τ, σ) /∈ L. However, the function f
is quantified outside of the negation.

Pushing the negation over the quantification of f yields a much stronger statement, e.g.,
either there is an f such that Player O wins Γf (L) or Player I has a strategy that wins Γf (L)
w.r.t. every f . Note that such a strategy has to be universally applicable and winning for
every Γf (L) and may therefore neither syntactically nor semantically depend on a fix delay
function. Thus, a determinacy result w.r.t. such universal strategies means that the negation
of ∃f∃σ∀τ. ρ(f, τ, σ) ∈ L is equivalent to ∃τ∀f∀σ. ρ(f, τ, σ) /∈ L, which is arguably a more
natural notion.

Our Contribution. We study determinacy results for delay games with and without respect
to fixed delay functions and with Borel winning conditions.

Firstly, for games with fixed delay functions, we show determinacy w.r.t. classical strategies
that may depend on the function under consideration. This result generalizes all previous
determinacy results obtained via reductions to countable parity games using deterministic
automata recognizing the winning condition [6, 7, 10, 19].

Secondly, we introduce universal strategies for delay games: for Player I, we consider
four variants that differ in the amount of information about a play’s history they can access:
the previous moves made by the strategy (which are not necessarily reconstructible) and
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the evolution of the lookahead in the previous rounds. We compare the strength of these
strategies in terms of games they are able to win and show that they form a hierarchy whose
first three levels are strict and that strategies in the fourth level are sufficient to win every
game that is winable. It is open whether the inclusion between the last two levels is strict or
not. For Player O, we only consider two notions of universal strategies, as the second one is
already sufficient to win every winable game. Furthermore, we show that the hierarchy for
Player O is strict, too.

Thirdly, we consider decision problems of the form “Does a player have a universal
strategy for games with some given winning condition L?” for ω-regular and ω-context-free
winning conditions. We prove decidability (and tight complexity results) for both players in
the ω-regular case and for Player O in the deterministic ω-context-free case. The other case
and both cases for non-deterministic ω-context-free winning conditions are undecidable.

This work is meant as a starting point into the investigation of more general notions of
strategies in delay games that are independent of the exact evolution of the lookahead and
into determinacy results w.r.t. these notions of strategies. We raise many open problems that
are left open here. Most importantly, the exact amount of information about a play’s history
that is necessary to implement a universal strategy for Player I is open. Also, most of the
decision problems remain open for the weaker notions of universal strategies we introduce.
Finally, we expect there to be other natural notions of universal strategies for delay games,
which might not have to be winning for every delay function (a very strong requirement),
but for all f for which the given player wins the delay game Γf (L) using classical strategies.

2 Preliminaries

The set of non-negative integers is denoted by N and we define N+ = N \ {0}. An alphabet Σ
is a non-empty finite set, Σ∗ (Σn, Σω) denotes the set of finite words (words of length n,
infinite words) over Σ. The empty word is denoted by ε and the length of a finite word w
by |w|. For w ∈ Σ∗ ∪ Σω and n ∈ N we write w(n) for the n-th letter of w.

Delay Games. A delay function is a mapping f : N → N+. Given an ω-language L ⊆
(ΣI × ΣO)ω and a delay function f , the game Γf (L) is played by two players1, the input player
“Player I” and the output player “Player O” in rounds i ∈ N as follows: in round i, Player I
picks a word ui ∈ Σf(i)

I , then Player O picks one letter vi ∈ ΣO. We refer to the sequence
(u0, v0)(u1, v1)(u2, v2) · · · as a play of Γf (L), which yields two infinite words α = u0u1u2 · · ·
and β = v0v1v2 · · · . Player O wins the play if the outcome

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · is in L,

otherwise Player I wins.
Given a delay function f , a strategy for Player I is a mapping τ : Σ∗O → Σ∗I where

|τ(w)| = f(|w|), and a strategy for Player O is a mapping σ : Σ∗I → ΣO. Consider a
play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L). It is consistent with τ , if ui = τ(v0 · · · vi−1) for
every i ∈ N. It is consistent with σ, if vi = σ(u0 · · ·ui) for every i ∈ N.

I Remark. As usual, a strategy has only access to the opponents’s moves, but not its own
ones. However, this is not a restriction, since they can be reconstructed.

Fix a strategy τ for Player I: in round i, the input to τ is the concatenation v0 · · · vi−1 of
Player O’s moves in the previous rounds. The moves u0, . . . , ui−1 by Player I in the previous
rounds are given by uj = τ(v0 · · · vj−1) for every j < i.

1 For pronomial convenience [13], we assume Player I to be male and Player O to be female.
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Now, fix a strategy σ for Player O: in round i, the input to σ is the concatenation u0 · · ·ui
of Player I’s moves in the previous rounds, where each uj for j ≤ i satisfies |uj | = f(j). Thus,
the moves v0, . . . , vi−1 by Player O in the previous rounds are given by vj = σ(u0 · · ·uj).
Note this construction depends on knowledge about the delay function f , as we decompose
the input to σ to obtain the prefix of length

∑j
j′=0 f(j′).

A strategy τ for Player p ∈ {I,O} is winning, if every play that is consistent with τ is
winning for Player p. We say that a player wins Γf (L), if she has a winning strategy and a
delay game is determined, if one of the players wins it.

I Example 1. Consider L0 over {a, b, c} × {b, c} with
(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · ∈ L0 if α(n) = a

for every n ∈ N or if β(0) = α(n), where n is the smallest position with α(n) 6= a. Intuitively,
Player O wins, if the letter she picks in the first round is equal to the first letter other than
a that Player I picks. Also, Player O wins, if there is no such letter.

We claim that Player I wins Γf (L0) for every delay function f : he picks af(0) in the first
round and assume Player O picks b afterwards (the case where she picks c is dual). Then,
Player I picks a word starting with c in the second round. The resulting play is winning for
Player I no matter how it is continued. Thus, Player I has a winning strategy in Γf (L0).

Finally, we also consider delay-free games. Formally, these can be seen as delay games
w.r.t. the delay function f with f(i) = 1 for every i, i.e., both players pick a single letter in
each round. As f is irrelevant, we denote such a game with winning condition L by Γ(L).

The Borel Hierarchy. Fix an alphabet Σ. The Borel hierarchy of ω-languages over Σ
consists of levels Σα and Πα for every countable ordinal α > 0, which are defined inductively
by

Σ1 = {L ⊆ Σω | L = K · Σω for some K ⊆ Σ∗},
Πα = {Σω \ L | L ∈ Σα} for every α, and
Σα = {

⋃
i∈N Li | Li ∈ Παi with αi < α for every i} for every α > 1.

The following basic properties will be useful later on.
I Remark. Let α be a countable ordinal.

Σα ∪Πα ⊆ Σα+1 ∩Πα+1.
Σα and Πα are closed under finite unions and finite intersections.

A language L is Borel, if it is in one of the levels constituting the Borel hierarchy.

I Theorem 2 (Borel Determinacy Theorem [11]). Let L be Borel. Then, Γ(L) is determined.

3 Borel Determinacy of Delay Games w.r.t. Fixed Delay Functions

Fix alphabets ΣI and ΣO and a fresh skip symbol . /∈ ΣO, and define Σ.
O = ΣO ∪ {.}. To

simplify our notation, let h be the morphism that removes the skip symbol, i.e., the one
defined by h(.) = ε and h(a) = a for every a ∈ ΣO. Also, given two infinite words α and β
we write

(
α
β

)
for the word

(
α(0)
β(0)
)(
α(1)
β(1)
)(
α(2)
β(2)
)
· · · . Analogously, we write

(
x
y

)
for finite words x

and y, provided they are of equal length.
Given a delay function f and an infinite word β ∈ ΣωO we define shiftf (β) ∈ (Σ.O)ω by

shiftf (β) = .f(0)−1β(0).f(1)−1β(1).f(2)−1β(2) · · · .

We lift this definition to languages L ⊆ (ΣI × ΣO)ω via shiftf (L) = {
(

α
shiftf (β)

)
|
(
α
β

)
∈ L}.

Intuitively, shiftf (L) encodes the delay function f explicitly by postponing Player O’s moves
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using skip symbols. Thus, the delay game Γf (L) and the delay-free game Γ(shiftf (L)) are
essentially equivalent: a winning strategy for Player p ∈ {I,O} in Γf (L) can directly be
translated into a winning strategy for her in Γ(shiftf (L)) and vice versa.

The main result of this section states that delay games with Borel winning conditions
and w.r.t. fixed delay functions are determined.

I Theorem 3. Let L be Borel and let f be a delay function. Then, Γf (L) is determined.

Proof. We show that shiftf (L) is Borel. Then, our claim follows from the Borel determinacy
theorem, as Γ(shiftf (L)) and Γf (L) are essentially the same game.

We will prove the following statement, which is not the tightest result provable, but which
suffices for our purposes: if L ⊆ (ΣI × ΣO)ω is in Σα (in Πα), then shiftf (L) is in Σα+2 (in
Πα+2). To this end, the language Uf = shiftf ((ΣI × ΣO)ω) will be useful. Note that Uf
contains exactly those plays during which the non-skip symbols are played at the positions
consistent with f . It is straightforward to show that Uf is in Π2.

First, assume we have L ∈ Σ1, i.e., L = K · (ΣI ×ΣO)ω for some K ⊆ (ΣI ×ΣO)∗. Then,
we have shiftf (L) = K ′ · (ΣI × Σ.O)ω ∩ Uf where K ′ is equal to⋃

(α(0)
β(0))···(α(k)

β(k))∈K

{(
x

y

)
| y = .f(0)−1β(0) · · · .f(k)−1β(k) and x ∈ α(0) · · ·α(k) · Σ|y|−(k+1)

I

}
,

i.e., shiftf (L) is in Π2 ⊆ Σ3.
Now, let L be in Πα, i.e., L = (ΣI ×ΣO)ω \L′ for some L′ ∈ Σα. Applying the induction

hypothesis yields that shiftf (L′) is in Σα+2. We have

shiftf (L) = ((ΣI × Σ.O)ω \ shiftf (L′)) ∩ Uf ,

i.e., shiftf (L) ∈ Πα+2.
Finally, assume we have L ∈ Σα for some α > 1, i.e., L =

⋃
i∈N Li with Li ∈ Παi for

some αi < α. An application of the induction hypothesis shows that every shiftf (Li) is in
Παi+2. Thus, shiftf (L) =

⋃
i∈N shiftf (Li) is in Σα+2 as αi + 2 < α+ 2 for every i. J

Furthermore, from the equivalence of Γ(shiftf (L)) and Γf (L), which holds for arbitrary
L, we obtain a result that is applicable to non-Borel winning conditions as well.

I Corollary 4. If Γ(shiftf (L)) is determined, then so is Γf (L).

4 Omnipotent Strategies in Delay Games

In this section, we discuss different notions of strategies for delay games. The one introduced
in Section 2 is the classical one that was used in previous works [6, 7, 10, 19]. However, such
strategies depend on a fixed delay function f , i.e., they are not useful for a game w.r.t. a
delay function f ′ 6= f . This is a syntactic dependence in the case of Player I, as he has to
determine f(i) letters in round i. But even Player O’s strategies may depend implicitly on
knowledge about the delay function under consideration, as we will see below.

In this section, we consider several stronger notions of universal strategies, i.e., strategies
that are independent of the delay function under consideration. Informally, for Player I such
a strategy returns an infinite word w ∈ ΣωI and the first f(i) letters of w are used in round i
of a delay game w.r.t. f . For Player O, a universal strategy still returns a single letter, but it
may no longer depend on information about the delay function under consideration. We say
that a universal strategy is omnipotent for a winning condition L, if the strategy is winning
for every delay game Γf (L), independently of the choice of f .
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I Example 5. Again, consider the winning condition L0 from Example 1 and the strat-
egy τ : Σ∗O → Σω

I given by τ(ε) = aω, τ(bx) = cω, and τ(cx) = bω for x ∈ Σ∗O. Intuitively,
in round 0, Player I can pick as many a’s as f requires and then always picks c (or b), if
Player O has picked b (or c) in round 0. This strategy is winning for him w.r.t. every f and
therefore omnipotent for L0.

4.1 Omnipotent Strategies for Player I
We consider the following variants of universal strategies for Player I, which differ in the
amount of information about the play’s history they base their decision on. In Example 5,
the strategy τ only has access to Player O’s moves, which is sufficient to be winning. More
powerful notions have (directly or indirectly) access to Player I’s moves or to information
about the delay function under consideration. Note that Player I cannot reconstruct his moves,
if he only has access to Player O’s moves, but not the delay function under consideration,
which explains the need to access his own moves.

1. An output-tracking (o.t.) strategy is a map τ : Σ∗O → ΣωI . Let (u0, v0)(u1, v1)(u2, v2) · · ·
be a play of Γf (L) for some f : it is consistent with τ , if ui is the prefix of length f(i) of
τ(v0 · · · vi−1). An o.t. strategy bases its decisions only on the moves vj of Player O for
j ≤ i and can deduce the number of rounds already played, but has no way to reconstruct
Player I’s previous moves. In fact, it cannot even reconstruct the number of letters picked
by Player I thus far.

2. A lookahead-counting (l.c.) strategy is a mapping τ : Σ∗O × N→ Σω
I . This time, we say

that a play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f is consistent with τ , if ui is
the prefix of length f(i) of τ(v0 · · · vi−1,

∑i−1
j=0 f(j)). A l.c. strategy has access to the

opponent’s moves and the number of letters picked by Player I thus far. However, this
still does not suffice for Player I to reconstruct the actual letters already picked.

3. An input-output-tracking (i.o.t.) strategy is a mapping τ : Σ∗O × Σ∗I → ΣωI . We define a
play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f to be consistent with τ , if ui is the
prefix of τ(u0 · · ·ui−1, v0 · · · vi−1) of length f(i). An i.o.t. strategy has access to both
players’ moves thus far, but cannot reconstruct when the moves of Player O were made.

4. A history-tracking (h.t.) strategy is a mapping τ : Σ∗O × (N+)∗ → Σω
I . Again, consider

a play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f : it is consistent with τ , if ui is the
prefix of length f(i) of τ(v0 · · · vi−1, f(0) · · · f(i− 1)). A h.t. strategy has access to the
opponent’s moves and to the values of the delay function for all previous rounds, which
allows him to reconstruct his moves. Thus, giving him additionally access to his previous
moves does not increase the strength of such a strategy.

As usual, we say that a strategy (of any type) is winning for Player I in Γf (L) if the
outcome of every play that is consistent with the strategy is in the complement of L. A
strategy is omnipotent for L, if it is winning for Player I in Γf (L) for every f .

The definitions above are given in order of increasing expressiveness, e.g., every (om-
nipotent) o.t. strategy can be turned into an (omnipotent) l.c. strategy inducing the same
plays. The first two constructions are straightforward, and for the last one, Player I has to
reconstruct his moves u0, . . . , ui−1 using the information about the values f(0), . . . , f(i− 1)
and knowledge of his own i.o.t. strategy.

Our first result shows that the first three types of strategies form a strict hierarchy
in terms of the games that can be won with them. The last case will be discussed in
Section 7: it is open whether omnipotent h.t. strategies are strictly stronger than omnipotent
i.o.t. strategies.
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I Theorem 6. There are winning conditions L1 and L2 such that
1. Player I has an omnipotent l.c. strategy for L1, but no omnipotent o.t. strategy, and
2. Player I has an omnipotent i.o.t. strategy for L2, but no omnipotent l.c. strategy.

Proof. 1.) Let L1 = {
(
α
β

)
| α 6= (ab)ω}. Intuitively, Player I wins a game with winning

condition L1 if he is able to produce the word (ab)ω, the moves of Player O are irrelevant.
Indeed, one can easily build a l.c. strategy τ by defining τ(x, n) = (ab)ω for even n and
τ(x, n) = (ba)ω for odd n. Every outcome of a play that is consistent with τ has (ab)ω in its
first component and is therefore winning for Player I. Hence, τ is omnipotent for L1.

However, we claim that Player I has no omnipotent o.t. strategy τ for L1. If τ(ε) 6= (ab)ω,
then τ is losing for some f such that f(0) is larger than the first position where τ(ε) and
(ab)ω differ. Thus, we can assume τ(ε) = (ab)ω. Now, fix some letter c ∈ ΣO and consider the
first letter of τ(c): if it is a (the other case is dual), then τ is losing for every f with odd f(0),
as the first component of the resulting outcome contains two a’s in a row, if Player O picks c
in the first round.

2.) Fix ΣI = {a, b, c} and ΣO = {b, c}, and define

L2 = (ΣI × ΣO)ω \
{(

α

β

)
| α ∈ an0 β(0) an1 β(1) · ΣωI with n1 > n0

}
,

i.e., in order to win, Player I has to copy the first two letters picked by Player O and ensure to
produce more a’s between these two positions than before the first one. It is straightforward
to show that the following i.o.t. strategy for Player I is omnipotent for L2:

τ(x, y) =


aω if x = ε,
x(0) aω if |x| = 1,
an−k+1 x(1) aω if |x| > 1 and y = anx(0)ak,
aω otherwise.

Intuitively, Player I picks a’s until Player O has picked her first letter, which is immediately
copied by Player I. Then, he picks a’s until he has access to the second letter picked by
Player O and then continues picking a’s until the second a-block is longer than the first one.
Then, he copies Player O’s second letter and only picks a’s afterwards. Note that it is crucial
for Player I to have access to his own previous moves to guarantee that the second a-block
is longer than the first one and that he does not necessarily pick x(1) in the second round.

Next, we show that Player I has no omnipotent l.c. strategy for L2. Towards a contradic-
tion, assume there is one, call it τ . We claim that τ(x, n) begins with aa, ax(0), or x(0)a
for every input (x, n) with 2|x| ≤ n. This is straightforward for x = ε and n = 0 (the cases
(ε, n) with n > 0 are irrelevant), since τ(ε, 0) has to be equal to aω. If not, Player O would
have a counterstrategy against τ w.r.t. some large enough f by picking c in round 0, if the
first non-a letter in τ(ε, 0) is b and vice versa.

It remains to consider an input (x, n) satisfying 0 < 2|x| ≤ n. Consider a delay function f
satisfying f(0) = n− |x|+ 1, f(i) = 1 for i in the range 1 ≤ i ≤ n, and f(n+ 1) = 2. Now,
use τ in Γf (L2) against Player O picking the letters of x in the first |x| rounds: Player I
picks af(0) in the first round, and α(1), . . . , α(|x| − 1) during the next |x| − 1 rounds, while
Player O picks x(0), . . . , x(|x| − 1). Note that we have |af(0)α(1) · · ·α(|x| − 1)| = n; the next
letters picked by Player I are therefore the first two of τ(x, n).

We consider two cases: if α(j) = a for every j, then the next two letters picked by τ
may contain only a’s, or one a and the first letter of x, but not any other combination.
Especially, the second letter of x may not yet be picked, since the resulting a-block would
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be of length zero, which would results in a losing play. On the other hand, if there is a j
such that α(j) = x(0) then, all other α(j′) have to be equal to a, since the second a-block
would again be too short otherwise. Thus, the first a-block has at least length n− |x|+ 1,
which implies that the second a-block has at most length |x| − 2 after round n. As we have
n− |x|+ 1 ≥ |x|+ 2, we conclude that the next two letters picked by τ have to be both an a.

To conclude, apply τ in Γf ′(L2) for the delay function f ′ with f ′(i) = 2 for every i against
Player O picking b and c in the first two rounds. As shown above, τ will pick aa, ab, or ba in
every round. Thus, the resulting outcome is losing for Player I, as he never picks a c. J

Note that the winning condition L1 is ω-regular and even recognizable by a deterministic
ω-automaton with reachability acceptance condition, and therefore in Σ1. Furthermore,
the winning condition L2 is not ω-regular, but recognizable by a deterministic ω-pushdown
automaton with safety acceptance, and in Π1.

4.2 Omnipotent Strategies for Player O

Now, we consider universal strategies for Player O. The standard definition given in Section 6
is syntactically independent of a fixed delay function. However, the reconstruction of
Player O’s moves made in previous rounds depends on knowledge about f . This can be
exploited to show that strategies for Player O that have access to the number of rounds
played already are more powerful than strategies which do not. Formally, we consider two
types of omnipotent strategies for Player O corresponding to the first two notions for Player I.
The other two notions introduced for Player I are not necessary for Player O.

1. An input-tracking (i.t.) strategy is a map σ : Σ∗I → ΣO. Let (u0, v0)(u1, v1)(u2, v2) · · · be
a play of Γf (L) for some f : it is consistent with σ, if vi = σ(u0 · · ·ui). Such a strategy
cannot reconstruct Player O’s previous moves and cannot even determine how many
rounds were played already.

2. A round-counting (r.c.) strategy is a mapping σ : Σ∗I × N→ ΣO. This, time, we say that
a play (u0, v0)(u1, v1)(u2, v2) · · · of Γf (L) for some f is consistent with the strategy σ, if
vi = σ(u0 · · ·ui, i). A r.c. strategy has access to the opponent’s moves and the number of
rounds played thus far.

Note the asymmetry between the counting strategies for Player I and Player O: Player I
counts the number of letters he has picked thus far and therefore, as he has direct access to
Player O’s moves, the size of the lookahead. Player O counts the number of rounds, i.e., the
number of letters she has picked thus far. Again, this allows her to determine the size of the
lookahead, as she has access to Player I’s moves. Omnipotency for Player O’s strategies is
defined as before. Also, as for Player I, every i.t. strategy can be turned into an r.c. strategy.
Finally, r.c. strategies are more powerful than omnipotent i.t. ones.

I Theorem 7. There is a winning condition L3 such that Player O has an omnipotent
r.c. strategy for L3, but no omnipotent i.t. strategy.

The proof is a variation of the analogue for Player I: the winning condition requires
Player O to produce (ab)ω, which she can do, if she has access to the number of rounds
already played, but she cannot do it without this information. Again, the distinguishing
winning condition is very simple: it is ω-regular and even recognizable by a deterministic
ω-automaton with safety acceptance condition, and therefore in Π1.
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5 Borel Determinacy of Delay Games with Omnipotent Strategies

Now, we turn our attention to delay games without fixed delay functions and show that
there is either a winning strategy for Player O for some f , or Player I wins for every f with
the same omnipotent strategy. Then, we show the dual result for Player O.

We still use the notation introduced at the beginning of Section 3 and start by defining
skip(L) =

⋃
f shiftf (L), where there union ranges over all delay functions f . Note that

Player O loses a play in a game with winning condition skip(L) if she picks . all but finitely
often. Also, we have skip(L) = {

(
α
β

)
∈ (ΣI × Σ.O)ω |

(
α

h(β)
)
∈ L}.

The tight connection between delay games Γf (L) for arbitrary f and the delay-free
game Γ(skip(L)) appears implicitly in the work by Holtmann et al. [7] and is made explicit
below. We exploit these connections to prove determinacy of delay games with Borel winning
conditions.

I Theorem 8. Let L be Borel. Either, Player O wins Γf (L) for some f or Player I has an
omnipotent h.t. strategy for L.

Proof. First, we show that skip(L) is Borel and then apply the connection between the
games Γf (L) for arbitrary f and Γ(skip(L)).

Proving skip(L) to be Borel is analogous to the proof for shiftf (L), we just replace the
intersections with Uf by intersections with U = skip((ΣI × ΣO)ω) (which is also in Π2) and
the definition of K ′ in the induction start is changed to

K ′ =
⋃

(α(0)
β(0))···(α(k)

β(k))∈K

{(
x

y

)
| y ∈ .∗β(0) · · · .∗β(k) and x ∈ α(0) · · ·α(k) · Σ|y|−(k+1)

I

}
.

Thus, Γ(skip(L)) is determined.
Next, we show that Player O wins Γf (L) for some f , if she wins Γ(skip(L)). Let σ′ be a

winning strategy for Player O in Γ(skip(L)). We construct a delay function f and a winning
strategy σ for Player O in Γf (L) by simulating a play in Γf (L) by a play in Γ(skip(L)).

We begin by defining f . For i ∈ N let `i be the maximal number such that Player O
picks at most i non-skip symbols during the first `i rounds in every play of Γ(skip(L)) that
is consistent with σ′. We claim that every `i is well-defined. Assume `i for some fixed i

is not. Then, the play prefixes under consideration for defining `i form an infinite, but
finitely branching tree. Hence, König’s Lemma implies the existence of an infinite play that
is consistent with σ′ during which Player O all but finitely often picks .. This play is losing
for her, thus contradicting σ′ being a winning strategy.

By construction, if Player I has picked `i+1 letters in Γ(skip(L)), then σ′ has determined
at least i+ 1 non-skip letters. Now, let f(0) = `0 + 1 and f(i+ 1) = (`i+1 + 1)−

∑i
j=0 f(j).

It remains to define σ: assume Player I has picked u0, . . . , ui in rounds i = 0, 1, . . . , i with
|uj | = f(j). Consider the play prefix in Γ(skip(L)) during which Player I picks u0 · · ·ui and
Player O plays according to σ′. We define σ(u0 · · ·ui) to be the i-th non-skip letter (starting
with the 0-th letter) picked by Player O on this play prefix. This is well-defined by the
definition of f .

Let
(
α
β

)
an outcome that is consistent with σ. A straightforward induction shows that

there is a play in Γ(skip(L)) that is consistent with σ′ and has an outcome
(
α
β′

)
such that

β = h(β′). Hence, σ′ being a winning strategy implies
(
α
β′

)
∈ skip(L) and therefore

(
α
β

)
∈ L.

Thus, σ is a winning strategy for Player O in Γf (L).
To conclude, we show that Player I has an omnipotent h.t. strategy τ for L, if he wins

Γ(skip(L)). To this end, let τ ′ : (Σ.O)∗ → ΣI be a winning strategy for Player I in Γ(skip(L)).



F. Klein and M. Zimmermann 529

We define an h.t. strategy τ : Σ∗O × (N+)∗ → ΣωO. Let x ∈ Σ∗O and n0 · · ·ni−1 ∈ (N+)∗. Note
that τ will only be applied to inputs (x, n0 · · · , ni−1) where |x| = i. Thus, we restrict our
attention to those inputs. Let

x′ = .n0−1 x(0) .n1−1 x(1) · · · .ni−1−1 x(i− 1) ∈ (Σ.O)∗

and define

τ(x, n0 · · ·ni−1) = τ ′(x′) τ ′(x′.) τ ′(x′..) τ ′(x′...) · · · ,

i.e., the answers according to τ ′ to Player O picking . ad infinitum after picking x′.
A straightforward induction shows that for every outcome

(
α
β

)
that is consistent with τ

in Γf (L) for some f , there is an outcome
(
α
β′

)
that is consistent with τ ′ such that h(β′) = β.

As τ ′ is winning for Player I in Γ(skip(L)) we have
(
α
β′

)
/∈ skip(L) and thus

(
α
β

)
/∈ L. Hence,

τ is winning for Γf (L) for every f and therefore omnipotent for L. J

The second part of the proof above (the equivalence of the delay games and the delay-free
game) works for arbitrary winning conditions. Hence, we obtain the following corollary.

I Corollary 9. If Γ(skip(L)) is determined, then either Player O wins Γf (L) for some f or
Player I has an omnipotent h.t. strategy for L.

It is open whether these results hold for i.o.t. strategies as well. This is related to the
strictness of the strategy hierarchy mentioned earlier: is there a winning condition L such
that Player I has an omnipotent h.t. strategy for L, but no omnipotent i.o.t. strategy? We
discuss this question in Section 7.

To conclude this section, let us consider the case where Player O wins Γf (L) for every
delay function f . Here, we apply a monotonicity argument: the larger the lookahead is, the
more information Player O has at her disposal, which makes winning easier for her. Thus,
if she wins w.r.t. every delay function, then she wins in particular without lookahead. A
winning strategy for the delay-free game can be turned into a winning strategy w.r.t. every
larger delay function. Thus, the omnipotent strategy for Player O mimics the behavior of a
winning strategy for the delay-free game and ignores the additional information given by the
lookahead.

Formally, we order delay functions by the amount of lookahead available for Player O at
every round: we define f v f ′, if and only if

∑i
j=0 f(j) ≤

∑i
j=0 f

′(j) for every i ∈ N, i.e.,
in every round, the lookahead granted by f ′ is at least as large as the one granted by f . A
winning strategy for Player O w.r.t. f can easily be turned into one for f ′ by ignoring the
additional information. Thus, we obtain the following monotonicity property.

I Remark. If f v f ′ and Player O wins Γf (L), then also Γf ′(L).

Note that winning refers to winning strategies that may depend on f respectively f ′.
Nevertheless, we can use monotonicity to obtain omnipotent strategies by considering the
v-minimal delay function. More formally, if Player O wins Γf (L) for every f , then she
wins in particular the delay-free game Γ(L), i.e., the game w.r.t. the v-minimal delay-
function i 7→ 1. It is easy to see that a winning strategy σ′ for Player O in Γ(L) can be turned
into an omnipotent r.c. strategy σ for L: defining σ(x, i) = σ′(x(0) · · ·x(i− 1)) simulates the
strategy σ′ by ignoring the additional information gained due to the lookahead.

I Theorem 10. Either, Player I wins Γf (L) for some f or Player O has an omnipotent
r.c. strategy for L.
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As shown in Theorem 7, such a strategy has to have access to the number of rounds
already played, the theorem does not hold for i.t. strategies. Note however, that this results
holds for arbitrary winning conditions L.

A similar construction works if Player O does not have an omnipotent strategy for L,
but wins Γf (L) for some f . Then, she can simulate a winning strategy for Γf (L) in Γf ′(L)
for every f ′ w f .

6 Decidability

In this section, we consider decision problems regarding omnipotent strategies, i.e., we are
interested in determining whether a given player has an omnipotent strategy for a given
winning condition L.

We begin with ω-regular conditions represented by deterministic parity automata.

I Theorem 11. The following problems are ExpTime-complete respectively in NP∩co-NP:
1. Given a deterministic parity automaton A, does Player I have an omnipotent h.t. strategy

for L(A)?
2. Given a deterministic parity automaton A, does Player O have an omnipotent r.c. strategy

for L(A)?

Proof. 1.) Due to Theorem 8, Player I has an omnipotent h.t. strategy for L(A) if and only
if there is no f such that Player O wins Γf (L(A)). Determining whether there is an f such
that Player O wins Γf (L(A)) is ExpTime-complete [10]. Hence, determinacy of ω-regular
delay games w.r.t. fixed delay functions and closure of ExpTime under complements yields
the desired result.

2.) Due to Theorem 10, Player O has an omnipotent r.c. strategy for L(A) if and only if
she wins Γ(L(A)). This game can be encoded as a parity game in an arena of size 2|A| that
has the same colors as A. The winner of this game is solvable in NP ∩ co-NP (and even
UP ∩ co-UP [9]), which yields the desired result. J

An omnipotent r.c. strategy for Player O can be implemented by a finite automaton
with output of size O(|A|), e.g., if the input (x, n) ∈ Σ∗I × N with |x| ≥ n is encoded as
x(0) · · ·x(n− 1)#x(n) · · ·x(|x| − 1), where # is a fresh symbol. The states of the automaton
are the vertices of the parity game constructed in the proof above and the output function is
given by a positional winning strategy for this game.

Now, we turn our attention to ω-context-free winning conditions. Such languages are
recognized by ω-pushdown automata, classical pushdown-automata running on infinite words.
We refer to [2] for detailed definitions. First, we consider deterministic automata.

I Theorem 12. The following problems are undecidable respectively ExpTime-complete:
1. Given a deterministic ω-pushdown automaton A, does Player I have an omnipotent

h.t. strategy for L(A)?
2. Given a deterministic ω-pushdown automaton A, does Player O have an omnipotent

r.c. strategy for L(A)?

Proof. Recall that delay games with winning conditions that are recognized by deterministic
ω-pushdown automata and w.r.t. fixed delay functions are determined [6].

1.) As in the ω-regular case, Player I has an omnipotent h.t. strategy for L(A) if and
only if there is no f such that Player O wins Γf (L(A)). Determining whether there is an f
such that Player O wins Γf (L(A)) is undecidable [6]. Hence, determinacy w.r.t. fixed delay
functions implies undecidability of the problem.
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2.) Again, as in the ω-regular case, the problem can be reduced to solving the delay-free
game Γ(L(A)), which is ExpTime-complete [17]. J

As before, an omnipotent r.c. strategy for Player O can be represented finitely by
constructing a pushdown-automaton with output that implements a winning strategy for the
delay-free game Γ(L(A)), which can be constructed effectively [17].

To conclude, we consider non-deterministic ω-pushdown automata.

I Theorem 13. The following problems are undecidable:
1. Given a non-deterministic ω-pushdown automaton A, does Player I have an omnipotent

l.c. (i.o.t., h.t.) strategy for L(A)?
2. Given a non-deterministic ω-pushdown automaton A, does Player O have an omnipotent

r.c. strategy for L(A)?

Proof. Recall that the (non-)universality problem for non-deterministic ω-pushdown au-
tomata is undecidable (see, e.g., [4]). Given such an automaton A, we define the winning
condition IA = {

(
α
α

)
| α ∈ L(A)}, i.e., in order to win, Player I has to produce an α /∈ L(A).

1). We prove undecidability for the case of l.c. strategies by a reduction from the
non-universality problem. The other cases are proven similarly.

We claim that L(A) is non-universal if and only if Player I has an omnipotent l.c. strategy
for IA. Let L(A) be non-universal, i.e., we can fix some α /∈ L(A). Then, there is a
l.c. strategy for Player I that produces α, independently of the moves of Player O. Hence,
this strategy is omnipotent for IA. Now, if IA is universal then Player O wins Γ(IA) by just
copying Player I’s moves. Hence, Player I has no omnipotent strategy for IA.

2.) We claim that L(A) is universal if and only if Player O has an omnipotent r.c. strategy
for IA. Above, we have shown that IA being universal implies that Player O wins Γf (IA) for
every f . Hence, due to Theorem 10, Player O has an omnipotent r.c. strategy for IA. On the
other hand, as seen above, if IA is non-universal, then Player I has an omnipotent strategy
for IA, which implies that IA has none. J

It is open whether the problems asking for weaker types of omnipotent strategies are
decidable. We discuss these problems in the next section.

7 Characterizing the Existence of Omnipotent Strategies

In this section, we give a characterization of omnipotent strategies for delay games in terms of
uniform strategies for delay-free games. We focus on the case of i.o.t. strategies for Player I,
but the other cases are analogous.

Fix some strategy τ : (Σ.O)∗ → ΣI and define the equivalence relation ≈τ over (Σ.O)∗ via
x0 ≈ x1 if and only if |x0| = |x1|, h(x0) = h(x1), and τ(x′0) = τ(x′1) for all proper prefixes
x′0 @ x0 and x′1 @ x1 with |x′0| = |x′1|. Thus, x0 and x1 are equivalent, if Player O has picked
the same sequence of non-skip symbols in x0 and in x1, has picked the same number of skip
symbols (but possibly at different positions), and τ picked the same moves answering to
Player O picking x0 and x1, respectively, during the previous rounds.

Now, we say that a strategy τ for Player I in Γf (skip(L)) is i.o.-uniform if τ(x) = τ(x′)
for all x ≈τ x′. The following lemma is a straightforward extension of Theorem 8.

I Lemma 14. Player I has an omnipotent i.o.t. strategy if and only if Player I has an
i.o.-uniform winning strategy for Γ(skip(L)).

We conjecture that Player I always has such a uniform strategy.

CSL 2015



532 What are Strategies in Delay Games?

I Conjecture 15. If Player I wins Γ(skip(L)), then she has an i.o.-uniform winning strategy
for Γ(skip(L)).

Note that we do not impose any requirements on L. If the conjecture is true, then
Theorem 8 is also true for i.o.t. strategies.

The existence of an omnipotent o.t., l.c., or i.t. strategy for a winning condition L can be
characterized analogously using appropriate equivalence relations that capture the limited
access to information about the history of a play that such a strategy has.

Furthermore, the existence of such uniform strategies can be expressed in the framework
introduced by Maubert and Pinchinat [12]: they investigate infinite games under uniformity
constraints on strategies expressed in an extension of LTL with a modality to equate finite
play prefixes that are in some given equivalence relation. The logic is able to express the
uniformity constraint formulated above, but our problems are not in the decidable fragment
presented in this work, as the equivalence relations that characterize universal strategies are
not rational (recognizable by an asynchronous transducer) and turning an ω-regular L into
skip(L) does not preserve ω-regularity.

8 Conclusion

We presented determinacy results for delay games with Borel winning conditions, both with
and without respect to fixed delay functions: in the latter case, we showed the existence
of omnipotent strategies, i.e., strategies that are winning w.r.t. every delay function. In
particular, we analyzed the exact amount of information such a strategy needs about the
history of the play and the delay function under consideration. For games w.r.t. a fixed
delay function, on which winning strategies may depend, access to the opponent’s moves
is sufficient. However, for omnipotent strategies the situation is more intricate: Player O
needs access to the opponent’s moves and the number of rounds played thus far, just having
access to the opponent’s moves is not sufficient. For Player I, we showed that access to
both player’s moves is necessary and having the full information about the play’s history is
trivially sufficient. However, it is open whether that much information is necessary: does
access to both player’s previous moves, but not to the delay function under consideration,
suffice to implement an omnipotent strategy? To answer this question, we currently work on
resolving Conjecture 15.

Also, we determined the precise computational complexity of decision problems of the fol-
lowing form for ω-regular and ω-context-free winning conditions: given a winning condition L,
does Player p ∈ {I,O} have an omnipotent strategy for L?

Another interesting question concerns the decision problems left open in Section 6: can
one decide if Player I has an omnipotent o.t. (l.c., i.o.t.) strategy for a given ω-regular
winning condition? The analogous question for Player O and input-tracking strategies is
also open. Furthermore, we left open the finite representability of omnipotent strategies for
Player I for ω-regular winning conditions. We expect the techniques we developed to give an
exponential-time algorithm for solving ω-regular delay games [10] to yield such strategies,
but this is beyond the scope of this paper.

Another interesting open problem is to develop a theory of finite-state and positional
winning strategies for delay games, both for the case with a fixed delay function and the
universal case, and to prove positional respectively finite-state determinacy results.

Acknowledgments. The work presented here was initiated by a discussion with Dietmar
Berwanger at the Dagstuhl Seminar “Non-Zero-Sum-Games and Control” in 2015.
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Abstract
Unambiguous automata are usually seen as a natural class of automata in-between deterministic
and nondeterministic ones. We show that in case of infinite tree languages, the unambiguous
ones are topologically far more complicated than the deterministic ones. We do so by providing
operations that generate a family (Abα)α<ϕ2(0) of unambiguous automata such that:
1. It respects the strict Wadge ordering: α < β if and only if Abα <W Abβ . This can be established

without the help of any determinacy principle, simply by providing effective winning strategies
in the underlying games.

2. Its length (ϕ2(0)) is the first fixpoint of the ordinal function that itself enumerates all fixpoints
of the ordinal exponentiation x ↦ ωx: an ordinal tremendously larger than (ωω)3 + 3 which
is the height of the Wadge hierarchy of deterministic tree languages as uncovered by Filip
Murlak.

3. The priorities of all these parity automata only range from 0 to 2.
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1 Introduction

An unambiguous automaton is a nondeterministic automaton that admits at most one
accepting run on each input. By definition, the class of languages recognized by unambiguous
automata includes the class of languages recognized by deterministic automata and is included
in the class of languages recognized by nondeterministic automata. Depending on the context,
some of these inclusions may be strict. For example, in the case of finite automata on
finite words, none of these inclusions is strict, because every regular language is recognized
by a deterministic finite automaton. The picture is still trivial for infinite words if we
consider the parity condition, but becomes more interesting for Büchi automata. While not
every ω-regular (nondeterministic) language is recognized by deterministic Büchi automaton,
it always can be recognized by an unambiguous automaton ([2]). From the algorithmic
perspective unambiguous automata may be considered as a trade off between succinctness
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and efficiency. It is best understood for finite words. One can find example of unambiguous
automaton exponentially more succinct than the corresponding deterministic one, while
universality, equivalence and inclusion decision problems are in P for unambiguous and
are PSPACE-complete for nondeterministic automata (see [9] for more details and further
references).

In this paper we concentrate on infinite trees and parity condition. On the one hand, it
is easy to observe that unambiguous automata are more expressive than the deterministic
ones in this context: consider for example the language “exists exactly one branch with
infinitely many labels a”. On the other hand, it took a while to determine whether there are
regular languages that are inherently ambiguous: it was shown by Niwiński and Walukiewicz
in [14] (later described in [7] and [8]) that unambiguous automata do not recognize all
nondeterministic languages. Still, unambiguous automata, although poorly understood so
far, can occur to be an important intermediate model, as many questions seem to be very
hard to answer for nondeterministic automata. For example no algorithm is known that
calculates Rabin-Mostowski index for a given regular language.

The tool to measure the position of unambiguous languages of infinite trees in between
deterministic and nondeterministic ones is given by descriptive set theory through the
notion of topological complexity. It is well known that deterministic parity tree automata
recognize only languages in the Π1

1 class (coanalytic sets), whereas nondeterministic automata
recognize some languages that are neither analytic, nor coanalytic. The expressive power
of nondeterministic automata is nonetheless bounded by the second level of the projective
hierarchy, and, by Rabin’s complementation result ([15]), all nondeterministic languages are
in fact in the ∆1

2 class. In [12], the third author gives an unambiguous language G which is
Σ1

1-complete, and constructs from it an unambiguous language that is outside both Π1
1 and

Σ1
1. A finer topological complexity measure is therefore needed: the Wadge hierarchy, which

relies on the notion of reductions by continuous functions (Wadge-reducibility). Complexity
classes, called Wadge degrees, consist of sets Wadge-reducible to each other, and constitute a
hierarchy whose levels, called ranks, can be enumerated with ordinals. We describe a series
of operations on automata that preserve unambiguity and lift the Wadge degrees of the
recognized languages. We emphasize that this is done without any particular determinacy
principle. In particular, we do not require ∆1

2-determinacy. These operations help us
generate a hierarchy of canonical unambiguous languages of higher and higher topological
complexity. This hierarchy has ϕ2(0) many levels, where ϕ2(0) stands for the first fixpoint
of the ordinal function1 x↦ εx which itself enumerates the fixpoints of the exponentiation
x↦ ωx. Compared to the height of the Wadge hierarchy of all deterministic tree languages,
which is (ωω)3 + 3 as established by Filip Murlak in [13], the ordinal ϕ2(0) is tremendously
larger.

The gap between the respective topological complexity of the two considered classes
of languages, measured by the difference between the height of their respective Wadge
hierarchies, illustrates the discrepancy between these classes. It is nonetheless not the only
interest of the descriptive set theoretic framework, as it is shown by the recent results
obtained on MSO+U. In [5], a topological complexity result was used to prove that there is
no algorithm that decides satisfiability of a formula of MSO+U logic on infinite trees and
that has a correctness proof in ZFC (an “almost undecidability” result), partially answering
a question that was open for over ten years [4]. The elementary undecidability argument was
later given in [6], but the topological result came first and motivated the research towards

1 not to be mistaken with an ε-move.

CSL 2015



536 On Unambiguous Regular Tree Languages of Index (0,2)

the other. Our constructions provide benchmarks for the study of unambiguous languages,
and could lead to prominent algorithmic results for this class. It might, for example, help
determine if it is decidable whether a given nondeterministic language is unambiguous.
The result also could contribute to solving unambiguous index problem as it can help in
characterising unambiguous languages of index (0,2).

2 Preliminaries

2.1 The Wadge hierarchy and the Wadge game
The Wadge theory is in essence the theory of pointclasses (see [1]). Let X be a topological
space. A pointclass is a collection of subsets of X that is closed under continuous preimages.
For Γ a pointclass, we denote by Γ̌ its dual class containing all the subsets of X whose
complements are in Γ, and by ∆(Γ) the ambiguous class Γ ∩ Γ̌. If Γ = Γ̌, we say that Γ is
self-dual.

The Wadge preorder ≤W on P(X) is defined as follows: for A,B ⊆ X, A ≤W B if and
only if there exists f ∶X Ð→X continuous such that f−1(B) = A. It is merely by definition a
preorder. The Wadge preorder induces an equivalence relation ≡W whose equivalence classes
are called the Wadge degrees, and denoted by [A]W . We say that the set A ⊆X is self-dual
if it is Wadge equivalent to its complement, that is if A ≡W A∁, and non self-dual if it is not.
We use the same terminology for the Wadge degrees.

Let Γ be a pointclass of X. There is a strong connection between pointclasses included
in Γ and Wadge degrees of sets in Γ, since all non self-dual pointclasses are of the form

{B ⊆X ∶ B ≤W A}

for some non self-dual set A, while self-dual pointclasses are all of the form

{B ⊆X ∶ B ≤W A and A ≰W B} ,

also for some non self-dual set A. We have thus a direct correspondence between (P(X),≤W )
restricted to Γ and the pointclasses included in Γ with the inclusion: the pointclasses are
exactly the initial segments of the Wadge preorder. In particular, the Wadge hierarchy refines
tremendously the Borel and the Projective hierarchies.

A conciliatory binary tree over a finite set Σ is a partial function t ∶ {0,1}∗ → Σ with
a prefix closed domain. Those trees can have both infinite and finite branches. A tree is
called full if dom(t) = {0, 1}∗. Let T ≤ωΣ and TΣ denote, respectively, the set of all conciliatory
binary trees and the set of full binary trees over Σ. Given x ∈ dom(t), we denote by tx the
subtree of t rooted in x. Let {0, 1}n denote the set of words over {0, 1} of length n, and let t
be a conciliatory tree over Σ. We denote by t[n] the finite initial binary tree of height n + 1
given by the restriction of t to ⋃0≤i≤n{0,1}i.

The space TΣ equipped with the standard Cantor topology is a Polish space and is in
fact homeomorphic to the Cantor space2. Let L,M ⊆ TΣ, the Wadge game W (L,M) is a
two player infinite game that provides a very useful characterization for the Wadge preorder.
In this game, each player builds a tree, say tI and tII. At every round, player I plays first,
and both players add a finite number of children to the terminal nodes of their tree. Player
II is allowed to skip its turn, but has to produce a tree in TΣ throughout a game. Player II
wins the game if and only if tI ∈ L⇔ tII ∈M .

2 See for example [3].
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I Lemma 1 ([18]). Let L,M ⊆ TΣ. Then L ≤W M if and only if player II has a winning
strategy in the game W (L,M).

We write A <W B when II has a winning strategy in W (A,B) and I has a winning strategy
in W (B,A)3.Given a pointclass Γ of TΣ with suitable closure properties, the assumption of
the determinacy of Γ is sufficient to prove that Γ is semi-linearly ordered by ≤W , denoted
SLO(Γ), i.e. that for all L,M ∈ Γ,

L ≤W M or M ≤W L∁,

and that ≤W is well founded when restricted to sets in Γ ([16, 1]). Under these conditions,
the Wadge degrees of sets in Γ with the induced order is thus a hierarchy called the Wadge
hierarchy. Therefore, there exists a unique ordinal, called the height of the Γ-Wadge hierarchy,
and a mapping dΓ

W from the Γ-Wadge hierarchy onto its height, called the Wadge rank,
such that, for every L,M non-self-dual in Γ, dΓ

W (L) < dΓ
W (M) if and only if L <W M and

dΓ
W (L) = dΓ

W (M) if and only if L ≡W M or L ≡W M∁. The wellfoundedness of the Γ-Wadge
hierarchy ensures that the Wadge rank can be defined by induction as follows:

dΓ
W (∅) = dΓ

W (∅∁) = 1
dΓ
W (L) = sup{dΓ

W (M) + 1 ∶M is non-self-dual,M <W L} for L >W ∅.
Note that given two pointclasses Γ and Γ′, for every L ∈ Γ ∩ Γ′, dΓ

W (L) = dΓ′
W (L). Under

sufficient determinacy assumptions, we can therefore safely speak of the Wadge rank of a tree
language, denoted by dW , as its Wadge rank with respect to any topological class including
it. However the main result of this article does not provide any Wadge rank for the canonical
languages that are constructed, because we do not make use of any determinacy principle.

2.2 The Conciliatory Hierarchy
For conciliatory languages L,M we define the conciliatory version of the Wadge game:
C(L,M) ([10, 11]). The rules are similar, except for the fact that both players are now
allowed to skip and to produce trees with finite branches - or even finite trees. For conciliatory
languages L,M we use the notation L ≤c M if and only if II has a winning strategy in the
game C(L,M). If L ≤c M and M ≤c L, we will write L ≡c M . The conciliatory hierarchy is
thus the partial order induced by ≤c on the equivalence classes given by ≡c. We write A <c B
when II has a winning strategy in C(A,B) and I has a winning strategy in C(B,A).

From a conciliatory language L over Σ, one defines the corresponding language Lb of full
trees over Σ ∪ {b} by:

Lb = {t ∈ TΣ∪{b} ∶ t[ /b] ∈ L} ,

where b is an extra symbol that stands for “blank”, and t[ /b], the undressing of t, is informally
the conciliatory tree over Σ obtained once all the occurences of b have been removed in a
top-down manner. More precisely, if there is a node v such that t(v) = b, we ignore this node
and replace it with v0. If, for every integer n, t(v0n) = b, then v ∉ dom(t[ /b]). This process
is illustrated by Figure 1.

Formally, for each v ∈ {0, 1}∗ we consider two (possibly infinite) sequences (wi) and (ui)
in {0,1}∗:

w0 = ε, u0 = v,

3 This is in general stronger than the usual A <W B if and only if A ≤W B and B /≤W A, but the two
definitions coincide when the classes considered are determined.
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Figure 1 The undressing process.

for 0 ≤ i:
if t(wi) = b, we set ui+1 = ui and wi+1 = wi0;
if t(wi) ≠ b and ui = au′i for a ∈ {0,1}, we set
ui+1 = u′i and wi+1 = wia;
if t(wi) ≠ b and ui = ε, we halt the construction at step i.

If the construction is halted at some step i, then v ∈ dom(t[ /b]) and t[ /b](v) = t(wi).
Otherwise, v ∉ dom(t[ /b]). If Γ is a pointclass of full trees, we say that a conciliatory
language L is in Γ if and only if Lb is in Γ.

I Lemma 2. Let L and M be conciliatory languages. Then

L ≤c M if and only if Lb ≤W M b.

Proof. A strategy in one game can be translated directly into a strategy in the other game:
arbitrary skipping in C(L,M) gives the same power as the b labels in W (Lb,M b). In
particular, in W (Lb,M b), II does not need to skip at all. J

The mapping L ↦ Lb gives thus a natural embedding of the preorder ≤c restricted to
conciliatory sets in Γ into the Γ-Wadge hierarchy. Hence, for Γ with suitable closure and
determinacy properties, the conciliatory degrees of sets in Γ with the induced order constitute
a hierarchy called the conciliatory hierarchy. We define, by induction, the corresponding
conciliatory rank of a language:
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dΓ
c (∅) = dΓ

c (∅∁) = 1
dΓ
c (L) = sup{dΓ

c (M) + 1 ∶M <c L} for L >c ∅.
Similarly to the Wadge case, given two pointclasses Γ and Γ′, for every conciliatory L ∈ Γ∩Γ′,
dΓ
c (L) = dΓ′

c (L). Under sufficient determinacy assumptions, we can therefore safely speak, of
the conciliatory rank of a conciliatory tree language, denoted by dc, as its conciliatory rank
with respect to any topological class including it. Observe that the conciliatory hierarchy
does not contain self-dual languages: a strategy for I in C(L,L∁) is to skip in the first round,
and then copy moves of II.

2.3 Automata and conciliatory trees

A nondeterministic parity tree automaton A = ⟨Σ,Q, I, δ, r⟩ consists of a finite input alphabet
Σ, a finite set Q of states, a set of initial states I ⊆ Q, a transition relation δ ⊆ Q ×Σ ×Q ×Q
and a priority function r ∶ Q→ ω. A run of automaton A on a binary conciliatory input tree
t ∈ T ≤ωΣ is a conciliatory tree ρt ∈ T ≤ωQ with dom(ρt) = {ε}∪{va ∶ v ∈ dom(t)∧a ∈ {0, 1}} such
that the root of this tree is labeled with a state q ∈ I, and for each v ∈ dom(t), transition
(ρt(v), t(v), ρt(v1), ρt(v1)) ∈ δ. The run ρt is accepting if parity condition is satisfied on
each infinite branch of ρt, i.e. if the highest rank of a state occurring infinitely often on the
branch is even, and if the rank of each leaf node in ρt is even. We say that a parity tree
automaton A accepts a conciliatory tree t if it has an accepting run on t. The language
recognized by A, denoted L(A) is the set of trees accepted by A. The Rabin-Mostowski index
of the automaton is a pair (min(r(Q)),max(r(Q))). A language is of index (i, k) if it is
recognized by some automaton of index (i, k). An automaton is unambiguous if it has at
most one accepting run on each input. We denote by Lω(A) the set of full trees recognized
by A, i.e. Lω(A) = L(A) ∩ TΣ.

I Corollary 3. The mapping L ↦ Lb embeds the conciliatory hierarchy for ∆1
2-sets re-

stricted to unambiguously recognizable languages into the ∆1
2-Wadge hierarchy restricted to

unambiguously recognizable languages.

Proof. By Lemma 2 it is enough to prove that each unambiguous automaton A can be
transformed into an unambiguous automaton A′ such that Lω(A′) = L(A)b. Given any
unambiguous automaton A, this is done by adding an all-accepting state ⊺ to the set of states
QA, and the set {(q, b, q,⊺) ∶ q ∈ QA} to the transition relation δA. The obtained automaton
A′ is unambiguous and such that Lω(A′) = L(A)b. J

In the diagrams of automata below, we use ε-transitions, i.e transitions that change state
but do not progress run down a tree. This is, however, only a notation shortcut here — we
do it to emphasize nondeterministic choice better. The transitions can be easily simulated by
adding more transitions of the type as in the above definition to the state they lead from. We
also use the following conventions in the diagrams. Nodes represent states of the automaton.
Node labels correspond to state ranks. We additionally mark parity of ranks by node colors:
nodes corresponding to states with even ranks are green, while nodes corresponding to states
with odd ranks are red. A red edge shows the state that is assigned to the left successor
node of a transition, a green edge goes to the right successor node. Edge label marks the
label of a tree the transition goes through. In order to lighten the notation, transitions that
are not depicted on a diagram lead to some definitely all-accepting state.
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3 Operations on languages and their automatic counterparts

In this section, we present classical operations ([11]) on conciliatory tree languages that allow
us to construct more and more complicated languages, and we prove that they preserve
unambiguity, i.e. that if we apply them to unambiguously recognizable languages, the
resulting language is equivalent4 to an unambiguously recognizable one. Without loss of
generality, we may choose the alphabet Σ = {0,1}.

3.1 The sum
For L,M ⊆ T ≤ωΣ , we define the sum of L and M , in symbols L⊕M , as the conciliatory tree
language containing all of those trees t ∈ T ≤ωΣ that one of the following conditions holds:

t(10n) = 0 for each integer n and t0 ∈M ;
the node 10n is the first on the path 10∗ labeled with 1 and either t(10n0) = 0 and
t10n00 ∈ L, or t(10n0) = 1 and t10n00 ∈ L∁

This operation behaves well regarding the conciliatory hierarchy.

I Facts 4 ([10, 11]). Let L, M , and M ′ be conciliatory tree languages over Σ. Then the
following hold.
1. (L⊕M)∁ ≡c L⊕M∁.
2. (L⊕M)⊕M ′ ≡c L⊕ (M ⊕M ′).
3. The operation ⊕ preserves the conciliatory ordering: if M ′ ≤c M , then

L⊕M ′ ≤c L⊕M.

Let A and B be two automata that recognize respectively the conciliatory languages M
and L. Then the automaton B +A depicted in Figure 2 recognizes the sum of L and M .
In this picture, C is any automaton that recognizes a language equivalent to L∁, and the
parities i and j are defined as follows:

i = 0 if and only if the empty tree is accepted by A;
j = 1 if and only if L(A) is equivalent to L(A)→ g.5
Note that the operation sum is in itself unambiguous, so that if A and B are unambiguous,

and if there exists an unambiguous C equivalent to the complement of B, their sum B +A is
also unambiguous. The core observation here is that only one of the initial ε-transitions can be
taken in a root of a given tree, depending on whether there is a node labeled with 1 on branch
10∗ in the tree or not. Moreover, if L and M are unambiguously recognizable conciliatory
languages, and if the complement of M is equivalent to an unambiguously recognizable
language M̌ , the complement of L ⊕M is equivalent to L ⊕ M̌ , which is unambiguously
recognizable.

For M ⊆ T ≤ωΣ and n ∈ ω, we denote by M ⊙ n the sum of M with itself n times:

M ⊙ n =M ⊕M ⊕ . . .⊕M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

.

If A recognizes M , we denote by A ● n the automaton that recognizes M ⊙ n.

4 Relatively to ≡c.
5 A player in charge of L(A)→ gin a conciliatory game is like a player in charge of L(A), but with the

extra possibility at any moment of the play to reach a definitively rejecting position. We denote by g
the automaton that rejects all trees.
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Figure 2 The automaton B +A that recognizes L(B)⊕L(A). The values of i and j depend on
properties of A. The transitions that are not depicted lead to an all-accepting state ⊺.

I Lemma 5. Let L, L′, M and M ′ be conciliatory languages such that L <c L′ and M ≤c M ′.
Then, the following hold.
1. M ⊕L <c M ′ ⊕L′;
2. M <c M ⊕L.6

Proof.
1. It is clear that M ⊕ L ≤c M ′ ⊕ L′, what remains to prove is thus that I has a winning

strategy in C(M ′ ⊕L′,M ⊕L). Let τ be the winning strategy for I in C(L′, L). Observe
that, since M ≤c M ′, player I has a winning strategy τ ′ in C(M ′,M∁). A strategy σ for
I in the game C(M ′⊕L′,M ⊕L) is the following. First I plays 0 on the node ε, and then,
as long as player II does not play a 1 on the branch 10∗, I follows τ on the left subtree
0{0, 1}∗. If ever II plays a 1 on a node 10n, then I copies II’s moves for the branch 10n0,
and then follows τ ′ on the subtree 10n0{0, 1}∗. Since τ and τ ′ are winning, σ is a winning
strategy for I in C(M ′ ⊕L′,M ⊕L). Thus M ⊕L <c M ′ ⊕L′.

2. It is clear that M ≤c M ⊕L: a winning strategy for II in C(M,M ⊕L) is indeed to play 0
at ε, 1 at the node 1, 0 at the node 010, and then copy I’s moves in the subtree 010{0, 1}∗.
The winning strategy σ for I in the game C(M,M ⊕L) is similar. First, I plays 0 at ε, 1
at the node 1, 1 at the node 010, and then copy I’s moves in the subtree 010{0,1}∗. J

3.2 The pseudo-exponentiation
Let P ⊆ T ≤ωΣ be a conciliatory tree language. For t ∈ T ≤ωΣ , let:

iP (t)(a1a2 . . . an)

=
⎧⎪⎪⎨⎪⎪⎩

t(a10a20 . . . 0an0) if ta10a20,...0an1 ∈ P ;
b otherwise.

This process is illustrated in Figure 3. The nodes in red are called the auxiliary moves, and
the nodes in blue the main run. The blue arrows denote the dependency of a node of the
main run on a subtree of auxiliary moves. If the auxiliary subtree of a main run node is not
in P , then we say that the node is killed.

Let L ⊆ T ≤ωΣ , we define the action of P on L, in symbols (P,L), by

{t ∈ T ≤ωΣ ∶ iP (t)[ /b] ∈ L} .

6 In particular M ⊙ n <c M ⊙ (n + 1) for any 0 < n < ω.
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Figure 3

Let PΠ0
1
be the complete closed set of all full trees over Σ with all nodes on the leftmost

branch 0∗ labelled by 0. For L ⊆ T ≤ωΣ , we denote by (Π0
1, L) the action of PΠ0

1
on L. This

operation (Π0
1, ⋅) behaves well regarding the conciliatory hierarchy.

I Facts 6 ([10, 11]). Let L and M be conciliatory tree languages over Σ. Then the following
hold.
1. (Π0

1, L)∁ ≡c (Π0
1, L

∁).
2. If L ≤c M , then (Π0

1, L) ≤c (Π0
1,M).

3. If L <c M , then (Π0
1, L) <c (Π0

1,M).

The sets obtained as results of the operation (Π0
1, ⋅) are, so to speak, fixed points for ⊕.

I Proposition 7. Let L, L′ and M be conciliatory languages such that L <c (Π0
1,M) and

L′ <c (Π0
1,M). Then

L⊕L′ <c (Π0
1,M)

Proof. The fact that L ⊕ L′ ≤c (Π0
1,M) is clear: if σ0, σ1 and σ′ are winning strategies

respectively in the games C(L, (Π0
1,M)), C(L∁, (Π0

1,M)) and C(L′, (Π0
1,M)), a winning

strategy for II in C(L⊕L′, (Π0
1,M)) is the following. As long as player I does not play a 1

on the branch 10∗, II does not kill any nodes and follows σ′ to what I plays in the subtree
0{0, 1}∗ to get her main run. If ever II plays a 1 on a node 10n, then II kills all the nodes of
the main run she had already played (by playing 1 on the leftmost branches of appropriate
auxiliary subtrees), and begins to play along a tree not in M in her main run, without killing
any node. If I plays 0 on the node 10n0, she kills every node in the main run she had already
play, and then follows σ0 on the subtree 10n0{0, 1}∗. If I plays 1 on the node 10n0, she kills
every node in the main run she had already play, and then she follows σ1 on the subtree
10n0{0,1}∗. The proof that I has a winning strategy τ in the game C((Π0

1,M), L ⊕ L′)
is mutatis mutandis the same, given that I has a winning strategy for each of the games
C((Π0

1,M), L), C((Π0
1,M), L∁) and C((Π0

1,M), L′). J

Let A be an automaton that recognizes L ⊆ T ≤ωΣ . Then the conciliatory tree language
(Π0

1, L) is recognized by the automaton ωA defined from A by replacing each state of A by
a “gadget”, as depicted in Figure 4. By replacing a state by the gadget we mean that all
transitions ending in this state should now end in the initial state of the gagdet, and that all
the transitions starting from this state should now start from the final state of the gadget.
This sort of gadget first appeared in [11].

Observe that if A is unambiguous, then ωA is also unambiguous, so that the operation
(Π0

1, ⋅) preserves the unambiguity of conciliatory tree languages.
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Figure 4 The gadget to replace a state in A.
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Figure 5 Sketch of automata, where Π1
1 and Σ1

1 denote automata that recognize respectively a
Π1

1-complete language and the complement of this language.

4 Difference of co-analytic sets

The operations defined in Section 3 are Borel in the sense that when we apply them to
Borel languages, the resulting language is still Borel. As our purpose is to illustrate the
wide discrepancy between deterministic and unambiguously recognizable languages, we
need to climb higher in the topological complexity hierarchy. In order to achieve this
objective, we will combine a construction due to the third author in [12] with a variant of
the pseudo-exponentiation.

4.1 The D2(Π1
1) class

For a topological space X, we denote by D2(Π1
1)(X) the class of differences of two coanalytic

sets, i.e.

D2(Π1
1)(X) = {A ∩B ∶ A ∈Π1

1(X) and B ∈Σ1
1(X)} .

Using the unambiguously recognizable Σ1
1-complete language G (of full trees) from [12], we

define an unambiguously recognizable conciliatory language that is D2(Π1
1)-complete and

such that its complement is also unambiguously recognizable. Their definitions are given via
the automata that recognize them. The abstract idea behind our construction is depicted by
Figure 5 which represents a general form of automata that would recognize languages that
are D2(Π1

1)-complete (Figure 5a), and Ď2(Π1
1)-complete (Figure 5b).

The automaton A1, indeed, recognizes a tree t ∈ T ≤ωΣ if and only if t0 is in a given
conciliatory Π1

1-complete language (say A) and t1 is in its complement which is Σ1
1-complete.

Since the maps t↦ t0 and t↦ t1 are continuous, the language recognized by the automaton is
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Figure 6 Unambiguous automata that recognize respectively a Σ1
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Figure 7 Unambiguous automata that recognize respectively a D2(Π1
1)-complete and a

Ď2(Π1
1)-complete language. The transitions that are not depicted lead to an all-accepting state ⊺.

thus D2(Π1
1). Moreover, if M ∈Π1

1 and M ′ ∈Σ1
1, M ∩M ′ ≤c L(A1): a winning strategy for

player II in the game C(M∩M ′, L(A1)) is indeed to glue together her winning strategies in the
games C(M,A) and C(M ′,A∁). Hence, the language recognized by A1 is D2(Π1

1)-complete.
The reasoning for A2 is similar, observing that

(M ∩M ′)∁ = (M ∩M ′∁) ∪ (M∁ ∩M ′∁) ∪ (M∁ ∩M ′).

We now define two unambiguous automata: the first one recognizes a Σ1
1-complete

language, and the other one recognizes the complement of the first one, i.e. a Π1
1-complete

language7. They are depicted in Figure 6.
We will denote by AΣ1

1
and AΠ1

1
the conciliatory languages recognized respectively by AΣ1

1
and AΠ1

1
. Combining these constructions, we can now define an unambiguously recognizable

conciliatory language that is D2(Π1
1)-complete (Figure 7a) and such that its complement

(Figure 7b) is also unambiguously recognizable, via the automata that recognize each of them.
We will denote by AD2(Π1

1) and AĎ2(Π1
1)

the conciliatory languages recognized respectively
by AD2(Π1

1) and AĎ2(Π1
1)
.

7 See [12] for proofs.
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4.2 The operation (D2(Π1
1), ⋅)

For M ⊆ T ≤ωΣ , we denote by (D2(Π1
1),M) the action of AD2(Π1

1) on M . Observe that this
operation is highly non-Borel, since if we apply it to a Σ0

1-complete conciliatory language, the
resulting language will be complete for the pointclass of all the countable unions of D2(Π1

1)
languages. We prove that (D2(Π1

1), ⋅) behaves well with respect to ≤c.

I Theorem 8. Let M,M ′ ⊆ T ≤ωΣ . If M ≤c M ′, then
1. (D2(Π1

1),M)∁ ≡c (D2(Π1
1),M∁);

2. (D2(Π1
1),M) ≤c (D2(Π1

1),M ′).

Proof. The first point holds merely by the definition of the operation (D2(Π1
1), ⋅). The

proof of the second point relies on a variation of the remote control strategy ([10]). Let t be
a finite binary tree over {0,1,2,3}. We say that t is coherent if for every node v ∈ dom(t),
t(v) ∈ {1, 2, 3} implies that all the nodes in v1{0, 1}∗ ∩dom(t) have the same label, t(v). Let
(βn)n∈ω be an enumeration of the set of the coherent trees, such that if ti is an initial segment
of tj , then i ≤ j. We call βi the i-th bet. A bet encodes information on the auxiliary moves
of I in the game C((D2(Π1

1),M), (D2(Π1
1),M ′)): its underlying binary tree determines the

part of the main run taken into account, and the values at the nodes whether this node will
be killed or not, and how. Suppose I plays a conciliatory tree t. For v = v0 . . . vj ∈ dom(βi),
βi(v) = 0 means that the node 0v00v1 . . . 0vj stays alive, i.e. that t0v00v1...0vj1 ∈ AD2(Π1

1). The
value 1 means that the node 0v00v1 . . .0vj is killed because t0v00v1...0vj10 and t0v00v1...0vj11
belong to AΠ1

1
, so that t0v00v1...0vj1 ∈ AĎ2(Π1

1)
. The value 2 means that the node 0v00v1 . . . 0vj

is killed because t0v00v1...0vj10 ∈ AΣ1
1
and t0v00v1...0vj11 ∈ AΠ1

1
, and the value 3 means that it

is killed because both t0v00v1...0vj10 and t0v00v1...0vj11 belong to AΣ1
1
. We say that a bet βi

is fulfilled if at the end of the game, for all v ∈ dom(βi), βi(v) is true with respect to the
conciliatory tree played by I. Notice that it is a D2(Π1

1) condition (it is a finite intersection
of Σ1

1 and Π1
1 sets), so that II can check if a bet is fulfilled or not with an auxiliary move.

Suppose now that II has a winning strategy σ in C(M,M ′). We describe a winning
strategy σ′ for II in the game C((D2(Π1

1),M), (D2(Π1
1),M ′)). Each level of II’s main run

corresponds to a bet: suppose at some point I has constructed a finite tree t for his main run,
and let βi be a bet such that dom(t) = dom(βi). On the level i of her main run, II follows σ
modulo βi, in the sense that she plays along σ as if at all the levels j < i of her main run
such that βj is not a subtree of βi, the nodes were killed, and she checks with her auxiliary
moves for the nodes of the main run at this level whether βi is fulfilled or not, so that all
the nodes of her main run at this level are killed if the bet is not fulfilled. At the end of the
game, a unique sequence of bets forming a chain for the inclusion is fulfilled, which contains
all information about the way player I used his auxiliary moves, and which nodes he killed.
Hence,

i
AD2(Π1

1)(σ′ ∗ t)[ /b] = σ ∗ i
AD2(Π1

1)(t)[ /b],

where σ ∗ t denotes the tree resulting from application of strategy σ to tree t. That finishes
the proof. J

Mutatis mutandis, a winning strategy for I in C(M,M ′) can also be “remote controlled” to
a winning strategy for I in C((D2(Π1

1),M), (D2(Π1
1),M ′)).

I Corollary 9. Let M and M ′ be conciliatory languages such that M <c M ′. Then

(D2(Π1
1),M) <c (D2(Π1

1),M ′)
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Figure 8 The gadget to replace a state in A. The transitions that are not depicted lead to an
all-accepting state ⊺.

The operation (D2(Π1
1), ⋅) is much stronger than (Π0

1, ⋅), and is in fact a fixpoint of it.

I Proposition 10. Let M ⊆ T ≤ωΣ . Then

(Π0
1, (D2(Π1

1),M)) ≡c (D2(Π1
1),M).

The proof of Proposition 10 is a variant of the remote-control technique and is omitted
here.

Let A be an automaton that recognizes M ⊆ T ≤ωΣ . Then the conciliatory tree language
(D2(Π1

1),M) is recognized by the automaton εA defined from A by replacing each state of
A by a “gadget”, as depicted in Figure 8. As in the pseudo-exponentiation case, by replacing
a state by the gadget we mean that all transitions ending in this state should now end in the
initial state of the gagdet, and that all the transitions starting from this state should now
start from the final state of the gadget.

Observe that, since AD2(Π1
1) and AĎ2(Π1

1)
are disjoint, if A is unambiguous, then εA is

also unambiguous, so that the operation (D2(Π1
1), ⋅) preserves the unambiguity of conciliatory

tree languages.

5 A fragment of the unambiguous Wadge hierarchy

Consider the epsilon function, the ordinal function that enumerates the fixed-points of the
exponentiation of base ω:

ε0 = sup
n<ω

ω
. .
.
ω0

´¹¹¹¹¸¹¹¹¹¶
n

; εα+1 = sup
n<ω

ω
. .
.
ω(εα+1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

; ελ = sup
α<λ

εα for λ limit.

We denote by ϕ2(0) its first fixed-point:

ϕ2(0) = sup
n<ω

ε. . .ε0
²
n

.

The ordinal ϕ2(0) is the first value of the second function of the Veblen hierarchy [17]. Another
way to characterise ϕ2(0) is to remember that an ordinal is the set of its predecessors and
notice that a non-zero ordinal is of the form respectively ωα if and only if it is closed under
addition, and εα if and only if it is closed under xz→ ωx. Then ϕ2(0) is the first non-zero
ordinal closed under xz→ εx as well as xz→ ωx and x, y z→ x + y.
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We recall that every ordinal α > 0 admits a unique Cantor normal form of base ω (CNF)
which is an expression of the form

α = ωαk ⋅ nk +⋯ + ωα0 ⋅ n0

where k < ω, 0 < ni < ω (any i ≤ k) and α0 < ⋯ < αk < α.
For every ordinal 0 < α < ϕ2(0), we inductively define a pair of unambiguous automata

(Aα, Āα) whose languages are both non-selfdual and incomparable through the conciliatory
ordering. If the CNF of α is α = ωαk ⋅ nk +⋯ + ωα0 ⋅ n0 we set

Aα = Aωαk ● nk +⋯ +Aωα0 ● n0

and

Āα = Aωαk ● nk +⋯ + Āωα0 ● n0,

where Aωαi and Āωαi are respectively:gand gif αi = 0;
ωAαi and ωĀαi if αi < ωαi ;
εA2+β and εĀ2+β if αi = ωαi and αi = εβ for some β < αi.

Here gdenotes automaton that accepts all conciliatory trees.

I Lemma 11. Let 0 < α < β < ϕ2(0),
1. Aα /≤c Āα and Āα /≤c Aα.
2. Aα <c Aβ ; Āα <c Aβ ; Aα <c Āβ and Āα <c Āβ.

Proof.
1. The proof, by induction on α, relies on the fact that the operations considered “commute”

with each others, see Facts 4, 6 and Theorem 8.
2. The proof, by induction on α and β, relies on the fact that the operations preserve the

relation <c (see Lemma 5, Facts 6 and Corollary 9) on the one hand, and on the fact that
they do not “overlap” (see Propositions 7 and 10). J

Applying the embedding L↦ Lb, we have thus generated a family (Abα)α<ϕ2(0)
of unambiguous

automata that respects the strict Wadge ordering: α < β if and only if Abα <W Abβ . Even
though the exact Wadge rank of this family is unknown, this fragment of the ∆1

2-Wadge
hierarchy restricted to unambiguously recognizable languages climbs far above the Σ1

1 class.
Hence the main result follows.

I Theorem 12. There exists a family (Abα)α<ϕ2(0)
of unambiguous parity tree automata

whose priorities are restricted to {0,1,2} such that
1. they recognize languages of full trees over the alphabet {0,1, b};
2. α < β holds if and only if Abα <W Abβ holds as well.

6 Conclusion

In this paper, we have produced a very long chain of unambiguous parity tree automata of
different Wadge degrees. Its length, the ordinal ϕ2(0), is the first fixpoint of the ordinal
function that itself enumerates all fixpoints of the ordinal exponentiation x↦ ωx. All these
automata share a Rabin-Mostowski index of at most (0,2). This indicates that the whole
Wadge hierarchy of unambiguous parity tree automata is even far more complicated than
that, not to mention the even higher complexity of the Wadge hierarchy of regular tree
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languages which, in comparison, seems scary. This illustrates in particular how different the
tree-case scenario is from the word-case scenario.

The whole construction is effective. This means that the mapping α ↦ Abα (for 0 <
α < ϕ2(0)) is recursive. And also that, for any 0 < α < β < ϕ2(0), the relation Abα <W Abβ
which stipulates that there exists two strategies – one that is winning for player II in the
game W (Abα,Abβ) and another one that is winning for I in the game W (Abβ ,Abα) – can be
established by recursively providing such strategies.

However, we did not consider any decidability issue. It thus remains open to show whether
one can decide, given any automaton B and any ordinal 0 < α < ϕ2(0), whether B <W Abα
holds or not.
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Abstract
Various logics have been introduced in order to reason over (co)inductive specifications and,
through the Curry-Howard correspondence, to study computation over inductive and coinductive
data. The logic µMALL is one of those logics, extending multiplicative and additive linear logic
with least and greatest fixed point operators.

In this paper, we investigate the semantics of µMALL proofs in (computational) ludics. This
framework is built around the notion of design, which can be seen as an analogue of the strategies
of game semantics. The infinitary nature of designs makes them particularly well suited for
representing computations over infinite data. We provide µMALL with a denotational semantics,
interpreting proofs by designs and formulas by particular sets of designs called behaviours. Then
we prove a completeness result for the class of “essentially finite designs”, which are those designs
performing a finite computation followed by a copycat. On the way to completeness, we establish
decidability and completeness of semantic inclusion.
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ness, circular proofs, infinitary proof systems
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1 Introduction

Through the Curry-Howard correspondence, proof theory allows to design and study pro-
gramming languages in which programs are correct by construction: formulas correspond
to types and proofs correspond to well-typed, pure and total programs. Like programs,
proofs generally contain irrelevant information which may obfuscate their computational
contents, making it hard to tell when two proofs correspond to the same computation, or to
characterize the class of computations being expressible as proofs. A major goal of proof
theory is to tackle these problems, by identifying and eliminating such syntactic noise to get
down to the essence of proofs.

Following this tradition, the proof theory of least and greatest fixed points provides a way
to design and study programming constructs associated to inductive and coinductive types.
Such types can be encoded using second-order quantification, e.g., ∀X. X → (X → X)→ X

represents natural numbers through primitive recursion. However, the encoding has several
undesirable effects: it notably forces impredicativity into the system, and results in indirect
ways of computing over (co)inductive objects. These two reasons have motivated the
introduction of fixed points in type theory. Mendler [17] and Matthes [15] extended second-
order λ-calculus with least and greatest fixed point types and an associated generic primitive
recursion operator. Similar developments took place in richer type theories, supporting
the introduction of inductive and coinductive specifications in tools such as Coq or Agda.
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However, these aspects are far from being fully understood: there is a history of bugs
pertaining to the guard condition that restricts (co)recursion to ensure totality in these
systems. This has spurred the development of other approaches to (co)induction, such
as sized types [4] and (co)patterns [1]. The works cited above are mostly concerned with
strong normalization, and do not investigate the computational content of proofs beyond
this property. Various other works, generally taking place in weaker logics, have investigated
more closely the semantics of proof on (co)inductive types, notably by means of infinite
proofs and games [19, 11, 8, 9, 7].

In this paper, we carry out a similar semantical investigation, revealing the computational
content of proofs by means of an infinitary semantics, and tackling the difficult problem of
completeness for this semantical interpretation. We work with the system µMALL [2], which
extends multiplicative and additive linear logic1 with least and greatest fixed point operators.
In addition to simple fixed point unfolding rules, µMALL features, like most of the systems
cited above, generic primitive (co)recursion rules shown below in a simplified two-sided form:

F [S/X] ` S
(µL)

µX.F ` S
S ` F [S/X]

(νR)
S ` νX.F

The induction principle (µL) behaves in cut elimination as a recursive process, transforming
any derivation of ` µX.F into a derivation of ` S. Now, we can express in that framework the
type of lists of A as L = µX.1⊕(A⊗X) and the type of infinite streams of A as S = νX.A⊗X.

(. . . , ax)
1 ` S ( S

(. . . , ax)
A,S ( S, S ` A⊗S

(unfoldR)
A,S ( S, S ` S

(⊗L,(R)
A⊗(S ( S) ` S ( S

(⊕L)
1⊕(A⊗(S ( S)) ` S ( S

(µL)
L ` S ( S

We can then define a proof (shown next)
that concatenates a list and a stream into a
stream, by recursing over the list with the
invariant S ( S. It is not trivial to con-
vince oneself that this proof does compute
the concantenation function. More gen-
erally, it is hard to tell what such proofs
compute, when two proofs compute the
same function, etc. It requires to step back from the finite, syntactic proof system under
consideration and to start considering its semantics; this is the topic of the present paper.

As our domain of interpretation of proofs, we consider ludics [12] which can be regarded
as a variant of game semantics, where the basic objects are well-behaved strategies, called
designs. Girard introduced ludics with the aim of bringing closer together syntax and
semantics in the study of proofs and proved a full completeness result with respect to proofs
of a polarized variant of MALL. Extending this interpretation to all of linear logic, including
exponentials, has been challenging and required to deal with non-determinism [5]. As we
shall see, accounting for least and greatest fixed points is much easier, and can essentially be
done in Girard’s original framework. Still, we shall work in Terui’s reformulation of ludics,
computational ludics [20], since it is more convenient to work with and slightly more general;
for instance the objects of computational ludics may contain cut while Girard’s original
designs are cut-free: this happens to be very handy when working with greatest fixed point.

Contributions. Our first contribution is a denotational semantics for (a polarized version of)
µMALL: we interpret formulas as well-behaved sets of designs, and proofs as designs belonging
to the conclusion sequent’s interpretation. Our second contribution is a completeness result

1 While linearity is certainly a restriction, it is not a severe one with respect to our main interest in
this paper. Note moreover that µMALL is already very expressive as it contains at least all primitive
recursive functions.
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for a class of designs we call essentially finite designs (EFD) which are designs performing
a finite computation followed by a copycat. To prove this result, we investigate semantic
inclusion, proving its decidability (i.e., whether the intepretations of two formulas are
included in each other) and completeness (if semantic inclusion holds, the corresponding
entailment is µMALL-provable). This last result relies on a circular proof system, in the
style of Santocanale [19], as a stepping stone between infinite designs and finite proofs.

Outline. We introduce µMALLP (the polarized variant of µMALL) in Section 2 followed
by ludics in Section 3. We then define the interpretation of µMALLP proofs in ludics in
Section 4, and prove its soundness. Finally, we establish completeness for EFD in Section 5.
Detailed proofs may be found in the long version of this paper [3].

2 Linear Logic with Fixed Points

In this section, we formally introduce our logic with least and greatest fixed points. As usual
when aiming at ludics interpretation [12, 5, 20] we will actually be working with a polarized
version of µMALL [2], µMALLP, to which the present section is dedicated.

We assume two infinite and disjoint sets VP and VN , whose elements are respectively
called positive and negative variables and denoted by XP and XN , or simply X when their
polarity is irrelevant or can be inferred from the context.

I Definition 1. The sets of positive preformulas P,Q, . . . and of negative preformulas
N,M, . . . are inductively defined by the following grammar:

P, Q ::= XP | X⊥N | 1 | 0 | N⊕M | N⊗M | ↓ N | µXP .P

N,M ::= XN | X⊥P | ⊥ | > | PNQ | POQ | ↑P | νXN .N

The connectives µ and ν are variable binders, and the notions of free and bound variables
are as usual. Formulas are those preformulas with no free variables. A preformula is said to
be monotonic if it contains no negated variable X⊥, neither free nor bound. A formula is
said to be degenerate if it contains either µX.X or νX.X as a subformula.

Nested fixed points correspond to iterated (co)inductive definitions. For example, Nat :=
µX. (↑1)⊕(↑X) is the type of natural numbers, and νY. ↑((↑Nat)⊗Y ) is the type of infinite
streams of natural numbers. Fixed points can also be interleaved, which corresponds to
mutual (co)inductive definitions. For example, µX. T⊗(νY. ↑((↑1)⊕((↑X)⊗Y ))) is the type
of arbitrarily branching well-founded trees, with data of type T as every node – such trees
have no infinite branch, but each node may have infinitely many children.

Our syntax classifies µ as positive and ν as negative. This is a natural choice but it is
not forced: all of this work could be done by taking the opposite classification, which is
consistent with the observations made in the study of focusing for µMALL [2]. In a nutshell,
the polarity of a fixed point formula is not forced by the fixed point operator but rather by
the formula inside the fixed point. In that setting, the formulas µX.X and νX.X have no
meaningful polarity. We shall thus assume from now on that all formulas are non-degenerate.

I Definition 2. Negation is the involutive operation mapping positive to negative preformulas,
and vice versa, such that:

(F1OF2)⊥ = F⊥1 ⊗F⊥2 (F1NF2)⊥ = F⊥1 ⊕F⊥2 (↑F )⊥ = ↓F⊥

(νX.F )⊥ = µY.(F⊥[Y ⊥/X]) (XN )⊥ = X⊥N (X⊥P )⊥ = XP >⊥ = 0 ⊥⊥ = 1
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Identity rules: Fixed point rules:

(ax)
` P, P⊥

` Γ, P⊥ ` ∆, P
(cut)

` Γ,∆

` Γ, P [µX.P/X]
(µ)

` Γ, µX.P
` Γ, S ` S⊥, N [S/X]

(ν)
` Γ, νX.N

MALL rules: (>)
` Γ,>

` Γ
(⊥)

` Γ,⊥ (1)
` 1

` Γ, P
(↑)

` Γ, ↑P
` Γ, N

(↓)
` Γ, ↓N

` Γ, P1 ` Γ, P2
(N)

` Γ, P1NP2

` Γ, Ni
(⊕i)

` Γ, N1⊕N2

` Γ, P1, P2
(O)

` Γ, P1OP2

` ∆, N1 ` Γ, N2
(⊗)

` Γ,∆, N1 ⊗N2

In these rules, Γ and ∆ denote positive sequents, i.e., ones that contain only positive formulas.

Figure 1 The µMALLP sequent calculus proof system.

From now on, we restrict our attention to monotonic (pre)formulas. This natural
restriction rules out formulas such as µX.↓X⊥, which would yield inconsistencies. Assuming
monotonicity amounts to fully remove negation from our syntax — the presence of negated
variables in it is only useful to be able to define negation. We may still use negation as an
operation on formulas, since it preserves monotonicity.

We denote by F [ ~G/ ~X] the preformula obtained by the simultaneous capture-avoiding
substitution of the variables ~X by the preformulas ~G. When considering a substitution
F [ ~G/ ~X], we always assume implicitly that the polarities of ~G are adequate to those of ~X.

I Definition 3. The proof system µMALLP is given in Figure 1. It is a focused sequent
calculus over our polarized syntax, meaning that its sequents must contain at most one
negative formula. A sequent is said to be negative when it contains a negative formula, and
it is positive otherwise. In Figure 1, Γ and ∆ always denote positive sequents.

Reading proofs in a proof search (bottom-up) fashion, the polarity restriction on sequents
means that negative rules must be applied eagerly, i.e., as soon as the sequent contains a
negative formula. This constraint on the shape of proofs is a very mild form of focusing.
Note that we can simply translate between µMALL and µMALLP, in the same way as is
done between MALL and MALLP: µMALL formulas are translated into µMALLP formulas
by inserting shift connectives, and any µMALL proof can be turned into a µMALLP proof
of the translated conclusion sequent by inserting shift rules2; in the other direction, shifts
are simply erased.

As mentioned in the introduction, the fixed point rules of µMALLP can be understood
from Knaster-Tarski’s characterization of an operator’s extremal fixed points in complete
lattices. Rule (µ) expresses that µX.P is a pre-fixed point of X 7→ P , provided that one
reads implication as inclusion (P [µX.P/X]( µX.P ). Similarly, we may express that the
greatest fixed point is greater than all post-fixed points by the following rule:

S ` N [S/X]
(ν0)

S ` νX.N

2 This translation essentially cancels the focusing constraint of the µMALLP proof system by inserting
shifts. A more demanding task would be to establish completeness of the focused µMALLP proof system
given here with respect to an unfocused proof system for µMALLP. We do not address this (unrelated)
issue, but expect that it would be possible along the lines of the focusing result for µMALL [2].
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ΠL

` Γ, P [(µX.P )/X]
(µ)

` Γ, µX.P

ΠR

` ∆, S
Θ

` S⊥, P⊥[S⊥/X]
(ν)

` ∆, (µX.P )⊥

(cut)
` Γ,∆

−→

ΠR

` ∆, S

Θ
` S⊥, P⊥[S⊥/X]

(ax)
` S⊥, S

Θ
` S⊥, P⊥[S⊥/X]

(ν)
` S⊥, (µX.P )⊥

(P )
` P [S⊥/X], P⊥[(µX.P )/X]

ΠL

` P [(µX.P )/X],Γ
(cut)

` P [S⊥/X],Γ
(cut)

` S⊥,Γ
(cut)

` Γ,∆

Figure 2 (µ)–(ν) Key cut-elimination step.

Rule (ν) of Figure 1 is obtained from this one by combining it with a cut against the
co-invariant S – this presentation is preferred because it yields a system that enjoys cut
elimination.

The above explanation may be helpful to understand the rules at first, but it does not
say anything about their computational interpretation. Cut elimination holds for µMALLP:
the cut reduction system given in [2] can straightforwardly be adapted to the polarized
setting of µMALLP. As the reader may expect, the only specific case is the one involving
least and greatest fixed points. This cut reduction step, shown in Figure 2, relies on the
functoriality construction: if Π is a proof of a sequent ` P,N then FG(Π) is a particular
proof of ` G[P/X], G⊥[N⊥/X], whose precise definition may be found in [2]. Operationally,
functoriality should be viewed as a map operator in functional programming. The role
of FG(Π) is to apply Π to all occurrences of X in G. Roughly, its type may be read as
(N⊥ → P )→ (G[N⊥/X]→ G[P/X]). In the cut reduction step of Figure 2, this has the effect
of propagating the (ν) rule to the next occurrences of (µX.P )⊥ in P⊥[(µX.P )⊥/X]. Overall,
the reduction achieves in this way the (co)recursive computational behaviour described in the
introduction3. Intuitively, this process terminates because each application of this reduction
consumes a (µ) rule; see [2] for the formal argument.

3 Computational Ludics

Ludics is an interactive framework reminiscent from and somehow intermediate between game
semantics [13] and realizability [14]. We recall, in the setting of computational ludics [20],
the necessary definitions and properties of

designs (§ 3.1), which correspond to strategies,

orthogonality (§ 3.2), which corresponds to interaction, and

behaviours (§ 3.3), which correspond to arenas or interactive types.
In game semantics, arenas are defined first and strategies are defined as sets of plays (or as
sets of views) compatible with these arenas. However, in ludics, arenas are a secondary notion,
derived from that of designs since behaviours are obtained from designs by orthogonality; we
develop this comparison in § 3.4.

3 Note that in our classical linear logic setting, induction and coinduction (in other words, recursion and
corecursion) become the same.
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3.1 Designs
Designs are built over a signature A = (A, ar), where A is a set of names a, b, c, . . . and
ar : A → N is a function which assigns to each name a its arity ar(a). Let V be a set of
variables V = {x, y, z, . . . }.

I Definition 4. For a fixed signature A, the class of positive designs p, q, . . . and negative
designs n,m, . . . are coinductively defined as follows (with ar(a) = card(~xa) = k):

p ::= Ω | z | (n0 | a〈n1, . . . , nk〉) n ::= x |
∑

a(~xa).pa

The formal sum
∑
a(~xa).pa is the A-indexed family {a(~xa).pa}a∈A.

We write
∑
K⊆A a(~xa).pa to denote the design

∑
a(~xa).qa where qa = pa if a ∈ K and

qa = Ω otherwise. We denote by Ω− the design
∑
a(~xa).Ω. In a negative design

∑
a(~xa).pa,

a(~xa) binds the variables ~xa appearing in pa. Variables which are not under the scope of
a binder are free. The free variables of a design d are denoted by fv(d). We identify two
designs which are α-equivalent, i.e., which are equal up to renaming of their bound variables.
We denote by d[~n/~x] the design obtained by a simultaneous and capture-free substitution of
the variables ~x by the negative designs ~n. The reader is referred to [20] for precise definitions.

I Definition 5 (l-designs, standard designs). A design of the form n0 | a〈n1, . . . , nk〉 where
n0 is not a variable is called a cut. An occurrence of a variable x is called an identity if it
occurs as n0 | a〈n1, . . . , x, . . . , nk〉. We call a design identity-free (resp. cut-free) if it does
not contain an identity (resp. a cut) as a subdesign. A design d is called linear if for every
positive subdesign n0 | a〈n1, . . . , nk〉 of d, the sets fv(n0), . . . , fv(nk) are pairwise disjoint.
An l-design is a design d which is linear, identity-free and such that fv(d) is finite. A standard
design is a cut-free l-design.

I Definition 6 (MALL signature). In order to interpret polarized MALL proofs, the following
signature, and associated notations, are useful: A = {⊥, ↑,N1,N2,O} with ar(⊥) = 0, ar(↑) =
ar(N1) = ar(N2) = 1, ar(O) = 2. When considering this signature, we write 1 rather than ⊥,
↓ rather than ↑, ⊕i rather than Ni and ⊗ rather than O.

We define in the following the design ηF , the infinitary η-expansion of the axiom over F :

I Definition 7. Let F be a MALL formula. The design ηF is coinductively defined by:
ηF1⊗F2 = ηF1OF2 = O(x1, x2).(x0 | ⊗〈ηF1,d[x1/x0], ηF2 [x2/x0]〉)
ηF1⊕F2 = ηF1NF2 =

∑
i=1,2 Ni(xi).(x0 | ⊕i〈ηFi [xi/x0]〉)

η↓F = η↑F = ↑(x1).(x0 | ↓〈ηF [x1/x0]〉)
ησY.F = ηF [σY.F/Y ] for σ ∈ {µ, ν}

I Example 8. Here are two additional examples of designs defined on the MALL signature:

d1 = N1(x1).(x1 | 1) + N2(x2).(x2 | ⊕1〈↑(y).(y | 1)〉)
d2 =O(x1, x2).(x2 | ↓〈d2〉)

I Remark. Designs (on the MALL signature) can be viewed as abstractions of (suitably
polarized) MALL proofs. For instance d1 abstracts the (unique) cut-free proof of ` 1N(↑1⊕⊥).

The previous remark is the basis of the usual interpretation of MALL in ludics that we
will extend, in the rest of the paper, into an interpretation of µMALLP. But first, as ludics
is all about interaction, we turn to cut-elimination and orthogonality.
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3.2 Cut-elimination and Orthogonality
Cuts can be reduced by the relation → defined as follows:

I Definition 9. The relation → is defined on positive designs as follows:

(
∑
a(~xa).pa) | b〈~n〉 → pb[~n/~xb].

The reflexive and transitive closure of → is denoted →?. We write p ⇓ q if p →? q and
q is neither a cut, nor the design Ω. If such a design q does not exist, we write p ⇑. We
define ‚ to be the least set of positive designs containing z and closed by anti-reduction:
‚= {d : d→? z}.

To eliminate cuts from designs, we coinductively propagate the relation ⇓ to subdesigns.
The obtained normal form LdM enjoys a weak form of Church-Rosser property.

I Definition 10 (Normal form). The function L.M on designs is coinductively defined by:
LpM = z if p ⇓ z; LxM = x if P ⇑;
P = Ω if p ⇑; L

∑
a(~x).paM =

∑
a(~x).LpaM. if p ⇑;

P = x | a〈Ln1M, . . . , LnkM〉 if p ⇓ x | a〈n1, . . . , nk〉.

I Proposition 11 (Associativity). Let d be a design and n1, . . . , nk be negative designs. One
has: Ld[n1/x1, . . . , nk/xk]M = LLdM[Ln1M/x1, . . . , LnkM/xk]M.

We finally define an orthogonality relation on so-called atomic designs.

I Definition 12 (Atomic designs). A positive standard design p is atomic if it has at most
one free variable; that variable will be called x0 in the rest of the paper. A negative standard
design n is atomic if it is closed, i.e., fv(n) = ∅.

I Definition 13. Let p be a positive atomic design and n a negative atomic design. The
designs p and n are said to be orthogonal (written p ⊥ n) if p[n/x0] ∈‚. Given a set X of
atomic designs of the same polarity, we define its orthogonal X⊥ := { e | ∀d ∈ X, d ⊥ e }.

The orthogonality relation enjoys the usual properties:

I Proposition 14. Let X, Y be sets of atomic designs of the same polarity. One has:

1) X ⊆ X⊥⊥ 2) X ⊆ Y⇒ Y⊥ ⊆ X⊥ 3) X⊥ = X⊥⊥⊥ 4) (X ∪Y)⊥ = X⊥ ∩Y⊥

3.3 Behaviours, Sets of Designs
Given a set X of atomic designs of the same polarity, X⊥ is the set of all those atomic designs
that interact properly with respect to X: they have a common behaviour with respect to the
elements of X. Proposition 14 ensures that such X⊥ are equal to their bi-orthogonal, this
property characterizes them as behaviours:

I Definition 15. A behaviour is a set X of atomic designs of the same polarity such that
X = X⊥⊥. We denote by CP (resp. CN ) the set of all positive (resp. negative) behaviours.

CP , ordered by set inclusion, forms a complete lattice: using Proposition 14, we prove
easily that every collection of positive behaviours ~S has (

⋃ ~S)⊥⊥ as a least upper bound and
(
⋂ ~S)⊥⊥ =

⋂ ~S as a greatest lower bound. Thus the Knaster-Tarski theorem guarantees the
existence of least and greatest fixed points of monotonic operators on CP .

We generalize the relation d ∈ C between atomic designs and behaviours into the relation
d |= Γ between designs with arbitrary free variables and contexts of behaviours:
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I Definition 16. A positive context Γ is a set of pairs x1 : P1, . . . , xk : Pk where x1, . . . , xk
are distinct variables and P1, . . . ,Pk are positive behaviours. A negative context Γ,N is a
positive context Γ together with a negative behaviour N, to which no variable is associated.

I Definition 17. Let Γ = x1 : P1, . . . , xk : Pk be a positive context, Γ,N be a negative
context, p (resp. n) be a positive (resp. negative) standard design. We define:
p |= Γ iff p[n1/x1, . . . , nk/xk] ∈‚ for any n1 ∈ P1

⊥, . . . , nk ∈ Pk
⊥;

n |= Γ,N iff p[n[n1/x1, . . . , nk/xk]/x0] ∈‚ for any p ∈ N⊥, n1 ∈ P1
⊥, . . . , nk ∈ Pk

⊥.

Remark that p |= x0 : P if and only if p ∈ P and n |= N if and only if n ∈ N. More
generally, the following closure principle [12, 20] will be useful in the following sections.

I Proposition 18 (Closure principle).
d |= Σ, z : P iff ∀m ∈ P⊥, Ld[m/z]M |= Σ where Σ is a positive or negative context.
n |= Γ,N iff ∀q ∈ N⊥, Lq[n/x0]M |= Γ where Γ is a positive context.

3.4 Designs as Strategies
We end this background section on ludics by providing some more details on the comparison
between HO game semantics [13] and ludics.

In HO game semantics, one first defines arenas which specify the moves of the game and
which induce plays. In a second step, strategies are defined, as sets of plays satisfying various
conditions (such as totality, determinism, innocence, etc.) depending on what is modeled.
While arenas interpret formulas (or types), strategies will interpret proofs (or programs).

In ludics, the construction proceeds in the other direction, more akin to realizability
models: a notion of abstract proof (design) serves as our notion of strategy while arenas are
replaced by behaviours, that are sets of designs closed under bi-orthogonality. Strategies and
interaction thus come first and only afterwards come the notion of arena: the moves of the
game are defined as a by-product of the way the objects interact.

The comparison can be made more precise when comparing innocent game semantics
and ludics [10, 5]. Indeed, with innocent strategies, a player’s move does not depend on the
full play that precedes it but only on a restriction of the play, its view. A view typically
excludes the part of the play which corresponds to intermediate computations of the opponent,
retaining only opponent’s results and not how the results were obtained. As a consequence,
innocent strategies can be presented as sets of views with some conditions. Ludics fits this
presentation as designs can be seen as sets of views: each branch of a design is a view.

To conclude this comparison, let us stress that on the one hand, game semantics puts
constraints on the way arenas are built but it is then rather flexible on the definition of
strategies (by enforcing or relaxing various constraints on the structure of strategies). On
the other hand, ludics puts constraints on the design of strategies (for instance to preserve
analytical theorems on which internal completeness depends) and is quite flexible on how
arenas are defined. This difference explains why it revealed to be much more difficult to
model LL exponentials in ludics than in HO game semantics. The very same reason explains
why it will be smoother to interpret fixed points in ludics than in HO game semantics [8].
We will come back to this last point when discussing related works in Section 6.

4 Interpretation of µMALLP in Ludics

We now define a semantics for our system in ludics, extending the usual interpretation of
MALL in computational ludics [20]: formulas will be interpreted by behaviours and proofs
by designs. From now on, we restrict to the MALL signature from Definition 6.
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4.1 Interpretation of Formulas
I Definition 19. Let F be a preformula and E an environment mapping each free variable
of F to a behaviour of the same polarity. We define by induction on F a behaviour called
the interpretation of F under E and denoted by JF KE .
JXKE = E(X) J0KE = ∅⊥⊥ J1KE = {(x0 | 1)}⊥⊥ J↓NKE = {x0 | ↓〈r〉 : r ∈ JNKE}⊥⊥

JN1⊗N2KE = {(x0 | ⊗〈r1, r2〉) : ri ∈ JNiKE}⊥⊥

JN1⊕N2KE = {(x0 | ⊕i〈ri〉) : i ∈ {1, 2}, ri ∈ JNiKE}⊥⊥

JµX.P KE = lfp(Φ) where Φ : CP −→ CP , C 7−→ JP KE,X 7→C

JNKE = (JN⊥KE)⊥ for all other cases
The interpretation of a formula F in the empty environment is simply written JF K.

The well-definedness of the interpretation of µX.P relies on the monotonicity of Φ, which
is easily proved by induction on monotonic preformulas. Our interpretation of formulas
enjoys the usual substitution property, which entails that the interpretation of fixed points is
stable under unfolding.

I Proposition 20. JF [G/X]KE = JF KE,X 7→JGKE and JµX.P KE = JP [µX.P/X]KE .

The interpretation of positive MALL formulas is made by biorthogonal closure and that
of negative MALL formulas is made by orthogonal closure, so that the shape of the elements
of the resulting sets is not obvious. Nevertheless, the internal completeness theorem of
ludics [20] allows to characterize them. For example, if p = x0 | a〈~n〉 ∈ JN1⊗N2K then
a = ⊗, ~n = (n1, n2) and each ni ∈ JNiK. In the same way, if n =

∑
a(~xa).pa ∈ JP1OP2K

then ~xO = (x1, x2) and pO |= x1:JP1K, x2:JP2K. The treatment of other MALL connectives
can be found in [3], Proposition 51. Similarly, the interpretation of a ν formula is defined
as the orthogonal of a least fixed point, but that is equivalent to the following more direct
description as a greatest fixed point.

I Proposition 21. JνX.NKE = gfp(Φ) where Φ : CN → CN is such that Φ(C) = JNKE,X 7→C.

4.2 Interpretation of µMALLP Proofs
We interpret proofs compositionally, each rule corresponding to a construction on designs.
Again, this extends the interpretation of MALL rules by Terui and Basaldella [6]. Proofs of
positive sequents are going to be interpreted as positive designs, and similarly for negative
sequents. In order to do so, we need to annotate positive formulas in sequents with distinct
variable names. If Γ = P1, . . . , Pn is a positive sequent, we say that x1 : P1, . . . , xn : Pn is
a decoration of Γ when the xi are distinct positive variables. A decoration for a negative
sequent Γ, N is obtained by adding N to a decoration of the positive part Γ.

We first give the final definition of the interpretation, in order to fix the ideas regarding
its structure and purpose. Then we define the design construction GF,d that is needed to
interpret rule (ν).

I Definition 22. Let π be a proof of a sequent Γ, and Γ′ a decoration of Γ. The interpretation
of π in Γ′ (written JπKΓ′) is defined by the rules of Figure 3. Each of these rules has the form

{di ` Γ′i}i∈I (r)
d ` Γ′

and stands for the following implication: If a proof π is obtained from the proofs (πi)i∈I by
applying rule (r), and JπiKΓ′

i = di, then JπKΓ′ = d.
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Identity rules

(ax)
ηP [x/x0] ` x : P, P⊥

n ` Γ, P⊥ d ` ∆, x : P
(cut)

Ld[n/x]M ` Γ,∆

Fixed point rules

p ` Γ, x : P [µX.P/X]
(µ)

p ` Γ, x : µX.P
n ` x : S,N [S⊥/X] m ` Γ, S⊥

(ν)
LGN,n[m/x0]M ` Γ, νX.N

MALL rules

(>)
Ω− ` Γ,>

p1 ` Γ, x1 : P1 p2 ` Γ, x2 : P2
(N)

N1(x1).p1 + N2(x2).p2 ` Γ, P1NP2

n ` Γ, N
(↓)

x | ↓〈n〉 ` Γ, x : ↓N

p ` Γ
(⊥)

⊥.p ` Γ,⊥
p ` Γ, x1 : P1, x2 : P2

(O)
O(x1, x2).p ` Γ, P1OP2

p ` Γ, x : P
(↑)

↑(x).p ` Γ, ↑P

(1)
(x | 1) ` x : 1

n1 ` ∆, N1 n2 ` Γ, N2
(⊗)

x | ⊗〈n1, n2〉 ` Γ,∆, x : N1 ⊗N2

n ` Γ, Ni
(⊕i)

x | ⊕i〈n〉 ` Γ, x : N1⊕N2

Figure 3 Interpretation of µMALLP proofs.

This interpretation may be understood by thinking of designs as proof terms: formulas
are annotated by variables and proofs by designs in the same way that, in intuitionistic logic,
hypotheses are annotated by variables and proofs by λ-terms.

The interpretation of rules (ax) and (cut) is quite natural. The axiom over P is interpreted
by the copycat design ηP and cut is interpreted by the normal form of the cut between the
interpretations of the two subproofs. The interpretation of MALL rules is the same as in [6].
The interpretation of the (µ) rule is trivial, based on the fact that fixed point unfolding is
transparent in our interpretation. The main difficulty lies in the interpretation of the (ν)
rule. Our goal is to interpret proofs by designs that reflect the computational behaviour
of these proofs, thus we will derive the interpretation of rule (ν) from the cut reduction
rule between µ and ν formulas presented in Figure 2. More precisely, our interpretation of
rule (ν) is a design defined by an equality which expresses that the interpretation of the
two proofs in Figure 2, which are obtained one from the other by cut elimination, are equal.
As the reduction rule involves functoriality, our interpretation of rule (ν) is based on the
construction FQ,d, the functoriality of Q applied to a design d, which is the counterpart in
ludics of the construction FQ(Π), the functoriality of Q applied to a proof Π.

I Definition 23. Let d be a negative l-design and F a monotonic preformula such that
fv(d) ⊆ {x} and fv(F ) ⊆ {X}. The functoriality of F applied to d is the negative l-design
FF,d coinductively defined by FF,d = ηF when fv(F ) = ∅, and otherwise:
FX,d = FX⊥,d = d[x0/x]
FF1⊗F2,d = FF1OF2,d = O(x1, x2).(x0 | ⊗〈FF1,d[x1/x0],FF2,d[x2/x0]〉)
FF1⊕F2,d = FF1NF2,d =

∑
i=1,2 Ni(xi).(x0 | ⊕i〈FFi,d[xi/x0]〉)

F↓F,d = F↑F,d = ↑(x1).(x0 | ↓〈FF,d[x1/x0]〉)
FσY.F,d = FF [σY.F/Y ],d for σ ∈ {µ, ν}

The definition of functoriality in ludics naturally expresses the intended computational
behaviour of that operation: FQ,d is a modified η-expansion which behaves as d on occurrences
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of X in Q. This should be contrasted with the very involved formulation of FQ(Π) in sequent
calculus [2], which notably uses the (ν) rule to deal with fixed points encountered in Q.

I Definition 24. Let d be a negative design and F a monotonic preformula such that
fv(d) ⊆ {x}, fv(F ) ⊆ {X} and F 6= X. The action of F on d is the design GF,d coinductively
defined by the following (productive) equation: GF,d = FF,GF,d

[d[x0/x]/x0].

4.3 Soundness and Invariance by Cut Elimination

Our first soundness result establishes that provability (`) implies realizability (|=).

I Definition 25. If Γ′ = x1 : P1, . . . , xn : Pn is a positive decorated sequent, we interpret
it into the positive context JΓ′K = x1 : JP1K, . . . , xn : JPnK. If Γ′, N is a negative decorated
sequent, its interpretation as a negative context is defined by JΓ′, NK = JΓ′K, JNK.

I Theorem 26. If π is a proof of Γ, and Γ′ is a decoration of Γ, then JπKΓ′ |= JΓ′K.

The theorem is proved by induction on π, and case analysis on its last rule. Soundness
of rule (ax) follows from the fact that ηP |= x0 : JP K, JP K⊥. Soundness for (cut) follows
from the closure principle. The cases of MALL rules easily follow from the definition of
formula interpretations. Soundness for rule (µ) is a direct consequence of Proposition 20.
The difficulty lies in the (ν) rule, the soundness of which relies on the following proposition
(proved in [3], Appendix A.1.1) stating that FF,d is sound.

I Proposition 27. Let d be a negative design, P,N be two behaviours and F be a negative
monotonic preformula such that fv(d) ⊆ {x}, fv(F ) ⊆ {X} ⊆ VN and d |= x : P,N. Then
we have LFF,dM |= x0 : JF⊥KX 7→P⊥

, JF KX 7→N.

I Proposition 28. Let νX.F be a formula and d a design such that d |= x0 : S, JF KX 7→S⊥ .
We have LGF,dM |= x0 : S, JνX.F K.

Proof. By closure principle, one has that LGF,dM |= x0 : S, JνX.F K iff ∀m ∈ S⊥, LGF,d[m/x0]M |=
JνX.F K iff S1 = { LGF,d[m/x0]M : m ∈ S⊥ }⊥⊥ ⊆ JνX.F K. But JνX.F K = gfp(φ) where
φ = C 7→ JF KX 7→C, thus it suffices to establish that S1 is a post-fixed point of φ, ie
S1 ⊆ JF KX 7→S1 . This is equivalent to ∀m ∈ S⊥, LGF,dM[m/x0] |= JF KX 7→S1 and by clos-
ure principle to LGF,dM |= x0 : S, JF KX 7→S1 . Remark that by definition of S1 we have
LGF,dM |= x0 : S,S1. By Proposition 27, this gives us LFF,GF,d

M |= x0 : JF⊥KX 7→S⊥
, JF KX 7→S1 .

By hypothesis, d |= x0 : S, JF KX 7→S⊥ so by the closure principle we have, as expected:
LGF,dM = LFF,GF,d

[d/x0]M |= x0 : S, JF KX 7→S1 J

As a second soundness result, we show that our semantics is denotational, i.e., the
interpretation is invariant by cut elimination. The proof of this theorem relies on the
following lemma (proved in [3], Appendix A.1.2) which expresses that ludics functoriality
FF,d is the semantical counterpart of the proof construction presented in Section 2.

I Lemma 29. Let Π be a proof of ` P,N and Q a negative monotonic preformula such that
fv(Q) ⊆ {X} ⊆ VN . One has JFQ(Π)Kx:Q⊥[P⊥/X],Q[N/X] = LFQ,JΠKx:P,N M.

I Theorem 30. If Π′ is obtained from Π by µMALLP cut elimination rules, then JΠK = JΠ′K.
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5 On Completeness

Clearly, not all designs are interpretations of proofs, since some designs are not even recursive.
More generally, it is highly non-trivial whether (or when) one can recover coinvariants from
a design in order to finitely express it as a proof; indeed, coinvariants are completely hidden
in the process of normalizing the interpretation of the (ν) rule. This is essentially the same
difficulty that Girard encounters with second-order existential quantification in ludics [12],
and which lead him to give a completeness result for Π1 formulas only. In our setting, that
would correspond to handle least fixed points only, which would be rather weak. Fortunately,
we can do better thanks to our direct treatment of fixed points in the semantics.

We now introduce the class of essentially finite designs with respect to which we prove a
completeness theorem in the rest of the paper.

I Definition 31. Essentially finite designs (EFD) are inductively defined by:

p ::= (x | 1) | (x | ⊕i〈n〉) | (x | ⊗〈n1, n2〉) | (x | ↓〈n〉)

n ::= ⊥.p0 | N1(x1).p1 + N2(x2).p2 | O(x1, x2).p | ↑(x1).p1 | ηF | Ω−

with x1 ∈ fv(p1), x2 ∈ fv(p2) and x1, x2 ∈ fv(p).

Essentially finite designs perform a finite computation (this is the MALL part) followed
by a copycat. Even though they are inductively defined, EFDs can be infinite. In pure
MALLP, proofs correspond exactly to EFDs. But, despite the fact that µMALLP extends
MALLP, it is not obvious that completeness holds for EFDs in µMALLP. This is because
the interpretation of µMALLP formulas yields more complex behaviours than with MALLP.
As we shall see, we can still obtain this theorem, but it requires a bit of work.

I Theorem 32. Let d be an essentially finite design, let Γ be a sequent and Γ′ be a decoration
of Γ. We have: d |= Γ′ iff d = JπKΓ′ for some µMALLP proof π of Γ.

The proof of this theorem is by induction on the structure of the EFD, using internal
completeness. The only problematic case is when the EFD is an η-expansion: one needs
to prove that if ηF |= x0 : Q,P⊥ then ηF = JπKx0:Q,P⊥ where π is a proof of ` Q,P⊥.
Observe that if ηF |= x0 : Q,P⊥ then F , P and Q have the same infinitary unfolding, hence
ηF = ηP = ηQ. Moreover, it is easy to prove that ηP |= x0 : Q,P⊥ iff JP K ⊆ JQK. Using
these two observations, the η-expansion case amounts to proving the following theorem:

I Theorem 33 (Completeness for semantic inclusion). Let P , Q be two positive formulas such
that JP K ⊆ JQK. There is a proof π of ` Q,P⊥ satisfying JπKx0:Q,P⊥ = ηP .

The remainder of this paper is dedicated to the proof of this result. In order to study the
provability of semantic inclusions in µMALLP, we shall introduce an intermediate, infinitary
proof system S∞. We prove that it is sound and complete for semantic inclusions (i.e.,
JF K ⊆ JGK iff F ` G is derivable in S∞) and that we can translate any S∞ proof to a
µMALLP derivation whose ludics interpretation is a copycat. We shall establish by the way
that derivability in S∞ and semantic inclusion are decidable.

5.1 The Infinitary Proof System S∞

Our system S∞ deals with two-sided sequents that always feature exactly one formula on
each side. We first introduce S∞ pre-proofs that are only locally sound, and then equip them
with a validity condition that ensures soundness. This construction, as well as the resulting
system, are very close to Santocanale’s circular proofs [19].
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(A)
F ` G

{Fi ` Gi}i∈[n]
(s)

s(F1, . . . , Fn) ` s(G1, . . . , Gn)

F [σX.F/X] ` G
(σl)

σX.F ` G

F ` G[σX.G/X]
(σr)

F ` σX.G

Figure 4 Infinitary proof system S∞.

P (F ` G)
F ` G

(↑)
↑F ` ↑G

P (F ` G)
F ` G

(↑)
↑F ` ↑G

P (↑F ` H)
(↑)

↑F ` H
(⊗)

↑F⊗↑F ` ↑G⊗H
(µl)

F ` ↑G⊗H
(↑)

↑F ` ↑(↑G⊗H)
(νr)

↑F ` H
(⊗)

↑F⊗↑F ` ↑G⊗H
(µr)

↑F⊗↑F ` G
(µl)

F ` G

Figure 5 Example of an S∞ proof.

I Definition 34. S∞ pre-proofs are trees coinductively generated from the rules of Figure 4.
In that figure, s(F1, . . . , Fn) stands for a formula whose toplevel connective is a MALL
connective s of arity n (e.g., ⊗ has arity 2) and σ ∈ {µ, ν}. We say that a pre-proof is fully
justified if it does not contain an application of rule (A).

The pre-proofs may be seen as η-expansions, but they are partial and unsound. Partiality
comes from rule (A), which allows to make arbitrary assumptions. Unsoundness comes
from the fact that, even without (A), pre-proofs are only locally sound. For example,
µX.↓↑X ` ↓νY.↑↓Y admits a fully justified pre-proof.

I Definition 35. Let F , G be two formulas. P (F ` G) is the S∞ pre-proof of F ` G
coinductively defined by applying the first available rule in (σr), (σl), (s) or (A), and
constructing the proofs of the premises Fi ` Gi using the same construction P (Fi ` Gi).

In other words, P (F ` G) decomposes F and G as they agree on MALL connectives,
giving priority to left unfolding of µ and ν. When MALL connectives become different, the
pre-proof stops on an application of rule (A).

I Example 36. Let F = µX.↑X⊗↑X, G = µX.↑X⊗νY.↑(↑X⊗Y ) and H = νY.↑(↑G⊗Y ).
The pre-proof P (F ` G) is given in Figure 5, where we have stopped expanding P (F ` G) on
sequents that have already occurred, explicitly showing the regular structure of the infinite
proof. Note that this proof is fully justified.

We now turn to defining the validity condition that pre-proofs will have to satisfy in
order to become proper proofs. Validity is based on parity conditions, as in Santocanale’s
work [19]. This requires a few preliminary definitions regarding subformulas. We denote
by ≤ the subformula ordering, i.e., F ≤ G if F is a subformula of G, and by < the strict
subformula ordering, i.e., F < G if F ≤ G and F 6= G.

I Definition 37. We define  to be the least reflexive transitive relation on formulas such
that: s(F1, . . . , Fn) Fi and σX.F  F [(σX.F )/X].

Note that, for a given F , there are only finitely many G such that F  G (such formulas
are in fact in bijection with the (open) subformulas of F ). Also note that if F ` G appears
under F ′ ` G′ in a pre-proof, one has F  F ′ and G G′.

I Proposition 38. For any cycle F1  F2  . . . Fn  F1 there is some i ∈ [1;n] such that
Fi ≤ Fj for all j ∈ [1;n].

CSL 2015



562 Least and Greatest Fixed Points in Ludics

I Definition 39 (Validity condition). Let π be a pre-proof and γ an infinite branch of π.
We define γr (resp. γl) to be the set of formulas appearing infinitely often on the right
(resp. left) of sequents of γ. By Proposition 38, the elements of γr (resp. γl) have a minimum
w.r.t. ≤; we note it minr(γ) (resp. minl(γ)). It is easy to see that these minima are fixed
point formulas. We say that the branch γ is valid if either minl(γ) is a least fixed point or
minr(γ) is a greatest fixed point. We say that π is valid if all of its branches are valid.

I Example 40. The pre-proof in the previous example is valid, for the simple reason that on
all branches, the formula F is unfolded infinitely often on the left of sequents. The pre-proof
P (↑F ` H) would also be valid for the same reason, but P (H ` ↑F ) is not valid: the branch
corresponding to taking the right of each tensor has only least fixed points on the right of its
sequents and greatest fixed points on the left. Consider finally the pre-proof P (G ` F ). All
of its branches that eventually always go to the right of tensors are invalid: on such branches,
the minimum of formulas that occur infinitely often is H on the left of sequents and F on
the right. All other branches, i.e., those that go infinitely often to the left of tensors, are
valid because G occurs infinitely often on the left of their sequents.

5.2 Completeness of S∞

We first show that semantic inclusions are provable in S∞: JF K ⊆ JGK entails that P (F ` G)
is a valid, fully justified derivation. We prove that P (F ` G) is fully justified by using
internal completeness and Proposition 20. Proving its validity requires a few technical
lemmas regarding the subformula ordering, that bridge the gap between the syntactic validity
condition and the semantics of formulas.

I Definition 41. Let F , H be two preformulas, and X0 a variable of the same polarity
as H, not occurring in F nor H. We define OX0

H (F ) as the unique preformula such that
OX0
H (F )[H/X0] = F and H 6≤ OX0

H (F ). We shall simply write OH(F ) when the name of the
variable is irrelevant or can be inferred from the context.

I Proposition 42. Let F , H be two formulas such that H < F . For every MALL connective
s and σ ∈ {µ, ν}, one has:

If F = s(F1, . . . , Fn) then OH(s(F1, . . . , Fn)) = s(OH(F1), . . . ,OH(Fn)).
If F = σY.G then OH(σY.G) = σY.OH(G) and unfolding F commutes with abstracting
over H, i.e., OH(G[(σY.G)/Y ]) = OH(G)[OH(σY.G)/Y ].

The proof of Proposition 42 can be found in [3], Appendix A.2.1.

I Proposition 43. If JF K ⊆ JGK then P (F ` G) is a proof.

Proof sketch. We prove the contrapositive. If P (F ` G) is not fully justified, it is easy to
show that JF K 6⊆ JGK. Assume now that P (F ` G) is fully justified but not valid. Then our
derivation has an infinite branch γ = (γk)0≤k = (Fk ` Gk)0≤k such that Fl = minl(γ) =
νXl.Kl and Fr = minr(γ) = µXr.Kr. Let d be the design that acts as an η-expansion along γ,
and @ elsewhere, and let di be its subdesign corresponding to the subbranch of γ rooted in γi.
Let I be the indices such that γi is the conclusion of an unfolding of Fl. We can show that, for
all i ∈ I, di ∈ JFlK. This is proved by showing that A = { di | i ∈ I }⊥⊥ is a post-fixed point
of φ : C 7→ JKlKXl 7→C, which amounts to proving that ∀i ∈ I, di ∈ JKlKXl 7→A or, equivalently,
since di = di+1, that ∀i ∈ I, di+1 ∈ JOFl

(Fi+1)KXl 7→A. Generalizing this statement, we
actually prove by induction that ∀j ∈ N, dj ∈ JOFl

(Fj)KX0 7→A, using Proposition 42. From
there, we can show d ∈ JF K and, using a symmetry argument, d 6∈ JGK, which concludes the
proof. J
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5.3 From S∞ to µMALLP

We now prove that any valid fully-justified S∞ proof can be transformed into a µMALLP
proof. To prove this, we extend µMALLP with the rule (A) of Figure 4 and we call this
system µMALLP?.

I Definition 44. Let π be a proof of a sequent s in S∞ (resp. µMALLP?). We denote the
set of sequents appearing in π as Sπ, the conclusions of (A)-rules of π as Aπ and call them
the assumptions of π, and we let Cπ be Sπ \Aπ. The complexity of π is #π := card(Cπ).

I Definition 45. Let F , G be two formulas and H ⊆ SP (F`G), P (F ` G)H is the proof
obtained from P (F ` G) by replacing all the occurrences of the subtrees rooted in s by an
assumption on s, for every s ∈ H. (Notice that the subtrees rooted in s are all the same,
and are equal to the tree P (s).)

The result will follow from a slightly more general lemma:

I Lemma 46. Let F , G be two formulas and H ⊆ SP (F`G). If P (F ` G)H is valid then
there is a proof π of F ` G in µMALLP? such that Aπ ⊆ H.

Proof sketch (see [3], Appendix A.2.2 for details). Let s = F ` G. The proof is by induc-
tion on #P (s)H. Observe that if #P (s)H = 0, then s ∈ H and the result obviously holds by
using rule (A) on s in µMALLP?. In the inductive case, there are two possibilities:
1. There exist s1, s2 ∈ CP (s)H such that no occurrence of sequent s1 appears above an

occurrence of s2 in P (s)H. In that case we decompose P (s)H into Π′ = P (s)H∪{s2} and
Π′′ = P (s2)H. Both Π′ and Π′′ have strictly smaller complexity than P (s)H. By induction
hypothesis we obtain µMALLP? proofs π′ of s and π′′ of s2, such that Aπ′ ⊆ H ∪ {s2}
and Aπ′′ ⊆ H, which we plug together at the level of s2 to get a µMALLP? proof of s.

2. Otherwise, we can find a valid branch containing all sequents appearing in P (s)H (not as
assumptions). This branch has either a least fixed point as minimum on the left of its
sequents, or a greatest fixed point on the right. Assuming minl(γ) = Fl = µXl.Kl we
decompose the proof at the unfoldings of Fl and design a suitable invariant in order to
gather the pieces into a µMALLP? proof. J

When instanciating H to the empty set in Lemma 46 and remarking that a proof π in
µMALLP? such that Aπ = ∅ is a µMALLP proof, we finally obtain:

I Proposition 47. If P (F ` G) is fully justified and valid then F ` G is derivable in
µMALLP.

We can finally prove completeness for semantic inclusions.

Proof of Theorem 33. The result follows from Proposition 43 combined with a strengthening
of Proposition 47 ensuring that F ` G is provable by an η-expansion. To get this, notice
that when we extend the syntax of designs, for every sequent s, by a negative constants As,
and we interpret rule (A) by (A)

As ` s , the interpretation of the µMALLP? proof of F ` G
constructed in lemma 46 is a partial η-expansion: indeed, we show that it is a copycat design
which mimics P (F ` G)H until reaching a sequent from H where it plays a constant As for
some s in H (See [3], Proposition 52 for a detailed proof). As a corollary, when H = ∅, this
interpretation becomes a usual η-expansion, i.e., without the constants As. J
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5.4 Decidability of Semantic Inclusion
I Proposition 48. If P (F ` G) is fully justified and valid then JF K ⊆ JGK.

Proof. We proceed essentially in the same way as in Lemma 46, proving the following
generalization: Let F , G be two formulas and H ⊆ SP (F`G). If P (F ` G)H is valid then,
under the hypothesis that ∀K ` L ∈ H, JKK ⊆ JLK, one has JF K ⊆ JGK. J

I Proposition 49. Checking whether P (F ` G) is valid is decidable.

Decidability is proved by reducing the validity of all infinite branches to checking a finite
number of combinations of elementary cycles, thanks to the fact that validity does not depend
on the order in which elementary cycles are followed.

Proof. We extend the notations γr, γl to every finite path γ in P (F ` G): γr (resp. γl)
denotes the set of formulas appearing to the right (resp. left) of the sequents of γ. Then
min(γr), min(γl) and the validity condition are the same as for infinite paths. Notice first
that P (F ` G) is not valid iff there exists a sequent s in P (F ` G) and satisfying (P ):
(P) There is an invalid finite path γ1 in P (s) from the root to an occurrence s.
Indeed, if there is such an s in P (F ` G), and if γ0 denotes a path in P (F ` G) from

the root to an occurrence of s, then the infinite path γ0γ
ω
1 is invalid. Conversely, let γ be

an invalid infinite path in P (F ` G), Fl = min(γl) and Gr = min(γr). There is a sequent
s appearing infinitely often in γ such that the left-hand side of s is the formula Fl. As Gr
appears infinitely often in γr, there is a finite sub-path of γ starting with s, ending with s
and containing a sequent s′ whose right-hand side is Gr. This finite path is obviously invalid,
hence s satisfies (P ).

We now prove that checking whether a sequent s satisfies (P ) is decidable. Let δ1, . . . , δn
be the paths from the root of P (s) to an occurrence of s which are of the form δi = sσis

and s 6∈ σi. We observe that every path γ from the root of P (s) to an occurrence of s is
a concatenation of some δi where i ∈ I ⊆ [n], hence checking (P ) amounts to find some
I ⊆ [n] such that mini∈I(minl(δi)) is a ν formula and mini∈I(minr(δi)) is a µ formula. This
is obviously decidable.

Finally, since the number of sequents appearing in P (F ` G) is finite and (P ) is decidable,
we conclude that validity is a decidable property for P (F ` G). J

I Theorem 50. Let F , G be two formulas. Checking whether JF K ⊆ JGK is decidable.

6 Conclusion

Contributions We have provided µMALLP with a denotational semantics in computational
ludics. This construction is very natural, and did not require any change in the semantical
framework to accommodate fixed points. Our interpretation gives an explicit formulation of
the computational behaviour of µMALLP proofs as designs, which may provide a helpful
alternative viewpoint to understand cut elimination in µMALLP. The fact that our model
in ludics is relatively simple to work with has allowed us to venture into completeness
investigations, a topic that is known to be tricky in presence of (co)induction. We have
proved completeness for essentially finite designs using completeness of semantic inclusions
for µMALLP . Technically, this last result uses, as an intermediate formalism, the infinitary
system S∞, which is very close to circular proofs with parity conditions. In order to prove
completeness of µMALLP with respect to semantic inclusion, we proved completeness of
µMALLP with respect to S∞.
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Related works. This last result is very much related to the work of Santocanale and
Fortier [19, 11] who studied a circular proof system for a purely additive linear logic,
equipped it with a cut elimination procedure, and gave a semantics of proofs in µ-bicomplete
categories. Actually, the proof of Proposition 47 is inspired by Santocanale’s argument [18]
in his proof that circular proofs correspond to morphisms in µ-bicomplete categories. In fact,
we could easily exploit his argument more generally, to translate to µMALLP a larger class
of regular designs than just η-expansions.

Another obviously related work is Clairambault’s game semantics for µLJ [8, 9], that
is intuitionistic logic extended with least and greatest fixed points. In this semantics, he
interprets (finite) proof objects as (infinite) winning strategies. More precisely, Clairambault
first builds arenas with loops, simplifying McCusker’s arenas for recursive types [16]. He then
needs to equip the arenas with winning conditions for (finite and) infinite plays in such a way
as to ensure that composition preserves totality. In ludics, the construction is simpler due to
the fact that arenas, defined as behaviours, are rather secondary objects being generated from
designs. Our construction is made particularly smooth by the fact that Terui’s designs are
general enough to interpret µMALL proofs and that the usual orthogonality (i.e., interaction)
of ludics is sufficient to forbid infinite chatterings that were causing the loss of totality in
Clairambault’s framework.

Facing the same difficulties as in our setting for getting completeness results for µLJ,
Clairambault opts for a simpler approach in [9], proving a completeness result for µLJω,
an infinitary cut-free variant of µLJ. We can formulate and prove the same result in our
framework. More generally, note that since Clairambault’s game semantics for µLJ can be
adapted to the linear case, it would be natural to compare precisely the interpretations of
µMALL proofs in the two models.

Finally, our work is also related, though less closely, with the work of Brotherston and
Simpson [7] who have recently explored the relationship between infinite, regular and finite
proof systems for classical arithmetic, leaving open the question of the relative expressiveness
of the regular and finite formalisms.

Future work. The most natural development of our work would be to extend Santocanale’s
work to the multiplicative case in order to obtain a circular presentation of full µMALLP. By
doing so, we can hope to sharpen our completeness result on EFD by extended it to regular
designs for which we conjecture a similar completeness theorem can be achieved. Another
very interesting research direction would be to investigate under which conditions we can
obtain a full abstraction result for our semantics.

Acknowledgments. We thank anonymous reviewers as well as Pierre Clairambault for their
comments on this paper. The second author is funded by a grant from DIM RDM-IdF,
Région Île–de-France. This work has been funded by ANR project ANR-14-CE25-0007
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Abstract
Various typing system have been recently introduced giving a parametric version of the exponen-
tial modality of linear logic, e.g. [6, 2]. The parameters are taken from a semi-ring, and allow
to express coeffects – i.e. specific requirements of a program with respect to the environment
(availability of a resource, some prerequisite of the input, etc.).

We show that all these systems can be interpreted in the relational category (Rel) of sets and
relations. This is possible because of the notion of multiplicity semi-ring, introduced in [3] and
allowing a great variety of exponential comonads in Rel. The interpretation of a particular typing
system corresponds then to give a suitable notion of stratification of the exponential comonad
associated with the semi-ring parametrising the exponential modality.
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1 Introduction

Various systems have been recently proposed based on a notion of parametrised exponential
comonad [2, 6] in linear logic. The idea is to parametrise the of-course modality ! with
elements taken from a semi-ring S. The multiplicative monoid of S describes how the
parameters interact under the comonad structure of ! (i.e. dereliction and digging) while the
additive monoid of S gives the interaction under the monoidal structure of ! (i.e. weakening
and contraction). The axioms of the semi-ring allow then to define a parametrised version of
the usual rules of cut-elimination, preserving the confluence property (see Figure 2).

This approach is related with Girard, Scedrov and Scott’s bounded linear logic (BLL) [8],
and thus we refer to it as BSLL. It is in some sense both a generalisation and a restriction of
BLL. It is a generalisation because it allows one to choose any semi-ring S, as a parameter
grammar, while BLL is given with respect to a fixed notion of parameters. On the other hand,
BSLL is a significant restriction because its parameters are just elements of the semi-ring S
while BLL deals with first-order terms extending polynomials and allowing dependences.

The interest of BSLL is to offer a logical ground to the design of type systems allowing to
express various co-effects, that is requirements of a program with respect to the environment.
For example, in [6] a semi-ring based on contractive affine transformations has been used to
design a type system with annotations on the scheduling of processes; in [2], the semi-ring of
non-negative real numbers is used to express the expected value of the number of times a
probabilistic program calls its input during the evaluation. We briefly recall these examples
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in Section 2.1. The interesting point is that although these type systems model quite different
co-effects, their soundness is rooted in the same logical framework, that is BSLL.1

In this paper, we present various denotational models for BSLL. In the literature, there
is a categorical axiomatisation of what is a model of BSLL known by the name of bounded
exponential situation (recalled here in Definition 5). This notion has been presented at first
in [2], but it originates from Melliès’ works on parametrised monads [10].2 However there is
no known concrete category satisfying the axioms of a bounded exponential situation: the
paper [2] gives only a realisability model for few specific examples of semi-ring S.

We give a general recipe for getting a bounded exponential situation out of a model of
linear logic (Section 3 and Theorem 7). Intuitively, the main point of our construction is
that BSLL corresponds to a stratification of the exponential comonad along the semi-ring
S: any model of linear logic admitting such a stratification (and one model can admit more
than one) defines a model also of BSLL. From our point of view, this result, although simple,
can be seen as the first step in relating the semantical notion of “approximant” (or “stratus”)
of the linear logic exponential, with a notion of co-effect annotation in a type system.

In Section 4, we apply our recipe to the category Rel of sets and relations, showing various
examples of bounded exponential situation. The category Rel provides one of the simplest
models of linear logic, where the exponential comonad is given by the finite multiset functor.
In fact, we consider a generalisation of this comonad given by the notion of multiplicity
semi-ring in Carraro et al.’s [3]. A multiplicity semi-ring R is a semi-ring satisfying some
properties (Definition 8) which generalise the notion of multiplicity given by the natural
number semi-ring N in the finite multiset functor. This generalisation has been introduced in
[3] for proving the existence of non-sensible models of the untyped λ-calculus in the category
Rel. As a by-product, the authors show how many and different can be the exponential
comonads living in the category Rel. We want to take advantage of this variety for giving
relational models of BSLL, for any semi-ring S.

We prove that one can stratify the exponential comonad associated with any multiplicity
semi-ring R (so getting a model of BSLL) just by interpreting the parameter semi-ring S into
the multiplicity semi-ring R (Theorem 11). Section 4.3 discusses some concrete examples of
this construction, giving instances of S and R.

Finally, Section 5 gives a taste of the fact that these constructions can be applied to
different categories than Rel. For example, we briefly discuss the case of models based on
coherence spaces, giving stratifications of linear categories that are not compact closed.

2 Preliminaries

I Definition 1. A semiring is given by (S, ·, 1,+, 0) where S is a set, the sum + is an
associative commutative binary operation with a neutral element 0 ∈ S and the product ·
is an associative binary operation distributing over + (so 0 is absorbing for ·) and with a
neutral element 1 ∈ S.

An ordered semiring (S, ·, 1,+, 0,≤) is a semiring (S, ·, 1,+, 0) with a partial order ≤
such that sum and product are increasing monotone.

Notice that because of the monotonicity of the multiplication, 0 ≤ 1 (resp. 1 ≤ 0) implies

1 Let us mention also [12, 13], giving several other examples of applications. These systems are not always
described in the syntactical definition of BSLL, but they can be modeled in our concrete semantics.

2 See also Melliès’ presentation “Sharing and Duplication in Tensorial Logic” at the workshop Developments
in Implicit Computational complExity 2013.
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Ax
A ` A

Γ ` A ∆, A ` B
CutΓ,∆ ` B

Γ, A,B ` C
⊗LΓ, A⊗B ` C

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B

Γ ` A ∆, B ` C
( LΓ,∆, A( B ` C

Γ, A ` B
( RΓ ` A( B

Γ ` B Weak
Γ, A0 ` B

Γ, A ` B
Der

Γ, A1 ` B
Γ, AI , AJ ` B

Contr
Γ, AI+J ` B

A1
I1 , · · · , An

In ` B
J−Prom

A1
I1·J , · · ·An

In·J ` BJ

Γ, AI ` B J ≥ I
SwL

Γ, AJ ` B

Figure 1 The sequent calculus of BSLL. In a sequent Γ ` A, Γ is supposed to be a multiset of
formulas (no implicit contraction rule is admitted).

that 0 is the bottom (resp. top) element of S. However we will often consider examples
of ordered semi-rings where the two neutral elements are incomparable. In [2] the authors
impose 0 to be the bottom element, but this condition is not necessary.

I Definition 2. Given a set X and a semi-ring S, we denote by Sf 〈X〉 the set of functions
µ : X 7→ S with finite support (where supp(µ) = {g ∈ X | µ(g) 6= 0S}). We denote by [ ] the
constant function with value 0S and, for any g ∈ X, by [g] the function with value 1S on g
and 0S everywhere else.

I Remark. Any order on S implies an order on Sf 〈X〉: µ ≤ ν iff ∀g ∈ supp(µ), µ(g) ≤S ν(g).

I Proposition 1. If X is a monoid then the set Sf 〈X〉 is endowed with a structure of semi-ring,
defined by:

0Sf 〈X〉 := [ ], (µ+Sf 〈M〉 ν)(g) := µ(g) +S ν(g),

1Sf 〈X〉 := [1X], (µ ·Sf 〈X〉 ν)(g) :=
∑

g′,g′′∈X s.t.
g′·Xg′′=g

µ(g′) ·S ν(g′′),

Notice that the sum appearing in the definition of µ ·Sf 〈X〉 ν is well-defined because the
supports of µ and ν are finite.

I Definition 3. Given an ordered semiring S, we call BSLL the logic given by:
the formulas are defined by the grammar, with J ∈ S:
A,B,C := α | A⊗B | A( B | AJ ,

the sequent calculus is given in Figure 1,
the cut-elimination procedure is defined by the usual rules of multiplicative linear logic
plus the rules of Figure 2.

One can add the additive connectives without any effort, we prefer however to omit their
account because they do not play any crucial role with respect to our results. In [2], the
authors use a term calculus instead of a logical sequent system: the two presentations can be
made in relation via a Curry-Howard correspondence.

2.1 Examples
Trivial semi-ring: the multiplicative exponential fragment of intuitionistic linear logic is
recovered from BSLL by taking S as the one element semi-ring.
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Π1
∆ ` B Prom

∆0 ` B0

Π2
Γ ` C Weak

Γ, B0 ` C
Cut

∆0,Γ ` C

−→
Π2

Γ ` C Weak· · · Weak
∆0,Γ ` C

Π1
∆ ` B Prom
∆ ` B1

Π2
Γ, B ` C

Der
Γ, B1 ` C

Cut∆,Γ ` C

−→
Π1

∆ ` B
Π2

Γ, B ` C
Cut∆,Γ ` C

Π1
∆ ` B Prom

∆K+J ` BK+J

Π2

Γ, BK , BJ ` C
Contr

Γ, BK+J ` C
Cut

∆K+J ,Γ ` C

−→

Π1
∆ ` B Prom

∆K ` BK

Π1
∆ ` B Prom

∆J ` BJ

Π2

Γ, BK , BJ ` C
Cut

Γ, BK ,∆J ` C
Cut

∆K ,∆J ,Γ ` C
Contr· · · Contr

∆K+J ,Γ ` C

Π1
∆ ` B Prom

∆K·J ` BK·J

Π2

Σ, BK ` C
Prom

ΣJ , BK·J ` CJ

Cut
∆K·J ,ΣJ ` CJ

−→

Π1
∆ ` B Prom

∆K ` BK

Π2

Σ, BK ` C
Cut

∆K ,Σ ` C
Prom

∆K·J ,ΣJ ` CJ

Π1
∆ ` B Prom

∆J ` BJ

Π2

Γ, BK ` C J ≥ K
SwL

Γ, BJ ` C
Cut

∆J ,Γ ` C

−→

Π1
∆ ` B Prom

∆K ` BK

Π2

Γ, BK ` C
Cut

∆K ,Γ ` C
J ≥ K

In·J ≥ In·K SwL· · ·
J ≥ K

I1·J ≥ I1·K SwL
∆J ,Γ ` C

Figure 2 Cut-elimination rules (for the exponentials only). Given a sequent ∆ = A1
I1 , . . . , An

In

and a parameter J , we denote by ∆J , the sequent A1
J·I1 , . . . , An

J·In . Notice in particular that
∆0 = A1

0, . . . , An
0, and ∆1 = ∆.
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Boolean semi-ring: the Boolean semi-ring B = ({tt, ff},∧, tt,∨, ff) allows finer types than
the trivial one, distinguishing between data that can be weakened (of type Aff ) from data
that can be duplicated (Att). The order over B plays a role, also: the discrete order will
make the two types disjoint, while tt ≥ ff will make Aff a subtype of Att, so that the (_)tt

modality behaves as the usual of-course modality ! of linear logic.

Natural numbers: the natural number semi-ring (N,×, 1,+, 0) yields modalities expressing
the number of times a resource is to be used. The order relation then allows some flexibility:
for example, the natural order 0 < 1 < 2 < . . . makes An to be the type of data that can be
used up-to n times. Notice that in this case there is no modality allowing a resource to be
used an indefinite number of times, so the system is not an extension of linear logic. In order
to recover the usual of-course modality ! one should take the order completion N̄, adding a
top-element ω.

Polynomial semi-ring: by taking the semi-ring (N[Xi]i∈N,×, 1,+, 0) of polynomials with
natural numbers as coefficients (the choose order here is irrelevant for the discussion), one
can express a basic form of resource dependency. One can write formulas like Ap(~x) ( Bq(~x)

where p, q are polynomials in the unknowns ~x. Roughly speaking, this is the type of a
function giving a result reusable q(~n) number of times as soon as its input can be used p(~n)
number of times, for any sequence of natural numbers ~n. This system has been discussed
in [8] as an introduction to bounded linear logic (BLL). What is lacking with respect to
the whole BLL is the possibility to bound first-order variables, so writing types of the form
Ay≤p(x), where y is an unknown of a polynomial occurring inside A.

Affine contractive transformations: the one-dimensional contractive affine transformations
x 7→ sx + p can be represented by real-valued matrices xs,p =

( s p
0 1
)
with 0 ≤ s ≤ 1 and

−1 ≤ s+ p ≤ 1. The value s is a scaling factor relative to the unit interval, and p is a delay
from the time origin. The set of such transformations forms a monoid Affc

1 with composition
given by matrix product.3 By Proposition 1, Nf 〈Affc

1〉 is a semi-ring so it defines the logic
BNf〈Affc1〉LL. This system has been introduced by Ghica and Smith [6] in order to express at
the level of types a scheduling on the execution of certain resources. For example, a formula
A

[(
.5 0
0 1
)

,
(

.5 .25
0 1

)]
represents a resource of type A that can be called twice, both calls will

last 1
2 the duration relative to which we are measuring, but one call starts at the beginning

of the available time interval, while the other call starts when 1
4 of the time has elapsed.

Of course, such annotations have a meaning when the language has primitives describing
processes to be scheduled. See [6] for more details.

Positive real numbers: in presence of random primitives, one can associate any resource
with a discrete random variable quantifying on the number of times this resource is used
during the evaluation. In [2], BSLL has been parametrised with the ordered semi-ring
R+ = (R+,×, 1,+, 0,≤) of the non-negative real numbers endowed with the natural order,
the parameters expressing the expected values of these random variables.

This system can be extended (syntactically) with true dependent types and be able to
catch finer properties, like differential privacy [5].

3 Notice, however, that the semring product I·J denotes the reverse matrice product J ·I, this is due to a
change in notation between us and [6].
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3 Stratifying Linear Logic Exponentials

We recall the notion of linear category, which has been introduced in [1] as a categorical
axiomatization of a model of intuitionistic linear logic. This definition has been recently
revisited in [2] with the notion of bounded exponential situation, which roughly corresponds
to a variant of linear category where the exponentials are parametrised by the elements of a
partially ordered semi-ring S and which gives a categorical model of BSLL. Our contribution
is the definition of stratification (Definition 6), giving a general recipe for extracting a
bounded exponential situation from a linear category (Theorem 7). Section 4 will apply this
recipe to the concrete case of the relational category.

I Definition 4 ([1]). A linear category consists of:
a symmetric monoidal closed category (L,⊗, 1,(),
a comonad (!, d : !A→ A, p : !A→ !!A) endowed with three natural transformations and
a morphism: wA : !A → 1, cA : !A → !A ⊗ !A, m1 : 1 → !1, mA,B : !A ⊗ !B → !(A ⊗ B),
satisfying a bunch of equations (see, for example, [1]).

A linear category L gives a model of BSLL with S the trivial semi-ring (i.e. the usual
intuitionistic MELL). In this case we have just one exponential modality, which is interpreted
by the functor ! of L and its associated structure. When S is non-trivial, one has to
parametrise the exponential modality ! by the elements of S and to add some equations
making to interact these various modalities following the laws of the semi-ring S. Such a
structure has been suggested by Melliès and formally introduced in [2]:

I Definition 5 ([2]). A bounded exponential situation consists of:
a symmetric monoidal closed category (L,⊗, 1,(), used to interpret the multiplicative
fragment of BSLL;
a categorical axiomatization of the notion of partially ordered semi-ring, that is a
bimonoidal category (S,+, 0, ·, 1). The objects I, J,H, . . . of S correspond to the elements
of the semi-ring and the hom-sets define the order of the semiring: I ≤ J iff S(I, J) is
non-empty4.
an exponential action (_)_ of S on L, giving a parametric version of the exponential
comonad and used to interpret the formulas AI . Formally, it is a bifunctor (_)_ : S×L →
L together with six natural transformations: p′I,J,A : AI·J → (AJ)I , d′A : A1 → A,
w′A : A0 → 1, c′I,J,A : AI+J → AI ⊗ AJ , m′I,1 : 1 → 1I , m′I,A,B : AI ⊗ BI → (A⊗B)I ,
which should satisfy various diagrams, see [2] for details.

I Definition 6. A stratification of a linear category L is a triplet (S, (_)_,

∂

), where:
S is an ordered semi-ring (seen as a bimonoidal category);
(_)_ is a bifunctor S × L → L;

∂

is a natural transformation from ! to (_)_, i.e.

∂

I,A : !A 7→ AI such that:
each of the morphism

∂

I,A : !A 7→ AI is an epimorphism, i.e., for any φ, ψ : AI → B,
if

∂

I,A;φ =

∂

I,A;ψ then φ = ψ,
the diagrams of Figure 3 can be completed (in a unique way due to the epi property)
by families of morphisms d′A, p

′
A,I,J , w′A, c′A,I,J and m′A,B,I,J , for any A,B, I, J .

4 For our purposes, we can suppose that S has hom-sets of at most one element.
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!A

A1

A

∂

d

∂

A,1

dA

d′A

!A

A0

1∂

w

∂

A,0

wA

w′A

1

1I

!1

∂

m1

m′1,I

m1

∂

I

!A

AI·J

!!A

!(AI)

AI J

∂

p

∂

A,I·J,

p′A,I,J

pA

!(

∂

A,I)

∂

AI ,J

!A

AI+J

!A⊗ !A

AI ⊗BJ

∂

c

∂

A,I+J

cA

∂

A,I ⊗

∂

A,J

c′A,I,J

!A⊗ !B

AI ⊗BI

!(A⊗B)

(A⊗B)I

∂

m

∂

A,I ⊗

∂

B,J

m′A,B,I,J

mA,B

∂

A⊗B,I

Figure 3 Coherence diagrams between the natural transformation

∂

, the exponential structure
(!, d, p, w, c, m) of a linear category and the exponential structure ((_)_, d′, p′, w′, c′, m′) of a bounded
exponential situation.

Notice that all the diagrams of Figure 3 simply state that each natural transformation e
required for the linearity of L is transported along

∂

to its parametrized version e′. Notice
also that the diagram

∂

m1 of Figure 3 is always obtained for m′I := m1;

∂

1,I .
Finally, the naturality of the families d′A, p

′
A,I,J , w

′
A, c

′
A,I,J and m′A,B,I,J can be automat-

ically retrieved from the diagrams of Figure 3 and the universal property of epimorphisms.

I Theorem 7. A stratification (S, (_)_
,

∂
) of a linear category yields a bounded exponential

situation hence a model of BSLL.

Proof. The transformations defining a bounded exponential situation are given by the families
d′A, p

′
A,I,J , w

′
A, c

′
A,I,J and m′A,B,I,J . In fact, the naturality and coherence diagrams associated

with these transformations are obtained by invoking the corresponding diagram from the
linear category, by transporting the whole diagram through

∂

(via pre/post composing and
the diagrams of Figure 3), and finally by using the universal property of epimorphisms.

For example, Figure 4 gives the commutation that the morphism p′A,I,J should enjoy in
order to give a positive action. The triangle I is naturality of

∂

over the associativity of
the semiring multiplication, the square IV is the usual one of a linear category, V uses the
promotion of the square on the first line of Figure 3, VI and VII are the naturality of, resp.,

∂

and p, and finally II, III and VIII are again squares of Figure 3. Notice that this is a
priori not sufficient to obtain the commutation of the external cell due to the first

∂

that
point on the wrong direction. However, we actually obtain that

∂

;Aas· ; p′; p′H =

∂

; p′; p′

which results in the commutation of the external cell by the universal property of the epi

∂

.
J

4 Relational Based Models

4.1 The linear category RelR

The category Rel has sets as objects and relations as morphisms, i.e. Rel(X,Y ) := P(X × Y ).
Composition and identities are given by:

f ; g := {(x, y) | ∃z, (x, z) ∈ f, (z, y) ∈ g}, idX := {(x, x) | x ∈ X}.
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AI·(J·H)

(AI)J·H

A(I·J)·H (AI·J)H

AI J H

!A

!!A

!!A

!!!A

.

.

. .

I II

III IV V VI

VII

VIII

p′A,I,J·H

Aas· p′A,I·J,H

p′A,I,J
H

p′
AI ,J,H

pA

pA

!pA

p!A

∂

∂

!

∂

∂

∂

!

∂

!!

∂

!

∂

∂

!p′A,I,J

pAI

Figure 4 An example of the proof of the commutation of the diagrams needed to have a bounded
exponential situation.

Rel is symmetric monoidal closed (in fact, compact closed) with tensor product given by:

X ⊗ Y := X × Y, f ⊗ g := {((x, x′), (y, y′)) | (x, y) ∈ f, (x′, y′) ∈ g}.

Associativity (α⊗X,Y,Z := {((x, (y, z)), ((x, y), z)) | x ∈ X, y ∈ Y, z ∈ Z} ∈ Rel(X ⊗ (Y ⊗
Z), (X ⊗ Y )⊗ Z)) and commutativity (β⊗X,Y := {((x, y), (y, x)) | x ∈ X, y ∈ Y } ∈ Rel(X ⊗
Y, Y ⊗X)) are natural bijections; the neutral object is the singleton 1 := {∗}. The internal
hom functor is defined by: X ( Y := X ⊗ Y and f ( g := f ⊗ g, the evaluation morphism
is eval := {(((x, y), x), y) | x ∈ X, y ∈ Y } ∈ Rel((X ( Y )⊗X,Y ).

It is well-known that Rel models the linear logic exponential with the multi-set comonad.
It is less known, however, that this is just an example of how one can express the exponential
modality. Carraro et al. [3] have shown many other possibilities by introducing the notion of
resource semi-ring (here Definition 8 and Theorem 9). We briefly recall this result, adding
some examples. 5

I Definition 8 ([3]). A multiplicity semi-ring is a semi-ring R = (|R|, ·, 1,+, 0) such that
(p, q, r will vary over R):
(MS1) R is positive: p+q = 0 implies p = q = 0;
(MS2) R is discrete: p+q = 1 implies p = 0 or q = 0;
(MS3) R is additively splitting: p1 + p2 = q1 + q2 implies ∃r1,1, r1,2, r2,1, r2,2, such that

pi = ri,1 + ri,2 , qi = r1,i + r2,i ;

(MS4’) R is multiplicatively splitting: q1+q2 = p · r implies there is l ∈ N such that for all
j ≤ l, we can find rj , p1,j , p2,j such that

r = r1 + · · ·+ rl,

p = p1,j + p2,j for all j ≤ l,
qi = pi,1 · r1 + · · ·+ pi,l · rk.

5 Notice once again that we have to reverse the semiring multiplication of [3] due to a change in notations.
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The notion of multiplicity semi-ring given by Definition 8 is a slight generalization of the one
in [3], because the multiplicative splitting has been slightly relaxed. It is straightforward to
check that all proofs in [3] still hold.

The semi-ring of natural numbers N is the prototypical example of multiplicity semi-ring,
while the Boolean semi-ring (as well as any cyclic semi-ring) is a non-example because the
discreteness condition fails. Other non-trivial examples can be obtained via the following
propositions.

I Proposition 2. For any multiplicity semi-ring R, the extension with an idempotent (for
+ and ·) element ω that is absorbing for the addition and the multiplication (except with 0)
results in a semiring R̄ = R∪ {ω} that is a multiplicity semi-ring.

For example, the semi-ring N̄ = N ∪ {ω} is a multiplicity semi-ring. The idea is that it
allows an infinite number of resources (and by infinite we do not mean unbounded, but really
infinite, obtained by taking a greatest fixpoint for example).

I Proposition 3. Given a monoid M, the semi-rings Nf 〈M〉 and N̄f 〈M〉 are multiplicity
semi-rings.

For example, the semi-ring Nf 〈Affc
1〉 induced by the monoid Affc

1 of one-dimensional affine
contractive transformations [6] is an example of multiplicity semi-ring, different from N.

I Theorem 9 (RelR, [3]). Any multiplicity semi-ring R defines an exponential comonad
over Rel (for r ∈ Rel(A,B)):

!RA := Rf 〈A〉,

!Rr := {(u, v) ∈ Rel(!RA, !RB) | ∃σ ∈ Rf 〈r〉, u(a) =
∑
b∈B

σ(a, b),

v(b) =
∑
a∈A

σ(a, b)}

Dereliction dA := {(δa, a) | a ∈ A} : !RA → A, where δa(a) = 1 and δa(a′) = 0 for every
a 6= a′, digging pA := {(m,M) | ∀a ∈ A,m(a) = Σn∈!RAn(a)·M(n)} : !RA → !R!RA,
contraction cA := {(u, (v1, v2)) | ∀a ∈ A, u(a) = v1(a) + v2(a)} : !RA → !RA ⊗ !RA,
weakening wA = {(0, ∗)} : !RA → 1, where 0 denotes the constant zero function in Rf 〈A〉,
and the morphisms m1 = {(∗, u) | u ∈ !R1} : 1 → !R1 and mA,B := {((u1, u2), v) | u1(a) =
Σbv(a, b), u2(b) = Σav(a, b)} : (!RA ⊗ !RB) → !R(A ⊗ B) are natural and respect usual
diagrams.

We denote by RelR the linear category induced by this exponential comonad.

A construction due to Grellois and Melliès [9] can be used to extend these results in
any semi-ring R of the form R′f 〈M〉 (where R′ is a multiplicity semi-ring and M a monoid).
This uses the fact that R′f 〈M〉 is a composition of the exponential comonad !R and a writer
comonad (M, ·,⊗) that distributes over the former.

4.2 Stratifications over RelR

We show how to associate with an ordered semi-ring S a stratification of the linear category
RelR, for any multiplicity semi-ring R. The key-point is that such stratifications can be
presented as a kind of interpretation of the ordered semi-ring S into the hom-set RelR(!R1, 1),
which is isomorphic to the power-set P(R). Definition 10 gives the conditions that such
interpretation should enjoy in order to induce a stratification over RelR (Theorem 11).
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Given a semi-ring R, one can define the following operations over P(R) (α, β, γ vary over
P(R)):

α⊕ β := {p+ q | p ∈ α, q ∈ β},

α� β :=
{ h∑

i=1
pi · qi | h ≥ 0,

h∑
i=1

qi ∈ β, ∀i ≤ h, pi ∈ α
}
.

The operation ⊕ (resp. �) will be used to stratify contraction (resp. digging). Notice that the
two operations are associative, ⊕ is commutative but not �, {0R} (resp. {1R}) is the neutral
element of ⊕ (resp. �). Moreover, � left-distributes over ⊕ (i.e. γ�(α⊕β) = (γ�α)⊕(γ�β)),
but it does not right-distribute. For example, take R to be the standard semi-ring over
natural numbers, then:

({1} ⊕ {1})� {1, 2} = {2, 4}, ({1} � {1, 2})⊕ ({1} � {1, 2}) = {2, 3, 4}.

I Definition 10. An interpretation of an ordered semi-ring S into a multiplicity semi-ring
R is a function J−K : S 7→ P(R) such that (for all I, J ∈ S):

I ≤S J implies JIK ⊆ JJK, JIK⊕ JJK ⊆ JI +S JK, JIK� JJK ⊆ JI ·S JK,

{0R} ⊆ J0SK, {1R} ⊆ J1SK.

Indeed, Definition 10 simply expresses the bimonoidal functoriality of J−K, where S and
P(R) are both considered as bimonoidal categories6.

I Theorem 11. Any interpretation J−K of an ordered semi-ring S into a multiplicity semi-
ring R induces a stratification of the linear category RelR, defined by:

AI :=
{
u ∈ !RA |

∑
x∈A

u(x) ∈ JIK
}
, f I≥J := {(u, v) ∈ !Rf | u ∈ AI , v ∈ BJ},

∂

I,A := {(u, u) | u ∈ AI}.

In particular, J−K extends to a sound interpretation of BSLL into RelR.

Proof. Notice that

∂

is an epi (in fact it is a «surjective» relation) and is natural. Moreover,
the morphisms d′, p′, etc... of Definition 6 are obtained by restraining the corresponding
Rel morphisms to the domain/codomain, e.g.:

c′A,I,J := cA ∩ (AI+J × (AI ⊗BJ)).

One should also prove that these transformations enjoy the diagrams of Figure 3. For
example, we should prove that: cA; (

∂

I,A ⊗

∂

J,A) =

∂

I+J,A; c′I,J,A (Diagram

∂

c of Figure 3).
Indeed,

cA; (

∂

I,A ⊗

∂

J,A) = {(u+ v, (u, v)) |
∑

x

u(x) ∈ JIK,
∑

x

v(x) ∈ JJK}

∂

I+J,A; c′I,J,A = {(u+ v, (u, v)) |
∑

x

(u(x) + v(x)) ∈ JI + JK,∑
x

u(x) ∈ JIK,
∑

x

v(x) ∈ JJK}

The two sets are the same because the conditions on u and v imply that on u + v, since
JIK⊕ JJK ⊆ JI + JK. J

6 Actually, P(R) is a bit less than bimonoidal because just left-distributive.
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4.3 Examples
Let us apply Theorem 11 to the ordered semi-rings discussed in Section 2.1.

There is only one possible interpretation of the trivial semi-ring into the multiplicity
semi-ring N, associating the unique element ∗ with the whole set N. In fact, Definition 10
requires that J∗K contains 0, 1 and that it is closed under addition. This interpretation gives
the usual multi-set based model of linear logic. By enlarging the multiplicity semi-ring, for
example considering N, one can set J∗K = N and getting the model of linear logic giving rise
to the non-sensible models of the untyped λ-calculus studied in [3].

The interpretation of a Boolean-based ordered semi-ring into N depends on the order
between tt and ff . In the case ff ≤ tt, we can set either JttK = N and JffK = {0}, or
JttK = N = JffK.7 The latter collapses the two modalities to the usual multiset comonad,
while the former interprets the formula Aff by the singleton of the empty multiset, representing
the type of unused resources. In the case ff and tt are incomparable in S, then we can set
JttK = N− {0} and JffK = {0}, strictly distinguishing between used resources of type Att and
unused resources of type Aff .

In the case the syntactic semi-ring S is already a multiplicity semi-ring (like N, N[Xi]i∈N

and Nf 〈Affc
1〉), then we have a natural interpretation of S into itself, associating a scalar

with the downward closure of its singleton. In fact, we have:

I Proposition 4. For any ordered multiplicity semi-ring (R,≤R), the following is an inter-
pretation of R into R:

JIK = {J | J ≤R I}. (1)

Proof. The only condition of Definition 10 which is not so immediate to check is the one
dealing with �. Any element of JIK� JJK is of the form

∑
i Ii·Ji such that

∑
i Ji ≤R J and

for all i, Ii ≤R I. Thus we have:∑
i

Ii·Ji ≤R
∑

i

I·Ji = I·(
∑

i

Ji) ≤R I·J

so that
∑

i Ii·Ji ∈ JI·JK. J

For example, if R is N, the interpretation of An induced by Equation (1) is the set
of the multisets with cardinally at most n, if we consider the standard order, or with
cardinally exactly n, if we consider the discrete order. In the case of the polynomial semi-ring
(N[Xi]i∈N,×, 1,+, 0), Equation (1) associates with Ap(x) the set of functions mapping an
element a ∈ A to a polynomial q(x) bounded by p(x) (according to the notion of boundedness
described by the order considered).

The interpretation given by Equation (1) faithfully mirrors in the semantics the behavior
of the typing system and hence it is uninteresting, at least in our setting. More relevant
models can be obtained by shrinking the semantic semi-ring, via the following proposition.

I Proposition 5. Given an ordered semi-ring S, an interpretation J−KR of S into a mul-
tiplicity semi-ring R and a multiplicity sub-semi-ring R′ of R, we have that the map
J−KR′ : I 7→ (JIK ∩ R′) defines an interpretation of S into R′ whenever it respects the
order, i.e.:

I ≤S J iff JIKR′ ⊆ JJKR′ .

7 There are other uninteresting possibilities.
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For example, N̄ can be interpreted into itself by Equation 1, or, by using Proposition 5,
into its sub-semi-ring N by setting JωK = N = JωKN̄ ∩ N. This latter interpretation has the
virtue of expressing both finite and infinite scalars with sets of finite natural numbers.

If S is not a multiplicity semi-ring, one can interpret it into the “free” multiplicity
semi-ring Nf 〈S·〉 induced by the multiplicative monoid S· of S (recall Proposition 3):

I Proposition 6. For any ordered semi-ring (S,≤S), the following is an interpretation of S
into Nf 〈S·〉 (square brackets [. . . ] below denote standard multisets):

JIK =
{

[J1, ..., Jn] |
∑
i≤n

Ji ≤S I
}
. (2)

Proof. As in the previous proposition, one has to check (among other equations) that
JIK⊕ JJK ⊆ JI + JK

JIK⊕ JJK = {[I1, ..., In, J1, ..., Jm] |
∑
i≤n

Ii ≤S I,
∑
i≤m

Ji ≤S J}

⊆ {[J1, ..., Jn] |
∑
i≤n

Ji ≤S I + J}

= JI + JK J

This construction makes a sharp difference between the way syntax and semantics express
sums between parameters. For example, if you take S to be R+ endowed with the usual order,
then the interpretation of a type Ar, for r ∈ R+, induced by Equation (2) can be seen as the
set of finite multisets [(a1, r1), . . . , (an, rn)] of elements in A×R+ such that r1 + · · ·+ rn ≤ r.
The contraction between two types Ar and Ar′ gives at the level of the syntax the type
Ar+r′ where the two parameters r, r′ are totally merged into r + r′. While at the level of
the semantics we have the set of the disjoint unions of a multiset in Ar and one in Ar′ , so
that the real-values r1, . . . , rn are kept distinct.

Such an interpretation of R+ into Nf 〈R+
· 〉 however is not completely satisfactory because

it does not express a clear notion of probability. One can get something better by applying
Proposition 5. Consider the semi-ring Nf 〈[0, 1]·〉 made by the elements of Nf 〈R+

· 〉 that can
be seen as multisets of probabilities. Proposition 3 shows that Nf 〈[0, 1]·〉 is a multiplicity
semi-ring, and one can easily check that the interpretation R+ 7→ Nf 〈R+

· 〉 is still injective
when restricted to Nf 〈[0, 1]·〉. So Proposition 5 states that RelNf 〈[0,1]·〉 is a model of BR+LL
by the interpretation:

JrK :=
{

[p1, . . . , pn] | n ≥ 0, pi ∈ [0, 1],
n∑

i=1
pi ≤ r

}
.

This interpretation is not only refining the previous one but perfectly fit the intuitive
semantics. Indeed, a multiset [r1, . . . , rn] represents n independent calls to a resource, each
call answered with a probability ri ∈ [0, 1]. In particular, the expected value of the number
of accessible resources is r1 + · · ·+ rn ≤ r.

5 Beyond Rel

We have seen that the relational category provides a large panel of different semantics, but all
of them are definitely degenerated because the ambient category is compact closed. Actually,
our tools apply to various other categories, even not compact closed. Just to have a taste of
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this generality we discuss here the case of coherence spaces. A more general account will be
developed by the first author in his forthcoming Ph.D. thesis.

A coherence space A is a pair of a set |A|, called web, and a reflexive and symmetric
relation ¨A, called coherence. A coherence space can be seen as a symmetric graph over
its web, and in fact we denote by Cl(A) the set of cliques of A, that is Cl(A) = {u ⊆
|A| | ∀a, a′ ∈ u, a ¨A a′}. Given two coherence spaces A, B, the hom-set Coh(A,B) is the
set of relations r ⊆ |A| × |B| such that: for every (a, b), (a′, b′) ∈ r, if a ¨A a′ then b ¨B b′
and, if moreover a 6= a′ then also b 6= b′.

Coherence spaces have been introduced by Girard as the first model of linear logic [7].
We omit to give here a detailed description of it, referring to [7] for the details. There are
two main linear categories based on coherence spaces, differing on the exponential comonad,
one (denoted Cohs) is based on the finite set functor and the other one (denoted by Cohm)
on the finite multi-set functor. The action of the two comonads on a coherence space A is
defined as follows (Pf , Mf refer to the set of, respectively, finite sets and multisets):

|!sA| := {u ∈ Pf (|A|) | u ∈ Cl(A)}, u ¨!sA u
′ := u ∪ u′ ∈ Cl(A),

|!mA| := {u ∈ Mf (|A|) | supp(u) ∈ Cl(A)}, u ¨!mA u
′ := supp(u) ∪ supp(u′) ∈ Cl(A).

In Section 4.2 we have seen how to define a stratification of RelR by interpreting
the semi-ring S into (P(R),⊕,�). We chose (P(R),⊕,�) because it grows out from an
hidden structure of RelR(!R1, 1). In the setting of set-based Cohs, we must consider
Cohs(!s1, 1) (1 is the one-element coherence space) which gives a three element semi-ring
B⊥ = ({⊥, ff, tt},⊕,�) with ff, tt,⊕,� representing the usual Boolean operations and ⊥
being absorbing for ⊕ and ff �⊥ = ff (zero case of left-distribution) but ⊥� ff = ⊥� tt =
tt�⊥ = ⊥�⊥ = ⊥. The order is flat: ⊥ is the bottom element and ff, tt are incomparable.
The only interpretation J−K : B⊥ 7→ B⊥ respecting the conditions of Definition 10 is the
identity function, so that one can recover (by Theorem 11) the stratification defined by:

|A⊥| := ∅, |Aff | := {∅}, |Att| := Cl(A)− {∅}, u ¨Att u′ := u ∪ u′ ∈ Cl(A),

∂

n,A := {(u, u) | u ∈ |An|}, for n =⊥, 0, 1.
In fact, one can easy check that (_)_ is a bifunctor B⊥ ×Cohs → Cohs, with a natural
transformation

∂

satisfying the diagrams of Figure 3.
If you consider the multi-set based linear category Cohm, we have that Cohm(!m1, 1)

yields N⊥ = ({⊥} ∪N,⊕,�) with ⊕,� the usual sum and product over the natural numbers
extended to ⊥ as in B⊥. Also in this case the order is flat: ⊥ is the bottom element and any
two non-equal natural numbers are incomparable. If we can consider the identity function as
an interpretation J−K : N⊥ 7→ N⊥ we get the stratification defined by (where, for u ∈ |!mA|,
#u refers to its cardinality as a multiset: #u =

∑
a∈|A| u(a)):

|A⊥| := ∅, |An| := {u ∈ |!mA| | #u = n}, u ¨An u′ := u ¨!mA u
′,

∂

s,A := {(u, u) | u ∈ |As|}, for s ∈ {⊥} ∪ N.
Also in this case, one can easily check that the above is a stratification of Cohm according
to Definition 6.

With a bit of imagination, one can define many other models of BSLL in Cohs and
Cohm as well as in other linear categories that are not compact closed (e.g. finiteness spaces).
Let us stress that the exponential modalities of Rel, Cohs, Cohm and that of finiteness
spaces, for example, are not trivial instances of a simple common construction (see [11] for
an interesting discussion on this matter). These examples then show the relevance of the
notion of stratification in a rather wide class of ambient categories.
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6 Conclusion

Full Linear Logic. BSLL is a refinement of the multiplicative exponential fragment of
intuitionistic linear logic. One can wonder whether this approach can be extended to full
linear logic, with additive connectives and involutive negation.

Additive connectives can be introduced without any difficulty, but the involutive negation,
and especially the introduction of the why-not modality ? dual of the of-course !, is more
delicate. Namely, one should grasp the computational meaning of the action of the S
parameters over the why-not modality.

Toward true dependent types. The major weakness of BSLL is the lack of dependent
types, in particular BSLL is not an extension of bounded linear logic. The interest in this
latter has been recently renewed by a series of work, like Dal Lago and Gaboardi’s D`PCF
[4] or Gaboardi et al.’s DFuzz [5]. These systems use parameters depending on variables
which can be bounded and instantiated in the type derivation. This allows, for example, to
distinguish between the resource usages of two branches of a conditional, or, combined with
a fix-point combinator, to define a parameter depending on the number of loops performed
during the evaluation of an iteration.

It is not clear to us whether and how our semantics extends to such a framework. The
notion of dependence is delicate to catch semantically, namely it amounts to making the
operator

∂

parametrised by some context. We are, in fact, currently investigating in a
different approach (that still use the same intuitions).

In this approach we do not start with a categorical model of linear logic, but with a richer
2-categorical model of linear logic (for example Rel endowed with inclusions as 2-functors).
Rather than having to find manually a stratification, we can directly identify a structure of
BSLL in the lax slice category C/1 (with morphisms of C targeting 1 as objects). There, the
syntactic semiring S is modeled by a sub category of C[!1, 1] (with arrows representing the
order relation). This extends naturally to dependency by considering every lax slice category
C/A together, for duplicable objects A ∈ C representing the values we are dependent on.

Beyond Rel. This paper is focused on the relational category Rel and on the notion
of stratification (Definition 6). This was actually the original goal of our investigation:
constructing relational models of BSLL. Indeed, it is clear that a more general principle
comes out from our results, relating the stratification to a semi-ring structure hidden behind
the hom-sets C(!1, 1).

We have briefly discussed such a generality in Section 5, giving examples of stratifications
of linear categories based on coherence spaces. The present setting however cannot explain
how one can recover the target semi-ring of an interpretation out of C(!1, 1), for any (or
a large class of) linear category C. To do that one should work in the framework of the
2-categorical models of linear logic, as mentioned in the previous paragraph, and this will be
done in the future.
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Abstract
We study a classical version of PCF from a semantic point of view. We define a general notion of
model based on categorical models of Linear Logic, in the spirit of earlier work by Girard, Regnier
and Laurent. We give a concrete example based on the relational model of Linear Logic, that
we present as a non-idempotent intersection type system, and we prove an Adequacy Theorem
using ideas introduced by Krivine. Following Danos and Krivine, we also consider an extension
of this language with a MIX construction introducing a form of must non-determinism; in this
language, a program of type integer can have more than one value (or no value at all, raising an
error). We propose a refinement of the relational model of classical PCF in which programs of
type integer are single valued; this model rejects the MIX syntactical constructs (and the MIX
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Models based on Linear Logic (LL) and polarities. The basic idea of such models is
to divide objects (formulas) in two categories, exchanged by linear negation: negative
objects and positive ones: this is the basic idea of Girard’s LC logical system. The main
feature of these polarized objects is that each one carries its own structural morphisms
(weakening and contraction). In [5], positive objects are correlation spaces (commutative
⊗-comonoids), and it is crucially used that all such comonoids are coalgebras for the
!_ functor, because, in the considered coherence space model, this exponential is the
free commutative ⊗-comonoid functor. An obvious generalization, implicitly considered
in [11], is to interpret directly positive formulas as !-coalgebras instead of ⊗-comonoids
without making further assumptions on the ! comonad.

As recalled in Section 3.2, all models of the second class can be seen as models of the
first one, but it is not clear that such a presentation is always particularly enlightening. We
rather believe that, depending on the considered concrete model, one presentation might be
more convenient than the other; for example, the classical PCF game model of [8] and the
polarized HO game model of [10] are suitably described using the first notion. In the present
paper, we focus on models for which the second presentation is more convenient.

To define the general interpretation of classical PCF, we assume therefore to be given a
categorical model of classical LL L with a few additional features: an object N for natural
numbers which is the coproduct of ω copies of 1 (the tensor unit) in L as well as a fix-point
operator at each object, in the Kleisli category of !, which is a CCC.

Our classical version of PCF is based on the λµ-calculus described in [1] which features
three kinds of expressions: terms, stacks (or continuations) and commands which are pairings
of terms and stacks. The operational semantics is given as a rewriting system on commands
(it can easily be extended to terms and stacks but we do not do it for lack of space).

Stacks can be duplicated or erased during computations, hence types are interpreted
as !-coalgebras and stacks as coalgebra morphisms. Notice that the interpretation of types
corresponds to the linear negation of the usual PCF interpretation of types: roughly speaking,
we interpret σ ⇒ τ as !(P⊥) ⊗ Q where P and Q are the interpretations of σ and τ (P⊥
is the linear negation of P ). We retrieve the ordinary interpretation simply by taking the
linear negation of this positive translation1.

In particular, the positive interpretation of the ground type of natural numbers has to be
such a coalgebra. Therefore, the most tempting choice, which would be to take JιK = N⊥ , is
not possible (Warning: N is canonically a !-coalgebra, but JιK = N⊥ is not!). So we simply
set JιK = !(N⊥), the free !-coalgebra generated by N⊥ . We do not know if, depending on
the concrete model under consideration, more “economical” choices of !-coalgebras would
have been possible; this is certainly an interesting research direction. We describe the
corresponding interpretation of expressions and state a general soundness theorem: this
interpretation of commands is invariant under reduction (of course this could be extended to
terms and stacks in a setting where the reduction would be extended to these expressions).

Then we consider the simplest example of this situation, where we take for L the category
of sets and relations, which is a well known model of LL. We provide a description of the
interpretation of expressions in this particular model by means of an intersection typing

1 Due to the symmetries of a categorical model of LL, this is more an aesthetic choice of design than
anything else. We could have preferred a negative interpretation, representing stacks as ?-algebras and
using ` instead of ⊗ for interpreting contexts. The two interpretations would have been the same, up
to linear transposition. The positive interpretation is in some sense closer to usual λ-calculus intuitions
because, when interpreting expressions, the context remains on the argument side of morphisms.
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system, in the spirit of [3, 16]. We then prove an adequacy theorem: if a command has a
non-empty interpretation (that is, if it is typable in this intersection typing system) then
its reduction terminates. The proof is based on a standard reducibility method (see [2] for
instance). This model accommodates a natural extension of classical PCF by a parallel
composition of commands corresponding to the MIX rule of LL as in [2].

In classical PCF with MIX, a normalizing command without free variables but with
free names of ground type ι can yield an arbitrary amount of unrelated natural numbers
on each of its free names (outputs). Without MIX syntactical constructs such a command
will produce exactly one natural number on exactly one of its outputs. This can be checked
syntactically, but we also build a simple refinement of the relational model of LL which does
not accommodate the MIX rule and gives a direct semantic account of this uniqueness of
values for classical PCF without MIX. This means that this crucial property will remain true
in any extension of classical PCF that can be interpreted in this model.

2 Classical PCF

Types are given by the following BNF syntax: σ := ι | σ ⇒ σ | σ × σ.
The expressions of our language are those of the λµ-calculus [1], extended with fix-points

and primitives for dealing with integers. Let x, y . . . be variables and α, β . . . be names.
Terms t, commands c and stacks π are defined as follows (with n ∈ N):

t := x | n | λxσ t | 〈t, t〉 | µασ c | fix xσ t c := t ∗ π
π := α | arg(t) · π | pr1 · π | pr2 · π | succ · π | pred · π | if(t, t) · π

We give now the typing rules, which correspond to a sequent calculus. Γ’s are typing
variable contexts and ∆’s are typing name contexts. We give rules for term typing judgments
Γ ` t : σ | ∆, stack typing judgments Γ | π : σ ` ∆ and command typing judgments Γ ` c | ∆.

Γ, x : σ ` x : σ | ∆ Γ | α : σ ` α : σ,∆
Γ ` t : σ | ∆ Γ | π : σ ` ∆

Γ ` t ∗ π | ∆

Γ ` s : σ | ∆ Γ ` t : τ | ∆
Γ ` 〈s, t〉 : σ × τ | ∆

Γ | π : σ ` ∆
Γ | pr1 · π : σ × τ ` ∆

Γ | π : τ ` ∆
Γ | pr2 · π : σ × τ ` ∆

Γ, x : σ ` t : τ | ∆
Γ ` λxσ t : σ ⇒ τ | ∆

Γ ` t : σ | ∆ Γ | π : τ ` ∆
Γ | arg(t) · π : σ ⇒ τ ` ∆

Γ ` c | α : σ,∆
Γ ` µασ c : σ | ∆

Γ ` n : ι | ∆
Γ | π : ι ` ∆

Γ | succ · π : ι ` ∆
Γ | π : ι ` ∆

Γ | pred · π : ι ` ∆

Γ ` t1 : σ | ∆ Γ ` t2 : σ | ∆ Γ | π : σ ` ∆
Γ | if(t1, t2) · π : ι ` ∆

Γ, x : σ ` t : σ | ∆
Γ ` fix xσ t : σ | ∆

We define a deterministic reduction relation → on processes.

(λxσ s) ∗ arg(t) · π → s [t/x] ∗ π 〈s, t〉 ∗ pr1 · π → s ∗ π 〈s, t〉 ∗ pr2 · π → t ∗ π
(µασ c) ∗ π → c [π/α] (fix xσ t) ∗ π → t [fix xσ t/x] ∗ π n ∗ succ · π → n+ 1 ∗ π
0 ∗ pred · π → 0 ∗ π n+ 1 ∗ pred · π → n ∗ π
0 ∗ if(t1, t2) · π → t1 ∗ π n+ 1 ∗ if(t1, t2) · π → t2 ∗ π

I Proposition 1 (Subject Reduction). Assume that Γ ` c | ∆ and c→ c′. Then Γ ` c′ | ∆.
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The proof is a straightforward case analysis involving a Substitution Lemma.
A typical example of classical PCF program is the call/cc operator t = λf (ι⇒σ)⇒ι µαι (f ∗

arg(λxι µβσ (x ∗ α)) · α) which satisfies ` t : ((ι ⇒ σ) ⇒ ι) ⇒ ι | (its type is an instance
of the well known Peirce classical tautology). When fed with an argument s such that
` s : (ι⇒ σ)⇒ ι | (a functional), t tests whether this functional returns directly a value (and
then t returns that value) or uses its argument (a function) by providing it with a natural
number n, and in that case t returns n. This choice between two options is implemented by
a contraction (the two occurrences of α).

The MIX extension. We consider also an extension of this classical version of PCF where
we add two new constructs: a command err and, given commands c and d, a command c‖d.
A similar extension of an untyped classical calculus has already been considered in [2]. It
is more naturally introduced at the level of commands in the present λµ setting. These
constructions obey the following typing rules

Γ ` err | ∆
Γ ` c | ∆ Γ ` d | ∆

Γ ` (c‖d) | ∆

We then extend the operational semantics of the calculus by adding the following reduction
rules for commands.

err‖c→ c c‖err→ c
c→ c′

c‖d→ c′‖d
d→ d′

c‖d→ c‖d′

The resulting calculus on commands (with the other reduction rules given in Section 2)
clearly satisfies the diamond property, the strongest form of confluence. These constructions
can be extended as term constructions, available at all types. Simply set errσ = µασ err and
(s‖t) = µασ (s ∗ α‖t ∗ α). The term s‖t is as a parallel composition of s and t enriching the
language with a form of must non-determinism. It allows eg. to write 3‖7, a closed term of
type ι, whose value is at the same time 3 and 7.

Almost closed commands. We come back to our initial version of classical PCF, without
the MIX constructs. A name context ∆ = (α1 : τ1, . . . , αk : τk) is ground if τj = ι for each
j. We say that a command c is almost closed if ` c | ∆ for some ground ∆. An almost
closed command is very similar to a closed term of type ι in ordinary PCF. The difference is
twofold: first an almost closed command can have more than one output (one for each name
in the name context), and second its outputs are named, simply to make them usable.

I Proposition 2. Let c be an almost closed and normal command. Then c = n ∗ α for some
n ∈ N and name α.

The proof is a simple case analysis.
So, consider an almost closed command c such that, say, ` c | α1 : ι, . . . , αk : ι. Then

either the → reduction of c does not terminate, or it ends with a normal almost closed
command, which must be of shape n ∗ αi for uniquely determined i ∈ {1, . . . , k} and n ∈ N:
the reduction of c computes the value n and chooses the output on which it is issued.

The notion of almost closed command still makes sense in classical PCF with MIX. The
difference is that normal forms are now MIX compositions of elementary command n ∗ αi.
One can obtain for instance (0 ∗ α1)‖((3 ∗ α2)‖(7 ∗ α1)) whose effect is to produce the value
3 on output α2, values 0 and 7 on output α1 and nothing on the other outputs.
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3 Linear logic based denotational semantics

The kind of denotational models in which we are interested in this paper are those induced
by a model of LL, in the spirit of Girard’s seminal work [5] further developed eg.. in [11]. We
first recall the general definition of a model of LL implicit in [4], our main reference here
is [12] to which we also refer for the rich bibliography on this general topic. A model of LL
consists of:

A category L.
A symmetric monoidal closed structure (⊗, 1, λ, ρ, α, σ): ⊗ is a functor L2 → L, 1 an
object of L, λX ∈ L(1⊗X,X), ρX ∈ L(X⊗1, X), αX,Y,Z ∈ L((X ⊗ Y )⊗Z,X⊗(Y ⊗ Z))
and σX,Y ∈ L(X ⊗ Y, Y ⊗X) are natural isos satisfying coherence diagrams that we do
not recall here. We use X ( Y for the object of linear morphisms from X to Y , ev
for the evaluation morphism which belongs to L((X ( Y )⊗X,Y ) and cur for the map
L(Z ⊗X,Y )→ L(Z,X ( Y ).
An object ⊥ of L such that ηX = cur(ev σX(⊥,X) ∈ L(X, (X ( ⊥) ( ⊥) be an iso for
each object X (one says that L is a ∗-autonomous category); we use X⊥ for X ( ⊥.
The category L is assumed to be cartesian. We use > for the terminal object, & for the
cartesian product and pri for the projections. It follows by ∗-autonomy that L has also
all finite coproducts.
We are also given a comonad !_ : L → L with counit derX ∈ L(!X,X) (called dereliction)
and comultiplication digX ∈ L(!X, !!X) (called digging).
And a strong symmetric monoidal structure for the functor !_, from the symmetric
monoidal category (L,&) to the symmetric monoidal category (L,⊗). This means that
we are given an iso m(0) ∈ L(1, !>) and a natural iso m(2)

X,Y ∈ L(!X⊗ !Y , !(X & Y )) which
satisfy a series of commutations that we do not recall here (they are often called Seely
isos). We also require a coherence condition relating m(2) and dig.

It follows that we can define a lax symmetric monoidal structure for the functor !_ from
the symmetric monoidal category (L,⊗) to itself, that is a natural morphism µ

(n)
X1,...,XN

∈
L(!X1 ⊗ · · · ⊗ !Xn, !(X1 ⊗ · · · ⊗Xn)) satisfying some coherence conditions.

We use ?_ for the “De Morgan dual” of !_: ?X = (!(X⊥))⊥ and similarly for morphisms.
It is a monad on L with unit der′X and multiplication dig′X defined straightforwardly, using
derY and digY .

The Eilenberg-Moore category. It is then standard to define the category L! of !-coalgebras.
An object of this category is a pair P = (P , hP ) where P ∈ Obj(L) and hP ∈ L(P , !P ) is
such that derP hP = Id and digP hP = !hP hP .

Given two such coalgebras P and Q, an element of L!(P,Q) is an f ∈ L(P ,Q) such that
hQ f = !f hP . Identities and composition are defined in the obvious way. The functor !_ can
then be seen as a functor from L to L!: this functor maps X to the coalgebra (!X, digX)
and a morphism f ∈ L(X,Y ) to the coalgebra morphism !f ∈ L!((!X, digX), (!Y, digY )). It
is right adjoint to the forgetful functor U : L! → L which maps a !-coalgebra P to P and a
morphism f to itself. Given f ∈ L(P ,X) (where X is an object of L and P an object of L!),
we use f ! for the corresponding element of L!(P, !X), called generalized promotion of f .

The object 1 of L induces an object of L!, still denoted as 1, namely (1, µ(0)).
Given two objects P andQ of L!, we can define an object P⊗Q of L! setting P ⊗Q = P⊗Q

and hP⊗Q = µ
(2)
P,Q (hP ⊗ hQ).

Any object P of L! can be equipped with a canonical structure of commutative comonoid.
This means that we can define a morphism wP ∈ L!(P, 1) and a morphism cP ∈ L!(P, P ⊗P )
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P P ⊗ P

1⊗ P

P P ⊗ P (P ⊗ P )⊗ P

P ⊗ P P ⊗ (P ⊗ P )

P P ⊗ P

P ⊗ P

cP

wP ⊗ P
λP
−1

cP cP ⊗ P

cP αP,P,P

P ⊗ cP

cP

σP,PcP

Figure 1 Comonoid properties of a coalgebra.

1⊗ !X ⊗ !X 1⊗X ⊗ 1

N⊗ !X ⊗ !X X

1⊗ !X ⊗ !X 1⊗ 1⊗X

N⊗ !X ⊗ !X X

1⊗ derX ⊗w!X

0⊗ !X ⊗ !X ϕ

if

1⊗ w!X ⊗ derX

n+ 1⊗ !X ⊗ !X ψ

if

Figure 2 Categorical properties of the conditional.

which satisfy the commutations of Figure 1.
One can check a stronger property, namely that 1 is the terminal object of L! and that

P ⊗ Q (equipped with projections defined in the obvious way using wQ and wP ) is the
cartesian product of P and Q in L!; the proof consists of rather long computations, see [12].

It is also important to notice that, if the family (Pi)i∈I of objects of L! is such that the
family (Pi)i∈I admits a coproduct (

⊕
i∈I Pi, (ini)i∈I) in L, then it admits a coproduct in L!.

This coproduct P =
⊕

i∈I Pi is defined as P =
⊕

i∈I Pi, with a structure map hP defined by
the fact that, for each i ∈ I, hP ini = !ini hPi .

Object of natural numbers and conditional. We assume also that in L, the family of
objects (Xn)n∈N such that Xn = 1 for each n, has a coproduct N. For each n ∈ N, we
use n for the nth injection n ∈ L(1,N). Using the obvious iso between N and 1 ⊕ N,
we define two morphisms succ, pred ∈ L(N,N) such that succn = n+ 1, pred 0 = 0 and
predn+ 1 = n. Let X be an object of L. Let if0 ∈ L(1 ⊗ !X ⊗ !X,X) be defined as the

following composition in L: 1⊗ !X ⊗ !X 1⊗X ⊗ 1 X,
1⊗ derX ⊗w!X ϕ

where ϕ is the
obvious iso. Let if+ ∈ L(N⊗!X⊗!X,X) be defined as the following composition of morphisms

in L: N⊗ !X ⊗ !X 1⊗ 1⊗X X,
wN⊗w!X ⊗ derX ψ

where ψ is the obvious iso. Observe
that we use the fact that N has a canonical structure of !-coalgebra (as a sum of coalgebras)
inducing the weakening morphism wN. It is the only place where this property is used. Using
these two morphisms, the iso between N and 1⊕N and the fact that ⊗ commutes with sums
(because it is a left adjoint), we define a morphism if ∈ L(N⊗ !X ⊗ !X,X) such that the two
diagrams of Figure 2 commute.

Fix-point operators. For any object X, we assume to be given a morphism fixX ∈
L(!(!X ( X), X) such that the following diagram commutes in L:

!(!X ( X) !(!X ( X)⊗ !(!X ( X) (!X ( X)⊗ !X

X

c!X der!X(X ⊗ fix!
X

evfixX

MIX in Linear Logic The categorical setting introduced so far allows to interpret the
MIX-free version of classical PCF. In order to interpret the MIX extension of Section 2, it
suffices to assume that ⊥ is equipped with a structure of commutative ⊗-monoid (this is an
additional structure of the model). If we think of ⊥ as an object of scalars, which is a natural
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intuition since ⊥ is the dualizing object, this means that these scalars have a multiplication,
a natural intuition again if we have linear algebra in mind. We use mix0 ∈ L(1,⊥) for the
unit of this monoid and mix2 ∈ L(⊥⊗⊥,⊥) for its multiplication. When this structure is
added, we say that L is a model of LL with MIX.

3.1 Interpreting classical PCF
The semantics of a type σ is an object JσK of L!. We set JιK = !(N⊥), Jσ ⇒ τK = !(JσK⊥)⊗
JτK and Jσ × τK = JσK ⊕ JτK. So JιK⊥ = ?N, which will be the target object for the
interpretation of terms of type ι. Let Γ = (x1 : σ1, . . . , xn : σn) be a variable context
and ∆ = (α1 : τ1, . . . , αk; τk) be a name context, then we define two objects of L! by
JΓK = !(Jσ1K

⊥) ⊗ · · · ⊗ !(JσnK⊥) and J∆K = Jτ1K ⊗ · · · ⊗ JτkK. With any term t such that
Γ ` t : σ | ∆, we associate JtKΓ,∆ ∈ L(JΓK ⊗ J∆K, JσK⊥), with any command c such that
Γ ` c | ∆ we associate JcKΓ,∆ ∈ L(JΓK⊗ J∆K,⊥) and with any stack π such that Γ | π : σ ` ∆
we associate JπKΓ,∆ ∈ L!(JΓK⊗ J∆K, JσK). This latter has to be a coalgebra morphism because
stacks must be duplicable and discardable (think of the reduction rule (µα c) ∗ π → c [π/α]).

We give now the interpretation of expressions, starting with terms. In these definitions,
the symbol ϕ stands for an iso which can be deduced from the context. The interpretation
of a variable JxKΓ,x:σ,∆ is defined as the following composition of morphisms:

JΓK⊗ !(JσK⊥)⊗ J∆K 1⊗ JσK⊥ ⊗ 1 JσK⊥
wJΓK⊗ derJσK⊥ ⊗wJ∆K ϕ

Let n ∈ N, remember that n ∈ L(1,N) so that ?n ∈ L(?1, ?N). We define JnKΓ,∆ as the
following composition of morphisms in L:

JΓK⊗ J∆K 1 ?1 ?N
ϕ (wJΓK⊗wJ∆K) d′1 ?n

Assume next that Γ, x : σ ` t : τ | ∆ so that we have JtKΓ,x:σ,∆ ϕ ∈ L(JΓK ⊗ J∆K ⊗
!(JσK⊥), JτK⊥). We set Jλxσ tKΓ,∆ = cur(JtKΓ,x:σ,∆ ϕ) ∈ L(JΓK ⊗ J∆K, !(JσK⊥) ( JτK⊥) and
we have !(JσK⊥) ( JτK⊥ = (!(JσK⊥)⊗ JτK)⊥ = Jσ ⇒ τK⊥ up to canonical isos.

Assume that Γ ` s : σ | ∆ and Γ ` t : τ | ∆ so that we have JsKΓ,∆ ∈ L(JΓK ⊗
J∆K, JσK⊥) and JtKΓ,∆ ∈ L(JΓK ⊗ J∆K, JτK⊥). So we set J〈s, t〉KΓ,∆ = 〈JsKΓ,∆, JtKΓ,∆〉 ∈
L(JΓK⊗J∆K, JσK⊥ & JτK⊥) which has the prescribed codomain since JσK⊥ & JτK⊥ = Jσ × τK⊥ .

Assume that Γ ` c | α : σ,∆ so that we have JcKΓ,α:σ,∆ ϕ ∈ L(JΓK⊗ J∆K⊗ JσK,⊥). Then
we set Jµασ cKΓ,∆ = cur(JcKΓ,α:σ,∆ ϕ) ∈ L(JΓK⊗ J∆K, JσK⊥).

Assume that Γ, x : σ ` t : σ | ∆ so that we have JtKΓ,x:σ,∆ ϕ ∈ L(JΓK⊗J∆K⊗!(JσK⊥), JσK⊥).
We set Jfix xσ tKΓ,∆ = fixJσK⊥ curJtKΓ,x:σ,∆ ϕ ∈ L(JΓK⊗ J∆K, JσK⊥).

Concerning commands, assume that Γ ` t : σ | ∆ and that Γ | π : σ ` ∆ so that we
have JtKΓ,∆ ∈ L(JΓK ⊗ J∆K, JσK⊥) and JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JσK) and therefore JπKΓ,∆ ∈
L(JΓK⊗ J∆K, JσK). We define Jt ∗ πKΓ,∆ as the following composition of morphisms in L

JΓK⊗ J∆K JΓK⊗ J∆K⊗ JΓK⊗ J∆K JσK⊥ ⊗ JσK ⊥
cJΓK⊗J∆K JtK⊗ JπK ev

Let us come now to stacks. The morphism JαKΓ,α:σ,∆ is defined as the following composi-
tion of morphisms in L!

JΓK⊗ JσK⊗ J∆K 1⊗ JσK⊗ 1 JσK
wJΓK⊗JσK⊗ wJ∆K ϕ
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Remember that we have defined succ, pred ∈ L(N,N), so that we have !(succ⊥), !(pred⊥) ∈
L!(!(N⊥), !(N⊥)). Assume that Γ | π : ι ` ∆ so that JπKΓ,∆ ∈ L!(JΓK⊗ J∆K, JιK), and we set
Jsucc · πKΓ,∆ = !(succ⊥) JπKΓ,∆ and Jpred · πKΓ,∆ = !(pred⊥) JπKΓ,∆; both morphisms belong
to L!(JΓK⊗ J∆K, JιK).

Remember also that, for any object X of L, we have defined if ∈ L(N ⊗ !X ⊗ !X,X).
Using ∗-autonomy and isos induced by the monoidal structure of L, we can canonically
turn this morphism into if ′ ∈ L(X⊥ ⊗ !X ⊗ !X,N⊥). Assume that X = P⊥ where P is
an object of L!. Then we can set If = if ′! ∈ L!(P ⊗ !(P⊥) ⊗ !(P⊥), !(N⊥)). Assume that
Γ | π : σ ` ∆ and Γ ` ti : σ | ∆ for i = 1, 2. Then we have JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JσK)
and Jt1K!

Γ,∆, Jt2K
!
Γ,∆ ∈ L!(JΓK⊗ J∆K, !JσK⊥), and we define Jif(t1, t2, π)KΓ,∆ as the following

composition of morphisms in L!, using a ternary version of the contraction morphism

JΓK⊗ J∆K (JΓK⊗ J∆K)⊗3 JσK⊗ !(JσK⊥)⊗ !(JσK⊥) !(N⊥)
c(3)
JΓK⊗J∆K JπK⊗ Jt1K! ⊗ Jt2K! If

Assume that Γ ` π : τ | ∆ and that Γ ` t : σ | ∆ so that JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JτK)
and JtK!

Γ,∆ ∈ L!(JΓK ⊗ J∆K, !(JσK⊥)), we set Jarg(t) · πKΓ,∆ = (JtK!
Γ,∆ ⊗ JπKΓ,∆) cJΓK⊗J∆K ∈

L!(JΓK⊗ J∆K, Jσ ⇒ τK).
Assume last that Γ | π : σ ` ∆ so that JπKΓ,∆ ∈ L!(JΓK ⊗ J∆K, JσK) and we can set

Jpr1 · πK = in1 JπKΓ,∆ ∈ L!(JΓK⊗ J∆K, JσK⊕ JτK) and Jpr2 · πK is defined similarly.
Assume now that L is a model of LL with MIX, see Section 3. Here is the interpretation

of the MIX constructs of Section 2. If c = err, with Γ ` err | ∆, then JcKΓ,∆ = mix0 wJΓK⊗J∆K.
If c = c1‖c2 with Γ ` ci | ∆ for i = 1, 2, we set JcKΓ,∆ = mix2 (Jc1K⊗ Jc2K) cJΓK⊗J∆K.

I Theorem 3 (Soundness). Assume that Γ ` c | ∆ and that c→ c′. Then JcKΓ,∆ = Jc′KΓ,∆.

3.2 A continuation category
We recall briefly the connection between this LL-based approach and the Lafont-Reus-
Streicher (LRS) [15] approach of continuation categories, see [11] for more details2. Let
P = L!, we have seen that P is a cocartesian and cartesian category, with ⊕ as coproduct
and ⊗ as product. As object of responses, we take Σ = !⊥. Let P and Q be objects of
P. Then we have P(P ⊗Q,Σ) = L!(P ⊗Q, !⊥) ' L(P ⊗Q,⊥) because !_ is right adjoint
to U. Hence P(P ⊗Q,Σ) ' L(P ,Q⊥) ' L!(P, !(Q⊥)) by the same adjunction. So setting
ΣQ = !(Q⊥) we have P(P ⊗Q,Σ) ' P(P,ΣQ). Hence Σ is a baseable object of P.

The category ΣP of negated objects has the same objects as P , and ΣP(P,Q) = P(ΣP ,ΣQ).
It is a cartesian closed category with product P × Q = P ⊕ Q and object of morphisms
P ⇒ Q = ΣP ⊗Q as can easily be checked, using the fact that Σ is baseable. In the LRS
setting, interpretation of types is done in P , setting Jσ ⇒ τK = ΣJσK⊗ JτK and, given contexts
Γ = (x1 : σ1, . . . , xn : σn) and ∆ = (α1 : τ1, . . . , αk : τk), a term t such that Γ ` t : σ | ∆ is
interpreted as JtKΓ,∆ ∈ P(ΣJσ1K×· · ·×ΣJσnK× Jτ1K×· · ·× JτkK,ΣJσK), a command c such that
Γ ` c | ∆ is interpreted as JcKΓ,∆ ∈ P(ΣJσ1K×· · ·×ΣJσnK× Jτ1K×· · ·× JτkK,Σ) and a stack π
such that Γ | π : τ ` ∆ is interpreted as JπKΓ,∆ ∈ P(ΣJσ1K×· · ·×ΣJσnK×Jτ1K×· · ·× JτkK, JτK)
and it is easily checked again that this interpretation is exactly the same as the one described
above, up to the identification of P(P, !X) with L(P ,X).

2 This paper establishes the correspondence with Selinger control categories [14] which are equivalent to
continuation categories. They use therefore a negative translation whereas we use a positive one.
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4 Relational semantics

In this most simple and canonical interpretation of LL, L is the category Rel whose
objects are sets3 and where Rel(X,Y ) = P(X × Y ), composition being defined as the
usual composition of relations. We recall that the tensor unit is 1 = {∗} (arbitrary one-
point set), that X ⊗ Y = X × Y with tensor product of morphisms defined accordingly,
that X ( Y = X × Y (and evaluation defined in the obvious way), that ⊥ = 1 so that
X⊥ = X up to canonical iso. This category is countably cartesian, with cartesian product˘
i∈I Xi =

⋃
i∈I({i} × Xi) (disjoint union) and projections defined in the obvious way

(pri = {((i, a), a) | a ∈ Xi}). It is cocartesian with coproducts defined exactly as products
and injections given by ini = {(a, (i, a)) | a ∈ Xi}. It has an exponential functor defined on
objects by !X =Mfin(X), the set of all finite multisets4 of elements of X. On morphisms, this
functor is defined by !f = {([a1, . . . , an], [b1, . . . , bn]) | (ai, bi) ∈ f for each i}. Dereliction
(counit) is given by derX = {([a], a) | a ∈ X} and digging (comultiplication) is given by
digX = {(m1 + · · ·+mk, [m1, . . . ,mk]) | m1, . . . ,mk ∈ !X}. The symmetric monoidality isos
are given by m(0) = {(∗, [])} and

m(2)
X,Y = {(([a1, . . . , an], [b1, . . . , bk]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bk)]) |

a1, . . . , an ∈ X and b1, . . . , bk ∈ Y }

Let P = (P , hP ) be an object of Rel! and X be an object of Rel. Given f ∈
Rel(P ,X), the generalized promotion f ! ∈ Rel!(P, !X) is given by f ! = {(b, [a1, . . . , an]) |
∃b1, . . . , bn ∈ P (b, [b1, . . . , bn]) ∈ hP and (bi, ai) ∈ f for each i}. The n-ary contraction
c(n)
P ∈ Rel!(P, P⊗n) is given by c(n)

P = {(a, (a1, . . . , an)) | (a, [a1, . . . , an]) ∈ hP }. In particu-
lar (0-ary case) we have wP = {(a, ∗) | (a, []) ∈ hP }. The next easy lemma is essential for
computing the interpretation of expressions, using eg. the formalism of Section 4.1.

I Lemma 4. Let P1 and P2 be objects of Rel!. One has ((a, b), [(a1, b1), . . . , (an, bn)]) ∈
hP1⊗P2 iff (a, [a1, . . . , an]) ∈ hP1 and (b, [b1, . . . , bn]) ∈ hP2 . And, given l ∈ {1, 2}, one has
((l, a), [b1, . . . , bn]) ∈ hP1⊕P2 iff, for each i = 1, . . . , n, one has bi = (l, ai) for some ai, and
moreover (a, [a1, . . . , an]) ∈ hPl .

For each set X, we can define a fix-point operator as a least fix-point wrt. morphism
inclusion as fixX = {(m1 + · · ·+mk + [([a1, . . . , ak], a)], a) | ∀i (mi, ai) ∈ fixX}.

The object of natural numbers is the set N, the morphisms succ and pred are given by
succ = {(n, n+1) | n ∈ N}, pred = {(0, 0}∪{(n+1, n) | n ∈ N}. When X = P⊥ where P is an
object of Rel!, the corresponding coalgebra morphism IfX ∈ Rel!(P⊗!P⊥⊗!P⊥ , !N⊥) is given
by IfX = {(a, [a1, . . . , ak], [ak+1, . . . , al], [n1, . . . , nl]) | n1 = · · · = nk = 0 and nk+1, . . . , nl 6=
0 and (a, [a1, . . . , al]) ∈ hP }. This model of LL is also a model of MIX. It suffices to take
mix0 = {(∗, ∗)} and mix2 = {((∗, ∗), ∗)))} and these morphisms define clearly a structure of
commutative ⊗-monoid on ⊥.

So a typing variable context Γ = (x1 : σ1, . . . , xn : σn) is interpreted as a set of
tuples (m1, . . . ,mn) where mi ∈ Mfin(JσiK) for each i, a typing name context ∆ = (α1 :
τ1, . . . , αk : τk) is interpreted as a set of tuples (a1, . . . , ak) where aj ∈ JτjK for each j.

3 All sets can be assumed to be at most countable, this is a very reasonable assumption which is preserved
by all the constructions that we introduce.

4 We use [a1, . . . , ak] for the multiset whose elements are a1, . . . , an, taking multiplicities into account
and we use m+m′ for the disjoint union of the multiset m and m′ which is a natural notation since
multisets are N-valued functions. Similarly if k ∈ N and m is a multiset, km = m+ · · ·+m (k times).
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With these notations for Γ and ∆, if Γ ` M : τ | ∆ then JMKΓ,∆ is a set of tuples
(m1, . . . ,mn, a1, . . . , ak, a) where a ∈ JτK, if Γ | π : σ ` ∆ then JπKΓ,∆ is a set of tuples
(m1, . . . ,mn, a1, . . . , ak, a) where a ∈ JσK, and if Γ ` c | ∆ then JcKΓ,∆ is a set of tuples
(m1, . . . ,mn, a1, . . . , ak). In all cases mi ∈Mfin(JσiK) and aj ∈ JτjK for each i and j.

4.1 Interpretation as a type deduction system
We introduce a typing system extending the one of [16] to represent the relational denotational
semantics described above. A semantic variable context is a sequence Φ = (x1 : m1 :
σ1, . . . , xn : mn : σn) where mi ∈ !JσiK⊥ for each i and variables are pairwise distinct. A
semantic name context is a sequence Ψ = (α1 : a1 : τ1, . . . , αk : ak : τk) where ai ∈ JτiK for
each i and the names are pairwise distinct. We also define the underlying typing contexts
u(Φ) = (x1 : σ1, . . . , xn : σn) and u(Ψ) = (α1 : τ1, . . . , αk : τk) as well as the underlying
tuples 〈Φ〉 = (m1, . . . ,mn) and 〈Ψ〉 = (a1, . . . , ak). We extend multiset addition to tuples of
multisets componentwise.

One has 〈Φ〉 ∈ Ju(Φ)K and similarly for Ψ. Given a variable context Γ = (x1 : σ1, . . . , xn :
σn) one defines the corresponding zero semantic context 0Γ = (x1 : [] : σ1, . . . , xn : [] : σn).

We define now this typing system. Its main property (proven by an easy induction on
expressions) is that Φ ` t : a : σ | Ψ iff (〈Φ〉, 〈Ψ〉, a) ∈ JtKu(Φ),u(Ψ) and Φ | π : a : σ ` Ψ
iff (〈Φ〉, 〈Ψ〉, a) ∈ JπKu(Φ),u(Ψ), and also Φ ` c | Ψ iff (〈Φ〉, 〈Ψ〉) ∈ JcKu(Φ),u(Ψ). Here are the
axioms and deduction rules:

0Γ, x : [a] : σ ` x : a : σ | Ψ 0Γ | α : a : σ ` α : a : σ,Ψ

if (〈Ψ〉, 0Ju(Ψ)K) ∈ hJu(Ψ)K.

Φ1 ` t : a : σ | Ψ1 Φ2 | π : a : σ ` Ψ2

Φ ` t ∗ π | Ψ

if u(Φi) = u(Φ) and u(Ψi) = u(Ψ) for i = 1, 2, 〈Φ〉 = 〈Φ1〉+ 〈Φ2〉 and (〈Ψ〉, [〈Ψ1〉, 〈Ψ2〉]) ∈
hJ∆K.

Φ, x : m : σ ` t : b : τ | Ψ
Φ ` λxσ t : (m, b) : σ ⇒ τ | Ψ

Φ ` s : a : σ | Ψ u(Φ) ` t : τ | u(Ψ)
Φ ` 〈s, t〉 : (1, a) : σ × τ | Ψ

u(Φ) ` s : σ | u(Ψ) Φ ` t : b : σ | Ψ
Φ ` 〈s, t〉 : (2, b) : σ × τ | Ψ

Φ0 | π : b : τ ` Ψ0 (Φi ` t : ai : σ | Ψi)ki=1
Φ | arg(t) · π : ([a1, . . . , ak], b) : σ ⇒ τ ` Ψ

Φ0, x : [a1, . . . , ak] : σ ` t : a : σ | Ψ0 (Φi ` fix xσ t : ai : σ | Ψi)ki=1
Φ ` fix xσ t : a : σ | Ψ

if u(Φi) = u(Φ), u(Ψi) = u(Ψ) for each i = 0, . . . , k, 〈Φ〉 = 〈Φ0〉 + · · · + 〈Φk〉 and
(〈Ψ〉, [〈Ψ0〉, . . . , 〈Ψk〉]) ∈ hJu(Ψ)K, for the two last deduction rules.

Φ | π : a : σ ` Ψ
Φ | pr1 · π : (1, a) : σ × τ ` Ψ

Φ | π : b : τ ` Ψ
Φ | pr2 · π : (2, b) : σ × τ ` Ψ

Φ ` c | α : a : σ,Ψ
Φ ` µασ c : a : σ | Ψ

(〈Ψ〉, 0Ju(Ψ)K) ∈ hJu(Ψ)K n ∈ N
0Γ ` n : n : ι | Ψ

Φ | π : [n1 + 1, . . . , nk + 1] : ι ` Ψ
Φ | succ · π : [n1, . . . , nk] : ι ` Ψ

Φ | π : k[0] + [n1, . . . , nl] : ι ` Ψ
Φ | pred · π : k[0] + [n1 + 1, . . . , nl + 1] : ι ` Ψ
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Φ0 | π : a : σ ` Ψ0 (Φi ` t1 : ai : σ | Ψi)ki=1 (Φi ` t2 : ai : σ | Ψi)li=k+1

Φ | if(t1, t2) · π : ι : k[0] + [n1 + 1, . . . , nl−k + 1] ` Ψ

if (a, [a1, . . . , al]) ∈ hJσK, u(Φi) = u(Φ), u(Ψi) = u(Ψ) for each i, 〈Φ〉 = 〈Φ0〉+ · · ·+ 〈Φl〉 and
(〈Ψ〉, [〈Ψ0〉, . . . , 〈Ψl〉]) ∈ hJu(Ψ)K. For classical PCF with MIX, we add the rules:

(〈Ψ〉, 0Ju(Ψ)K) ∈ hJu(Ψ)K

0Γ ` err | Ψ
Φ1 ` c1 | Ψ1 Φ2 ` c2 | Ψ2

Φ ` c1‖c2 | Ψ

if u(Φi) = u(Φ), u(Ψi) = u(Ψ) for i = 1, 2, 〈Φ〉 = 〈Φ1〉+〈Φ2〉 and (〈Ψ〉, [〈Ψ1〉, 〈Ψ2〉]) ∈ hJu(Ψ)K.

5 Adequacy

Our goal here is to prove that, in the full calculus (including the MIX constructions), if
an almost closed command has a non-empty relational semantics, then its →-reduction
terminates. In other words, an almost closed command typable in the semantic typing system
is →-normalizing. Let N be the set of all →-normalizing almost closed commands.

Let us say that a term t (resp. a stack π) is almost closed of type σ if ` t : σ | ∆
(resp. | π : σ ` ∆) for some ground name context ∆ (that is, for any ground name context
where all free names appear). Observe that if t and π are an almost closed term and an
almost closed stack of the same type, then t ∗ π is an almost closed command.

By induction on σ, we define, for each a ∈ JσK, a set ‖a‖σ of almost closed stacks of
type σ. We use the notation |a|σ for the set of all almost closed terms t of type σ such that
t ∗ π ∈ N for all π ∈ ‖a‖σ. Given a1, . . . , an ∈ JσK, we set |[a1, . . . , an]|σ =

⋂n
i=1 |ai|σ.

The most important part of the definition is the base case: given m = [n1, . . . , nk] ∈
JιK = !(N⊥), we define ‖m‖ι as the set of all almost closed stacks π of type ι such that
∀i ∈ {1, . . . , k} ni ∗ π ∈ N . This set contains all names (considered of type ι) and hence is
never empty.

The inductive step follows the general pattern of classical reducibility. Let σ and τ be
types, let a1, . . . , an ∈ JσK and b ∈ JτK. We set

‖([a1, . . . , an], b)‖σ⇒τ =
{

arg(t) · π | t ∈ |[a1, . . . , an]|σ and π ∈ ‖b‖τ
}

Let a ∈ JσK, we set ‖(1, a)‖σ×τ = {pr1 · π | π ∈ ‖a‖σ} and ‖(2, b)‖σ×τ is defined similarly
for b ∈ JτK.

I Theorem 5 (Adequacy). Let Φ = (x1 : m1 : σ1, . . . , xn : mn : σn) and Ψ = (α1 : a1 :
τ1, . . . , αk : ak : τk) be semantic contexts. Let σ be a type, t be a term, c be a command and
π be a stack such that

Φ ` t : a : σ | Ψ
resp. Φ ` c | Ψ,
resp. Φ | π : a : σ ` Ψ.

Then, for all t1 ∈ |m1|σ1 ,. . . , tn ∈ |mn|σn and all π1 ∈ ‖a1‖τ1 ,. . . , πk ∈ ‖ak‖τk , one has
t [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ |a|σ
resp. c [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ N ,
resp. π [t1/x1, . . . , tn/xn] [π1/α1, . . . , πk/αk] ∈ ‖a‖σ.

So, if an almost closed command c has a non-empty interpretation, it normalizes for the→-
reduction to a uniquely defined normal almost closed command which can easily be retrieved
from the semantics of c. For instance if c satisfies ` c | ∆ where ∆ = (α1 : ι, α2 : ι, α3 : ι),
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and if we have ` c | α1 : [0, 7] : ι, α2 : [3] : ι, α3 : [] : ι, then c normalizes by Theorem 5.
Its normal form c0 satisfies ` c0 | α1 : ι, α2 : ι, α3 : ι by Proposition 1 and hence must be
of shape (n1

1 ∗ α1)‖ · · · ‖(nl11 ∗ α1)‖(n1
2 ∗ α2)‖ · · · ‖(nl22 ∗ α2)‖(n1

3 ∗ α3)‖ · · · ‖(nl33 ∗ α3) up to
associativity and commutativity of ‖, by the final considerations of Section 2. By definition of
the interpretation, Jc0K(),∆ = {([n1

1, . . . , n
l1
1 ], [n1

2, . . . , n
l2
2 ], [n1

3, . . . , n
l3
3 ])}. But by Theorem 3

we have JcK(),∆ = Jc0K(),∆ and hence we must have l1 = 2, l2 = 1, l3 = 0, n1
1 = 0, n2

1 = 7 (or
conversely) and n2

1 = 3. This adequacy property entails that denotational equivalence of
terms implies their observational equivalence (to be suitably defined)5.

The considerations above show that the interpretation of an almost closed command
contains at most one element. This can also be proved purely semantically, endowing the
relational semantics with a binary coherence relation.

If c does not contain MIX constructs, we know that it will reduce to a normal command
of shape n ∗ α, but the model does not reflect this property that we proved syntactically
in Section 2. We introduce now a light refinement of the relational model which takes this
uniqueness of values property into account, and therefore rejects the MIX constructs.

6 A semantic account of uniqueness of values

This model originates from the observation made independently by several authors6 at an
early stage of the development of LL that, in a multiplicative proof-net, there is a simple
relation between the number of ⊗’s and of `’s.

A weighted set is a pair X = (|X|, γX) where |X| is a set and γX : |X| → Z is a function.
If we think of a as a proof tree in (constant-free) multiplicative LL (MLL) with only one
conclusion (the root of the tree), then γX(a) = p − t where p is the number of ` and t is
the number of ⊗ binary connectives occurring in a. If such a multiplicative proof tree can
be sequentialized into a sequent calculus proof in MLL, then p − t = 1, see eg. [6], pages
250-251 (the converse is not true). This intuition explains the next definitions. One sets
C(X) = {x ⊆ |X| | ∀a ∈ x γX(a) = 1}.

Let RelW be the category of weighted sets and such that RelW(X,Y ) = {t ⊆ |X|×|Y | |
∀(a, b) ∈ t γX(a) = γY (b)}. Then IdX = {(a, a) | a ∈ |X|} ∈ RelW(X,X) and the relational
composition of two morphisms is a morphism, so RelW is a category.

One defines the weighted set 1 by |1| = {∗} (a singleton) and γ1(∗) = 1. Given
two weighted sets X1 and X2, one defines X1 ⊗ X2 by |X1 ⊗X2| = |X1| × |X2| and
γX1⊗X2(a1, a2) = γX1(a1) + γX2(a2) − 1. Given ti ∈ RelW(Xi, Yi) for i = 1, 2, one
defines t1 ⊗ t2 as in Rel, then it is clear that t1 ⊗ t2 ∈ RelW(X1 ⊗X2, Y1 ⊗ Y2) and that
this operation is a functor. Moreover, the usual bijections |1⊗X| → |X|, |X ⊗ 1| → |X|
and |(X1 ⊗X2)⊗X3| → |X1 ⊗ (X2 ⊗X3)| are isos in RelW. Indeed we have γ1⊗X(∗, a) =
1 + γX(a)− 1 = γX(a) and γ(X1⊗X2)⊗X3((a1, a2), a3) = γX1(a1) + γX2(a2) + γX3(a3)− 2 =
γX1⊗(X2⊗X3)(a1, (a2, a3)).

In that way, we have equipped RelW with a structure of symmetric monoidal category.
We check that it is closed. Given two weighted sets X and Y , let X ( Y = (|X|×|Y |, γX(Y )
and γX(Y (a, b) = γY (b)− γX(a) + 1. Observe that C(X ( Y ) = RelW(X,Y ).

Then ev = {(((a, b), a), b) | a ∈ |X| and b ∈ |Y |} belongs to RelW((X ( Y ) ⊗ X,Y ).
Indeed we have γ(X(Y )⊗X((a, b), a) = γY (b)− γX(a) + 1 + γX(a)− 1 = γY (b).

5 The converse implication (full abstraction) is far from being true.
6 At least: Girard, Danos and Regnier, Métayer, Fleury and Rétoré, Guerrini. . .
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Let Z be another weighted set and let ((c, a), b) ∈ |(Z ⊗X) ( Y |. Then we have
γ(Z⊗X)(Y ((c, a), b) = γY (b)−(γZ(c)+γX(a)−1)+1 = γY (b)−γZ(c)−γX(a)+2. On the other
hand we have γZ((X(Y )(c, (a, b)) = (γY (b)−γX(a)+1)−γZ(c)+1 = γY (b)−γZ(c)−γX(a)+2
and therefore, given t ∈ RelW(Z ⊗ X,Y ), we have cur(t) = {(c, (a, b)) | ((c, a), b) ∈ t} ∈
RelW(Z,X ( Y ). This shows that RelW is closed.

Let ⊥ = ({∗}, γ⊥) with γ⊥(∗) = −1. Then we have γX(⊥(a, ∗) = −1 − γX(a) + 1 =
−γX(a). It follows that the canonical morphism ηX ∈ RelW(X, (X ( ⊥) ( ⊥) given by
ηX = cur(ev σX,X(⊥) (where σ is the symmetry natural iso associated with the symmetric
monoidal closed structure of RelW) is an iso in RelW. This shows that, equipped with ⊥
as dualizing object, the symmetric monoidal closed category RelW is *-autonomous.

The co-tensor product, called par, is the operation defined by X ` Y = (X⊥ ⊗ Y ⊥)⊥
and is characterized by |X ` Y | = |X| × |Y | and γX`Y (a, b) = γX(a) + γY (b) + 1.

Let X⊥ = (|X|,−γX). Then X⊥ is naturally isomorphic to X ( ⊥ and defines a
strictly involutive functor RelW → RelWop. Its action on morphisms is contraposition:
t⊥ = {(b, a) | (a, b) ∈ t} ∈ RelW(Y ⊥ , X⊥) for any t ∈ RelW(X,Y ).

The category RelW is cartesian and cocartesian. Given a family (Xi)i∈I of objects,
let X = &i∈I Xi be defined by |X| =

⋃
i∈I{i} × |Xi| and γX(i, a) = γXi(a). Let pri =

{((i, a), a) | a ∈ |Xi|} ∈ RelW(X,Xi). Then (X, (pri)i∈I) is a cartesian product of the
family (Xi)i∈I . The coproduct is defined in a completely similar way. Observe that the
product of the empty family (the terminal object) is > = (∅, ∅), which is also the initial
object of RelW.

Let !X = (Mfin(|X|), γ!X) where

γ!X([a1, . . . , an]) = γX⊗n(a1, . . . , an) = −n+ 1 +
n∑
i=1

γX(ai) = 1 +
n∑
i=1

(γX(ai)− 1) .

Given t ∈ RelW(X,Y ), it is clear that !t ∈ RelW(!X, !Y ) where !t is defined as in Rel.
So !_ is a functor RelW→ RelW. We equip this functor with a structure of comonad.

For each object X, let derX = {([a], a) | a ∈ |X|}. Since γ!X([a]) = γX(a), we have
derX ∈ RelW(!X,X). The naturality of derX is obvious (it already holds in Rel).

One defines also digX = {(m1 + · · ·+mk, [mi, . . . ,mk]) | k ∈ N and ∀imi ∈Mfin(|X|)}.
Let m1, . . . ,mk ∈Mfin(|X|), and let us write mi = [ai1, . . . , aiki ]. We have

γ!!X([m1, . . . ,mk]) = 1 +
k∑
i=1

(γ!X(mi)− 1) = 1 +
k∑
i=1

(1 +
( ki∑
j=1

γX(aij)− 1
)
− 1)

= γ!X(m1 + · · ·+mk)

and therefore digX ∈ RelW(!X, !!X). One proves easily that (!X, derX , digX) defines a
comonad (the definition of this structure is the same as in Rel).

Last we check that the standard Seely isos of Rel are morphisms in RelW. The 0-ary
iso is m(0) = {(∗, [])} and belongs to RelW(1, !>) since γ!>([]) = 1. The binary ver-
sion is m(2)

X,Y = {(([a1, . . . , an], [b1, . . . , bp]), [(1, a1), . . . , (1, an), (2, b1), . . . , (2, bp)]) | ∀i ai ∈
|X| and ∀j bj ∈ |Y |} and we prove that m(2)

X,Y ∈ RelW(!X ⊗ !Y , !(X & Y )): indeed, with
the notations of this definition, we have

γ!X⊗!Y ([a1, . . . , an], [b1, . . . , bp]) = 1 +
n∑
i=1

(γX(ai)− 1) + 1 +
p∑
j=1

(γY (bj)− 1)− 1

= 1 +
n∑
i=1

(γX(ai)− 1) +
p∑
j=1

(γY (bj)− 1) = γ!(X&Y )([(1, a1), . . . , (1, an), (2, b1), . . . , (2, bp)]))

This ends the description of the purely logical structures of the model.
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The object N of natural numbers (in the sense of Section 3) is the coproduct of ω copies
of 1, so |N| = N and γN(n) = 1 for each n ∈ N. The morphisms succ, pred and if as defined in
Section 4 in the category Rel are also morphisms in RelW simply because they are defined
using the universal property of N. Last, for any object X of RelW, the fix-point operator
fix|X| as defined in Section 4 is also a morphism !(!X ( X)→ X in RelW.

So RelW is a model of classical PCF in the sense of Section 3.1. Let JσKw be the
interpretation of the type σ in the category RelW!, we have |JσKw| = JσK and hJσKw = hJσK

(as relations). If e is an expression typable in contexts Γ, ∆, we denote with JeKw
Γ,∆ the

interpretation of e in RelW (if e is a command or a term) or in RelW! (if e is a stack).

I Proposition 6. For any expression of classical PCF e typable in contexts Γ and ∆, one
has JeKw

Γ,∆ = JeKΓ,∆ (as relations).

This is due to the fact that the basic LL constructs are interpreted by the same relations in
both models.

Rejection of MIX and uniqueness of values. Observe that mix0 = {(∗, ∗)} ∈ Rel(1,⊥)
and mix2 = {((∗, ∗), ∗)} ∈ Rel(⊥ ⊗ ⊥,⊥) are not morphisms in RelW: for mix0, this is
due to the fact that γ1(∗) = 1 and γ⊥(∗) = −1 and for mix2, this is due to the fact that
γ⊥⊗⊥(∗, ∗) = −3.

Let ∆ = (α1 : ι, . . . , αk : ι) be a ground name context. Then an almost closed command
c such that ` c | ∆ has interpretation JcK(),∆ ∈ RelW(JιKw ⊗ · · · ⊗ JιKw,⊥), that is JcK(),∆ ∈
RelW(1, ?N` · · ·`?N). Let m1, . . . ,mk ∈ |?N|, then we have γ?N`···`?N(m1, . . . ,mk) =
γ?N (m1)+· · ·+γ?N (mk)+k−1 = 2(#m1)−1+· · ·+2(#mk)−1+k−1 = 2(#m1+· · ·+#mk)−1.
So any element (m1, . . . ,mk) of JcK(),∆ must satisfy 2(#m1 + · · ·+ #mk)− 1 = 1, that is
#m1 + · · ·+ #mk = 1. Hence there must exist i ∈ {1, . . . , k} such that #mi = 1 and mj = []
for j 6= i. We retrieve semantically the fact that c is single valued.

7 Conclusion

We have developed a semantic investigation of classical PCF, presented in Herbelin’s very
pleasant λµ format. We have recalled the general LL semantic framework for this calculus,
based on Girard’s categorical semantics of LC, and its connection with Lafont-Reus-Streicher
continuation categories. We have outlined a simple adequacy proof for the relational model
and proposed a model which enforces uniqueness of values, rejecting the extension of classical
PCF by a parallel composition construct based on the MIX rule of LL. In a longer version
of this paper, we shall show that the Eilenberg-Moore category of the Scott semantics of
LL admits a very simple description. The relational model of LL is also deeply related with
useful extensions of LL (systems with bounded complexity, differential LL etc) which could
suggest interesting extensions of classical PCF. For these reasons, we think that the LL-based
semantics of classical PCF is worth being further studied.

Acknowledgments. We would like to thank the referees for their careful reading of this
paper and their insightful remarks, as well as Thomas Streicher for a long and very useful
discussion at an early stage of this work.
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Abstract
The uniform one-dimensional fragment U1 of first-order logic was introduced recently as a natural
generalization of the two-variable fragment FO2 to contexts with relation symbols of all arities. It
was shown that U1 has the exponential model property and a NExpTime-complete satisfiability
problem. In this paper we investigate two restrictions of U1 that still contain FO2. We call
these logics RU1 and SU1, or the restricted and strongly restricted uniform one-dimensional
fragments. We introduce Ehrenfeucht-Fraïssé games for the logics and prove that while SU1 and
RU1 are expressively equivalent, they are strictly contained in U1. Furthermore, we consider
extensions of the logics SU1, RU1 and U1 with unrestricted use of a single built-in equivalence
relation ∼. We prove that while all the obtained systems retain the finite model property, their
complexities differ. Namely, the satisfiability problem is NExpTime-complete for SU1(∼) and
2-NExpTime-complete for both RU1(∼) and U1(∼). Finally, we show undecidability of some
natural extensions of SU1(∼).
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1 Introduction

Two-variable logic FO2 was proved decidable in [17], and the satisfiability and finite satisfia-
bility problems of FO2 were shown NExpTime-complete in [7]. The extension of two-variable
logic with counting quantifiers, FOC2, was proved decidable in [8], [18]. It was subsequently
shown to be NExpTime-complete in [20]. Research on extensions and variants of two-variable
logic is currently very active. Recent research efforts have mainly concerned decidability and
complexity issues over restricted classes of structures, and also questions related to different
built-in features and operators that increase the expressivity of the base language. Recent
articles in the field include for example [3, 11, 21, 23], and several others.

Typical systems of modal logic are contained in two-variable logic, or some variant of
it, and hence investigations on two-variable logics have direct implications on various fields
of computer science, including verification of software and hardware, distributed systems,
knowledge representation and artificial intelligence. However, two-variable logics do not cope
well with relations of arities greater than two, and therefore the scope of related research is
significantly restricted. In database theory contexts, for example, two-variable logics as such
are often not directly applicable due to the severe arity-related limitations.

Uniform one-dimensional fragment U1 of first-order logic is a recently introduced formalism
that generalizes two-variable logic to contexts with relation symbols of all arities. The fragment
was originally defined in [9] and studied further in [10]. The fragment is based on restricting
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first-order logic in two ways. Firstly, quantification is restricted to blocks of existential
(universal) quantifiers that leave at most one free variable in the resulting formula. Secondly,
a uniformity condition applies to the use of atomic formulas: a Boolean combination of atoms
R(x1, ..., xk) and S(y1, ..., yn), where k, n ≥ 2, is allowed only if {x1, ..., xk} = {y1, ..., yn}.
Boolean combinations of formulas with at most one free variable can be formed freely, and
the use of equality is unrestricted.

It was established in [9] that if either of the two restrictions, one-dimensionality or
uniformity, is lifted in a canonical way, the resulting formalism is undecidable. It was also
established that already the equality-free fragment of U1 can define properties not expressible
in FOC2 and also properties not expressible in the recently introduced guarded negation
fragment [2], which significantly generalizes the guarded fragment [1] and unary negation
fragment [14]. It was later established in [10] that U1 has the finite model property and that
the satisfiability problem of U1 is NExpTime-complete. Thus the increase in expressivity
when going from FO2 to U1 comes without cost in complexity. However, it was also proved
in [10] that, in contrast to FO2, adding counting quantifiers to U1 leads to undecidability.

In this paper we investigate two restrictions of U1 that still contain FO2. We call
these logics RU1 and SU1, or the restricted and strongly restricted uniform one-dimensional
fragments. We begin our study by investigating the expressive power of the logics U1, RU1
and SU1. We first provide Ehrenfeucht-Fraïssé game characterizations for our fragments; the
rather simple and natural characterizations provide a nice algebraic perspective on the logics.
We then establish that while SU1 and RU1 are expressively equivalent, they are strictly
contained in U1. Strictness of the containment follows by use of the EF-game for SU1.

We then consider extensions of the logics SU1, RU1 and U1 with a single built-in
equivalence relation ∼ which can be used freely, i.e., the uniformity conditions do not apply
to the use of ∼. We prove that while all the obtained systems retain the finite model
property, their complexities differ. Namely, the satisfiability problem is NExpTime-complete
for SU1(∼) and 2-NExpTime-complete for both RU1(∼) and U1(∼). Thus we provide a
complete classification of the complexities of the logics SU1(∼), RU1(∼) and U1(∼).

We finish the investigations in this paper by establishing undecidability of some natural
extensions of SU1(∼). We show undecidability of the extension of SU1 with two equivalence
relations as well as the extension with one transitive relation. This contrasts with the case of
FO2 which remains decidable when extended by two equivalence relations [12, 13] or one
transitive relation [23]. FO2 with three equivalence relations is undecidable [12].

Built-in equivalence relations have played a visible role in recent investigations on two-
variable logics, see for example [4, 5, 12, 13]. The articles [4, 5] discuss applications of
two-variable logics with built-in equivalences in the context of data words and XML reasoning.
In addition to being relevant in the context of data words, two-variable logics with equivalence
relations naturally embed various different kinds of epistemic logics, where equivalence rela-
tions naturally correspond to epistemic indistinguishability relations of agents. Furthermore,
the idea of adding equivalence relations in order to increase expressivity has been recently
investigated in the context of interval temporal logics; see, e.g., [16].

Two-variable logics and guarded fragments are currently the two principal frameworks
used for identifying decidable fragments of first-order logic. Originally, the logic U1 was
defined to be a generalization of FO2, and in this respect U1 is to FO2 what the guarded
negation fragment is to the guarded fragment—a reasonable generalization. U1 has the
same complexity as FO2, and—as discussed above—its extension with counting quantifiers
as well as its variants without either the uniformity or the one-dimensionality constraint,
are undecidable. However, there are of course other decidable generalizations of FO2, such



E. Kieroński and A. Kuusisto 599

as FOC2 and the novel logics RU1 and SU1. Hence it is important, we believe, to try to
better understand the realm of decidable logics above FO2. The investigations in this article
contribute towards that aim. In particular, we observe, e.g., that the generalization SU1 of
FO2 is of lower complexity than U1 and RU1 in the presence of a built-in equivalence.

2 Preliminaries

We let Z+ denote the set of positive integers and N the natural numbers. If a is a finite tuple
of elements, we write b ∈ a in order to indicate that b is one of the elements of the tuple.
By (u, ..., u) we denote a finite tuple where each position contains the same element u; the
arity of the tuple is unimportant or known from the context when this notation is used. We
recall that

∧
∅ = > and

∨
∅ = ⊥. The order of priority of logical connectives when brackets

are left unwritten is such that first come ∧, ∨, and after that come →, ↔. The length of a
formula ϕ is denoted by ‖ϕ‖.

Let V denote a complete relational vocabulary, i.e., V :=
⋃
k∈Z+

τk, where τk denotes
a countably infinite set of k-ary relation symbols. Every vocabulary we consider below is
assumed to be a subset of V . In the sections concerning expressivity, we use the symbol σ in
order to refer to finite vocabularies. In investigations concerning complexities of satisfiability
problems, the vocabulary of the set of input formulas is always V extended with the special
built-in symbols such as the equivalence relation symbol ∼. In this article a σ-model A is a
model that interprets at least the relation symbols in the vocabulary σ.

We let VAR = { vi | i ∈ N } be the set of first-order variables. We mostly use meta-
variables x, y, z, x1, x2, x3, etc., in order to denote variables in VAR. We let diff (x1, ..., xm)
denote the conjunction

∧
1≤ i < j≤m xi 6= xj . We define diff (x) := x = x.

Let X = {x1, ..., xm} 6= ∅ be a finite set of variable symbols. Let R be a k-ary relation
symbol. if {xi1 , ..., xik} = X. Equalities x = y are not {x, y}-atoms, since the definition
requires a relation symbol to be used. A formula is called an X-literal if it is an X-atom or
a negated X-atom.

Let τ be a vocabulary. A k-ary τ -atom is an atomic τ -formula ψ such that

|{x ∈ VAR | ψ contains an instance of x }| = k.

For example, if P ∈ τ is a unary and R ∈ τ a ternary symbol, then P (x), x = x, R(x, x, x)
are unary τ -atoms, and R(v1, v2, v2), v1 = v2 are binary τ -atoms.

The set of τ -formulas of the uniform one-dimensional fragment U1 is the smallest set F
satisfying the following conditions.
1. Every unary τ -atom is in F . Also ⊥,> ∈ F .
2. Every identity atom x = y is in F .
3. If ϕ ∈ F , then ¬ϕ ∈ F .
4. If ϕ,ψ ∈ F , then (ϕ ∧ ψ) ∈ F .
5. Let Y := {x0, ..., xk} ⊆ VAR and X ⊆ Y . Let ϕ be a Boolean combination of X-atoms

over τ and formulas in F whose free variables (if any) are in Y . Then
a. ∃x1...∃xk ϕ ∈ F and
b. ∃x0...∃xk ϕ ∈ F .

For example ∃y∃z
(
¬Sxyz∧Py∧(Syzx∨Tzyxz)

)
is a U1-formula, while ∃y∃z(Rxy∧Ryz)

is not. Now consider the U1-formula ∃y∃z
(
x 6= y ∧Ryz

)
. The free variable x does not occur

in the set {y, z} that corresponds to the set X in clause 5 of the definition of U1. Consider
the clause 5.a which states that “∃x1...∃xkϕ ∈ F ." Change the clause 5.a to the novel clause
“if x0 ∈ X, then ∃x1...∃xkϕ ∈ F ." The five clauses with this modified version of clause 5.a
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600 Uniform One-Dimensional Fragments with One Equivalence Relation

define the set of τ -sentences RU1. Note that in clause 5, the formula ϕ does not have to
contain any X-atoms, so formulas such as ∃y∃z

(
x 6= y ∧ x 6= z) are in U1 and RU1.

Consider the RU1-formula ∃y∃z
(
Rxy∧ y 6= z

)
. The free variable z is not in the set {x, y}

which corresponds to the set X in clause 5 of the defintion of U1. Consider the variant of the
clause 5.a stating that “if x0 ∈ X and X = {x0, ..., xk}, then ∃x1...∃xkϕ ∈ F ." Consider also
a variant of the rule 5.b which states that “if X = {x0, ..., xk}, then ∃x0...∃xkϕ ∈ F ." The
five clauses with these modified versions of 5.a and 5.b define the set of τ -sentences of SU1.

The above minor modifications to the syntax of U1 that lead to RU1 and SU1 deal with the
way free and bound variables of formulas interact with relation symbols of higher arities. The
modifications lead to interesting complexity issues, as we will see. Our Ehrenfeucht-Fraïssé
characterizations show that the (initially perhaps somewhat complicated) logics correspond
to natural algebraic back and forth conditions that extend the well-known two-pebble games
for FO2. It is worth noting that clearly even the weakest of our logics, SU1, contains FO2.

We then define extensions of the three logics U1, RU1, SU1 by a single built-in equivalence
relation ∼. A formula ϕ is a τ -formula of U1(∼) if and only if it can be obtained from some
τ -formula of U1 by replacing any number of equality symbols = by the equivalence symbol
∼. The logics RU1(∼) and SU1(∼) are defined analogously from RU1 and SU1.

We define the quantifier block rank of a U1-formula ϕ, or qbr(ϕ), as follows.
1. qbr(ϕ) = 0 iff ϕ is quantifier-free.
2. qbr(ϕ ∧ ψ) = max(qbr(ϕ), qbr(ψ)); qbr(¬ϕ) = qbr(ϕ).
3. Assume ϕ := ∃xχ, where χ does not begin with ∃. Then qbr(ϕ) = qbr(χ) + 1.

We define the quantifier width of a U1-formula ϕ, or qw(ϕ), as follows.
1. qw(ϕ) = 1 iff ϕ is atomic and has a free variable. > and ⊥ have quantifier width 0.
2. qw(ϕ ∧ ψ) = max(qw(ϕ), qw(ψ)); qw(¬ϕ) = qw(ϕ).
3. Assume ϕ := ∃x1...∃xk χ, where χ does not begin with ∃. If ϕ has a free variable, then

qw(ϕ) = max(1 + k, qw(χ)). If ϕ is a sentence, then qw(ϕ) = max(k, qw(χ)).

The pair (qbr(ϕ), qw(ϕ)) is the rank of a U1-formula. Note that SU1 and RU1 are
fragments of U1, so various technical definitions, such as the above definition of a notion of
rank, automatically concern SU1 and RU1 as well.

Let x denote a tuple of variables. Let χ := ∃xϕ be a U1-formula formed by using the
formula construction rule 5. Assume ϕ is quantifier-free. Then we call ϕ a U1-matrix. If
ϕ does not contain k-ary atoms for any k ≥ 2, with the possible exception of equality
atoms x = y, then we define Sϕ := ∅. Otherwise we define Sϕ to be the set X used in the
construction of χ (see rule 5). The set Sϕ is the set of live variables of ϕ. Let ψ(x0, ..., xk)
be a U1-matrix, where (x0, ..., xk) enumerates the variables of ψ. Let A be a structure and
a0, . . . , ak ∈ A. We let live

(
ψ(x0, ..., xk)[a0, . . . , ak]

)
denote the smallest set T ⊆ {a0, ..., ak}

such that ai ∈ T if xi is a live variable of ψ(x0, ..., xk). We may write live
(
ψ[a0, ..., ak]

)
instead of live

(
ψ(x0, ..., xk)[a0, . . . , ak]

)
when no confusion can arise. Notice that since the

elements ai are not required to be distinct, it is possible that |live(ψ[a0, ..., ak])| is smaller
than the number of live variables in ψ.

2.1 Normal form and types
We introduce a normal form for our uniform one-dimensional logics which is inspired by the
Scott normal form for FO2 [22]. We say that a U1(∼) (SU1(∼), RU1(∼)) formula ϕ is in
generalized Scott normal form if ϕ has the following shape∧

1≤i≤m∃

∀x∃y1 . . . yki
ϕ∃
i ∧

∧
1≤i≤m∀

∀x1 . . . xliϕ
∀
i , (1)



E. Kieroński and A. Kuusisto 601

where ϕ∃
i = ϕ∃

i (x, y1, . . . , yki) and ϕ∀ = ϕ∀
i (x1, . . . , xli) are quantifier-free. The following

proposition is a natural generalisation of Proposition 1 in [10]. It can be proved in the
standard fashion, see, e.g., [6].

I Proposition 1. For every U1(∼) (SU1(∼), RU1(∼)) formula ϕ, one can compute in
polynomial time a U1(∼) (SU1(∼), RU1(∼)) formula ϕ′ in generalized Scott normal form
(over a signature extended by some fresh unary symbols) such that ϕ and ϕ′ are satisfiable
over the same domains. Any model of ϕ can be expanded to a model of ϕ′ by defining new
unary symbols. Any model of ϕ′ restricted to the signature of ϕ is a model of ϕ.

Let ϕ be a U1(∼) formula in generalized normal form, let A |= ϕ, a ∈ A, and let b1, . . . , bki

be such that A |= ϕ∃
i [a, b1, . . . , bki

]. We say that B = A�{a, b1, . . . , bki
} (i.e., the restriction

of A to {a, b1, . . . , bki
}) is a witness structure for a and ϕ∃

i . The substructure of B restricted
to the elements of live(ϕ∃

i [a, b1, . . . , bki ]) is called the live part of B. If the live part of B
does not contain a, then it is called free. Note that |B| may be smaller than ki + 1. Also, a
may be a member of the live part of B even if the variable x is not live in ϕ∃

i .
Let σ be a finite vocabulary. Let B be a σ-model. Let k ≥ 1 be an integer and

b = (b1, ..., bk) ∈ Bk a tuple of distinct elements of B. Let X = {x1, ..., xk} be a set of k
distinct variables. Let T be the set of exactly all X-literals ϕ(x1, ..., xk) over σ such that
B |= ϕ(b1, ..., bk). The conjunction

∧
T is the diagram type of B, b over σ and with respect to

the tuple (x1, ..., xk). We denote this formula by δB,bσ (x1, ..., xk). We assume some standard
syntactic form (ordering of conjuncts and bracketing), so that if two formulas δA,aσ (x1, ..., xk)
and δB,bσ (x1, ..., xk) are equivalent, they are one and the same formula.

Let τ ⊆ V be a finite vocabulary. A 1-type over τ is a maximal satisfiable set of literals
(atoms and negated atoms) over τ in the variable v1. The set of all 1-types over τ is denoted
by α[τ ], or just by α when τ is clear.

We identify 1-types α and conjunctions
∧
α. A k-table over τ is a maximal satisfiable set

of {v1, ..., vk}-atoms and negated {v1, ..., vk}-atoms over τ . Recall that a {v1, ..., vk}-atom
must contain exactly the variables in {v1, ..., vk}, and note that a 2-table contains neither
equality formulas nor negated equality formulas. We identify k-tables β and conjunctions∧
β. We note that k-tables and diagram types are closely related notions.
Let A be a τ -structure, and let a ∈ A. Let α be a 1-type over τ . We say that a

realizes α if α is the unique 1-type such that A |= α[a]. We let tpA(a) denote the 1-type
realized by a. Similarly, for distinct elements a1, . . . , ak ∈ A, we let tbA(a1, . . . , ak) denote
the unique k-table realized by the tuple (a1, . . . , ak), i.e., the k-table β(v1, ..., vk) such that
A |= β[a1, . . . , ak]. Note that we have tpA(a) ≡ tbA(a) for every a ∈ A.

Let us further introduce some new helpful terminology. A multitype is a function α→ N.
We say that a multitype θ is a k-multitype if

∑
α∈α θ(α) = k. For a given set {a1, . . . , ak}

of distinct elements from a structure A, we say that they realize a k-multitype θ, if for
each α ∈ α, we have that θ(α) is the number of elements in {a1, . . . , ak} of 1-type α. If A
interpretes an equivalence relation ∼, then we say that a multitype is realized in a class D if
it is realized by a subset of elements of the equivalence class D of A. We say that a multitype
is realized by a class if it is realized by the set of all elements of this equivalence class.

3 Games for U1 and SU1

In this section we provide Ehrenfeucht-Fraïssé game characterizations for U1 and SU1. A
similar characterization exists for RU1, but we will not discuss it explicitly.

We will below define the games rigorously, but roughly, the game for U1 involves positions
encoded by a bijection between finite subsets of two models. Spoiler chooses (at most) one
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602 Uniform One-Dimensional Fragments with One Equivalence Relation

pair (u, u′) of bijectively related points. Then he chooses a finite blue set B and a green set
G ⊆ B from one of the models such that we have u ∈ B or u′ ∈ B, depending on which
model B was chosen from. Duplicator responds by a new bijection from B onto a subset of
the other model. Intuitively, the bijection defines counterparts of the blue and green sets in
the other model. Information about the relations of the two models in restriction to the sets
B, G and their counterparts in the other model, are then compared (in a way specified later).

Let σ be a finite vocabulary. Let A and D be σ-models. Let k ∈ N and n ∈ Z+. Let
S ⊆ A and T ⊆ D be finite (possibly empty) sets such that |S| = |T |. Let f : S → T be
a bijection. We next define the game Gk,nσ (A, S, f,D, T ) that characterizes expressivity of
U1-formulas of rank (k, n) and over σ.

The game is played between two players, Spoiler and Duplicator. The game begins from
the position (A, Sk, fk,D, Tk), where Sk = S, Tk = T and fk = f . If k = 0, the (play of
the) game ends immediately in the beginning position (A, S, f,D, T ). If k 6= 0, the game is
played for k rounds; the game begins with round k, and each round j 6= 0 is followed by
round j − 1. Round j ∈ {1, ..., k} begins from a position denoted by (A, Sj , fj ,D, Tj) and
ends in a position (A, Sj−1, fj−1,D, Tj−1), and the game ends in a position (A, S0, f0,D, T0);
for each j ∈ {0, ..., k}, we have Sj ⊆ A and Tj ⊆ D, while fj is a bijection from Sj onto
Tj . Round j ∈ {1, ..., k} consists of a move by Spoiler and a response by Duplicator. These
actions determine how the positions of the game arise and evolve.

In round j, Spoiler first decides whether he wants to make a local or a global move.
Assume first that he decides upon a local move. Local moves are allowed only when Sj
and Tj are nonempty. Spoiler chooses one of the pairs A, Sj and D, Tj . Let us assume
he chooses A, Sj . Spoiler then chooses an element r ∈ Sj and sets B ⊆ A and G ⊆ B

such that |B| ≤ n and r ∈ B. We call r the red element coloured by Spoiler in round j,
and we call B and G the sets of blue and green elements coloured by Spoiler in round j.
(Note that green elements are blue as well, and the red element r must be blue and can be
green.) Once Spoiler has appointed the element r and the sets G and B, Duplicator chooses
an injection h : B → D such that h(r) = fj(r). The game continues from the position
(A, Sj−1, fj−1,D, Tj−1) := (A, B, h,D, h(B)). (We define h(B) = {h(b) | b ∈ B }.)

If Spoiler chooses the pair D, Tj instead of A, Sj , the rules of the game are symmetric;
Spoiler chooses a red element r′ ∈ Tj and blue and green sets B′ ⊆ D and G′ ⊆ B such
that |B′| ≤ n and r′ ∈ B′. Duplicator responds by an injection h : B′ → A such that
h(r′) = f−1

j (r′), where f−1
j denotes the inverse function of the bijection fj . The inverse

function of the injection h is the novel bijection fj−1 from the novel set Sj−1 := h(B′) onto
the blue set B′. Of course Tj−1 := B′.

If Spoiler decides upon a global move instead of a local one, he first chooses one of the
structures A and D. Let us assume that he chooses A. Spoiler then chooses a blue set B ⊆ A
and a green set G ⊆ B such that |B| ≤ n. Duplicator responds by an injection h : B → D.
The game continues from the position (A, Sj−1, fj−1,D, Tj−1) := (A, B, h,D, h(B)). Again
if Spoiler chooses the structure D instead of A, he chooses the blue and green sets B′ and G′
from D. Duplicator then responds by an injection h from B′ into A. The inverse function of
h becomes the bijection fj−1. Of course |B′| ≤ n and G′ ⊆ B′.

We then describe the winning conditions of the game. We begin with some auxiliary
definitions. Let X be a set, and let l ∈ Z+. Let (u1, ..., ul) ∈ X l be a tuple and Y ⊆ X. We
say that (u1, ..., ul) spans the set Y if {u1, ..., ul} = Y . Note that it is possible that (u1, ..., ul)
spans Y even if |Y | < l.

Let A and D be σ-structures. Let G ⊆ A and G′ ⊆ D be finite sets. Let f be a bijection
from G onto G′. We say that f preserves spanning tuples over σ and write A, G 〈f, σ〉 D, G′,
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if for each symbol R ∈ σ and each tuple a that spans G, we have a ∈ RA ⇔ f(a) ∈ RD.
(We define f(a) = (f(a1), ..., f(ap)), where a = (a1, ..., ap).)

Duplicator wins a play of the game Gk,nσ (A, S, f,D, T ) iff the conditions below hold.
1. Consider round j ∈ {1, ..., k} of the game. If Spoiler makes his moves in A, then let

G ⊆ A be the green set coloured by Spoiler in round j. If Spoiler makes his moves in D,
let G be the set h(G′), where G′ ⊆ D is the green set coloured by Spoiler in round j and
h is the injection chosen by Duplicator. The restriction of fj−1 to G preserves spanning
tuples over σ, i.e., A, G 〈fj−1 � G, σ〉 D, fj−1(G).

2. Recall that (a, ..., a) denotes a tuple where each coordinate position contains a. Let j ∈
{0, ..., k}. For all R ∈ σ and all a ∈ Sj , we have (a, ..., a) ∈ RA ⇔ (fj(a), ..., fj(a)) ∈ RD.
In particular, a ∈ PA ⇔ fj(a) ∈ PD for each unary symbol P ∈ σ and each a ∈ Sj .

We write A, S ∼k,nf,σ D, T if Duplicator has a winning strategy in the game. A strategy of
Duplicator is simply a function that takes as an argument a position in the game together
with a move of Spoiler in that position; the value of the function with such an input is
a specification of the response move of Duplicator. A strategy is a winning strategy if it
guarantees a win in every play of the game.

Now consider a variant Ĝk,nσ (A, S, f,D, T ) of the game Gk,nσ (A, S, f,D, T ) defined by
adding to the game Gk,nσ (A, S, f,D, T ) the additional rule that the green set chosen by
Spoiler must always be either empty or equal to the blue set. In other words, if B and G are
the blue and green sets chosen in some round of the game, then we have G ∈ {∅, B}. Let
∼̂k,nf,σ denote the relation analogous to ∼k,nf,σ but concerning the new variant of the game.

Let A and D be σ-models. Let S ⊆ A and T ⊆ D be equicardinal finite sets, and let
f : S → T be a bijection. We write A, S ≡k,nf,σ B, T if the equivalence A |= ϕ(a) ⇔ D |=
ϕ(f(a)) holds for all tuples a of elements of S and all U1-formulas ϕ(x) of rank (k, n) over σ.
We let ≡̂k.nf,σ denote the relation analogous to ≡k,nf,σ but concerning SU1-formulas instead of
U1-formulas. When σ is clear or irrelevant, we may leave it unwritten.

The following theorem is relatively easy but tedious to prove. A detailed proof will be
presented in the full version of the paper.

I Theorem 2. A, S ≡k,nf D, T ⇔ A, S ∼k,nf D, T and A, S≡̂k,nf D, T ⇔ A, S∼̂k,nf D, T .

4 Comparing the expressive power

In this section we first establish that SU1 is strictly less expressive than U1.
Let R be a ternary relation. The U1-sentence

∃v∀x∀y∀z
(
Rxyz → (v = x ∨ v = y ∨ v = z)

)
states that some v belongs to every tuple of R. Let us call this the covering node property.

I Theorem 3. The covering node property is not expressible in SU1.

Proof. We begin by defining two models M and N with a ternary relation R. Intuitively,
both of these models represent a hypergraph where each edge has exactly three elements. We
define the model M = (M,RM) such that M = {0, 1, 2, 3, 4, 5, 6} and for each (u, v, w) ∈M3,
we have (u, v, w) ∈ RM iff {u, v, w} ∈ { {0, 1, 2}, {0, 3, 4}, {0, 5, 6} }. We define the model
N = (N,RN) such that N = {a, b, c, d, e, f, g}, and for each (u, v, w) ∈ N3, we have
(u, v, w) ∈ RN iff {u, v, w} ∈ { {a, b, c}, {c, d, e}, {e, f, g} }. We note that while M satisfies
the covering node property, N does not.
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We then fix some terminology for later use. Let A = (A,RA) be a model that represents a
hypergraph where each edge has exactly three elements, meaning that for each (u, v, w) ∈ A3,
if (u, v, w) ∈ RA, then every permutation of the tuple (u, v, w) is also in RA and |{u, v, w}| = 3.
Let t ∈ A. We say that t is incident to an edge if we have (t, t′, t′′) ∈ RA for some elements
t′, t′′ ∈ A. We say that t is incident to a gap if there exist elements t′, t′′ ∈ A such that
(t, t′, t′′) 6∈ RA and |{t, t′, t′′}| = 3. A subset S of A is an edge iff S = {s, s′, s′′} for some
elements s, s′, s′′ such that (s, s′, s′′) ∈ RA.

Fix an arbitrary pair (k, n); we will show that M, ∅ ≡̂k,n∅ N, ∅ by using the game for SU1.
Assume first a position (M, S, f,N, T ) has been reached in the game. We show how

Duplicator plays in that position.
Assume Spoiler chooses a blue set B and a green set G ∈ {B, ∅}. If Spoiler is making a

local move, he also chooses a red element r which is in S ∩B if Spoiler moves in A and in
T ∩B otherwise. If |B| 6= 3, Duplicator responds by choosing an arbitrary injection h that
maps the elements of B into the other model, and if Spoiler has made a local move, then
also h(r) = f(r) or h(r) = f−1(r) holds. Duplicator can always do this since |M | = |N |.

If |B| = 3, then the move of Duplicator depends on whether B is an edge. We assume
that G = B. (In the case where G = ∅, Duplicator acts precisely the same way as in the case
G = B.) Duplicator must choose an injection h′ such that h′(B) is an edge iff also B is an
edge. Furthermore, if Spoiler has made a local move and thus appointed a red element r′,
which is necessarily in S ∩B or in T ∩B (depending on which model Spoiler moves in), the
injection h′ must map r′ to f(r′) or f−1(r′). Duplicator can always choose such an injection
h′ since in both models, each element is incident to an edge as well as a gap. J

On the other hand, it turns out that RU1 and SU1 have the same expressive power.

I Theorem 4. RU1 and SU1 are expressively equivalent.

Proof. Let σ be the vocabulary of a formula to be translated. It is easy to show that
σ-formulas of RU1 can be represented in a normal form where each formula ∃xϕ is such that
ϕ has the following shape

δ(x1, ..., xq) ∧ diff (x1, ..., xr) ∧
∧

i∈{1,...,r}

τi(xi),

where δ(x1, ..., xq) is a diagram type, q ≤ r, and the formulas τi(xi) are so-called types of
rank (k, n). Types of rank (k, n) have the property that for each i and j 6= i, either τi(y) and
τj(y) are equivalent, or the conjunction τi(y) ∧ τj(y) is not satisfiable. Types of rank (k, n)
have various analogous incarnations in various different contexts of finite model theory; see
for example [15] for rank-k types for FO and also similar types for finite variable logics.

We define a translation t from such normal form formulas into SU1 such that t(ϕ) = ϕ

for atoms and t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ) and t(¬ϕ) = ¬t(ϕ). Formulas ∃xϕ are trickier to
translate. Let χ(x1) := ∃x2...∃xrψ, where ψ is the formula δ(x1, ..., xq) ∧ diff (x1, ..., xr) ∧∧
i∈{1,...,r} τi(xi). Let us translate χ(x1) into SU1. Define χ′(x1) to be the formula

∃x2...∃xq
(
δ(x1, ..., xq) ∧ diff (x1, ..., xq) ∧

∧
i∈{1,...,q}

τi(xi)
)

∧ ∃x2...∃xr
(
diff (x1, ..., xr) ∧

∧
i∈{1,...,r}

τi(xi)
)
.

(Notice carefully how the indices q and r are now placed.) Recalling the properties of the
formulas τi(xi) discussed above, it is easy to see that χ′(x1) is equivalent to χ(x1). The
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translation t(χ(x1)) is obtained from χ′(x1) by replacing the conjuncts τi(xi) in the above
conjunctions by t(τi(xi)).

Now consider a formula γ := ∃xψ without free variables. Remove one variable y from x

and let η(y) denote the obtained formula; the variable y is assumed to be part of the diagram
type in ψ. Now obtain from η(y) the formula t(η(y)) in the way t(χ(x1)) was obtained from
χ(x1) above. We define t(γ) := ∃y t(η(y)). J

5 Built-in equivalence relations and complexity

It is not difficult to show (e.g., using the games we introduced in this paper) that uniform
one-dimensional logics cannot express that a binary relation is an equivalence. In this section
we consider the logics U1(∼), RU1(∼), SU1(∼) that have free use of the equivalence relation
∼. (An alternative, but less interesting and less expressive variant would allow only uniform
use of ∼, i.e., the use of ∼ as if it was an ordinary binary relation symbol.)

Even in the simplest of the three logics, SU1(∼), one can express pretty complex properties
such as, e.g., the existence of at most two equivalence classes with more than two elements:

∀x1...x9
(
diff (x1, . . . , x9) ∧ (x1 ∼ x2 ∼ x3) ∧ (x4 ∼ x5 ∼ x6) ∧ x1 6∼ x4

→ x7 ∼ x1 ∨ x7 ∼ x4 ∨ x7 6∼ x8 ∨ x7 6∼ x9
)
.

Unrestricted use of ∼ allows also for a non-trivial interaction of ∼ with relations of arity
greater than 2. One can express, e.g, that if, say, four elements are connected by a four-ary
predicate R, then they are members of at least two equivalence classes.

We first observe that in RU1(∼), models of doubly exponential size can be enforced, and
use this to show a 2-NExpTime-lower bound for the satisfiability problem. Then we show
that all our logics have the exponential classes property: if a formula is satisfiable, then it
has a model in which all equivalence classes are bounded exponentially. We further use this
result to show that SU1(∼) has the exponential model property, and that both RU1(∼) and
U1(∼) have the doubly exponential model property. This leads to tight complexity bounds
for each logic.

5.1 Lower bound for RU1(∼)
In this section we show that the satisfiability and finite satisfiability problems for RU1(∼)
(and thus also for U1(∼)) are 2-NExpTime-hard. In particular this demonstrates that in
RU1(∼) one can construct satisfiable formulas whose models are of at least doubly exponential
size with respect to their length.

We employ a reduction from a variant of the tiling problem. Let Gm denote the standard
m ×m grid, Gm = ([0,m − 1]2, H, V ) with the horizontal and vertical successor relations
H and V . A tiling system is a quadruple T = 〈C, c0,Hor ,Ver〉, where C is a non-empty,
finite set of colours, c0 is an element of C, and Hor , Ver are binary relations on C called the
horizontal and vertical constraints, respectively. A tiling for T of a grid Gm is a function
f : Gm → C such that f(0, 0) = c0, and for all (d, d′) ∈ H, the pair 〈f(d), f(d′)〉 is in Hor ,
and for all (d, d′) ∈ V , the pair 〈f(d), f(d′)〉 is in Ver . The doubly exponential tiling problem
consists in checking for a given n ∈ N written in unary, and a tiling system T , if T has a
tiling of the grid Gm, where m = 22n . It is well known that the doubly exponential tiling
problem is 2-NExpTime-complete (see, e.g., [19], p. 501).

I Theorem 5. The satisfiability and the finite satisfiability problems for RU1(∼) are hard
for 2 -NExpTime.
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606 Uniform One-Dimensional Fragments with One Equivalence Relation

The proof is similar in spirit to the proof of the 2-NExpTime-lower bound for the
two-variable fragment with two equivalence relations given in [11]. The crux is a succinct
axiomatization of a grid structure of doubly exponential size.

Let U0, . . . , Un−1 be unary predicates. By taking the predicates Ui to indicate the values
of binary digits, we may take each element in any structure interpreting these predicates to
have a ‘local coordinate’ in the range [0, 2n − 1]; a point u of a model encodes the binary
string s such that the ith bit of s is 1 iff Ui(u) holds. It helps to think that an element’s
local coordinate fixes its position inside its equivalence class. We employ the abbreviation
λ=(x, y) in order to state that x and y (which may be from different classes) have the same
local coordinates; λ<(x, y) to state that the local coordinate of y is greater than the local
coordinate of x; and λ+1(x, y) to state that the local coordinate of y is one greater than the
local coordinate of x (addition modulo 2n). All these abbreviations can be defined in the
standard way using quantifier-free formulas of length polynomial in n. The formula

∀x∃y
(
x ∼ y ∧ λ+1(x, y)

)
(2)

then ensures that each class contains a collection of 2n elements, distinguished by local
coordinates in the range [0, 2n − 1].

We now endow each class with a pair of ‘global coordinates’, corresponding to the grid
coordinates in the range [0, 22n − 1]. Let X and Y be unary predicates. The conjunct

∀xy
(
x ∼ y ∧ λ=(x, y)→ ((X(x)↔ X(y)) ∧ (Y (x)↔ Y (y)))

)
(3)

ensures that elements of the same class with the same local coordinates agree on the
satisfaction of X and Y . For simplicity we allow ourselves to speak of the element of some
class with a given local coordinate, since all such elements will turn out to have identical
properties. If D is a class, we take the global X-coordinate of D to be the number in the
range [0, 22n − 1] whose jth bit (0 ≤ j ≤ 2n − 1) is 1 iff the element of D whose local
coordinate is j satisfies the predicate X. Likewise, we define the global Y -coordinate of D
using the predicate Y .

Now we enforce that for a class with global coordinates (p, q), there exists a class with
coordinates (p+ 1, q) (if p < 22n − 1) and a class with coordinates (p, q + 1) (if q < 22n − 1).

We take the predicate X1 to mark in each class the least significant position satisfying
X, and we define X0 symmetrically:

∀x
(
X1(x)↔ (X(x) ∧ ∀y(x ∼ y ∧ λ<(y, x)→ ¬X(y)))

)
, (4)

∀x
(
X0(x)↔ (¬X(x) ∧ ∀y(x ∼ y ∧ λ<(y, x)→ X(y)))

)
. (5)

Consider now the following formulas.

∀x
(
X0(x)→ ∃y(X1(y) ∧ λ=(x, y) ∧H(x, y))

)
, (6)

∀xyx′y′
(
x ∼ y ∧ x′ ∼ y′ ∧ λ=(x, x′) ∧H(y, y′)→

((Y (x)↔ Y (x′)) ∧ (λ<(y, x)→ (X(x)↔ X(x′)))
)

(7)

They link via H the element marked by X0 from one class to the element marked by X1

from another class with the X-coordinate greater by one and with the same Y -coordinate.
Let (8)–(11) be formulas analogous to (4)-(7) using predicates Y 1, Y 0 and linking via the

binary predicate V the element marked by Y 0 from one class to the element marked by Y 1

from another class with the Y -coordinate greater by one and with the same X-coordinate.
The following formula which states that there exists a class with global coordinates (0, 0),

∃x∀y(x ∼ y → ¬X(y) ∧ ¬Y (y)), (12)
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guarantees that a class with any pair of coordinates from the range [0, 22n − 1], exists. To
finish our axiomatization of the grid, it remains to enforce that any pair of global coordinates
appears at most once, or, in other words, that any pair of distinct classes have different
global coordinates. This is done by means of additional binary predicates R0, . . . , Rn−1 that
connect elements from two different classes. The binary predicates define a bit string that
indicates the local coordinate on which the bits of X- or Y -coordinates of these classes differ.

∀xyx′y′
(
x ∼ y ∧ x′ ∼ y′ ∧ ¬x ∼ x′ ∧

∧
i
(Ri(x, x′)↔ Ui(y)) ∧ λ=(y, y′)

→ ((X(y)↔ ¬X(y′))∨(Y (y)↔ ¬Y (y′)))
)

(13)

Consider the conjunction of (2)-(13). It should be clear that each of its models contains,
for any 0 ≤ p, q < 22n , precisely one class with global coordinates (p, q).

Having established a grid of doubly exponential size, the encoding of any instance of the
doubly exponential tiling problem on some tiling system (C, c0, Hor, V er) is routine. We
simply use the following formulas.

∀x
(∨

c∈C
Pc(x) ∧

∧
c 6=d
¬(Pc(x) ∧ Pd(x))

)
, (14)∧

c∈C
∀xy

(
x ∼ y ∧ Pc(x)→ Pc(y)

)
, (15)∧

〈c,d〉6∈Hor
∀xy

(
H(x, y) ∧ Pc(x)→ ¬Pd(y)

)
, (16)∧

〈c,d〉6∈V er
∀xy

(
V (x, y) ∧ Pc(x)→ ¬Pd(y)

)
, (17)

∀x (∀y(x ∼ y → (¬X(y) ∧ ¬Y (y)))→ Pc0(x)) . (18)

Notice that (18) states that the grid point with coordinates (0,0) is coloured with c0.
Let Ω be the conjunction of (2)-(18). From any model of Ω, we can read off a T -tiling of

size 22n for example by inspecting the colours assigned to the elements with local coordinate
0 in each of the 22·2n classes. On the other hand, given any tiling for T , we can construct a
finite model of Ω in the obvious way. Thus we see that: (i) if Ω is satisfiable, then (T , n) has
a tiling; (ii) if (T , n) has a tiling, then Ω is finitely satisfiable. This proves the theorem.

Note that formulas (7) and (13) are in the restricted uniform but not in strongly restricted
uniform fragment. The use of RU1(∼) formulas is indeed crucial, since, as we will show later,
SU1(∼) has the exponential model property.

5.2 Exponential classes property
In this section we show the following exponential classes property of our logics, which then
will be used as an important tool in our decidability proofs.

I Lemma 6. Let ϕ be a satisfiable formula in any of the logics SU1(∼), RU1(∼), U1(∼).
Then ϕ has a model in which each equivalence class is bounded exponentially in ‖ϕ‖.

Here we show this property for RU1(∼) (which obviously covers also the case of SU1(∼)).
An extension of the proof covering the case of U1(∼) will be presented in the full version of
the paper. The approach we employ is based up to an extent on the approach used in [12] to
establish the small substuctures property for FO2 (which was further used in that paper to
show the exponential classes property for FO2(∼)). However, due to considering a richer
logic, our proof is technically much more involved.

By Proposition 1, we can restrict attention to normal form formulas. Let us fix a normal
form RU1(∼)-formula ϕ of the form given in Equation (1) and a model A |= ϕ. Let n be the
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width of ϕ, i.e., n = max({ki + 1}1≤i≤m∃ ∪ {li}1≤i≤m∀). Recall that m∃ is the number of
∀∃∗-conjuncts of ϕ. To simplify notation, we denote m := m∃.

In a single step of our construction we consider an equivalence class D in A, a 1-type
α, and the fragment Dα ⊆ D of D consisting of all realizations of α. If |Dα| ≤ n, then we
do nothing. Otherwise, we replace Dα by a new fragment bounded polynomially in ‖ϕ‖,
obtaining a new model model A′ |= ϕ. The universe of A′ consists of A \Dα and a new set
D′α of realizations of α; A′�(A\D′α) = A�(A\Dα); and D′α is formed out of three new disjoint
sets D0

α, D1
α, D2

α such that Di
α = {ai1, . . . , aimn} for i = 1, 2, and D0

α = {a0
1, . . . , a

0
(m+1)3n2}.

For a set B ⊆ A, we call B \Dα its external fragment and B ∩Dα its internal fragment. We
also speak about external and internal fragments of witness structures and use analogous
terminology for A′. The construction of A′ is divided into several stages.

Labelling of subsets. We take a set of labels L1, . . . , Lm. For each subset B of A \Dα such
that 1 ≤ |B| < n, for each a ∈ Dα, for each 1 ≤ i ≤ m: if B forms the external fragment of
the live part of a witness structure for a and ϕ∃

i in A, then label B with Li. Note that some
subsets B may be labelled by several Lis, and some may have no labels.

Let L∗ be a fresh label. For every b ∈ A \Dα and every 1 ≤ i ≤ m, choose a witness
structure for b and ϕ∃

i in A. If the internal fragment of the live part of this witness structure
is not empty, then label the set of elements of this live part with L∗. Later on, we will take
care of replicating such a witness structure for b in A′.

Special subsets. We collect some subsets of A \Dα into a set Θ of special subsets. This set
will be sufficiently rich to provide the external fragments of the live parts of witness structures
for any element in D′α. For each label Li, 1 ≤ i ≤ m, if there are at most m subsets of
A \Dα labelled by Li, then make all of them members of Θ; call such a label rare. Otherwise,
choose m+ 1 such subsets and make them members of Θ. Note that |Θ| ≤ (m+ 1)m, and
thus it is bounded polynomially in ‖ϕ‖.

Witnesses for Θ. Now, for each subset B ∈ Θ, we replicate in A′ those witness structures
from A whose live parts are labelled by L∗ and their external fragments equal B. Assume
B = {b1, . . . , bk}. For each {a1, . . . , al} ⊆ Dα, l ≥ 1, such that {b1, . . . , bk, a1, . . . , al} is
labelled by L∗, take fresh elements a′1, . . . , a′l from D0

α and set tbA′(b1, . . . , bk, a
′
1, . . . , a

′
l) :=

tbA(b1, . . . , bk, a1, . . . , al). We simultanously begin defining a pattern function f : D′α → Dα

by setting f(a′i) := ai for 1 ≤ i ≤ l. Let us estimate the number of elements in D0
α required

for this step: There are at most (m+ 1)m subsets B in Θ, each of them of size smaller than
n. In Step Labelling of subsets, each element of such B could produce at most m witness
structures labelled with L∗, and each such structure has less than n elements in Dα. Thus
we need at most (m+ 1)m(n− 1)m(n− 1) elements, and we indeed have that many, as we
declared D0

α to have (m+ 1)3n2 elements.
For all elements a′ of D0

α not used in the above step, as well as for elements a′ from
D1
α ∪D2

α, choose an arbitrary element a ∈ Dα and set f(a′) := a.

Witnesses for elements of D0
α. Let a′ ∈ D0

α. If there is a subset in Θ such that a′ was
used to replicate a witness structure labelled by L∗ in stage Witnesses for Θ, then call this
set B∗a′ (by our construction, there is at most one such set). We then continue without
assuming that a′ was necessarily used for replicating a set labelled L∗. Let a = f(a′) be the
pattern element for a′. For each 1 ≤ j ≤ m such that Lj is rare, find a witness structure
Bj for a and ϕ∃j in A. Assume that Bj = {a, a1 . . . , ak, ak+1, . . . , as, b1, . . . , bl, bl+1, . . . , bt},
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with ai ∈ Dα for 1 ≤ i ≤ s and bi ∈ A \Dα for 1 ≤ i ≤ t, and that the live part of Bj is
B̄j = {a, a1 . . . , ak, b1, . . . , bl}. It may happen that l = 0, which means that the live part of
the witness structure is contained in Dα. Otherwise, the set {b1, . . . , bl} is labelled by Lj (and
possibly some other labels) and is a member of Θ. We set tbA′(a, a1

(j−1)n+1, . . . , a
1
(j−1)n+k, b1,

. . . , bl) := tbA(a, a1, . . . , ak, b1, . . . , bl). Note that this guarantees that the structure defined
on the set {a′, a1

(j−1)n+1, . . . , a
1
(j−1)n+k, a

1
(j−1)n+k+1, . . . , a

1
(j−1)n+s, b1, . . . , bl, bl+1, . . . , bt}

will be a witness structure for a′ and ϕ∃j in A′. Let us here comment one subtlety: if
k = 0, then it is possible that tbA′(a, b1, . . . , bl) was defined before (either in this stage for
some different j, or if B∗a′ = {b1, . . . , bl}, in the step Witnesses for Θ). Note, however, that
there is no danger of conflict here, since this earlier definition must agree with the new one.

For each 1 ≤ j ≤ m such that Lj is not rare, let {b1, . . . , bl} be a subset from Θ labelled
by Lj , different from B∗a′ , and not yet used for a′ for any other j (note that such a subset
exists, since there are m+ 1 subsets labelled by Lj in Θ, and at most m − 1 of them can
be used as the external parts of witness structures for a′ for other js). Let a ∈ Dα, and
let Bj be a witness structure for a and ϕ∃j in A in which the external fragment of the live
part is formed by {b1, . . . , bl}. Such a and Bj exist due to the construction of Θ. Assume
that Bj = {a, a1 . . . , ak, ak+1, . . . , as, b1, . . . , bl, bl+1, . . . , bt}, with ai ∈ Dα for 1 ≤ i ≤ s,
bi ∈ A\Dα for 1 ≤ i ≤ t. Assume the live part of Bj is B̄j = {a, a1 . . . , ak, b1, . . . , bl}. We set
tbA′(a′, a1

(j−1)n+1, . . . , a
1
(j−1)n+k, b1, . . . , bl) := tbA(a, a1, . . . , ak, b1, . . . , bl). This guarantees

that the structure defined on the set {a′, a1
(j−1)n+1, . . . , a

1
(j−1)n+k, a

1
(j−1)n+k+1, . . . , a

1
(j−1)n+s,

b1, . . . , bl, bl+1, . . . , bt} will be a witness structure for a′ and ϕ∃j in A′.

Witnesses for D1
α and D2

α. Witness structures for a′ ∈ D1
α ∪D2

α are provided in a similar
way to that described for elements of D0

α, but if a′ ∈ D1
α (a′ ∈ D2

α), then we take elements
a′i from D2

α (D0
α). This cyclic scheme guarantees that the procedure avoids conflicts.

Witnesses for subsets of A \D′
α not belonging to Θ. Let B = {b1, . . . , bl} be a subset

of A \Dα, l ≤ n, not belonging to Θ. Note that no table with external part B has yet been
defined. The number of subsets labelled by L∗ whose external part equals B is bounded
above by mn. Since the internal part of each of them has less than n elements, we can
replicate them without conflicts using mn2 elements of D0

α.

Completion. Let {a′1, . . . , a′k, b1, . . . , bl} ⊆ A′ be such that a′i ∈ D′α for 1 ≤ i ≤ k, bi ∈
A\Dα for 1 ≤ i ≤ l, k+ l ≤ n, and such that tbA′(a′1, . . . , a′k, b1, . . . , bl) has not been defined
yet. Take any pairwise distinct elements a1, . . . , ak from Dα (such elements exists, since
k ≤ n and |Dα| ≥ n) and set tbA′(a′1, . . . , a′k, b1, . . . , bl) := tbA(a1, . . . , ak, b1, . . . , bl).

This finishes the construction for replacing Dα by a small set D′α. We now argue that
the obtained model A′ is indeed a model of ϕ.

I Claim 7. A′ |= ϕ.

Proof. Let us see first that all elements have the required witness structures. Let b ∈ A′ and
1 ≤ i ≤ m. If b ∈ D′α, then an appropriate witness structure for b and ϕ∃j was constructed in
the step Witnesses for D0

α or Witnesses for D1
α and D2

α. Assume that b ∈ A′ \D′α (= A\Dα).
Either b has a witness structure for ϕ∃i in A�A \Dα and this structure is inherited into A′, or,
in the step Labelling we labelled with L∗ at least one witness structure B for b and ϕ∃j in A.
If the external fragment of the live part B̄ of this structure is in Θ, then the live part of the
corresponding witness structure in A′ was defined in step Witnesses for Θ. Otherwise it was
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defined in step Witness for subsets of A \D′α not belonging to Θ. The necessary members of
the witness structure which are not live can easily be found.

Consider now a conjunct of ϕ of the form ∀x1, . . . , xuϕ
∀
j and a tuple of not necessarily dis-

tinct elements d′1, . . . , d′u ∈ A′. We want to see that A′ |= ϕ∀j [d′1, . . . , d′u]. Let us enumerate the
elements of {d′1, . . . , d′u} by a′1, . . . , a′k, a′k+1, . . . , a

′
s, b1, . . . , bl, bl+1, . . . , bt, where a′i ∈ D′α for

1 ≤ i ≤ s, bi ∈ A\D′α for 1 ≤ i ≤ t, and live(ϕ∀j [d′1, . . . , d′u]) = {a′1, . . . , a′k, b1, . . . , bl}. By our
construction, tbA′(a′1, . . . , a′k, b1, . . . , bl) = tbA(a1, . . . , ak, b1, . . . , bl) for some a1, . . . , ak ∈
Dα (if k = 0, then simply tbA′(b1, . . . , bl) = tbA(b1, . . . , bl); otherwise the table was set either
in one of Witnesses for ... -stages or in the Completion stage). Take now any pairwise
distinct elements ak+1, . . . , as ∈ Dα different from a1, . . . , ak (this is possible since s ≤ n

and there are at least n elements in Dα) and observe that the equivalence relations among
a1, . . . , as, b1, . . . , bt are isomorphic to those among a′1, . . . , a′s, b1, . . . , bt. This guarantees
that A′ |= ϕ∀j [d′1, . . . , d′u]. J

Now, to find a small replacement of a whole class, we apply the described construction
iteratively to all Dα, where α is a 1-type realized in this class. Let D1, D2, . . . be a (possibly
infinite) sequence of the classes in a A (we can assume that A is countable due to the
Löwenheim-Skolem property), let A0 = A, and let Aj+1 be the structure Aj modified by
replacing class Dj+1 by the small replacement class D′j+1 as described above. The obtained
natural limit structure is the desired model with exponentially bounded classes.

5.3 Exponential model property for SU1(∼)
Recall that in Section 5.1 we proved a 2-NExpTime lower bound for RU1(∼). Here we show
that SU1(∼) is easier. To understand why the complexity drop is possible, consider the
conjunct (6) of the formula Ω from Section 5.1. When we look for a witness structure for an
element a satisfying X0 and this conjunct, we have to find an appropriate element b (i.e.,
an element with the same local coordinate as a, satisfying X1, connected to a by H), but
additionally, due to the conjunct (7), we must take into account the 1-types of elements from
the classes of a and b that do not belong to the witness structure. The restrictions of SU1(∼)
would not enable this. Indeed we can now prove the following theorem.

I Theorem 8. The satisfiability problem for SU1(∼) is NExpTime-complete.

To prove this theorem, we establish the exponential model propery. Thus checking if
a given formula is satisfiable can be done by nondeterministically guessing a structure of
exponentially bounded size and verifying that it is indeed a model. Such a model checking
task (for normal form formulas) can be done in polynomial time in a straighforward way.
The matching lower bound follows from the NExpTime-hardness of FO2.

I Lemma 9. Every satisfiable SU1(∼) formula ϕ has a finite model of size bounded expo-
nentially in ‖ϕ‖.

We next prove this lemma. For the rest of this section, fix a normal form formula ϕ of
SU1(∼) and a model A |= ϕ. Due to Lemma 6, we may assume that the equivalence classes
of A are bounded exponentially in ‖ϕ‖. As previously, let n be the width of ϕ and m the
number of ∀∃∗-conjuncts of ϕ. We construct a small model A′ |= ϕ in several stages.

Court. If a k-multitype, for 1 ≤ k ≤ n, is realized in less than n classes of A, then call all
these classes royal. If a k-multitype, for 1 ≤ k ≤ n, is realized only in royal classes, then
call this multitype royal. Note that it is possible that a multitype realized in more than n
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classes is royal. Let K be the union of all royal classes of A. For each a ∈ K and for each
conjunct ϕ∃

i of ϕ, find a witness structure Ca,i for a and ϕ∃
i in A. Let C be the union of

K and all the classes containing some element from some Ca,i. Note that the size of C is
bounded exponentially in ‖ϕ‖. C is called the court of A.

Universe. For all 1 ≤ k ≤ n, for each non-royal k-multitype θ realized in a class of A,
appoint one such a class Dθ. We build a new model A′ |= ϕ whose universe is C ∪

⋃
Ds
θ,u,w,

where each Ds
θ,u,w is a fresh set and the union is taken over all non-royal k-multitypes θ

realized in a class of A (1 ≤ k ≤ n), 0 ≤ s ≤ 2, 1 ≤ u ≤ n, 1 ≤ w ≤ m. For i = 0, 1, 2,
let Di be the union of all Ds

θ,u,w with s = i. We make A′ �C isomorphic to A�C, and
A′�(K ∪Ds

θ,u,w) isomorphic to A�(K ∪Dθ), for all relevant θ, s, u, w. For each Ds
θ,u,w, let

gsθ,u,w : Ds
θ,u,w → Dθ be an isomorphism. Also, for a class D in C, let gD : D → D be the

identity function. Define g : A′ → A to be g :=
⋃
D∈C/∼ gD ∪

⋃
gsθ,u,w, where the second

union is taken over all relevant θ, s, u, w. We call g the pattern function. It will return, for
each element of A′, a ’similar’ element in A. At this stage the structure of A′ is defined on C,
on each equivalence class, and on each union of a non-royal class with K. The size of A′ is
exponentially bounded in ‖ϕ‖, as required.

Witnesses. Let a′ ∈ A′ \ K. Let a be the pattern element for a′, a := g(a′). For each
1 ≤ j ≤ m, find a witness structure Ba,j for a and ϕ∃

j in A. We want to define a similar
witness structure for a′ in A′. We consider explicitly the case in which a′ ∈ D0. Assume
that the class of a′ is D0

θ,u,w. Then a ∈ Dθ. Let T0, T1, . . . , Ts, Ts+1, . . . , Tt be the division of
Ba,j into classes such that a ∈ T0 ⊆ Dθ, the sets T1, . . . , Ts (possibly s = 0) are fragments
of non-royal classes of A and Ts+1, . . . , Tt (possibly t− s = 0) are fragments of royal classes
of A. Let θi be the multitype of Ti, for 1 ≤ i ≤ t. We define a function h : Ba,j → A′ whose
image is supposed to form a witness structure for a′ in A′. For i = 1, . . . , s, let T ′i be a
set of multitype θi from D1

θi,i,j
(recall that i ≤ s ≤ n), and let hi : Ti → T ′i be a bijection

preserving 1-types. We set

h(b) :=


b′ such that g(b′) = b if b ∈ T0;
hi(b) if b ∈ Ti for 1 ≤ i ≤ s;
b if b ∈ Ti for i > s.

Let b1, . . . , bk be an enumeration of the elements of Ba,j . If s = 0, i.e., all elements of
Ba,j \ {a} are in royal classes, then A′�{h(b1), . . . , h(bk)} already forms a witness structure
for a and ϕ∃j . Otherwise we set tbA′(h(b1), . . . , h(bk)) := tbA(b1, . . . , bk).

If a′ ∈ D1, then we proceed similarly, but use elements of D2 instead of elements of
D1; if a′ ∈ D2 or a′ ∈ K \ C, then we use elements of D0 instead of elements of D1. This
circular witnessing scheme, inspired by the one from [7], together with the strategy of using
an appropriate number of copies of classes, guarantees that for each subset B ⊆ A′, the table
for some enumeration of its elements is defined at most once.

Completion. Let a′1, . . . , a′k, 1 ≤ k ≤ n, be a tuple of elements from A′ whose table is
not yet defined. Let T ′1, . . . , T ′s, T ′s+1, . . . , T

′
t be a partition of {a′1, . . . , a′k} into classes such

that the sets T ′1, . . . , T ′s are fragments of non-royal classes of A′ (this time s > 0, since
otherwise all elements of the tuple would belong to K, and thus their table would have been
already defined) and T ′s+1, . . . , T

′
t (possibly t− s = 0) are fragments of royal classes of A′.

Assume that the multitype of T ′i is θi for 1 ≤ i ≤ t. Since s ≤ n, and as the multitypes of
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T ′1, . . . , T
′
s are non-royal, we can find in distinct classes of A subsets T1, . . . , Ts such that the

multitype of Ti in A equals the multitype of T ′i in A′. For 1 ≤ i ≤ t, let h′i : T ′i → Ti be a
bijection preserving 1-types (for i > s it can be just the identity). Let h′ =

⋃
1≤i≤t h

′
i. Set

tbA′(a′1, . . . , a′k) := tbA(h′(a′1), . . . , h′(a′k)). This finishes the construction of A′.

We provided witness structures for ∀∃∗-conjuncts of ϕ for elements from K in step Court,
and for elements from A′ \K in step Witnesses. All universal conjuncts of ϕ are satisfied
since for any tuple of elements from A′, its table is defined precisely as a table in A for some
elements with the same 1-types and isomorphic equivalence connections. Thus

I Claim 10. A′ |= ϕ.

5.4 Doubly exponential model property for RU1(∼) and U1(∼)
The following result completes our discourse on complexity.

I Theorem 11. The satisfiability problems for RU1(∼) and U1(∼) are 2 -NExpTime-
complete.

The lower bound for RU1(∼) (and thus U1(∼)) was shown in Theorem 5. The matching
upper bound follows from the following small model property.

I Lemma 12. Every satisfiable formula ϕ of RU1(∼) or U1(∼) has a finite model of size
bounded doubly exponentially in ‖ϕ‖.

A proof of this lemma will appear in the full version of this paper. Here we only remark
that instead of working with multitypes of small subsets of classes, as we did in Section
5.3 in the case of SU1(∼), this time we consider multitypes of whole classes. Due to the
exponential bound on the size of classes, the number of possible multitypes of classes in
a model is bounded doubly exponentially in ‖ϕ‖. The proof consists of reproducing an
appropriate number of realizations of every multitype in the new small model. The basic
structure of our small model construction is similar to that in Section 5.3.

5.5 Limits of decidability
We consider two natural generalisations of the weakest of our logics SU1(∼) and show their
undecidability. Let us denote by SU1(∼1,∼2) the extension of SU1(∼) in which there are two
distinguished binary predicates which must be interpreted as equivalences (and can be used
freely), rather than just one. Let SU1(tr) be the extension of SU1 in which a distinguished
binary symbol tr must be interpreted as an arbitrary transitive relation (and can be used
freely), rather than as an equivalence relation. Note that SU1(tr) is an extension of SU1(∼)
since reflexivity and symmetry of tr can be enforced in SU1 in a straighforward way.

I Theorem 13. The satisfiability and finite satisfiability problems for SU1(∼1,∼2) and
SU1(tr) are undecidable.

Proof. Recall the tiling systems from Section 5.1. We define the standard infinite grid as
GN = (N × N, H, V ), H = {((p, q), (p′, q)) : p′ − p = 1}, V = {((p, q), (p, q′)) : q′ − q = 1}.
The standard grid G∗m on a finite torus is defined as Gm from Section 5.1, with additional
horizontal H-edges from the last to the first column, and additional vertical V -edges from
the last to the first row. It is well known that the problem of checking if a tiling system T
tiles the standard infinite grid GN, and the problem of checking if it tiles a toroidal grid G∗m
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H0 H1 H2 H3 H0
V0

V1

V2

V3

V0

H0 H1 H2 H3
V0

V1

V2

V3

H0

V0

Figure 1 Grid structures ĜN for SU1(tr) and ǦN for SU1(∼1, ∼2). Arrows indicate tr connections,
solid edges represent ∼1, dashed edges represent ∼2, equivalence classes of ∼1 and ∼2 are indicated
by, respectively, dark and light shadings.

for some m ∈ N, are undecidable. We can encode these problems in SU1(tr) and SU1(∼1,∼2)
quite easily. We concentrate on the proof for SU1(tr). The proof for SU1(∼1,∼2) is similar.

For a given tiling system T , we construct an SU1(tr) formula Θ. Our intended grid
expansion ĜN is illustrated in Fig. 1. It interprets auxiliary unary symbols Hi, Vi, for
0 ≤ i, j ≤ 3, and, obviously, the transitive symbol tr. It is crucial that ĜN avoids binary
connections between points which are distant from each other.

We capture properties of horizontally and vertically neighbouring elements by formulas
λH(x, y) and λV (x, y),

λH(x, y) ≡
∨

0≤i,j≤3
λi,jH (x, y), (19)

where λi,jH ≡ Hi(x) ∧Hi+1(y) ∧ Vj(x) ∧ Vj(y) ∧ tri+j(x, y); here i+ 1 is taken modulo 4, and
trk(x, y) denotes tr(x, y) for even k, and tr(y, x) for odd k. λV (x, y) is defined analogously.
Grid coordinate points are appropriately completed:

∀x(∃yλH(x, y) ∧ ∃yλV (x, y)), (20)
∀xyzt(λH(y, z) ∧ λV (y, x) ∧ λV (z, t)→ λH(x, t)). (21)

Finally, we encode an instance of the tiling problem T = (C, c0, Hor, V er), similarly to
the way we did it in Section 5.1.

∃x(H0(x) ∧ V0(x) ∧ Pc0(x)), (22)

∀x
( ∨
c∈C

Pc(x) ∧
∧
c6=d
¬(Pc(x) ∧ Pd(x))

)
, (23)

∧
〈c,d〉6∈Hor

∀xy
(
λH(x, y) ∧ Pc(x)→ ¬Pd(y)

)
, (24)∧

〈c,d〉6∈V er
∀xy

(
λV (x, y) ∧ Pc(x)→ ¬Pd(y)

)
. (25)

Let Θ be the conjunction of (20)-(25). We claim that Θ is satisfiable iff T tiles GN, and
that Θ is finitely satisfiable iff T tiles G∗m for some m ∈ N. We sketch the argument for the
first part of the claim. Assume that T tiles GN. Take a tiling f : GN → C, and consider the
expansion of ĜN which satisfies Pf(i,j)[i, j] for every i, j ∈ N. It is readily verified that it is a
model of Θ (here it is important that in our arrangement of the tr-arrows, the transitivity of
tr does not enforce connections between distant points). In the opposite direction, if Θ has a
model M, then using (20)-(22) we can define a homomorphism F : GN →M mapping 〈0, 0〉
to an element that satisfies Pc0 . Further, using (22)-(25), we can define a tiling f of GN by
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614 Uniform One-Dimensional Fragments with One Equivalence Relation

setting f(i, j) = c for the unique c such that M |= Pc[F (i, j)]. We skip here the (routine)
argument for the case of finite satisfiability. This finishes the proof for SU1(tr).

The case of SU1(∼1,∼2) is treated analogously. The only changes are that we use ǦN from
Fig. 1 instead of ĜN, and modify appropriately the definitions of λH(x, y) and λV (x, y). J

The above undecidability results contrast with the fact that FO2 remains decidable when
extended by two equivalence relations [12, 13] or one transitive relation [23]. It should be
emphasised, however, that our undecidability proofs exploit the free, non-uniform use of
the special relation symbols (as in conjunct (21)), rather than transitivity of the relations
corresponding to the symbols. (Actually, the presented arguments work in a natural way if we
do not require tr to be interpreted as a transitive relation.) It is likely that the decidability
can be regained if we require the special symbols to obey the regular uniformity constraints.
We leave this, however, for future work.
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Abstract
We consider two-variable first-order logic on finite words with a fixed number of quantifier al-
ternations. We show that all languages with a neutral letter definable using the order and
finite-degree predicates are also definable with the order predicate only. From this result we
derive the separation of the alternation hierarchy of two-variable logic on this signature.
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1 Introduction

Finite model theory and the lower classes of circuit complexity are intricately interwoven.
In the context of circuit complexity, logics are considered over finite words with arbitrary
numerical predicates. Intuitively, we allow the use of any predicate that only depends on the
size of the word. A first result from Immerman [6] provides an equivalence between languages
definable by first-order logic enriched with arbitrary numerical predicates on the one hand,
and languages computable by families of circuits of constant depth and polynomial size on
the other. Since then, several meaningful circuit complexity classes have been shown to be
equivalent to logical fragments [1, 8]. It is therefore possible to obtain deep and interesting
inexpressibility results by using circuits lower bounds.

For instance, by using a famous lower bound for the parity language [5], Barrington,
Compton, Straubing and Thérien [1] showed that the regular languages definable in first-
order logic with arbitrary numerical predicates are definable with only the regular predicates.
Relying on an algebraic description of first-order logic with regular predicates, it is possible
to decide the definability of a regular language in this logic.

Conversely, it is tempting to use finite model theory methods to compute circuit lower
bounds. This approach has achieved relative success for uniform versions of circuit complexity
classes. For instance, Roy and Straubing provide a separation result for the long-standing
question of the separation of ACC from NC1 in a highly uniform setting [18]. In these
settings, this uniformity condition has two different interpretations:
1. In the circuit framework, it is a restriction on the complexity of the wiring of the gates.
2. In the logical framework, it is a restriction on the class of numerical predicates considered

in the fragment.
In order to deal with the combinatorics of arbitrary numerical predicates, the languages with
a neutral letter have been introduced in [2]. Formally, a language L has a neutral letter c if
for any pair of words u, v, we have ucv ∈ L if, and only if, uv ∈ L. Less formally, this letter c

can be added or removed anywhere in a word without changing its membership to L. The
underlying idea was that numerical predicates would be essentially useless in the presence of
a neutral letter. This was made formal through the Crane Beach conjecture:
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Every language with a neutral letter definable in first-order logic with arbitrary numerical
predicates is definable in first-order logic with the linear order only.

Furthermore, some of the most interesting languages, such as the parity language, possess
a neutral letter. Unfortunately, this conjecture has been disproved in the article [2] in the
context of first-order logic, as long as the Bit predicate is in the signature. This result
prevents the use of this approach to obtain circuit lower bounds for more expressive classes.
However, for fragments of first-order logic the Crane Beach conjecture is still of interest. For
instance, the Crane Beach conjecture holds for the fragment without quantifier alternation [2].

Turning to other fragments, two-variable first-order logic is a robust and well-studied
class that offers a wide range of long-standing and intriguing open questions. It is not know
whether the Crane Beach conjecture holds for this fragment. This question is related to a
long-standing open linear lower bound for the addition function, since two-variable logic
is equivalent to linear circuits of AC0 [8]. Therefore, if the Crane Beach conjecture holds,
then the addition function is not computable by a constant-depth linear-size circuit family.
This result would improve on a known lower bound for addition that states that addition
is not computable by circuits of constant depth with a linear number of wires [3]. We
remark that lower bound for addition has been discussed and informally mentioned several
times [16, 4, 9, 8] and formally stated in the article [7, Open problem 23].

In this paper, we focus on the case of two-variable logic, which is poorly understood in
this context. We first prove that languages with a neutral letter definable in two-variable
logic with arbitrary numerical predicates can be defined allowing only the linear order and
the following predicates:
1. The class F of finite-degree predicates, that is, binary predicates that are relations over

integers and such that each vertex of their underlying infinite directed graph has a finite
degree.

2. The predicate MSB0 defined as follows. The predicate MSB0 is true of x and y if the
binary representation of y is obtained by zeroing the most significant bit of x. More
formally

MSB0 = {(x, x− 2i) | x ∈ N, and i = blog(x)c} .

As an intermediate step toward a better comprehension of the Crane Beach conjecture for
FO2, we propose to study the relationship between < and F , and present a Crane Beach
result which is thus one predicate shy from showing the Crane Beach conjecture for FO2

over arbitrary numerical predicates.
The main result of this paper is a proof of the Crane Beach conjecture for each layer of

the alternation hierarchy of the two-variable first-order logic equipped with the linear order
and the finite-degree predicates.

Note that the general arbitrary numerical predicates in the statement would entail a long
standing conjecture on the circuit complexity of the addition function. Thus, this result can
be viewed as a uniform version of this circuit lower bound. This result immediately implies
that this hierarchy is strict. This provides, to the best of our knowledge, the first example of
a Crane Beach conjecture that applies to each level of an alternation hierarchy. Ramsey’s
Theorem for 3-hypergraphs will be our key combinatorics tool. This theorem indicates
that the Crane Beach conjecture for FO2 hinges on the interaction between finite-degree
predicates and the predicate MSB0.

On the two-variable restriction. It is already known that the first-order logic with the “+”
predicate satisfies the Crane Beach conjecture. Furthermore, the MSB0 predicate is definable
in first-order logic with the predicate “+” and the unary predicate {2x | x ∈ N}. The proof
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618 Finite-Degree Predicates and Two-Variable First-Order Logic

of the Crane Beach conjecture for “+” predicate can be augmented to handle this extra
unary numerical predicate. Therefore, we deduce that the first-order logic with the order
and the MSB0 predicate also satisfies the Crane Beach conjecture.

The case of finite-degree predicates is more intricate. Indeed, even if this class of predicates
satisfies a form of locality, it is still not known if the Crane Beach conjecture hold for FO[<,F ].
This class contains numerous expressive numerical predicates as the translated bit predicate
which is true in positions (x, y) if the (y− x)th bit of x is a one. The Crane Beach conjecture
may holds for finite-degree predicates but the classical proof, e.g. collapse on active domain,
seems to fail [2, 18, 11].

Organization of the paper. Section 2 is dedicated to the necessary definitions. In Section 3
we present an Ehrenfeucht-Fraïssé game adapted to our context. We present in Section 4 our
main result with immediate corollaries. The final section is dedicated to the proof.

2 Definitions

A finite word u = u0 · · ·un−1 of A∗ is represented by a relational structure on the set
{0, · · · , n − 1} over the vocabulary consisting of the letter predicates {a | a ∈ A} and of
the numerical predicates. On the one hand, the letter predicate a is interpreted as the
subset of all the positions labelled by the letter a. On the other hand, a numerical predicate
interpretation only depends on the size n of the input word. Therefore, an interpretation
of the predicate symbol P of arity k is a sequence P = (Pn)n, where Pn ⊆ {0, . . . , n− 1}k.
Note that P is a syntactic object, while P is its interpretation. Furthermore a numerical
predicate is said to be uniform if it can be seen as a relation on integers. More precisely,
a numerical predicate P = (Pn)n of arity k is uniform if there exists an integer relation
Q ⊆ Nk satisfying Q ∩ {0, . . . , n− 1}k = Pn. From now on, we do not distinguish numerical
predicates from their interpretation and uniform predicates are seen as relations on integers.
The class of all numerical predicates is denoted by Arb. Remark that the word uniform in
this context is not related to the classical notion of uniformity in circuit complexity.

Examples
The classical predicates x < y or x + y = z and xy = z are numerical predicates and are
uniforms.
The predicate x + y = max, where max is the last position of the word, is not uniform.

The logical formulae we consider are the first-order formulae over finite words. They are
obtained with the following grammar:

ϕ = a(x) | P(x1, . . . , xk) | ϕ ∧ ϕ | ¬ϕ | ∃x ϕ .

Here x, x1, x2, x3, . . . denote first-order variables, which are interpreted by positions in the
word. The letter predicate a(x), is interpreted by “the letter in position x is an a,” and
P(x1, . . . , xk), is interpreted by “the predicate P is true on (x1, . . . , xk).” As usual, the
Boolean connectives ∧ and ¬ are interpreted by “and” and “not,” respectively, and ∃x as a
first-order existential quantification. We use the standard notation u |= ϕ to signify that the
word u satisfies the formula ϕ. We also denote by u |= ϕ(i) if the formula ϕ(x) is true when
its free variable is interpreted by the integer i < |u|. The quantifier depth of a formula is the
maximal number of nested quantifiers.

Let P be a class of numerical predicates. We denote by FO[P] the class of first-order
formulae that use numerical predicates in P. We also denote by FO2[P] the subclass of
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formulae of FO[P] that use only two variables but allows the reuse of them. We say that a
language L is definable in a fragment of logic if there exists a formula in this fragment such
that L is the language of words satisfying this formula.

Example. The language A∗aA∗bA∗cA∗ can be described by the first-order formula

∃x ∃y ∃z x < y < z ∧ a(x) ∧ b(y) ∧ c(z) .

This formula uses three variables x, y and z. However, by reusing x we can rearrange it so
that it uses two variables:

∃x a(x) ∧
(
∃y x < y ∧ b(y) ∧

(
∃x y < x ∧ c(x)

))
(1)

The alternation hierarchy of FO2 is also of interest here. To define formally the number of
alternations of a formula, it is not possible to use prenex canonical normal form obtained by
applying DeMorgan’s laws to move negations past conjunctions, disjunctions and quantifiers.
Indeed, these constructions increase the number of variables. That said, the number of
alternations is still a relevant parameter that could be defined as follows: Consider the tree
naturally associated to a formula, as the grammar previously exposed. For instance, formula
(1) has “∃” as a root and the atomic formulae as the leaf. In a two-variable first-order formula
we count the maximal number of alternations between the root and the leaves once the
negations have been pushed on to the leaves. A more precise definition could be found in the
article [19]. We denote by FO2

k[P] the formulae of FO2[P] that have at most k quantifier
alternations. The hierarchy induced by FO2

k[<] is known to be strict [19] and its membership
problems is decidable [12, 14]. Without loss of generality, we will always consider two-variable
logic over predicates of arity at most 2.

3 Ehrenfeucht-Fraïssé game

One of the important tools for proving our main result is the Ehrenfeucht-Fraïssé game for
two-variable logic. It is often used in the context of finite model theory to show certain
inexpressibility results. Libkin’s book [15] provides a good exposition. In this section,
we present the Ehrenfeucht-Fraïssé game and briefly sketch a proof that the Crane Beach
conjecture holds for FO2

m[<, +1]. This could be easily proved by using some algebraic
descriptions of FO2

m[<, +1] obtained by Kufleitner and Lauser [13] but we prove it using
Ehrenfeucht-Fraïssé game as an introduction to our general result.

In the context of two-variable logic with a bounded number of alternations m and
quantifier depth s, the associated Ehrenfeucht-Fraïssé game is defined as follows:

The game is played by two players: Spoiler and Duplicator, on two relational structures.
In our case, the relational structures are associated with the words u and v equipped
with the letter predicates and a finite number of numerical predicates.
The first round starts with Spoiler, who chooses either u or v and plays by putting a
pebble on a position. Then Duplicator chooses the other word and puts a pebble on one
of its positions.
The subsequent rounds proceed as follows: each word is labelled by at most two pebbles.
First, the two oldest pebbles are removed. Then, Spoiler plays on one structure and
Duplicator on the other. If the relational structures induced by the two pairs of pebbles
are not isomorphic, Spoiler wins.
During all the game, Spoiler can change at most m times between the two words.
Duplicator wins the game if he did not loose the game before the end of the sth round.
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We say that Spoiler has a winning strategy if he has a strategy that allows him to win the
game whatever Duplicator plays. The following theorem is a well-known result that could be
easily adapted, for instance, from the book [15].

I Theorem 1. A language L belongs to FO2
m[P] if and only if there exist predicates

P 1, . . . , P t ∈ P and s ∈ N so that for any words (u, v) ∈ L × Lc Spoiler has a win-
ning strategy for the two-pebble game with s rounds and m alternations on (u, v) over the
predicates P 1, . . . , P t.

This theorem is our main interface to logic in order to establish Crane Beach-like results.
The proof method we are going to sketch is a rather classical back-and-forth construction.
As we mention before, the next result is also a direct consequence of known algebraic
characterisations of these fragments [13].

I Proposition 2. For any m, languages with a neutral letter in FO2
m[<, +1] are definable

in FO2
m[<].

Sketch of proof. Let L be a language definable in FO2
m[<, +1] and assume that it has a

neutral letter c. Thanks to Theorem 1, there exist integers s and k 6 m such that Spoiler
has a winning strategy for the two-pebble game with s rounds and k alternations on (u, v),
with (u, v) ∈ L × Lc. We construct two words u′ and v′ by inserting 2s letters c between
each position (including the beginning and the end of the words). As c is a neutral letter,
we have (u′, v′) ∈ L × Lc and therefore Spoiler has a winning strategy for the two-pebble
game with s rounds and k alternations. Remark that the successor relation on (u′, v′) is
useless since the non-neutral letters are not reachable from each other in less that s rounds.
Therefore one can translate the Spoiler’s wining strategy on (u′, v′) on a wining strategy
that does not use the successor relation. This wining strategy can then be translated in a
wining strategy on (u, v). We then conclude thank to Theorem 1. J

4 Main Result

We now investigate the Crane Beach conjecture in the specific case of FO2 equipped with
numerical predicates of finite degree. Throughout this section, we borrow from the vocabulary
of graph theory in order to express properties on the structure of numerical predicates. Indeed,
a binary numerical predicate can be understood as a family of graphs. Furthermore, if the
predicate is uniform, it can be viewed as a single infinite graph where the set of vertices is N.
Let P be a uniform numerical predicate. The degree of a position k for P , denoted by dP (k),
is the size of the set of all integers connected to k via P . More formally

dP (k) = | {j | (k, j) ∈ P or (j, k) ∈ P} | .

The notion of locality is one of the most effective tools for using the Ehrenfeucht-Fraïssé
games. One way of introducing locality is to restrict the degree of the signature. A uniform
binary predicate P has a finite degree if all positions have a finite degree. We denote by F
the class of binary uniform finite-degree predicates.

Examples
The predicate kx = y, xk = y, . . . as well as the graph of any strictly growing function.
The translated Bit predicate which is true in (x, y) if the (y − x)th bit of x is a one.
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Example of nonfinite-degree predicates
The linear ordering.
The Bit predicate which is true of (x, y) if the yth bit of x is a one.
The MSB0 predicate.

Predicates of finite degree do not include by definition uniform monadic predicates. However,
all uniform monadic predicates can be encoded as predicates of finite degree. If P is monadic
and uniform then Q = {(x, x) | x ∈ P} is a finite-degree predicate.

The next theorem states that the Crane Beach conjecture for FO2[Arb] reduces to solving
the Crane Beach conjecture for the order, the MSB0 predicate and the class of finite-degree
predicates. The proof of this theorem is an adaptation of a circuit-version of a similar
result [10]. Because of the lack of space, the proof of this theorem is omitted.

I Theorem 3. Any language with neutral letter definable in FO2[Arb] is definable in
FO2[<,F , MSB0].

We believe that this last theorem does not hold without the neutral-letter hypothesis. For
instance, the language {uu | u ∈ A∗}, where u is the reversal image of u, is definable in
FO2[x+y = max] but we conjecture that it is not definable by using only uniform predicates,
and in particular, using predicates in the signature [<,F , MSB0].

We now focus on the signature [<,F ]. To solve this problem, we will use the locality
of the class F . Locality is an effective tool which allows us to obtain numerous results of
non-definability with the help of the Ehrenfeucht-Fraïssé games. Unfortunately, as soon as
the order is present in the signature, it is no longer possible to use locality results and the
absence of the order makes the fragment far less expressive. We are going to show that it is
possible to add the order whilst conserving a form of locality when the other predicates are
of finite degree.

I Theorem 4 (Main Theorem). Let m > 0. Any language with a neutral letter definable in
FO2

m[<,F ] is definable in FO2
m[<].

We immediately obtain the following corollary.

I Corollary 5. Any language with a neutral letter definable in FO2[<,F ] is definable in
FO2[<].

This theorem states the uselessness of finite-degree predicates for defining languages
with a neutral letter in two-variable logic. More precisely, they do not even improve the
logical complexity of the languages. Therefore, we immediately deduce the strictness of this
hierarchy. Indeed, we mainly use the known facts that FO2

m[<] is a strict hierarchy (see [19])
and that each layer is stable by inverse image of morphisms. This latter fact is a requirement
for having an equational description as given in the article [12]. Then, it is sufficient to take
the inverse image of a language L that separates FO2

m+1[<] from FO2
m[<] by a morphism

that maps a letter which is not in the alphabet of L to the empty word.

5 Proof of the main theorem

The principal ingredients are a notion of locality, the Ehrenfeucht-Fraïssé games and Ramsey’s
Theorem. For the remaining of the proof we fix P 1, . . . , P t as predicates in F . Our objective
is to prove that for any language L with a neutral letter definable in FO2

m[<, P 1, . . . , P t],
there exists s such that for every words u ∈ L and v 6∈ L, Spoiler has a winning strategy for
the Ehrenfeucht-Fraïssé game with two pebbles, s rounds and m alternations on (u, v) and
over the signature {<, +1}. The proof is decomposed as follows.
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622 Finite-Degree Predicates and Two-Variable First-Order Logic

1. First, we introduce the notion of a position’s neighbourhood.
2. Then, we define an equivalence relation between triples of disjoint neighbourhoods, which

will allow us to define the different roles that these triples could play throughout the
course of the game.

3. We then extract triples of so-called well-typed positions, with the help of Ramsey’s
Theorem for 3-hypergraphs.

4. Finally, we will inductively construct a winning strategy for Spoiler over the signature
{<, +1} that uses at most s rounds and m alternations. Proposition 2 allows us to
conclude.

Let E ⊆ N2 be defined by {x, y} ∈ E if, and only if, x and y are two positions connected
by one of the predicates. More precisely, {x, y} ∈ E if and only if

P 1(x, y) ∨ P 1(y, x) ∨ · · · ∨ P t(x, y) ∨ P t(y, x) .

The graph (N, E) is the graph behind our reasoning. As each predicate is of finite degree,
the graph (N, E) is also of finite degree. From this point on, we assume that the integer s

(the number of rounds in the game) is fixed.

5.1 Definition of neighbourhood
For an integer i, the usual notion of r-neighbourhood is defined as the set of integers at
distance r from i in (N, E). It captures the intuition that two integers with similar r-
neighbourhoods cannot be distinguished in r applications of the predicates. Adding linear
order to the predicates, any element between two given integers is connected by the order.
Our specialized notion of neighbourhood thus distinguishes between the linear order and the
other predicates; to this end, let us first introduce the closure of a finite set F ⊆ N as:

Cl(F ) = {min F, min F + 1, . . . , max F} .

Then, intuitively combining at each step the use of the predicates and that of the order, we
define the 0-neighbourhood of i ∈ N as:

V (i, 0) = Cl({i} ∪
⋃

k′6i6k
{k′,k}∈E

{k′, k}) .

and, inductively, the (r + 1)-neighbourhood of i ∈ N as:

V (i, r + 1) = Cl(
⋃

j∈V (i,0)

V (j, r)) .

Less formally, the 0-neighbourhood of i is the set of positions j such that by moving a pebble
inside this set it is possible to jump over i. We obtain immediatly that V (i, r) ⊆ V (i, r + 1).

I Lemma 6. For all integers i and k, V (i, k) is finite.

We now define the function gs : N→ N by gs(i) = min V (i, s).

I Lemma 7. We have limi gs(i) = +∞.

From this we immediately deduce the following corollary, which establishes the possibility of
obtaining an arbitrarily large number of neighbourhoods that do not overlap.
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•• •
ii− i+

I(1,s)(i−, i+)

Js−1(i, i+)

Js(i, i+)

I(0,s)(i−, i+)

V (i, s)

V (i, s− 1)

V (i−, s)

V (i−, s− 1)

V (i+, s)

V (i+, s− 1)

Figure 1 Neighbourhoods and segments.

I Corollary 8. For any integer p, there exists X ⊆ N of size p such that for any i, j ∈ X,
the s-neighbourhood of i and j are disjoint and separated by at least one integer.

An s-extraction is a set of integers, such that their s-neighbourhoods are disjoint and
separated by at least one integer. In short, they must be in accordance with the conditions
of Corollary 8.

5.2 An equivalence relation for triples
We now introduce a notion of similarity for the triples of neighbourhoods taken from the
Ehrenfeucht-Fraïssé two-pebble game. Let (i−, i, i+) be a triple of integers which is an
s-extraction. More precisely, this triple satisfies that
1. i− < i < i+,
2. their s-neighbourhoods are disjoint and have at least one element between them.
According to Corollary 8, such a triple exists. We set Js(i, i+) as the interval between the
minimal position of the s-neighbourhood of i and minimal position of the s-neighbourhood
of i+. More formally,

Js(i, i+) = {min V (i, s), . . . , min V (i+, s)− 1} .

We also set I(r,s)(i−, i+) the interval in-between the maximal position of the (s − r)-
neighbourhood of i− and the minimal position of the (s − r)-neighbourhood of k. More
formally

I(r,s)(i−, i+) = {max V (i−, s− r) + 1, . . . , min V (i+, s− r)− 1} .

These notations are illustrated in Figure 1.
Let us take two triples (i−, i, i+) and (j−, j, j+) which form two s-extractions with

i− < i < i+ and j− < j < j+. These two triples of integers are equivalent if two two-pebble
constrained games are similar. We define two different notions of constrained games that
differ only in their starting sets. These games only use two pebbles which are confined, at
the rth round, to the intervals

I(r,s)(i−, i+) and I(r,s)(j−, j+) .
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For the first game, the first pebble must be placed for both Spoiler and Duplicator in
the sets Js(i, i+) and Js(j, j+). For the second game the first pebble is placed by Spoiler and
Duplicator in the sets V (i, s) and V (j, s). If Duplicator wins these two games we can state
that these two triples are equivalent, which we denote as (i−, i, i+) ∼s (j−, j, j+).

We now introduce formally this definition. We say that (i−, i, i+) ∼s (j−, j, j+) if for all
s′ 6 s Duplicator wins the two following games. They are two-pebble games with s′ rounds
and s′ alternation (we consider that Spoiler may alternate as much as he wishes between the
two words) on the signature {<, P 1, . . . , P t}, and all positions are labelled by the same letter
a with the exception of positions i and j which are labelled by the same letter b distinct
from a. Here is the formal description of the two games:
1. For the first game, the first pebble of Spoiler and the first pebble of Duplicator are

constrained to the set Js′(i, i+) and Js′(j, j+). At the rth round, the players are constrained
to choose positions in the sets I(r,s′)(i−, i+) and I(r,s′)(j−, j+).

• • •
i− i

b

i+
12

Js′(i, i+)V (i−, s′) V (i+, s′)

I(0,s′)(i−, i+)

2. For the second game, the Spoiler’s first pebble and the first pebble of Duplicator are
constrained to V (i, s′) and V (j, s′). At the rth round, the players are constrained to play
in the sets I(r,s′)(i−, i+) and I(r,s′)(j−, j+).

• • •
i− i

b

i+
12

I(0,s′)(i−, i+)

V (i, s′)

We say that positions x ∈ I(r,s′)(i−, i+) and y ∈ I(r,s′)(j−, j+) are locally equivalent if
Duplicator can win the two restricted games when the pebbles are at these positions. The
property presented in the following lemma can be deduced from the definitions and will be
useful later.

I Lemma 9. Let (i−, i, i+) an s-extraction. For every 0 6 r 6 s, we have the following

Js−r(i−, i) ∪ Js−r(i, i+) = V (i−, s− r) ∪ I(r,s)(i−, i+) .

We now prove that ∼s is a finite-index equivalence relation. This is a rather classical result
for this type of object in finite model theory. We remark that the equivalent classes can be
seen as the sets of true formulae for each triple in a logic adapted to the two restricted games.
Thus, two triples would be equivalent if they satisfy the same formulae of quantifier depth
less than s. As the number of formulae is finite, we can easily deduce that ∼s equivalence
relation.

I Lemma 10. The relation ∼s is an equivalence relation of finite index.
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Ramsey’s Theorem is a combinatorial result of graph theory often used in finite model theory.
Here we use a version adapted to hypergraphs. We introduce it in the context of triples,
which is a direct reformulation of the 3-hypergraphs variant. This theorem establishes that
for every large hypergraph with coloured edges, it is possible to extract a sufficiently large
monochrome sub-hypergraph. This theorem allows us to find an arbitrarily large set of triples
which are all pairwise equivalent for the ∼s relation. For a set E, we denote by P3(E) the
set of pairwise disjoint triples of E.

I Theorem 11 (Ramsey’s Theorem for 3-hypergraphs [17]). Let c be an integer. For any
integer p there exists an integer n such that for any set S of size n and any function
h : P3(S)→ {1, . . . , c} there exists a set F ⊆ S of size p such that h is constant on P3(F ).

A well-typed s-extraction is a set X that is an s-extraction and such that all the triples
of X are equivalent for ∼s. The following corollary is an immediate from Ramsey’s Theorem,
in which c is the number of s-types of triples and h is the function that associates triple with
their s-type.

I Corollary 12. For all integers p there exists a well-typed s-extraction of size p.

We have now presented all of the tools necessary to present a proof of Theorem 4.

5.3 Core of the proof
Let L be a language with c as a neutral letter and definable in FO2

m[<, P 1, . . . , P t]. According
to Theorem 1, there exists an integer s, such that for any words (u, v) ∈ L×Lc, Spoiler has a
winning strategy for the two-pebble game with s rounds and m alternations for the signature
{<, P 1, . . . , P t}. Let (u, v) in L×Lc be such a pair. We now construct a strategy for Spoiler
using only the order and the successor. Let p = max(|u|, |v|) + 1. According to Corollary 12,
there exists X = {i0 < i1 · · · < ip}, which is a well-typed s-extraction. Let n = max V (ip, s),
and let u′ and v′ be two words of length n and (fi)06i<|u|, (gi)06i<|v| such that:

i0 < f0 < f1 < · · · < f|u|−1 < f|u| = ip, and i0 < g0 < g1 < · · · < g|v|−1 < g|v| = ip,

for all integers i, the positions fi and gi belong to X,
u′fi

= ui, v′gi
= vi, f0 = g0 and f|u|−1 = g|v|−1,

all unassigned positions of u′ and v′ are labelled by the letter c.

u′ • • • • •
i0

c · · · c · · · c

f0

u0

fi

ui· · · c · · · · · · c · · ·

f|u|−1

u|u|−1

f|u| = ip

c · · · c · · · c

v′ • • • • •
i0

c · · · c · · · c

g0

v0

gi

vi· · · c · · · · · · c · · ·

g|v|−1

v|v|−1

g|v| = ip

c · · · c · · · c

If the words u and v are not of the same size, then that could give us fi 6= gi. The words u′

and v′ are nothing other than the words u and v after inserting neutral letters such that the
non-neutral letters are on X. We also require the first and last non-neutral letters to be in
the exact same positions.

As c is a neutral letter, (u′, v′) is in L× Lc. Therefore, Spoiler has a winning strategy
for the two-pebble game over s-round and m-alternation and the signature {<, P 1, . . . , P t}.
We now have to construct Spoiler’s new strategy on (u, v). In order to do so, we simulate
the game on (u′, v′) and construct via induction a winning strategy for Spoiler on (u, v).
To achieve this step, we exploit a back-and-forth mechanism between the game on (u′, v′)
and the game on (u, v). By following his winning strategy, Spoiler chooses a position on
(u′, v′) which we translate into a position in (u, v). Duplicator then chooses a position in
(u, v) which we translate on a position in (u′, v′). We repeat this process until Duplicator can
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no longer respond in (u′, v′). We must force Spoiler to play moves that are distant from one
another so that his choices in (u′, v′) lead to a winning strategy on (u, v). If Spoiler’s new
pebble is in a neighbourhood different to that of the previous pebble, then by construction
of the neighbourhoods, the numerical predicates, with the exception of the order predicate,
do not allow for a connection between the two positions; they do not transmit information.
In the following section we always denote by ir (resp. jr) the position of the pebble played
at the round r on u (resp. v). Likewise, we use i′r (resp. j′r) for the position of the pebble at
the round r on u′ (resp. v′).

For this construction to work, Spoiler should not win the game on (u′, v′) before he wins
it on (u, v). This could however happen if Duplicator’s choices on (u′, v′) are not pertinent.
We avoid this situation by selecting locally equivalent positions, that is, positions where
Duplicator wins the restricted games introduced in the preceding section. Thus, Spoiler
cannot win by choosing moves that are close to the old pebbles. He is therefore forced to
play some distant moves.

When Spoiler plays on an extremal position of the game on (u′, v′), Duplicator can always
respond at the same position on the other word. These moves therefore are of no interest
in Spoiler’s strategy. They are not used in the construction of the strategy of the game on
(u, v). Each time Spoiler makes such a move, the game on (u, v) does not progress. More
specifically, if the game has not started, the pebbles are not even placed and if the pebbles
are already placed, they are not moved.

We begin by describing the game’s first round, then we inductively build a strategy for
the following rounds. For the first move, Spoiler’s winning strategy designates a position
for the game on (u′, v′). Through symmetry, we assume that this is a position on u′. We
therefore distinguish two cases:
1. This first move occurs within a segment of the form Js(fi, fi+1) for an integer 0 6 i < |u|.

In this case, we choose to play on the position i on the game on (u, v). Duplicator then
responds in the game on (u, v) by playing on v at a position j. If the letter that marks j

is different from the one that marks i, Duplicator loses the game immediately. Otherwise,
we have to simulate Duplicator’s response in the game on (u′, v′) by choosing a position
in Js(gj , gj+1) that is locally equivalent to Spoiler’s first pebble. This is possible as the
letters that mark fi on u′ and gj on v′ are equal, and (fi−1, fi, fi+1) ∼s (gj−1, gj , gj+1).

u′

v′

u

v

• •
fi fi+1

Js(fi, fi+1)

i

j
• •
gj gj+1

Js(gj , gj+1)

2. This first move is on an extremal position, that is smaller than min Js(f0, f1) = min Js(g0,

g1) or bigger than max Js(f|u|−1, f|u|) = max Js(g|v|−1, g|v|). In this case, the back-and-
forth process is degenerate since the game on (u, v) has not started yet. It starts when
Spoiler plays on a non-extremal position.
This kind of moves is not useful for Spoiler since Duplicator can only answer on the game
on (u′, v′) by choosing the exact same position on the other word. As long as Spoiler
plays on these extremal positions, it is sufficient for Duplicator to choose the exact same
position. As Spoiler follows a winning strategy, he eventually plays inside a segment
Js(fi, fi+1) for some integers 0 6 i < |u|. Indeed, the extremal positions together with
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segments Js(fi, fi+1) split into a partition of all positions of the word (see Figure 1).
Therefore, we can assume to be in the preceding case.

We now explain how to construct a winning strategy for Spoiler on (u, v) for the next rounds.
We construct it inductively. We now assume to have played 1 6 r < s rounds and that the
pebbles of the preceding round are on positions ir on u (resp. jr on v) as well as i′r on u′

(resp. j′r on v′). It is Spoiler’s turn to play. By induction, we assume the following properties
to be satisfied:

If positions i′r and j′r belong to I(r,s)(fir−1, fir+1) and to I(r,s)(gjr−1, gjr+1) then they
are locally equivalent for at least one of the two constrained games at (s− r)-rounds (see
Figure 2). The first constrained game corresponds to the second case, and the second
constrained game corresponds to the third case.
If this latter condition is not satisfied, then both pebbles have the exact same value,
which is an extremal position on (u′, v′). More precisely, i′r = j′r and either

i′r < min Js−r(f0, f1) = min Js−r(g0, g1) or
i′r > max Js−r(f|u|−1, f|u|) = max Js−r(g|v|−1, g|v|) .

u′

v′

u

v

• • •

• • •

I(r,s)(fir−1, fir+1)

I(r,s)(gjr−1, gjr+1)

fir−1 fir+1fir ir

jr
gjr−1 gjr

gjr+1

We assume the configuration of the game on (u′, v′) to be winnable for Spoiler: he has a
winning strategy in less than (s− r) rounds.

We are going to distinguish two cases. Either Duplicator is going to answer on Spoiler’s
latest move in the game on (u, v) or Spoiler wins the game. Since we seek a winning strategy
for Spoiler, we assume that Duplicator successfully answers on (u, v). If this is true, then we
are going to find an adequate answer for Duplicator in the game on (u′, v′). Since Spoiler has
a winning strategy for this latter game, Duplicator eventually loses the game on (u′, v′) and
therefore the game on (u, v). We remark that the number of alternations of the new Spoiler’s
winning strategy on (u, v) is at most the one of his strategy on (u′, v′). This concludes the
proof.

Nevertheless, it remains to be explained how we construct the position of Spoiler on
(u, v) and how to deduce from a correct answer for Duplicator on (u, v), a correct answer for
Duplicator on (u′, v′).

We use the Spoiler’s winning strategy on (u′, v′) to construct a new move for Spoiler
on (u, v). Without loss of generality, we assume that this move is on u′ and we denote by
i′r+1 its position. We now distinguish four cases that only depend on the value of i′r+1 (see
Figure 2). Indeed, the segment {0, . . . , n− 1} is split into four parts that correspond to the
four following cases:
1. The first case corresponds to segments of the form Js−r−1(fk, fk+1) for k 6= ir and

k 6= ir−1. It includes almost all the positions of {0, . . . , n} except extremal positions and
a hole around positions i′r and i′r−1.
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u′

old pebble position (i′r)

new pebble potential positions

• • · · · · · · · · ·• • •· · · · · · · · ·
i0 f0 fir−1 fir

fir+1

left extremal positions
case 4

V (fir−1, s− r − 1)
case 2

I(r+1,s)(fir−1, fir+1)
case 3

Js−r−1(fir+1 , fir+1+1)
case 1

Figure 2 The four cases to deal with.

2. The second case corresponds to the truncated segment to the left of the previous pebble
on u′. This is the initial segment of the second constrained game for this position. More
precisely it is the segment V (fir−1, s− r − 1).

3. The third case corresponds to the allowed positions for the constrained game around i′r.
More precisely, it is the segment I(r+1,s)(fir−1, fir+1).

4. The last case corresponds to the extremal positions. They are the positions that are not
handled by the other cases. They are either at the beginning or at the end of the word.

The four cases deal with all the positions since the segments of the form Js−r−1(fk, fk+1)
and the extremal positions form a partition of all the positions. Furthermore, by Lemma 9,
we have

Js−r−1(fir−1, fir ) ∪ Js−r−1(fir ,fir+1) = V (fir−1, s− r − 1) ∪ I(r+1,s)(fir−1, fir+1) .

We now construct the back-and-forth strategy for each of the four cases:
1. There exists an integer k different from ir and ir − 1 such that the position i′r+1 belongs

to Js−r−1(fk, fk+1). It is then sufficient for Spoiler to choose ir+1 = k on u as its next
move for the game on (u, v). We remark that all the predicates other than the linear
order are evaluated to false between i′r and i′r+1. We assume Duplicator to be able to
answer correctly at a position jr+1. We now choose a position j′r+1 on v′ in the set
Js−r−1(gjr+1 , gjr+1 + 1) such that positions i′r+1 and j′r+1 are locally equivalent for the
first constrained game. This is possible since positions fir+1 and gjr+1 are labelled by the
same letter and because

(fir+1−1, fir+1 , fir+1+1) ∼s (gjr+1−1, gjr+1 , gjr+1+1) .

We remark that all predicates except for the linear order are evaluated as false between
j′r and j′r+1. Furthermore, the value of the order predicate between i′r and i′r+1 is exactly
the same as between ir and ir+1 which is also the same as between jr and jr+1 and
between j′r and j′r+1. Since the letters labelling positions ir+1 on u and jr+1 on v are
the same, we deduce that position j′r+1 is correct for Duplicator. Consequently, the new
configuration satisfies the induction hypothesis.

2. We assume that i′r+1 belongs to V (fir−1, s− r− 1). In this case, we choose ir+1 = ir − 1,
meaning that Spoiler plays on the position just to the left of ir. Since the successor
relation is in the signature, Duplicator is also forced to play at the position immediately
to the left. Here the very same arguments that in case 1 allow us to build a position j′r+1
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so that the new configuration satisfies the induction hypothesis hold. The only difference,
is that this time we are using the second constrained game, not the first.

3. If i′r+1 belongs to I(r+1,s)(fir−1, fir+1), then according to the induction hypothesis,
Duplicator has a position j′r+1 in the set I(r+1,s)(gjr−1, gjr+1) which is locally equivalent
to i′r+1. By choosing this position and by setting ir+1 = ir and jr+1 = jr, we obtain a
new configuration that satisfies the induction hypothesis. We remark that in this case,
the game configuration on (u, v) does not change.

4. The last case is the one which i′r+1 does not satisfy any of the preceding case. By
construction, the positions of the words are split into segments Js−r(fk, fk+1) (resp.
Js−r(gk, gk+1)) and the extremal positions. Therefore, if the integer ir+1 is not treated
by the other cases, then this position has to be extremal. That is to say

i′r+1 < min Js−r−1(f0, f1) = min Js−r−1(g0, g1)

or
i′r+1 > max Js−r−1(f|u|−1, f|u|) = max Js−r−1(g|v|−1, g|v|) .

We choose j′r+1 = i′r+1 for Duplicator on v′, as well as ir+1 = ir and jr+1 = jr. Therefore
the game on (u, v) does not evolve and the new configuration satisfies the induction
hypothesis. We remark that it is possible for i′r+1 to be an extremal position but be
handled by one of the preceding cases. For instance, if ir belongs to Js−r(f0, f1) and if

ir+1 ∈ I(r+1,s)(i0, f1) ∩ {0, . . . , min Js−r−1(f0, f1)} ,

then Duplicator follows the first constrained game and it is therefore possible that
ir+1 6= jr+1. In this particular case, since i′r+1 and j′r+1 are locally equivalent, the
configuration still satisfies the induction hypothesis.

As all the cases are treated, we have proved that as long as Duplicator answers correctly on
(u, v), it is possible for him to answer correctly on (u′, v′). Since Spoiler follows a winning
strategy on (u′, v′), Duplicator will eventually not be able to answer on (u, v). This concludes
the proof.
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Abstract
We study the finite satisfiability problem for the two-variable fragment of the first-order logic
extended with counting quantifiers (C2) and interpreted over linearly ordered structures. We
show that the problem is undecidable in the case of two linear orders (in presence of two other
binary symbols). In the case of one linear order it is NExpTime-complete, even in presence of the
successor relation. Surprisingly, the complexity of the problem explodes when we add one binary
symbol more: C2 with one linear order and its successor, in presence of other binary predicate
symbols, is decidable, but it is as expressive (and as complex) as Vector Addition Systems.
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1 Introduction

Since 1930s, when Alonzo Church and Alan Turing proved that the satisfiability problem
for first-order logic is undecidable, much effort was put to find decidable subclasses of this
logic. One of the most prominent decidable cases is the two-variable fragment FO2. FO2

is particularly important in computer science because of its decidability and connections
with other formalisms like modal, temporal or description logics or applications in XML
or ontology reasoning. The satisfiability of FO2 was proved to be decidable in [31, 23] and
NExpTime-complete in [8].

All decidable fragments of first-order logic have a limited expressive power and a lot of
effort is being put to extend them beyond the first-order logic while preserving decidability.
Many extensions of FO2, in particular with transitive closure or least fixed-point operators,
quickly lead to undecidability [7, 11]. Extensions that go beyond the first order logic and
enjoy decidable finite satisfiability problem include FO2 over restricted classes of structures
where one [15] or two relation symbols [16] are interpreted as equivalence relations; where one
[25] or two relations are interpreted as linear orders [30]; where two relations are interpreted
as successors of two linear orders [20, 6, 4]; where one relation is interpreted as linear order
and another one as equivalence [1]; where one relation is transitive [33]; where an equivalence
closure can be applied to two binary predicates [14]; where deterministic transitive closure
can be applied to one binary relation [3]. It is known that the finite satisfiability problem is
undecidable for FO2 with two transitive relations [13], with three equivalence relations [15],
with one transitive and one equivalence relation [16], with three linear orders [12], with two
linear orders and their two corresponding successors [20]. A summary of complexity results
for extensions of FO2 with order relations can be found in [21].
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The two-variable fragment with counting quantifiers (C2) extends FO2 by allowing
counting quantifiers of the form ∃<k, ∃≤k, ∃=k, ∃≥k and ∃>k, for all natural numbers k. The
two problems of satisfiability and finite satisfiability for C2 (which are two different problems
as C2 does not have a finite model property) were proved to be decidable in [10]. Another
solution of the satisfiability problem together with NExpTime-completeness result under
unary encoding of numbers in counting quantifiers can be found in [26]. Pratt-Hartmann
in [27] established NExpTime-completeness of both satisfiability and finite satisfiability
under binary encoding of numbers in counting quantifiers. All these algorithms are quite
sophisticated, a significant simplification can be found in [28]. There are not many known
decidable extensions of C2. In [4] it is shown that finite satisfiability for C2 interpreted
over structures where two binary relations are interpreted as forests of finite trees (which
subsumes the case of two successor relations on two linear orders) is NExpTime-complete.
[29] shows that the satisfiability and finite satisfiability problems for C2 with one equivalence
relation are both NExpTime-complete.

In this paper we study the extensions of C2 with linear orders. We show that the finite
satisfiability problem for C2 with two linear orders, in presence other binary predicate
symbols, is undecidable. For C2 with one linear order, even if the successor of this linear
order is present, in absence of other binary predicate symbols, it is decidable and NExpTime-
complete. A surprising result is that when we add one more binary predicate symbol, the
complexity of the problem explodes: C2 with one linear order and its successor, in presence of
other binary predicate symbols, is as expressive (and as complex) as multicounter automata.

Multicounter automata (MCA) is a very simple formalism equivalent to Petri Nets and
vector addition systems (VAS) [24], which are used e. g., to describe distributed, concurrent
systems and chemical/biological processes. One of the main reasoning tasks for VAS is to
determine reachability of a given vector. It is known that this problem is decidable [17, 22, 18]
and ExpSpace-hard [19], but precise complexity is not known, and after over 40 years of
research it is even not known if the problem is elementary. We give a reduction from
the emptiness problem of MCA (which is equivalent to the reachability for VAS) to finite
satisfiability of C2 with one linear order and its successor, in presence of one more binary
predicate symbol. Although we show that C2 with one linear order and its successor, in
presence of arbitrary number of binary predicate symbols is decidable, it is very unlikely
that it has an elementary decision algorithm since existence of such an algorithm implies
existence of an elementary algorithm for VAS reachability.

Due to space limits we have omitted most proofs. The missing proofs can be found in
the full version of the paper.

2 Preliminaries

We will consider finite satisfiability problems for the two-variable logic with counting (C2 for
short) over finite structures, where some binary symbols are interpreted as linear orders or
successors of linear orders. W.l.o.g. we will be interested in largest antireflexive relations
< contained in linear orders ≤; for a linear order ≤ we write a < b iff a ≤ b and a 6= b.
We overload notation and name these relations < linear orders. We use symbols <, <1,
<2 to denote linear orders and +1, +11, +12 to denote their resp. successors. Given a finite
vocabulary Σ we write O(Σ, <,+1) to denote the class of finite structures on vocabulary
Σ, where < and +1 have appropriate interpretation, and we adopt a similar notation for
other classes of structures. Logics we consider will be denoted by C2[U,B, I], where U and
B are vocabularies of resp. unary and binary symbols allowed in formulas, and I ⊆ B is
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the vocabulary of interpreted binary symbols. When B = I we write C2[U, I] instead of
C2[U, I, I].

Let Σu and Σb be countably infinite vocabularies of resp. unary and binary symbols and
such that {<,+1, <1,+11, <2,+12,=} ⊆ Σb. Specifically, we will be interested in the following
logics: C2[Σu,Σb, {<}], C2[Σu,Σb, {<,+1}] and C2[Σu, {<1, s1, <2, s2}, {<1, <2}], where s1
and s2 are some binary symbols. By C2[Σu,Σb, {<}] we mean the logic C2 where vocabulary
of every formula is a finite subset of Σu∪Σb and < is interpreted as a linear order. Definition
of C2[Σu,Σb, {<,+1}] is similar, with the exception that +1 is interpreted as successor of <.
The logic C2[Σu, {<1, s1, <2, s2}, {<1, <2}] allows arbitrary number of unary and at most 4
binary symbols, two of them are interpreted as linear orders. Notice that we do not allow
constant symbols in vocabularies, but this does not cause loss of generality since constants
can be simulated by unary predicates and counting quantifiers.

3 Two linear orders

We start with an observation that the successor relation of a linear order can be expressed in
C2[Σu,Σb, {<}]. More precisely, let s be a free binary symbol. The following lemma says
that s can be defined to mean the successor of < in C2[Σu, {<, s}, {<}]. Intuitively, it is
enough to express that s is a subrelation of < such that each node (with the exception of
the least and the greatest one) has exactly one s-successor and exactly one s-predecessor.

I Lemma 1. There exists a formula ϕs of C2[Σu, {<, s}, {<}] such that for every finite
structure M, we haveM |= ϕs if and only if sM is the successor relation of <M.

I Corollary 2. Finite satisfiability of C2[Σu,Σb, {<,+1}] is reducible in constant time to
finite satisfiability of C2[Σu,Σb, {<}].

I Corollary 3. Finite satisfiability of C2[Σu, {<1,+11, <2,+12}, {<1,+11, <2,+12}] is reducible
in constant time to finite satisfiability of C2[Σu, {<1, s1, <2, s2}, {<1, <2}], where s1 and s2
are some binary symbols.

Since FO2[Σu, {<1,+11, <2,+12}, {<1,+11, <2,+12}], i. e., the two-variable logic with two
linear orders and their corresponding successors, is undecidable [20], we have the following
conclusion.

I Corollary 4. Finite satisfiability problem of C2[Σu,Σb, {<1, <2}] is undecidable. This
remains true even for C2[Σu, {<1, s1, <2, s2}, {<1, <2}], where s1 and s2 are distinct binary
symbols.

4 C2[Σu, {<, +1}, {<, +1}] is NExpTime-complete

We will show that finite satisfiability problem for C2[Σu, {<,+1}, {<,+1}] is NExpTime-
complete. Since the lower bound follows from the complexity of FO2 with only unary
predicates [5, Theorem 11], we will concentrate on proving the upper bound. The proof
presented here is similar to a corresponding result [2] on FO2 on finite trees.

We assume that the input C2[Σu, {<,+1}, {<,+1}] formula ϕ is in a normal form

ϕ = ∀x∀y.χ(x, y) ∧
m∧
h=1
∀x∃lhChy.χh(x, y),

where χ, χ1, . . . , χm are quantifier-free formulas with arbitrary unary predicates and binary
predicates <,+1, symbols lh ∈ {≤,≥} for h = {1, . . . ,m}, and C1, . . . , Cm are positive
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integers encoded in binary. For the rest of this section the constant c is fixed and it equals
max{Ch | h ∈ {1, . . . ,m}}. It is well known [9, Theorem 2.2] that by adding additional unary
predicates each C2 formula ϕ can be transformed in polynomial time to an equisatisfiable
formula in normal form.

Observe that C2[Σu, {<,+1}, {<,+1}] may be seen as a fragment of the weak monadic
second-order logic with one successor WS1S, where unary relations are simulated by second-
order existential quantifiers and counting quantifiers by first-order ones (e.g., a formula of the
form ∃≤kx.χ(x) can be replaced by an equivalent formula with k + 1 universal quantifiers).
However, this view leads to formulas with three alternations of quantifiers that can be checked
for satisfiability in 4ExpTime, which is not a desired complexity bound.

Because an element of a model of ϕ may require up to c witnesses for satisfaction, we will
be interested in multisets counting these witnesses. Let Nc = {n ∈ N | n ≤ c} ∪ {∞}. For
k, k′ ∈ Nc define cutc(k) = k if k ≤ c and cutc(k) =∞ if k > c. Define k⊕c k′ = cutc(k+k′).
A c-multiset of elements from a given set A is any function f : A→ Nc. For a given element
a in A, by {a} we denote the multiset defined by {a}(x) = 1 if x = a and {a}(x) = 0
for x 6= a. The union of two multisets f and g is a function denoted f ∪ g such that
(f ∪ g)(x) = f(x)⊕c g(x). Empty multiset denoted ∅ is the constant function equal 0 for all
arguments.

Let us call maximal consistent formulas specifying the relative position of a pair of
nodes in a structure in O(Σ, <,+1) order formulas. There are five possible order formu-
las: x=y ∧ ¬ +1(y, x) ∧ ¬ +1(x, y) ∧ y 6<x ∧ x 6<y, x 6=y ∧+1(y, x) ∧ ¬+1(x, y) ∧ y<x ∧ x 6<y,
x6=y ∧+1(x, y) ∧ ¬+1(y, x) ∧ x<y ∧ y 6<x, x 6=y ∧ ¬+1(x, y) ∧ ¬+1(y, x) ∧ x<y ∧ y 6<x, and
x6=y ∧ ¬+1(x, y) ∧ ¬+1(y, x) ∧ y<x ∧ x 6<y. They are denoted, respectively, as: θ=, θ−1,
θ+1, θ<, θ>. Let Θ be the set of these five formulas.

A 1-type over the signature Σ is a maximal consistent conjunction of atomic and negated
atomic formulas over Σ involving only the variable x. The set of all 1-types over Σ will be
denoted Π(Σ). The family of all multisets of 1-types over the signature Σ is denoted NΠ(Σ)

c .

IDefinition 5 (Full type over Σ w.r.t. c). A full type over Σ w.r.t. c is a function σ : Θ→ NΠ(Σ)
c ,

such that σ(θ−1) and σ(θ+1) are singletons or empty, and σ(θ=) is a singleton.

I Definition 6 (Full type in A w.r.t. c). Let A be a structure over a vocabulary Σ and let a
be an element of A. A full type of a in A, denoted ftA(a) is a function σ : Θ→ NΠ(Σ)

c such
that

σ(θ=) is the singleton of the 1-type of a in A,
σ(θ−1) is the singleton of the 1-type of the predecessor of a (if a has a predecessor) or
empty multiset (if a has no predecessor),
σ(θ+1) is the singleton of the 1-type of the successor of a (if a has a successor) or empty
multiset (if a has no successor),
σ(θ<) is the c-multiset of 1-types of elements strictly smaller than a in A, excluding the
predecessor (if it exists), and
σ(θ>) is the c-multiset of 1-types of elements strictly greater than a in A, excluding the
successor (if it exists).

A structure A is said to realise a full type σ if ftA(a) = σ for some a ∈ A.

In the following, we often identify a full type σ, which is a function, with the tuple
〈σ(θ−1), σ(θ=), σ(θ+1), σ(θ<), σ(θ>)〉. We define Σ-c-graph as the graph 〈V,E〉 where the set
V of nodes is the set of full-types over Σ w.r.t. c and the set E of edges is defined as follows.

〈〈Π−1, {π}, {π+1},Π<,Π>〉, 〈{π}, {π+1},Π′+1,Π′<,Π′>〉〉 ∈ E iff Π′< = Π< ∪Π−1 and
Π> = Π′> ∪Π′+1
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Let σ be a full type such that σ(θ=) = {π} and let ∀x∃lhChy.χh(x, y) be a conjunct in ϕ.
The following five functions are used to count witnesses w.r.t. this conjunct for elements of
full type σ.

Wχh
= (σ) =

{
1 if π(x) |= χh(x, x)
0 otherwise

Wχh

−1 (σ) =
{

1 if σ(θ−1) = {π′} and π(x) ∧ π′(y) ∧ θ−1(x, y) |= χh(x, y)
0 otherwise

Wχh

+1 (σ) =
{

1 if σ(θ+1) = {π′} and π(x) ∧ π′(y) ∧ θ+1(x, y) |= χh(x, y)
0 otherwise

Wχh
< (σ) = cutc

( ∑
π′:π(x)∧π′(y)∧θ<(x,y)|=χh(x,y)

(σ(θ<))(π′)
)

Wχh
> (σ) = cutc

( ∑
π′:π(x)∧π′(y)∧θ>(x,y)|=χh(x,y)

(σ(θ>))(π′)
)

Note that in the definition above (σ(θ>))(π′) is simply the number of occurrences of the
1-type π′ in the multiset σ(θ>).

I Definition 7 (Compatible full types). We say that a full type σ such that σ(θ=) = {π} is
compatible with formula ϕ if the following conditions are satisfied.

π(x) |= χ(x, x),
π(x) ∧ π′(y) ∧ θ(x, y) |= χ for all θ ∈ {θ−1, θ+1, θ<, θ>} and all π′ ∈ σ(θ), and
for each conjunct ∀x∃lhChy.χh(x, y) of ϕ we have

Wχh
= (σ) +Wχh

+1 (σ) +Wχh

−1 (σ) +Wχh
> (σ) +Wχh

< (σ) lh Ch

It is quite obvious that whenever A |= ϕ, all full types realised in A are compatible
with ϕ. It is not difficult to see that the converse is also true, as the following lemma says.

I Lemma 8. For any ordered structure A and any C2[Σu, {<,+1}, {<,+1}] formula ϕ in
normal form, if all full types realised in A are compatible with ϕ then A |= ϕ.

We define Σ-c-ϕ-graph as the subgraph of Σ-c-graph consisting of nodes compatible with
ϕ. The nodes of the form 〈∅, . . . , . . . , ∅, . . .〉 are called source nodes; the nodes of the form
〈. . . , . . . , ∅, . . . , ∅〉 are called target nodes. Intuitively, a source node corresponds to a full
type of the least element in some model of ϕ while a target node corresponds to the greatest
element in some model.

I Lemma 9. Let ϕ be a C2[Σu, {<,+1}, {<,+1}] formula in normal form over vocabulary Σ.
Formula ϕ is finitely satisfiable if and only if there exists a path from a source node to a
target node in Σ-c-ϕ-graph.

Lemma 9 leads us directly to the main theorem of this section. To check satisfiability of a
formula in C2[Σu, {<,+1}, {<,+1}] it is enough to guess an appropriate path in Σ-c-ϕ-graph.
Moreover, it is enough to use only exponentially many different full types in the guessed
path.

I Theorem 10. The finite satisfiability problem for C2[Σu, {<,+1}, {<,+1}] is NExpTime-
complete.
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Proof. The lower bound follows from the complexity of FO2 with only unary predicates. For
the upper bound, an algorithm for deciding finite satisfiability of C2[Σu, {<,+1}, {<,+1}]
works as follows. We take a C2[Σu, {<,+1}, {<,+1}] formula ϕ and convert it to an equisat-
isfiable normal form (in polynomial time) if necessary. Then we guess a path from a source
node to a target node in Σ-c-ϕ-graph where Σ is the vocabulary of ϕ. This requires in
particular verification of the fact that all nodes are compatible with ϕ. All this can be
accomplished in time polynomial in the size of the graph. This size is potentially doubly
exponential in |ϕ|: the number of all 1-types over Σ is exponential in |ϕ|, so the number of
sets of 1-types, and, in consequence, the number of full types, is doubly exponential. The
potential 2NExpTime complexity of the algorithm can be lowered to NExpTime using
the observation that the θ< and θ> components of full types behave in a monotone way
along any path connecting any source node with any target node. The θ< component may
only increase and θ> only decrease along any such path. Since a multiset may increase only
exponentially many times (and only exponentially many times it may decrease) there are
only exponentially many such multisets occurring along the path. Therefore it is enough to
guess only exponentially many different full types. J

5 Hardness of C2[Σu, {<, +1, s}, {<, +1}]

We will show that finite satisfiability problem for C2[Σu, {<,+1, s}, {<,+1}], where s is a
binary relation, is at least as hard as non-emptiness of multicounter automata. Below, for
a given MCA M we construct a C2[Σu, {<,+1, s}, {<,+1}] formula ϕM which has a finite
model if and only if M is non-empty.

Multicounter automata

We adopt a notion of multicounter automata (MCA for short) similar to one in [32], but
with empty input alphabet and simplified counter manipulation. Intuitively, a MCA is a
finite state automaton without input but equipped with a finite set of counters which can
be incremented and decremented, but not tested for zero. More formally, a multicounter
automaton M is a tuple 〈Q,C,R, δ, qI , F 〉, where the set Q of states, the initial state qI ∈ Q
and the set F ⊆ Q of final states are as in usual finite state automata, C is a finite set (the
counters) and R is a subset of C. The transition relation δ is a subset of

Q× {inc(c), dec(c), skip | c ∈ C} ×Q.

An MCA is called reduced if it does not have skip transitions and R = C (in this case we
just omit R component of tuple M).

A configuration of a multicounter automaton M is a pair 〈p, ~n〉 where p is a state and
~n ∈ NC gives a value ~n(c) for each counter c in C. Transitions with inc(c) and skip can always
be applied, whereas transitions with dec(c) can only be applied to configurations with ~n(c) > 0.
Applying a transition 〈p, inc(c), q〉 to a configuration 〈p, ~n〉 yields a configuration 〈q, ~n0〉 where
~n0 is obtained from ~n by incrementing its c-th component and keeping values of all other
components unchanged. Analogously, applying (an applicable) transition 〈p, dec(c), q〉 to a
configuration 〈p, ~n〉 yields a configuration 〈q, ~n0〉 where ~n0 is obtained from ~n by decrementing
its c-th component. Transitions with skip do not change value of any counter in C. A run is
an interleaving sequence of configurations and transitions conf 1, trans1, . . . , transk−1, conf k
such that transi applied to conf i gives conf i+1, for 1 ≤ i < k. A run is accepting, if it starts
in configuration 〈qI ,~0〉 and ends in some configuration 〈qF , ~nF 〉 with qF ∈ F and ~nF (c) = 0
for every c ∈ R. The emptiness problem for multicounter automata is the question whether
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a given automaton M has an accepting run. It is well known that this problem (for both
MCA and reduced MCA) is decidable, as it is polynomial-time equivalent to reachability
problem in Vector Addition Systems/Petri Nets[17, 22].

I Definition 11. Let M = 〈Q,C, δ, qI , F 〉 be a reduced MCA. Let Σ = {q | q ∈ Q} ∪
{incc, decc | c ∈ C} ∪ {min,max, <,+1, s} where predicates q, incc, decc,min and max are
unary and <,+1 and s are binary. Define ϕM as the conjunction of the following Σ-
formulas.
1. ∃=1x.min(x) ∧ ∃=1x.max(x)
2. ∀x∀y. (min(x)→ (x < y ∨ x = y)) ∧ (max(x)→ (y < x ∨ y = x))
3. ∀x.

(∨
q∈Q q(x)

)
∧
∧
q∈Q

(
q(x)→

∧
q′∈Q\{q} ¬q′(x)

)
4. ∀x. (min(x)→ qI(x)) ∧

(
max(x)→

∨
qF∈F qF (x)

)
5. ∀x∀y.+1(x, y)→∨

〈q,inc(c),q′〉∈δ (q(x) ∧ incc(x) ∧ q′(x)) ∨
∨
〈q,dec(c),q′〉∈δ (q(x) ∧ decc(x) ∧ q′(x))

6. ∀x. (¬max(x))→
∨
c∈C (incc(x) ∨ decc(x))

7. ∀x.
∧
c∈C

(
incc(x)→ ¬decc(x) ∧

∧
c′∈C\{c} (¬decc′(x) ∧ ¬incc′(x))

)
8. ∀x.

∧
c∈C

(
decc(x)→ ¬incc(x) ∧

∧
c′∈C\{c} (¬incc′(x) ∧ ¬decc′(x))

)
9. ∀x. (max(x))→

∧
c∈C (¬incc(x) ∧ ¬decc(x))

10. ∀x∀y.s(x, y)→
∨
c∈C (incc(x) ∧ decc(y))

11. ∀x∀y. (s(x, y)→ x < y)
12. ∀x.

(
max(x) ∨ ∃=1y. (s(x, y) ∨ s(y, x))

)
We will interpret ϕM as a C2[Σu, {<,+1, s}, {<,+1}] formula. Models of ϕM encode accepting
runs of MCAM . The first two conjuncts of ϕM define the meaning of the auxiliary predicates
min and max; they hold for the least (resp. the greatest) element of a model. Each element
of the model corresponds to precisely one state q ∈ Q, as encoded by conjunct 3. Thus
the model is just a sequence of states. The first of them must be the starting state qI and
the last must be a final state qF ∈ F , as defined by conjunct 4. Every two consecutive
elements of the model form a transition. A state in which the transition is fired is marked
by predicate of the form incc or decc denoting a counter to increment or decrement; this is
specified by conjunct 5. Every state, with the exception of the last one, must be labelled
by precisely one predicate of the form incc or decc, as expressed by conjuncts 6–8. The last
element is not labelled by any of these predicates (conjunct 9), as no transition is fired there.
Since values of all counters in starting and final state is 0 and no counter may fall below 0,
each incrementation of a counter c must be followed by its decrementation, and conversely,
each decrementation of c must be preceded by its incrementation. We use the relation s to
match these increments and decrements, as stated in conjunct 10. Conjunct 11 states that
decrementation of a counter indeed follows its incrementation. Since each state, except the
final one, is a starting state of some transition, it either corresponds to incrementation or
decrementation of some counter. Therefore it emits or accepts precisely one edge labelled s,
as stated by conjunct 12 of ϕM . Formally, we have the following lemma and a corollary that
results from it.

I Lemma 12. Let M = 〈Q,C, δ, qI , F 〉 be a reduced multicounter automaton and let ϕM be
a C2[Σu, {<,+1, s}, {<,+1}] formula constructed in Definition 11. Formula ϕM is finitely
satisfiable if and only if M is non-empty.

I Corollary 13. Finite satisfiability problem for C2[Σu, {<,+1, s}, {<,+1}] is at least as hard
as emptiness problem for multicounter automata.
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6 Satisfiability of C2[Σu, Σb, {<, +1}]

In this section we show that the finite satisfiability problem of C2[Σu,Σb, {<,+1}] is decidable.
Fix a finite signature Σ satisfying Σ ⊆ Σu ∪ Σb. A 2-type is a maximal consistent

conjunction of atomic and negated atomic formulas over Σ involving only the variables x
and y and satisfying three additional restrictions: first, it contains ¬x = y; second, whenever
it contains +1(x, y) or +1(y, x), it also contains respectively x < y or y < x; and third, it
contains either x < y or y < x, but not both. We will identify a 1-type π (a 2-type τ)
with the set of positive atomic formulas occurring in π (in τ). Each 2-type τ(x, y) uniquely
determines two 1-types of x and y, respectively, that we denote tp1(τ) and tp2(τ). For a
2-type τ the 2-type obtained by swapping the variables x and y is denoted τ−1. Symbol
T (Σ) denotes the set of of 2-types over Σ.

For a structure A over the signature Σ and an element e ∈ A, tpA(e) denotes the unique
1-type π ∈ Π(Σ) such that A |= π(e). Similarly, for e1, e2 ∈ A, tpA(e1, e2) is the unique
2-type τ ∈ T (Σ) such that A |= τ(e1, e2). If A |= τ(e1, e2), we say that e1 emits the type τ
and e2 accepts it and that τ originates in e1. A 1-type π (resp. 2-type τ) is realised in A if
π = tpA(e) (resp. τ = tpA(e1, e2)) for some e ∈ A (resp. e1, e2 ∈ A, with e1 6= e2). Symbols
Π(A) and T (A) denote respectively the set of 1-types and the set of 2-types over Σ realised
in A. A 1-type κ ∈ Π(Σ) that has only one realisation in a structure A is said to be a king
1-type in A. If an element e of A realises a king 1-type then it is said to be a king in A. Any
structure may have multiple kings.

If Σ is a relational signature and f = f1, . . . , fm is a sequence of distinct binary predicates
in Σ, then the pair 〈Σ, f〉 is called a classified signature. Let 〈Σ, f̄〉 be a classified signature and
let τ(x, y) be a 2-type over Σ. We say that τ is a message type over 〈Σ, f̄〉 if f(x, y) ∈ τ(x, y)
for some distinguished predicate f in f̄ . Given a structure A over a signature 〈Σ, f̄〉 and an
element a ∈ A, we want to capture message types connecting a to other elements of A and
all 2-types connecting a to kings of A. We first define the set of all these 2-types. If K is a
set of king 1-types from A, then denote by τ(K,Σ, f̄) the set of all 2-types µ, such that µ is
a message type over 〈Σ, f̄〉 or tp2(µ) ∈ K. A 2-type from τ(K,Σ, f̄) is called an essential
type. If τ is an essential type (resp. a message type) such that τ−1 is also an essential type
(resp. a message type) then we say that τ is an invertible essential type (resp. invertible
message type). On the other hand, if τ is a 2-type such that neither τ nor τ−1 is an essential
type, then we say that τ is a silent type.

Given a structure A over a classified signature 〈Σ, f〉 and a message type τ , if A |= τ(e1, e2)
then e2 is called a witness for e1 in A. It follows that if τ is an invertible message type then
also e1 is a witness for e2. It is because A |= τ−1(e2, e1) and τ−1 is an (invertible) message
type.

Since we consider predicates of arity at most 2, a structure A can be seen as a complete
directed graph, where nodes are labelled by 1-types and edges are labelled by 2-types. Thus
to define such a structure it is enough to define 1-types of its elements and 2-types of all
pairs of elements provided that the projections of 2-types onto 1-types coincide with these
1-types and that for each pair 〈e1, e2〉 of elements connected by a 2-type µ the pair 〈e2, e1〉
is connected by the 2-type µ−1.

Normal form of C2 formulas

For a natural number n denote by n the set {1, . . . , n}. We will assume that input
C2[Σu,Σb, {<,+1}] formula ϕ is in a normal form

ϕ = ∀x∀y.(α(x, y) ∨ x = y)∧
∧
h∈m

∀x∃=1y.(fh(x, y) ∧ x 6= y) (1)
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where α is a quantifier-free formula with unary and binary predicate symbols and f1, . . . , fm
are distinguished binary predicates. By a routine adaptation of transformation in [9] we may
convert each C2 formula to an exponentially larger C2 formula ϕ′ in normal form, such that
ϕ and ϕ′ are equisatisfiable (on structures of cardinality > 1). From now on we also assume
that the classified vocabulary of ϕ is 〈Σ, f̄〉, where f̄ = f1, . . . fm and Σ is a finite subset of
Σu ∪ Σb.
I Remark. In Section 4 we use a notion of normal forms for C2 formulas with only polynomial
blowup. Here, for simplicity of presentation, we decided to employ the one with exponential
blowup. Since there is no elementary upper bound on the complexity of the problem to
which we reduce our logic, the construction in the present section would not benefit from the
usage of a more succinct normal form.

Normal structures

Now, to simplify the reasoning, we restrict the class of models that we consider.

I Definition 14. A finite structure A ∈ O(Σ, <,+1) over a classified signature 〈Σ, f̄〉 is
normal if
1. both the smallest and the largest elements w.r.t. <A are kings in A,
2. for every two non-king elements e1, e2 ∈ A satisfying e1 <

A e2 there exist two elements
e′1, e

′
2 ∈ A such that e′1 <A e′2, tpA(e1) = tpA(e′1), tpA(e2) = tpA(e′2), and tpA(e′1, e′2) is

a silent 2-type,
3. for every node e ∈ A and f ∈ f̄ we have |{e′ ∈ A | A |= f(e, e′)}| = 1, and
4. for every e1, e2 ∈ A if +1A(e1, e2) then tpA(e1, e2) is an invertible essential type.
The following lemma says that when dealing with models of C2[Σu,Σb, {<,+1}] formulas, we
may restrict to normal structures.

I Lemma 15. Let ϕ be a C2[Σu,Σb, {<,+1}] formula in normal form over a vocabulary
〈Σ, f̄〉. If ϕ is finitely satisfiable then there exists a vocabulary 〈Σ′, f̄ ′〉 such that Σ ⊆ Σ′
and f̄ ⊆ f̄ ′ and a finite normal 〈Σ′, f̄ ′〉-structure B such that B |= ϕ. Moreover, |Σ′| is
polynomial in |Σ| and |f̄ ′| = |f̄ |+ 2.

Star types

Given a structure A over a signature 〈Σ, f̄〉 and an element a ∈ A, we want to capture
essential 2-types emitted from a to other elements of A. For this reason we introduce star
types.

I Definition 16 (Star type in A). Let A be a normal structure over 〈Σ, f̄〉, and let a be an
element of A. Let K = {κ | κ is a king type in A}. A star type of a in A, denoted stA(a) is
a pair σ = 〈π, T 〉 where π = tpA(a) and T is the set of essential types originating in a:

T = {µ ∈ τ(K,Σ, f̄) | tpA(a, b) = µ for some b ∈ A}.

We denote the type π by π(σ). We say that a 2-type µ occurs in σ, written µ ∈ σ, if µ ∈ T .
We write σ− µ for the star-type σ′ = 〈π, T \ {µ}〉. When S is a set of 2-types we write σ \ S
to denote the star type 〈π, T \ S〉.

Observe that in the definition above σ satisfies the conditions
1. for all µ1, µ2 ∈ σ if f(x, y) ∈ µ1 and f(x, y) ∈ µ2 for some f ∈ f̄ then µ1 = µ2,
2. µ ∈ σ implies tp1(µ) = π for all µ ∈ τ(K,Σ, f̄),
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3. |{µ ∈ σ | tp2(µ) = κ}| = 1 for all κ ∈ K such that κ 6= π,
4. |{µ ∈ σ | tp2(µ) = π}| = 0 if π ∈ K.
The first of these conditions is obvious, as normal structures emit precisely one edge τ with
f(x, y) ∈ τ for f ∈ f̄ . The second one says that all 2-types originating in a have the same
1-type of the origin, namely the 1-type of a. The third one says that for all kings k (in A)
the element a is connected with k by exactly one 2-type (provided that k 6= a). The last
condition says that if a is a king then it is not connected with itself by any 2-type (recall
that 2-types connect different elements).

I Definition 17. A star type over the set of 2-types τ(K,Σ, f̄) is any pair of the form 〈π, T 〉
satisfying conditions 1–4 above. A structure A is said to realise a star type σ if stA(a) = σ

for some a ∈ A.

For a given set of star types ST, by π(ST) we denote the set of 1-types {π(σ) | σ ∈ ST}, by
τ(ST) — the set of 2-types occurring in star types from ST, that is the set {µ | ∃σ ∈ ST.µ ∈ σ},
and by partial(ST) the set {〈π, T ′〉 | 〈π, T 〉 ∈ ST for some T satisfying T ′ ⊆ T }. Elements
of partial(ST) are called partial star types. A partial star type is said to be empty if it is of
the form 〈π, ∅〉.

Frames

We now introduce finite and small structures called frames. Frames will be used in deciding
the finite satisfiability problems for C2[Σu,Σb, {<,+1}]: together with multicounter automata
they provide a description of finite models of a given formula.

I Definition 18 (Frame). Let 〈Σ, f̄〉 be a classified signature, K be a set of 1-types over Σ,
let ST be a set of star types over τ(K,Σ, f̄) and let Ξ be a set of silent 2-types over 〈Σ, f̄〉.
A tuple 〈K, ST,Ξ,Σ, f̄〉 is called a frame if the following conditions are satisfied
1. for each 2-type τ ∈ τ(ST) ∪ Ξ if +1(x, y) ∈ τ or +1(y, x) ∈ τ then τ is an invertible

essential type,
2. there exists exactly one star type σfirst ∈ ST such that for every τ ∈ σfirst we have

+1(y, x) 6∈ τ ,
3. there exists exactly one star type σlast ∈ ST such that for every τ ∈ σlast we have

+1(x, y) 6∈ τ ,
4. for each κ ∈ K there exists exactly one σ ∈ ST such that π(σ) = κ, and
5. for each star type σ ∈ ST and each 2-type µ, if µ ∈ σ then tp2(µ) ∈ π(ST).

Frames are intended to describe local configurations in normal structures A. The set K
contains all king 1-types of A, ST — all star types of A and the set Ξ — all silent 2-types
realised in A. Condition 1 says that every node in A is connected to its successor and
predecessor by invertible essential types. Conditions 2 and 3 say that there are unique star
types for the first and the last node in A. Conditions 1–3 follow from the assumption that A
is normal. Condition 4 says that each king has exactly one star type. Condition 5 ensures
that if a neighbour of a node in a structure has some 1-type π, then there exists a star type
σ ∈ ST such that π ∈ π(ST). The above two conditions hold in every relational structure.

Intuitively, we want to check finite satisfiability of a C2 formula ϕ by guessing a right
frame. “Right” means here that two conditions must be satisfied. First, the frame should
be locally consistent with ϕ. This means that every 2-type occurring in the frame entails
the subformulas of ϕ of the form ∀x∀y . . ., and that the number of witnesses in every star
type is correct. This is formalised in the following definition. Second, the frame should be
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globally consistent in the sense that there exists a structure that conforms to this frame —
this is formalised in Definition 20.

I Definition 19 (F |= ϕ). Consider a frame F = 〈K, ST,Ξ,Σ, f̄〉 and a C2[Σu,Σb, {<,+1}]
formula ϕ in normal form (1) over 〈Σ, f̄〉. We say that F satisfies ϕ, in symbols F |= ϕ, if

for each 2-type µ ∈ Ξ ∪ τ(ST), the formula α is a consequence of µ and of µ−1, that is
|= µ→ α and |= µ−1 → α, where µ is seen as conjunction of literals, and
for each σ ∈ ST and h ∈ m we have |{µ ∈ σ | fh(x, y) ∈ µ}| = 1.

I Definition 20. Let 〈K, ST,Ξ,Σ, f̄ , c〉 be a frame, and A structure over 〈Σ, f̄〉. We say
that A fits to the frame F if

the set of king 1-types realised in structure A is K, and
the set of all silent types realised in A is a subset of Ξ, and
the set of star types of A is a subset of ST, in symbols stA(A) ⊆ ST.

The following proposition reduces the finite satisfiability problem of C2[Σu,Σb, {<,+1}] to
the problem of existence of a structure in O(Σ, <,+1) that fits to a given frame.

I Proposition 21. Let ϕ be a C2[Σu,Σb, {<,+1}] formula in normal form over a vocabulary
〈Σ, f〉, where {<,+1} ⊆ Σ. Let A be a structure in O(Σ, <,+1).
1. If A is normal and A |= ϕ then there exists a frame F , such that A fits to F and F |= ϕ.
2. If there exists a frame F such that A fits to F and F |= ϕ then A |= ϕ.

Proof. For the proof of the first statement, assume that A is normal and A |= ϕ. Let K be
the set of king 1-types realised in A, let ST be the set of star types of A and let Ξ be the set
of all silent types realised in A. The facts that tuple F = 〈K, ST,Ξ,Σ, f̄ , c〉 forms a frame,
F |= ϕ and A fits to F are immediate, once Definitions 18, 19 and 20 are spelled.

For the proof of the second statement, let F be a frame such that F |= ϕ and let A be
a structure such that A fits to F . Since ϕ is in normal form, it is of the form (1). Let µ
be any 2-type realised in A. Then either µ is a silent type or it occurs in some star type
realised in A. In any case, by Definition 20 we have that µ ∈ Ξ ∪ τ(ST). By Definition 19
it follows that |= µ → α. So A |= ∀x∀y.(α ∨ x = y). Since A fits to F and F |= ϕ, it also
follows that for each star type σ realised in A and each h such that 1 ≤ h ≤ m we have
|{µ ∈ σ | fh(x, y) ∈ µ}| = 1, and thus A |=

∧
h∈m ∀x∃=1y.(fh(x, y) ∧ x 6= y). Hence A |= ϕ

as required. J

High-level multicounter automata

In the rest of this section we will want to decide for a given frame F if there exists a structure
in O(Σ, <,+1) that fits to this frame. This will be done by a reduction to emptiness problem
for Multicounter Automata.

We now introduce a syntactic extension to multicounter automata that we call High-level
MultiCounter Automata (HMCA). The idea is to specify transitions of an automaton as
programs in a higher-level imperative language with conditionals, loops and arrays, which
leads to clearer exposition of reachability problems. A transition in a High-Level MCA is a
sequence ∆ of actions; each action in turn may update and test finite-domain variables, and
conduct conditional or loop instructions depending on results of these tests. A transition
may also increment or decrement, but not test the value of, counters, which are the only
infinite-domain variables of the automaton.

Formally, an HMCA is a tuple H = 〈Vfin ,VecN,Type,∆, ρI , PF , E〉. Set Vfin consists
of variables v to be interpreted in the finite domain Type(v). We may think of Vfin as
a declaration of finite-domain variables of the program. Set VecN corresponds to a declaration
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of arrays, it consists of variables −→vec to be interpreted as vectors of natural numbers indexed
by elements of some finite set A, where Type(−→vec) = A→ N. We will refer to the index set
A as the domain Dom(−→vec). The Type function assigns to every variable in Vfin ∪VecN its
type. The sequence of actions ∆ is the actual program built from actions defined below.
The starting state of H is ρI , the set of accepting states is PF . Set E is a subset of
{〈~v, a〉 | ~v ∈ VecN, a ∈ Dom(~v)}, and is used in the acceptance condition explained later.

We now define a set of actions α that constitute transitions in HMCA. The simplest
action is an assignment of the form v := Expr , where v is a variable of some domain
A = Type(v), and Expr is an expression built from variables from Vfin, constants from
appropriate domains and operators. An operator is any effectively computable function, e. g.,
∪, ∩, \ are operators of domain (2B)2 → 2B for any domain B; function π : ST(K,Σ, f̄)→ Π(Σ)
from Definition 16 is also an operator, provided that our finite domain contains ST(K,Σ, f̄)
and Π(Σ). We silently extend Type function to constants by letting Type(a) = A if a ∈ A,
and to expressions, e. g., Type(s1∪s2) = 2B if Type(s1) = 2B and Type(s2) = 2B. We require
that assignments v := Expr are well typed, i. e., that Type(v) = Type(Expr). An atomic
test is of the form Expr1 = Expr2 or Expr3 ∈ Expr4, where Expr1, Expr2, Expr3, Expr4 are
expressions such that Type(Expr1) = Type(Expr2) and Type(Expr4) = 2Type(Expr3). A test
is an arbitrary Boolean combination of atomic tests. Notice that tests do not use counters.
A non-deterministic assignment action is of the form guess v ∈ Expr with Test, where
Type(Expr) = 2Type(v) and the variable v may occur in Test. A conditional action is of the
form if Test then α∗ else α′∗ endif or if Test then α∗ endif. A loop action is of the form
while Test do α∗ endwhile. An incrementing action (resp. decrementing action) is of the
form inc(~f [Expr ]) (resp. dec(~f [Expr ])), where Expr evaluates to an index of the array ~f ,
that is, ~f ∈ VecN, Type(~f) = A→ N and Type(Expr) = A. The remaining action, Reject,
simply rejects current computation.

Expressions and tests are evaluated in context of variable valuations. A variable valuation
(also called a state) is any function ρ that assigns to every finite-domain variable v a value
JvKρ ∈ Type(v).We write JvKρ = ρ(v) for v ∈ Vfin, JExpr1 ./ Expr2Kρ = JExpr1Kρ ./

JExpr2Kρ, where ./∈ {∪,∩, \} and Jf(Expr1, . . . ,Exprk)Kρ = f(JExpr1Kρ, . . . , JExprkKρ),
where f is an operator. In a similar way we define semantics of tests.

A counter valuation is any function ϑ that assigns (a sequence of) natural numbers to
(arrays of) counters. A configuration of HMCA H is a pair 〈ρ, ϑ〉 where ρ is an variable
valuation (i. e., a state) and ϑ is a counter valuation. Actions transform configurations. Most
actions work only on variable valuations; the exceptions are incrementing and decrementing
of counters. With the exception of the decrementing action, the semantics of actions is
self-explanatory; dec(c) decrements the counter c if it is strictly positive and otherwise (if it
is 0) it rejects the current computation.

A run of an HMCA H is a sequence of configurations 〈ρ1, ϑ1〉, . . . 〈ρk, ϑk〉 such that
〈ρi+1, ϑi+1〉 is obtained after executing transition ∆ in configuration 〈ρi, ϑi〉, for i ∈
{1, . . . , k − 1}. A run is accepting, if it starts in an initial configuration 〈ρI , ϑ0〉 with
ρI being initial state and ϑ0 assigning 0 to all counters, and it ends in some configuration
〈ρF , ϑF 〉 with ρF being a final state and ϑF assigning 0 to all counters specified in the set E
of final counters: ϑF (~f)(a) = 0 for every 〈f, a〉 ∈ E. The emptiness problem for high-level
multicounter automata is the question whether a given automaton H has an accepting run.

In the full version of the paper we give formal syntax and semantics to high-level
multicounter automata and we prove that HMCA can be compiled to multicounter automata.
Intuitively, the control structures and finite-domain variables (including tests for zero on
finite-domain variables) can be hidden in states of the constructed MCA. Formally, we have
the following proposition.
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I Proposition 22. Emptiness problem for HMCA is reducible to emptiness problem of
multicounter automata, and is therefore decidable.

Figure 1 shows a high-level multicounter automaton HF that for a given frame F checks
whether there exists a normal structure that fits to F . The automaton guesses one by one
the sequence of elements of the structure as they appear in the order <. The constructed
HMCA keeps track of the set of nodes visited (i. e., guessed) so far; their 1-types are stored in
variable Visited; variable Required stores the set of king types that still must be constructed.
These two variables are updates in lines 4–7.

A crucial notion in the construction of the automaton is the difference type of a node
w.r.t. to another node in a structure. Fig 2 shows an example of a difference type.

I Definition 23 (Difference type of e1 w.r.t. e in a structure A). Let A ∈ O(Σ, <,+1) and
e1, e ∈ A be elements satisfying e1 <

A e. Let σ be the star type of e1 and let {τi}ki=1 be
essential types emitted from e1 and accepted by nodes <A than e. A partial star type
σ \ {τi}ki=1 is called a difference type of e1 w.r.t. e in A.

I Definition 24. Let A ∈ O(Σ, <,+1) and e ∈ A. The cut at point e in A is a vector
−→
Cute

of natural numbers indexed by star types on τ(K,Σ, f̄) such that

−→
Cute[σ] = |{e1 ∈ A | difference type of e1 w.r.t. e in A is σ}|.

Intuitively, the cut vector
−→
Cute informs us, for each 2-type τ , how many edges of type τ

emitted by nodes smaller than e must be accepted by nodes greater or equal to e. Additionally,
it informs which of these edges have common origin, i. e., they belong to a star type of the
same node. This information is used when we define 2-types connecting e with smaller nodes.
When we define a 2-type connecting e with a node e′ smaller than e, we have to subtract
this 2-type from the current cut. At the same time we have to remember that for each pair
of nodes there is only one 2-type connecting them, so when we subtract two 2-types from a
cut, we have to be sure that their origins are different. This is why the cut vector is indexed
by difference types and not by 2-types.

For a star type σ define σ< = {τ ∈ σ | (y < x) ∈ τ} and σ> = {τ ∈ σ | (x < y) ∈ τ}.
Intuitively σ< (resp. σ>) denotes the subset of σ containing essential types emitted to
smaller (resp. larger) nodes. For a partial star type σ from ST define τ+1(σ) as the only
2-type τ such that +1(x, y) ∈ τ , or the special value ⊥ if σ is the star type of last node of a
structure. Similarly, define first(σ) to be an arbitrary 2-type τ such that τ ∈ σ. The value of
−→
Cut is updated in two loops in lines 9–27. During the computation some counters from

−→
Cut

are decremented, and some counters from
−−−−−−→
Processed — incremented. Decrementation of a

counter corresponds to establishing a 2-type between e and some e′ smaller than e (this is
done in the loop in lines 9–19), or between e′ and e (loop in lines 21–27). In order not to
establish multiple 2-types between the same pair of nodes, we remove the difference type of
e′ w.r.t. e from

−→
Cut and store it in

−−−−−−→
Processed. When the second loop (lines 21–27) finishes its

execution the initial value of
−→
Cut vector for next node is the sum of the values of updated

vectors
−→
Cut and

−−−−−−→
Processed in line 27.

In lines 29–34 we guess the star type of the next node, or the special value ⊥ in case
the maximal element of the structure is already guessed. To keep the constructed structure
normal (and to be able to define silent 2-types between non-king nodes) we have to satisfy
condition 2 in Definition 14. Therefore, while guessing a consecutive node, we must check
that it does not violate this condition. Therefore we guess (the star type of) the consecutive
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Type Type(σc) = ST ∪ {⊥}, Type(σ), Type(σu) and Type(σg) is partial(ST), Type(τ) = τ(ST)
and Type(τ+1) = τ(ST) ∪ {⊥}. Type(Required) = 2K and Type(Visited) = 2π(ST ). Type(

−→
Cut)

and Type(
−−−−−−→
Processed) is partial(ST)→ N.

Initial Configuration Initial state is ρI such that ρI(σc) = σfirst, ρI(Required) = K,
ρI(Visited) = ∅ and the value of ρI on remaining variables is arbitrary (but fixed). Initial
counter valuation assigns 0 to all counters.

Accepting Configurations The set of accepting states PF consists of all states ρF satisfy-
ing K ⊆ ρF (Visited). Accepting counter valuations are defined by the set E = {〈

−→
Cut, σ〉 |

σ ∈ partial(ST) is non-empty}.
Transition ∆
1: if σc = ⊥ then
2: Reject
3: endif
4: if π(σc) ∈ Required then
5: Required := Required \ {π(σc)}
6: endif
7: Visited := Visited ∪ {π(σc)}
8: σ := σc

<

9: while σ 6= ∅ do
10: τ := first(σ)
11: σ := σ − τ
12: if τ is an invertible essential type then
13: guess σu ∈ partial(ST) with τ−1 ∈ σu>
14: else
15: guess σu ∈ partial(ST) with π(σu) = tp2(τ)
16: endif
17: dec(

−→
Cut[σu>])

18: inc(
−−−−−−→
Processed[σu> − τ−1])

19: endwhile
20: guess anotherIteration ∈ {true, false}
21: while anotherIteration do
22: guess σg ∈ partial(ST)
23: guess τ ∈ σg> with tp2(τ) = π(σc) and (τ is non-invertible essential type)
24: dec(

−→
Cut[σg>])

25: inc(
−−−−−−→
Processed[σg> − τ ])

26: guess anotherIteration ∈ {true, false}
27: endwhile
28: inc(

−→
Cut[σc>])

29: τ+1 := τ+1(σc>)
30: if τ+1 = ⊥ then
31: σc := ⊥
32: else
33: guess σc ∈ Allowed(Visited) with (τ+1)−1 ∈ σc
34: endif
35: guess anotherIteration ∈ {true, false}
36: while anotherIteration do
37: guess σg ∈ partial(ST)
38: dec(

−−−−−−→
Processed[σg>])

39: inc(
−→
Cut[σg>])

40: guess anotherIteration ∈ {true, false}
41: endwhile

Figure 1 A high-level multicounter automaton HF corresponding to a frame F . Here the set
of finite-domain variables is {σc,Visited,Required, σ, τ, σu, σg, τ+1, anotherIteration}, and there are
two arrays of counters

−→
Cut and

−−−−−−→
Processed.
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e1 e

Figure 2 Difference type of e1 w.r.t. e contains the arrows that cross the dotted line.

node from the set

Allowed(Visited) = {σ ∈ ST | π(σ) ∈ K \Visited} ∪
{σ ∈ ST | ∀π ∈ Visited (π 6∈ K ⇒ ∃τ ∈ Ξ.tp1(τ) = π ∧ (x < y) ∈ τ ∧ tp2(τ) = π(σ))}.

Finally, loop in lines 35–41 may move the content of vector
−−−−−−→
Processed to

−→
Cut. We may assume

that the entire content is actually moved. Formally, the correspondence between a frame F
and HMCA HF is captured by the following proposition, which directly leads to the main
theorem of this section.

I Proposition 25. Let F = 〈K, ST,Ξ,Σ, f̄〉 be a frame. The automaton HF is non-empty
if and only if there exists a structure M∈ O(Σ, <,+1) that fits to F .

I Theorem 26. The finite satisfiability problem for C2[Σu,Σb, {<,+1}] is decidable.

Proof. We may assume that the input C2[Σu,Σb, {<,+1}] formula ϕ is in normal form
(otherwise it can be brought to the normal form). A non-deterministic decision procedure for
the finite satisfiability problem guesses a frame F such that F |= ϕ and checks if HMCA
HF is non-empty. If so, then by Proposition 25 we obtain a structure M∈ O(Σ, <,+1) that
fits to F . Because M fits to F and F |= ϕ, by Proposition 21 we conclude that M |= ϕ.
This shows that ϕ is finitely satisfiable, so our procedure is sound. On the other hand, if
ϕ is finitely satisfiable then, by Lemma 15, it has a modelM which is a normal structure.
Again, by Proposition 21 there exists a frame F such that M fits to F and F |= ϕ. By
Proposition 25 we conclude that HF is non-empty, so the procedure is complete.

Note that the size of F is at most doubly exponential in the size of formula’s vocabulary
〈Σ, f̄〉, so there are finitely many frames that can be guessed, and that the emptiness problem
of HMCA HF is decidable, as stated in Proposition 22. J

7 Conclusion

We have shown several complexity results for finite satisfiability of two-variable logics with
counting quantifiers and linear orders. In particular we proved NExpTime-completeness of
the problem for C2[Σu, {<,+1}, {<,+1}], VAS-completeness for C2[Σu,Σb, {<}] and undecid-
ability for C2[Σu, {<1, s1, <2, s2}, {<1, <2}]. There are still some unsolved cases, including
C2[Σu, {<1, <2}, {<1, <2}] and C2[Σu, {<1, s1, <2}, {<1, <2}].

There are lots of open problems in the area. One of them is general satisfiability. None
of the logics considered here has finite model property. Our techniques rely on finiteness
of the underlying structure, so they cannot be directly applied to general satisfiability on
possibly infinite structures. Among possible directions for future work one can choose
combination of C2 with other interpreted binary relations like preorders [21] or transitive
relations [33]. Another possibility is to consider C2 with closure operations on some relations,
like equivalence closure [14] or deterministic transitive closure [3].
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Abstract
Aiming to pinpoint the reasons behind the decidability of some complex extensions of modal logic,
we propose a new classification criterion for sentences of first-order logic, which is based on the
kind of binding forms admitted in their expressions, i.e., on the way the arguments of a relation
can be bound to a variable. In particular, we describe a hierarchy of four fragments focused
on the Boolean combinations of these forms, showing that the less expressive one is already
incomparable with several first-order restrictions proposed in the literature, as the guarded and
unary negation fragments. We also prove, via a novel model-theoretic technique, that our logic
enjoys the finite-model property, Craig’s interpolation, and Beth’s definability. Furthermore, the
associated model-checking and satisfiability problems are solvable in PTime and ΣP

3 , respectively.
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1 Introduction

Since from the revolutionary negative solutions owed to Church and Turing, Hilbert’s original
“Entscheidungsproblem” [27] turned into a vast classification process looking for all those
classes of first-order sentences having a decidable satisfiability [10]. Depending upon the
syntactic criteria used to identify the particular classes of interest [23], this process was
declined into several research programs, among which we can mention, on one side, those
limiting relation arities [35] or the total number of variables [40, 24] and, on the other one,
those classifying sentences in prenex normal form based on their prefix vocabulary [11].

The research in this field has had a considerable impact, from both a theoretical and
practical point of view, in a variety of areas on the edge between mathematics and computer
science, e.g., reverse mathematics [48], descriptive complexity [33], database theory [51, 1],
and formal verification, just to mention a few. However, Vardi observed that almost all of
the classic approaches did not shed any satisfactory light on why modal logic and derived
frameworks, like the ones featuring fixpoint constructs, are so robustly decidable [57, 21].

Trying to find a plausible answer, Andréka, van Benthem, and Németi introduced the
guarded fragment of first-order logic [3], which generalizes the modal framework by essentially
retaining several of its model-theoretic and algorithmic properties. This work started a
completely new research program based on the way quantifications can be relativised to
atoms, avoiding the usual syntactic restrictions on quantifier patterns, number of variables,
and relation arities. Pushing forward the idea that robust fragments of first-order logic
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owe their nice properties to some sort of guarded quantification, several extensions along
this line of research were proposed in the literature, such as the loosely guarded [52], the
clique guarded [19, 22], the action guarded [53, 18], and the guarded fixpoint logic [25]. This
classification program has also important applications in database theory and description
logic, where it is relevant to evaluate a query against guarded first-order theories [5].

Only recently, ten Cate and Segoufin observed that the first-order translation of modal
logic presents, besides the guarded nature of quantifications, another important peculiarity:
negation is only applied to sentences or monadic formulas, i.e., formulas with a single free
variable. Exploiting this observation, they introduced a new robust fragment of first-order
logic, called unary negation [49, 50], which extends modal logic, as well as other formalisms,
like Boolean conjunctive queries, that cannot be expressed in terms of guarded quantifications.
Since this new restriction is incomparable with the guarded fragments, right after the original
work, another formalism was proposed, called guarded negation [7], which unifies the two
approaches. Syntactically, there is no primary universal quantifier and the use of negation is
only allowed if guarded by an atom. In terms of expressive power, this fragment forms a
strict extension of both the logics on which it is based, while preserving the same desirable
properties of the modal framework. However, it has to be noted that it is still incomparable
with more complex extensions of the guarded fragment, such as the clique guarded one. This
way of analysing formulas focusing on the guarded nature of negation has also important
applications to database theory, where it is well-known that the operation of complementation
makes queries hard to evaluate [6].

Although these two innovative classification programs really succeeded in the original task
to explain the nice properties enjoyed by modal logic, we cannot consider them completely
satisfactory with respect to the more general intent of identifying the reasons why some
of its complex extensions are so well-behaved. In particular, based only on the resulting
model-theoretic and algorithmic features, we are not able to answer the question about
the decidability of several multi-agent logics for strategic abilities, such as the Alternating
Temporal Logics [2] ATL [58, 47] and ATL? [46] and the one-goal fragment SL[1g] [37] of
Strategy Logic [12, 39, 38], which do not intrinsically embed such kinds of relativisation.
For example, consider the ATL? formula [[a, b, c]]¬ψ over a game structure with a, b, c,
and d as the only agents. Intuitively, it asserts that agent d has a strategy, which depends
upon those chosen by the other ones, ensuring that the LTL property ψ does not hold.
Now, observe that the underlying strategic reasoning can be represented by the first-order
sentence ∀a∀b∀c∃d¬rψ(a, b, c, d) having a prefix of the form ∀3∃ coupled with the quaternary
atomic relation rψ in place of the temporal requirement ψ, which absorbs and hides the
intrinsic second-order flavour of the original ATL? formula. It is evident that this sentence
belongs neither to a decidable prefix-vocabulary class nor to the two-variable fragment.
Moreover, quantifications are not guarded and negation is applied to a formula that is
neither monadic nor guarded. Another explicit example is given by the SL[1g] sentence
[[x]]〈〈y〉〉[[z]](a, x)(b, x)(c, y)(d, z)ψ asserting that, once a and b have chosen the common
strategy x, agent c can select its better response y to ensure ψ, in a way that is independent
of the behaviour z of d. In this case, the associated first-order sentence ∀ab∃c∀drψ(ab, ab, c, d)
has a prefix of the form ∀∃∀ coupled with the atomic relation rψ, whose first two arguments
are bound to the same variable. Again, we cannot cast this sentence in any of the decidable
restrictions previously described. In particular, it is neither unary negation nor guarded
negation, since universal quantifications are used as primary construct, which is not allowed
in either of them.
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Table 1 Notable algorithmic and model-theoretic properties for some fragments of FOL (m:
monadic, 2var: 2-variables, gf: guarded fragment, cg: clique guarded, un: unary negation, gn:
guarded negation, fl: fluted logic, uf1: uniform one-dimensional fragment, 1b: one binding, cb:
conjunctive binding, db: disjunctive binding, bb: Boolean binding).

MC SAT FMP CI BD

FOL[m] PSpace-C NExpTime-C [11] X [11] X X

FOL[2var] PTime [56] NExpTime-C [24] X [40] × [45] × [45]
FOL[gf] PTime-C [9] 2ExpTime-C [20] X [20] × [29] X [29]
FOL[cg] PSpace-C [9] 2ExpTime-C [19] X [28] × [29] X [29]
FOL[un] ∆P

2 (O(log2 n))-C [50] 2ExpTime-C [50] X [50] X [50] X [50]
FOL[gn] ∆P

2 (O(log2 n))-C [7] 2ExpTime-C [7] X [7] X [4] X [4]
FOL[fl] PSpace NExpTime-C [42] X [42] X [42] X [42]
FOL[uf1] ? NExpTime-C [34] X [26] ? ?

FOL[1b] PTime [Thm.3.12] ΣP
3 -C [Thm.3.13] X [Thm.3.11] X [Thm.3.11] X [Thm.3.11]

FOL[cb] PSpace-C [Thm.3.8] ? [Con.3.10] ? [Con.3.10] ? ?
FOL[db] PSpace-C [Thm.3.8] Undecidable [Thm.3.9] × [Thm.3.9] ? ?
FOL[bb] PSpace-C [Cor.3.6] Undecidable [Cor.3.6] × [Cor.3.6] X [Cor.3.6] X [Cor.3.6]

At this point, a question naturally arises: what are the syntactic constraints on the
first-order representations of these logics of strategies that ensure their decidability? After a
careful analysis, one can observe that such representations are always composed by a Boolean
combination of sentences in prenex normal form, whose matrices are Boolean combinations
of relations over the same arguments, which denote the agents of the game under analysis.

In this paper, trying to lay the foundation for a more thorough understanding of these
decidability questions, we exploit the above observation to devise a new classification program
based on the binding forms admitted in a sentence, i.e., on the way the arguments of a
relation can be bound to a variable. Indeed, inspired by the decoupling between agents and
variables in SL, we define a syntactic variant of first-order logic in which arguments are bound
to variables by means of an appropriate binding construct. To support this, similarly to the
treatment of the attributes of a table in database theory [16], we describe a generalization of
standard notions of language signature and relational structure in which arguments are explicit.
With more detail, every relation r is associated with a set of arguments {a1, . . . , an}, which
are bound to the variables via a binding form (a1, x1) · · · (an, xn)r that replaces the standard
writing r(x1, . . . , xn). So, for instance, a formula like r1(x1, x2) ∧ r2(x2, x3) → r3(x1, x3)
would be written as (a1, x1)(a2, x2)(a3, x3)(r1 ∧ r2 → r3), assuming {a1, a2}, {a2, a3}, and
{a1, a3} as the arguments of r1, r2, and r3, respectively. Our notation, although perfectly
equivalent to the classic one, allows to introduce and analyse, in a natural way, a hierarchy
of four fragments of first-order logic based on the Boolean combinations of these forms. In
particular, the simplest one, called one binding, is already incomparable with the clique
guarded and guarded negation restrictions, as well as, with the fluted logic introduced by
Quine [44] and the uniform one-dimensional fragment recently proposed by Hella, Kieron-
ski, and Kuusisto [26, 34]. Examples of one-binding sentences result from the translation
of the game properties described above, namely ∀x∀y∀z∃w(a, x)(b, y)(c, z)(d, w)¬rψ and
∀x∃y∀z(a, x)(b, x)(c, y)(d, z)rψ, where we assume that the relation rψ has the agents a, b,
c, and d as arguments. Via a novel model-theoretic technique exploiting the peculiarity of
binding forms, we prove that our logic enjoys the finite-model property, both Craig’s inter-
polation and Beth’s definability, a PTime model checking and a ΣP

3 -complete satisfiability.
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In Table 1, we summarize results and open problems about classic and new fragments, from
which we can immediately observe that the one-binding restriction is the simplest one with
respect to the algorithmic point of view.

The main aim of this work is to describe a new criterion to classify formulas in order to
better explore the boundary between nice/non-nice [3], tame/untamed [42], easy/hard [56],
and decidable/undecidable [11] fragments of FOL, which is probably quite wider, but hopefully
less irregular, than it was considered before. In particular, thanks to the introduced syntax,
it is easier to discover connections with other languages, as those derived from algebras [13]
and calculi [14] for relational databases. Moreover, we think it can help in the quest for
the ultimate reasons behind tractability and decidability of a logic. Last but not least, we
provide model-theoretic results that may be used as technical tools in other contexts, as well.
Indeed, going back to the logics for strategic abilities, we claim that the bounded-tree model
property of ATL [47], ATL? [46], and SL[1g] [37], shown to be crucial for their decidability,
can be proved by means of the finite-model property of the one-binding fragment. This result
is the focus of a dedicated work [36].

2 Signatures and Structures

Since from Codd’s pioneering work on the definition of relational databases [13], several kinds
of first-order languages have been used to describe databases queries [14]. In particular,
first-order logic (FOL, for short) has been established as the main theoretical framework in
which to prove results about properties of query languages [31, 55, 32]. In such a context, a
table is usually represented as a mathematical relation between elements of a given domain,
where its attributes are mapped to the indexes of that relation in a predetermined fixed way.
Hence, attributes do not have any explicit matching element in the syntax of the language.

To introduce the binding-form fragments of FOL, we need to reformulate, instead, both
the syntax and semantics of the logic in a way that is much closer to database theory. In
particular, we explicitly associate a finite non-empty set of arguments to each relation [16],
which are handled in the syntax via corresponding symbols. To do this, in the following, we
introduce an alternative version of classic language signatures and relational structures.

Language Signatures. A language signature is a mathematical object describing the form
of all non-logical symbols composing a formula. The typology we introduce here is purely
relational, since we do not make use of constant or function symbols. Also, in our reasonings,
we do not explicitly consider distinguished relations as equivalences, orders, or the equality.

I Definition 2.1 (Language Signature). A language signature (LS, for short) is a tuple
L , 〈Ar,Rl, ar〉, where Ar and Rl are the finite non-empty sets of argument and relation
symbols and ar : Rl→ 2Ar \ {∅} is the argument function mapping every relation r ∈ Rl to
its non-empty set of arguments rL , ar(r) ⊆ Ar.

Suppose we want to describe the schema of a genealogy database containing the relations
isFather(father, child), isMother(mother, child), and areParents(father, mother, child). We
can do this by means of the simple LS LG =〈Ar,Rl, ar〉, whose elements are set as follows:
Ar = {c : child, f : father , m : mother}; Rl = {Ft : isFather , Mt : isMother , Pr : areParents};
FtLG={c, f}, MtLG={c, m}, and PrLG =Ar. From now on, we may put a superscript on a
relation containing a list of its argument, e.g., Prcfm, to help the reader to keep track of them.

Relational Structures. Given a language signature, we define the interpretation of all
symbols by means of a relational structure, i.e., a carrier domain together with an association
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652 Binding Forms in First-Order Logic

of each relation with a set of suitable tuples assuming values in that domain. Since relations
with the same arity may have different arguments, it is not sufficient to work with elements
of a Cartesian product as components of their interpretation. Therefore, we assign to every
relation a set of tuple functions mapping arguments in their support to values of the carrier
domain. Note that, under this definition, an order among arguments is not required.

I Definition 2.2 (Relational Structure). A relational structure over an LS L = 〈Ar,Rl, ar〉
(L-RS, for short) is a tuple R ,〈Dm, rl〉, where Dm is the non-empty set of arbitrary objects
named domain and rl : Rl→r 2ar(r)→Dm is the relation function mapping every relation r ∈ Rl
to the set rR , rl(r) ⊆ ar(r)→ Dm of tuple functions t ∈ rl(r) from the arguments a ∈ ar(r)
of r to values t(a) ∈ Dm of the domain.
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Figure 1 A relational structure.

The order (resp., size) of an L-RS R is given by the
cardinality |R| , |Dm| (resp., ‖R‖ , |

⋃
r∈Rl r

R|) of its
domain set (resp., relation function). A relational struc-
ture is finite if it has finite order and, so, a finite size.

Consider the LS LG previously described. In Figure 1,
we depict an LG-RS RG containing part of Simpson Fam-
ily’s genealogy tree, where the two binary relations Ftcf

and Mtcm are indicated through the edges labelled by their
own names, while the ternary relation Prcfm is described
via the three hyperedges represented by the gray areas.

3 First-Order Logic

We start by describing a slightly different but equivalent
formalization of both syntax and semantics of FOL ac-
cording to the explained alternatives of the language signature and relational structure. Then,
we introduce a new family of fragments based on the kinds of binding forms allowed in a
formula, i.e., on the ways arguments can be bound to variables.

From now on, unless stated otherwise, we use L = 〈Ar,Rl, ar〉 to denote an a priori
fixed LS. Also, Vr represents an enumerable non-empty set of variables. For the sake of
succinctness, to indicate the extension of L with Vr, we adopt the composed symbol L(Vr).

Syntax. As far as the syntax of FOL is concerned, the novelty of our setting resides in the
decoupling between variables and arguments, which implies an explicit occurrence of the
latter as atomic components of a formula. Indeed, a variables x is not directly applied to the
index associated with an argument a of a relation r, as in the usual writing r(. . . , x, . . .), but
an appropriate construct (a, x)ϕ, called binding, is required to bind a to x in the formula ϕ.

I Definition 3.1 (FOL Syntax). FOL formulas over L(Vr) are built by means of the following
context-free grammar, where a ∈ Ar, r ∈ Rl, and x ∈ Vr:

ϕ := ⊥ | > | r | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x.ϕ | ∀x.ϕ | (a, x)ϕ.

L(Vr)-FOL denotes the set of all formulas over L(Vr) generated by the above grammar.

Consider again the LS LG of Section 2 and suppose we want to formalize the fact that
father and mother of a person are her parents and vice versa. This can be done via the
LG({x, y, z})-FOL formula ϕ1 = ∀x∀y∀z(f, x)(m, y)(c, z)((Ftcf ∧ Mtcm) ↔ Prcfm), where by
ϕ1 ↔ ϕ2 we denote, as usual, the conjunction (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) with ϕi → ϕj in
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place of ¬ϕi ∨ ϕj . Now, imagine we need to determine which people have a father. To this
aim, we can employ the formula ϕ2 = ∃x(f, x)Ftcf, whose argument c is associated with
the result. Finally, to query all pairs (x, y) of grandfather and grandchild, we can use the
formula ϕ3 = ∃z((f, x)(c, z)Ftcf ∧ (c, y)((f, z)Ftcf ∨ (m, z)Mtcm)). By fixing a linear order on
the arguments, it is possible to rewrite every statement in the classic syntax. For instance,
ϕ1 can be expressed by ∀x∀y∀z((Ft(x, z) ∧ Mt(y, z))↔ Pr(x, y, z)), once it is assumed that
f < m < c. Conversely, every formula in the standard syntax can be translated into our
syntax, by means of numeric arguments representing the positions in the relations. For
example, the transitivity property ∀x∀y∀z((R(x, y) ∧ R(y, z))→ R(x, z)) can be rewritten as
∀x∀y∀z(((1, x)(2, y)R12 ∧ (1, y)(2, z)R12)→ (1, x)(2, z)R12).

Usually, predicative logics, i.e., languages having explicit quantifiers, need a concept of free
or bound placeholder to formally evaluate the meaning of their formulas. The placeholders
are used, in fact, to identify particular positions in a syntactic expression that are crucial
for the definition of its semantics. Classic formalizations of FOL just require one kind of
placeholder represented by the variables on which the formulas are built. In our new setting,
instead, also the arguments have this fundamental role, as they are used to decouple variables
from their association with a relation. As a consequence, we need a way to check whether a
variable is quantified or an argument is bound. To do this, for every formula ϕ, we compute
its set of free arguments/variables free(ϕ), as the subset of Ar ∪Vr containing all arguments
that are free from binding together with all variables occurring in some binding that are not
quantified. Formally, we have the following definition.

I Definition 3.2 (Free Placeholders). The set of free arguments/variables of an L(Vr)-FOL
formula can be computed via the function free : L(Vr)-FOL→ 2Ar∪Vr defined as follows:
1. free(⊥) = free(>) , ∅;
2. free(r) , ar(r), where r ∈ Rl;
3. free(¬ϕ) , free(ϕ);
4. free(ϕ1Opϕ2) , free(ϕ1) ∪ free(ϕ2), where Op ∈ {∧,∨};
5. free(Qnx.ϕ) , free(ϕ) \ {x}, where Qn ∈ {∃, ∀};

6. free((a, x)ϕ) ,
{

(free(ϕ) \ {a}) ∪ {x}, if a ∈ free(ϕ);
free(ϕ), otherwise.

A formula ϕ without free arguments (resp., variables), i.e., ar(ϕ) , free(ϕ)∩Ar = ∅ (resp.,
vr(ϕ) , free(ϕ) ∩Vr = ∅), is named argument (resp., variable) closed. If ϕ is both argument
and variable closed, it is referred to as a sentence. Consider the three formulas ϕ1, ϕ2, and ϕ3
given above. We have that free(ϕ1)=∅, free(ϕ2)=ar(ϕ2)={c}, and free(ϕ3)=vr(ϕ3)={x, y}.
Thus, ϕ1 is a sentence, ϕ2 is variable closed, and ϕ3 is argument closed.

One may observe that the proposed syntax has some similarities with the relational
calculus introduced by Codd [14, 16] as a logic counterpart of standard relational algebra [13],
since in this language the attributes may be identified by name rather than position. However,
its notation is tuple-centric, thus, it necessarily requires the use of the equality relation even
to express very simple properties that do not intrinsically need it. For example, to describe
in that calculus the left-totality of a binary relation r over the arguments a and b, we have to
write ∀t∃t′(t[b] = t′[a]∧r(t′)) (unrestricted semantics) or ∀t(r(t)→ ∃t′(t[b] = t′[a]∧r(t′)))
(active-domain semantics). In our syntax, instead, we just write ∀x∃y(a, x)(b, y)r (unrestricted
semantics) or ∀z∀x((a, z)(b, x)r→ ∃y(a, x)(b, y)r) (active-domain semantics).

Semantics. The semantics of FOL described here is defined, as usual, w.r.t. an RS. As
a matter of fact, the peculiarities of our setting only concern the interpretation of binding
constructs and the non-standard evaluation of relations.
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In order to formalize the meaning of a formula, we first need to describe the concept of
assignment, i.e., a partial function χ ∈ AsgD , (Ar ∪Vr) ⇀ D mapping each placeholder in
its domain to a value of an arbitrary set D, which is used to define a valuation of all the
free arguments and variables. For a given placeholder p ∈ Ar ∪ Vr and a value d ∈ D, the
notation χ[p 7→ d] represents the assignment defined on dom(χ[p 7→ d]) , dom(χ) ∪ {p} that
returns d on p and is equal to χ on the remaining part of its domain, i.e., χ[p 7→ d](p) , d
and χ[p 7→ d](p′) , χ(p′), for all p′ ∈ dom(χ) \ {p}.

I Definition 3.3 (FOL Semantics). Let R be an L-RS and ϕ an L(Vr)-FOL formula. Then,
for all assignments χ ∈ AsgDm with free(ϕ) ⊆ dom(χ), the relation R, χ |= ϕ is inductively
defined on the structure of ϕ as follows.
1. Boolean values and connectives are interpreted as usual.
2. R, χ |= r if χ�rL ∈ rR, for every relation r ∈ Rl.
3. For each variable x ∈ Vr, it is set that:

a. R, χ |= ∃x.ϕ if there exists a value d ∈ Dm such that R, χ[x 7→ d] |= ϕ;
b. R, χ |= ∀x.ϕ if, for all values d ∈ Dm, it holds that R, χ[x 7→ d] |= ϕ.

4. R, χ |= (a, x)ϕ if R, χ[a 7→ χ(x)] |= ϕ, for each argument a ∈ Ar and variable x ∈ Vr.

Intuitively, Condition 2 states that a relation r is satisfied by an assignment χ whenever
the tuple function χ�rL obtained by the restriction of χ to the arguments rL of r is included
in the interpretation rR. Condition 4, instead, interprets the binding construct (a, x) by
associating the argument a with the value of the variable x contained inside the assignment.

Consider again the formulas ϕ1, ϕ2, and ϕ3 and the LG-RS RG of Figure 1. We have that
RG,∅ |= ϕ1. Moreover, RG,∅[c 7→ Lisa] |= ϕ2 and RG,∅[x 7→ Homer, y 7→ Bart] 6|= ϕ3.

To complete the description of the semantics, we give the notions of model and satisfiability.
For an L-RS R and an L(Vr)-FOL sentence ϕ, we say that R is a model of ϕ, in symbols
R |= ϕ, iff R,∅ |= ϕ, where ∅ ∈ AsgDm simply denotes the empty assignment. We also say
that ϕ is satisfiable iff there exists a model for it. Given two L(Vr)-FOL formulas ϕ1 and
ϕ2, we say that ϕ1 implies ϕ2, in symbols ϕ1 ⇒ ϕ2, iff R, χ |= ϕ1 implies R, χ |= ϕ2, for
each L-RS R and assignment χ ∈ AsgDm with free(ϕ1), free(ϕ2) ⊆ dom(χ). Moreover, we
say that ϕ1 is equivalent to ϕ2, in symbols ϕ1 ≡ ϕ2, iff both ϕ1 ⇒ ϕ2 and ϕ2 ⇒ ϕ1 hold.

Fragments. We now introduce a family of syntactic fragments of FOL by means of a special
normal form, where relations over the same set of arguments may be clustered together by a
unique sequence of bindings. With more detail, we consider Boolean combinations of sentences
in prenex normal form in which quantification prefixes are coupled with Boolean combinations
of these relation clusters called binding forms. Each fragment is then characterized by a
specific constraint on the possible combinations of these forms.

A quantification prefix ℘ ∈ Qn ⊆ {∃x, ∀x : x ∈ Vr}∗ is a finite sequence of quantifiers,
in which each variable occurs at most once. Similarly, a binding prefix [ ∈ Bn ⊆ {(a, x)
: a ∈ Ar ∧ x ∈ Vr}∗ is a finite sequence of bindings, in which each argument occurs at
most once. For example, ℘= ∀x∀y∀z and [= (f, x)(m, y)(c, z) are the quantification and
binding prefixes occurring in the formula ϕ1 = ℘[((Ftcf∧Mtcm)↔ Prcfm) previously described.
Finally, a derived relation r̂ ∈ R̂l is a Boolean combination of relations in Rl all having the
same arguments, while a binding form [r̂ ∈ BF is an argument-closed formula obtained by
the juxtaposition of a binding prefix to a derived relation. Note that [((Ftcf ∧ Mtcm)↔ Prcfm)
is not a binding form, as the three relations have different arguments.

I Definition 3.4 (Binding-Form Fragments). Boolean-binding formulas over L(Vr) are built
by means of the following context-free grammar, where ℘ ∈ Qn and [r̂ ∈ BF:
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ϕ := ⊥ | > | ℘ψ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ); ψ := [r̂ | (ψ ∧ ψ) | (ψ ∨ ψ).

L(Vr)-FOL[bb] denotes the enumerable set of all formulas over L(Vr) generated by the
principal rule ϕ. Moreover, the conjunctive, disjunctive, and one binding fragments of FOL
(FOL[cb], FOL[db], and FOL[1b], for short) are obtained, respectively, by weakening the
secondary rule ψ as follows: ψ := [r̂ | (ψ ∧ ψ), ψ := [r̂ | (ψ ∨ ψ), and ψ := [r̂.

As an example, consider the FOL[bb] sentence ∀x∀y∀z(((c, x)(f, y)Ftcf∧(c, x)(m, z)Mtcm)↔
(c, x)(f, y)(m, z)Prcfm). It is easy to see that this is equivalent to the formula ϕ1 given above.
In general, by applying a simple generalization of the classic procedure used to obtain a
prenex normal form, which further pushes the bindings inside as much as possible, we can
always transform a FOL formula into an equivalent FOL[bb] one, with only a linear blow-up.

I Theorem 3.5 (Binding Normal Form). For each L(Vr)-FOL formula, there exists an
equivalent L(Vr)-FOL[bb] one.

An immediate consequence of the previous theorem is that FOL[bb] inherits all computa-
tional and model-theoretic properties of FOL. Therefore, the following holds.

I Corollary 3.6 (FOL[bb] Properties). FOL[bb] does enjoy both Craig’s interpolation and
Beth’s definability, but not the finite-model property. Also, it has a PSpace-complete
model-checking problem and an undecidable satisfiability problem.

At this point, we describe some meaningful example to illustrate the expressive power of
the other binding-form fragments. First extend the LS LG of Section 2, by adding the two ar-
guments p1 and p2, standing for “person”, and the three binary relations Sb, Mr, and Lv with
SbLG =MrLG =LvLG ={p1, p2}, in place of “Sibling”, “Married”, and “inLove”, respectively.
By definition, two siblings share the same parents. This can be expressed by the FOL[db] sen-
tence ∀x∀y∀z∀w(((p1, x)(p2, y)Sbp1p2∧(c, x)(f, z)(m, w)Prcfm)→(c, y)(f, z)(m, w)Prcfm), where,
for the sake of readability, we use the form (ψ1∧ψ2)→ ψ3 to represent ¬ψ1∨¬ψ2∨ψ3. In the
romantic literature it is common to find an unrequited love, whose scenario may be represented
with the FOL[cb] sentence ∃x∃y∃z((p1, x)(p2, y)Lvp1p2 ∧ (p1, y)(p2, x)¬Lvp1p2 ∧ (p1, y)(p2, z)
Lvp1p2)). Usually, two married people cannot be sibling and should be in love. The FOL[1b]
sentence ∀x∀y(p1, x)(p2, y)(Mrp1p2 → ¬Sbp1p2 ∧ Lvp1p2) precisely expresses this fact. To
conclude, consider the FOL[db] sentence ∀x∀y((p1, x)(p2, y)Mrp1p2 → (p1, y)(p2, x)Mrp1p2)
stating that the relation Mr is symmetric. The only reason why we cannot express it in
FOL[1b] is that the two bindings are permutations of each other. Therefore, if we al-
low the use of permutations in the definition of derived relations, we obtain a strictly
more expressive FOL[1b] fragment able to describe the symmetric property as follows:
∀x∀y(p1, x)(p2, y)(Mrp1p2 → {p1p2 7→ p2p1}Mrp1p2). By using techniques similar to those
developed for FOL[1b], one can prove that such an extension retains exactly the same
model-theoretic and algorithmic properties. However, for the sake of simplicity, we prefer to
postpone this study to the extended version of the paper.

Before continuing, we want to point out an interesting connection between FOL[1b] and
the language par excellence for relational databases. Indeed, without considering negation, it
is not hard to see that sentences of our logic correspond to expressions of relational algebra
of the form unions/natural joins of projections/divisions of positive Boolean combinations of
atomic relations. The connection is still valid in the presence of negation, but it requires a
deeper analysis, as observed in Section 4. Unfortunately, this correspondence is not helpful
in the derivation of the model-theoretic and satisfiability results described in the following.

An expert reader might also have noticed a significant similarity between the concept
of binding form and the notion of uniformity formalized in [26], which is used to introduce
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the uniform one-dimensional fragment of FOL. Nevertheless, the syntax of the four binding
fragments does not comply with the further required one-dimensional restriction. Therefore,
these logics should be orthogonal w.r.t. the expressive power. However, a further analysis of
connections and differences is in order.

Results. The negative features concerning FOL[bb] have spurred us to investigate the three
simpler fragments FOL[cb], FOL[db], and FOL[1b], to which we devote the remaining part
of this section by giving an overview of the obtained model-theoretic and algorithmic results.

As far as the expressiveness is concerned, we show that FOL[1b] is strictly less expressive
than FOL[cb] and FOL[db]. This is done by means of a suitable concept of bisimulation
under which the first fragment is proved to be invariant. Also, FOL[1b] is incomparable with
other logics studied in the literature. Indeed, on the one hand, by means of the sentence
∀x∀y∀z(a1, x)(a2, y)(a3, z)ra1a2a3 , we can state the completeness of a ternary relation r,
which is not possible to express in any of the fragments FOL[2var], FOL[cg], and FOL[gn].
Moreover, FOL[fl] cannot express the reflexivity of a binary relation r [43], which is easily
described by the FOL[1b] sentence ∀x(a1, x)(a2, x)ra1a2 . On the other hand, due to the
invariance under the particular bisimulation referred to above, we have shown that the simple
modal logic formula 23p, does not have an equivalent formulation in FOL[1b]. Finally, it is
possible to observe that both FOL[cb] and FOL[db] are not closed under negation and the
former, differently from the latter, strictly subsumes the conjunctive query fragment of FOL.

I Theorem 3.7 (Expressiveness). FOL[1b] is strictly less expressive than FOL[cb] and
FOL[db] and incomparable with FOL[2var], FOL[cg], FOL[gn], FOL[fl].

Although FOL[cb] and FOL[db] have a more constrained syntax than FOL[bb], they
do not have an easier model-checking problem. We can prove this by employing the classic
reduction from the satisfiability problem of QBF, which is known to be PSpace-complete.

I Theorem 3.8 (FOL[cb] & FOL[db] MC). Both FOL[cb] and FOL[db] have a PSpace-
complete model-checking problem.

For FOL[db], the situation is even worse. In fact, it is not hard to see that this fragment
does not enjoy the finite-model property, as we can express the existence of an unbounded
strict partial order [15]. Moreover, we can show that it is a conservative reduction class [11].

I Theorem 3.9 (FOL[db] FMP & SAT). FOL[db] does not enjoy the finite-model property
and has an undecidable satisfiability problem.

Once observed that the negation of a FOL[cb] formula is equivalent to a FOL[db] one
and vice versa, we immediately derive that the validity problem for FOL[cb] is undecidable.
Nevertheless, we conjecture that this logic is model-theoretically and algorithmically well-
behaved, as we think that the techniques developed for FOL[1b] can be suitably adapted to
work with the more expressive fragment as well.

I Conjecture 3.10 (FOL[cb] FMP & SAT). FOL[cb] does enjoy the finite-model property
and has a decidable satisfiability problem.

We now focus on FOL[1b]. First of all, we prove that it is model-theoretically well-
behaved, as it enjoys the finite-model property and both Craig’s interpolation and Beth’s
definability, which are considered as mandatory properties for a “nice” FOL fragment [3].
To do this, we devise a novel technique that allows us to determine which subsentences of a
given sentence might prevent its satisfiability. In other words, we propose a criterion that
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identifies a set of templates of a formula, i.e., pairs of quantification and binding prefixes
of its subformulas, that may enforce inconsistent requirements on part of the underlying
model. Such a set of templates is said to be overlapping. For example, consider the
sentence ∀x∀y(a1, x)(a2, y)ra1a2 ∧ ∃x(a1, x)(a2, x)¬ra1a2 . It is immediate to see that it is
not satisfiable, as there is an assignment of the arguments a1 and a2, shared by both the
templates (∀x∀y, (a1, x)(a2, y)) and (∃x, (a1, x)(a2, x)), which leads to the inconsistent formula
ra1a2 ∧¬ra1a2 . These templates are, in fact, overlapping. By exploiting this criterion, we are
able to build a particular kind of a finite Herbrand structure [8, 54] that satisfies the formula iff
the overlapping templates only require consistent properties on the shared assignments. This
is the basis for the finite-model property. The same tool is also used to find a particular normal
form for FOL[1b] that allows us to prove Craig’s interpolation, from which Beth’s definability
immediately follows. With more detail, we reduce the search for an interpolant between two
FOL[1b] sentences ϕ1 and ϕ2 to the same problem between two propositional formulas η1
and η2 suitably obtained from the derived relations composing the matrices of the former.
As for the standard syntax, in the new one, an interpolant is a sentence ϕ over the signature
common to ϕ1 and ϕ2 such that ϕ1 ⇒ ϕ⇒ ϕ2 holds. For instance, consider the implication
∃x∀y[(p ∧ (q → r)) ∧ ∀x∃y[(p ∧ (r → q)) ⇒ ∃x∃y[(s → (q ↔ r)), where [ = (x, a1)(y, a2).
Now, it is not hard to see that ∃x∃y[(q↔ r) is the associated FOL[1b] interpolant, where
q↔ r is obtained as the propositional one for (p∧ (q→ r))∧ (p∧ (r→ q))⇒ (s→ (q↔ r)).

I Theorem 3.11 (FOL[1b] FMP, CI & BD). FOL[1b] does enjoy the finite-model property
and both Craig’s interpolation and Beth’s definability.

FOL[1b] is very well-behaved from the algorithmic point of view too. Indeed, we can
provide a PTime model-checking procedure w.r.t. the combined complexity, which is based
on a linear reduction to a two-player reachability game, whose solution is known to be in
PTime [30]. It remains open whether the problem is also hard for this class.

I Theorem 3.12 (FOL[1b] MC). FOL[1b] has a PTime model-checking problem.

We finally discuss the satisfiability problem for FOL[1b], which we prove to be complete
for the third level of the polynomial hierarchy, i.e., ΣP

3 = NPTime CoNPTime NPTime . In
other words, it is solvable by an NPTime Turing machine having access to a CoNPTime
oracle that, in turn, can exploit an NPTime advice. For the upper bound, thanks to the
characterization of satisfiability via the overlapping templates mentioned above, we are
able to reduce the problem to a three-round two-player game, in which each player has
either NPTime or CoNPTime computational power. The lower bound follows from a
reduction from the satisfiability problem of QBF sentences with alternation 2. Intuitively,
we transform a formula of the form ∃∗∀∗∃∗ψ into an equisatisfiable conjunction ϕ∃∧ϕ∀∧ϕψ
of FOL[1b] sentences such that the first two take care of the initial existential and universal
quantifications, while the last handles the matrix. Observe that, since FOL[1b] is closed
under negation, its validity and implication problems inherit the same complexity.

I Theorem 3.13 (FOL[1b] SAT). FOL[1b] has aΣP
3 -complete satisfiability problem.

For the sake of space, we exclusively devote the remaining part of this work to sketching
the proofs of the two algorithmic results concerning FOL[1b].

4 Model Checking

We now describe a PTime model-checking procedure for FOL[1b] sentences of unbounded
width based on a reduction to a reachability game [30] over a tree arena, whose depth and
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size are bound by, respectively, the number of quantifiers in the sentence and the size of the
underlying RS. It is worth noting that the verification of a sentence ϕ can be reduced to a
linear number of checks of its subsentences of the form ℘[r̂. Thus, we just focus on the latter.

Matrix Normalization. Before starting, we need to introduce the concept of restricted
Boolean combination, i.e., a Boolean formula in which the negation is replaced by the
difference connective \, whose semantics is set as follows: φ1 \ φ2 , φ1 ∧ ¬φ2. Now, we can
show that, for each derived relation r̂, there exists a restricted Boolean combination r̂? with
|r̂?| = O(|r̂|) such that either r̂ ≡ r̂? or r̂ ≡ ¬r̂?. This can be proved by induction via De
Morgan’s laws and the substitutions of ϕ1 ∧ ¬ϕ2 and ϕ1 ∨ ¬ϕ2 with ϕ1 \ ϕ2 and ¬(ϕ2 \ ϕ1),
respectively. In case r̂ ≡ r̂?, it holds that ℘[r̂ ≡ ℘[r̂?. If r̂ ≡ ¬r̂?, instead, we have that
℘[r̂ ≡ ¬℘[r̂?, where the quantification prefix ℘ is the dual of ℘, i.e., every existential (resp.,
universal) quantifier in ℘ is replaced by a universal (resp., existential) one in ℘. Hence,
w.l.o.g., we can assume r̂ to be a restricted Boolean combination of relations.

Model-Checking Procedure. The first step in our procedure is to transform the restricted
derived relation r̂ into a fresh atomic relation r? containing all and only the assignments
satisfying r̂. From the original LS L=〈Ar,Rl, ar〉 and L-RS R=〈Dm, rl〉, we build the new
LS L?,〈ar(r̂), {r?}, ar?〉 with ar?(r?),ar(r̂) and the L?-RS R?,〈Dm, rl?〉 with rl?(r?),v(r̂),
where the valuation function v is set as follows: (i) v(r) , rl(r); (ii) v(φ1∧φ2) , v(φ1)∩v(φ2);
(iii) v(φ1 ∨ φ2) , v(φ1) ∪ v(φ2); (iv) v(φ1 \ φ2) , v(φ1) \ v(φ2). It is easy to observe that
R |= ℘[r̂ iff R? |= ℘[r?. Moreover, such a construction can be done in time O(|r̂| · ‖R‖).
Note that, in this step, we are just employing the classic set operations of relational algebra.

The second step is devoted to the transformation of the binding form [r? into an injective
one [\r\ having [\ ,

∏
x∈free([r?)(x, x), i.e., a formula in which every argument is bound

to a different variable. From the previous LS L? and L?-RS R?, we build the new LS
L\ , 〈free([r?), {r\}, ar\〉, where ar\(r\) , free([r?), and the L\-RS R\ , 〈Dm, rl\〉 with
rl\(r\) , {χ ∈ AsgDm : R?, χ |= [r?}. Now, we immediately obtain that R? |= ℘[r? iff
R\ |= ℘[\r\. Moreover, the construction can be done in time O(|[| · ‖R‖). In this case, we are
making use of the three relational algebra operations of selection, projection, and renaming.

x

⊥y y

zz z ⊥ z

>⊥ ⊥ > ⊥ > ⊥ >

1 3 

1 2 3 3 

1 3 2 3 

Figure 2 A prefix-tree reachability game arena.

With the third and final step, we reduce
the verification of R\ |= ℘[\r\ to the win
of the first player in a suitably constructed
reachability game. Firstly, fix an ordering
<⊆ Dm×Dm among the values of the carrier
domain Dm. Then, let<℘ be the ordering on
variables induced by the quantification prefix
℘. Now, we can sort in the lexicographic
order (<,<℘) all tuple functions contained
into the interpretation rl\(r\) of the relation
r\. At this point, from these tuples, we can
construct a prefix-tree data structure, a.k.a. trie [17], taking values in the set {⊥,>}. In
particular, to each tuple in rl\(r\) we assign >, while to every minimal partial tuple that
does not have an extension in the interpretation we assign ⊥. As an example, in Figure 2,
we depict the trie corresponding to Dm = {1, 2, 3}, ar\(r\) = {x, y, z}, x<℘y<℘z, and
rl\(r\) = {xyz 7→ 111, xyz 7→ 123, xyz 7→ 132, xyz 7→ 333}. Note that, as there are no tuple
functions in rl\(r\) having the variable x set to 2, it follows that the corresponding node of
the tree has a ⊥-child. Similarly, the second node corresponding to y has a ⊥-child, since
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there are no tuples in the interpretation of r\ mapping x to 3 and y to 1 or 2. To complete
the construction of the arena we only need to assign the nodes to the players. If a variable
x is existentially (resp., universally) quantified in ℘, the corresponding node of the tree is
assigned to the first (resp., second) player. Now, it is not hard to prove that R\ |= ℘[\r\ iff
the first player wins the reachability game to > on this trie. For instance, consider again
the above arena and suppose that ℘ = ∃x∀y∃z. Then, R\ |= ℘[\r\, as the first player has a
winning strategy on the nodes x and z. On the contrary, assume ℘ = ∀x∃y∃z. In this case
R\ 6|= ℘[\r\, since the second player can choose to reach the ⊥-child of x.

Summing up, since the problem of determining the winner of a turn-based reachability
game is solvable in PTime [30], the complexity of our procedure immediately follows.

5 Satisfiability

We finally come to the more technical part of the paper, in which we provide the satisfiability
procedure for FOL[1b]. In addition we describe the key model-theoretic tool at its basis. As
mentioned before, this is focused on the concept of overlapping templates, i.e., intuitively, a
set {(℘i, [i)} of quantification and binding prefixes for which (i) there is a strict total order
between the arguments that agrees, via [i, with the functional dependences of all ℘i and
(ii) each argument is bound to at most one existential variable. For the sake of space, here
we just give the basic definitions that are necessary to formalize this concept and state the
main characterization theorem. All proofs together with further notions and details will be
reported in the extended version of this work.

In order to have a deeper intuition on the novel model-theoretic tool, we first describe four
examples, built on the LS L=〈{a, b, c}, {q, r}, ar〉 with ar(q)=ar(r)={a, b, c}, which cover
some interesting cases of correlation between the satisfiability of a sentence and the overlapping
property of its templates. Consider the sentence ϕ1 =℘1[1q ∧ ℘2[2¬r ∧ ℘3[3(q↔ r), where
℘1 =∀x∃y∀z, ℘2 =∀y∃z∀x, ℘3 =∀x∀y∀z, and [1 = [2 = [3 = (a, x)(b, y)(c, z). It is not hard
to see that ϕ1 is unsatisfiable, since it requires the inconsistent derived relations q, ¬r, and
q↔ r to hold on the same tuple function t. Indeed, ℘1[1q forces q to hold on all tuples t1
satisfying the constraint t1(b)= f1(t1(a)), where f1 is a Skolem function for y in ℘1. Similarly,
℘2[2¬r demands ¬r on all tuples t2 with t2(c)= f2(t2(b)), where f2 is a Skolem function for
z in ℘2. Finally, ℘3[3(q↔ r) enforces q↔ r on every possible tuple. Hence, the sentence ϕ1
requires ψ=q ∧ ¬r ∧ (q ↔ r) on all tuples t with t(b)= f1(t(a)) and t(c)= f2(t(b)), which
leads to an inconsistency. Observe that we can find such tuples because of the dependency
order a b c among the arguments, which is compatible with the functional dependences
of ℘1 and ℘2 via the bindings [1 and [2. Also, there are no arguments associated to more
than one existential variable. Consequently the set of templates {(℘1, [1), (℘2, [2), (℘3, [3)}
is said to be overlapping. Now, let ϕ2 be the sentence obtained from ϕ1 by replacing the
prefixes ℘3 and [3 with ∀x∀y and (a, x)(b, y)(c, y). We show that ϕ2 is satisfiable on an
RS of order |Dm| = 2. First note that ℘3[3(q↔ r) enforces q↔ r only on tuples t3 with
t3(b) = t3(c). Moreover, choose a Skolem function f2 for z in ℘2 such that f2(α) 6= α, for
every α ∈ Dm, and suppose that ϕ2 requires ψ on a tuple t. In this case, we have that
t(c)= f2(t(b)) and t(b)= t(c), i.e., t(c)= f2(t(c)), which is impossible. Observe that there
are no such tuples t because of a cyclic dependence c c caused by the second and third
sentence. Therefore, the set of templates {(℘2, [2), (℘3, [3)} is not overlapping. Similarly,
consider the sentence ϕ3 drawn from ϕ1 by substituting ∀z∃x∀y for the prefix ℘3. Also in
this case, ϕ3 is satisfiable on an RS of order 2. Indeed, suppose it requires ψ on a tuple t.
Then, we have that t(b)= f1(t(a)), t(c)= f2(t(b)), and t(a)= f3(t(c)), where f3 is a Skolem
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function for x in ℘3. Thus, t(a)= f3(f2(f1(t(a)))). Now, it is not hard to find f1, f2, and f3 in
such a way that f3(f2(f1(α))) 6=α, for every α ∈ Dm. So, the tuple t cannot exist, due to the
cyclic dependence a b c a. Here, {(℘1, [1), (℘2, [2), (℘3, [3)} is a set of non overlapping
templates. Finally, derive the sentence ϕ4 from ϕ1, by setting the prefix ℘3 to ∃z∀x∀y.
Again, ϕ4 is satisfiable, as the argument c is existential in both (℘2, [2) and (℘3, [3). So, one
can find a Skolem constant for z in ℘3 that is different from all possible values assumed by
the Skolem function f2 for z in ℘2.

Satisfiability Characterization. In this technical subsection, we state the fundamental
characterization theorem connecting the satisfiability of a sentence with the overlapping
property of its templates. To do this, we first give the formalization of the latter concept
together with some auxiliary definition. Then, we introduce two suitable graphs defined
on the structural features of a sets of templates, which are used to define the notion of
overlapping.

A template τ , (℘, [) ∈ Tem is a pair of a quantification and a binding prefix on the set of
arguments ar(τ) ⊆ Ar and variables vr(τ) ⊆ Vr. By Tem(A) we denote the subset of templates
having argument set A⊆Ar. For a given template τ = (℘, [), by ∃(τ) (resp., ∀(τ)) we denote
the set of arguments that are associated with an existential (resp., universal) variable in ℘ via
[. Moreover, ∼=τ ⊆ ar(τ)× ar(τ) and  τ ⊆ ∀(τ)×∃(τ) represent, respectively, the collapsing
equivalence and the functional dependence induced by τ , i.e., for all a1, a2 ∈ ar(τ), a1∼=τa2
iff [(a1) = [(a2) and, for all a1 ∈ ∀(τ) and a2 ∈ ∃(τ), a1 τa2 iff the variable [(a1) occurs
before the variable [(a2) in ℘. For instance, for the template τ=(∀x∃y, (a, x)(b, y)(c, x)), it
holds that ∃(τ)={b}, ∀(τ)={a, c}, a τb, c τb, and a∼=τc.

As set of vertexes of the above mentioned graphs, we use the set ArA
S ⊆ S × Ar of

extended arguments e = (τ, a), i.e., pairs of a template τ(e) = τ and one of its arguments
a(e) = a ∈ ar(τ) ∩A. Also, ∃A

S (resp., ∀A
S ) represents the set of existential (resp., universal)

extended arguments, i.e., the elements e such that a(e) ∈ ∃(τ(e)) (resp., a(e) ∈ ∀(τ(e))).

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 3 Collapsing
graphs C1, C3, and C4.

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 4 Collapsing
graph C2.

The collapsing graph for S over A
is the symmetric directed graph CA

S ,
〈ArA

S ,
∼=A

S 〉 with the extended arguments
as vertexes and the edge relation given
by ∼=A

S ,{(e1, e2)∈ArA
S×ArA

S : (τ(e1) =
τ(e2) ⇒ a(e1)∼=τ(e1)a(e2)) ∧ (τ(e1) 6=
τ(e2) ⇒ a(e1) = a(e2))}+. Intuitively,
∼=A

S is the least equivalence relation on
ArA

S that identifies the arguments bound to the same variable in some template. This graph
is used to take into account the multiple possible associations of an argument with the
existential variables, in order to formalize the property (ii) described at the beginning of
the section. In Figure 3, we depict the collapsing graphs Ci=CA

Si
for the set of templates

Si = {τ1= (℘1, [1), τ2= (℘2, [2), τ3= (℘3, [3)} and arguments A = {a, b, c} associated with
every single sentences ϕi given above, where i ∈ {1, 3, 4}. The dots simply represent the
extended arguments obtained by intersecting rows and columns. In Figure 4, we report the
collapsing graph C2=CA

S2
for the sentence ϕ2, where the edge between the vertexes (τ3, b)

and (τ3, c) is due to the binding [3. Note that, since ∼=A
S is an equivalence relation, we are

omitting the transitive closure from the graphs.
We can now define a property describing the case in which two existential arguments

are forced to assume the same value. A collapsing graph CA
S is conflicting iff there are two

existential extended arguments e1, e2 ∈ ∃A
S such that e1∼=A

S e2 and, if τ(e1) = τ(e2) then
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a(e1) 6∼=τ(e1)a(e2). Intuitively, this property ensures the existence of two arguments that, at
the same time, need to assume the same value, due to the collapsing equivalence on some
template, and are both existentially quantified in possibly different templates. As an example,
the collapsing graph C2 of ϕ2 is conflicting, since (τ1, b)∼=A

S (τ2, c). The same holds for the
collapsing graph C4 of ϕ4, since (τ2, c)∼=A

S (τ3, c).

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 5
Dependence graph
D1.

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 6
Dependence graph
D2.

a b c

τ1

τ2

τ3

• • •

• • •

• • •

Figure 7
Dependence graph
D3.

The second graph we
introduce keeps track of
the functional dependences
between arguments that
cross all the templates. This
property has been inform-
ally described in point (i) at
the beginning of this section.
The dependence graph for S
over A is the directed graph
DA

S ,〈ArA
S , 

A
S 〉 with the extended arguments as vertexes and the edge relation given by

 A
S ,
∼=A

S ◦ {(e1, e2)∈ ArA
S ×ArA

S : τ(e1)=τ(e2) ∧ a(e1) τ(e1)a(e2)}. In Figures 5, 6, and 7,
we report the dependence graphs Di=DA

Si
corresponding to the sentences ϕ1, ϕ2, and ϕ3,

respectively. The black arrows represent the functional dependences inside a single template,
while the gray ones are obtained by the composition with the collapsing relation. Note that
D1 is acyclic, so, we can build an order among the extended arguments that agrees with all
functional dependences of the templates. In D2, instead, there is a loop on (τ2, c) due to the
structures of τ2 and τ3. Finally, D3 contains a cycle among (τ3, a), (τ1, b), and (τ2, c).

I Definition 5.1 (Overlapping Templates). A set of templates S ⊆ Tem(A) over a set of
arguments A ⊆ Ar is overlapping iff the collapsing graph CA

S is not conflicting and the
dependence graph DA

S is acyclic.

Observe that there are similarities between the introduced concept of overlapping tem-
plates and notion of weakly acyclic dependencies of TGDs [41], which is known to be a
sufficient property for the termination of the chase algorithm [1], one of the most useful tools
in database theory to test query containment under constraints. This connection will be
analysed in the journal version of this article.

We can finally state the characterization theorem. To do this, we first recall that, for a
given set X and a Boolean formula η over X, we denote by wit(η) ⊆ 2X the set of witnesses
of η, i.e., the set of all possible subsets of X satisfying η.

I Theorem 5.2 (Satisfiability Characterization). A given FOL[1b] sentence ϕ is satisfiable iff
there exists a witness F ∈ wit(ϕ) such that, for all overlapping templates S ⊆ dom(fr)∩Tem(A)
with A ⊆ Ar, it holds that

∧
τ∈S fr(τ) is a satisfiable Boolean combination of relations, where

fr = {(℘, [) ∈ Tem 7→ r̂ ∈ R̂l : ℘[r̂ ∈ F} is the function associating each template with the
corresponding derived relation in F 1.

Satisfiability Procedure. We finally provide an algorithm for the solution of the satisfiability
problem for FOL[1b], which can be interpreted as a satisfiability-modulo-theory procedure.

1 Recall that a FOL[1b] sentence can be seen as a Boolean combination of sentences of the form ℘[r̂.
Moreover, we are assuming that each quantification/binding prefix ℘[ in ϕ occurs only once, thus, fr is
indeed a function (this can be ensured by a standard renaming of the variables).
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Indeed, by means of a syntactic preprocessing based on the concept of overlapping templates,
the search for a model of a FOL[1b] sentence is reduced to that of a sequence of Boolean
formulas over the set of derived relations. The correctness of such an approach is crucially
based on the fundamental characterization of Theorem 5.2. It is also interesting to observe
that the procedure is independent from the size of the finite model derived in the proof of
Theorem 3.11.

Algorithm 1: FOL[1b] Satisfiability Checker.
signature sat : L(Vr)-FOL[1b]→ {>,⊥}
function sat(ϕ)

1 foreach F ∈ wit(ϕ) do
2 fr← {(℘, [) ∈ Tem 7→ r̂ ∈ R̂l : ℘[r̂ ∈ F}
3 i← ⊥
4 foreach S⊆dom(fr)∩Tem(A) with A⊆Ar do
5 if S is-overlapping-over A then
6 if wit(

∧
τ∈S fr(τ)) = ∅ then

7 i← >

8 if i = ⊥ then
9 return >

10 return ⊥

To understand the main idea
behind the algorithm, it is use-
ful to describe it through a
simple three-round two-player
turn-based game between the
existential player, called Eloise,
willing to show that a sentence
ϕ is satisfiable, and the univer-
sal player, called Abelard, try-
ing to do exactly the oppos-
ite. First, Eloise chooses a wit-
ness F ∈ wit(ϕ) for ϕ seen as a
Boolean combination of simpler
subsentences of the form ℘[r̂. In
this way, she identifies a formula
function fr={(℘, [)∈Tem 7→ r̂∈
R̂l : ℘[r̂∈F} that describes F by
associating each derived relation with the corresponding template. Then, Abelard chooses
a subset of overlapping templates S ⊆ dom(fr)∩Tem(A) over a set of arguments A ⊆ Ar.
At this point, Eloise wins the play iff the Boolean formula ψ=

∧
τ∈S fr(τ), obtained as the

conjunction of all the derived relations associated with the templates in S, is satisfiable. If
this is not the case, Abelard has spotted a subset {℘[fr(τ) : τ = (℘, [)∈S} of the witness F
that requires to verify the unsatisfiable property ψ on a certain valuation of arguments in A.
Thus, F cannot have a model. Consequently, ϕ is satisfiable iff Eloise has a winning strategy
for this game.

We can now describe the pseudo-code of Algorithm 1. The deterministic counterpart of
Eloise’s choice is the selection of a witness F∈wit(ϕ) in the loop at Line 1, which is followed
by the computation of the corresponding formula function fr. At each iteration, a flag i is
also set to ⊥, with the aim to indicate that F is not inconsistent (a witness is consistent
until proven otherwise). After this, we find the deterministic counterpart of Abelard’s choice,
implemented by the combination of a loop and a conditional statement at Lines 4 and 5,
where a subset of overlapping templates S⊆dom(fr)∩Tem(A) over a set of arguments A⊆Ar
is selected. This is done in order to verify the inconsistency of the conjunction

∧
τ∈S fr(τ) at

Line 6. If this check is positive then the flag i is switched to >. Once all choices for Abelard
are analysed, the computation reaches Line 8, where it is verified whether an inconsistency
was previously found. In the negative case, the algorithm terminates by returning >, with
the aim to indicate that a good guess for Eloise is possible. In the case all witnesses are
analysed, finding for each of them an inconsistency, Eloise has no winning strategy. Thus,
the algorithm ends by returning ⊥.

It remains to evaluate the complexity of the algorithm w.r.t. the length of the sentence ϕ.
The verification at Lines 5-7 of Abelard’s universal guess of Line 4 can be done in PTime with
an NPTime advice for the Boolean satisfiability problem of Line 6. Thus, the check at Lines 2-
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9 of Eloise’s existential guess of Line 1 can be done in PTime with a CoNPTimeNPTime

advice for Line 4. Hence, the overall complexity is ΣP
3 = NPTime CoNPTimeNPTime, i.e., the

problem belongs to the third level of the polynomial hierarchy.

6 Discussion

Trying to understand the reasons why some powerful extensions of modal logic are decidable,
we introduced and studied a new family of FOL fragments based on the combinations of
binding forms admitted in their formulas. In other words, we provided a novel criterion to
classify FOL sentences focused on the associations between arguments and variables. A main
features of this classification is to avoid the usual syntactic restrictions on quantifier patterns,
number of variables, relation arities, and relativisation of quantifiers or negations. Therefore, it
represents a suitable framework in which to study model-theoretic and algorithmic properties
of extensions of modal logic, such as ATL? and SL[1g]. We analysed the expressiveness of
the introduced fragments, showing that the simplest one, called one binding (FOL[1b]), is
already incomparable with other important restrictions of FOL, such as the clique guarded
(FOL[cg]) [19, 22], the guarded negation (FOL[gn]) [7], and the fluted logic (FOL[fl]) [44].
Moreover, we proved that it enjoys the finite-model property, a PTime model checking, a ΣP

3 -
complete satisfiability, and a constructive version of both Craig’s interpolation and Beth’s
definability, which are indirectly derived from the same properties of propositional logic. As
future work, besides a deeper study of the conjunctive and disjunctive fragments (FOL[cb]
and FOL[db]), it is important to verify which of the stated results lift to the extensions of
the introduced logics that comprise distinguished relations representing equivalences, orders,
or the equality. Finally, it would be interesting to come up with a wider framework, which
can accommodate the incomparable languages FOL[cg], FOL[gn], FOL[fl], and FOL[1b].
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